

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW YORK, FEBRUARY 16, 1895	

the latest long distance telephone TRANSMITTER.
Early in the history of the telephone, after it had beeu before that great tribunal, the public, the verdict seemed to be that it might answer for local purposes, but much improvement would be required before it could be used for long distance communication. In the telephone, as in everything that comes "to stay," the required improvements have been gradually developed, so that at the present time, instead of communicating telephonically over even short distances with great difficulty and uncertainty, it is now as possible and practicable to carry on conversation over
and the cell is inserted the mica ring shown in Fig. 7. To the rear surface of the front of the diaphragm case is secured an offset bar, in the center of which, at a point opposite the center of the diaphragm, is inserted the shank of a metallic cell containing the electrodes. In the bottom or rear portion of the cell is placed a disk of dense carbon, the face of which is highly polished. To the front of the cell is clamped a disk of mica by means of a ring screwed on the cell and firnished with a fillet. In an aperture in the center of the disk of mica is inserted the shank of a button, the inner surface of which is covered by a disk of highly polished dense carbon. The space between the button

17

\boldsymbol{J}

8

is connected with the metallic button carrying the outer carbon. The form of the insulating block of rubber is shown clearly in Figs. 2 and 3. The back of he diaphragm cell consists of a metal cup (Fig. 1) ttached to the front plate by screws. The cup forms metallic contact with the carbon cell and is connected electrically with one of the battery wires.
The granulated carbon used in the cell is made by ne of the gunpowder manufacturing companies, and the secret of its manufacture is not known to the public, but it has been ascertained that coked Schuylill anthracite coal will answer the same purpose. The on granules are scraened through a wire sieve of 60 mesh ; smaller and larger granules than those which pass through this mesh are rejected.
The local circuitwof the telephone is shown in Fig. 17. In this diagram the transmitter is shown supported by a metallic arm which is in electrical communication with the rear portion of the telephone case. One of the fiexible cords extends from the socket in the rubber block within the telephone case to one pole of the battery. The other pole of the battery is connected with the primary wire of the induction coil, and returns through the lever switch to the arm of the trans mitter, thus completing the local circuit of the

sutull.
1 and 2. Back and front portions of transmitter. 3. Insulating block. 4. Diametrical section of transmitter. 5. Socket and arm .or flexible cord end. 6. Damping spring. 7. Mica ring. 8. Iron diaphragm, withisoft rubber binding. 9. Cross bar. 10. Carbon cell. 11. Carbon button. 12. Granulated carbon. 13. Carbon-lined front button. 14. Mica disk. 15. Nut. 16. Clamping ring. 17. Local circuit.

THE "SOLID BACK" LONG DISTANCE TELEPHONE TRANSMITTER.

a line 200,500 or 1,000 miles long as to converse face to \mid and the rear carbon disk is filled with granules of carface. Now New Yorkers can readily converse over the bon, and the shank of the button extends through the wires with Philadelphia, Baltimore, Washington, Chicago, Milwaukee, and other distant places, and wherever the long distance telephone is in use, not only does the user have the advantage of communicating over distances up to 1,000 or 1,500 miles, but he is sure of very superior local service.

These results are due mainly to the metallic circuit and the long distance transmitter, the receiver remaining practically the same as it was at first.
The long distance transmitter is fully illustrated by the accompanying engravings, aud forms the subject of this article.
Into the ring forming the front of the diaphragm case is screwed the mouthpiece, and in a circular re cess in the back of the ring is placed the sheet iron diaphragm having a binding of soft rubber around its edge, as shown in Fig. 8, and between the diaphragin
central aperture of the diaphragm and is held therein y a nut and a jam nut.
The diaphragm is held in its place in the case and damped by a spring (see Fig. 6) secured to the case and covered at its free end with soft rubber. The carbon cell is adjusted by moving it out or in until the required pressure is secured, when the shank of the cell is clamped. The cell is shown in detail in Fig. 10, the polished carbon button in Fig. 11, the front button connected with the diaphragm in Fig. 13, the mica disk in Fig. 14, the nut by which it is clamped to the but ton in Fig. 15, and the ring which screws on the cel and holds all the parts in place is shown in Fig. 16. To the back of the bar extending across the cell is
ecured an insulating block of hard rubber into which is screwed the socket, shown in Fig. 5, for receiving the end of a flexible cord. The arm attached to the socket
telephone. One of the line wires is connected with one terminal of the induction coil, the other terminal of the induction coil is connected directly with the tele phone receiver, which in turn is connected with the ever switch, the latter being in electrical connec tion with the other line wire. Two wires connected with the secondary terminals run to a cut-out key at the right of the transmitter. It is found advantageous to short-circuit the induction coil by pressing this key while the message is being received, as it cuts out the esistance of the coil and also that of the call bell.
The induction coil has a half inch core of soft iron wires on which are wound three layers of No. 16 wire (A. W. G.), and upon this is wound the secondary wire which consists of No. 23 (A. W. G.), a sufficient quantity being used to make the resistance of the secondary about 17 ohms. The length of the coil between the fanges of the spool on which it is wound is 6 inches.
(Continued on page 107.)

Šientific Ammerian.

ESTABBLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACE.

TERMS FOR THE SCIENTIFIC AMERICAN.

 ion at a vary moderate cost.
 TH. Readers are specially requasted to notify the
any fallure, delay, or irreularitr in receipt of papers.

NEW YORK, SATURDAY, FEBRUARY 16, 1895.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No. 998.
For the Week Endinir Febraary 16, 1895
 nating bydrocarbons.- By Prof. VIVIAN B. LEWES.-Description
of one of the preatest triumbs of syntietic chemistry - The
commercial synthesis of hydrogen and carbon by the aid of the
 II.

ZERO WEATHER OVER THE UNITED STATES. Such a drop in temperature as was experienced ove the greater portion of the United States, from the Rocky Mountains to the Atlantic, and from the Canada border to the Gulf of Mexico, during the week ending February 9, has hardly had a parallel since the recording of weather changes has become a regular system. Severer weather and heavier snowfalls have been ex perienced heretofore in limited sections, but the great area and low range of temperature of the storm which had its center in Texas on February 6 was something phenomenal. The temperature was below the freezing point for nearly three days throughout the entire United States, except a small area on the southern ex tremity of Florida and the California coast up to about Portland. And within the lines which marked the extent of country over which a freezing temperature was being experienced the mercury dropped to thezero point over the greater portion. At New York City, three degrees below zero was experienced, and throughout New England the range was from zero to twenty-six degrees below. It was below the zero tem perature also throughout the States of New York and Pennsylvania, in portions of Maryland, Virginia, and the Carolinas, and in the greater part of Georgia, Alabama, and Mississippi, the zero line extending down into the heart of Texas, and thence westerly to th Rooky Mountains, and including the entire territory of the Mississippi Valley and around the great lakes. - In the memorable blizzard of 1888 , a much smalle area was affected, the storm being confined mainly to the Middle Atlantic States, and the temperature did not fall so low, although there was a much greater snow fall. The snow fall accompanying the last grea cold wave has varied from a few inches in depth, along the coast, to upward of two feet at many points in the interior, and, accompanied as it has been by a high wind, reaching a velocity of seventy miles an hour at Sandy Hook, railroad travel in all directions has been greatly impeded. But perhaps the greatest loss attributable to the cold weather will be that of the Southern fruit crops. The zero point has been reached over a large territory where a freezing temperature has heretofore been but rarely experienced, and the fruit crops of these milder climates cannot but be an almost total loss, it being reported that the Florida orange crep and a great portion of the trees hav been entirely destroyed.

\triangle NEW JET-PROPELLED STEAM LIFEBOAT

The Royal Lifeboat Institution, a benevolent or ganization supported by subscriptions from the char itable people of Great Britain, maintains many life boat stations on the coasts, which are the means of saving hundreds of lives every year. In general, life boats are worked by oars and sails. In 1891 the inst tution caused to be built a stean-propelled lifeboat worked on the jet principle. 'That is to say, instead of the ordinary screw propeller, jets of water are used to drive the vessel.
The water jets are produced by means of rotary pumps, and when the jets are discharged from the stern the boat is driven forward. The discharge nozzles are capable of being shifted, so as to direct the jets laterally, in which case the vessel may be turned around or made to move sidewise. The first jet propelled lifeboat proved very useful and successful, and now the institution has added another boat, worked on the same principle. This vessel is named the City of Glasgow. She is 53 feet long, 16 feet beam, $51 / 2$ fee deep. Displacement 30 tons. Besides coal, provisions, water and crew, the boat will carry 40 passengers. On each side there are two centrifugal pumps for working the vessel. Engines, 200 horse power. Speed, 8 miles per hour, and capable of towing another boat at same speed. The vessel is propelled and turned with the utmost facility, without the use of the rudder, although, of course, a rudder is provided. Going at full speed the boat may be stopped dead and started astern in 20 seconds.
A somewhat similar jet boat, named the President Van Heel, has been built for the Lifeboat Institution of South Holland, and is operated with much success. We have on several occasions called the attention of the Navy Department to the importance of having our war vessels fitted with jet pipes and proper connections with the steam pumps, so that in case of need, such as loss of rudder or in an action. this auxiliary means might be employed to steer, swing, or turn the vessel as circumstances might require. We have also sug gested the inquiry whether additional pumps and pipes might not be arranged for connection with the main engines of the ship, so that in case of loss of propeller or breaking of shaft, the propulsion of the vessel might be still maintained.
These suggestions apply not only to war ships, but also to merchant steamers. The jet system is not capa ble of yielding so high a rate of speed for a ship as the propeller, but it is a safe and effective method, es pecially useful for emergencies. It would be a simple and comparatively inexpensive matter on all steamer
rudder loss. Such devices should be made compulsory same as other safety requirements

Charles w. Copeland

Charles W. Copeland, one of the best known marine and mechanical engineers in the country, died at his Brooklyn home February 5. Mr. Copeland was born in Coventry, Conn., in 1815. Daniel Copeland, his father, was a builder of steam engines and boilers in Hartford, Conn. The plant was established on the premises afterward occupied by the extensive concern of the Woodruff \& Beach Iron Works of that city Charles Copeland was carefully trained by his fathe in designing and draughting steam vessels. He als received practical instructions in the shops in patter making, founding, machine fitting, boiler making, and ater became the superintendent of his father's estab ishment. He designed at this time a number of steam rs for use on the Connecticut and Southern rivers. Un der the guidance of Professor Hackley, of Columbia Col lege, he became an adept in mathematics. In 1836 he accepted a position as designing and constructing engi neer in the West Point Foundry of New York, then one of the largest plants of the kind in the country. Whil connected with this concern he designed and buil many marine engines, including those for the United States naval steamer Fulton, the steamboats Utica Rochester, Swallow, Milwaukee, and Cleveland, and the ferryboats Gold Hunter, Jamaica, Bunker Hill and Lexington. He built the first iron hull in the United States for a boat which was put in service on Lake Pontchartrain.
In the year 1839 he was appointed constructing en ineer to the United States navy, an office similar to that now occupied by the chief of the Bureau of Steam Engineering. During the Mexican war he fitted out what was called the "Mosquito Fleet," consisting of the Spitfire, Scorpion, Scourge, Vixen, etc. At a late period he designed the engines and boilers of the nava steamers Missouri, Mississippi, and the Michigan, fo Lake Erie, which was the first iron steamer ever used or naval service. Subsequently he designed the ma chinery for the naval steamers Saranac and Susque anna. He then became superintending engineer of he Allaire Works of New York, where he designed and built the machinery for the steamers Pacific and Balti of the Collins Line, the Panama, the Bay State, the Empire State, the Traveler, and others. In 1852 Mr Copeland's opinion was called for on the "Steamboat Bill," and he was appointed the first supervising in spector under the new law for the New York district He held this position for nine years. During the civi var he was engaged in altering and refitting vessel or the Southern rivers, and he introduced double enders for navigating the intricate channels of the rivers. Since the war, Mr. Copeland has been en gaged as consulting and superintending engineer for United States Lighthouse Board and by private in dividuals and corporations. He designed the steamer City of New York, City of Worcester, and City of Bos on during this period. These are only a few of the many works which came under Mr. Copeland's care He was a man of the strictest integrity, and his re ports were always models of accuracy and reliability

A Water Pipe Trouble

The way in which pipes sometimes become mysteri ously clogged is illustrated by the following from the Sanitary Plumber

Arriving at the dwelling containing the trouble ome closet, I went in and uncoupled the supply coup ing at the valve, and with the water off blowed through the pipe. Judging from the ease with which the air passed through the pipe, it seemed that the upply was not at fault, and the plumber assured me that he had blown through it himself, long before Nevertheless, I produced a small pocket mirror and directed a light to the interior of the coupling and pipe; there in an instant's glance I detected the caus of the failure. In making the joint which joined the valve coupling to the supply pipe, solder had run hrough and half filled the bore of the pipe. As the couplings for these valves are large, this would not or dinarily have caused the great reduction in the supply xperienced in this case. The bulk of the solder which had run through hung free in the shape of a large lima bean. At the coupling end of the bean it was effectu ally hinged to the solder of the joint where it run through. One could blow through the pipe easily from the coupling end, but scarcely at all from the supply ide, as the air or water would catch the solder bean and throw it across the waterway of the pipe, stop ping its egress almost as effectually as would the clack of a check valve put on wrong side to.
"We pinched the solder out of the pipe and the closet worked charmingly. The plumber and his boss looked very crestfallen when the cause of the trouble became known, and did all they could to make amends."

THE Book of Job, written about 1520 B.C., describe ery accurately several processes of smelting differ ent metals.

At a recent meeting of the London section of the Society of Chemical Industry, Mr. T. Christy exhibited specimens of different sorts of rubber, specially with the view of showing that rubber can be extracted by water. In the first instance the Landolphia was shown with the roots and boughs as cut from the living tree, next the stems after they had been boiled. The next stage was the debris of the bark and the rubber still hanging on to one end of a twig which otherwise was perfectly clean and free from any succus; then there was the mass as it fell into the pan with the bark mixed with the gum. It was then shown in different stages of treatment up to the Landolphia rubber as sent into commerce. Another Landolphia was shown from the Congo; this had keen wound off direct from the tree into a ball and dried in the course of winding. Another exhibit was Aimadina, so called from the man who discovered it and worked it out in West Africa; it also goes by the name of potato gum. This gum has most interesting properties, which have been fully explained in the scientific papers, especially by Mr. Lascelles Scott. From a series of experiment lasting over four years, it was found that by placing in a box, open to the sun and rain, some of the very best India rubber and gutta percha, some pure Almadina. and also Almadina mixed with India rubber and gutta percha, at the end of the experiment the best rubber had almost disappeared and was quite worthless, whereas the India rubber and gutta percha mixed with Almadina remained perfectly sound and with ful elastic properties. He obtained some tons of Almadina, melted it, and added to it a considerable quantity of water and some tannic acid. This was well stirred and it took up a large quantity of water. When the mass was sufficiently kneaded it was put into bags and allowed to -cool, and then sent down to some large India rubber works, and the proprietor was so pleased with it that he offered to take any quantity at 1 s 6 d . to 1 s . 10 d . per pound. This rubber, of course, had a quantity of water in it ; allowance had to be made in charging the weight when it was handed to the rail way of at least 20 per cent. As practical manufacturers on a large scale had now admitted its great value, he then met them and told them that he could no longer continue to manufacture this gum, and that he was prepared, if they gave him a sufficient order for the raw material, to give them all the information. Suffice it to say that they gave the order, but the foreman re sented it very much and did all he could not to use thi rubber, until his place was handed over to anothe man who thoroughly understood the valuable proper
ties of Almadina. The consequence was that a very much higher class of goods was turned out of thes works and large contracts made. This shows how dif ficult it is to overcome prejudices.
Another gum, also obtained by being boiled, was chicle gum. This came from Mexico, and was known to Americans as the base for their chewing gum. Smal pieces were prepared for those who desired to experi ment with it. He had sent a sample to one of his friends, who was certainly one of the most advanced men in the rubber trade, and explained to him the most simple manner of testing it, viz., chewing it; he did so, and he wrote back saying that he was delighted with the material and wanted a quantity for experiment, and, if it went down to a certain price, to put his name down for the first supplies. This gum was also found useful in plaster making and pills.
In conclusion, there were many oth ergums which he believed would advantageously yield to the treatment of cutting down the boughs and boiling them in water, finally extracting the rubber as the mass cooled. He had sent a request to several places where the rubbe trees were growing wild, suggesting that this plan should be tried.

The Future of the Earth and of Man.

One of the most immediate effects of the progress of sidereal evolution is the impoverishment of the fluid eservoirs that surround the planets. Such a discovery is, of course, very threatening for us, and it may be asked whether our oceans and our atmosphere are rich enough to answer the needs of the rocks that will con solidate hereafter. It is easy to make a calculation on this point. The crust of the earth is at present so thin that a hen's egg has relatively thicker walls than our globe. If we suppose the consolidation pushed to its enter, such a consolidation would require many time the amount of water which all our seas can furnish. Our satellite, the moon, which, by reason of its smaller volume, has reached the advanced degrees of refrigeration much more quickly than the earth, is now pre isely at that phase in which all that was absorbable is engulfed in the voids of its crust. The day will come then, when the earth, after having lost its atmosphere and its oceans after having had enormous rifts opened all over its surface, will be broken into meteoric frag ments. Long before this time, all living beings, and especially human beings, deprived of the conditions necessary for existence, will have been extinguished Let me note, moreover, that as the law of sidereal evolution is equally applicable to the sun, there will come
a time when that radiant star will cease to vivify the planets. If they shall not already have been broken into pieces, they will become, by the extinction of the heat of the sun, unfit to be the dwelling place of living beings.

A distinguished professor whom science lost prema turely, M. Trouessart, whose mind had been much occupied with these questions, explained thus the future which a waits us, and at the same time made known his own preferences among the possible different destinies of the human race
"Some day," he said, "that brilliant torch which is for us the source of light, of heat, of movement, and of life, will be exting:uished, and we poor mortals (for how can we be indifferent to the destiny of our posterity? -what will become of us? After dragging out the remnint of a dying life; after leading thesad existence of the Laps, the Esquimaux, the Samocides; after hav ing retraced all the steps of our development, physical intellectual, and moral, we shall end with exhaustion misery, hunger and cold! A thousand times better for the earth to close its career with a wighty catastrophe, which would make an end of human beings while in full civilization, which would perwit humanity to say to the universe which was crushing it, to use the fine expression of Pascal, that it is nobler than the uni verse; yes, anything rather tban such a miserable end in which thought itself will doubtless be extinguished before the wretched remains of the material life! Ye such a catastrophe science does not foresee, while it The the extinction of the sun.
The theory of sidereal evolution dissipates this sad perspective. Since we have the certainty that neithe the reason nor the sense nor the heart which has been bestowed on us is an illusion, let us also have confi dence that the reality which is before humanity i worth far more than all that we, in our profound igno rance, can conceive of as the best.-Stanislas Meunier

Liquid Fuel.

It has so often been said that one ton of oil fuel will make is much steam as two tons of good coal, that the statement has met with tolerably general acceptance and very imposing structures have been built upon it. It is, however, like many other assertions, one that wil not bear the test of careful scrutiny. It originated, there is reason to believe, with more or less sanguine inventors: and it may be true when certain qualities of coal and of oil are compared; and, again, petroleum may be better adapted for burning to advantage unde special circumstances than coal. But it is well known that the precise merits of petroleum have not been ad vocated on such a practical basis as this. It has been maintained that petroleum, when burned in a suitable furnace, will give out twice as many heat units as a pound of coal : and no doubt the announcement that "Russoline," as used in oil engines at the Cambridge Show, is little more than one-fourth better than coal, came as a startling surprise to many people. It is just as well, however, that the precise truth should b known, and its proper value assigned to oil fuel. Ther is little difficulty in doing this, as soon as the compo ition of the oil is known
The so-called hydrocarbons are of multifarious and most complex composition. There are hundreds of them, between the highly volatile benzines and the dense tar-like stuff known as astaki, and all may be obtained by fractional distillation from almost every sample of crude mineral oil. With the details of the chemical construction of rock or mineral oil we need not now concern ourselves. There are only two "fuels" properly so called in petroleum. The one is hydrogen he other carbon, and these exist in varied proportion in different samples. The complete combustion of one pound of hydrogen to water will develop 62,000 British thermal units, and one pound of carbon will develop in like manner 14,500 thermal units. The average specific gravity of crude petroleum is probably somewher about 0.87 , and its composition about 85 per cent car bon, 13 per cent hydrogen, and 2 per cent oxygen. The vaporative efficiency of one pound of thisfuel is thus $14,500 \times 0.85=12,325$ units for the carbon; $62,000 \times$ $\cdot 13=8,600$ for the hydrogen; and $12,325+8,600=$ 20,925 , say 21,000 units for the whole. It will be seen that this is a long way from the 29,000 units needed to be equal to double the value of good coal.
But this is not all. There are on the market pe roleum oils which contain much less than 13 per cen of hydrogen. Thus there are samples which have 11 per cent hydrogen and 87 carbon; the value of these is only 19,400 units. D. K. Clark finds the average value of a number of samples to be 20,420 units. The num ber 20,000 is easily remembered, and if we assign that to petroleum as its calorific value in units, we shall do it no injustice. When..we come to consider the pe trolenm oils obtained by distillation from the crude liquid the case is apparently very much better for the oil, for specimens may be had with as much as 28 per cent of hydrogen and an efficiency of about 27,000 units, or very close to twice that of coal. But oils of this character cannot be used for raising steam. In inst place, they are too dear; but even if this ficulty were oot over, we should not be better off be
cause the specific gravity is little more than 0.7 , and it ignites at about 86°. Such fuel would be much too dangerous for use, partaking, as it does, of the nature of a benzine. It may be quite possible, however, to use it in an oil engine, and attempts to do this have been attended with varying measures of success; but for boiler work its use is out of the question. 'The form of the oil best adapted for raising steam is no doub astaki. This has not been made the subject of much chemical investigation; it is the residue left in the still when the lighter benzines and paraffines have been driven off. It boils at high temperatures, as much a 490° indeed. What its chemical composition is we ar unable to say with any certainty; probably no two samples are quite alike. There is reason to believe however, that it is deficient in hydrogen, and that it value in units does not exceed, if it equals, 20,000 units. That is to say, it is, weight for weight, about one-half better than coal. If a given quantity of coal will evaporate 14,500 pounds of water, then an equa weight of astaki will evaporate 20,000 pounds of water The drawback to its use is that, ton for ton, it cost about twice as much as coal; consequently it is a very expensive fuel.
We see then that the startling claims advanced by inventors of various systems of burning petroleum have oo real foundation in fact, and they tend to retard the use of oil fuel rather than promote it. The right spirit in waicn to approach the subject is, while not expect ing too much in the way of evaporative efficiency, to bear in mind that it is unfair to compare its price with that of coal in England only, and to remember that it is a superbly convenient fuel, involving the least pos sible trouble in burning it. As to cost, we compare petroleum here at say 25 s . a ton with coal at 10s. or 12s.; but steamers trading through the Mediterranean and into the Black Sea will have to pay £2 10s. per ton for their coal, while petroleum may be put on board for less than the cost of coal in England, and astak can be had almost for the cost of putting it into the tanks. To utilize oil fuel, then, properly, it appear that marine boilers should be so constructed that they will, like Mr. Holden's locomotives, burn either fue indiscriminately, so that as the cargo steamer move rom port to port, she will always be able to provide herself with that form of fuel which can be had at the ow est price.
Hundreds of patents have been secured for different methods of spraying and burning liquid fuel. The reat secret of success seems to lie in so arranging mat ers that the flame will not put itself out and prevent the oil from being properly consumed. If we put a bi of flaming paper over the chimney of a lighted lamp the paper will be extinguished by the uprush of car bonic acid from the lamp flame. In the same way when petroleum spray is directed into a furnace high up, it cannot burn, because the upper part of the fire box contains little or no free oxygen, the spray is driven unconsumed through the flame, strikes the bridge or fire stone, and runs down it to be burnedusually badly-below. The jet of oil should enter nea the grate bars, but the precise height is a matter of adjustment, involving special knowledge not to be im parted by letterpress. As regards the spraying, that is usually effected by steam, but the practice is very ob ectionable, because the quantity used is very consider able, and represents great waste of fresh water, which must be made up again for the sake of the boilers, at least in the case of sea-going steamers. The use of compressed air appears to be better, but it is worth hile to consider whether either air or steam is need d. It might be found practicable to get rid of both by driving the oil in through very fine nozzles-needled if desirable-under heavy pressure. This device has been employed in oil engines with much success, and we do not see why it should not be made to answer for fur naces. If it can be,used, it disposes at a stroke of seve ral serious objections to the use of liquid fuel at sea and a very moderate sum would suffice to test the value of the idea. The principle involved cannot be made the subject of a patent, but the experimenter might secure himself an adequate reward by patenting the details of the apparatus by which it was carried into practice -The Engineer.

Increasing and Varied Use of Aluminum
The Aluminum World gives the following table showing the quantity, price, and total value of manu factured aluminum for each year from 1884 till 1893

Date.	Pounds.	Price per pound.	Value (total).
1884	150	\$9.00	\$1,350.00
1885	283	9.00	2.550 .00
1886 1887	3,000 18000	${ }_{9}^{9.00}$	27,000.00
1887 1888	18900 19,000	${ }_{3.2}$	${ }^{59,0000.00}$
1889	47,468	2.04	$97,335.00$
1890 1891	61,281 150,000	${ }^{1.56}$	$61,281.00$ 100,000 1000
1891 1892	150,000 259,885	. 66	$100,000.00$ 172.834
1893	339,629	. 75	286,903.00

The decrease in price in 1891 and 1892 was due to an infringement contest which produced competition among the manufacturers.

CAST WELDING RAIL JOINTS.
The electric welding of railway rail joints has, from its inception, attracted the especial attention of street railway managers, particularly those operating trolley lines. In the accompanying illustrations we present another method of welding rail joints, recently brought forward by the Falk Manufacturing Company, of Milwaukee. It consists in casting around the meeting ends of the rails, in heated metal moulds, a large body onds of the rails, in heated metal moulds, a the principal portion of the metal of melted iron, the principal portion of the metal
being directed about the base and web of the rails, being directed about the base and web of the rails,
and thus effecting, it is claimed, a good weld between and thus effecting, it is claimed, a good weld between
the iron and the steel of the rail. The iron is poured
into the moulds from a ladle, as in an ordinary a fire built around them, so that by the time they are foundry, and it is stated that the union of the parts thus to be put around the joints they are a dull red. The attained, as shown by broken sections through joints moulds are lined with a composition of graphite and and pieces of casting, is equal to that commonly made another substance applied with an ordinary paint by good welding. brush. The moulds are relined in this way for about This method of welding has recently been put upon every twenty joints cast in them. They can be lined practical trial on about three miles of railway in St. while hot and it takes about half a minute to reline Louis, and has also been employed in the repair of a pair. Before the moulds are applied the rails near Lours, and has been employ track which had the airty-seven joints in six miles of track which had; the ends are cleaned, and if the ends do not butt to of course, is to dig up the paving and expose the $\quad \begin{aligned} & \text { gether closely, a thin section of rail is driven in to fill } \\ & \text { the crack. The moulds are then put around the joints }\end{aligned}$ joints. Meanwhile the moulds, which are of common
jor cast iron, are thrown in a heap somewhere near by and $\left.\right|_{\text {small foundry cupola on wheels, the one used in St. }}$

RUNNING THE METAL

CASTING OUTFIT READY FOR WORE.

Louis, and shown herewith, weighing 7,000 pounds. It made seventy joints a day, but outfits having a larger capacity are now being manufactured. The cupola is hung on gimbals, keeping it always level, and behind it is a small steam engine which drives a blower furnishing an air blast. The engine takes care of itself to a large extent, as the feed is automatic, being regulated by the height of water in the boiler, and the oil fuel flow is regulated by the pressure of the steam. The air pipe between the blower and cupola has a flexible joint, to allow for the movement of the cupola on its pivots, and under the engine can be seen the tank for water supply.
The moulds have eyebolts, so that they can be handled with iron hooks. They are held in place with ordinary clamps and are of such shape as to fit up snugly against the rails and hold them firmly in line until the joint has cooled. As shown in the engravings the cracks on top between moulds and rails are filled with clar and sand. A plate of iron is laid over the crack between the ends of the rails, so that when the iron attempts to rise there it is suddenly chilled and prevented from flowing out on top of the rail. Underneath the moulds the crack between the halves is closed by holding a pan of sand up against it. The moulds can be put on a joint in about two minutes. The moulds are hot when put on, and they are allowed to stay on long enough to heat the rail ends. After the iron has been poured in, about ten minutes is allowed to elapse before the moulds are taken off and put on another joint. About a dozen sets of moulds are kept in use at once. Every other joint of a section of track is cast in the morning and in the afternoon the remaining joints are cast, to prevent, as far as possible, the severe strain of contraction and expansion, as the operation heats the rail for some distance on each side.
The joints made at St. Louis weighed 120 pounds each. They may, of course, be made of any desired weight, and this would seem to be a very large mass of metal to deposit at each rail joint. The joints first made by the company weighed only 54 pounds each, and it is claimed that such a joint, when placed on blocks two feet apart, withstood a downward test pressure of 103,000 pounds. The 120 pound joint covers four bolt holes, and the cost of each joint is stated to be about $\$ 3$.
It is said that the welding action between the rail and casting takes place around the base and about two-thirds of the way up the web of the rail only, so that if the joint is defective and breaks, the head of the rail remains intact. Another advantage claimed for this improvement is that a solid mechanical joint may be made thereby by slightly varying the method and preventing the welding action, such a joint allowing for the contraction and expansion of the rails.
Although this process has not yet been sufficiently employed to determine its ultimate value, it is being looked upon with considerable interest, especially by the managers of small street railway systems, as the initial cost of apparatus for electric welding is very much higher than that of this system, and the electric apparatus is more expensive to maintain. One of the views represents one of the lugs knocked off a broken electrically welded joint, showing that welding took place on but a comparatively small portion of the area. It is said that a cupola plant for making and mending joints on a small system can be furnished at a cost of less than $\$ 1,000$, so that, with its use, there need be no

CUPOLA AND CREW.

FILLING MOULDS.
$a_{n g l e}$ bar joints on the entire road. For illustrations and details we are indebted to the Street Railway Review.

Parcel Service on Street Railway Cars.
It is not generally known that a number of the street railways are being brought into general use for carry-

LUG FROM DEFECTIVE ELECTRIC WELD
ing various forms of light merchandise. Statistics recently gathered on the subject show that one hundred and twenty-five street rail way companies of the country are regularly employed to carry the mails, sixty-nine roads are used to carry parcels under regular contracts, and some ninety-two roads have made provision for carrying other light forms of merchandise. It is probable that the practice will be greatly extended in the next few years, tor the advantages of such a system are much too important to be neglected. The street cars reach a great many important points and they run with almost absolute regularity, since every precaution is taken to guard against their stoppage or delay.
Some of the plans in operation in different parts of the country for utilizing the street cars are interesting. On one of the trolley lines of St. Louis, for instance, a regular delivery service is in operation, involving the collection and house to house delivery of ordinary express packages. This particnlar line starts in the heart of the city and runs for seven miles through a thickly settled district. A delivery car used for the work makes three trips per day, running on schedule time. The car is especially equipped for the purpose and is mounted on motors of its own, since the ordinary form of motor would not be suffciently powerful. The car starts from a down town receiving station, where a clerk receives all parcels and keeps the books pertaining to the service. The important feature of the system is the work of collection and delivery along the route. The company use five wagons in the work, two of which are kept at the down town end of the road and the others meet the cars at fixed points along the road. These wagons call for packages in the usual manner, and deliver them to the express car, and the car carries it to the proper wagon for its delivery. The plan has proved so efficient that many of the large retail stores along the route which make a practice of delivering packages have ceased to run their delivery wagons to the part of the city along the trolley line, and now consign all their bundles to this express company. Formerly the express wagons made but one delivery per day, and at present the street railway makes three regular deliveries. Several large factories along this route consign all their goods to the "Electric Express." The company assumes al the responsibilities of a common carrier and is held re sponsible for all loss or damage. The service is not found to interfere with the regular running of the cars, and in the two years it has been in operation has never failed to pay.

Street Car Transfers in Baltimore

The transfer system among the street railroads of Baltimore has grown since its introduction in 1882, and freetransfersare now issued at some 40 different points ; in some cases it is possible to ride 20 miles for a single fare. As a rule, in any city transfers are confined to different lines of one company; but at a crossing of different n of one company; but at a crossing o the Lake Roland Elevated and Central roads free
transfers are given from one to the other. A station is located at the junction and an agent provides the transferring passengers with a ticket. At the end of each quarter officials of the two companies meet, exchange coupons and divide equally the residue of fares collected by one company over the other. It is a very simple arrangement, and has resulted in greatly increasing the traffic of both roads.

MOULDS ON JOINTS.

JOINTS FINISHED.

Physical Decay．
＂If the repair were always identical with the waste， life would then only be terminated by accident，never by old age．＂This is a fact well known to all who have investigated the subject，though Mr．G．H．Lewes， in his＂Physiology of Common Life，＂makes the state－ ment quoted．In early years this balance of the human system is admirably preserved．As man ad－ vances in life，however，and gets up to 50 or 60 ，he be－ gins to get stiff in the joints，and experiences what he calls＂feeling his age．＂Renovation of various argans calls＂feeling his age．＂Renovation of various argans
of the body depends on the blood，and if this supply is of the body depends on the blood，and if this supply is
not at all times furnished in sufficient quantity and not at all times furnished in sufficient quantity and and arteries become clogged，and the whole delicate machinery suffers from the lack of nourishment．De－ posits of phosphate and carbonate of lime accumulate， and the change is really a chemical one，by which the blood is hindered from going to the extremities of the system and fulfilling its work of repair and renovation． Old age，then，is the result of a change in the blood， which becomes overloaded with earthy salts，leaves its refuse matter in the system，and the valves of the heart become cartilaginous．Becoming thus，the heart is not able to propel the blood to its destination． Arteries also having become ossified，a still further ob struction takes place，and the whole body languishes． Blood is life．If it is kept continually in good order， our years are prolonged．New bodies，as in youth and early manhood，do not accumulate these fibrinous and gelatinous deposits，which，as the years go by，help the gradual process of ossification and cause the decrepi tude of age．Now if some means were discovered b which the blood could be kept in a condition like that of youth，it would throw off these earthy salts which of youth，it would throw off these earthy salts which
obstruct the action of the heart and arteries．Our obstruct the action of the heart and arteries．Our
food and drink make our blood．It seems，then，that it is to them we should look primarily for the quality of it．
Without eating and drinking there is no life，but w may select certain kinds of foods containing a mini mum amount of the elements which cause the ossific blockages in the srstem．An English physician，Dr C．F．De Lacy Erans，who made many researches in fruit should be eaten，especially apples，grapes，and fruit should be eaten，especially apples，grapes，and
bananas，they being rich in nutritious elements bananas，they being rich in nutritious elements．
Eeing deficient in nitrogen，they are best for elderly Being deficient in nitrogen，they are best for elderly
people，as they keep the blood in a better condition people，as they keep the blood in a better condition
than flesh．After the age of 60 people should eat less than flesh．After the age of 60 people should eat less
beef and mutton，and use more apples and nuts of all kinds，the latter being rich in many of the nutritiou elements of meat．Fish and poultry have not the ob jectionable earth salts of beef．In order to retard phy sical decay and to keep the blood in a wholesome con－ dition distilled water is recommended．It has solvent qualities which act upon the earth salts in the blood and expel them from the body．A goblet of this water taken three times a day，with ten or fifteen drops of diluted phosphoric acid in each glass，has a tendency to assist the blood in eliminating the obstructing salts． A man is as old as his arteries．If they are soft and compressible，the deteriorating effects of old age have not appeared．
Flourens，in his well known work on＂Human Longevity，＂cites the case of the Italian centenarian Cornaro，whose recipe for health and long life was ex－ treme moderation in all things．Flourens himself in－ sists that a century is the normal life，but that 50 years beyond，and even 200 years，are human possibilities under advantageous conditions．Hufeland also be－ lieved in 200 years as an extreme limit．Sir James Crichton Browne，M．D．，concedes，in a late address，
that Flourens was right．Duration of growth gives that Flourens was right．Duration of growth gives the length of life．Hufeland held that the human body grows till the age of 25 ，and that eight times the growth period was the utmost limit of man．But if 20 years be taken as the time of growth，even five times that will give us a century．According to Flourens and Cuvier，man is of the frugivorous or fruit and nut eating class of animals，like the gorillas and other apes and monkeys．Man has not teeth like the lions and carnivorous beasts，neither has he teeth like the cows and herbivorous oncs．Intestines in the man are seven or eight times the length of the body；the lion＇s are but three times the length of his body．Herbivor－ ous animals，like the cow，have intestines forty－eight times the length of the body．
So judging man by his teeth，his stomach，and his intestines，he is naturally and primitively frugivorous， and was not intended to eat fiesh．Fruit is aperient， and was not intended to eat fiesh．Fruit is aperient，
and apples act on the liver，and are good brain food and apples act on the liver，and are good brain food
also，as they contain much phosphoric acid．As to also，as they contain much phosphoric acid．As to
the effect of certain climates，perhaps too much stress the effect of certain climates，perhaps too much stress
has been laid upon that．We find that Thomas Parr， who lived in England，died in his 153d year，and was dissected by the celebrated discoverer of the circula－ tion of the blood，Dr．William Harvey（who expressed no doubt of his age），was never out of his native coun－ try．Accounts of men who have lived to extreme age in Ecuador and Mexico indicate possibilities． climate that allows much outdoor living is the best for health．More depends on food than on any climate．

Exercise，fresh air to live in and to sleep in，daily Exercise，fresh air to from medicine are the important things．In July，1893，the Courier Journal，of Louis ville，published a long account of James McMullin， who died in Carlisle County，Ky．，at 117 years of age． When Buffon，Hufeland，Flourens，and men of that class，who had studied the subject，believed in the possibility of 150 or 200 years of life，the subject is not to be laughed at．－William Kinnear，in Harper＇s Weekly．

fosssl frost cracks．

Sun cracks have long been known to geologists as characteristic of littoral deposits．During the summe season they are quite often to be seen on the muddy shores of larger waters and still oftener，perhaps，on the bottom of desiccated inland ponds．Their recog nition in the fossil state was easy．But there is another kind of mud cracks which are produced under quite different conditions of less common occurrence， and these have，perhaps，but seldom been preserved during past ages．
Their making may be described as follows：When Their making may be described as freezes，the water which it contains has a tendency to crystallize．The crystals begin to grow on the sur－ face，and a continuous coating of ice is apt to form，if water is present in sufficient quantity．Such a coat ing will be much thicker along certain lines where the reezing commenced，and the ice will often extend as thin plate some distance down in the mass，which is thus fissured by clefts filled with ice crystals．These clefts are mostly straight，and they branch and cluster after the crystalline properties of water，uniting pre ferably at angles of 60 and 120 degrees．When dry winds cause the crystals to disappear，as sometimes will happen，the empty cracks remain open and ex hibit perfectly the forms of the branching plates which made them．
As a result of the special conditions attending thei

frost cracks on a block of sandstone in the black hills，s．D．
ormation，frost cracks are quite unlike sun cracks in their appearance．The most important points of dif－ ference may be tabulated thus：

```
sun cracks
```

are jagged and carred irregularly， are of somev，
large width，
tend to form a network with six－ sided meshes and，as a consequence，
often meet in tri－radiate clusters at various angles approximating 120
er，the out on a tramp in the Black Hills last sum－ ，the writer found some fossil marks that appeared to be frost cracks produced in this way．They were seen on some blocks of sandstone resting on a talus about three miles south－southwest of Minnekahta station in the southern foothills．The blocks were evidently detached from a ledge which comes in a little below some strata that have lately yielded a number of petrified stems of cycad trees．On one side these blocks presented an unusually smooth and plane surface，which was a！most glossy and covered with a coating of fine red material about bo $_{80}$ of an inch in thickness．There was something of a resemblance to an ice surface．It bore impressions which corre－ sponded to the description of frost cracks as given above．The lines were but slightly sunk below the plane of the surface and measured from one－half to four inches in length and from one－sixteenth to one－ eighth of an inch in width．Some of the branched patterns they formed were over eight inches in length， and most of the angles observed measured just sixty degrees，while a few of them exceeded seventy and even eighty degrees．Quite a few lines also met at angles of one hundred and twenty degrees．
The series of sandstones and shales to which the rocks of this locality belong furnishes sufficient evi－ dence of shallow water conditions attending its mak－ ing．This consists in ripple marks，cross bedding and the remains of ancient land plants．Sun crackslare also
of transition between the Jurassic and the Cretaceous ages．This is known to have been a time of increas－ ing cold，when the tropical plants of the earlier age were giving place to the temperate vegetation of the later．During an age of such changes it would，in－ deed，be quite probable that a frozen mud fiat should occasionally become buried under the sediments of an advancing tide，and to such a contingency the sin－ gular markings on these sandstone blocks are prob－ ably to be ascribed．

Mazzle Velocity or Shot

In the course of his first Cantor lecture，delivered before the Society of Arts on＂Explosives and their Modern Development，＂Prof．Vivian B．Lewes refer－ ed to the method of determining the muzzle velocity of shot which is effected by means of the chronograph． He said：
＂Two screens are arranged，one about 120 feet from the muzzle of the gun，and the second 120 feet beyond the first．These screens consist of wooden frames strung with fine copper wire，the disruption of a single strand of which is sufficient to break the fiow of the galvanic current．In the Boulenge chronograph，a current from a battery of eight Bunsen cells flows through these wires and back to the instrument house， where the wire from each frame is coiled round a sepa rate soft iron core and converts it into an electro－mag－ net，each of which attracts and holds a rod of steel． The electro－magnet in connection with the second rame is fixed at a lower level than the electro－magnet connected with the first，and carries a short rod with a weight at the bottom，while the first magnet is at a much higher level，and carries a longer rod．The cur－ rent being allowed to pass through both electro－mag nets，the rods are suspended in position．By pressing a key both circuits can be simultaneously broken，with the result that both the rods are liberated and drop down guide tubes；the short rod strikes a catch and causes a knife edge to be brought against the longer falling iron，and to make a nick in it．When both rods are liberated simultaneously，this nick occurs at a definite place．The current is then allowed to pass， the rods hung on the electro－magnets，and the gun con－ taining the charge，the power of which is to be tested， is fired，the projectile passing through the screens and breaking the current by cutting the wires．Under these conditions the long rod is liberated a fraction of a second sooner than the shorter rod，the result being that the nick of the knife blade is no longer in the original place．By measuring the distance between the two nicks，and knowing the length of time to which this is equivalent，allowance being made for the time taken in liberating the knife blade，etc．，the interval taken in liberating the knife blade，etc．，the intersal
of time which elapses while the projectile is passing between the screens can be calculated，and，being cor－ rected for the distance of the first screen from the muz－ zle，gives the muzzle velocity of the projectile．＂

Cooling Devices for Dwellings．

It must be something like fifteen years since the air of the Madison Square Theater was artificially cooled in summer by passing it over ice；and refrigerating ap－ paratus is in use in every large city in the civilized world，for cooling rooms for the storage of provisions． Many attempts have been made to introduce refrige－ rating apparatus of the same sort as that used in the cold storage buildings into dwelling houses，but they cold storage buildings into dwelling houses，but they
have failed，and with reason，to please the public．The have failed，and with reason，to please the public．The
apparatus now attracting the attention of the news－ apparatus now attracting the attention of the news－
paper reporters is simply an ammonia machine，de－ paper reporters is simply an ammonia machine，de－
pending for it frigorific properties on the alternate condensation and expansion of ammonia gas．To judge from the accounts，the apparatus is，as a piece of machinery，well designed，but the descriptions of the methods by which it is intended to convey the chilling influence to the rooms of a dwelling are rather amusing．We are told，by way of introduction，that the use of ice for cooling rooms causes＂dampness，＂ while the ammonia apparatus produces＂a pure，dry cold．＂It is hardly necessary to say that the facts are just the other way．When warm air，which，in in－ habited buildings，is always moist air，is passed over ice，after the Madison Square plan，the moisture of the air is condensed by the reduction of temperature，and deposited on the ice，to be carried away with the drain－ age water from the ice；and the air which passes be－ yond the ice is not only cool，but comparatively dry，as its moisture has been，so to speak，wrung out of it by the ice．
With pipes filled with ammonia－chilled liquid run－ ning through the room to be cooled，the case is re－ versed．All the moisture originally contained in the air remains in the room．Such air as comesin contact with the cold pipes will deposit its moisture in the form of drops of water，which will either fall on the floor or must be collected in some way and drained off；while the remaining air will be held at the point of satura－ tion．A more unwholesome atmospheric condition it would be difficult to conceive than the reeking，drip－ ping，chilly dampness of a room to which such a cool－ ing system had been applied．－American Architect．

The Efrects of Intense Cold upon the mind.
Extreme cold, as is well known, exerts a benumbing Extreme cold, as is well known, exerts a benumbing influence upon the mental faculties. Almostevery one who has been exposed, for a longer or shorter period, will power, and often a temporary weakening of the memory. Perhaps the largest scale upon which this memory. Perhaps the largest scale upon which this
action has ever been studied was during the retreat of the French from Moscow. The troops suffered extremely from hunger, fatigue, and cold-from the latter perhaps most of all. A German physician who accompanied a detachment of his countrymen has left an interesting account of their trials during this retreat. From an abstract of this paper by Dr. Rose, in the New Yorker Medicinische Monatschrift, we find that of the earliest symptoms referable to the cold was a loss of memory. This was noted in the strong as well as those who were already suffering from the effects of the hardships to which they had been exposed. With the first appearance of a moderately low temperature (about five degrees above zero Fahrenheit), many of the soldiers were found to have forgotten the names of the most ordinary things about them, as well as those of the articles of food, for the want of which they were perishing. Many forgot their own names and those of their comrades. Others showed more pronounced symptoms of mental disturbance, and not a few became incurably insane, the type of their insanity resembling very closely senile dementia. The cold was probably not alone responsible for these effects, for a zero temperature is rather stimulating than paralyzing in its action upon the well-fed and the healthy. These men were half starved, poorly clad, worn out with long marching, many already weakened by dysentery and other diseases, and all mentally depressed, as an army in defeat always is. It needed, therefore. no very unusual degree of cold to produce the psychic effects observed under other circumstances only as a consequence of exposure to an extreme low temperature. Medical Record.

will Coal Dust Explode?

That the dust of certain coals is explosive has been asserted time and time again in these columns, and evidence in support of the assertion has been abundant. We now have fresh evidence in a series of experiment conducted by Mr. W. Galloway, formerly one of the British mine inspectors, at Merthyr, on December 1 Mr. Galloway fitted up special apparatus with interna fans for the purpose of mixing the dust with the eir. No gas was used, as the object of the experiments was to determine whether coal dust alone was explusive.
Before commencing his experiments, Mr. Galloway delivered an address to a number of gentlemen inter ested in the matter. In the course of his address he said that the reason the coal dust theory had not been more generally accepted as the cause of great explosions in deep, dry mines was because the public had not had opportunities of seeing dust in actual explosion. He had therefore determined to make these pub lic experiments so as to convince skeptics that the theory was correct. He explained that when explosions occurred indry mines the flame traveled through the intake airways and not through the returns or the faces, the reason being that the intakes, being the main haulage roads, were naturally very dusty, and this dust was deposited on the ledges and timbers, ready, when a disturbance occurred, to be mixed with air and become explosive. He further stated that whenever, after an explosion, smoke or dust issued from a mine, and wherever charred coke was visible on the timbers, it was safe to say that a coal dust ex plosion had occurred, or that coal dust had been the principal cause of the explosion, for a fire damp explosion produced no smoke and left no charred coke on the timbers.
The reason why, after some explosions, charred coke was found in some parts of the mine and not in others was explained by the fact that in these parts where coke was discernible the dust had been pure coal dust, whereas in other parts of the mine the coal dust on the roadways was largely mixed with stone dust, and although there was sufficient coal dust to be inflammable and to carry on the explosion, the admixture of stone dust prevented the formation of coke. In order that coal dust might combine rapidly with air and form an explosive mixture it had necessarily to be very fine. It would not ignite immediately if taken from the roads, there were too many coarse particles in it, but the coarse particles would rapidly fall to the ground and the mixture in the air become explosive.
The following is a list of Mr. Galloway's experiments, with the reported results :

1. A cannon shot, with 1 oz . of gunpowder, stemmed with great care, but not too tightly, placed on a ledge 9 in . from the ground, fired into vacancy, produced a flame 3 ft . long.
2. A cannon shot, with 1 oz . of gunpowder, stem med as before with 1 oz . of coarse coal dust, made a flame 7 ft . long, fired from the same place and position.
3. A cannon shot, 1 oz . of gunpowder, stemmed with 1 oz . of coal dust, mixed with $1 / 8 \mathrm{oz}$. of heathe dust, made a flame 8 ft . long, but of greater volume.
4. A cannon shot fired into the tube, where 1 lb . of coal dust had been placed and stirred, caused a flame 12 ft . long.
5. A shot with 1 oz . of gunpowder, stemmed with 1 oz. of coal dust, fired into the tube, which contained 1 lb. of coarse coal dust, produced a flame 15 ft . long with a greater volume.
6. Shot, stemmed as before with powderand coal dust mixed with $1 / 8 \mathrm{oz}$. of heather dust, produced a flame 14
l . long. t. long.
7. Similar shot fired into tube containing $1 / 2 \mathrm{lb}$. of inest coal dust produced a flame 14 ft . long.
8. Similar shot, 12 oz . finest coal dust, flame 14 ft ., reater volume.
9. In this case no additional dust was placed in the apparatus, but some remained since last shot; $11 / 2 \mathrm{oz}$. gunpowder used, flame 9 ft . long.
10. No additional dust, similar shot, 10 ft . flame.
11. Similar shot, tube entirely free of dust, 1 oz . o unpowder, flame 5 ft . long.
12. Similar shot, no dust. tighter stemming, flame ft., report considerably louder.
13. Shot with 1 oz . gunpowder, fired into a mixture of stirred-up coal dust, produced flame 14 ft . in length.
14. Similar shot, 12 oz . coal dust, flame $121 / 2 \mathrm{ft}$.

Similar shot, $11 / 2 \mathrm{lb}$. of coal dust, flame 16 ft .
Similar shot fired into tube extended to 18 ft ong, containing 2 lb . of coarse stirred-up coal dust made a flame $231 / 2 \mathrm{ft}$. in length.-Colliery Engineer.

A CONVENIENT WRENCH.

The bar of this wrench is of open hearth steel, drop forged and case hardened, and it is designed to be an especially well made and durable tool. It is manufac tured by the Standard Tool Company, Athol, Mass The sliding jaw and the working parts are of hard ened steel, and it is styled the "rapid transit wrench" from the fact that, by a slight thumb pressure at the point indicated in the illustration, the screw is released from engagement with a nut, and the sliding jaw may
be moved in either direction without turning the

screw. The screw lies flat on the bar, preventing its being accidentally bent or sprung, and a spring under the point on which the thumb is represented normally draws the nut to a true bearing on the screw and take up all wear.

The Electro Nickeling of Metallic Surfacea.
The following baths (most of them well known) hav all given good results, but require careful bandling: 1. 8 kilos. nickel ammonium sulphate in 100 liters o water, made slightly alkaline with ammonia, and then weakly acidified with citric acid.
2. 5 parts nickel sulphate neutralized with ammonia, 3.75 ammonium tartrate, and 0.025 gallotannic acid pe 100 of water. This gives a homogeneous white and smooth reguline deposit, even when of great thickness.
3. 2.75 nickel acetate, $2 \cdot 5$ calcium acetate, and 100 of water, afterward mixed with 0.7 part of acetic acid (sp. gr. $=1.047$) and filtered. (Potts' formula.)
4. 5 nickel ammonium sulphate, 2 ammonium sul phate, 0.5 citric acid, and 100 of water. Boil and
5. 8 nickel ammonium sulphate, 1 ammonium chloide in 100 of water, with or without the addition of 0.5 part barium oxalate.
6. 6 nickel ammonium sulphate, 35 ammonium chln ride, and 2.5 ammonium sulphate per 100 of water. 7. 5 nickel ammonium sulphate, 1 ammonium sul phate, and 100 of water. Specially suitable for cast iron.
8. 5 nickel ammonium sulphate, 2.5 boric acid, 100 water.
Powell has found that the addition of not more than 1 to 8 grms . per liter of benzoic acid or of a benzoate to a suitable nickel bath produces a good and pure deposit. Baths containing boric acid, such as are commonly employed, give a good deposit upon smooth surfaces, but refuse to cover cavities or hollows; this difficulty may be removed by the addition of sodium chloride to the bath. Such a bath may be made by dissolving 5 kilos. nickel ammonium sulphate in 100 liters of water, add ing 2.5 (or $1 \cdot 25$) kilos. of boric acid and 1.25 kilos. of
sodium chloride, boiling, acidifying with citric acid, neutralizing with ammonia, and filtering.
So also nickel chloride with boric acid in the propor tion of $5: 2$ or $2: 1$ gives a good bath, but it is not suit able for depositing upon iron or steel, as all baths con-
taining chlorine are apt to cause rusting of these metals. The use of citric, benzoic, tartaric, or other upon the score of expense.-Ding. Poly. J.

The oil Fields in ohio.

A number of very valuable oil fields have been discovered in Ohio the past year. The income from these wells, based upon their present output, promises to make an appreciable addition to the oil interest of the country. One of the new wells, known as the Kirkbridge, produces 310 barrels of crude oil per hour, or 7.440 barrels per day of 24 hours. Anothe single well averages over 1200 barrels per day. To do the work of collecting, refining and shipping this im mense product, an elaborate system of pumping stations, tanks, piping and other forms of machinery have been provided.
It is not generally known that the oil interests of Ohio have developed very rapidly of late, and that Ohio, as an oil producing State, promises to rival Pennsylvania. In a single county, Wood, the pipes for carrying the oil consist of 340 miles of 2 inch pipes, 70 miles of 3 inch pipes, 125 miles of 4 inch pipes, to gether with other sizes, making a total of some 800 miles of pipe, and representing an outlay of $\$ 15,773$, 000 . In addition to this the oil territory contains 260 storage tanks, which have cost $\$ 6,000$ each, and there are besides immense outlays necessary for bonuses, rentals, labor and building. At present the storage tanks of Wood County contain about $8.000,000$ barrels of crude oil, valued at $\$ 4,400,000$. During the past year the output of oil from Wood County alone has been $20,000,000$ barrels of oil. In other counties of has been $20,000,000$ barrels of oil. In other counties of
Ohio the interests are also very large. There are at Ohio the interests are also very large. There are at
present some 17,500 oil wells in Ohio. Of this number over 3,000 have been drilled during the past year.

The Registration of Trade Marks in Germany.
Under the act which came into force in Germany on October 1 of 1894, the local registrations of trade marks are completely abolished, and they must, in future, be registered at the Patent Office in Berlin. There the authorities take every precaution against innocent or other duplications of trade marks, or infringements of the rights of those who already own such things. When the rights of those who already own such things. When, and if a trade mark in any way approaches that which is proposed to be registered, the owner of the old trade mark is communicated with. He can then take steps to prevent the new trade mark being registered, or, if it be a flagrant infringement, the government may perform this office on their own account. Also, the old plea of "ignorance of registration" is now abolished, and, by the new act, the infringer of a trade mark is liable to penalties and damages for "carelessness." The arelessness in question may simply consist in the fact that he did not properly search the register and find that he was doing wrong in using a trade mark which either did not belong to him or was a colorable imita tion of an older mark. Under the old law, an English or foreign owner of a trade mark had to warn a Ger man pirate before he could take action, but now this is abolished, and, if only the original trade mark be registered in Berlin, the owner can claim damages for infringement without giving warning to anybody. At present, the marks in the register under the old act can be registered under the new, and old foreign trade marks can likewise be protected.

Powder Engines.

In the course of an interesting lecture on "Modern Explosives," recently delivered by Colonel Barker Superintendent of the Royal Small Arms Factory Sparkbrook, reference was made to the possibilities of the industrial use of high explosives forgenerating mo tive power. The construction of a gunpowder engine has often been attempted. But this explosive is ill adapted for such a purpose-in the first place, because it only develops in combustion about 280 volumes of permanent gases, while the solid residues are very considerable, and would soon clog any machine. At the siderable, and would soon clog any machine. At the
same time, it should be remembered that one pound of same time, it should be remembered that one pound of
gunpowder is capable of developing 170,280 foot pounds of energy. The new smokeless powders are capable of developing still higher energy, and are also more under control, while giving off nearly 1,000 volumes of perma net gases, and leaving no solid residue. The tempera tures developed by all these propellants are high; but it is very possible to overcome this difficulty, in the same way as it is done in the case of gas engines, or even by making use of the energy of the water so employed when converted into steam. As English cordite develops 1,250 calories per gramme, the possibility of its employment in some form of "powder gas" engine is not without attractiveners to engineer of a speculative turn. The temperature of gunpowder on explosion is about 4.000° Fah., and that of the mokeless powders is believed to be considerably higher, though this has not yet been fully determined.

an miproved brici cutting machine.

 This brick cutter, recently patented by Messrs. Henry R. and Jacob Van Eyck, of Zeeland, Mich., is only three feet long and not two feet wide, and is said to be the smallest cutter on the market. It does not upset the stream of clay nor does it mar the faces of the brick as they are cut off at the die or nozzle of the brick machine, the parts being arranged to move the cutting lever as fast as the stream of clay travels, and thus cut a perfectly square brick. The traveling belt upon which the plastic clay issues moves over rollers

tan eyces brice cotting machene.

journaled in a suitable supporting frame, as in other machines, and the cutting apparatus is operated from a driving pulley on a shaft at one side, to which is secured a ratchet wheel. This wheel is adapted to be engaged by dogs pivoted to opposite ends of an arm carried by an aligning shaft which operates the cutter, but the shaft has an intermittent motion, from the dogs being thrown into and out of engagement with the ratchet wheel through the operation of a bell crank lever and connections, whereby also the forward and backward movement of the knife carrier is effected The dogs are tripped at every half revolution of the end rollers carrying the traveling belt, the driving shaft being actuated at such times to uove the cutter up or down, and the movement of the roller effected by the travel of the clay sets into motion the devices which give the knife the cutting stroke as well as those that feed the knife along with the clay, although the mechanism itself is driven by independent power, so that the stream of material is not retarded and a nice clean cut is effected at every movement of the cutter. These machines are made by the Zeeland Machine Company, at Zeeland, Mich.

Infinence of Different Rays of Light on Plants. Herr E. Wollny finds that yellow light has the greatest power of producing organic substances in plants; next the red; while blue light has a re while blue light has a remarkably prejudicial effect on the development of the reproductive organs, It is, therefore, the most refrangible (chemical) rays which take the least part in metabolism, the assimilation of carbon being carried on mainly by the less refrangible (illuminating) rays (Wollny's "Forschungen," 1894, p. 217). As the result of another series of experiments, M. Villou states that the vine produces a greater weight of grapes. which also contain a larger quantity of alcohol and of acid, when grown behind glass colored red violet by manganese, which absorbs the yellow and brown rays.

Flowers are also favorably influenced by the same color, which is, moreover, advantageous to the growth of bacteria, yeast and silkworms.-Revue Scientifique.

THE work of excavating a channel of 20 feet depth through the waters of the Great Lakes between Chica go, Duluth and Buffalo, which was commenced in 1893 is now ryore than two-thirds completed. The work is divided into eight sections. The first four sections include the excarvation needed in the Sault Ste. Marie River, through which there will be a channel 21 feet deep and 300 feet wide.

cord having stakes or pegs at each end, to be driven into the ground at the back of the machine. The gate sections of the platform railing being opened, the machine is driven forward and the platform is drawn from under the shock, depositing the latter on the ground. The platform of the machine may be readily raised and lowered as desired, and the front of the machine is raised or lowered and held in position by the manipulation of a lever within easy reach of the driver. The entire operation of the machine is automatic, except the binding and discharging of the shocks. about $1 / 2 \mathrm{~d}$. per hundredweight. qquare mile.

How to Clean Clothes.

The American Analyst tells how to do it, as follows Take, for instance, a shiny old coat, vest or pair of trousers of broadcloth, cassimere or diagonal. The scourer makes a strong, warm soapsuds, and plunges the garment into it, souses it up and down, rubs the dirty places and, if necessary, puts it through a second time; then rinses it through several waters and hang it up to dry on the line. When nearly dry he takes it in, rolls it up for an hour or two and then presses it. An old cotton cloth is laid on the outside of the cuat and the iron passed over that until the wrinkles are out but the iron is removed before the steam ceases to rise from the goods, else they would be shiny. Wrinkles that are obstinate are removed by laying a wet cloth over them and passing the iron over that. If any shiny places are seen, they are treated as the wrinkle are-the iron is lifted while the full cloud of steam rises and brings the nap with it. Cloths should always have a suds made specially for them, as in that which has been used for white cotton or woolen cloths lint will be left in the water and will cling to the cloth.
In this manner we have known the same coat and trousers to be renewed time and time again, and have all the look and feel of new garments. Good broad cloth and its fellow cloths will bear many washings and look better every time because of them.

AN IMPROVED CORN HARVESTER.

This machine, which forms the subject of a patent recently issued to Mr. Albert E. S. Danner, of Newton Kansas, cuts the stalks as they stand in the field and carries them back in upright position, where they are held upon a low platform, to be conveniently tied into shocke, and then left upon the ground. The knife is held diagonally; close to the ground, and is secured to a forward extension at the right hand side of the platform, where are located guide fingers which automati cally accommodute themselves to any irregularity of the rows of corn, the stalks being received by a front series of feeding devices prior to their reaching the knife, so that the stalks do not drag upon the knife when they come in contact with it. A sprocket chain and gear connection with the left hand wheel actuates a transverse shaft by which are operated two vertical shafts carrying each a series of upper and lower crank arms with which are connected raize feeds that carry the stalks backward in the machine. A gathering or shocker frame is adapted to travel over the table and receive the stalks from the sets of feed rakes, the frame being spring-controlled and moving toward the left along the curved railing of the platform as the stalks accumulate, until the platform has been completely flled, when a keeper on the frame engages a latch to hold the frame stationary. The shock is now ready to be bound, which is preferably effected by a rope o

AN IMPROVED FENDER FOR STREET CARS.

This is a fender of simple construction, readily transferred from one end of the car to the other, and having a shoe or take-up section which may be in stantly brought down to the surface of the track, to insure the picking up of any object in the way. The improvement has been patented by Mr. William L. Fees, of Avonmore, Pa. It consists of a bracket frame, substantially triangular, with the forward members somewhat concave, this face of the frame being covered with wire netting. At the lower for ward portion of the frame is pivoted the shoe or take

FEES CAR FENDER.
up section, which has rear extensions or lips con nected by links with arms on a rock shaft, there being also on this shaft a crank arm connected by a chain with an elbow type of foot lever fulcrumed beneath the car platform. Springs hold the shoe normally in a horizontal position, or at a sufficient distance above the track to allow for any unevenness of the roadbed, as indicated by the dotted lines, but the motorman or gripman by pressing upon the foot lever brings the front of the shoe down to the surface of the track against the tension of the springs, as shown in full ines. The end brackets of the main frame have in tegral braces, the ends of which are adapted to enter sockets.in the under side 'of the car body, and brace chains or rods may also be employed to connect the ear lower portions of the brackets with the pedestals or with the car body. Along the upper edge of the frame are eyes by means of which the fender may be attached to and hung upon studs or hooks along the upper edge of the dashboard. By attaching a concave plate to the top of the shoe the improve ment may be utilized as a snow plow.

Salted Iron

A new flux for cast iron has been discovered by Mr. Sentinelli. The compound in question consists of an alloy of sodium and ron formed by bringing iron and common salt into contact at a high temperature. The ferro-sodium so produced contains about 85 per cent of the iron, holding metal sodium in solution, if the term may be used. This latter has a powerful affinity for sulphur and phosphorus, and combining with these carries them out into the slag. The flux may be added either to the cupola or may be placed at the bottom of the casting ladle. The former plan is stated to be preferable. When used in either of these ways the metal in the ladle shows $t h e$ characteristic vellow flame of sodium on its surface, and its temperature appears to be increased. Indeed, when placed at the bottom of the ladle, the reaction takes place with considerable violence. It is claimed that, by the use of this alloy, the amount of sulphur can be reduced to about one-tenth of its original value, and the phosphorus is also reduced, the cost of the purification being

In France the population averages about 187 to the square mile. In this country the average is 21 to the

THE WAR BETWEEN JAPAN AND CHINA.

 We present herewith one of the characteristic street scenes which have been witnessed daily in Japan during the last few months-Japanese soldiers hastening to the seat of war in China. The vehicle shown is the jinrikisha, a queer-looking conveyance, only used since 1870. It is said they were invented by an American missionary. It is a two-wheeled, hooded conveyance with springs, and is drawn by one or two men, two men being usually employed for fast traveling. On a good road they travel at a speed of about 6 miles pe hour. The rate of hire is only about 4 cents per mile.Japan has achieved a prominent position by her many victories both by land and sea in her war with China. Since the capture of Port Arthur, the great naval and military depot of China on the northerly side of the entrance to the Gulf of Pechili, on November 21, 1894, one army corps has been steadily advancing northward, on the Manchurian route toward Pekin, while another, with the co-operation of the fleet, has been making preparations for attacking the great fortress, or series of forts and naval station, constituting Wei-Hai-Wei, which guards the southerly side of the entrance to the gulf. The attack on the latter place began in earnest on December 26, by land and sea, the defense being more spirited than any that has yet met the Japanese advance, and being most actively partici
of Japan are well equipped, and the military hospitals provided with all the latest surgical appliances. For our engraving we are indebted to La Ilustracion Espanola y Americana.

Bicycle Riding.

The average duration of cycling enthusiasm among the ordinary riding class is three years. The first few months are spent in wobbling around on the pave ments, eyes fixed and staring, elbows (and knees for that matter) akimbo, coat-tails dragging on the wheel or fluttering to the breeze. After the first muscle-ache tage has passed we find the enthusiasm augmented to ecstasy, like to that of a child in a swing, and speed and distance seem limitless. Then the country road, and the happiness is supreme. Not only are the senses pleased, but the whole organism rejoices in a condition of physical beatitude. That newly described ense, the muscle sense, contributes its share in this expression of well-being. The locomotor apparatus o man craves exercise as the stomach craves food, and the gratification produces similar good feeling in th respective organs. But such exercise! Clad in porous wool, the whole body is as it were swimming through sea of oxygen, breathing at every pore. A speed of ten miles an hour means augmented atmospheric presten miles an hour means augmented atmospheric pres-
sure of three or four pounds on the ventral surface
and sloping backward so that the weight is received on the tuber ischii, is the least harmful. On the country road one finds a rider thus mounted poising his body delicately on three points of support, viz., handle bars, saddle and pedals. He is never jarred and his extremities or buttocks never grow numb. While we thus advocate the three-point support, we emphati cally protest against thescorcher positionand especial y for young boys. There is no use trying to tell an experienced road rider that he must sit erect. He will tell you that it cannot be done, and will retort by saying that more harm is done to the perineum by erect post ure than by the slight forward inclination of the body. Now for a curtain lecture to the doctors. Ride a wheel for your health. This implies that not all need it. Dress for wheel riding, and don't let your dignity coat-tails fly to the breeze like a jay. When you ride dress accordingly, and try and look trim and carry yourself gracefully. Dignity does suffer when the pro essional or other gentleman goes paddling along with pantaloon wings sticking out at ankles, knees hitting handlebars, and everything above the seat flying loose. To ride gracefully means to ride with a minimum of discomfort and fatigue, and if one cannot acquire that art without instruction, by all means go to a training school. The profession should set a good example in
this as in all other matters pertaining to physical de-

Japanese soldiers hastening to the rendezvous.
pated in by the Chinese war vessels, torpedo boats, etc. Operations were greatly interfered with by the preva lence of extreme cold weather, and progress was im peded by the fact that many sunken mines and torpedoes had to be removed from the harbor and ap proaches, or rendered harmless, by the advancing Japanese. The latter, however, kept steadily at their work, and the several forts which constituted the great station have steadily fallen before continued attacks of the combined land and sea forces. The major part of the Chinese navy, including the two principal ironclads, the Ting-Yuen and Chen-Yuen, has also been destroyed. They were both engaged in the great battle at the mouth of the Yalu River, from which they escaped only to be sunk at Wei-Hai-Wei, after about ten days' almost continuous fighting, by the tor pedoes sent against them by the Japanese. They were sister ships, and the most powerful vessels in either the Japanese or Chinese service, each having a displace ment of over 7,000 tons and belted 14 inch steel com pound armor. It is reported that the Chinese torpedo fleet subsequently attempted to escape from the harbor on February 7, but that they were pursued by a flying squadron of.Japanese vessels and twelve of them either sunk or driven ashore.
The maneuvering of the Japanese fleet at the battle of the Yalu showed that the Japanese admiral was possessed of a knowledge of tactics that would have done credit to a Nelson. A number of the officers of the Japanese navy' studied at Annapolis. The armies
and corresponding decrease of a few pounds below nor mal pressure on the dorsal surface. The whole spina ract is thus subjected to pneumatic suction and it circulation thereby stimulated. These are all factors in the spirit of exhilaration experienced by judicious iders. And the cold spongebath on reaching home riders. And the cold sponge-bath on reaching home without which no exercise can contribute its full quota
of good, is looked forward to with quite as much zeal of anticipation as is the hearty meal (in waiting).
Now our amateur has reached that condition of development of the special wheeling sense enabling him to adjust himself to the conditions of moving equilibrium automatically, even under very trying conditions; he can endure several continuous hours in the saddle without fatigue, and his great thigh muscles have developed to meet the demands. The ordinary rider has, in say one year, reached the limit of development If he loves riding because of the physical pleasures and drinks in the beauties of nature as he speeds ove the country, you will find that he never rides solely for distance record, but for real pleasure, and hence does not go beyond his capacity.
But too many ride for the excitement, and their pleasure is in boasting of miles covered. These latter are the three years' enthusiasts. They know almos nothing of the real pleasures of cycling and their en thusiasm is shortlived.
Just a few words as to the saddle about which the aity are exercised. Experience proves that a firm almost springless saddle, very narrow at the pommel,
velopment.-The Toledo Medical and Surgical Reporter.

Decomposition of Glass by Water.

From a long series of experiments of his own on these subjects, and from the work of others, the author draws the following conclusions:

1. The weathering of glass is caused by the decomposing action of the atmospheric moisture. The carbonic anhydride of the air does not act directly on the glass, but only on the alkaline products of the aqueous decomposition.
2. Dry carbonic anhydride is without action on dry glass.
3. There is no proof that water can be retained by glass, except when it enters into chemical combination therewith.
4. The weathering of glass and the decomposition of glass by water are similar processes, and are both preceded by the taking up of water into the glass molecule.
5. The surface changes caused by weathering are comparatively slight with good glass.
6. The action of water on weathered glass is only emporarily more rapid than it is on new glass.
7. Glasses (lime glasses) are more hygroscopic and weather more easily, the more easily they are attacked by water.
8. Even after long action of water, glass is still capa ble of becoming weathered.-F. Foerster.

New French Steamers

Arrangements are said to be well advanced for the construction of two new French Transatlantic liners. These new vessels, which will come next to the latest Cunard liners Campania and Lucania in point of size, are, it is stated, to be named Alsace and Lorraine. The new steamers are to be 557 ft .9 in . long and 59 ft . beam, and at 26 ft . draught the displacement will be 13,600 tons. Now the Campania is 600 ft . and 65 ft . beam, while the American liners are $527 / \frac{2}{2} \mathrm{ft}$. and 63 ft . beam. The Alsace and Lorraine are larger than any non-British steamer. They will have a sea speed of 20 knots, but it has gone forth that they are to beat the Campania and Lucania in ocean steaming. The cost is put by the French Transatlantic Company themselves at from $\$ 3,750,000$ to $\$ 4,000,000$, and the company have approached the government with the view of securing some guarantee of financial return in the future. They point to the advantage of such vessels as auxiliary cruisers, apart from commercial gain, and seek directly, as compensatory guarantee, that the government should rearrange the service from Havre and Bordeaux to Colon, giving the company a 10 years' concession. On this route tro of the present Atlantic steamers would be placed to make Guadeloupe $81 / 2$ days distant from Bordeaux. Port of France 9 days, Cayenne $131 / 2$ days, ard Colon 14 days. This is equal to an acceleration of three sea miles per hour on the present service, and the advantage to French colonia trade would be appreciable.

A NOVEL BICYCLE FRAME

A new feature in bicycle construction is being introduced involving the method of connecting the tubes of the frame. The system of construction is protected by patents of Charles O. Barnes.
The connections, as shown by the accompanying sketch, consist of two punched and formed-up pieces of 18 gauge steel arranged to extend around the inner side of the head tubing until they meet, and at the same time both projecting from the tube at the desired angle to form a circular stud over which the connect ing tube can be fitted and brazed in position. Small angle pieces are added, as shown. The pieces used in this manner act as a re-enforcement to both tubes, and being pointed off in the smaller one, obviate any possi bility of crystallization and breaking of the tubes. The usual method of connecting the sections of the frame is by drop-forged outside pieces, which are necessarily much heavier and make the frame look more cumber some, while with the Barnes method the connections are all on the inside, thus relieving the frame of any outside projections.

Another important feature of the new Barnes bicycle is the method of adjusting and holding the handle bars and the seat post. In the case of the former there is a small hexagon cap screw on top of the bar which constitutes the only outside appearance of the fastening. When the handle bars are raised to the desired height, the tightening of this cap screw draws a circular wedge up inside of the handle bar post, which
only high grade bicycles, using tool steel cones and ball cases and the best material obtainable throughout.

REATING BICYCLE

The Keating bicycle, manufactured by the Keating Wheel Company, Holyoke, Mass., claim to have been the first to put on the market a fully guaranteed light weight roadster. They have in past years placed upon the market the following weights: $35,32,25,21$; and

THE REATING BICYCLE FRAME

finally for the present year a 19 pound wheel has been produced. To those interested in wheeling this is an interesting bit of history, and it does not seem likely that a road wheel can be made much below the last named weight. The Keating wheel is characterized by a special shape of frame with a very long whee base, 45 inches, and narrow tread, by straight tangent spokes, convertible pedals and dust-proof bearings. The frame possesses as its distinguishing peculiarity a curved center brace, shown in the two illustrations annexed. The idea of this is not only to bring the rider to a better position with reference to his work,

the reating crank bracket and Connections

but to give a greater resistance to the draught of the chain upon the frame. This draught is resisted by the bent portion of the center brace, avoiding a trans verse strain, and we find in this feature one of the few original features of the frames of the year.
Like other high grade wheels, it uses the fines crucible steel for the hubs. In all respects and details it is highly characteristic and is pre-eminently a whee of original construction. For ladies, both drop frame and diamond frame wheels are made, the latter weighing but 19 pounds and being designed for rational costume. This wheel, the company states, is the only one supplied to the European trade. The drop frame ladies' wheel weighs 4 pounds more. They also make
for ladies the straight tube drop frame
All their wheels are absolutely guaran
teed for a year.
One of our cuts shows the diamond frame, the other shows the crank bracke connections on a larger scale.

The Paris New Sewer Main.
The new sewer main of Paris, which crosses from Clichy to Asnieres under neath the Seine, was formally dedicated recently. It is the first portion of an enormous enterprise which will takea way all the sewage of Paris from the waters of the Seine. The work was begun in 1889, and will require fourteen years or more to complete. The difficulties encountered, especially under the river proper, were many and took a long time to overcome. The river, forming its bed in remote times, upheaved the soil for a considerable depth. Crevices filled with alluvial matter, quicksands, calcareous rocks, conglomerates and very hard silex were met within a few feet of each other. The wachinery employed is similar to that used in America with great succes at the St. Clair tunnel, namely the Beach Hydraulic Tunneling Shield, an Ameri can invention now generally used
throughout the world for earthwork tunneling. As quick as the shield advanced, the huge iron rings form ing the tube were adjusted. The length of the tunnel under the Seine is 1,543 feet; its diameter, 8 feet 6 inches. Another highly interesting subaquatic structure is the Mersey tunnel, connecting Liverpool with Birkenhead. It is 10,660 feet long, 26 feet wide and nearly 20 feet high. The drainage is performed by a sewer as long as the tunnel itself, ending in a pit on either side, wherefrom the water is raised by pump having a capacity of 6,000 gallons per minute. The ventilation is very effective; a duct connected with
the main tunnel by slanting shafts leads to a large fan wheel above, which draws all smoke, gas, ete., out of the tunnel, while at the same time fresh air is forced below.

alkaloids of Cacti.

Before the Physiological Society, Berlin, Prof. L Lewin gave an account of some experiments made with an alkaloid obtained from a North Mexican cactus called "Peyotl." it is well known that thi plant has an intoxicating action, and in large doses produces sleep and a state of nervous excitation ac companied by a so-called "power of prophesying," similarly attributed to the sulphurous exhalations of the temple at Delphi. Small doses of the alkaloid when given to frogs produced tetanic cramps and a much increased reflex irritability, analogous to strych nine; but with this difference, that by carefully ap portioning the dose the effects were permanent for several days. Similar results were obtained with rab bits, and Prof. Lewin regarded the new alkaloid as specially adapted to further the study of the nature o tetanus. In rabbits it was noticed that during each paroxysm of cramps, the blood vessels of the ears were widely distended. The speaker had also found alkaloids with powerful actions in many species of cactus hitherto regarded as harmless by botanists, notably one closely resembling curare.

THE J. S. CYCLOMETER.

The U. S. Bicycle Cyclometer, a cut of which accom panies this article, is a very compact and light onelightness being a sine qua non with wheelmen of the present day. It weighs one ounce, is one inch long and seven-eighths inch in diameter. Its registry terminates at 10,000 miles, and it can be set back to zero or othe figure at any time. As shown, it is attached to the front forks so as to be read from the saddle. To facili tate this, the figures are arranged in one straight line the extreme right hand figure giving tenths of a mile The instrument is shown in the cut as reading 23_{T}^{5} miles. It is attached to the front fork by a thin clamp so that, if hit by anything, it has a good chance of es caping injury. Instead of glass, mica is used to cove the face of the figure drums. This obviates danger of breakage, conduces to lightness, and the mica, if in jured, is easily replaced. Phosphor bronze is used for jured, is easily replaced. Phosphor bronze is used for makes it practically water-proof. If any dust should get into the case, it settles to the bottom, out of harm's way.
It is accessible for repairs or cleaning by removing one end of the case, when the whole movemen comes completely out. The simplicity of the mechan sm makes it easily cleaned.
Each cyclometer is tested by being run to a 400 mile registry, at a rate corresponding to 50 or 60 miles an hour. They are made for 26,28 , and 30 inch wheels, and by changing one piece, at a nominal expense, the same instrument can be standardized for any size of wheel. In the cut, the cam attached to one of the

THE J. S. CYCLOMETER.

pokes of the wheel is shown as it is on the point of oving the cyclometer arm.
This cyclometer has been patented, and is manufac tured by Bean \& Lang, Fond du Lac, Wis.

Varnishing Metal.

The objects are dipped in a colorless pyroxylin var nish and then heated in a current of air at $80^{\circ} \mathrm{C}$. until the varnish is thoroughly dry, when they are immersed for a few seconds in a two per mille alcoholic solution of alizarin, followed by a wash in water, to change the color from the original light yellow to a golden red.

THE LATEST LONG DISTANCE TELEPHONE TRANSMITTER

(Continued from first page.)
The magneto machine and polarized bell are of the usual construction, the magneto having an automatic circuit closer which closes the circuit between the line wire extensions when the crank of the machine is turned. The resistance of the polarized bell is very high, so that its insertion in the circuit in the manner shown in the diagram is feasible.
When the telephone switch is up, as shown in the diagram, a switch arm forms an electric connection with the two springs, as shown, but when it is held down by the weight of the telephone, the contact is broken between the lever and springs. The battery used in connection with the long distance transmitter consists of two Fuller cells. This battery has been frequently described in these columns.

THE BLAKE TRANSMITTER

detains of construction
As the patents on the Bell telephone receiver and Blake transmitter are no longer in force, the general use of the telephone is likely to be greatly extended.
The thousand or more uses the telephone can be put to and its manifest convenience in rapidly transmitting messages make it the most remarkable time saver the world has ever known.
The Blake transmitter has been, in a measure, discarded by most of the telephone companies, not because of any special defect, but because there cannot be safely put through the transmitter enough current for transmitting sounds over great stretches of wire, say three hundred miles or more. But with a modern copper metallic circuit, with the battery in normal condition, it can .be worked successfully on lines 150 miles long. It has the merit of reproducing the voice very distinctly and with a naturalness of tone and amount of volume that is surprising.
For these reasons it is regarded by experts as one of the best forms of microphone made. It took a long time for all the nice ties of adjustment and little points of manufacture necessary for its perfect working to be ascertained.
We show in the two illustrations the general appearance of the Blake transmitter (Fig. 1) and a diagram of the connections (Fig. 2). The external dimensions of the box, referring to Fig. 1 , are $51 / 4 \times 41 / 4 \times 23 / 4$ inches. The square frame of the box is $3 / 8$ of an inch thick and the cover and back are about $3 / 4$ of an inch thick. The diaphragm aperture in the cover is $5 / 8$ of an inch in diameter, while the diameter of the cup-shaped mouthpiece formed in the cover and converging to the central opening is $15 / 8$ inches in diameter. To the rear of the door is secured the cast iron circular ring, A, inside of which lies the Russia iron diaphragm, B, $23 / 4$ inches in diameter, $2-100$ inches thick, or No. 24 B. \& S. gauge, enveloped at its edge with a Goodyear pure rubber band, Z (Fig 2), $21 / 2$ inches long by $3 / 4$ of an inch wide, such as can be purchased at any rubber goods or stationery store.

A seat $3 / 8$ of an inch wide, 1-16 of an inch deep, and a little larger of an inch deep, and a dittle larger
in diameter than the diaphragm, is formed in the iron ring. On this seat the diaphragm rests. A short, thin metal plate attached to the ring, A, on the right hand side clamps the diaphragm in position. The plate should rest squarely on the rubber edge of the diaphragm, holding it firmly agains that of a hinge, which allows the diaphragm to freely swing inward. The diaphragm should be perfectly flat and true, and all parts of its edge should rest easily or touch all portions of the seat. The steel damping spring secured to the ring at the opposite edge of the diaphragm is protected at its free end with a rubber glove on which is cemented a thin piece of fluffy woolen material. This spring extends to a point about half way between the periphery and the center of the diaphragm. It is $11 / 2$ inches long by $3 / 8$ wide, and is bent with quite an arch, so that the end will press, finger-like, flrmly upon the diaphragm. The function of this spring is to prevent excessive vibration. Once in six or eight months the spring should be removed and the fluffy end roughed up. About once in six months the rubber band should be removed from the diaphragm and a new one put on.

Fra. 2.-Internal Construction of the Blake Tranamitter.

Fig. 1.-A. Metal circular ring. B. Diaphragm. C. Adjusting angle bar. D. German silver spring etal circular ring. B. Diaphragm. C. Adjusting angle bar. D. German
E. Carbon button spring. a b. Secondary wires. c d. Primary wires.

THE BLAKE TRANSMITTER

results. The curve should follow as closely as possible from the point of support downward, an arc of a circle even or eight inches in diameter, but it must not ouch the diaphragm. When the button, J, is pulled back, away from the diaphragm, N, the spring, I, should follow it in contact from $1 / 8$ to $\mathbf{3 . 1 6}$ of an inch before separating. The carbon button, J, is supported by a small brass weight attached by a small screw to a piece of watch spring, R. This spring which is straight is clamped in metallic contact at its upper end with the metal support, T.
It is surrounded its entire length with rubber tubing to deaden any possible vibrations in the spring itself. The brass weight which holds the carbon buton, J, is beveled outward, with its periphery milled, n order that it may be easily rotated for adjustment on the screw which holds it to the spring, \mathbf{R}.
The proper way to polish the carbon button is not generally understood, and as the smooth looking-glass polish is one of the essentials to good articulation, we will describe the most approved method of producing it. The button is taken off its support, R, by unscrew-
observed that it has at the bottom a projection holding an adjusting screw, and to a similar top projection \& S. gauge, from which depends another casting, C, in Fig. 1, and T, Fig. 2, supporting the complete microphone apparatus. Fig. 2 shows this portion separated from the supporting casting, A.

Referring to Fig. 2, \mathbf{A} is one terminal of the primary battery passing by wire, S, to the hinge, H, to which it is soldered. From the other leaf of the hinge the wire, M, insulated and protected by a rubber tube, passes to K, where it is soldered to the upper end of the German silver spring, I. The spring, I, is $1 / 8$ of an inch wide. At K this spring is clamped between two iron work. In thber and is thus insulated from thall hole in which is inserted and soldered a bit of No. 18 platinum wire having each end rounded off, forming a bead, one side of which is in contact with the dia phragm, \mathbf{N}, the other side contacts with the carbon button, J, details of which will be given. Numerous experiments demonstrated the necessity of giving to
emery paper, about two inches square, is placed upon some firm support and held flat by the two fingers. The button, beld between the thumb and finger, is next placed, carbon side downward, upon the emery paper and rubbed over it in the space of an inch circle. At first the surface of the button is roughened, but as soon as the paper becomes filled with particles of car bon or is blackened, the polish begins to come. At this stage the sweep of the button is reduced and con fined to the center of the sheet and a slight gyratory motion given to it; at the same time the button is ro tated on its axis with the thumb and finger, half a revolution, then half a revolution in the opposite direc tion, the principle being that the fine carbon particles rubbing in contact with the surface gives the fina gloss.

The whole operation requires less than five minutes, and it is surprising how easily and beautifully the high polish is obtained. After it is done, the emery pape is turned over and the button rubbed slightly on the back of it, to remove the loose particles of carbon from the surface, then the button is returned to its place in
the transmitter. and the point of the platinum bead pressing against it is burnished by rub bing a knife blade over it.
The transmitter is adjusted by turning the screw, O, to the right or left, the tapered upper end of the screw engaging the beveled end of the casting, T. That is, the pressure of the button and platinum bead against each other and the diaphragm, N , is increased or decreased by manipulating the screw.
One of the guides in determining the righ microphonic effect is to place the butt end of a lead pencil in contact with the outer face of the diaphragm, then slide the fin gers gently along the pencil toward the dia phragm, listening in the meantime in the receiver. If this sound is readily trans mitted and heard, the transmitter is con sidered quite sensitive. Having traced the circuit through the platinum, spring, and carbon button, where the spring holding carbon button, where the spring holder comes in contact with the iron support at K, the circuit continues from the iron ring, as shown at L, to the lower hinge, G, thence by wire, P, to the interior of the induction coil, usually consisting of two coils of No. 16 wire and called the primary coil; see F. From the top of this coil it passes to the second binding post, B. The re sistance of this coil is very small. The econdary wire, E, on the outside of the induction coil consists of several layers of No. 36 wire, having a resist ance of 150 ohms; the terminals, X and W, are carried to the two posts C and D.
The posts, A and B, are connected to the battery, which should have a voltage averaging from 1 to $1 \cdot 6$ volts If it falls below a volt the microphone will lack snap, and will not transmit as loud. One average Leclanche cell is sufficient, or one cell of a dry battery like the Mesco
If all the foregoing details are care fully observed, the transmitter will be found to meet the most exacting requirements; it can be shouted at without getting out of order, as we know by actual experiment.

Removing Impurities from Wools. For above purpose (according to the process just patented in France and England by C. Delerue, of Roubaix France), the wool sliver is fed by feed rollers in between a pair of cylinder brushes, and from them it is removed by a rapidly revolving comb in con tact with which there is a more rapidly revolving cylindrical brush with a tapered casing, having an opening through which part of the periphery of the comb pro jects to meet the brush. By the current of air caused by the rapid revolution of the br:sh, the wool stripped by it off the comb is projected toward the small end of the casing, where it is caught by a pair of hollow wire gauze cylinders, and by them delivered to a pair of feed rollers to be again subjected to the action of a cylindrical comb and brush. These wire gauze cylin ders, feed rollers, and combs, and the brushes and thei casings, are repeated eight or ten times in the ma chine, the wool passing in succession through them all

Cement Mortar.

About eight parts of furnace ashes, slag, or coke, four parts of slaked lime, and one of clay, are taken and mixed dry so as to form a cement, which, on mixing with water, sets in the ordinary way. The proportion of the materials may ke varied so as to produce either an aerial or hydraulic cement.

The Siberian Rallway

The works in connection with this large undertaking are being pushed ahead with the greatest energy, un der the anspices of the young Emperor, who intends to retain the presidency of the Siberian Railway Committee. According to Engineering, there is reason to believe that the West and Central Siberian Railway will be ready by the year 1900 . What is called the Baikal Ring Line will not be commenced till the othe sections are taken in hand, but it is expected to be completed by about 1904. The Baikal Lake will in the meantime be used for the transport of railway materia for the Trans-Baikal section, from Myssonskaza to Stretensk. This section has an aggregate length o 680 miles, and on it a great number of engineering dif ficulties have to be overcome. The district through which the railway is to pass is very thinly populated, there are many mountains and elevated plateaus, and the climate is very severe, the soil being at all times frozen. The highest point which the railway will touch on this section is about 3,200 feet above the leve of the sea. On the railway lines referred to, there will have to be built the immense number of 973 bridges. The longest of these is the Selenga Bridge, which will be about 3,000 feet long; for comparison's sake, it may be stated that the large Grunthal Bridge over the North Sea-Baltic Canal is only 620 feet. It was originally under contemplation to use wood as bridge building material in some places, and to use steam ferries at although thi alterase plans have been abandoned pense of about 25 per cent upon the originally caicu lated cost. Stretensk is situated at the Shelka River which is an auxiliary to the Amur River. The connecwhich is an auxiliary to the Amur River. The connec-
tion between Streteusk and Chabarowka, a distance tion between Streteusk and Chabarowka, a distance
of some 1,300 miles, will, in the meantime, be carried out by steamers. At Chabarowka, which is situated at the entrance of the Usuri River into the Amu River, a bridge will have to be built of 7,700 feet length which is more than two and one-half times the length of the Strelenka Bridge on the Central Siberian sec tion.
The last large section of the Siberian Railway will connect Chabarowka with the naval port of Vladivostok. One-half of this section, from Vladivostok to Grosskoia, will be ready in the present year, and the second, from Grosskoia to Chabarowka, a distance of
some 230 miles, has to be ready in the year 1898. The headquarters of the West Siberian Railway are a Tschetjabinsk. The section which comes under thi management terminates at the bridge over the Rive Ob , which bridge has a length of 2,600 feet, and is situ ated at Kriwoschtokowa. This section should be com pleted in the year 1896. The headquarters of the Cen tral Siberian Railway are at Tomsk. Each section divided into sub-sections of about 85 miles length. Fo about every 20 miles there is an engineer, with assistant ngineers. Next year a large number of convicts will to remove any inducement to try to escape, they wil obtain the same pay as the free laborer, and when th ailway is completed half their term will be wiped off The proper earth and bridge building works can only be carried on during the period from May to about th middle of October.

The Typewriter Ribbon Industry

The manufacture of ribbons for typewriting machine is an industry which gives employment to a large num ber of people. On nearly all the first-class typewriter these inked ribbons are used. There are at least forty different styles of American typewriters, and more than 400,000 machines are in actual use. As the averag ife of a ribbon is from four to six weeks, the numbe of concerns which seek to supply the market with thi article is surprising.
They make ribbons of every conceivable color and variety, from six to ten yards in length, and capable of writing with copying or non-copying ink. Some ibbons are made which print in one color and show an ntirely different color when the manuscript is copied by means of the letter press. For instance, a ribbon which writes black may copy blue or green, making th record much more legible on certain qualities of paper The manager of a concern in New York, says the \mathbf{N} Y. Sun, which turns out several hundred ribbons daily said that. at a low estimate, fifty plants engaged in th manufacture of these ribbons have been established in the United States this year
Each manufacturer has a secret process for makin his particular style of ribbon, and the secret is guard ed with the greatest possible care. One maker in thi city has each box and jar containing powder or pig ment for making the ink distinctly numbered, and
ven the employe who mixes it is obliged to follow his printed instructions mechanically, and remains entirely gnorant of the composition he is using. One may witness the whole process and go away as ignorant as before.
The best ribbons have selvaged edges, which prevent their raveling and curling when in use. They are nearly uniform in thickness, though one ribbon is made of very thin texture, to be used when an extra arge number of carbon copies are desired, and the mprint of the type must be as clear as possible and ree from blurs. The greatest care must be taken in selecting the cloth from which the ribbons are made If the texture is woven too closely it will not hold sufficient ink, and swirch the paper. Moreover, such ribbon will fill the type of the machine and greatly annoy the operator. A prime difficulty encountered by manufacturersis how to prevent evaporation of ink from the ribbon when it is in use and exposed to the air. This has been largely overcome in the last two or hree years.
The man in charge of a large New York house which makes writing inks and typewriter ribbons said recent y that the most noticeable thing in bis trade was the reat decrease in the sale of ordinary copying ink. It is being almost entirely supplanted by the copying ypewriter ribbon, which gives far better results. De site the great number of ribbons in the market and the constant efforts of expert chemists everywhere to produce one that will satisfy everybods, those giving all-round satisfaction are not easy to find, and dealers in supplies of this nature often have extreme difficulty in furnishing what is wanted. This country furnishe ractically all the typewriter ribbons in use both here and abroad.

A Steamer Makes Thirty-three and One-halr

The Boxer is the last torpedo boat built for the British Admiralty. She is the last of four fast boats. The Boxer is 2011/2 feet long, $19{ }^{\circ}$ feet beam, draught oaded 7 feet 2 inches. On a recent trial the mean peed on six runs over the measured mile was 29.31 knots, or $331 \frac{1}{2}$ statute miles, per hour. Hersister boat he Ardent, made almost the same speed, her engine indicating nearly 5,000 horse power and making 407 evolutions.

RECENTLY PATENTED INVENTIONS.

Railway Appliances.

Circuit Closer for Ratls.-Edgar C. Wiley, Bristol, Tenn. This circuit closer is operated by the passage of the train over the rails, thus bending
down the rall itself. On the main rail are contacts which are brought together or separated by a friction drag slide, actuated by the bending down and uprising of the rail to both close and open the circuit. Combined with the drag and with the main rail is a supplemental rail, one part of the device being attached to the main rail and the other to the middle of the supplemental rail, the end of the latter rail being anchored to the main rail. In applyand the devices may readily be placed upon a bridge or ther location where there is no foundation of earth.
Automatic Electric Safety Rail Road System. - Rene R. Snowden and Albert C. Ives,
Ocala, Fla. This system is designed to prevent collicions or the running of a train into an open switch; also to prevent more than one train occupying a crossing at a time, and to protect a car left standing on a track from trains approaching in either direction. Each train is provided with a battery and the track forms a conductor laid in insulated sections, while the improvement provides novel troileys, circuits, switches, and connections
with operating parts of the locomotive. The closed circuit s only made when two trains are within a certain disance of each other, and the closing of the circuitis arranged to automatically actuate the steam and air valves each locomotive to prevent collision.
Car Platform Suppori!-Seth A. Crone, New York City. This is an improved construction by which the car platform is reinforced and strongly
supported by braces carried from a point of the car supported by braces carried from a point of the car
frame in the rear of the end sills. The improvement comprises an angular brace in two independent sections arranged at angles to one another, ar abutment supportment being such that a sagging platform can readily be raised and readjusted to its normal position by screwing up nuts.

Garment Hanger for Car Seats. This is a further, invention of the same inventor, pro-
viding a device which may be attached to the back of ny seat :and capable of receiving a very bulky or a very small garment or other article, the device automatically flattening itself close to the seat back when the article is
removed. The body of the device consists of a strap removed. The body of the device consists of a strap
controlled by a spring fastened to a spindle in a suitable controlled by a spring fastened to a spindle in a suitable of the strap being attached to the back of the seat near its opposite end. The casing, all but its face plate, may
be concealed by the upholstered back of the seat. The strap may also be made wider in certan porions and formed to afford pockets.

Mechanical.

Thread Cutting Brace.-Edward L. Barton, Millersburg, Pa. According to this improvement a chuck is adjustably connected with and at rightangles to a straight handle, the handle comprising sectional sliding tions being adjustably connected with the crank of the
brace. The improvement provides a tool in which any form of die for thread cutting may be held, and the brace
with the die connected used as an ordinary brace. It may alao be advantageously employed in cutting threads culty.
Mould and Flask 'for Chill Rolls. Alexander McLennan, New York City. This improvement comprises a frame in which a series of single chills set loosely to form the mould for the roil, the chills tion of the poured metal, and form a tight band around the casting as the metal contracts, thus preventing crack ing and insuring a better chill. A truncated cone-ehaped ring engages the outer beveled edges of the chills to uni-
formly and simultaneously move the chills inward as the formly and simul
Couch Roll for Paper Makers. William J. Hoffman, Ancram, New York. In place of the flat covering ordinarily used on the couch rolls of wet machines, this inventor provides a roll covering which consists of strips of felt placed edgewise, and held in place on the periphery of the rolls by binding wires,
or the strips may be doubled and inserted in holes in the face of the rolls, as bristles are fastened in a brush back. The spongy, surface thus formed does not
become hard, is easily applied to the body of the roll, become hard, is easily applied to the body of the roll,
and the rotation of the roll shakes the strips loose, keep ing them in good workable order.

Shade Cloth Preparing Machine. -Willian P. Cole, Montreal, Quebec, Canada. This in vention provides a mechanism for treating fabrics to be sized or painted, and especially applicable to the making of opaque shades. The fabric is passed from a roll be cessively dried, brushed, and trimmed, while held very tightly, so as to take out all the stretch, until it is finally delivered in a compact, finished roll after having bee passed through the machine. The brushes smoothly spread the size and paint and remove all surplus mate , the entire operaion being automatic
Digger.-Albert Roll, South Amboy, N. J. This is a construction which, with an operating engine and elevators, is designed to be carried and ope-
rated on a fiat car. It comprises a rotary digger with a cial, its central hub secured to a driving shaft and mate vided with circumferential pockets open at their outer ends, so that the material cairied to the upper side runs into a spout to'be delivered to the elevator or carrier. The digger is particularly adapted to scoup
pile and facilitate loading it upon a car.
Tie for Wire Structures.-Eugene Williams, Jerseyville, Ill. This tie is formed from a thate the stase two members are differently curved in order for effectirg the tie when the staple dies of a machine for effectirg the tie when the staple is bent to a ringlike form, the members being also beveled at their ex-
tremities upon opposite faces. The tie thus formed is light and strong and ornamental in appearance.

Miscellaneous.

Calculator. - Charles S. Labofish,
of a watch, to be carried in the pocket, operates without keys, is not liable to get out of order, and is adapted to perrorm the various operations of addition, subtraction,
multiplication and division. Its case has circumferential sight slots, and around a central driving gear is arranged a series of number wheels, the stem having a revoluble crown head, by turning which the calculator is operated there being an operative connection between the stem
and the gear wheel. The number wheels represen units, tens, hundreds, etc., and the wheels to be moved are pressed inward by pushing a button which projecte through the shell of the case.
Telescope, Microscope, and Cam-ERA.-Robert L. Stevens, Ward, Pa. This is a comand forming a part of an ordinary pocket telescope, the several telescopic draw members, except the inner or
eye section, being arranged and joined in the usual maneye section, being arranged and joined in the usual man-
ner. In the inner section may be a single lens or ey ner. In the inner section may be a single lens or eye
piece or a number of microscopic lenses, the inner secpiece or a number of microscopic lenses, the inner sec
tion being preferably somewhat longer than usual to tion being preferably somewhat longer than usual, to be in which a slide may be inserted through a slit, thus pro viding an effective microscope. The slit may also be provided with a pair of apertured diaphragme in which a sensitized plate may be inserted, and the instrument then Pocter
Pocket Map.-A further invention of the same inventor provides a combined microscopic and photograph map holder for travelers, bicyclists, etc., to being interchangeably held, and the vision or focal point being moved over the map to any desired point. The
casing has a sernes of lenses, disconnected at their points but joined to form a consecutive whole at the opposite end, there being provision for holding a trans-
lucent map on the joined end of the lenses, while in lacent map on the joined end of the lenses, while in

Sewing Machine.-Walter G. Tillou and John W. Clapp, New Haven, Conn. This improve噱 bar operating lever to communicate laterally reciprocat ing movement will work within the bar without creating
inconvenience in its slideway. The driving cam of the feed bar operating lever is also so constructed that ite race will be wider at one point than another, enabling tance to one side by the haft of the needle when fine stitching is being done.
Sewing Machine Shuttile.-Walter G. Tillon, New Haven, Conn. This umprovement is also beak of the shuttle being so constructed that it will draw down less thread thau the old form of shuttle, and will require a loop of less size through which to pass. It is
designed also to so shape the forward bottom portion of de bobbin chamber of the shuttle, near which the loop drawing hook of the machine has play, that the hook and so that, in the event of any accident to the hook, no damage will be done to the shuttle.
Preparing Glue Stock for Boiling.
ing the old and common method of neatralizing lime in glue stock by the action of carbonic acid by drying in air or hanging in basketa in a running stream, whereby
some alkali is generally left in the stock, which consists some alkali is generally left in the stock, which consiste in treating the limed stock first with carbonic acid, and
then completing the neutralization of the lime with sulthen completing the neutralization of the lime with sulphurous acid, the latter acid preventing decomposition of
the stock, while stock so treated renders into glue more the stock, while stock so treated renders into
quickly than iu the presence of carbonic acid.
Knockdown Furniture. - Herman A. J. Rieckert, New York City. This is an improveand provides a counter more especially designed for temporary use in stores, on sidewalks, etc., and which may be conveniently folded for storage or removal. The counter has a top made in sections ninged together, a support being connected by hinges with one end of the top sections, and the support being provided with fold

Sash Fastener.-William F. Sinley, Dingman's Ferry, Pa. This is a lock and support at tachment which may be used with either the npper or lower sash of any window and is applicable to all rail-
way car windows. In a recess in a side edge of the sash is a rack whose teeth are adapted for engagement by the spring-pressed bolt of a lock in the sashway or groove in the window frame jamb. The bolt is adapted to be operated by a key always in engagement with the lock, but which may be turned to prevent the sliding back of the bolt when it is desired to hold the sash from any
movement up or down, in any position in which it may movement up or down, in aus position in which it may
be placed, the bolt normally slipping by the teeth of the rack as the window is raised.
Rein Holder. - David H. Blascow, New York City. This is a simple device which may be placed horizontally or vertically over the dashboard, whether the latter be curved or straight, and may be attached to the board without the uee of bolts or other wise marring it. It has adjustable jaws, and a whip holder may constitute an integral part of the device, and, one in front of the holder, to draw or disengage the

Manhole Cover for Cisterns or Wells.-James Fowley, Cobden, In. This invention provides an inexpensive cover plate which will also serve as the base or curb member to which the pump casing or
stock may be secured. It is made in half sections, having each a pendent lock madie in half sections, hav adapted to readily fit down ower the curbstone opening or other top nember of the well mouth.

Designs

Bracket.-John J. Hoffiman, Denison, lowa. This bracket has on its face central transverse Pin Holder. - Edward H. Ellis, Pasaena, Cal. In a saucer-shaped tray is fixed a cup-like ashion holder in which is held a convex cushion, sur unded at its base by an ornamental band.
Note.-Copies of any of the above patents will be send name of the patentee title of invention. Please send name of
of this paper.

PBusiness and Personal.

The chargof for Insertion under this head is one Dolara a line
for eace insertion :abount eioht ueris to a line adver.
 Thursiay morning to appear in the following week's issue.

Presses metal polisb. Indianapolis. Samples free. Smith's Leather Pattern Fillet, Akron, O. Sample free For mud dredging engines. J. s. Mundy, Newark, N. J. Practical Ammonia Refrigeration. Redwood. Clotb
81. Spon \& Chamberlain, 12 Cortlandt St., New York. Screw machines, milling machines, and drill presses.
The Garvin Mach. Co., Laight and Canal Sts,, New York. Centrifugal Pumps. Capacity, 100 to 40,000 gals. pe Emerson, Smith \& Co., Ltd., Beaver Falls, Pa., wil send Sawyer's Hand Book on Circulars and Band Saw tree to any address.
Guild $\&$ Garrison, Brooklyn, N. Y., manufacture steam
pumps, vacuum pumps, vacuum apparatui, air pumps, pumps, vacuum pumps, vaccum app.
acid blowers, flter press pumps, etc.

FREE GROUND GIVEN,

in Pbila. snburbs, to large manufacturink plants. Rall
road facilities. Hoffman, 60 and Balt. Ave., Phila.
The best book for electricians and beginners in eloc-
tricity is " Fxperimental Science," $\begin{aligned} & \text { by Geo. M. Hopkins. }\end{aligned}$ tricity is "xperimental science,"
Woven wire brushes.-The Belknap Motor Co., o
Portland, Me. are the patentees and manufacturers o the best woven wre commutator brash on the market For the oripinal Bogardus Universal Eccentric Mill,
Foot and Power Yresses, Drills, Shears, Foot and Power Presses, Drills, Shears, etc., address
J.S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y. Competent persons who desire agencies for a new
popuar book. of ready sale, with handsome proft, apply to Munn \& Co., Scientific American offlee. 36 Broadway, New York.
17-Send for new and complete catalogue of Scientific and other Books for sale by Mun
New York. Free on apdication.

NEW BOOKS AND PUBLICATIONS.

HENDRICK S' ARCHITECT'S AN OR'S DIRECTORY OF AMERICA FOR BUILDERS, CONTRACTORS, MANUGAC TURERS AND DEALERS IN ALL KINDS of BuILDING SUPPLIES. For the years 1894-95. New York: Publishe $\underset{\text { annually by Samuel E. E. }}{\text { Hendrick }}$ The title of this book sufficiently describes its contents. It is enough for us to say that now it covers the entire United states and presents a very long list of those con cerned
trade.
Two Years' Work in an Architect's Office. By Manly N. Cutter. Sub-
urban. New York: A. L. Chatter urban. New York: A. L. Chatter
ton \& Company.
1894.

This very attractive work contains a number of arch ectural designs with short descriptions and specification face, which is short, contains a quantity of good sens and gives points for building which, if carried out, would nevitably result in good work.
The Minor Tactics of Chess. A treatise on the development of the forces in obedience to strategic prin-
ciple. By Franklin K. Young and ciple. By Franklin K. Young and Edwin C. Howell. Boston : Roberts
Brothers. 1894. Pp. 219. Price \$1. This little work presents an eminently attractive appearance, treating as it does of the game of chess from merely sample games, gambits and openings. It is illusrated as required and possesses an index. Its treatment of the subject of the single move as altering the entire disposition of all the forces on the board, all of them being potential and active, is excellently put.
Lettering of Working Drawings.
By J. C. L. Fish. New York: D. Van
By J. C. L. Fish. New York: D. Van Nostrand
Price $\$ 1$.
This eminently useful work is in the direction of obdrawings. So much depends on the lettering that the man who can draw well but letters poorly cannot rank at all as an accomplished draughtsman. To many the obtaining of skill in lettering is so difficult that they have a special man letter their drawings. This volume is intended to aid draughtsmen to perform this important detail.
Qualitative Chemical analisis of Inorganic SUBSTANCES. As prac-
ticed in Georgetown College, D.
American Book Company. 1894.

American Book Pp. 61. Price $\$ 1.50$.

We would like very much to give more space to the reniew of this work than we possibly can. It consists of a great extent the Fresenius separation. In places it seems not very clear, as where, page 7 , it directs the filtrate from the ammonio-magnesiom phosphate precipitate to be tested for sodium. This, however, is an inad-
vertence, because, as the author depends on the spectrovertence, because, as the author depends on the spectro-
scope for the recognition of the alkali metals, they can be tested for them without removing the magnesiam. As Table I. now reads, sodium is to be tested for in the filtrate from the magnesium precipitate, which filtrate inevitably contams eodium from the precipitant. It is in Table I. that the confusion occurs, but it is made clear in Table VIII. what process the author wishes to adopt. Nickel and copper are separated by the bromide test.
Aluminum, chromium and iron are separated by the fusion process, with sodium carbonate and potassium ni-
trate. We have given some little space to this book, as
Georgetown College has long been recognized as one of the leaders in science, and we are glad to see in the pres ent work an indication of the development of a full analy-
tical course in chemistry. We warmy recommend it as ancal course in chemistry. We warmy rec
AIds to Engineers' Examinations Prepared for applicants of all grades
with questions and answers. A sum mary of the principles and practic of steam engineering. By N. Haw
kins. New York: Theo. Audel 8 kins. New York: Theo. Aude
Co. 1894. Pp. 206. Price ${ }_{\$ 2}$.
This is one of the frequent catechisms published here seeming be a disposition on the part of man
athors to believe that practical engineers require a treatment of their subjects by question and answer, and the arge circulation which many of these catechisms have received goes far to prove the correctness of this ide Steam and electrical engineering are covered in this wbrl which is very nicely got up in rather a showy style red binding, with a box to hold it.
Under the Corsican. By Emily How land Hoppin, author of "From Ou of the Past," etc. New York: J
Sel win Tait \& Sons. Pp. 333. Pric

SCIENTIFIC AMERICAN
BUILDING EDITION

FEBRUARY, 1895.-(No. 112.)

TABLE OF CONTENTS.

1. Elegant plate in colors, showing an artist's home at and floor plan. Cost complete $\$ 3,300 . \mathrm{Mr}$. A. F Leicht, architect, New York City. A unique de sign.
2. A residence at East Orange, N. J., recently com pleted for Geo. R. Howe, Esq. Two perspective elevations and floor plans. A pleasing design Mr. Jas. H. Lindsley, architect, Newark, N. J. Harvey, Esq. Two perspective elevations. floor plans. A handsome summer cottage with ome novel architectural features, Messrs. Neue \& Darcy, architects, Wilkesbarre, Pa.
3. A residence at Forest Park, Springfield, Mass. Two perspective elevations and noor plans. A combi-
nation of the Colonial style with French chateau field, Mass.
4. "Sunnyside." The residence of Robt. S. Walker, Esq., at Flatbush, L. I. Three perspective eleva tions and floor plans. An exquisite design. Mr. Frank Freeman, architect, New York City. A picturesque and well appointed residence erected
for the late E. E. Denniston, Esq., at School Lane, Pa. Cost complete $\$ 22,000$. Perspective elevatect, Philadelphia, Pa
5. A residence at Nutley, N. J., recently erected at a cost of $\$ 5,800$. Perspective elevation and floor plans. Mr. E. R. Tilton, architect and designer, New York City.
6. A cottage in the Colonial style at Southampton, L. I. Two perspectives
H. Skidmore, architect.
7. Hall and Library at Glen Ridge, N. J erected at cost of about \$12,000. Mr. Wilbur S. Knowles, architect, N .
a dwelling in the Colonial style at South Orange, N. J. Cost complete $\$ 6,500$. Mr. P. C. Van Nuys, architect, Newark, N. J. Two perspective
elevations and floor plans. elevations and floor plans.
wo views showing a most successful alteration in bridge, N. Y. One view showing the original structure as built over one hundred years ago and the other showing the additions and changes re-
cently made. Mr. H. Inman Furlong, architect, New York City. Perspective views and floor plans. Me., erected for Francis Cushing, Esq. Two perpective elevations and floor plans. Cost complete $\$ 2,000$. Mr. John C. Stevens, architect, Portland, Me. A unique and picturesque design for a model summer home.
Colonial house at Weatogue, Conn., being erected for the summer residence of Arthur M. Dodge,
New York City. Perspective view and floor plans. Meaars. Child \& De Goll, architects, New York.
acturing contents.-Improved method of manufacturing hydraulic cement.-A complete Pom-
peian house.-Inventions reduce the cost of build-ing.-Those dreaded draughts. How they are caused and avoided in window-tight rooms.-Fire proof buildings.-The great staircase in the Capi-
tol Building at Albany, N. Y.-Porous glass for windows.-Mexican onyx. The Manhattan life Building, New York.-View showing the waterprooting of the walls by the Caffall process.-A traveling lawn sprinkler, illustrated.-Egyptian cement
plaster.-Ornamenting glass.-A bridge of con-plaster.-Ornamenting glass.-A bridge of con-
crete.-A new model parlor door hanger, illustrated.
The Scientific American Building Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about two handred ordinary MAGAZNE ; orming, practically, a large and splendia
or elegant plates in colors and with fine engravings, illustrating the most interesting examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience this work have won for it the Largerst Circulation of any Architectoral Publication in the world. Sold by
all newedealers. MUNN \& CO $\begin{array}{ll}\text { all newsdealers. } & \text { MUNN \& CO., Publishers, } \\ & 881 \text { Broadway, New York }\end{array}$

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our
or no attention will be paid thereto. This is for our
morormation and not for publication.
References to former articles or answers should
Inque date of paper and
Iniries not ansered ger or number of quastion
be repeated, correspondents will bear in mind that
some ansers require not a litlee research, and,
though we endeavor to reply to all either by letter
or in this department. each must take his tury.
Buy irs wishing to purchase any any article not ad advertised
in our columns will be furnthed with addresses of
houses manufacturing or carting the sone

secial Wirten Information on matters of
personal rather than general interest cannot be
expected without remuneration. Scientinc American Supplemients referre
to may be had at the office. Price 10 cents each.
Books referred to promptiy supplied on receipt price.
Minerals sent for examination should be distinctl
marked or labeled.
marked or labeled.
(6400) C. T. W. asks : What is meant by the gearing on safety bicycles, and what effect being Wheel 9 A. Multiply the stated gearing by 31-7, and will givethe approximate distance the bicycle will go for harder is the bicycle to drive, but high gearing give peed within certain limits. The figures of gearing ex geared.
(6401) A. C. W. asks : Can you inform me through your answers to correspondents how to precoated with tin the same day, the usual process being o water tumble the castings 3 or 4 days? Also give me a way of coating the castings with a cheaper finish, as by misture of lead or other substances with the tin. A. The gray iron castungs may be quickly tinned by follow ng the instructions in the section on tinning in "Scien fifc American Cyclopedia of Receipts," and then treating rticles may be dipped in the melted tin bath, or a mix ure of tin and lead as used for tinner's solder, or equal parts of tin and lead. A cheaper method is the galvanizing or coating with zinc, which is fully described in Screntific American Supplement, No. 176.

INDEX OF INVENTIONS
For which Letters Patent of the
United States were Granted
February 5, 1895,
AND EACH BEARING THAT DATE

Fish
Fish
Flui

 Tarit roll and making game, S. W. Wardwell, Jr.. 53

TO INVENTORS. E. Kurer on

Oil Well Supply Go. Manufacturers of eqerything needed
ARTESIAN WELLS
 ind ivcount sheteto on eneunest. A.W. FABER

 $78 \begin{gathered}\text { Reade Street, },-\cdots \\ \text { Manufactory Established 1761. }\end{gathered}$ - New. York,

If you want the best Lathe and Drilu

TYPEWRITERS.

2ケдverizsements.
 MECHANICAL DRAWINO
 Duming Waider by Compraysised Aip.
 pohié air lift pump,

The Scientific American Reference Book.

STARRETT'S
IMPROVED SPEED INDICATOR.

Parson's Horological Institute.
School for W7atchmakers engravers and jewelers.

Parson's Horological Institute, 302 Bradley Avenue, PEORIA, ILLL. NOW READY 8

Fourteenth Edition of
Experimental Science

120 Pages and 110 Superb Cuts added.
Just the thing for a holiday present for any man,
woman student, teacher, or anyone interested in science.

 IF Send jor tusstratea circuiar.
MUNN \& CO., Publishers
Office of the SCIENTIFIC AMERICAN
361 BROADWAY. NEW YORK.
 HALLUCINATIONS AND DELU-
 TM Telephones

 FREE FETAT IT COSTS YOU NOTHIMG

 SINTZ GAS ENGINE CO. Grand dapidg, micten,

CONCRETE CONSTRUUCTION. - A

The United Autographic Register Co.,

 THE "CLIMAX" Stereotyper and Moulding Press

 circuar to. F. W. Dorman co.
217 E. German st.,

The Scientific 1 merican

 PUBLICATIONS FOR 1895.The prices of the different publications in the United
The Sclentific American (weekly), one
The Sclentific American Supplement (weekly), one
T30

The Scientige Amercan Architects and Builders
Edition (monthly), one year.
The Scientifc American and Rupplement
The Scientitic American and Supplement - ${ }^{\text {The }}$ - 8 elienticic American and Architects and BullaThe scelition, American, supplement, and Archi-
tects and Buillers Edition, -
 MUNN \& CO., 361 Broadway, Now York.

THE "MUNSON" TYPEWRITER
 INTERCHANGEABLE STEEL TYPE WHEEL

The Munson Typewriter Co., 171 E. Division Street, Chicago. Ill., U. S. A.

The value of the Scientific anmerican as an adveris many times greater than that of any similiar journal
now published. It ooes into all the states and It now published. It zoes into all the States and T'errito-
ries, and is read in all the principal libraries and reading res, and is read in ail the principal inbraries and reading
rooms of the world. A busincss man wants something
more than to see his advertisement in a printed newspaper. He wants circulation. This he has when he ad-
vertises in the Scientiric American. And do not vertises in the SCIENTIFIC American. And do no le other paper for the Scientific American when solecting c. ist of pubications in which you decide it is for
Your interest to advertise. This is frequently done for the reapors having a small circulation than is allowed on the SCIENTIFIC AMerican.
For rates see top of first column of this page or ad 361 Broadway

How To Make a Dynamo

 To Manufacturers and Exporters
 and
 BICYCLES Per rese

 - TTS JET BLACK-S.\& HSATERPROOFINDIA INK
 If vour dealer does not keep this ink in stock
sena 25 cents in stamps to THEO. $A L T E-$ Send 25cents in stamps to THEO ALEE-
NEDER \& SONS, Phadelpha, and they
will send you a full size botth. THE MODERN ICE YACHT. - BY

 Telegraphy taught at the Normal Telegraph School.
Complete course, 825 . F. Leder, Mountain Lake, Minn:
CRITERIIN MAGIC LaNTERNS
Stereopticon
 ICE-BOATS-THEIR CONSTRUCTION KEEP THE HEAD COOL.

FOOT POWER MACHINERY

CONTRACTS WANTED.
 Just Produced a Larre Lot of High Grade
St

 nvestigation of the principles of operation of the vita
machine. With one Pllustration. Contained in ScIEN

MATCH MACHINERY.

 INCUBATORS

 MONIOR MCUATOR ELECTRICTTY AND PLANT GROW-

 POU USE GRINDSTONES?

 The GLEVELAND STONE CO.
2d Floor, Wilshire, Cleveland. 0 .
Perfect Newspaper File The Koch Patent File, for preserving Newspapers, Magazines, and Pamphlets, has been recently improved and
price reduced. Subscribers to the ScIENTIFIC AMERICAN and SCIENTIFIC AMERICAN SUPPLEMENT can be office of this paper. Heavy board sides; inscription
" "SCIENTIFIC AMERICAN" in gilt. Necessary for every one wbo wishes to preserve the paper. Address
MUNN \& CO., Publishers ScIENTIFIC American
 t tat Thee oniy Cleach, Sanitary, and Safe Sanit soap. Agents Wanted. Sanitary Soap Vgents Wanted.
queduct Bldg,
A Valuable Book

12,500 Receipts. 708 Pages. Price $\$ \mathbf{5}^{2}$. Bound in Sheep, \$6. Half-Morocco, \$6.50.

Over Twel ve Tho usand selected Receipts are
here collected nearly everrbract of the sedful ars
being represented. It is by far the most comprehensive volume of the kind ever placed before the public.
The work may be regarded as the product of
 being of the highest value. arranked an.
concise form convenient for ready use.
Almost every inquiry that can be thought of. relating
to formule used in the various manufacturing indus-
tries, will here be found answered. Instructions for working many different processes in
the arts are given. Those who are engaged in any branch of industry
probably will find inthis book munch that is of practical
value in their respective callings. Those who are in search of independent business or
emporment, revating ot the bome nanufacture or sam-
ple articles, pale articlese, will find in it hundreds of most excellen
saggestions.

MUNN \& Co., Publishers, SCIENTIFIC AMEERICAN OFFICE,

Divocrisements.
ordinary rates. Hipher rates ame clase requise of. Advertisements, Spectal and The ato ofe are charges per agate line- about eight
ACCOUNTANTS who use the comptometor have no trouble with their trial balance. Has it ever oc. curred to you that by getting time, avoid mistakes and not ruin your nerves? Write for Pamph FELT A TARRANT MFG CO s2-se ILLMOIS St. CHICNaO.
DRAWING MATERIALS and - © - - SURVEYING INSTRUMENTS edition. Write for Keuffel \&E Esser Co.'s Catalogue of 1895. 26th and reliable catalogue, representing the largest and most complete stock in this line.
\$24. An 8 Light, 16 C. P., Liuthanamo To Mhtoriciot burpyamos tures or larger machines. 2 Marizet Sto Caicago . 12
 The lightest and most practical cameras for hand or tripod use. An illustrated manual, free with every Kodak, tells how to develop and print the pictures. Eastman Kodak Company, Send for 2 Catalouge. Rochester, $\mathrm{N} . \mathrm{Y}$.
ADJUSTABLE HOLDERS INCANDESCENT ${ }^{\text {No }}$ LAMPS. OCWHITE CO. WORCESTER

The

American

Bell Telephone Company,

I25 Milk Street,
Boston, Mass.

This Company owns LettersPatent No. 463,569, granted to Emile Berliner November 17 , 1891, for a combined Telegraph and Telephone, and controls Letters-Patent No. 474,231, granted to Thomas A. Edison May 3, 1892, for a Speaking Telegraph, which Patents cover fundamental inventions and embrace all forms of micro phone transmitters and of carbon telephones.

DO YOU WANT A LAUNCH? That you can run yourself. That is Clean and Safe.

 That require neither License Engineer nor

THE ONLY NAPHTHA LAUNCH. gas engine and power company, 185th St., Morris Heights, New York City.

 The Charter Gas α Caspoline Engine AND It HAS PAID US. Charter Gas Engine Co., Box 148, Sterling, III THE OBER LATHES
 Sled Yarging Hatchet, Hammer, Act, Au
er, File, Knife and Chisel Hat
 air work.
ETS
Sen The Ober Lathe Co., Chagrin Falls, O., U.S.A. Raplo tanisi wrench
 N s At $\frac{1}{4}$ Prict $=2=5=$

 ARE THE HIGHEST OF ALL HIGH GRADES.

Warranted superior to any Bicycle built in the world, regardless of price. Do not be induced to pay more money for an inferior wheel. price. Do not be induced to pay more money for an inferior wheel. agent hasn't it. Catalogue " l "' Free by Mail.
22 lb . Scorcher, - - \$85. INDIANA BICYCLE CO., 23 lb. Ladies', - - 75. Indianapolis, Ind., U.S. A.
Scientific B $\overline{\text { ook }}$ Catalogue RECENTLY PUBIISHED.
Our New Catalogue containing over 100 pases, Includ-
ing morks on more than fryt different subjects. Wili
be mailed free to in mailed free to any address on application.

TOWERS and TANKS
all inten toctional of 4 and $1: 2$ Columns, for
Water Works, CIties, Towns and PLAIN, ALL WOOD TOWERS. ELEVATED TANKS for Automatic Fire Sprinkler Plant Manufacturers of Iron and Steel Tanks. Louisinna Red Cypress Wood
Tanks a Specinlty.
W. E. CALDWELL CO. 219 E. Main Street,
 ICE-HOUSE AND COLD ROOM.-BY

THE ONLY STORAGE BATTERY IN USE IN CENTRAI THE ELECTRIC STORAGE BATTERY CO

Kombi Camera $\$ 3.50$

S CIENITIC MERCN

Cr CSTABLISHED 1845
The Most Popular Scientific Paper in the World Only $\$ 3.00$ a Year, Including Postage. Weekly--52 Numbers a Year.
This widely circulated and splendidy illustrated paper is published weekly. Every number contains sixteen pages of useful information and a large number of
original engravings of nem inventions and discoveries, representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures, New inventions, Novelties in Mechanics, Manufactures,
Chemistry, Electricity,Telearaphy, Photography, Arch1-
tecture, Agriculture Horticulture, Natural His tecture, Agriculture, Horticulture, Nat.
etc. Complete list of Patents each week.
Terms of Subscription.-One copy of the scien-
TIFIC AMERICAN will be sent for one year- 62 numberspostage prepaid, to any subscriber in the United States, Canada, or Mexico, on receipt of Three Dollaris by
the publishers; six months, 81.50; three months, 81.00 . Clubs.- Special rates for several names, and to PostThe safest way to remit is by Postal Order, Draft, or
Express Money Order.' Monax carafully placed inside or envelopes, securely. sealede, and correctly addreessed,
seldom goes astray, but is at the sender's risk. Address seldom goes astray, but is at the sender's risk. Adaress
all letters and make all orders, drafts, etc., payable.to
M UNN \& CO., 361 Brondway, New York. - THE - -
 This is a separate and distinct publication from THE
SCIENTIEIC AMERICAN, but is uniform therewith in size, every number containing sixteen large pages full papers and accompanied with translated descriptions. the Scientific American Supplement is published weekly, and includes a very wide range of contents. It presents the most recent papers by eminent writers in
all the principal departments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural Alstory, Geography, Archæology, Astronomy, Chemistry, Electricity, Light, Heat, Mechanical Engineering,
Steam and Railway Enzineering Mining ship Building, Steam and Railway Engineering Mining, ship Building,
Marine Engineering, Photography, Technology, Manufacturing Inaustries, Sanitary Engineering, Agriculture, Horticulture, Domestic Economy, Biography. Medicine, etc. A vast amount of fresh and valuable information
outainable in no other publication The most important Englneering
and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT.
Price for the SUPPLEMENT
Price for the SUPPLEMENT, for the United States,
Canada, and Mexico, $\$ 0.00$ a year; or one copy of the SCIENTIIIC AMERICAN and one copy of the SUPPLEMENT, both mailed for one year to one address for 87.00 . Single copies, 10 cents. Address and remit by postal
order, express money order, or check, der, express money order, or check,
MUNN \& CO., 361 Brondw

BBuilding Edition.

TEE SCIENTIFIC AMERICAN ARCHitectrs' AND
BUILDERs' EDITION is issued monthly. 8250 a year. Single coples, 25 cents. Thirty-two large quarto pages, forming a large and splendid Marazine of Architecture, richly adorned with elegant plates in colors, and with
other fine engravings; illustrating the most interesting examples of modern Architectural Construction and allied subjects.
A special feature is the presentation in each number of a variety of the latest and best plans for private resi-
dences, city and country, including those of very moderate cost as well as the more expensive. Drawings in perspective and in color are given, torether with Plans, Descriptions, Locations, Estimated Cost, etc.
The elegance and cheapness of this mannifce The elegance and cheapness of this magniffent work
have won for it the Largest Circulation of any Architectural publication in the world. Sold by all newders. 82.50 a year. Remit to

MUNN \& CO., Publishers
PRINTINGTFITS GOLDING \& CO., 179 Ft. Hill Sq., Boston, Mass. PRINTING INKS,

