

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

THE CROSSING OF THE CENTRAL RAILROAD OF NEW JERSEY AND THE PENNSYLVANIA RAILROAD IN ELIZABETH, N. J
The city of Elizabeth, N. J., is traversed by the main lines of the Central Railroad of New Jersey and of the Pennsylvania Railroad, the two roads crossing each other at Broad Street in the heart of the city. For many years this intersection of two railroads and street has been a center of great danger, not only from the liability of collision of trains, but from the possibility of accidents to street cars, ordinary vehicles or pedestrians. The problem of doing away with the grade crossing the problem of doing away with has been that the masonry work represents some very

THE CROSSING OF THE CENTRAL RAILROAD OF NEW JERSEY aND THE PENNSYLVANIA RAILROAD in ELIZABETH, N. J.
some time ago, and our illustration shows the solution o, a solution now practically completed and forming one of the most striking examples of railroad work erected during the year

The first step in that direction is represented by the raising of the tracks of the Pennsylvania Railroad. The roadbed is now carried throughout the city on an
elevated structure, doing a way with grade crossings elevated structure, doing a way with grade crossings
along its entire line; the work being comparable to along its entire line; the work being comparable to
that recently done in Jersey City on the same road. The effect of raising the tracks was to bring the Pennsylvania above the level of the Central Railroad so that each road could be worked without interfer ence from the other

The original street level, it will be understood from what has just been said, corresponded with the level of the Central Railroad tracks. The abolishment of
the remaining grade crossing was accomplished by lowering the street, which was done at the mutual ex pense of the Central Railroad and the city, so that at present the street, descending a pretty steep grade passes under both railroads and then rises again to its original level. Over the street the tracks of the Central Railroad are carried on an elevated way of plate girder type, the original level of the Central Railroad being maintained unchanged. The railmoads doad being maintained unchanged. The railroads do not cross each other at right angles, and the Pennsylvania Railroad runs oblique to all the streets, and the effect been that the masonry work represents some ver

Railroad is raised. Some time in the future, when the rest of the Central Railroad tracks may be raised, the city will be free from dangerous crossings.

Rapid Transit in st. Louis.

St. Louis spent $\$ 5,000,000$ during $1893-4$ in the im provement and extension of its street car ser vice. There are now but two horse car lines in the city, and the claim is made that for rapid transit St. Louis is ahead f any other city in the country; certainis no East is other city in ect such a system of rapid tranise nas had on the nat
these the voussoirs have been so laid as to make the \mid so prosperous a year, and that the returns have been skewing very pronounced, producing a peculiar and very impressive effect. For the use of passengers, enabling them to pass from one side of the structures to the other after purchasing their tickets, tunnels penetrate the masonry work.
As the reader looks at the picture, in the background, characterized by its tower, is seen the Central Railroad station; toward the left of the cut the end of the Pennsylvania Railroad can be seen, while houses on the street whose grade has been lowered face the reader on the left of the cut. In the foreground trolley tracks are seen, so that at this point there are
superimposed two steam railroads, one above the other superimposed two steam railroads, one above the other,
over a street and trolley line. By keeping in mind over a street and trolley line. By keeping in mind
the fact that the lower railroad represents the original the fact that the lower railroad represents the original
grade of the street, it can be seen how much the
street is lowered, and how much the Pennsylvania
ar beyond their most sanguine expectations. The fact has been demonstrated that improved facilities cause people to ride more. The figures are not yet completed, but when made up they will show that street car travel here has increased something like 20 per cent. The ugly feature of what would be otherwise a most gratif ying report lies in the fact that accidents have been of very frequent occurrence on the trolley ines, though the assertion is made that even in this particular an improvement is noticeable.

The Wm. Cramp \& Sons Ship and Engine Building Company have earred, as premiums for speed, over and above the contract price, about $\$ 750,000$ for the two cruisers Columbia and Minneapolis. Up to this they have received for seven vessels $\$ 1,230,000$ in speed premiums.

Zriuntifir smmerian.

ES'PABLISHED 1845.
MUNN \& CO.. Editors and Proprietors. PUBLISHED WEEKLY AT
No. 361 BROADWAY, NEW YORK.
o. D. MUNN. A. E. BEACH.
terms for the soientific american.

NEW YORK. SATURDAY, FEBRUARY $2,1895$.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT NO. 996
For the Weelk Ending February 2, 1895.

THE NATIONAL CYCLE SHOW AT MADISON SQUARE GARDEN, NEW YORK.
During the week ending January 26, an extensive bicycle exhibition was in progress in Madison Square Garden in this city. It is the second exhibition of the kind which has been given here, and one which bids fair to become annual.
For years past man has striven to improve the rate of locomotion which he can maintain by his personal exertions. This led to the construction of various forms of velocipedes, until some years ago the conception arose that a two wheeled cycle might be propelled by cranks on the forward wheel axle. The old velocipede was the result, and as a sport pure and simple, it attained considerable favor. The jarring, weight of the wheel, and incidental hard work proved too much, and it rather suddenly died a natural death. The next change in the development of the cycle was the introduction of the high wheel, with suspension spokes, rubber tires, and very large front wheel. This was a practical machine and rejuvenated cycling.
The safety came in, and ball bearings became a sine qua non on all good wheels. The tires used were of solid rubber and the tendency of the extremists was to make them very small. Then the preumatic tire was invented, and the modern cycle saw the last step of it development.

The pneumatic tire, by equalizing strains, makes possible the use of a higher gear, so that a single revo lution of the crank, involving one motion of each leg of the rider, in a modern road wheel may propel it twenty feet, or four times the distance which a corresponding movement of the legs would carry a pedes trian. By absorbing vibration also the pneumatic tire has enabled makers to build very light wheels. A few years ago a safety bicycle would weigh from fifty to seventy pounds. Now the weight runs from seventeen to thirty five, the latter weight being considered very high.
The exhibition, which closed on the 26th ult., was of great mechanical as well as popular interest. The demand of the public for light wheels has brought about the most careful construction and the adoption of every possible modification which can reduce weight. Wooden and aluminum rims for the wheels, very thin tangent spokes, light tubing of large diameter for the frame re-enforced at the points of greatest strain, the use of saddle posts of thin tubing instead of solid steel, pedals of improved construction, aluminum and wire saddles, are all steps in the direction of lightness. The majority of wheels now have wooden rims, aluminum rims being adopted by some very high grade wheels, and steel rims being used on the rest. Among the exhibits some most remarkable examples of wood bending are shown, the material under modern processes seeming to be as flexible as lead.
For a long time past all pedals have been of one type of construction, but not the least interesting feature of the exhibition was the variety of new pedals. Some are really elegant examples of mechanical construc tion, and are far lighter than the old ones.
Handle bars are made of much narrower span than hitherto, eighteen or twenty inches being an accepted dimension in place of the old span of two feet or more. Cork handles, or handles of cork and rubber combind, are generally used.
Brakes are generally dispensed with, back pedaling or pressure of one foot on the front tire being relied on to stop the wheel. Some very neatly constructed foot brakes were shown, which are attached to the crown of the front forks, and which act by being pressed by the foot.

The re-enforcing of the tubes of the frames near the joints is effected in various ways. A piece of tube may be brazed into the frame tube. In one make cross plates of steel, in another what is virtually an inner triangular tube is introduced.
The hubs of wheels are now, in many cases, turned out of solid tool steel, although very elegant drop forgings for hubs and other parts of the wheel were shown. The crank arms are made lighter, often round in section, instead of rectangular, and many new way of attachment are shown. The almost universal type of frame is the Humber diamond. Several wheels with detachable sprockets for changing the gear were shown, and there were several examples of mechanism for changing the gear without dismounting. The cranks are brought as close together as possible, in order to secure what is termed a narrow tread.
Another very noticeable movement is in the direc tion of adjustable handle bars. Many wheels are now provided with mechanism enabling the rider, without dismounting, to raise or lower the handles.
Among the lanterns are two classes of electrical ones One is supplied by a dynamo driven from a friction wheel bearing against one of the tires; the other is provided with a battery.
Several novelties appear, such as a bicycle with bamboo substituted for the steel tubes of the trame Another is adapted to be driven by both hands and feet, the handle bars being attached to a lever that is by a clutch to the crank axle. The same wheel can
have the clutch attachments removed and be ridden by the usual foot propulsion. A motor cycle, driven by a gasoline explosion engine, and a duplex cycle, in which the two riders sit side by side, excited much tention.
The great interest taken in cycling was shown by the very large attendance, and under the improved auspices of modern construction, the cycle is becom ing more and more widely used. The industry has at tained such dimensions that it has led to new processes, to the invention of special machinery, and many other trades are now tributary to it.

ON THE CHOICE OF A CAREER

The profession of a mechanical engineer, to the uninitiated, holds forth big inducements, and the young man who starts in college works his way along, gradu ates, and nine cases in ten is assigned a position over the drawing board. Draughting, in its higher forms, is one of the most interesting subjects in existence, especially when other conditions are such as to promote the interest. It rests in the hands of the draughtsman whether the machine will be pulled down se veral times in order to correct mistakes, and in many cases whether the machine goes to the "scrap heap" or is shipped a way a success.
One of the first conditions of good work is a comfortable place to work in. How many concerns in the country, manufacturing machinery, have even a decent place for their draughtsmen? The average is a dirty, badly ventilated, dimly lighted room without proper heat in the winter, frightfully hot in the summer ; yet educated men are supposed to go there, use their brains, avoid mistakes, and rush through their work turning out machine after machine; having a highly heated gas jet within two inches of the top of their heads; yet invariably if a man be taken ill, may be from standing in a draught strong enough to blow a tracing off a table, he is "docked" for the time he is a way. It would be interesting to obtain a list of the firms that give their men a holiday without taking a day's pay from their already magnificent remuneration
The draughting profession at present is a delusion and a snare, as regards the general machinery business, and the old plea that a man is "learning something" is no excuse for a firm paying their head draughtsman $\$ 18$ per week. A man cankeep on "learning something" until he is ready to die of old age, living on small pay So many people say, "It is so hard to find a good draughtsman." Why, most men who arrive at the age of 30 either get away from the board or out of the business, driven to desperation by;the "learning some thing" basis of pay. Suppose, through nothing but competency, he secures a very remunerative position Invariably he is obliged to isolate himself from civiliz ation in some small country village, or in someswamp, where many concerns locate their works; and once there he stands a good chance of staying there, unless he is "fired." Some companies, heaven bless them ! realize that draughtsmen are human beings, and a roll of honor should be framed for them. There should also be a list of firms that should be avoided by any man who has any regard forfair treatment and health Long hours, rushing, driving work, contemptible pay and hopeless prospects take away all interest in the profession, which is certainly on the decline.

Condensation.
A Trolley Telephone.
A writer in the N. Y. Sun states that passenger riding on the electric railway between West Farms and Mount Vernon have the privilege of listening to an acoustic manifestation that in a remarkable manner illustrates some of the earlier experiments in develop ing the telephone. The track is a single one and the potential of the current is high; its amperage is also considerable. As a result, when a car is waiting on a switch for one couing in an opposite direction, the ap proach of the latter is audible at the distance of a mile to the passengers in the waiting car. The sound vi brations are carried along the wire, through the trolley to the wooden roof of the car. This acts as a diaphragm, which faithfully reproduces the rumble of the approaching car. A mile away the noise of the wheels is distinctly audible, and a t the distance of 1,000 feet the sound becomes a loud roar. Outside the car however, practically nothing is heard until the moving car is within a few hundred feet of the switch.

Are Light Dangers.

Over the street doors of one of our most extensively patronized dry goods stores are lights are suspended for purposes of illumination. Throngs of ladies are constantly passing to and fro under these lights. We oticed a narrow escape for a lady the other evening. Fire fell from the arc lamp and just grazed her dres as she passed under the lamp. The inflammable na ture of women's apparel is such as to render it danger ous for them to stand or pass under are lights. There should be a law to prohibit the use of open are lights. it would be easy to arrange a glass basin or plate un er the lamp to catch and arrest any falling bits of the ignited carbon.

The Permanence of Bromide Prints.

In a paper entitled "A New and Modified Method of Developing Photographic Prints on Paper with Coal Tar Products in Alkaline Solutions," read by President Henry J. Newton before the photographical section of the American Institute on January 15, the following observations were made. Mr. Newton said: I am satisfied from observation and the investigation I have made that prints made by development from bromide of silver are absolutely permanent. The bromide paper was first made in Europe, and the first prints we have are on imported paper. The keeping qualities of this paper before using, as well as after, is an important question. I have kept samples manufactured by one firm three years and a half without its exhibiting any signs of deterioration. The firm that made this brand assures me that they have it five years old, and it is as good now as when first made. Here is some testimony as to its keeping qualities after printing which it gives me pleasure to be able to present.
Mr. F. C. Beach, of the Scientific American, writes me as follows: "A bromide enlargement equivalent to a print on gelatino-bromide paper has been in a frame exposed to the light for the past ten years in the rooms of the Society of Amateur Photographers of New York, and the reduced silver image is as bright and brilliant to-day as when the print was first framed, though the white portions have changed slightly from white to a yellowish color, which is regarded as due entirely to the discoloration of the paper support itself, and not to any alteration or fading of the reduced gelatine silver salts. This print was developed with ferrous oxalate and fixed in plain hypo." The evidence is unquestionably in favor of the permanence of these prints.

The ferrous oxalate developer is still recommended by many manufacturers. The trouble I encountered in developing bromide paper by any of the ordinary processes was in controlling the developer, and my labor has mainly been how to construct a developer so that at all times it would be under perfect control, in other words go slow, so slow as at all times to make the danger of over-printing the minimum and no danger of its running away with you. I finally adopted the alkaline in place of the ferrous oxalate developer
Different alkalies do not produce uniform effects on paper manufactured by different firms. The carbonates produce a browner black than the causti alkalies. The beauty of the print after all will, to certain extent, depend upon the bromide in the de veloper ; particularly is the effect noticeable of the ad dition of bromide of soda to the developer. A variety of tones may be made by modifying the proportions of the ingredients in the formula I am about to give
In the case of hydroquinone as the principal ingre dient of a developer, bicarbonate of soda, borate o soda, and boracic acid act as restraining agents, bu in using amidol none have that effect except boracic acid, and that but slightly. Therefore, in introducing these agents, you will understand what office I ex pect them to perform. The first formula is as follows

ter	ounce.
Sodium sulphite (crystals).	15 grains.
Sodium bromide.	. grains.
Sodium carbonate.	. 5 grains.
Hydroquinone.	3 grains.
Metol.	1 grain.

If you wish this developer to work slower add eithe 10 grains bicarbonate of soda or 10 grains of borate of soda or 5 grains of boracic acid to the ounce of developer. This is the best I have yet found with the carbonate alkalies; some may prefer the effect
bonate of potash; my advice is that you try it.
The caustic alkalies produce blacks which I think are deeper and richer. The simplest form for a developer with caustic alkali is lime water, instead of plain water. Substitute it for the carbonate of soda in the foregoing formula. Another modification is the addition of two grains to the ounce of water, of caustic soda, afterward treated the same as in the first in stance. I have made some of my most beautiful prints with barium hydrate. In using this ingredient, use ten grains to an ounce of water, because in the first place only seventy or eighty per cent of the barium salt is soluble, and further when you add the sodium sulphite a percentage of the barium solution is con verted into an insoluble barium sulphate which makes the barium developer resemble a cup of milk. It will settle clear however in a short time, but there is not the slightest use in waiting, as the milky appearance has no chemical action on the paper.
Strontium hydrate also will be approximate in its effect to barium in a developer, but I have discovered no special advantage over it.
The simplest of the caustic alkalies seems to me to be lime water, which is water saturated with calcium hydrate. This can be made a commercial article by evaporating it to dryness. To do this so that it will be in the most available form, add four ounces of granulated sugar to a gallon of lime water and then evaporate to dryness. The salt thus obtained can be redissolved to suit when a developer is to be prepared.

All of these developers keep indefinitely. Even i they stand in the graduate several days their develop-
ing power seems the same. They rarely change in ing power seems the same. They rarely change in
color. They have harnessed within them sufficient potential energy to keep them at work as long as there is any exposed paper on which they can exert their power. Into any of these developers a dozen or so exposed prints can be put at a time and developed together, much as they are toned at present, so the print ing and developing prints by this process will be much less troublesome and consume much less time than the less troublesome and consume much impstant, they will
old way. Besides, what is more importan old way. Besides, what is more
be more beautiful and permanent.
be more beautiful and permanent.
An excellent fixing bath for bromide prints is made as follows, the chemicals being dissolved in the order given:

When dissolved add-
Sulphate of ammonia. 480 grains.
It will keep clear and can be used repeatedly until It will keep clear and can be used repeatedly until
exhausted. The film is hardened and the whites are exhausted. The film is har
remarkably clear and pure.

Exhibits at the National Cycl Madison Square Garden.

Any attempt to speak of the various exhibits mus involve many sins of omission, on account of the num ber of things to be seen.
Among the exhibits of wheels, none attracted more attention than that of the Columbia bicycles, shown by the Pope Manufacturing Company, of Hartford, Conn. The Columbia wheel now has the single tube upper brace. Nickel steel tubing is used in all their frames, and a new design of hub, the barrel hub, is used. The crank arms and shaft are in only two parts, which screw by right and left hand screws into a trans verse tube, which carries the cones. The two abutting ends of the shaft interlock in the center. The sprocke is detachable, so that the gear can be altered without trouble. The chain is particularly elegant, with altertrouble. The chain is particularly elegant, with altercolors. A number of weights of wheels are cata logued.
The Remington Arms Company, of this city, have a large exhibit. Their 1895 wheel is changed from the wheel of 1894 in many details. A barrel crank hanger, giving a narrow tread, is substituted for the old type The rake of the head has been changed and the weigh of the machine decreased. The crank arm formerly in troduced by this firm has been retained.
E. C. Stearns \& Co., of Syracuse, N. Y., have won a reputation for their wheel in the record field, many racing men having chosen it as their mount. Their 1895 wheel has a new detachable sprocket, an adjust able handle bar, dust-proof bearings, and many other features. Among their exhibits are tandem, triplet, and quadruplet wheels of very elegant design.
The Warwick Cycle Manufacturing Company, of Springfield, Mass., have seven regular types of wheels. The parts are so proportioned in the diamond frame wheels as to bring the upper brace and rear lower braces horizontal. The diameter of the tubes of the frame has been increased. The front sprocket is de tachable and the handle bars are adjustable. The pedal is particularly ingenious and simple in construc ion.
The Keating Wheel Company, of Holyoke, Mass. have introduced a number of improvements in their 1895 wheel. The frame tubes are re-enforced, the front sprockets are attached to the crank directly. The cen ter brace of the frame where it joins the crank hange is bent forward, th
The Monarch Cycle Company, of Chicago, use Man nesmann steel tubing in their frames and have a re markably attractive exhibit. As a matter of display they exhibit two of their wheels in large. pictur frames with black background and with electric lamp distributed over the machine. The wheels are kept in rotation by an electric motor, and as the colored lamps with which they are decorated blend into a circle of light, the effect is quite striking.
The Western Wheel Works, of Chicago and New York, show a large variety of wheels, varying in price and general specifications. The wheels are termed Crescents. The sprocket is of a new type, being made of boiler steel, stamped cold, and case-hard ened. This firm shows some very high grade juvenile wheels also.
The Eagle Manufacturing Company, of Torrington, Conn., have one of the most striking exhibits. Their or its strength of the sprocket arms outer segments, the screws merely holding the parts the ends. The tubes of the frame are re-enforced a the ends by short inner tubes over which the ends of the outer tubes are cold-swaged. This gives a tube of reduced diameter at the ends, and results in a most
graceful frame. Aluminum rims are used on the regular output, unless wooden rims are desired. The
lady's wheel with triple tube loop frame is one of the most distinctive novelties of the exhibition.
The Spalding wheels, made by A. G. Spalding \& Bros., of this city and of Chicago, had a very fine ex hibit, as had also Gormully \& Jeffrey, of Chicago. No wheels stand higher than the product of these firms. The tandem wheels of the Rambler type made by Gormully \& Jeffrey were particularly attractive.
The Sterling Works, of Chicago, had an interesting exhibit of their strong, fast, light wheels, said to be "built like a watch;" and the Ames \& Frost Co., of Chicago, large and well known manufacturers, who Chicago, large and well known manufacturers, who
make a wheel second to none in the market, were also make a wheel sec
well represented.
Among other wheels well known to all lovers of bicycle riding, some of them having a world-wide reputation, and which materially contributed to enhance the value of the exhibition, may be mentioned those shown by the Lovell Arms Coo, Boston; the Waverley, of the Indiana Bicycle Co., Indianapolis, Ind.; the Tribune, of the Black Manufacturing Co., Erie, Pa. and the New Mail, of William Read \& Sons, Boston.
Many firms exhibited accessories of the wheel Many firms exhibited accessories of the wheel.
Among tires may be particularly mentioned the Palmer. As now constructed, this tire is almost self healing, and by a special repairing outfit can be re paired with the utmost ease if punctured, a mushroom shaped plug being forced into the puncture. The hose pipe tire used on the Columbia wheels was also shown, and for it a very simple and effectual repairing device is supplied, also involving the use of a mushroom is supp
patch.

The Cleveland Machine Screw Company showed their steel balls for ball bearings. Under one inch diameter their balls are turned from the solid bar ground by the Richardson-Grant patent process and hardened
Cyclometers are shown by the Bridgeport Gun Im plement Company and the New York Standard Watch Company among others. The first named firm manufacture also the celebrated Search Light bicycle lamp, which burns kerosene oil. The Standard Company's cyclometer, weighing but $31 / 4$ ounces, has the highest claims for accuracy and durability made for it by the makers.

The Spectrum of Mars.

Prof. W. W. Campbell has lately brought together all the observations of the spectrum of Mars, and discussed them in connection with the telluric spectrum and with his own observations made during the past summer. (Publications of the Astronomical Society of the Pacific, vol. vi., No. 37.) He concludes as follows: (1) The spectra of Mars and the moon, observed under avorable and identical circumstances, seem to be identical in every respect. The atmospheric and aqueous vapor bands which were observed in both spectra appear to be produced wholly by the elements of the earth's atmosphere. The observations, therefore, furnish no evidence whatever of a Martian atmosphere containing aqueous vapor.
(2) The observations do not prove that Mars has no atmosphere similar to our own ; but they set a superior limit to the extent of such an atmosphere. Sunlight coming to the earth via Mars passes twice either partially or completely through his atmosphere. If an increase of 25 to 50 per cent in the thickness of our own atmosphere produces an appreciable effect, a possible Martian atmosphere one-fourth as extensive as our own ought to be detected by the method employ-
ed. our
ed
(3)
(3) If Mars has an atmosphere of appreciable extent, the limb of thefect should be noticeable especialy at do not show an increased absorption at the limb. This portion of the investigation greatly strengthens the view that Mars has not an extensive atmosphere.

Palace Trolley cars.

A palace trolley car which marks the height of luxary and convenience in street car construction has been introduced recently in Boston. The new cars are designed for the use of so-called "trolley parties," and will be run only when especially chartered. It is thought that they will prove very popular for carrying theater parties or parties for other entertainments. The bodies of the cars are 20 feet long by 7 feet 4 inches wide and the motors are 25 horse power each. The outside coloring is in black and gold, with crimson panels, and the trucks and running gear are painted a dark green. The wood work of the interiors is of polished mahogany and the upholstering is of peacock blue brocaded plush. Each car will be supplied with twenty chairs of an elegant pattern and these are to be supplied with wire hat holders beneath them. The brass finishings, the frescoing and the electrical apparatus are all in keeping with the general elegance of the other urnishings. These cars will also be equipped with electric headlights, which are also a new departure Other palace cars similar in design to the ones described are in course of construction, and are to be run from the suburbs of Boston to the city on Sundays for the comfort and convenience of church-goers.
the great breslau pump, neisse, silesia. |which enliven the foliations of the scroll work exhibit are developed. The curves throughout the design are There are few instances of the smith's craft, even in a gayety and delight on the part of the artificer which graceful and well distributed, with a due regard to Germany, which will compare with this Silesian pump distinctly adds to the individuality of his production. Scale. case, standing in the Breslau Grand Strasse, at Neisse. An inscription is carried round the central band of The drawing which we publish is reproduced Although dated late in the seventeenth century, it is the structure, just above the level of the head. The from Mr. Ernest Wasmuth's "Denkmaler Deutscher a thoroughly traditional piece of work, and in some imperial eagle, surmounted by a crown, serves as a Renaissance," a work of artistic thoroughness and ways may be said to be even mediæval in the spirit of finial to the composition, and rises in an effective man- utility to which we have on more than one occasion ts design. Tre quaint freedom adopted by the smith ner over the bunched-up scrolls, into which the inclos- made favorable references. The base of the pump at as he introduced the many little grotesque conceits ing framework of the domical roof lines of the cage Neisse is constructed of stone. -The Building News.

THE GREAT BRESLAU PUMP, NEISSE, SILESIA.

AN AUTOMATIC VEHICLE BRAKE

This brake, which has been patented by Mr. H. D. Cool, is applied by the team in holding back, as in going down hill, and is so constructed that, without removing the shoes from engagement with the wheels, the vehicle may be as readily backed as if the brake were not applied. Fig. 1 represents the application of

COOL'S VEHICLE BRAKE.

the device, it being shown in Fig. 2 detached from the vehicle. Mounted on or supported from the rear hounds is a rockshaft having at each end a crank arm in front of each rear wheel, and each arm carries a cylindrical shoe made in two sections, both loosely mounted, and having opposing clutch faces. The outer section is constantly held in engagement with the inner one by a spring confined on the crank arm by a cap or stop, and the space between the sections is guarded from dirt by a shield. The movement of the brake to and from the wheel is controlled by rods pivotally connected with the inner sections of the shoes, eccentrically or concentrically, the opposite ends of the rods being attached to an axle. The reach of the vehicle has more or less end movement, and to it it attached a clevis connected by links with crank arms on the rock shaft, the links being adjustably connected that the power with which the brake is applied may be increased or diminished. The holding back on the part of the team, causing a rearward movement of the reach, effects the application of the brake, the inner sections of the shoes being held stationary by the rods projecting from the axle, and by the engagement of the clutch teeth, preventing the revolution to the rear ward of the outer sections of the shoes, which are at the same time brought into contact with the periphery of the wheel. As the outer sections of the shoes are, however, free to revolve in the opposite direction, the backing of the vehicle will not be interfered with.
This improvement is being introduced by Mr. Charle G. Locke, of Randolph, N. Y.

A LARGE ANGLE SEXTANT

The sextant attachments shown in the illustration convert the ordinary sextant into a measur

ing instrument for measuring large angles, extend ing the range of the sextant to the measure ment of angles up to 240 degrees. The improve ment has been patented by Mr. Thomas T. H. Fer Puson, of the imperial China. The instrument is still essentially
sextant, and may be of the most improved and accurate kind, its affixures rendering it capable of spanning the larger ares without detriment to its accuracy used, and the adjustment. The same ins at the value of the angle is taken from figures engraved above the old figures on the silver arc, additions which can be made to any sextant by a maker of ordinary skill. The engraving shows the arrangement of parts, there being behind the horizon glass another horizon glass in every respect similar, except that it is slightly broader. and it is mounted perpendicularly, being firmly fixed to an extension of the framework, allowing of the usual adjustments around horizontal and vertical axis. Its center is placed on the line which connects the centers of the old horizon and the index glass, and it makes with the old horizon glass an angle of exactly sixty degrees, its back turned toward the back of the old horizon glass. In newly constructed instruments it is better to mount the two horizon glasses on a common base plate to be fixed to the framework of the sextant. The set of dark glasses usually found behind the horizon glass, being moved from their place by the new horizon glass, must be shifted further back on the visual line of the first telescope, as they have now a double function to perform, for when using the second telescope it is advis able to raise those glasses so as to shade off noxious reflections from the back of the first horizon glass. The improvement enables one to measure each angle over 120° twice, first the angle itself and then its supplement. Supposing all parts to be properly adjusted, a mere shifting of the eye from the usual telescope to another fixed at another part of the instrument is all that is needed to use the sextant in its large angle capacity.

The Falls of Niagara

The Niagara River extends from Lake Erie to Lake Ontario, a distance of 30 miles. It receives the water of all the upper lakes-Erie, St. Clair, Huron, Michi gan, Superior, and a number of smaller ones. From source to outfall it has a total descent of 334 feet, but greater part of the fall occurs within a distance of 7 or 8 miles, beginning with the rapias, 2 miles above the great falls, which received their name-Niagara, mean ing the "thunder of waters"-from the aborigines Their roar, under favorable circumstances, may be heard at a distance of 15 miles.
There are three distinct falls : The Horseshoe Fallso called from its crescent shape-is by far the largest, and is in the direct course of the river. It is 2,000 feet wide and 154 feet high. The American Fall is 660 feet wide, and the Central Fall 243 feet, each having a fall of 163 feet.
The water flows on perpetually the same, full and clear; neither the snows of winter nor the evaporation of summer, neither rains nor drought materially affect it-excepting that about once in every seven years there is a gradual rise and fall, which is attributed to some undiscovered disturbance that affects Lake Erie
"Of all the sights on this earth of ours which tourists travel to see," wrote Anthony Trollope, "I am inclined to give the palm to Niagara. In the catalogue of such sights I intend to include all buildings, pictures, statues, and wonders of art made by men's hands, and also all beauties of nature prepared by the Creator for the delight of his creatures. This is a long word; but, as far as my taste and judgment go, it is justified. I know of no other one thing so beautiful, so glorious, and so powerful."
This wonderful cataract is 447 miles from New York, within a single day's journey, and is reached most directly by the New York Central and Hudson River Rail way, of which it forms the western terminus.-Dr A. N. Bell.

Interesting Records of the Wanderings of Derelicts.

In a recent issue we referred to a decision of the Admiralty and Board of Trade of England, which condemned the United States charts referring to the position of derelicts, on the ground 'that the charts probably exaggerated the danger from this source. The distance which such vessels traverse is, however, much greater than is generally supposed. Such wrecks are sighted from time to time by vessels and their position at the time is recorded, and a careful record of all these observations makes it possible to prepare a chart which, in a general way, will show these wanderings. According to a chart of this kind, recently published, the derelict Fannie E. Wolston has traveled during the past five years somewhat more than 10,000 miles. This calculation is based upon forty-six reports made by various vessels. Another derelict, which started on its wayward course in 1891, drifted about 3,500 miles up to the time it was last seen, or a period of 615 days. Another remarkable derelict, the W. L. White, floated about ihe North Atlantic for 310 days, covering in that time some 5,910 knots. All these long-lived derelicts have been heav ily loaded with lumber and they have, therefore, been able to keep afloat for very long periods. The lum-
ber buoys them up and prevents the storms from crushing them. Derelicts are moved for the most part by the force of varions ocean currents. And in general they eventually float to that portion of the North Atlantic known as the Sargasso Sea, where the currents are very sluggish and weak. This region is, fortunately, outside the track of most of the Atlantic commerce. It can readily be seen, however, that in these wanderings the derelicts are likely to prove very dangerous.

A HOSE BRIDGE AND TOWER

The illustration represents an apparatus for fire departments, which may be collapsed and folded into small compass or extended and raised as required, forming a hose bridge to carry lines of hose over a railway or street. The apparatus is also arranged to discharge water from the bridge without the use of the hose, thus enabling it to be employed as a fire tower, with revoluble nozzle operated from the truck. The improvement has been patented by Messrs. James Blake and Emil F. Begiebing (address E. F. Begie bing, No. 285 Canal Street, New York City). The bing, No. 285 Canal Street, New York City). The
truck carries a bed plate with circular track support ing rollers on which is a turn table carrying the super structure, the table being rotated by means of a gear and pinion connection with a crank within easy reach of the driver's seat. On the table are pillow blocks in which are journaled the trunnions of the lower section of the tower, this section having an enlarged casing at its lower ends serving as a housing for the gear at the foot of the tower. The trunnions have toothed segmental racks engaging worms on shafts whose gear segmental racks engaging worms on shafts whose gear
wheels engage a driving gear with a crank handle, wheels engage a driving gear with a crank handle,
also near the driver's seat, by which the sections of also near the driver's seat, by which the sections of
the to wer may be raised to a vertical or turned down to a horizontal position. The lower tower section has

blake and begiebing's hose bridge and tower.
in its opposite sides anti-friction rollers, enabling the second section to be moved up easily, which is effected by means of a screw whose driving gear is actuated by the turning of a crank, the screw also entering and en gaging racks in the third tower section, thus serving to raise both sections. The several sections of the tower have at their upper ends hooks adapted to support ladders, and at the upper end of the top section are brackets for the support of a bridge, so fulcrumed that by removing a pin, the bridge may be swung to he substantially parallel with the body of the tower The bridge has hand rails, or guards, and is held rigidly in horizontal position by hinged braces, which are extensible to provide for the varying height of the tower. The apparatus also has telescoping pipes in the tower sections, connecting at the top with a cross pipe to which a hose may be attached, or from which water may be discciarged directly upon a fire, the head connected with the pipe having the move nent of a universal joint, and being turned by means of pinions and an extensible shaft, with a hand wheel at its lower end, to discharge the water in any desired direction. The apparatus may also be employed as a fire escape.

Wool scoured with Naphtha.
In a new method of scouring wool, naphtha is employed as the cleansing substance. By means of a pump the naph tha is forced through and through the wool, extracting all the natural oil. It is elaimed that the naphtha does not injure the fiber of the wool, as alkali cleansing, but leaves the fleece in better condition than when cleansed by any other process.
A further valuable feature of the new method is that after the grease is extracted from the wool it may be again extracted from the naphtha in a pure state, hereby becoming valuable as a medicinal agent or for a saponification into the purest of soaps. It is claimed that a plant following this method scoured 500,000 pounds of wool, and had saved a product of 80,000 pounds in pure wool oil.

Science Notes.
Electrolysis of Glass.-A very curious experiment upon the action of currents traversing glass has recently been made by Mr. Stansfield. He placed amalgams of potassium, sodium, and lithium in a balloon and immersed the latter in a bath of mercury kept at a temperature of 200°. The anode of a powerful electric battery was introduced into the halloon, while the cathode dipped in the external mercury. At the end of a few hours, the balloon was taken from the mercury, when the following phenomena were observed: With the amalgam of lithium, the glass had become very fragile and had lost a little of its transparency. The bath of mercury contained sodium.
With the sodium the same phenomenon, but the glass had undergone no alteration.
With the potassium there had been no transfer of metal.
Mr. Roberts-Austen attributes these singular results to the size of the atoms. According to him, the potassium, having too large a molecule, cannot substitute itself for the sodium in the glass for want of space. The lithium, having too small a molecule, replaces the sodium, but separates the constituent molecules and thus diminishes the cohesion. As for the sodium transported by the current, that substitutes itself in the glass for the silicate base without any other modification than a continuous carriage.
Building Materials of Wood Fiber.-According to the Schweizerische Bazuzeitung, an inventor has just patented in Switzerland and other countries a new process for the manufacture of objects from wood fiber, such as paving blocks, building materials, etc. The wood fiber is mixed with a suitable agglomerant having mortar as a base. Previous to this, the fiber is impregnated with vitriol, sublimate, etc., to render it antiseptic, after which it is thoroughly dried. The plastic mass obtained through the mixture of wood fiber and mortar is well pulverized and pressed into moulds. As soon as the material has set it is removed from the mould and dried. It is said that the objects thus obtained are light, porous, and tough, and are bad conductors of sound and heat. They can be sawed, nailed, drilled, and otherwise treated, just like wood.
Solder for Glass.-According to the Revue Universelle, an alloy formed of 95 parts of tin and 5 of copper adheres to glass with such tenacity that it may be employed as a solder for connecting tubes end to end. It is obtained by first melting the tin and then adding the copper, the misture being stirred all the while with a wooden rod. This mixture is run into a mould and melted anew when needed for use. The addition to it of from $1 / 2$ to 1 per cent of zinc or lead renders it more or less hard.
Artificial Rubber.-According to the Revue de Chimie Industrielle, an artificial rubber of more or less strength may beobtained by dissolving 4 parts of nitrocellulose in 7 parts of bromo-nitro-toluol. Upon varying the proportion of the nitro-cellulose there may be obtained a material possessing elastic properties and much resembliug India rubber, and even gutta percha. The bromo-nitro-toluol, says the Revue, may be replaced by nitrocumol and its homologues.
Preservation of Polished Surfaces against Rust.L'Energie Electrique says that the polished surfaces of steel toois, such as chisels, saw blades, etc., may easily be preserved against rust by the following process. Half an ounce of camphor is dissolved in a quart of melted lard, and the scum which rises and floats on the surface is collected and mixed with sufficient graphite to give it the color of iron. The tools, having first been wiped, are covered with this mixture. At the end of twenty-four hours they are wiped with a soft rag. Thus treated. the tools will remain free from the least spot of rust for several months.
New Process for Hardening Glass.-Since the failure of the Bastie method of tempering and hardening glass, various other processes have been tried which have given more or less satisfactory results. Among these there is one, says the Revue de Chimie Indus trielle, which originated in France, and consists in melting hard glass. The crude material, after having been melted in a peculiar style of crucible furnace, is run into moulds, as in casting iron, with the difference that instead of sand there is employed a special substance, and that the mould and the glass are heated and cooled at the same time. To replace the sand a material is selected that has the same conductivity and the same calorific capacity asglass. In this way the glass and the mould form, as it were, a homogeneous mass and the glass can be cooled without crackles, even
though the cooling should be effected with relative though the cooling should be effected with relative
slowness, this being indispensable whenever it is desired to obtain a hard glass. If care be taken that the surface of the glass do not approach the external envelope of the mould, it makes little difference in what manner the cooling is afterward effected, since the main point is that the mould and the glass shall be brought to the same high temperature, which must be rather greater than that at which glass hardened in a press is usually produced. After the mould has been perfectly heated, it is removed from the furnace and
left in the open air, the effect of which is generally
rapid enough to produce a proper hardening of the glass. After the whole has become well cooled the mould is opened and the piece removed.
Liquid Cement for Porcelain.-An excellent cement for china and porcelain, says the Revue Scientifique, may be obtained by melting together 75 grains of fish glue and 5 drachms of crystallized acetic acid, and afterward heating the solution until it becomes of a sirupy consistence, so as to form a jelly upon cooling. To use it, the jelly is placed upon a stove, so as to bring it to a liquid state, after which the edges of the broken crockery are coated with it and the pieces strongly compressed.

an improved grain bin.

The illustration represents a bin which may be readily changed from a ventilated bin for ear corn to an inclosed bin for shelled corn, wheat and other grain, protecting the ear corn from the weather and thoroughly drying it by currents of air, and the change being quickly made to adapt the bin for the two uses.
The improvement has been patented by Mr. Samuel The improvement has been patented by Mr. Samuel
E. Kurtz, of Mansfield, Ill. The sides and ends of the bin are preferably boarded with drop siding to render them weatherproof, and ventilators are formed in the bin by nailing slats or cribbing on a portion of the side and end studdings, whereby a series of flues
is formed at certain distances along the sides and is formed at certain distances along the sides and desired, or when middle studding is required, as may be necessary in an elevator building or a structure of several stories in height, some of the central studdings are similarly connected in pairs by means of slats, the ventilating flues thus formed each commu nicating with an opening in the floor, thus permitting a free circulation of air throughout the interior of the largest storage space. When the bin is to be used for shelled corn, oats, wheat, etc., the bottoms of the

KURTZ'S GRAIN BIN.

ventilators are closed by short pieces of boards, the grain then filling the ventilators, or, if desired, wire gauze may be fastened over the slats of the ventilators, whose bottoms may then be left open, and a good circulation of air thus insured through the
shelled corn and grain. It is claimed that a storage bin of then anain. It is claimed hong as a resi dence, and may be used with advantage as a shelte or for other purposes when not occupied for storage.

Perfumes-Natural and Artificial.

Almost all the natural perfumes are of vegetable origin, and are derived from treatment of flowers and fruits. In this way are obtained the aromatic essentia oils of rose, mint, anise, santal, thyme, cloves, etc., and the perfumes of the violet, iris, and jasmin. Musk is the only important perfume that is of animal origin.
For a long time now, however, the odor of fruits has been imitated with the aldehydes and ethers of fatty acids, such as the acetates, valerianates, benzoates, salicylates, and butyrates of methyl, ethyl, and amyl which, mixed in definite proportions, recall the odor of strawberries, apples, pears, etc. The following are two examples of such mixtures
perfume of the pineapple.

Chloroform

Auehyde
Butyrate of ethyl.
Butyrate of amy.
Butyrate of am
Glycerine.....
Glycerine
Alcohol, 100 per cent
PERFUME OF THE APPLE.
Chloroform..
Nitrice ether
Acetate of ethyl....
Valerianat
Glycerine....
Alcohol, 100

The aroma of rum and cognac and the bouquet o wines have also been reproduced artificially. Weshall not dwell upon the danger that accompanies the use of these products in a large quantity when they are
mixed with beverages and alimentary substances.

Professor Lowe's Experiences with Balloons.
Professor T. S. C. Lowe, whose successes at Pasadena, Cal., in opening the wonders of Mt. Lowe are now well known, contributes an interesting paper in a recent number of the Mt. Lowe Echo, in which he gives some of his early balloon experiences. We make the following extracts
The significance I attached to my early balloon work can be better understood if my reader compares and considers it with the "kite flying" of Benjamin Franklin. So much does the modern scientific world think of Benjamin Franklin and his simple kite, that one of the most imposing statues of the World's Columbian Exposition represented him in the act of flying the kite, and it occupied the post of honor at the main entrance of the Electrical building. It seemed a small and insignificant affair, and yet it was that "kite flying folly" that led to the discoveries which have made possible the telegraph, submarine cables, telephone, phonograph, electric lights, electric railways, and the thousand and one scientific and useful instruments and appliances of modern electricity. All these vonderful and useful inventions are the indirect re sult of that one little experiment of Franklin's, thus demonstrating the value of even small things, when directed for a scientific purpose by a scientific mind Few people understand the deep scientific interest that was felt by Joseph Henry and many men of his intellectual stamp in my balloon trip from Cincinnati in April of 1861. The trip was made purely in the in terests of science. There was no monetary or other inducement in connection with it. In my observa tions of air currents I had become absolutely convinced of the existence, in the higher atmosphere, of a current which uniformly and almost invariably moved east ward, with but slight variations, no matter how diverse the surface currents might be. In order to test the existence of this current, over the ocean as well as the land, I planned the exact and necessary machinery to carry on the work, and the trial of it so interested a number of the prominent Eastern bankers and merchants that they offered to help sustain the expense, with a view-provided it was shown to be perfectly safe-to the inauguration of a balloon system which would convey information across the Atlantic in much less time than that occupied by the mail steamers. In those days there was no telegraphic communication between the United States and Europe, the first At lantic cable having failed, and the only way, therefore, of getting mercantile news across the ocean was by means of the steamers. The merchants knew that the reduction by a day, or even, sometimes, of but two or three hours, in the time of the receipt of important news on business or other affairs would often make a difference to them of many thousands of dollars, en abling them to dispose of, or buy up, goods ahead of their competitors. This was the secret of their will ingness to aid in sustaining the expenses of my earlier experiments. I was ready to receive their help, but my object in the work was purely for the interests of science, and to further the organization of the Weather Bureau elsewhere spoken of, and which has since been accomplished on the lines \mathbf{I} suggested, by the United States government.
I had already constructed the aerostat for my At lantic journey. It was the largest one ever built and has never since been approached in size or equipment. With it I safely lifted from the earth, including its own weight, sixteen tons, so that I was thoroughly convinced that I could safely convey across the At lantic all the materials I required for comfort and safety. Not only was this balloon to carry ample instruments, provisions for the crew, and all the implements, etc., required for observation, and the manipu lation of the balloon, but also a full rigged lifeboat schooner with airtight compartments, built of light steel plates.
Chambers's and other encyclopedias state that this balloon would lift $221 / 2$ tons. In order that the reade may not misunderstand the apparent discrepancies between their statements and mine given above, per mit me to explain that had the balloon been filled with pure hydrogen gas, it would have lifted $221 / 2$ tons, but on this occasion I had to use the ordinary coal gas, which, being heavier, permitted me to lift only 16 which
tons.

Professor Henry, however, was so adverse to my running any risk by making the trip over and across the Atlantic, that he suggested before doing so I should thoroughly test the existence of this current over a long land distance. He advised me to go west with my balloon, make an ascent when the earth currents were blowing strongly to the west, and then, if when reaching the upper currents I sailed across the continent east, the existence of this eastward current, which I claimed did exist, would be sufficiently demonstrated to justify his urging the government to aid me in continuing the experiments, with a view to the organiza tion of the Weather Bureau, to which object I had de voted my attention for so many years.
Acceding to Professor Henry's request, I left my large balloon, and, taking my smaller experimental balloon, went to Cincinnati, and for about a month
waited for conditions to be exactly as I desired before making the ascent. The newspapers took a great lea:l of interest in the project, some of them speaking in the most favorable terms of the work. At last the conditions were highly favorable for the experiment, the surface currents moving rapidly westward, and, accordingly, after learning by telegraph that the same conditions existed as far east as Washington, I made the ascent at about 3:30 o'clock of the morning of April 20,1861 . It was fully midnight before I was satisfied as to the existence of these westward-blowing earth currents extending from the Atlantic to Cincinnati, and then, having arranged with the superintendent of the city gas works for the inflation of the balloon, I proceeded at once to direct that important and necessary work.
My readers must here understand that gas, exactly the same as atmosphere, absorbs and holds in suspension in warm weather more moisture than it does when it is cold, so that, the day having been warm and murky, the gas with which the balloon was inflated on this occasion held its full proportion of moisture in suspension.
In ascending I started rapidly toward the west, as the surface currents from the east were quite strong, When I reached an altitude of 7,000 feet I struck the eastward-flowing current, and here very rapidly the thermometer went down to zero. This sudden cold congealed the moisture held in the gas, and formed a fine, glassy, bead-like hail, which in the absolute stillness I could distinctly hear falling upon the silk and
rolling down into the neck of the balloon. It being night, it was impossible for me to see it, but under similar circumstances in the daytime, I have seen a miniature snow storm going on inside the balloon when l have left a warm for a cold current of air. It was not a soft snow this time, but, no doubt, owing to the rapid change into so great a difference of temperature, it was a hard, bead-like hail. When the valve was opened to let the expanding gas escape, a bushel or more of this fine hail was discharged.
This caused the balloon to ascend stiil higher, until, by looking toward a star over the top of the mercury column in the barometer, through a slot I had had arranged for that purpose, and feeling the raised fig-ures-for it was dark and I had made no arrangements for lighting-I found that the balloon was at an elevation of 14,000 feet.
This altitude it retained until sunrise, when the heat of the sun expanded the gas still further, and it rose to the altitude of 18,000 feet.
And such a sunrise!
The horizon appeared always on a level, so that the earth resembled a great hollow bowl, with the exception of the Blue Ridge Mountains, which, owing to their great distance, fully 200 miles, resembled a solitary peak arising from the ocean.
As sunrise approached, the streaks of light rapidly running around the horizon resembled bands of molten gold, and when the sun itself appeared, I was never
more astonished and surprised. It was entirely differ ent from our everyday luminary. There was a total absence of its usual dazzling appearance. It resembled a disk of burnished copper, as such a disk would appear when not in the bright rays of any powerful light. This singular appearance was re-
tained during the time of the entire voyage, so long as tained during the time of the entire voyage, so long as
I remained at an elevation of from 16,000 to 10,000 feet. This fact proved to me that the dazzling appearance of our great luminary is caused by our atmosphere and the elements it contains, or holds in suspension, within three or four miles of the earth.
The sky, too, was inexpressibly beautiful, even during the daytime, resembling a rich, dark-blue velvet, and the sun, moon and many of the stars were all visible at the same time
To return now to the point of departure. Mr. Pot ter, proprietor of the Cincinnati Commercial, and Murat Halsted, the editor, arranged to be with me at the time I decided to make the ascent. They brought down a number of delicacies of all kinds for me to take along, and Mr. Halsted thoughtfully provided me with a large jug of hot coffee, which he wrapped up in a number of blankets in order to keep it hot, which it did throughout the entire journey. He also brought me 200 copies of the Cincinnati Commercial announc ing the preparations that had been made for this trip, that the balloon was now being inflated, and that "shortly after going to press Professor Lowe will have left the earth for the purpose of making his long anticipated aerial eastern voyage."
Some of the newspapers amusingly stated after I had ascended that the balloon which had gone up for the purpose of demonstrating the existence of an upper air current which invariably flowed eastward, when last seen, was rapidly sailing west. But when later in the morning at daylight telegraphic dispatches were sent all over the country from Falmouth and Lexington, Ky., saying that a large balloon had been seen rapidly moving eastward, all who saw the dispatches and knew of my discovery were convinced of the correctness of my former deductions.

The average height at which I sailed was about 16,

000 feet, but in crossing over the Alleghanies I demonstrated that air currents bound and rebound exactly as
the currents of water do. The air was flowing rapidly eastward and as it struck the crests of the Alleghanies it flew up and on, making a great upward curve, into which, of course, my balloon was forced. In a few moments I ascended to a height of 22,000 feet, probably 6,000 feet higher than the balloon could have gone by its own lifting power, and when it made the curve on the other side of the range, I descended so rapidly that the fall was over a mile in less than a minute. Though racing through space with such extreme rapidity, everything around me was perfectly quiet and still -so still, that I could have carried a lighted candle without any protection, and I left loose sheets of paper reason without any fear of their being disturbed. I was floating with, as well as in, the undisturbed atmosphere; consequently, there was not the slightest sense of motion whatever. The altimeter, my instrument for measuring latitude and longitude, and thus determining the rate at which I was traveling, show ed such a rapid movement of the balloon to the east that I doubted its accuracy, until I glanced down over a rope hanging for 100 feet below the car, and there large farms, fields, woods, etc. The velocity was so amazing, that I no longer doubted the accuracy of the agistrations of my altimeter.
Before reaching the Alleghanies, owing to the flow of a deep and rapid current of air between that range and the Blue Ridge, my balloon was drawn slightly southward, out of the direct eastern path, and I finally landed in South Carolina, a short distance from the line of North Carolina, nearly in a due east direction from Cincinnati.
In crossing Virginia I distinctly heard the cannon ading with which the Virginians were celebrating their the Union, South Carolina had already gone out of much excitement. It being only eight days after the much excitement. It being only eight days after the arrested and locked up in Columbia jail. Indeed, it was asserted on good authority that I was the first prisoner of war captured by the South during the civi war. Not desiring to be shot as a spy, I sent for the president of the South Carolina College, who explained to the authorities that he was familiar with the purpose of my balloon experiments, which at that tim had nothing to do with the army, and at his solicita tion I was released. Mayor Boatright, of Columbia, gave me the freedom of the city and a letter bearing the city's seal, asking a safe conduct for me through the Confederate States of North America. As I passed through Tennessee I learned in a peculiar and interesting way that the State had gone out of the Union in secret session. This I communicated to President Lincoln two weeks before it became authentically known in the State.

BALLOON ARMY SERVICE.
Returning to Cincinnati and desirous of accom plishing my Atlantic trip, I was surprised and dis appointed to receive a dispatch saying that President Lincoln desired to consult with me in regard to organ izing a balloon service for the United States army. Failing to get assistance for my Atlantic enterprise owing to the unsettled condition of the country, and urged that my own personal desires should be subser vient to the wishes of the government, I went to Washington, consulted with the President and mili tary authorities, with the result that the aeronautic corps of the United States army was organized. Just here old methods were found too slow, clumsy and absolutely impracticable for army service. Necessity became the mother of invention, and new devices were quickly developed which have never since been improved upon. Thus the balloon corps began its work and for the first year of the war was constantly oper-
ated on the Potomac, Chesapeake Bay and the James, York and Pamunki Rivers, the balloon being manipu lated by means of a barge towed by a tug and guarded by a gunboat.

The balloons were of great service at Yorktown nd in all the battles which followed up to the time Fair Oaks. I am usually asked: "Did the enemy ver fire at the balloon?" I reply: "That was almos knowledge of artillery practice, and understanding the calculations that had to be made before so unsteady a mark could possibly be hit, I was enabled, by hiding the base of the balloon operations behind trees or hills, to conceal my distance so that aim could not if the Confederates used balloons. I would state that they had one in use for a few hours at the commencement of our seven days' battle. Having no aeronauts of experience, they were compelled to inflate it in Richmond and tow it to the scene of action. While it never ascended more than 400 feet, I understand it served them to good purpose while in use. It was
afterward stowed away on the Confederate gunboat Teaser, which we captured. The balloon was turned
over to me; but finding it of poor material and useless
for aeronautic purposes, I cut it up, giving each member of Congress a piece. Their aeronaut evidently thought nothing but silk would answer his purpose, but good cotton would have been much better than the silk they used. Having none of the requisite quality, a convention of ladies was held in Petersburg, of whom 200 each gave a silk dress toward building the balloon. Thinking this might be of special interest, I show you a piece of this historic construction, which, you will observe, represents four patterns of silk dresses.

It is the prevailing opinion with some that it is neces ary when a boiler is worked to a high rate of capacity to maintain correspondingly heavy fires. It is argued that thin fires are well enough for slow rates of combus tion, butas the call for steamincreases it must be met by an increased thickness in the bed of coal on the grate Where heavy fires are carried it is a common thing for the fireman to shovel in all the coal that he can con veniently supply, going so far as to almost fill the opening at the fire door, leaving little if any room for a future supply until that already in has been pushed back to make room for more. Theordinary fireman is apt to favor this method, for the reason that he can introduce large quantities at a firing, and afterward he is not obliged to give the fires much attention for per haps an hour's time, when he will again fill the furnace full in the same manner as before. This method of firing with most of the high-class bituminous coals in use in the Eastern States requires from time to time the use of the slice bar for breaking up the bed of coal. It has always seemed to the writer that whatever ne cessity there may be according to the popular idea for carrying heavy fires, in the matter of the amount of labor involved it is in reality more laborious for the fireman than it would be if the fires are kept compara tively thin and small quantities of coal supplied at each firing. As an explanation, however, of the favor which this method receives, it is probable that the class of labor which is generally employed consider the muscular effort required much less of a task than the more frequent and careful attention which is needed when the fires are kept at medium thickness.
As regards a comparison between thick and thin fires, the fact is that more capacity can be obtained from a boiler when a fire of medium thickness is carried and proper attention is given to its condition than can be realized by any system of management when the fires are exceedingly heavy, and advocates of thick fires, who take the ground that they are a necessity when boilers are forced, are entirely mistaken. As to the economy of the two, some persons maintain that heavy fires give the most economical results, but this is questionable. Valuable information on the subject has recently been brought out by the results of two evaporative tests, which we give below. They were made on a 72 inch return tubular boiler having 1,000 $31 / 2$ inch tubes, 17 feet in length. The heating surface amounted to 1,642 square feet and the grate surface to 36 square feet, the ratio of the two being 45.6 to 1 . On the thick fire test the depth of the coal on the grate varied from 8 to 20 inches, being heaviest at the rear end and lightest at the front end. On the thin fire test the depth was maintained uniformly at about 6 inches. The coal was New River semi-bituminous coal The difference in the results as appears from the figures is an increased evaporation due to thin fires amounting to $15 \cdot 6$ per cent.

Some improvements relating to the methods of dealng with the products set free in the electrolysis of salt solutions have been devised by the Compagnie ElectroChimique de St. Beson. The chlorine and the soda olution being brought together outside the electrolytic apparatus, are employed in the manufacture of hypo chlorite of sodium, or else the chlorine being given of is converted into various useful derivatives, while the caustic soda is dealt with separately. In the latter case the soda is mixed with litharge in a digester, mechanically agitated and heated; the hot solution is then carbonated, with the result that insoluble white lead is precipitated, and afterward separated off by means of a filter press. The alkaline liquid is furthe arbonated for the production of insoluble bicarbonat in solution of sodium chloride, the mother liquor being afterward returned to the electrolyzer.

THE METAL CEILING INDUSTRY

Metal ceilings are manufactured from thin sheets of iron and steel. The sheets are cut into different shapes and sizes and stamped by means of dies into panels, coves, diapers, borders, etc. The material is made up 0 inches and also into sheets 10 feet in length The 30 inches and also into sheets 10 feet in length. The
plates are stamped in such a manner that when the edges are lapped one over the other on the ceiling the joints cannot be seen. In putting up a metal ceiling a number of furred wooden strips or sheathing boards are first nailed to the joists. The patterns or designs, which are of different styles, such as the Greek, Moorish, Louis XVI, etc., are then tacked to these strips by means of wire nails. The strips for these ceilings are means of wire nails. The strips for these ceilings are
made of pine or spruce about 1 inch in thickness and
into the spelter, and left to cool. After cooling about
the cutter to the stamping press. The bottom stamping dies are made of steel, ranging in size from 14 inches to 32 inches square and about 3 inches in thickness. They are fastened down securely to the bed of the press by means of four heavy screw bolts at each end. The upper or striking die is made of spelter. This die is formed by placing a wooden frame around the top of the lower or sunken die, which is plastered down on the outside to keep it from shifting. The molten spel ter is then poured on the die to the depth of about 3 inches, the metal coming up to the top of the frame. Connected to the hammer of the press are a number of bolts which project down from the bottom at each end about 2 inches, each bolt having a nut screwed on into the spelter, and left to cool. After cooling about
it is removed from the hammer and remelted to be formed into a nother. After stamping, the plates are taken and dipped into a paint trough.
This trough or tub is made of wood, 10 feet in length, 3 feet in width, and about 8 inches in depth. The tub holds about 70 gallons of cream colored enamel paint made of China clay, oil, etc., into which the plates, borders, etc., are dipped. After dipping they are allowed to drain from five to ten minutes and then taken way and placed in rows on the floor so as not to touch each other until dry. Moulding is formed by means of steel dies, the strip of metal being pressed into shape by a sliding horizontal beam or bed which is drawn up and down by means of four movable knees which are jointed and connected at the center by a horizontal bar or shaft which connects itself to an eccentric. The upper die is bolted to the bottom of the sliding beam. The bottom die being placed directly underneath and bolted to the bed of the machine in about the same manner. The dies are about 10 feet in length and run from 2 to $2 \frac{1}{2}$ inches in height and from 1 to 4 inches in thickness. Two operators are generally required, who place the strips over the bottom die. One of the attendants then presses down a foot lever which connects with the eccentric which in turn causes the bar

THE METAL CEILING INDUSTRY.
about 2 to 3 inches in width and planed on one side. The strips are nailed to the joists in such a manner the joints of the plates come directly over them. Where using very small plates, the entire surface is generally boarded over. The first operation is the cutting up of the sheets of metal into shapes and sizes. The sheets The steel sheets from 20×120 inches to $321 / 2 \times 120$ inches in size. In thickness the iron sheets are gauged No. 28 and the steel No. 27. The knife or blade of the cutter is about 10 feet in length and made in two pieces. They are about 4 inches in width and made of $5 / 8$ inch steel. Connected to the machine in front of the blade is a grip, which by means of a spring grips or holds the metal down firmly to the table until after the operator makes the stroke. The sheets weigh about 9 pounds each. About 30 sheets an hour can be cut by a good hand. The plates are then taken from

20 minutes the hammer is raised with the spelter die \mid or shaft to draw the knees forward, which forces the securely bolted to the bottom. The machine is then beam containing the die downward, causing the sheet ready for stamping. A flat piece of metal is then of metal to form itself into a strip of moulding. The placed evenly over the sunken design of the bottom die. beam drops about 2 inches. The moulding, if it is By drawing back a dog on which the hammer rests, to be embossed, then goes to the stamping press to which is worked by the foot of the operator, the ham- have whatever design wanted stamped into it. The mer falls and the impression is stamped on the sheet of metal.
inches. The pressure on the moulding is about If a number of impressions are to be made on 200 pounds to the square inch. Coves are also he same sheet, it is drawn forward, the end of the shaped out with steel and spelter dies on the tamped portion being placed into the impression in stamping presses in the same manner as the panels. the front end of the die. The hammer is then dropped The cove dies are circular in shape and deeper again, the operation being repeated until the whole than the others. Corrugated metal plates are formed sheet is stamped. The hammer and spelter die by running the sheets between two fluted steel rollers weigh about 2,800 pounds, and have a drop of about 28 inches in diameter and 4 feet in length, which run at feet. The hammer is run by friction and is raised after the rate of 9 revolutions per minute. The panels, every stroke by hand. About 500 to 1,000 panels can coves, friezes, diapers, etc., are sold by the square foot Moulding by the running foot. The plates average
about three-fourths of a pound to the square foot. The plates are given one coat of paint when sold. Two coats of paint are necessary to finish them. The sketches were taken from the plant of the New York Metal Ceiling Company, Ltd., 614 West 21st Street, New York City.

The Life of our Present Literature

As far back as May, 1892, says the American Journal of Photography, we called attention to the worthless character of the paper stock, so far as permanency is concerned, that is now used for both photographic as well as printing purposes.
In February, 1893, we supplemented above article by another on "The Adulteration of Paper Stock." In the latter paper we set forth how even the wood pulp was loaded and adulterated with tale and other mineral substances.
This subject has of late been taken up by noted bibliophiles in Europe as well as in America. The last noted celebrity to write upon the subject is M. Delisle, librarian of the Bibliotheque Nationale of France, who calls attention to the fact that paper is now made of such inferior materials that it will soon rot, and very few of the books now published have chance of a long life. The books of the present day will all have fallen to pieces before the middle of nest century. The genuine linen rag paper was really calculated to last, and even the oldest books printed on it, if kept with due care, show very little of the effect of time; but the wood pulp paper now largely used, in the making of which powerful acids have been employed, is so flimsy that the very ink corrodes it, and time alone, with the most careful handling, will bring on rapid decay.
Perhaps from one point of view this is not altogether an unalloyed misfortune. Only remnants of present day literature will survive for the information of future generations, and great national collections, such as that in the British Museum library, formed at great expense, and intended to be complete and permanent, will offer to the literary historian of, say, the twentyfirst century, but a heterogeneous mass of rubbish, physical laws thus consigning to oblivion a literature of which but a tithe is intellectually worthy to survive.

The papermaker thus unwittingly assumes the function of the great literary censor of the age. His criticism is mainly destructive, and it is too severe. Without the power of selective appreciation, he condemns to destruction good and bad alike.

CANNON MAGNETS

We reprint from the Scientific American an illustration of Col. King's great magnet, made several years ago at Willetts Point fortification. The magnet core consisted of two old Rodman 15 inch guns, weighing 50,000 pounds each. It was turned into a club-footed magnet by the addition of many tons of heavy iron plates. The coil consisted of old torpedo cables 14 miles long, carrying 20 to 25 amperes. The armature consisted of 6 platform plates bolted together. A calculated force of 44,800 pounds was insufficient to tear off the armature, the chain used being broken by the strain. Five cannon balls, of 325 pounds each, were suspended like a chain from the muzzle of the gun. An iron spike placed against the breast of a man standing three or four feet off, with his back to the gun, stood out straight. It required the efforts of two men with a sudden jerk to pull away a 25 pound bar from the gun. The entire mass of iron, including guns, carriages, armature, etc., weighs over 130,000 pounds. At a distance of 71 feet the magnetism of the gun equaled that of the earth, a compass needle being deflected 45 degrees ; at a distance of 300 feet it was deflected 3 degrees

Two Centenarians

Joseph Shorett, a half-breed, who was born two years before the United States Constitution was adopted, died at Fond du Lac January 16. Shorett was born 110 years ago
Henry McCaulley, the oldest man in Michigan, died at Battle Creek, Mich., January 17. He was 102 years old and was remarkably active up to the time of his death.

A new mode of lighting has been introduced by Mr. Lester Betts, the manager of the Calcutta branch of the Oriental Telephone and Electrical Company, Limited, in the case of the Empress of India Cotton Mills, at Budge-Budge, which are entirely lighted from the outside, special zinc fittings with 50 c . p. lamps being fitted to each window. This system, which has proved a complete success, saves the extra premium for fire insurance.

CANNON MAGNETS.

Regarding soap, the first point to be observed is to select the proper shade of the flower corresponding with the perfume used; for instance, an almond soap is left white, rose soap is colored pink or red, mignon. ette green, etc.
The colors from which the soapmaker may select are exceedingly numerous, for not only are most of the aniline colors adapted for his purpose, but also a very great number of mineral colors. Until a comparatively recent time the latter were probably exclusively employed, but the advance in the tar color industry in later years has brought about a not inconsiderable change in this respect. A very prominent advantage of the mineral colors is their stability, i. e., not being changed or in any way affected on the exposure to light. This advantage, however, is offset in many cases by the wonderfully beautiful effect of numerous aniline colors, and by the more difficult method of application in the case of the former. The specific gravity of mineral colors being rather high in most cases, they will naturally tend to settle toward the bottom necessitating crutching of the soap until it is too thick to drop the color. For mottled soap, however, cinna bar (vermilion) and ultramarine are still largely cm ployed.

For transparent soap, of course, mineral colors are not applicable, as they would detract from their transparency ; for milled soap, on the other hand, they are very well adapted, as also for cold made soaps which require crutching anyway until a sufficient consistency is obtained to keep the coloring material suspended.
A notable disadvantage in the use of aniline colors besides their sensitiveness to the action of light, is the fact that a majority of them is affected and partly destroyed by the action of alkali. A few of them are proof against a small excess of lye, and these may be proof against a small excess of lye, and these may be used with a good effect. Certain firms have made a
specialty of manufacturing colors answering the pecuspecialty of manufacturing colors answering the pecu-
liar requirements of soap and being very easy of application, as they are simply dissolved in boiling wate and stirring the solution into the soap. To some colors a little weak lye is added; others are mixed with a little oil before they are added to the soap.
For a soluble red color there were formerly used alkanet and cochineal : at present they have been displaced to a great extent, on account of their high cost by "fuchsin," which is very cheap and of remarkable beauty. A very small amount of it suffices for an intense color, nor is a large proportion desirable, as the tense color, nor is a large proportion desirable, as the
soap would then stain. Very delicate tints are also soap would then stain. Very delicate tints are also
produced by the phthalein colors, of which those named rosbengal, rhodamin, and eosin are most commonly used. These colors, when dissolved, have a green fluorescence which heightens their beautiful effect.
There are also a number of the azo dyes which are suitable for soaps, and these, as well as the phthalein colors, are used principally for transparent soaps. For opaque soaps both aniline and mineral reds are used, among the latter being cinnabar, chrome red, and iron oxide. Chrome red is a basic chromate of lead which is now much used in place of vermilion, but as it becomes black on exposure to an at mosphere containing even traces only of sulphureted hydrogen, it is not especially adapted for soap. Cinnabar gives a bright color, but it is high in price. Iron oxide, known in the trade as colcothar, caput mortuum, etc., is only used for cheap soaps.
For yellow there are also a consider able number of colors. Among the natural colors these are prominent Saffron, orlean, curcuma (turmeric) and caramel (sugar color); the first named of these is now hardly used, owing to its high cost. Of the yellow aniline colors, special mention is due to picric acid (trinitrophenol), martiu yellow, napththol yellow, the yellow azo dyes, and auramin. If it is an orange that is wanted, a trace o fuchsin (red) may be added to the yellow colors named. The use of some unbleached palm oil with the stock answers a similar purpose, but the color fades on exposure. A mineral yellow is chrome yellow (chromate of tant one at the present day, the consumer in general lead), which has the same advantages and disadvan giving preference to the colored goods
The solution of this task, which is now a familiar one to the manufacturers of soap, and especially of toilet soaps, is a much more difficult one to the candle mak; for while in colored soaps the requirements are imited to a beautiful color that will remain unchanged on exposure and not cause stains in washing, candles make the additional demand that the color must not interfere with the burning of the candle.
The latter point adds a material difficulty to the coloring of stearine and wax candles.
tages as chrome red

According to the American Shipbuilder, the large shipbuilders, Harland \& Wolff, Belfast, Ireland, who built the Majestic and Teutonic, pay riveters $\$ 7.54$ per week; pattern makers, $\$ 8.27$ per week; platers the same, and fitters $\$ 6.57$ to $\$ 8$. More than twice these sums are paid in this country to the same trades, and it is no wonder that merchant ships are built abroad instead of this country, with such a wide discrepancy in the cost for labor.

Sorrespondence.

Striking Fire from Pyrite in Coal

To the Editor of the Scientific American
To-day, while breaking a lump of coal in my coal house, there was a very vivid spark of fire and a strong smell of sulphur. Did not appear to be anything in the coal that would make clinker. I was using a steel hammer
Now there must have been some flint in that lump of coal, and if this is not an unusual state for coal, might not the striking of fire from coalbe the cause of explosions in coal mines, as it is sometimes that no reason can be given, but it is blamed to the coal miner, when he is in some cases, if not the most of them, blameless. This, it seems to me, is a new cause of danger that cannot be guarded against. The question is, How did the flint get there? It was in the coal, I am pretty sure.
Quiney, Ill. John L. Moore, J. P.
[Your hammer undoubtedly struck a piece of iron pyrites. Sometimes this mineral will act like flint in producing a spari. It is possible that explosions in mines have been caused by such cause.-ED.]

Medical Lake.

To the Editor of the Scientific American
On page 361 of your issue of December 8, 1894, an article speaking of Medical Lake in the State of Washington and the Dead Sea in Palestine refers to them as being exactly alike, to wit: that no vegetation grows on the borders of either. Having but a hazy recollection of the latter, but being under the impression that I had taken a traveler's lunch on the shore of the former (some thirteen years ago), shaded by trees whose branches were overhanging Medical Lake, I set up an inquiry at once, and beg to present to your readers the following facts: That vegetation grows near the shore of either, but as soon as anythiner touches the water it is doomed to die. The Dead Sea, which at some places is almost 2,600 feet deep, is almost entirely surrounded by a barren and desolate country, such as will be found in our great desert countries in the far West, but at some places vegetation of all sorts thrives in close proximity of the sea, and there is a legend among the aborigines that at one time grapes were successfully raised on the border of the Dead Sea.
Medical Lake, in Washington, is in a fine, slightly undulating country. Truly it is sparsely settled with trees, but on the very borders of said lake pine trees are thriving well, and the branches even overhang the water, but let them touch it, and those particular branches are doomed to death. Fine fruits and vegetables of all kinds suitable to the climate are growing in the immediate vicinity of Medical Lake.

Moreover, your article gives the geographical posi tion of Medical Lake as being in the southern part of Washington, while it is almost in the very center of that State on its eastern border, and if your readers will look for Spokane County, they will find Medica Lake some thirty miles from the State line of Idaho and if anything, a trifle nearer the northern than the southern line of the State, Stevens County, or the Colville country, as old settlers still call it, being the only county north of Spokane, while Whitman and Garfield Counties are immediately south of it.

Brooklyn, January, 1895.

Raising Wrecks and sunken Vessels.

At a recent meeting of the Institute of Marine Engi neers, held in London December 10, a paper by Mr. T W. Wailes on "Raising Wrecks and Sunken Vessels" was read.
Mr. Wailes, in his paper, dealt more particularly with two systems of salving stranded or sunken ves sels, viz., lifting with lighters and puntoons, and lift ing by platforming. He described in detail the prac tical working and advantages of each method, and pointed out the precautions necessary to be observed. Alluding to the use of casks for raising wrecks, he said that such things might do for raising small ketches, etc., in rivers and calm waters; but to attempt to raise a large vessel in an angry sea with their use was a most dangerous operation, and should not be at tempted. In a case of this kind the work had to be performed between tides, and the casks could not be got in quick enough; with every rise of tide those that might be placed in were floated, the uppermost casks were pressed up inside against the deck and broken. When nearly a sufficient number were got in, the vessel might begin to get lively and knock her bottom out. And as there might be no means of scuttling the ship in an operation of this kind, she might be totally lost in a very short time. Those who undertook the raising of wrecks took upon themselves a great re sponsibility which required their utmost attention, with a will to face all sorts and conditions oi weathe and laborious work day and night. And without a constitution for this class of work, the aspirant had better rest at home.

A WONDERFUL PHOTOGRAPHIC NEBULA.

Dr. E. E. Barnard, of the Lick Observatory, gives in the December number of Astronowy and Astro-physics an interesting account of his efforts in taking pictures of the great photographic nebula of Orion. He also presents a drawing from one of the photographs of this nebula, which we have attempted here to reproduce on a black background. It shows the principal stars in the constellation of Orion; but our picture, wefear, will convey a somewhat erroneous impression, as it lacks the delicate details of Dr. Barnard's drawing. This great nebula, as we understand, is not visible to the eye, even in the largest telescopes; its existence is only made apparent upon the photographic plate by long exposure. A small short focus lens is sufficient. Dr. Barnard says the lens he used (which he calls the "lantern lens") "belongs to a cheap (oil) projecting lantern and is $11 / 2$ inches diameter and $31 / 2$ inches focus (from the rear lens). It gives a field of about 30°, only one-half of which, however, is at all flat-but on this portion the stars are fairly good. The scale is about 10.3° to the inch.

The ratio of the aperture to the focal length is $1: 2.3$ while that of the Willard lens is $1: 5$.
"This large light ratio makes the lens very suitable for certain work where the smallness of the scale is not objectionable-or is really desired-such for mstance as very large diffused nebulosities, large comets, the Milky Way, etc.

The most interesting of the lantern lens pictures are two of the constellation of Orion (for it takes in nearly the entire constellation).
"These were made 1894, October 3 and October 24

THE GREAT PHOTOGRAPHIC NEBULA OF ORION.
with 2 hours and 1 hour 15 minutes' exposure, respect ively.
"To my surprise," says Dr. Barnard, "these picture showed an enormous curved nebulosity encircling the belt and the great nebula, and covering a large por tion of the body of the giant. A description of thi nebula would not only be complicated. but it would fail, also, to give any impression of its form and mag nitude; I have, therefore, made the inclosed drawing of it, which will show at once its exact location and form.
"After I had made this drawing and partly written his paper, I remembered having seen somewhere that Professor W. H. Pickering had once spoken of a grea nebula shown on his photographs of Orion and pre viously unknown. I have looked up his paper on the subject and find it in the Sidereal Messenger for January, 1890 (vol. 9, p. 2). I will quote here what Professor Pickering has to say concerning this re markable object
'An interesting structure brought out upon our plates is a large spiral nebula whose outer extremity starts in the vicinity of γ Orionis. It passes about four degrees north of ζ, extends to γ, thence to β, then north to η, with an outside stream lying nearly north and south, and preceding β about four degrees. Another stream lying nearly east and west precedes η about the same amount. This nebula is about eventeen degrees in length by nearly the same in breadth, and surrounds a cluster of bright stars, in cluding the belt and sword handle, and extending toward γ. The region containing the nebula is noticeably lacking in stars brighter than the eighth magnitude, but contains the very bright stars γ and f. It is possible that a plate with double our present
exposures, which we are soon going to t. will fill the space between η and ζ, thus making the great neb-
ula the inner termination of the spiral. This nebula is shown by three different exposures and is very distinctly marked.'

Professor Pickering's photographs were made at Wilson's Peak in southern California (altitude 6,250 feet) with a Voightlander yortrait lens of 2.6 inches aperture and 8.6 inches equivalent focus, with an exposure of three hours. Stars from the 11th to the 12th magnitude were well shown.
"In the present pictures the shorter exposure shows the nebula best; this was perhaps due to a darker sky.
"The nebula is brightest near 56 and 60 Orionis. Its extreme diameter is about 14° or 15°. Compared with this enormous nebula the old θ, or so-called 'great nebula,' is but a pygmy.
"That this object shown on my plates is the same photographed by Professor Pickering in 1889 there is no doubt, as will readily be seen upon comparing his description with my drawing. The present photo graphs, therefore, fully confirm the pictures of 1889. This confirmation is all the more valuable as it was unconsciously and independently made.'
value of Our Cereal Crops.
The report of the statistician of the Agricultural Department concerning the area, product and value of the cereal crops for 1894, which has recently been published, contains some very significant figures. The report states that the corn crop of the year is one of the lowest on record, the yield per acre being but $19 \cdot$ bushels. The area harvested in the corn-producing States has been reduced by severe drought and dry winds to $62,582,000$ acres from the $76,000,000$ acre planted. The crop has been about $1,212,770,000$ bushels, and the estimated value is fixed at $\$ 354,719$, 000 . The wheat crop is slightly above the average. The entire product of the country is $460,267,416$ bush els, which is valued at $\$ 225,902,025$. This represents the entire product of $34,882,436$ acres. The rate of yield has been $13: 2$ bushels per acre, and the average value per bushel $49 \cdot 1$ cents. The estimates of the area, product and value of the other crops are as fol area, p

The estimates for oats are: Area, $27,023.553$ acres product, $662,086,928$ bushels; value, $\$ 214,816,920$; yield per acre, 24.5 bushels.
Rye-Area, 1,944,780 acres; product, 26,727,615 bushels ; value, $\$ 13,394,476$.
Barley - Area, 3,170,602 acres; product, 61,400,463 bushels ; value, $\$ 27,134,127$.
Buckwheat-Area, 789,232 acres; product, 12,668,200 bushels ; value, $\$ 7,040,238$.
Potatoes-Area, 2,737,973 acres; product, 170,787,338 bushels ; value, $\$ 91,526,787$
Hay-Area, 48,321,272 acres; product, 54, 874,408 ons; value, $\$ 468,578,321$.
Tobacco-Area, 523,103 acres; product, 406,678,385 pounds ; value, $\$ 27,760,739$.

The Search for Wheelman Lenz

Mr. Robert Bruce has resigned from the editoria staff of the Bicycling World and has accepted the mis sion from the Outing Magazine to go in search of his friend Lenz, who it is feared has perished at some point in Asiatic Turkey. The readers of the World are cognizant of the facts surrounding the mystery of Lenz's disappearance. He has been traced as far as the Turkish frontier; the last heard from him was a letter dated Tabreez, Persia, May 3, at which point he was attacked by illness. Dispatches from severa points have since announced that Lenz reached Bayazid and was seen in the region of Mt. Ararat. This was the last that has ever been heard of him, Inves tigation has been made both by the British and American authorities, and Thos. Cook \& Sons' re sources have been brought into requisition, but all this has been without avail. It now remains to organize a regular expedition to settle the question forever as to the whereabouts of the missing man, and on the shoulders of Robert Bruce the responsibility of heading the expedition falls. Everything that money and experience can obtain will be placed at the disposal of the young man, and no better or fitter leader could be found than the one who has been chosen for that honor. Mr. Bruce's connection with and knowledge of Mr. Lenz are such as to fit him peculiarly for this position. His personal knowledge of Lenz is of the most intimate kind.

Fast Living

The most remarkable instance of rapid growth is said to be recorded by the French Academy in 1729 . It was a boy six years of age, 5 feet 6 inches in height. At the age of five his voice changed, at six his beard had grown, and he appeared a man of thirty. He possessed great physical strength, and could easily lift to his shoulders and carry bags of grain weighing two hundred pounds: His decline was as rapid as his growth. At eight his hair and beard were gray ; at ten he tottered in his walk, his teeth fell out, and his hands became palsied ; at twelve he died with every outward sign of extreme old age.-Times and Register.

CACTUS DAHLIA, MRS. FRANCIS FELL.

As the result of the increased attention that raisers have of late years devoted to cactus dahlias a considerable number of varieties belonging to the section were submitted to public notice during the past season. As our reports of the several exhibitions and meetings will have shown, a large proportion of the novelties were so highly meritorious as to greatly enhance the value of the group of which Juarezi is the type for the creation of bold effects at the late summer and early creation of bold effects at the late summer and early
autumn exhibitions and for supplying blooms for inthe discoverer of the diphtheria bacillus, has suggest autumn exhibitions and for supplying blooms for in-
door decorations. Chief among the novelties of the
demedy for the disease. The mixture recom
mend is said to consist of alcohol, 60 per cent; toluol
or decorations, and has the promise of becoming popuar for market culture. When submitted to the Floral Committee of the Royal Horticultural Society at Chiswick, in September, Mrs. Francis Fell received an award of merit, the highest distinction conferred upon florists' flowers.-The Gardeners' Magazine.

Remedy for Diphtheria.

It is reported that Professor Loffler, of Greifswald

CACTUS DAHLIA, MRS. FRANCIS FELL.

[^0]
RECENTLY PATENTED INVENTIONS

Engineering

Blower or Pump.-Charles Rumley, Helena, Montana. This machine, to be used for either of the purposes named, has a nearly cylindrical case,
with inlet and discharge ports and a side offset, a piston rotating in the case, with a valve arm journaled in the offset and pivoted to the piston, while a valvular exten sion on the arm extends into the offset and to one side
of the discharge port. The invention is an improvement of the discharge port. The invention is an improvemen
on a former patented invention of the same inventor on a former patented invention of the same inventor,
whereby the parts are so arranged as to prevent possible leakage, and the
from the piston
Air Cut-off for Furnaces.-Robert D. Rhodes and Ludwig Kloz, Leadvillé, Col. A mechannace has been devised by these inventors, to work in such manner that the air for oxidizing sulphur in ores o furnace products may be distributed into the mass to b calcined or roasted from the periphery of the revolvin, furnace, and will reach only those sections where the air
is required. The improvement is more especially designed for revolving roasting furnaces having perforate pipes or flues in their interior to force blasts of air int the ore or furnace products undergoing treatment.
Boiler and Metallurgical Fur-ace.-James W. McGranahan, Harrison, N. J. The where the heat is applied, and the stream of gas pro duced is lef through flues to the fire box or bed of the furnace, where a clear gas fire is maintained, without
ashes or dirt, the air supply being conducted through ashes or dirt, the air supply being conducted through flues or heaters contiguous to the smoke and gas flues,
the walls of the air flues thus becoming highly heated, and correspondingly heating the air supplied for com bustion. The grate may be of the ordinary type, or such as used in Siemens furnaces, producing a quantity of incompletely burned gases.

Railway Appliances.

Car Fender - Edward K. Thoden, brooklyn, N. Y. This is a folda pressed catcher frame, projec ing from a hanger frame, the fender, when released by the driver, having enforce contact with the track rails, adapting it to catch a per son struck by its elastic frort edge portion. The guard matically elevated to prevent the person from falling of and hold up the limbs so that they will not drag on the roadbed.
Car Fender.-Andrew Mohn and August J. Bothur, Hoboken, N. J. This device consists of
a brush held under each end of the car, and of a diamete to cover the roadway to the outer side of each rail, the one of the car axles or by an electric motor. The axle f the brush may be connected or disconnected, by mean of a clutch mechanism, with the power which rotates down close to the track as desired, its revolution removing persons from the track without liability to seriou injury.
Switch. - James Joyce, De Lamar, Idaho. This invention relates to switches operated by a moving train, and provides a working mechandinary switch, with means for throwing the switch by a passing train. Contact rails are arranged to be struck by mechanism on the car, working the switch
in series so that they will be struck successively without in series so that they will be struck successively without
severe shock, there being also contact wheels and operating mechanism on the car, whereby the wheels may be brought into contact with any desired series of contact rails on the track. The switch may also be thrown by and as well as the ordinary switch.
Switch Operating Device. - Wil ham Dryden, Brooklyn, N. Y. This improvement com cars, whereby the switch may be shifted in advance of oving car, the operator on the platform throwing th hifting device into engagement with the switch points, age one of the switch points a spring normally holdin ap tue shoe, which may be depressed by a screw shat carried by the car, and there being a belt connection b ween the screw shaft and a hand shaft.
Car Coupling.- Charles D. Curry Denison, Texas. This is an improvement in couplings o the side latching or Janney type, and which are arranged
to be uncoupled from the side of the car. The recessed drawhead is channeled on one side and a latch-block piv ted in the recess, while a vertically sliding locking pin ing adapted to rock in the channel to engage the hook ith the recess in the pin. The parts when partially detached are supported by other parts of the coupling, and thus prevented from falling on the track.

Electrical.

Trolley Catcher. - Martin V. B. Nichols and James A. Fraser, Port Arthur, Canada. A cording to this invention, the weight being flexibly connected with the trolley pile, and held elevated by a detent which is released by the upward movement of the trolley arm, automaticaily preventing it from flying up when disengaged from the trolley wire. The attachment is simple and inexpensive, can be quickly adjusted by the
motorman to reset the wheel against the wire, and serves to pull the trolley arm down from the wire and suppor is the wheel jumps therefrom.

Mechanical.
Mould Forming Machine. - Louis His, New York City. For forming and shaping moulds
for castings, especially for preparing moulds for casting for castings, especially for preparing moulds for casting
propellers, this inventor has devised an apparatus which propellers, this inventor has devised an apparatus which
is perfectly adjustable either vertically or laterally, and
s provided with a rotary knife or cutter head adapted accurately form the moula, the cutter head bein e given any desired pitch. The flask, with properls amped sand, is placed beneath the cutter head, the latter being moved into contact by adjusting screws, and by its evolution scooping out the sand, the pitch, the height,
nd the longitudinal direction of the cutter head being radily changed and controlled as the operation proce

Agricultural.

Transplanter.-Otto F. Mulhaupt reveport, La. This is a box-like structure of ver hin wood, designed to quickly decay, and with its side
nd bottom having numerous apertures through whic he roots of the plant may reach the surrounding groun and receive moisture. The bottom slides in side slot ing a perishable receptacle in which small plants may be out removing the earth from around the roots and diturbing the growth of the plant.

Miscellaneous.

Newspaper Wrapping Machine. ames T. McColgan, Nashville, Tenn. According to has im provemention with an intermittently revolving core he cylinder swinging toward and from the core, while feed table guides the paper and wrapper between thiem here being also a cutting mechanism, a paste supply roller, and a swinging frame carrying them both to move he roller in contact with the wrapping paper. Addres pasters may be attached to the wrappers before or after rapping, the machine being designed to automatically wost efficient manner
Door Lock Attachment.-Waldo G Rex, Shelton, Washington. According to this inven face plate of the door and to the interior of the lock, afford increased protection against interference from the outside of the door, preventing the falling out of the key, its being forced out by a bnrglar, or being taken out y children and lost. The improvement also affords pro ection against picking by automatically closing the key dse by the operation of the key in locking the door, of the lock d door by outsiders.
Window Screen.-Harley E. Moyer y this invention, has aligning sockets in the opposing ails, a screen-covered frame with one of its bars pe orated fitting in the 'outer frame, while a pintle in on bar of the screen-frame engages one of the sockets of the outer frame. A beaded pintle fits in the aperture of the a laterally projecting spring finger engaging a latch bolt secured to the screen frame. The device is readily re novable, and the windows can be cleaned on both sid any time.
Disinfecting Apparatus.-Frederick . Mitchell, New York City. In this apparatus an atomle is also connected with a compressed air reservoir by ipe in which is an automatically operating valve, the discharge nozzle of the atomizer being connected with the object to be disinfected. The invention also provides or the automatic operation of the apparatus by hydraulic rains ef all description a pump, for the disinfection of disinfecting the atmosphere of a compartent
Dumping Mechanism.-Thomas Wright, Jersey City, N. J. This invention relates to co or other freight dumping wagons, providing therefor a
novel and effective adjusting mechanism, the body ele vating mechanism being automatic in its adjustment from folded condition to a complete elevation, effecting a sufficient inclination of the body rearwardly for the speedy and certain discharge of the load in bulk. After
the load is discharged by gravity, the wagon body automatically returns to its place, the parts being then olded.
Hame Staple.-Riley Stoner, Grand limbs converged on inner faces at thes block fitting between the converged faces, while a clamp ing bolt engages perforations of the limbs and sleeve The construction is such as to obviate abrasive wear o
he body of the boit which connects the limbs of the st ple with the sleeve block that forms the bight of the lat ter, renders the staple strong and light and permits th demoval
Detachable Pad for Breast Traps.-Gustav L. Heyman, Carlisle, Ky. This is ne piece, with marginal overlapping lips or claws proof the pad. It is cheap and easily fitted to any breast strap, breeching or belly band, by means of its overlap ping lips or claws, and is always smooth and pliable ing surfaces of the animal cool and comfortable.
Dental Plugger.-James W. Dennis, Cincinnati, ohio. Two patents thus entitled have been orking face nd troduction of amalgamating filling into the cavity of tooth, the yielding surface of the plugger conforming treated. In one case the working surface of the plugre consists of a removable shoe, preferably of soft rubber and in the other the plugger has a socket in which a tip of yielding material is adjustably held to turn, so that b the use of the instrument the amalgam will be rapidly and efficiently distributed and the mercury worked to the surface of the filling, from whence it can be readily re he tooth.
Dental Matrix. - This is a further
placed between the teeth to form a temporary wall for he cavity to be filled. The matrix comprises two plates
adapted to embrace the edges of opposing teeth, the plates each having a rib, while a wedge with a longitudinal groove in its side face is adapted to be inserted between plates, the wedge member when forced in does not grate pon a hard surface.
Dental Clamp. - According to nother invention of Mr. Dennis, the body of a dental clamp is so made that the jaws are readily removable, en jaws being made in pairs and differently shaped to fit ariously formed and inclined teeth. The jaws m9y als be adjustably located in the body of the clamp, and this ccurately fitted to a tooth, and the bearings or inn faces of the jaws are of yielding material, such as sof suber, enabing the clamp to be used on extremely sen-
sitive teeth without pain to the patient or without lacerat ing the gums.
Filling fur Teeth and Filling the Teeth are the titles of two additional patents also granted Mr . Dennis, the filling being especially prepare
in stick form, so that particles may be removed and i in stick form, so that particles may be removed and in ing is composed of copper, gutta percha and zinc, an the filling is designed to be an efficient preventive and tion an indestructible cover or wearing surface. The process of filling patented consists in applying to the cavity a basis filling, faced with an amalgamating metal in a comminuted state, or in the form of filings applied
to the facing. the interior copper or plastic filling being to the facing. the interior copper or proastic filling being sold or other suitable metal
Garment Patterns. - Marie Tucek New York City. This inventor has devised a ne
method of laying oatand cutting patterns or garments requiring but few measurements and comparatively little line and perpendicular line are produced upon the mate rial, with a line at an acute angle to the waist line and lines parallel to the acute angled line. On these ines are conjunction with unit measurements, thus laying out the individual parts of the pattern or garment, each part being laid out complete before the draughting of the next
adjoining part is commenced.
Garment Supporter.-Emma and Herbert Johnston, Cincinnati, Ohio. This is a simple
device for attachment to one garment for the support of nother garment, being especially adapted, when a ists maing.corset, for holding up pintle and spring tongue, a pin secured to the pintle en gaging the tongue. The device forms an efficient and Ber
Belt Hook Slide.-Louis Sanders, brooklyn, N. Y. This is a slide which may be attached
to a belt which is on or off the person, the slide affording support for the skirt and beeping the skirt band con cealed heneath the belt. The slide is also so made that the belt will be prevented from wrinkling or puckering,
The slide has an ornamented body on the outer face of the belt, and carries a pin extending down behind the belt, this pin engaging an eye at the lower end of the body and having at its lower end a hook. An auxiliary pin prevents the sliding or puckering of the belt.
Cheese Cutter.-Frederick J. Siewers, Galena, Ill. In this machine the cheese is suppor on a platform or table connected with a dial, the moving of the platform a certain distance causing the
dial to indicate a pound or fraction thereof or any desired weight, when a knife will be brought into operation to cut the exact amount designated on the dial from the ter, the operative mechanism of the dial having been previously set in accordance with the known weight of the viously set in
Bundling Cigars.-Domingo Acosta, Key West, Florida. This inventor has devised a bunding cabinet of compact and inexpensive construction, and with which cigars may be bundled in any desired quantities, the cigars being thus held in uniform shape prior to bundling
Mechanical Toy.-Abraham Martin, London, England. In this toy a magnetized spindle is mounted to rotate in bearngs, while an armature is held he armaturecarrying figure or object to which eccentric movements are imparted by the revolution of the spindle, thus moving, in a manner not readily apparent to the beholder, toy ships, dancing figures, et
Note.-Copies of any of the above patents will be furnished by Munn \& Co., for 25 cents each. Please ond name of

NEW BOOKS AND PUBLICATIONS.

Manuel Pratique de l'aeronaute. Par W. de Fonvielle. Paris: Bernard
Tignol, editeur. Librairie Scien tifique, Industrielle
iv, 246. Price $\$ 1.25$.
Thereare constant inquiries for books on balloo iving practical information on ballooning and other sub last we have the subject treated from the point of vie of the practical aeronaut, with numerous illustrations,解
The Furnace Work Mandal. An exposition of furnace work in all its American Artisan. By Sidney P. Johnston. Chicago : The A
Artisan Press. 1895.
Pp. 268.
This thoroughly practical treatise, illustrated by over
200 cuts, treats of furnace work proper, tells how the 200 cuts, treats of furnace work proper, tells how the
details of pipes, dampers, and the minutix of hot air
heaters. It is evident that it covers a but little treated, as this book works from the standpoint of the practical furnace builder or plumber who is called upon to introduce furnaces int. . . uses. We anticipate or this book a circulation proportionate in great measure in their business, and in proportion to the height of the ideal which they have formed of their profession.
The University Tutorial Series. A text book of statics. By William
Briggs and G. H. Bryan. Londcn : W. B. Clive. Pp. vii, 220. Price 60 cents.
bly with it. Although it is an English book, it fortubly with it. Although it is an English book, it, fortu-
nately, is not one that is restricted to one of the syllabus courses, but is simply intended to be adapted to the wants of the elementary student. With its very excellent illustrations, table of contents and answers to problems, little need be said about the absence of an index, for it hardly The University Tutorial Series. A text book of dynamics. By William
Briggs and G. H. Bryan. London :
W. B. Clive. Pp. 192, xiv. Price 80

Whalr equally to this one. The nice make-up of the book, its one most favorably with it, and incline us to recommend it to our readers.
The Dynamics of Life. An Address Delivered Refore the Medical SOCIETY OF MANCHESTER. October
3.1894 . By W. R. Gover. Philadelphia: P. Blakiston, Son \& Company.
The author, in this treatise, which is an adaress reprinted from the pages of the Lancet, endeavors to account for the dynamics of the inving being. How sucwork. Anything of the sort makes interesting reading, and we think that the work, short as it is, deserves an in-

and

SCIENTIFLC AMERICAN
BUILDING EDITION. JANUARY, 1895.-(N... 111.)
table of contents.
n legant plate in colors, showing a Colonial cot-
tage at willimembridge, X . Y , reently erected for
 and floor plans. Coschitect, New York City Arpleasing design.
 Park. Two perspective elevation ns and floor plans. Cost 9.000 complete. Mr. Manly N. Cutter,
architect, New York City. An antractive design.
 erected fors sylvester Post, Esq, Two perspective $\& \in$ A. H. Thorp, architects, New York city. A pleasing design.
 spective elevations and floor plans. A picturesque and unique design after the "New England,
lean-to roof order. Mr. H. P. Clark, architect, lean-to roof
Boston, Mass.
residence at East Orange, N. J., erected at a cost
of $\$ 7,000$. Architect Mr. W. F. Bower, Newark, of $\$ 7,000$. Architect Mr. W. F. Bower, New
N. J. Perspective elevation and floor plans.
. The First Presbyterian Church at Stamford, Conn. Two perspective elevations and ground plan. A
design of great architectural beauty, treated in the Romanesque
tect, New York.
 Sturges, Esq., at a cost of $\$ 5,000$ complete. Archi-
tect Mr. E. G. W. Dietrich, New York City. Perspective elevation and floor plans.
summer residence at Cushing's Island. Me., re-
cently erected at a cost of $\$ 3,100$ complete. Two cently erected at a cost of $\$ 3,100$ complete. Two perspective elevations and floor plans, also an in-
terior view. Mr. John C. Stevens, architect, Portand, Ne . An excellent example for a summer iew of the Armory of the Seventy-first Regiment, New York City. Architect Mr. J. R. Thomas,
New York City. 10. Perspective view and floor plans of the fourteen erspective view and floor plans
story Reliance Building, Chicogo scellaneous contents,-Buff brick popular.-Ceiling
and cornice tinting.-Home ground arrangement and cornice tinting.- Home ground arrangemenk of plants, illustrated.-Stone dressing by com-
pressed air, illustrated.- Brick dust mortar.-In-
teresting ruin of cliff dwellers.- Removing the teresting ruin of cliff dwellers.-Removing the
front wall of a warehouse, with sketches.-Im proved woodworking machine, illustrated. -Buff brick in New York.-Ceiling paper.-"Dec-co-
re-o," a new material for decorative purposes, il. lustrated.-Improved gutter hangers, illustrated.Draughtsman's supplies, illustrated.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 3.50$ a year. Single copies,
25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages; forming, practically, a large and splendid Magazine of Architec-
trese. richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting examples of
allied subjects
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largest Cimeciation
of any Architectural Publication in the world. Sold by of any Architectural Publication in the world. Sold by
MUNN \& CO., Peborshers, all newsdealers. \quad MUNN \& CO., Publishers,
361 Broadway, New York.

February 2, 1895.$]$

ヤBusiness and Personal.

The charge for insertion uniè r this neadis one Dolara a inne or each insts must be receivea at puoblication office as eariy

 Thursaiy morning to appear in the foilowing week's issue. "C. S." metal polish. Indianapolis. Samples free. Smith's Leather Pattern Fillet, Akron, o. Sample free. Handle \& Spoke Mchy. Ober Lat he Co.,Chagrin Falls, , Heading machinery. Trevor Mfg.Co., Lockport, N. Y. \$1. Spon \& Chamberlain, 12 Cortlandt St., New York. Screw machines, milling macnines, and drill presse he Garvin Mach. Co., Laight and Canal Sts., New York Centrifugal Pumps. Capacity, 100 to 40,000 gals. perminute. All sizes in stock. Irvin Van Wie, Syracuse, N.Y. Emerson, Smith \& Co., Ltd., Beaver Falls, Pa., wil end Sawyer's Hans.
free to any address.
Guild \& Garrison, Brooklyn, N. Y., manufacture steam mps, vacuum pumps, vacuum apparatus, air pumps FREE GROUND GIVEN,
in Pbila. suburbs, to large manufacturing, plants. Rail
road facilities. Hoffman, 60 and Balt. Ave., Phila. For the original Bogardus Universal Eccentric mil For the original Bogardus Uns, Eccentric Mill J. S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y The best book for electricians and beginners in elec-
tricity is " Experimental Science," by Geo. M. Hopkins. By mail. \$4; Munn \& Co., publishers, 36! Broadway, N. Y. Woven wire brushes.-The Belknap Motor Co., of
Portland, Me are the patentees and manufacturers the best woven wire commutator brush on the market. Competent persons who desrre agencies for a new
popuar book. of ready sale, with handsome proft, may apply to Munn \& Co., Scientific American office, 36
Broadway, New York. Send for new and complete catalogue of Scientific New York. Free on application.

hints to Correspondents.
Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our
information and not for publication information and not for publication.
e ere rences to former articess or answers should
orve date of Rerenences to former articles or answers should
give date of paper and page or number of question
in quiriries not answered in reasomable timee should
be repeated ; correspondents will bear in mind that
some answers reapire not wilt be repeated; correspondents will bear in mind that
some answers require not a little research, land,
though we endeavor to reply to all either by letter though we endeaquor to reply to all eeither by letter
or ing this department. each must take his turn.
orers wishing to purchase any article no advertised in ers wishing to purchase any article not advertised
houses will be furnished with addresses of
houses nanufacturing or carrying the same.
 cientitic Anmerican Supplements referre
to may be had at the office. Price 10 cents each. to may be had at the office. Price 10 cents each.
Book- referred to promptiy supplied on receipt
price. Mince.
pris. sent for eramination should be distinctly
marked or labeled.
(6375) T. D. L. asks : Can a permanent nagnet be made equally as strong as that of an electro
nagnet wound by any desired strength ? A. No; an electromagnet may be much stronger
(6376) E. C. S. writes: In a recent discussion as to the velocity of falling bodies, I made the
general statement that all bodies fell with equal velocity, recognizing, of course, the apparent exceptions, such a feathers, etc. Will you kindly throw some light on the
matter, as one of our local scientists maintains that a hatter, as one of our local scientists maintains that one. The Encyclopedia Britannica, under the head of gravitation, states that bodies fall to the earth with equa velocity, irrespective of material of which they are composed. Upon this and the fact that there is a rule giving
the veiocity of falling bodies $16 \cdot 1$ feet for the first second, etc, I base my opinion. A. The law of falling bodies pplies to bodies falling in vacuo. In the air a heavy Enccclopedia Britannica statement applies to a vacuum. The air offers very high and generally underestimated esistance to falling object
${ }^{(6377)}$ H. A. says: Can you give a good ord or with copyin* ink of different colors - Tak vaseline (petrolatum) of high boiling point, melt it on a water bath or slow fire, and incorporate by constant stirring as much lamp black or powdered drop black as it will take up without becoming granular. If the vaseline outline; if the color is in excess, the print will not be clear. Remove the mixture from the fire, and while it is cooling mix equal parts of petroleum, benzine, and rectified oil of turpentine, in which dissolve the fatty ink, introduced in small portions by constant agitation. The volatile solvents should be in such quantity that the fluid nk is of the consistence of fresh oil paint. One secret of success lies in the proper application of the ink to
the ribbon. Wind the ribbon on a piece of cardboard, spread on a table several layers of newspaper, then unwind the ribbon in such lengths as may be most convenient, and lay it flat on the paper. Apply the ink, after
agitation, by means of a soft brush, and rub it well nto agitation, by means of a soft brush, and rub it well into
the interstices of the ribbon with a tooth brush. Hardly the interstices of the ribbon with a tooth brush. Hardly
any ink should remain visible on the surface. For colכred inks use Prussian blue, red lead, etc., and especially

Aniline black

Pure alcohol.
$.15^{1 / 2}$
Pure alcohol...........
Concentrated glycerine
. .15
$\ldots 15$
\ldots
Dissolve the aniline black in the alcohol, and add the glycerine. Ink as before. The aniline inks containing
glycerine are copying inks.
(6378) The F. R. Co. asks: 1. Is it possible to charge an electro-magnet with the secondary cur-
rent from an induction coil? If so, please name the
best form of construction. A. Not to advantage. It re
quires a very long coil and involves loss of efficiency uires a very long coil and involves loss of efficiency,
2. Your description of the magneto bell requires the L nent magnet. Why is this necessary? A. To polariz the electro-magnet.
(6379) P. asks : 1. What advantage e claimed for metol as a developer : Could you giv me a receipt for a developer containing it, and directions for use? One with which I can have most control ove I often want to develop one or two plates at a time.
ind Metol is very energetic in its action, has remarkable stay ing qualities, keeps clear, does not stain the film in the
hadows, and is easy to work, The following is a goo formula:
Meto

Metol............................... 5 grains.
Sodium sulphite crystals C. P......... 25 "،
Dissolve metol first, then sodium sulphite. If kept in tightly corked bottle, the solution will remain colorless
for two or three months. This is a stock solution. evelop a 4×5 plate, take $1^{1} /$ ounces of the above, ounce water and pour over the plate; if fully timed, the picture will gradually appear and rapidly gain density and detail. If the time has been short, add to the solu ion a few drops, four or five at first, of a carbonate o potash solution, prepared by dissolving one ounce of potash in three ounces of water. Keep adding a little a sit. The used developer should be kept in another ightly corked bottle. Eight 4×5 plates can be devel oped with these 2 ounces of developer. At end of that ime development will be very slow and the developer will have a peculiar pungent odor when the nostrils ar placed near it. This signifies that it is ready to be thrown away. 2. An easy way of regaining gold from waste toning solution. A. Gold may be recovered fro 32 grains of proto-sulphate of iron to every sallon of waste. The gold will be precipitated to the bottom. The clear liquid should be drawn off by a siphon and the residue poured upon a filtering paper and washed by pour ing over it boiling water until the wash water no longe produces a precipitate with a solution of barium chloride The gold is now redissolved with aqua regia and the so The yellow crystalline salt may then be dissolved in ater to make up a fresh toning bath, or put in an air work of a camera (tripod)? A. Fill the grain of the wood with a filler of appropriate color, and when dry give he tripod a flowing coat of shellac varnish.
(6380) C. K. H. asks : 1. What is con sidered the best material to put between the flooring t deaden sound? If felt or paper will do, what kind is the best? The floor is of a hall over a store and is to be sound putting in an electric lighting system in the building, ant of from 100 to 150 incandescent lights, and running which is the best engine and dynamo for the purpose and the cost of same? It will require from 10 to 15 horse power we are informed. A. A double floor with mortar
between is probably the best sound insulator. For the ddress of engine and dynamo builders we refer you our advertising columns. 2. Do you think it practicable
to install an electric lighting plant for stores or hall and un same successfully with a gasoline engine? A. Gaso ine engines have been successfully used for electric light
ing; we believe they have proved to be economical. (6381) J. H. L. asks: 1. How shall I win he fan motor described in SUPPLEmENT, No. 767, so a not to try the motor on a current of such potential. You might wind with No. 26 wire and start with a rheostat
2. Where can I get instructions for making a voltmeter . See our Supplement, Nos. 556,552 , and 353 , for de scriptions of voltmeters. 3. Where can I get instructions
for making a small fan motor of the alternating induction type? A For alternating current motors, see our Supplement, Nos. 601, 653, 602, 717, and 944. These decribe different motors, but do not give full working details. (6382) E. P. B. asks : 1 Is it feasible make a storage battery for electric light work of one negative pole? A. This is hardly feasible. 2. State the amperes needed to charge 144 square inches (all told) of positive plate? A. 5 amperes. 3. What is the discharge for the above surface? A. 5 to 6 amperes. 4.
Is asbestos a perfect insulator? A. Nothing is a perfect is asbestos a perfectsisulator; A. Notry asbesto is alme perfect one
(6383) W. A. H. asks how to wind an induction coil, for use on a Hunning's transmitter. wish to know size and quantity of wire to beused on both primary and secondary. Which will give best results on Hunning's transmitters-open circuit or gravity cells ? A. Wind primary to $1 / 2$ ohm with No. 24 wire, secondary to 80 ohms with No. 36 wire. Use open circuit batteries; the Crowfoots will
(6384) A. N. X. asks: To persons using the same living rooms with a victim of consumption, and
where cuspidors are used indiscriminately, is there any danger from contagion? A. There is no doubt that the practice is dangerous, Use individual cuspicors and place disinfectants, such as zinc sulphate, in them. See
Scientific American Supplement, Nos. $782,824,959$, and 973 , for articles on consumption, its cure, prevention,
(6385) S. J. R. asks : 1. How can I make a good but inexpensive microphone ? A. See our Sup-
PLEMENT, No. 163. 2. I have two Samson batteries on a burglar alarm system. Before retiring last night I tested the alarm and it worked all right. About an hour after I heard a noise resembling an explosion, and opening the closet, in which I keep the batteries, I found that one of them had burst all to pieces, and the fluid was thrown al over everything. A. Possibly the glass battery jar was
badly annealed. This or some accident throwing it own
(6386) W. H. B. asks how to proportion
amount of material, to best adapt it to a battery of known
amperage and voltage. A. The calculation cannot mperage and voltage. A. The calculation cannot be nade except approximately. The voltage to he devel
oped must be known. Then the size of core and turn of wire must be based on the ratio of 10^{8} lines of force cut per second for one volt produced. The great
trouble is in the leakage coefficient for the lines of force.
(6387) F. X. W. asks : In regard to eigh ight dynamo in Supplement, No. 600, what alterations, if any, are necessary in winding, to change said dynamo nto motor, and what horse power would it develop if
used as a motor? A. Wind in shunt. The size of wire depends on the voltage. It would give about one-half se power
(6388) F. W. G. asks how many volumes a mixture of gas and air-10 to 1 (at ordinary
pressure) makes on explosion. A. It depends on the composition of the gas; from 6 to 10 times the original volume, but instantly going back to about the origina
volume.
(6389) C. R. B. asks: How much rain all a fall of 12 inches of snow would represent, and if of the annual rainfall? A. If light snow, it would give little over an inch of water. To get accurate resuits, the snow must be melted so as to give a determination or every snowfall. The value of the snow in wate
(6390) P. E. A. asks: Can a person see the stars in broad daylight by descending into a dee well which is in darkness and looking up to the sky How many feet down would a person have to descend A. Stars can readily be seen in the day time from the feet down is sufficient. Stars of the 3d and 4th magni tude are about as small as thus can be seen.
(6391) W. D. asks: What is the process of cleaning sea shells to make them look bright and surface is first removed by making a thick mixture of one part bleaching powder to two parts of water and soaking the shell therein. On removing wash and scrub it. Thick incrustations of lime must be picked off with a sharp-edged hammer or some similar tool, and then the Shell must be dipped in boiling dilute hydrochloric acia. Valuable shells may have the face or pearly portion cov
ered with shellac varnish, which may be removed with alcohol after the acid bath. For strong, heavy shells use 1 acid to 3 of water; for delicate shells use 1 part acid to 10 of water. Dip the shell for a second only, wash and examine; if not enough, give it a second dip. Hold it in wooden forceps or attach it to a stick in any way to serve as its handle. The important point is not may be applied with a brush.

TO INVENTORS
 An experience of nearly fifty years, and the preparation of more tban one nundred thoussand applications for pa- fens at home

INDEX OF INVENTIONS

For which Letters Patent of the
January 22, 1895,
AND EACH BEARING THAT DATE

532,895
532,943
532,920

332931
532.96
5327
532,81
5384

 : in in

Pipe cutter, W. W. Trucker.
Pivoted canch. Wrabrewn
Plane, bench, Traut \& Scai

Proiectile for target firing in parlor archery. J. Pullev, Stculiz $\&$ Kinde. Pump, air, N. McLean: Railway rail joint, M. Hubbell. Railway signal, J. Wayland.... Railwav switch, W. Raymond. Reamer, expanding, P. j. Cilever. Refrigerator doors, reversible ba ndle for. J. W. Suetterle Register. See Cash register. Measure register. Pressure regulator. Repar guide, G. S. Mock. Repar coupling, C. J. P Repar coupling, C. J. Philips Roadway, F. Melber \ldots.. Rubbertreating a paparatus, F. G. P. Leao. Sad iron, I. M. Pierson Safe lock, G. L. Ault.. Sales recorder Sales recorder and cash till, manual, i. ơ Brien. Sash fastener, W. Bentley Gash form ¿ash fastener, W. G. Cle W....... W Saucepan. L. J. Painter. Saw guide attachment, drag, C. F. Smalley Sawmill setworks, F.E. B. Bic kfora. Scraper, veh icle road. J. W. W̌et more Screwdriver, multiple, H. F. Sanger. Seal, envelope safety, E. E. Hickok Seal lock, cash register, F ealing botles, means for and method of, w. $\dddot{\text { w }}$. . . Separator. see Gold separator. Show bill. poster. etc., and producing same, F. G. Signal. See Railway signal. Sional box. B. J. Noyes...... Skirt protector. N. P Bean. Soap press, Mellen \& Beckwith Spring. See Door spring Spring. See Door spring. Spring attachment, Holland \& Owen.. Stand. See Prescription stand. Stayd. Sress, Lrescription Fi Howe. Steak tenderer, i. Baum Stem boiler, S.'T. Williams....... Stuve, heating, J. Wilson.. Strap loop, C. A. Brittain.... Street sweeper. F. C. Curry.. Switch. See Railway switeb Tritch worker, F. Wood..... Tabnery see Adjustable table. Telephone switching app. House. Thill coupling, G. F. Cope......... Thill coupling, welch \& Dreyfus.............................. Thrashing machine feeder attachment, Thrashing machine grain separating screen, Ticket or tag, pin, L. H. Hawes........................ Tire, pneumatic, R. E. Humphreys. Tobacco dipping machine, 3 . B. \& W. A. Mililer. Torpedo placer, T. Regan. Track sanding device, J. J. Kennelily Trap. See Mouse trap. Trolley breaker, W. B. Poter. Trolley wheel, B. O. Paine.... Trubing envelopes, textile fabric for, J. $\dddot{F} . \dddot{\text { Palme }}$	

TRADE MARKS

 \square

$12,3,953,957$
\cdots
\cdots

LATHES, AMERICAN GAS FURNACE CO. CHEAP AND PERFECT FUEL GAS. GAS BLAST FURNACES, HIGH PRESSURE BLOWERS, ETC. Address, so NASSAU S'TREET, NEW YORK. VELOCITY OF ICE BOATS. A COL- \qquad	

ICE-HOUSE AND COLD ROOM.-BY

ROBERT POOLE R SONCO

ENCIMEERS \& MACHLNISTS: TRANSMISSION MACHIMERY mabhive moulded oearinc SPECIAE FAGILITIES FOR THE HEAVIEST CLASS OF WORK BALTIMORE, MD.

TYPEWRITERS.

 Mis Mpamitier EXCHANGE, 8 Barclay St, New York. We will save you from 10 to
so por cont. on Typewriters
of mall makes.

TOPOGRAPHICAL DRAWING. - A

 Experimental Science
 Sust the thing for a holiday present for any man.
Wowan, student, teacher, or anyone interested in science.

MUNN \& CO., Publishers, Office of the SCIENTIFIC AMERICAN, 361 broadmay. new york.

The Scientific American Reference Book.

$\$ 525$ 华
ELECTRICITY AND PLANT GROW

Autographic Register Co.

in 25 styles.
BEWARE of In

SINTZ GAS ENGINE CO
 The Scientific American PUBLICATIONS FOR 1895.

Remington

notable improvements Permanent Alignment

Improved Spacing Mechanism Uniform and Easy Touch,

Better Ribbon Movement Improved Paper Feed

WYCKOFF, SEAMANS \& BENEDICT, 327 Broadway, NEW YORK
The Rembert Roller Compress Co. MATCH MACHINERY

 cate all corporations, frmser, pers
any manner practicing the same.

Experimental \& Model Work
 THE HORSE AS A HIGH SPEED

"THE DENSMORE"

It has the Most Conveniences and Runs the Easiest. Other manufacturers acknowledge its superiority by imitating, but not equaling, its essential features.
The U.S. War Department adopted it in 1893, and bas just renewed the contract
 DENSMORE TYPEWIRITER CO., W0: Brondway, New York

Engineers and Firemen $\frac{\text { Send } 2 \text { 2. stamp for }}{\text { pare }}$
Aingg a ist of guestions asked by a board of exa
ng engineers. stromberg Pub. Co. st. Louis. Mo

THE "MUNSON" TYPEWRITER

INTERCA ANGABLESTREET TYP WHEEL

The Musson Typeriter Co, 1/11. E. Oivision Street, Chicaco. Ill, U., s. A A.

FOOT POWER MACHINERY

MTHW
KEEP THE HEAD COOL.

A Valuable Book

12,500 Receipts. 708 Pages. Price \$5。

 Over wwelve Thousand selected Receipts are
here collected nearly everybranch of the useful arts
being repesented It is by far the most comprehensive being represented. It is by far the most compside
volume of the kind ever placed before the pubb
 beingo of the highest value. arranged and condensed in
concise form convenient for ready use.
Almost every inquiry that can be thought of. relating Amost every inquirt
to formularious maned in the variacturing indus-
tries, will here be found answere. Instrustions for working many different processes in
the arts are given.
Those who are engaged in any branch of industry
probably will thin in this book mach that is of practical
value in their respective callings. probably will find in this book much that is of practical
value in their respective callings.
Those who are in search of independent business or
employment, relating to the home manufacture of simmemployment, relating to the home manufacture ofsam-
pel articles, will find in it hundreds of most excellent
suggestions.

MUNN \& CO., Publishers, SCIENTIFIC AMERICAN OFFICE.

High grade tools；elegant in design，superior in
contruction． construction．The best foot power lathes made，
and
aulality considered the cheapest．Send for

W．F．\＆JNO．BARNES CO．
 A American watch Tool Co．，Wallunu．Mass

The

Mincifċali
Bell Telephone Company，

> I25 Milk Street, Boston, Mass.

This Company owns Letters－ Patent No ${ }^{6}$ 63，56y，granted to Emile Berliner Novem－ ber ${ }_{17}$ ，1891，for a combined Telegraph and Telephone， and controls Letters－Patent No．474，231，granted to Thomas A．Edison May 3 1892，for a Speaking Tele－ graph，which Patents cover fundamental inventions and embrace all forms of micro－ phone transmitters and of carbon telephones．

 GRADES．
Warranted superior to any Bicycle built in the world，regardless of price．Do not be induced to pay more money for an inferior wheel． insist on having the Waverley．Can be delivered from factory 22 lb．Scorcher，$=\quad$－ 85 ．INDIANA BICYCLE CO．， 23 lb．Ladies＇，＝＝75．Indianapolis，Ind．，U．S．A．
K

Eastman Kodak Company，
${ }_{3}^{2}$ Send for \mathbf{i} ．
No More Dull Shears ！

A．W．FABER

THE

GRIFFIN

The Only Perfect Pulverizer of all $\mathrm{Re}=$ fractory Substances．

MILL

Will work either wet or diy，and deliver a finished product．

 Capacity， 3 to 4 tons per hour on Phosphate Rock； $1 \frac{1}{2}$ to 2 tons per hour on Portland Cement，Quartz，or Ores，depending on hardness of material to be pulverized and fineness of product． Grinds from 30 to 250 Mesh with equal facility．

Bradley Pulverizer Co．， 92 State St．，Boston．

STARRETT＇S IMPROVED BEVELS

E CASTINGS A．F．WEED \＆CO．
106 $\& 108$ Liberty St． New Yorik．
Casting and Parts
for Smal for Small Engines，
Boilers，Dynamos． RZت，Sena stamp for
Illustrated Booklet．
American S6 Typewriter
 THE ONLY STORAGE BATTEERY IN USE IN GENT
STATIONS OF AMERICAN MANUFAGTURE．
THE ELECTRIC STORAGE BATTERY CO．， the electric storage battery co．

PLACEE LIGHT RIGHT WHEREENTM．定

－ THE＝

ESTABLISHED 1845.
The Most Popular Scientific Paper in the World Only $\$ 3.00$ a Year，Including Postag

Weekly－－52 Numbers a Year
This widely ci rculated and splendidiy illustrated
paper is published weekly．Every number contains six－ paper is published weekly．Every number contains six－
teen pages of useful information and a large number of
original engravings of new inventions and discoveries， representing Engineering Works，Steam Machinery，
New Inventions，Novelties in Mechanics，Manufactures New Inventions，Novelties in Mechanics，Manufactures，
Chemistry，Electricity，Telegraphy，Photography，Archi－
tecture，Agriculture，Horticulture，Natural History，
． tecture，Agriculture，Horticulture，Nat
etc．Complete list of Patents each week．
Terms of subscription．－One copy of the ScIEN－
TIFIC AMERICAN will be sent for one year－52 numbers－ TIFIC AMERICAN will be sent for one year－ 52 numbers－
postage prepaid，to any subscriber in the United States， postage prepaid，to any subscriber in the United states，
Canada，or Mexico，on receipt of Three Dollars by
the publishers；six months，\＄1．50；three months，\＄1．00． Clubs．－－Special rates for several names，and to Post－
masters．Write for particulars： The safest way to remit is by Postal Order，Draft，or
Express Money Order．Money carefully placed inside Express Money Order．Money carefully placed inside
of envelopes，securely sealed，and correctly addressed，
seldom yoes astray，but is at the sender＇s risk Address seldom goes astray，but is at the sender＇s risk Address
all letters and make all orders，drafts，etc．，payable to MUNN SCO．， 361 Broadway．New York．
$==T H E==$
 This is a separate and distinct publication from The
SCIENTIFIC AMERICA，but is uniform theremith in
竍 size，every number containing sixteen large pages full papers and accompanied with translated descriptioas
pand papers and accompanied with translated descriptios．
THE SIENTIFIC AMERICAN SUPLEMENT is pwht ted
weekly，and includes a very wide range of contente the preserts the most recent papers by eminent writer in
all the principal departments of Science and the Userul Arts，embracing Biology，Geology，Mineralogy，Vatural
History，Geography，Archæology，Astronomy，Chemis－ try，Electricity，Light，Heat，Mechanical Engineering，
Steam and Railway Engineering Mining，ship Building，
俍 Marine Engineering，Photography，Technology．Manu－
facturing Industries，Sanitary Engineering，Agriculture facturing Industries，Sanitary Engineering，Agriculture，
Horticulture，Domestic Economy，Biography．Medicine． Horticulture，Domestic Ecconomy，Biography．Medicine，
etc．A vast amount of fresh and valuable information etc．Anable in no other publication．
obtaine
The most important Engineering Works，Mechanisms， and Manufactures at home and abroad are illustrated
and described in the SUPPLENETM．
Price for the SUPPLEMETT，for the United States， and described in the SUPLLENT，
Price for the SUPLEMENT．for the United States，
Canada，and Mexico．\＄5．00 a year；or one copy of the Canada，and Mexico．\＄i．00 a year；or one copy of the
SCIENTIFIC AMERICAN and one copy of the SUPLE－ MENT，both mailed for one year to one address for $\$ 7.00$ ．
Single copies， 10 cents．Address and remit by postal order，express money order，or check，
MUN \＆CO．， 361 Broadway，New York． Thildtary Erlition．
BUILDERS＇EDITICN is Issued monthly．$\$ 250$ a year．
Bit forming a large and splendid Magazine of Architecture， richly adorned with elegant plates in colors，and with other fine engravings；illustrating the most interesting
examples of modern Architectural Construction examples of modern Architectural Construction and
allied subjects． A special feature is the presentation in each number
of a variety of the latest and best plans for private resi－ dences，city and country，including those of very mod－
erate cost as well as the more expensive．Drawings in erate cost as well as the more expensive．Drawings in
perspective and in color are given，together with Plans， perspective and in color，are timented Cost，etct．
Descriptions，Location，Es，
The elegance and cheapness of this magnificent work The elegance and cheapness of this magnificent work
have won for it the Largest Circulation of any Architectural publication in the world．Sold by all
newsdealers．\＄2．50 y year．Remit to
MUN © © ©O．，Publishers，

PRIMTOUATIS

GOLDING \＆C0．，179 Ft．Hill Sq．，Boston，Mass．
PRIINTIINTM INNKGS，

[^0]: first class was Mrs. Francis Fell, of which a character-| 36 ; and solution of ferric chloride, 4. Menthol is of 99,242 tons; at the commencement of November illic variety, introduced by Mr. T. S. Ware, of the Hale
 Farm Nurseries, Tottenham, who has done so much to
 which is effected by means of pieces of wadding, the
 affected parts being at first treated every three or four Farm Nurseries, Tottenham, who has done so much to enrich our gardens with cactus, decorative and single dahlias. The blooms, as shown in the illustration, are about $6 \frac{1}{\frac{1}{2}}$ inches in diameter, have long, slightly twisted florets with revolute margins, are quite full, and of snowy whiteness. They are, it may be added, borne on stiff, erect stalks, of sufficient length to admit of on stiff, erect stalks, of sufficient length to adily used for decorations of all descrip. their being readily used for decorations of all descrip-
 tions. The variety has a free branching habit, is profuse in flowering, and is equally useful for the embellishment of the garden and for the supply of blooms
 hours. Of seventy-one patients treated by this method from the outset, all have been saved, while only one death occurred out of twenty-six cases treated after the second day of the attack.

 MANY farmers are in the habit of giving their cows hot water for their drink in cold weather, claiming that they yield one-third more milk than when given cold water. Care should be taken not to give the water so hot as to burn the cows' throats.

 1893, 117 furnaces, with an aggregate weekly productive capacity of 80,070 tons; at the commencement of
 August, 1893,169 furnaces, with an aggregate weekly productive capacity of 107,042 tons; at the commencement of May, 1893, 251 furnaces, with an aggregate weekly productive capacity of 181,551 tons; at the commencement of February, 1893, 251 furnaces, with an aggregate weekly productive capacity of 171,201 tons; and at the commencement of November, 1892, 244 furnaces, with an aggregate weekly productive capacity of 171,082 tons. It will be seen that, after a period of severe depression, the production has nearly regained the level at which it stood two years since.

