
a WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

NEW YORK, JANUARY 5, 1895.
$\left[\begin{array}{c}\$ 3.00 \\ \text { WEEKLY. } \\ \text { A MEAR. }\end{array}\right.$

TORPEDO BOATS FOR THE CRUISER MAINE.

The United States battle ships Maine and Texas, named from States in the extreme north and south of the Union, represent a type of vessel which, although since improved upon, is a very powerful one. When completed, these two ships will embody almost all the modern developments in naval warfare. They are criticised as not being adequately provided with protection against modern rapid-firing guns and explosive shells, because when they were designed these weapons had not attained their present perfection. The Maine is being built at the New York Navy Yard, the Texas at the Norfolk Navy Yard.

Each ship is to be provided with two small torpedo boats, technically of the third class, and our illustration shows the operations in progress in the building of the Maine's boats. These little vesse's are con structed with all the refinements of the shipbuilder's art. They are of steel throughout, with angle frames nd butted plates with straps over the joints, all bolt nd rivets being hammered flush with the surface of he skin. The plates, which below the water line are galvanized, are all hammered to shape, no plate being rolled to a curve. Much of this shaping is done cold, but where more elaborate work is desired the flanging \mid is done hot. The plans for the boat, as furnished to
the foreman, have the dimensions designated to a 64th of an inch, and up to the present period practically no error whatever in the dimensions has been found, a remarkable tribute to the workmanship of the New York Navy Yard.
The general dimensions of the boat are as follows: Length over all, 61 feet 8 inches ; beam, 9 feet $11 /$ inches; draught 2 feet 2 inches mean and 3 feet 4 inches maxiraught, 2 feet 2 inches mean and 3 feet 4 inches maximum; displacement, $12 \cdot 15$ tons. Her coal and stores
add about three tons to this displacement. Six watertight transverse bulkheads give seven watertight compartments.
The general disposition of parts includes an open

TORPEDO BOATS FOR THE CRUISER MAINE.
cockpit aft. Into this the rudder head enters, so that the boat can be steered from this cockpit if the conning tower has to be deserted. Forward of the cockpit comes the engine room, with a quadruple expansion engine, which of course will be of the last refinement of design. Forward of the engine comes the boiler room arranged for forced draft by the closed fire room system. The boilers are the Mosher tubulous boiler. Next to the boiler room comes another open cockpit, forward of which is the conning tower, which contains a steering wheel mounted on a half bulkhead. In the bows is placed the torpedo tube for discharging a Whitehead torpedo. In the extreme bow and also under the stern cockpit are trimming tanks. On deck aft is to be mounted a one-pounder rapid-firing gun, whose ammunition is carried in a magazine just aft of the engine room.
Along each side of the boat are coal bunkers, which, as far as their diminutive size permits, may be considered protective. Four heavy eyes are riveted to the sides along the waist by which the boat is to be hoisted bodily out of the water. The mast of the Maine carries a large steel boom, from whose end the tackle for hoisting the torpedo boats will be worked, the boats being taken in on deck by a steam winch. Cradles are to be provided for them to rest in.
The torpedoes will be carried by the Maine, the torpedo boat being able to carry only a single one at a time, which will rest in her tube. The role of action will simply be to get under way with the torpedo ready, then to approach the enemy as close as possible, to discharge the torpedo and run. Her side plates in places are but $\frac{3}{32}$ of an inch thick, so that she will be practically unprotected.
The crew includes the commander, engineer, firemen and two sailors. The Whitehead torpedo, which is used, weighs rather more than 2100 pounds, so that stability as well as a measure of protection to the machinery is secured by placing the weights as low as possible. Thus the engine cranks in their stroke work down between the frames almost to the bottom of the vessel.

The boiler consists of two upper and two lower horizontal cylinders, connected by 440 one inch drawn steel tubes. To prevent corrosion, blocks of zinc are contained in the cylinders connected with each other and by means of a copper wire with the steel of the boiler. On a forced draft the boiler will develop from 200 to 250 horse power with a pressure of 250 pounds. It is covered with a sectional nonconducting jacket; a valve damper in the ash pan cover allows air to enter, but in case of any outrush of flame caused by a steam leak or by the bursting of a tube, would instantly close. The boiler gives 513 square feet of heating surface and 13 square feet of grate surface. The engine is rated at 200 horse power when making 675 revolutions at the steam pressure cited. It has piston valves except for the low pressure cylinder. Great care is taken to balance the reciprocating parts so as to prevent vibration. The propeller shaft of forged steel is hollow ; 3 inches external diameter with 21/4 inches bore. Thus the metal is only $3 / 8$ inch thick.
The propeller is 3 feet in diameter and of 39 inches pitch, with an area on the screw faces of $4 \cdot 1$ square feet There are two feed pumps for the boiler, and these can be connected so as to pump out the bilge. In conjunction with a steam ejector, which is connected to the bilge, a capacity of delivering 11 tons of water per hour is given, so that the little vessel may stand considerable injury and still be kept afloat.
As regards speed, it is hoped to get about 18 knots an hour at 200 horse power, and it is believed that this can be obtained upon the consumption of $1 \frac{2}{3} \mathrm{lb}$. of coal per horse power. At this rate a ton of coal would last for six hours; so that if the little vessel was fully coaled she would have a high speed radius of over 100 miles, and at lower speed a consider ably mreater une. Her work throughout is in the best style and unexcelled by any steam yacht. The greater part of the vessel is filled with the boilers and engines and torpedo tubes. He trial trip will be watched with great interest as showing what results can be obtained with so small a vessel. In peace the boats will be used as dispatch boats, and will be undoubtedly very serviceable.

The First Anesthetic.

The fiftieth anniversary of the first use of anesthesia for the purpose of relieving pain was commemo rated recently in a fitting manner by the Connecticut State Dental Society, at Hartford, Conn. A memorial tablet had been provided by small subscriptions from dentists in every State in the Union, as a tribute to the discoverer. Dr. Horace Wells; and this was placed upon the building which at present stands on the old site of Dr. Wells' office. The work was performed before a large and notable gathering of dentists and other scientists.

A horseshoe to be affixed without nails has been! invented.

Srimutit someriam.

ESTABLISHED 1845.

MUNN \& CO.. Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.

o. D. munn.	A.
terms for the scientific american. One copp, one year, for the U. S. Canada or Mexico................. s 53 40 4 50	

THE ARCHITECTS AND BUILDERS EiDITION OF THE SCIENTIFIC AMERI-

es 25 cents. See ${ }^{* .00}$ a year, post paid to
MUNN \& CO., Pnblishers,

NEW YORK, SATURDAY, JANUARY 5, 1895.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT No. 992.
For the Week Ending January 5, 1895.
\qquad
AERONAUTICS-A Guidable Parachute.-A sugkestion for bal-

 I. BuILDING.-Cart and Load Lifted.
tion of tall buildings. -1 illustration:

 IX. HeRTIICULTUEL.-Imamination in Gardening.-The work of

 State is rapidly increasing, while that of the United at a s diminishing. The United States is moreove at a expense to provide a large patrol fleet, and the British government, on the other hand, although owning the majority of the sealing vessels, expends very little for police patrol. This may be clearly seen from the following significant figures. The surviving seals represent a cash value to-day of $\$ 7,000,000$. During the year 1894 we have lost more than $\$ 500,000$ of the profits. The present law makes it possible for the Canadian hunters to get about $\$ 1,000,000$ worth of the remaining seals next year and to obtain an equally unjust share in the years to come, until the seal fisheries are exhausted. The United States, mean while, is compelled to pay a large sum annually out of the Treasury to guard and protect the seal fisheries

Lobster Laws.

The game laws of Massachusetts provide a heavy fine for any one who either catches or sells lobsters mea suring less than $101 / 2$ inches. Quite recently a large consignment of lobsters to a New York firm wer seized in Boston, and the entire lot, consisting of 1 barrels or some 3,323 lobsters, were dumped in Boston Harbor. This is the largest seizure of its kind on record. The fine for each lobster is $\$ 5$ and the ship per, if prosecuted, will be liable to a fine of over $\$ 16,000$

It has been found that four hundred tons of top weight must be taken from the new French battle ship weight must be taken from the new French battle ship
Brennus before she can be rendered seaworthy. It will be necessary to remove at least one of her fighting masts, and her upper deck will be almost completely dismantled.

decisions relating to patents.

U. S. Circuit Court-District of Massachusetts.

United States of America v. American Bel Telephone Company et al
Decided December 18, 1894.
Carpenter J.
Patent to Emil Berliner, No. 463,569, dated November 17, 1891, is void because one of the functions of the device shown in the patent No 263,969, dated November 2,1880 , to the same inventor-namely, the function of transmitting articulate speech-is identical with the sole object or function of the device covered by the patent of 1891, and the device for effecting the transmission is identical in both patents. (Miller v. Eagle Manufacturing Co., 66 O. G., 845 ; 151 U. S., 186.)
The application was filed June 4, 1877; the patent granted Nov. 17, 1891. "The device covered by the patent in suit had been in public use by the respond ent corporation since the year 1878. The respondent corporation was of ample means to prosecute the ap plication. The result of any delay which may take place in the issue of the Berliner patent would evi dently be to continue so much longer the practical monopoly of the art of electrical transmission of articulate speech." Under these circumstances the duty of gree of diligence in prosecuting the application to an early issue. "There should have been at least as great diligeuce as their own interests would have called for diligeuce as their own interests would have called for
had their business been unprotected by patent rights." had their business been unprotected by patent rights."
The delays subsequent to June 9,1882 , were unwar rantable, were acquiesced in, and therefore intended by the respondent corporation, and were such as to in validate the patent.

Important Canal Improvements.

It has long been proposed to enlarge and generally improve the canal routes connecting New York with Philadelphia and Chesapeake Bay, and it now apPhiladelphia and Chesapeake Bay, and it now ap-
pears that this work is to be accomplished. These improvements are much needed and the expense incurred will doubtless be justified by the consequen increase of commerce. The city of Philadelphia some months ago appropriated $\$ 10,000$ to be expended in making preliminary surveys and maps preparatory to enlarging the Delaware and Raritan Canal, and this has been followed by the appropriation of a like In addition to chis bill is now before Congress, hav $i_{\text {ing }}$ already passed the House of Representatives, pro ing already passed the House of Representatives, pro-
viding for the appropriation of a sufficient sum of money viding for the appropriation of a sufficient sum of money
to commence the actual work. Plans are also under to commence the actual work. Plans are also under
discussion to enlarge and extend the Dismal Swamp Canal and the Albemarle and Chesapeake Canal.
The latest report of the surveyors of the Delaware and Raritan Canal stated that the full length of the pro-
posed new route would be 32 miles. The surface elevaposed new route would be 32 miles. The surface eleva
tion along this route is higher than in the case of the old canal, but it will probably be selected because it saves the building of two expensive overhead bridges The new canal will then start from Raritan Bay, cross the Raritan River about eight miles below New Bruns wick and enter the Delaware River at Bordentown. Eleven miles of its length will be an enlargement of the old canal. The other 21 miles will be an original excavation. It will have a depth of 24 feet, a bottom width of 90 feet and a surface width of 160 feet. It will be provided with two opening locks 500 by 60 feet, and four lift locks with a total lift of 50 feet. The entire cost has been estimated at $\$ 12,500,000$. Of this amoun $\$ 50,000$ will be expended in deepening the channe of the Delaware River between Philadelphia and Bor dentown.
It is, furthermore, proposed to make connections with the Dismal Swamp Canal, and to widen and deepen this canal in a similar way. The Dismal Swamp Canal commences at Deep Creek, Norfolk, Va., and extends in a southerly direction to South Mills, N. C., near the head waters of the Pasquotank River, which empties into Albemarle Sound. The canal proper is 22 miles long and 60 feet wide, and is provided with five locks. It has an average depth of 8 feet. It extends from deep water to deep water. An enlarge ment is being planned. It is proposed to give it an average depth of 10 feet and provide two locks, one at either end, to be 250 feet long and 40 feet wide. The estimated expense of these improvements will be $\$ 5,000,000$.
The Albemarle and Chesapeake Canal connects the waters of the southern branch of the Eliza.beth River, which has its mouth at Norfolk, with the North Landing River and North River. The canal is 14 miles long and has an average depth of 8 feet. The present owners propose to enlarge this to about the size of the others, so that large ships may pass through the en tire system.

Russian engineers are studying a route for a water way to connect the White Sea with the Baltic. The
total distance to be covered is about 180 miles. Par of the route is already navigable. It is estimated that a uniform depth of thirty feet can be obtained along the entire route at a cost of $\$ 6,000.000$.

At the recent meeting of the American Society of Mechanical Engineers a paper was presented by Mr. C. J. Field, in which he reviews the first introduction of the trolley system seven years ago and its steady progress since that time. One of the difficulties met with in the introduction of the cable and electric road was the condition of the old horse road construction. The first step was the introduction of girder and T rails, which at first were 3 to 5 inches in depth, requiring the placing of the rails on a cast or wrought iron chair or stringe in order to get the depth over ties. This method proved little better than the old flat rail, especially at the joints. The rail mills then undertook the rolling of heavier and deeper girder and \mathbf{T} rails, which, at present state of development, gives us, we believe, a roadbed construction equal to any steam road in the country. The standard to-day for electric tramway roadbed is 70 to 80 pound T rail, or 70 to 98 pound girder rail, the depth running from 7 to 9 nches.
The special work on track work, such as crossovers, turnouts, curves, etc., has also met with large improvewent. Now we have as a standard for this special work the steel rails bent to the form required, and surrounded by a mass of cast metal to hold them together, nd one company is turning out this special work with he parts welded together; also in caststeel. The elec ric welding of rails at the joints when laid is then
mentioned. After one winter's test of a road built ou mentioned. After one winter's test of a road buil
this system, 6 per cent of the joints pulled apart.
Underground conduits, or the placing of the trolle wire with all its feeders under the surface of the street is the ultimate and desirable result to be obtained in our large city lines of electric traction. Underground conduits were attempted four or five years ago, but on account of insufficient experience, lack of engineering ability, or amount of money expended on the work, as well as a desire on the part of the company installing them to make them a failure, they were not in genera uccessful. The first really successful underground onduit to be installed and operated was in Buda Pesth, about seven or eight miles in length, and it is now being extended to 30 miles or more. Similar systems on a smaller scale are in operation in Chicago and Washington. The conduit to be most used will be one similar to a cable conduit, with the trolley conductors placed at the sides in the shape of a channel or angle bar or rod of iron or copper, which will be dividdinto sections and fed by underground feeders laid long the line of the road. Shoes or brushes will con vey the current from the trolley wire to the motors on
the car. Such a conduit will only be successful where it is made a double trolley conduit and not depending on the track for the return circuit. The cost of a wel built trolley conduit in the form of a cable duct will, in most cases, exceed that of a cable duct on straight rack, but less on curves.
The general basis of calculation of the horse power required for a tramway system must take into con sideration the local conditions of service, grades urves, etc.; but, in general, 15 to 25 horse power pe car in use on the road is the general limit of a well-de
signed station, which will include the conditions for continuous service and operation of the plant. A road of 100 cars would therefore require about 2,000 hors power, which horse power should be divided into say our units of 500 horse power each. The number of will give a safe should be the fewist number units and in a station of this kind four or five units, accord ing to the service and conditions, should be the stand ard.
The old horse car road in large cities operated at a total cost of from 18 to 25 cents per car mile. One car
mile is taken as the standard for operating expenses in our tramway service. The heaviest item in this operat ing expense was the question of power, and this is where the electric road has made its heaviest gains in the re power in operating expenses. This itemis remel conditions, ranging from 1 to $11 / 2$ cents per car mile. The relative proportion of operating expenses to earnings in the horse service was from 70 to 80 per cent operat ing expenses to gross earnings. In electric service we have a considerable increase in our gross earnings ove our old horse line, which increase runs from 25 to 50 and even 100 per cent in some cases, and the operating expenses being 40 to 60 per cent of the gross earnings. In this operating expense we include all the operatin expenses of the road other than the fixed charges
The cost of building and equipping an electric road considerable. The standard price four years ago for n equipment of two 15 horse power motors and the installation of them was $\$ 3,000$ to $\$ 3,500$. The price
to-day for two 25 horse power motors, which are much superior to the former ones, is under $\$ 1,000$. This gives us a total cost of a motor car, including car body truck, motors, etc., of approximately $\$ 2,200$. A single mile of roadbed construction, with 90 pound girder rail, exclusive of any new pavement, but including ang up of the old track and replacing of old pav
makes no allowance for special work. Overhead-line construction for one mile of double track, with iron poles, feeders, ete., $\$ 4,000$ to $\$ 5,000$ per mile; with wooden poles, about $\$ 3,000$ or $\$ 4,000$ per mile. Stean and electric plant for direct-connected vertical compound condensing plant-for steam plant, $\$ 50$ to $\$ 55$ per horse power, and the electrical, $\$ 20$ to $\$ 25$ per horse power, making a total for steam and electric plant, $\$ 70$ to $\$ 80$ per horse power. As a general summary, we have for the total cost of the equipment of the electric tram road-that is, the rebuilding of an old horse road -including power plant complete, buildings, car house ars, equipment, track, and overhead construction 20,000 to $\$ 25,000$ per mile of single track, according to the varying conditions of different cases.

War on the Gypsy Moth.

Extensive preparations are being made in New Eng and for destroying the Gypsy moth or Ocneria dispar which has become of late a very serious menace to ag riculture. An appropriation of $\$ 200,000$ has been asked of Congress to be expended for this purpose, and it is xpected that it will be granted. About 150 men will be employed in the work and the whole of the infested region will be kept, as far as possible, under constant inspection.
The Gypsy moth is indigenous in France and was brought to America in 1870. Since then it has multiplied with alarming rapidity. The moth deposits its eggs in clusters in sheltered places on the bark of trees or in cavities of stone walls, old stumps and similar places, but always near the plants or trees on which he insect feeds. Eggs are deposited in the early fall and hatch early in the spring. When first hatched the caterpillars are less than one-fifth of an inch long, and when fully grown they shed their outer covering and become pupx. They feed only when in the caterpillar state, whichilasts about ten weeks. They are nocturnal and feed in bands and attack all kinds of shrubbery.
In 1892, when the first attacks upon this pest were ommenced, the clusters were destroyed by scraping them from the trees and burning them. This plan was given up, however, because some of the eggs wer often scattered and lost. At present various acids and reosotes are used, and when the eggs are deposited in cavities they are destroyed by chlorine gas or fire Another plan is to brand the trees with burlaps and ime. Some idea of the extent of this work may be gained from the report made by the State Board of Agriculture recently. It appears from this that $\$ 101,-$ 411 were expended during the year 1894. Over 200 square miles of farm lands were infected, including some of the most valuable land in New England, and 125 men were employed in carrying on the work.

The Pneumatic Tire.

An interesting series of experiments have been made recently to test the difference between the draught or road friction of a carriage with and without the modern pneumatic tired wheels. Two ordinary box buggies were employed, each being weighted to weigh 254 pounds. On a smootl hard pine floor it was found that the power required to start the pneumatic tire from a standstill was four pounds and the power required to start the steel tired carriage was three pounds. Next an obstruction $\frac{5}{16}$ of an inch high was placed in front of each carriage, and it was found that 25 pounds was required to haul the steel tired carriage over the obstruction and but 11 pounds to draw the pneumatic tired carriage.
Similar experiments with obstructions of various kinds showed that about the same advantage was maintained by the pneumatic tires. To haul the two carriages over an ordinary sand road it was found that the steel tires required about 40 pounds and the pneumatic about 25 pounds. A great many experiments of the same nature showed little or no variation in this proportion.

Gold Fillings.

People, says a dentist, wonder why gold is used for stopping, and are apt to credit the dentist with employing it for his own ends, on the ground that he can charge more and get correspondingly larger profits than would be the case if he used any baser and less expensive metal; but, he says, in explanation, a little reflection would convince the suspicious ones that there is no ground whatever for such ideas, and that the real reason for using gold is that it will weld while cold, and will successfully resist the action of the acids and fluids of the mouth, hence it is unequaled as a preservative for the teeth.
In a recent issue we explained the proposed system of establishing an international postage stamp. It is already reported that Cape Colony will join this "Universal Postal Union" on January 1, 1895. It has been decided that a five cent stamp will carry a letter to any civilized country of any importance in the world. We take pleasure in announcing that at present the only countries not included in the union are China, Moroceo, the Orange Free States, and the islands of Ascension, St. Helena and Pitcairn.

THE CURIOSITIES OF CLOCKWORK

As soon as horary instruments had been constructed an endeavor was made to utilize them at night just as in the daytime. Gnomons or sun dials could not be empioyed for this purpose, especially in the interior of houses. Although the time was obtained by means of a plumb line held vertically opposite the pole star, this was possible only in clear weather and in the country.
Clepsydras, or water clocks, were then alone capable of solving this problem, and so the idea occurred to illuminate them at night. It is, therefore, of clocks luminous in darkness that we are going to speak-of those of which the tradition has been perpetuated to our day, despite the most practical methods of clockwork. We shall occupy ourselves here only with the house clock or the ornamental clock, for the iumin at the present time.
In studying the history of clepsydras, we find that certain of these pieces, already very complicated, were provided with a style of lamp that permitted of seeing the hour despite the darkness. Such was the clepsydra constructed in China, and mention of which is made in the Tchan-li, a book that dates back to the year 202 before our era. The same is the case with the Arabian clepsydra that was in the mosque at Damascus in 1184. There were many others of this kind. The idea of the night light, differently applied, is found again in clocks with spring movement from the epoch of the Renaissance down to our day
We are going to speak of some curious types in order to give an idea of the multiple means employed by clockmakers for giving the time at night.
The sixteenth cen-

Figs. 5 and 6.-LANTERN clock.
Fig. 5.-External view. Fig. 6.-Details of the internal mechanism.
tury was peculiarly prolific in matters of clockwork, both as regards inventions and de coration, and we are able fearlessly to assert that nothing new has been done since, in the way of ingenious conceptions. The following, for example, is a description of an alarm clock invented by Caravagius for Andre Alciat.
"At the moment at which the bell struck the hours, a spark drawn from a flint by means of a pistol battery placed at the desired spot fell upon a sulphur (sic), which was ignited and lighted the wick of a candle." This kind of time piece was not unique, and we still find old specimens of it in our day. They are of finely chased gilded copper.
In Fig. 1 we reproduce a Renaissance clock of the same Renaissance clock of the same
epoch in the form of a pyx. epoch in the form of a pyx.
Beneath the dial, which is mounted upon a man's head forming a pedestal, there is a burner of a lamp in which is placed a wick that enters the oil contained in the body of the man and the foot upon which it rests. It was this lamp that illuminated the the lamp was to be lighted in winter, and ended at dial at night. This piece is of gilded bronze. The pedestal is finely chased and the entire surface is covered with engraving.
We have in our possession a curious clock made at Saltzburg at the beginning of the seventeenth century (Fig. 2). It consists of a plate ornamented with motifs in repousse copper and accompanied with two dials, one above the other. About the lower dial, which serves to show the time during the day, there is nothing peculiar. It is a copper disk upon which are engraved the hours, which are indicated by a very elegant steel hand. The upper dial is entirely different, and its composition has pretensions to the mysterious. The hours are printed in black upon a glass disk which is fixed in the plate forming the front of the case. It is, therefore, immovable. Behind this disk, and applied almost immediately against it, there is another glass plate upon which is painted a small figure in black holding in its hand a wand that serves to mark the hours.

Figs. 1 to 4.-ANCIENT clocks.
Figs. 1 to 4.-ANCIENT CLOCKS.
Fig. 1.-Dutch clock. Fig. 2.-Mysterious clock. Fig. 3.-Lamp clock. Fig. 4.-Dutch illuminated clock. 7 o'clock in the morning. The glass receptacle was removed by unscrewing it from its foot when it became necessary to refill it with oil. After being put back in place, and the lamp having been lighted, it was the level of the oil that marked the hour in descending in measure as the combustion proceeded.
Much later on, in 1819, a clockmaker named Gabry of Liancourt, utilized the same principle for construct ing a system of night lamp of which we possess a specimen(Fig. 8). It is a reminiscence of the antique Indian (or Hindoo ?) clepsydra. It consists of two juxtaposed porcelain cylinders that communicate by a conduit formed at the base of the partition that separates them. Above this partition there rises a plate of iron with a dial painted upon one of its faces. The two vessels are filled with oil, and in the one in front of the dial is placed a night lamp to illuminate
it. In the other there is suspended a float through

This second glass plate is circular and at its circum erence, behind an ornament, there is concealed a toothed wheel that is sealed to it. This wheel engages with a dial train that corresponds to that of the lower dial, so that the movement, in running, actuates the day and night dials at the same time. The night dial is illuminated by a lamp placed behind it. As the two glass plates are transparent, it is necessary to make some examination in order to understand the system, for the two plates of glass seem to make but one, and to form one and the same dial only.
In our collection we have also a night lamp that serves to show the time (Fig. 3), and that constitutes a genuine clepsydra. These kinds of clocks were relative ly common in the seventeenth century. They were especially clocks for studies. They consisted of a lamp placed at the base of a glass receptacle mounted vertically by a screw upon a tin foot, to which it was fixed by two strips of the same metal.
Upon one of these latter (the one facing the burner of the lamp) was read the hours of the night cast in relief. They began at 4 o'clock in the afternoon, the hour at which the

Fi s. 7 and 8. illuminated clocks. copper. The dial alone is silvered.
descending in measure as the combustion of the oil proceeds, carries along with it the hand fixed upon the axis in front of the dial and thus marks the hours.
The precision of these clocks must certainly have been most mediocre, whatever may have been the care taken to direct the flame of the wick. A Dutch night lamp of the eighteenth century indicates to us a new combination (Fig. 4). The hours are formed in open work upon the metallic disk forming the dial, which revolves and presents all the hours in succession be neath a dove, which is likewise in openwork and serves as a pointer. A light placed upon the case inclosing the movement thus renders both the hour and the dove luminous in the midst of darkness. This piece, which is of genuine interest, is entirely of polished

In Schubler's Architecture we find engravings of wo clocks dated 1724. One of them has a luminou to clocks dated 1724. One of them has a luminous dial that projects the hour directly upon the floor with a con siderable enlarge ment that is effected by the dial itself which is composed of a lens. The other is a true magic lantern with an objective that projects the hour upon the wall. These two the wall These two clocks, o large size, are very
richly ornamented, richly ornamented, and are of a beautiful decorative aspect, although in a some what questionable taste.

The idea of this magic lantern clock has been taken up in other proportions a n d under various forms We own a mantel clock dating back to the first em pire (Figs. 5 and 6), and consisting of copper case, having upon its face a magic lantern object ive, bebind which there is a glass dial upon which the glass dial upon
hours are painted.
This transparent dial is This transparent dial is
actuated by an almost invisible train which is run by the movement of the clock placed upon the upper part of the case. The dial of this movement is above the ob jective and thus gives the hour during the day. Behind the dial that is in the case there is a lamp which is lighted at night so as to ob tain a luminous projection of the dial of a very large dia meter, either upon a wall or upon a screen.
In 1828, a Mr. Rehart took out a patent for a magic lantern serving to amp!ify the dial of a watch. Under the empire, many night clocks were brought out. The most common were composed of a metallic ring into which was set a ground glass dial carry ing the hours painted in black (Fig. 7). In the center of this dial there was a chased copper rose behind which was
 cord that passes around a pultey mounted upon a hori-
ing to requirements, the hour, the half, the quarter
zontal axis ending in the center of the dial. This float
a the problem has been solved. We have thus, accord ehind illuminated the hands, and the hours stood out in black upon the white disk
This dial was mounted upon a foot of chased bronze of which the decorative motif varied to infinity Nevertheless, as in the specimen that we reproduce, it was frequently in the form of a human figure.
These different clocks are, as may be seen, some what rude, and certain of them are far from offering very serious guarantees of running.
In our day night clocks of various styles have been constructed. But all this responds but imperfectly to the object proposed, and it may be concluded that the ime of night will be known very much better from the bells of clocks than from the light that illuminates them.
It is especially starting from the seventeenth cen tury (1676) that with timepieces giving the hour at wil
veling clock, with its large bell, has had the last word to say of the hour of night, and is advantageously replacing all the clocks and night light arrangements that have been invented since centuries.--M. Planchon, in La Nature.

NEW CHEMIST'S WASH BOTTLE.

The wash bottle shown in the cuts represents one of a kind which I have used for three years, and it has proved so convenient, not only for hot water wash bottles, but also other wash bottles, that I think it will prove of interest to your chemical readers.
One cut represents the bottle complete; the other shows it in use, and also shows a large scale view of the valve. Its construction is obvious. The wire cross ${ }^{\circ}$ es a piece of rubber tubing. When the wire is depressed it squeezes the tubing against the wooden block on which it is mounted and thus closes it valvefashion.
The middle finger controls the wire of the valve, allowing the free use of the first finger to direct the stream-a great improvement on other similar apparatus.
When the bottle is reversed, the middle finger also controls the stream issuing from the mouth tube-a very convenient feature.

After a short use of the bottle, one soon becomes accustomed to the mechanism, so that the mouth and hand work together. 'The air chamber ordinarily above the water is sufficient to eject the water for five or ten minutes, and with the hot water bottle it is only necessary to shake the water, and the steam liberated is ample to force the water from the top. A nother great advantage is that one runs no risk of burning the mouth, as the valve prevents the steam returning until the mouth is re moved. Geo. C. James, Chemist.

Inventions Reduce the Cost of Building.

The Real Estate Record commented some time ago upon the immense reduction that has been made within the last decade in the cost of building. Office buildings that cost $\$ 1.50$ per cubic foot, and even more, can be produced by modern methods for 30 or 40 cents a cubic foot. This reduction in cost is due in no slight measure to the employment of mechanical devices in building operations. The hod carrier, elevator, derrick, and other devices worked by steam, which have superseded the slow hand labor, are too well known to be mentioned. The employment of steam power in the mechanical operation of building has, however, by no means reached its limit. At the New Yorkbuilding, now erecting on the block front between Waverly Place and Washington Place, pass-ers-by may see a steam stone crusher at work preparing material for the foundation. A few hands are able to do with pre cision an amount of work which formerly required a small regiment of men. On the line of the new Lexington Avenue cable road a cement stone mixer worked by steam is in operation, and attracts the attention of passers-by.

For Obesity.

Take no water or other fluid at any time, says the Medical Times and Register, except one cup of any desired hot drink, just before rising from the table. Use no liquids while eating. A void sugar, nuts, and pastry. Eat nothing between meals. Confine the diet to lean beef, mutton, chicken, turkey, fish, eggs, oysters, with one slice of stale bread well dipped, the bulk of the meal being of tomatoes, celery, spinach, turnips,

NINE HUNDRED HORSE POWER COMPOUND ENGINE.
the well-known engine makers, Messrs. Robey \& Co. Limited, of the Globe Works, Lincoln. The cylinders are placed side by side, with the fly wheel in the cen ter. The diameter of the high pressure cylinder is 24 in ., low pressure 40 in ., and stroke 48 in ; and with a steam pressure of 100 lb . per square inch the engine will, when condensing, give off 900 indicated horse power. A condenser, of the injection type, worked by an extension of the low pressure piston rod through a rocking lever, is placed at the rear of the low pres sure cylinder, and at a lower level; the air pumps are single acting, two in num ber, each $23 \frac{1}{2}$ in. diameter The main shaft is exceed ingly massive, being $151 / 2$ in. diameter in the center the main bearings being 12 in . diameter by 24 in . long, thus giving ample bearing surface.
The power is transmit ted by means of a fly wheel, 18 ft . diameter, grooved fo fourteen ropes, $13 / 4 \mathrm{in}$. dia meter, and the rim is built up of ten segments, the latter being carried by ten arins, which are fastened in the central boss by double cotters. The main feature, however, in this engine is the trip valve gear, which is Richardson and Rowland'spatent, and works with a smoothnes and precision which leave nothing to be desired. The inlet valves on the high pressure cylinder are o the double beat type, and are actuated by trip levers which again receive their motion from a cross shaf driven from the main shaft of the engine by cut gear healthful exercise. The conclusions were based upon ing. The trippers which lift the valve are coupled examinations of a number of men who had used the to the governor, which by means of a simple motion wheel constantly for periods varying from five to fifteen adjusts the cut-off from zero to $3 / 4$, by sliding the years. During this time each of these riders had rid- tripper into longer or shorter communication with den more than 5,000 miles and less than 30,000 miles. the tripping lever. This arrangement has been It was found that the average chest expansion of these riders was $14-7$ inches. The chest of the average man expands only one inch. In the strength and general condition of the heart the bicyclists had a similar advantage, and a considerably increased lung power was also observed. There was also noticeable an harmonious development of all the muscles, and in no case was any deformation of the spinal column or other part to be found. The criticism that the continued use of the wheel merely develops the muscles of the legs at the expense of other parts was not found to be true in any of these cases. The writer of the paper, however, condemned long distance racing as injurious, and offered a general caution against excessive and exhaustive feats of bicvcle riding.

NINE HUNDRED HORSE POWER COMPOUND ENGINE
The engine here illustrated is a fine specimen of
odern engineering, and has been manufactured by ound in nums examples to be most has bee and controls the speed of the engine within less than one per cent on ordinary variations in load. The exhaust valves are underneath the cylinders and have large openings with a very small movement, thus giving a free exhaust, and draining the cylinders effectually. A large receiver is situated between the two cylinders, into which the high pressure ex hausts; here it is reheated by means of a live steam coil, and enters the low pressure cylinder at a slightly enhanced pressure.
The economy of steam consumption in this type of engine has been proved to be very considerable, and with the engine illustrated the consumption has been brought to the lowest practicable point. As a proof of the accurate balancing of all parts, the engine was erected on a temporary foundation of timber and moulding boxes, at a height of 10 ft . from the slight foundation run at the full speed of 75 rev olutions per minute, with scarcely any perceptible vibration. The engine is for driving a large mill in Russia, and has been specially designed to render transport easier, the girder bed being made in two halves, and bolted securely together, and a foot placed in the center, whereby absolute rigidity is obtained. The fly wheel has been turned dead true, a result seldom obtained with equal accuracy with so large a, wheel. We are in debted to the Engineer, London, for our cut and the above particulars.

Mortuary tables show that the average duration of the life of women, in European countries, is something less than that of men. Notwithstanding this fact, of the list of centenarians collected by the British Association a fraction over two-thirds were women.

Dr. Palaz, The Light of the Future.

D. Palaz, in his work on photometry, remarks that hould ine optical efficiency of light sources "there hould only be produced such vibrations of the ether as are susceptible of affecting the retina," or vibrations having a wave length between 0.81μ and $0.36 \mu-\mu$ being 0.001 mm . The problem thus is not a complicated one as far as its statement is concerned, and when we learu that the greater part of the energy of the voltaic are is lost in heatat a wave length of only $1 \cdot 16 \mu$, we see that the question of producing "cold light" resolves itself into one of reducing this wave length less than 50 per cent. Unfortunately it too often happens that what to nature is but a minute interval in the course of a phenomenon is yet the entire extent that the powers of man are permitted to affect. In the present instance there is, however, a growing hope that human endeavor will finally succeed in so directing the motion of the ether that the numerically slight reduction necessary in the wave length of vibratory energy may be obtained. In this connection it is interesting to compare the various sources of light with relation to the proportion of their vibratory energy utilized in producing the sensation of light. As we know the amount of energy contained in a given weight or volume of oil and gas and also the corresponding amount of light produced, it is a simple matter to express the unit of light given by these illuminants in watts. We thus find that an oil flame requires about 42 watts of energy per candle power emitted, and the ordinary gas jet 93 watts; with the incandescent lamp and voltaic are these figures are 3.1 and 0.8 watts respectively. Accepting the efficiency given by Weber of the incandescent lamp at normal candle power-1 per cent-the optical efficiencies of the above sources are, therefore, $0.07 .0 .03,1.0$ and 4 per cent respectively, while Dr. Palaz quotes the efficiency of the magnesium lamp at 15 per cent and that of the Geissler tube at 32.7 per cent. The gas flame, therefore, dissipates $99 \cdot 3$ per cent of its energy in vibrations that do not produce the sensation of light, and the maximum dissipation occurs at a wave length of $1 \cdot 6 \mu$, the corresponding maximum of the voltaic are being $1 \cdot 16 \mu$.
We see from the above that high optical efficiencies are obtained in three ways-by a high degree of incandescence of carbon and of magnesium and by vibratory motion set up in the ether by an electric discharge through a Geissler tube. With carbon as a material we cannot expect a greater efficiency of the arc lamp than at present, as it has been shown that the tem perature of the crater cannot be increased (unless under pressure), since it now corresponds to the point of vaporization, while the incandescence of the carbon filament has also probably reached a practical limit. The only chance of improvement in this direction, then, seems to lie in the utilization of a material which may be raised to a higher temperature and incandescence than carbon, or, like magnesium, will at a given temperature give off a much larger number of luminous rays than carbon. The experiments of Tesla and Ebert in producing the requisite rate of etheric vibration by electrical instead of thermal means contain the greatest promise, even if the efficiency of the Geissler tube is merely attained in a practical light, and there is hope that it may extend much further than this. Finally, it is not impossible that we may even solve the mystery of the light of the firefly, which would be the most perfect solution of the problew. Langley finds that all of the radiations emitted from this source have a wave length between 0.45μ and 0.65μ, and therefore the optical efficiency is probably 100 per cent.-Electrical World.

International Copyright Abuses to be Reformed. Representative Hicks, of Pennsylvania, has introduced in the House a bill aimed at the most flagrant
abuse that has grown up under the international abuse that ha
copyright law.
That law gives to foreign authors copyright on condition that their productions be published here from type set or plates made in the United States. The same condition is imposed in the case of musical compositions, photographs, and lithographs. The plates or negatives must be made in this country and the copies printed from them here.
But, curiously enough, no such requirement is made in the case of engravings or etchings. Foreign publishing houses have not been slow to take advantage of this omission by claiming copyright for engravings, etchings, drawings, woodcuts, etc., when neither the plates have been made nor even the copies printed in this country. Not only have they claimed such copyright, but they have threatened and brought suits for its alleged infringement and demanded damages in ridiculously high sums.
It must be obvious to every fair and intelligent mind that there is no good reason for this marked discrimination of foreign art as against literary and musical copyright. That the discrimination opens the door to intolerable abuses is shown by experience. It is a standing menace to reputable American newspaper, at any time become the victim of unwarranted and
vexatious litigation for having innocently reproduced from some foreign publication an illustration not supposed to be entitled to copyright. Such suits may even in unscrupulous hands become the weapons of attempted blackmailby carrying a demand for excessive damages only for the purpose of securing a smaller sum by way of compromise.
A law which thus invites abusive litigation, which is taken advantage of by foreign speculators and their American attorneys to harass American publishers, is neither to the interest nor the credit of the United States, and hence should be amended at once. Whatever may be said in favor of granting protection to foreign art productions, experience has proved that more harm than good has come from the operation of the law, and that the interests of this country will be promoted by
This can
This can be done only by amending the law so as to give copyright to foreign art productions on the same condition it is given to foreign literary and musical productions-namely, that the plates be made and the copies printed in this country. To say that the proposed amendment will operate only to the advantage of piratical publishers is nonsense. Its purpose is and to which all reputable publishers are now exposed, and from which many have already suffered.
The Hicks bill is a timely measure, designed to improve the copyright law, and hence should receive the support of all who have in this matter American interests at heart.-N. Y. Herald.

The New Element.

The London Times says: "There was an unusually large attendance at the meeting of the Chemical Society last night (December 13), in anticipation of a discussion upon the new element announced by Lord Rayleigh at the meeting of the British Association None of the scientific societies were at that time in session, but our readers may remember that a certain amount of discussion on the subject took place in our
columns. In the five months that have elapsed since the announcement was made, chemists naturally supposed that definite and unassailable conclusions would have been reached. This expectation was naturally
very powerfully confirmed by the language of the president of the Royal Society, who in his presidential address treated the discovery as fully authenticated, and described it as the greatest scientific event of the year. It was, therefore, a serious disappointment to the Chemical Society to discover last night that not one of the men known to have been engaged in working at the new element came forward to give informa-
tion as to results so unequivocally proclaimed. Some tion as to results so unequivocally proclaimed. Some
astonishment was also felt when the president of the society observed that a good deal of feeling had been called forth by this question, notwithstanding its purely scientific character.
"It was evident from his remarks that the discoverer of the new element are anxious to forbid discussion on the extraordinary ground that, as they have not published their conclusions, discussion can proceed only upon private and confidential information. It is obvious, as he pointed out, that when chemists are in-
formed that they have entirely failed to comprehend formed that they have entirely failed to comprehend the constitution of a substance upon which they have
bestowed so much labor as has been expended on the atmosphere, they have an indefeasible right to carry out whatever experiments they may think fit. More over, it is absurd after not only the fact of the discovery but details of the preparation and properties of the new element have appeared in public reports, to
pretend that there is any breach of social or scientific pretend that there is any breach of social or scientific
etiquette in discussing them. Why the discoverers should impose on themselves and seek to impose upon others this extraordinary reticence concerning what has been heralded on the highest authority as the greatest scientific event of the year is more than any question of robbing them of their discovery, it would be another matter; but, on the contrary, the accept ance and discussion of the announcements made to the British Association and to the Royal Society are the very best means of securing to them whatever
credit may accrue from their researches.
"Professor Dewar described last night the methods of applying liquid air to the investigation of the proper ties of gases. It appears from his experiments tha peratare and boils off at the same rate as nitrogen obtained from the atmosphere. Yet, according to the discoverers of the new element, one contains a substance which is not present in the other, the density of which is nearly half as great again as that of nitrogen. It follows either that the new substance does not
liquefy at all, even at temperatures which condense much rarer gases, or that it behaves in exactly the same manner as nitrogen. Chemists will fully appre ciate the extreme singularity of a substance with the not too much to say that its discovery would revo lutionize chemical theory. But the whole question be
comes infinitely more obscure if, as seems to be the case, chemically prepared nitrogen passed over red-hot magnesium behaves in a manner undistinguishable from that of atmospheric nitrogen treated in the same manner. Confirmation of this result would at once prove that the new substance is a manufactured product which may, indeed, be present in the atmosphere, but cannot be a new element. With these grave uncertainties brooding over their discovery, it is remarkable that Lord Rayleigh and Professor Ramsay should prefer to keep silence, although all doubts might have been settled almost in as many days as months have elapsed since the announcement to the British Association."

Science Notes.

From the Boston Commonwealth we take the folowing:
Before a recent meeting of the Parker Memorial Science Class, Prof. A. E. Dolbear considered the possibilities of matter, which in the light of the most re cent investigations is of exceeding interest. He said that the kind of phenomena which one expects from matter depends largely upon what are assumed to be the properties of matter. It was once thought that matter itself was altogether inert and lifeless, and forces of different kinds were believed to be necessary in order to have it do anything. Now we are aware that this notion is erroneous. A lump of coal weighing a pound possesses energy enough to lift its weight nearly two thousand miles high. Every particle of matter is constantly exerting its influence upon every other particle of matter, no matter how far apart they may be, and if left to themselves, will come together. The power to do this is inherent in matter and not in forces external to it, so that one after another the so-called forces have been given up, as representing anything more than some sort of motion. There is left, then, only matter and ether and various forms of motion to account for the different phenomena in nature. Even what are called organic phenomena such as belong to living things, have no other ante cedents.
These new considerations have made it necessary to recast our opinion concerning matter and its possibilities. Instead of the hard, round, inert particles of the older philosophers, we have now the vortex ring theory of atous, which considers them as rotating rings of ether, since such rings exhibit many of the qualities possessed by matter. But this view makes atoms dynamic individuals possessing energy and capable o doing many things. The phenomena of crystals and some of the lower orders of animal life show such simi larity as to give one the impression that the former are in some degree living things, and there is a growing conviction, among those who study molecular phe nomena, that matter is really itself alive and that in telligence is in some way associated with it, so as to make the difference between the atom and man only one of degree.
A very interesting lecture was that recently given by Miss Charlotte W. Hawes, the subject of which was "Music in Nature." Miss Hawes has a way of her own in approaching her subjects, and her enthusiasm, her impressive manner, as well as the range of the information which she imparts, give lerlectures great interest even aside from their musical character. In the present in stance she showed how nature is everywhere musical; that the most common and simple actions produced musical and harmonious sounds, from the patter of berries from the measure into the pan to the grand tones of the waves beating upon the beach. The brooks, the winds, the trees, the raindrops, all of thes are musical; and as to the birds, they have often sug gested to musicians the themes which have been so well developed. "Pleyel's Hymn" is but the setting of the song of a little bird. From such things the rude musicians drew their inspirations, and in these our musicians have found a basis. In the midst of a shower, Handel sought shelter in a blacksmith shop, and the clink of metal upon metal-the hammer striking the iron or the anvil-suggested to him a new spirit to a familiar tune.
Incidental to the lecture were many illustrations, in strumental, vocal, and imitative.

Remarkable Mirage.

The people of Port Huron witnessed a remarkable mirage on December 25, showing the Canadian bank of the St. Clair River for about thirteen miles and both banks from Marysville to what is known as ic Gregor's Point, a mile below the Oakland House. At 7:30 o'clock in the morning, on looking to the south, Port Huron people could see Sarnia reflected in the clouds, and even the ferryboats as they crossed the river. The frame houses stood out boldly, making an exceedingly pretty panorama. Following along to the west, Stag Island appeared, and from there to a poin a mile below the Oakland House both banks of the St. Clair River were visible. St. Clair City was clearly outlined upon the sky, and smoke could be seen as cending from the tops of several smokestacks. The mirage was visible for more than an hour.

[From the New York herald.]
 Helen Keller.

The slender young girl in her dainty little white evening dress, who, despite the fact that she is blind and deaf and was unable, until within a few years, to utter articulate sounds, stood in the parlors of the Wright-Humason School, at No. 42 West Seventy-sixth Street, New York, recently and received her guests with as animated conversation as if her short life had been one continuous stretch of social impressions enough to crowd five senses, has excited interest all over the world.
Although only fourteen years old, Helen Keller has a wider range of information than has sifted into the minds of the vast majority of men through their unimpaired senses, sometimes when their hair has silvered.
She was not born blind, and deaf, and mute, but lost the use of these faculties through scarlet fever at the age of eighteen months. She later regained the ability to speak through the instruction tending to make her formulate words, even though unable to hear the sound.
Miss Sullivan, who went to her when she was seven years old, has been her constant companion and teacher ever since.
The marvelous dexterity which Helen is acquiring in the reading of speech and conversation by simply placing her fingers on the lips of the speaker is equaled by the readiness with which she repeats accurately the words which are spoken to her
As various persons of social and literary prominence paid their respects to her she talked with them upon topics of mutual interest. When Edmund Clarence Stedman approached and began a conversation, she surprised him by repeating one of his poems, and was equally well prepared to prove to Richard Watson Gilder her familiarity with his dainty songs.
From a large volume of Tennyson in the raised letter of print of the blind she read several stanzas of "In Memoriam." When asked if she preferred that to others of that author's poems, she replied: "Oh, no! I like it, but not the best, because it is so full of sorrow. I am very fond of 'Dora' and 'The Princess,' but it is very hard to say which I like best. I think the one I love most is a very short one-one of only six lines," and turning upward a face filled with ex quisite purity, she repeated:

Flower in the crannied wall,
I pluck you out of the crannies
Hold you there, root and all, in my hand,
Little flower; but if I could understand
What you are, root and all, and all in all,
I should know what God and man is.
The slight touch of her finger tips as her friends passed before her supplied her wonderful memory with the material for recognition, and as they bade her good night she took each by the hand, and with a slight touch of her hand to the face, with courteous phrases and kindly wishes, bade each by name good night.
One of the most impressible features in her attitude to her more fortunate fellows-more fortunate so far as receptive faculties are concerned-is her extremely lovable disposition, which accords so well with the look of perfect happiness upon her face and her laugh ing air of freedom from care.

The Susquehanna River to be Harnessed.
An ambitious plan for utilizing the waters of the Susquehanna River as a means of generating electric power is about to be carried out. A certificate of in corporation has recently been granted to the Susquehanna River Electric Company and work is to be commenced as soon as the spring freshets are over. The surveys have already been completed. It is proposed to dam the Susquehanna River near Conowingo Maryland, and erect a large electric power house, similar to the one now in operation at Niagara Falls. The power obtained in this way will be supplied to Philadelphia, Wilmington and Baltimore, and other intermediate points. It is expected that it will be used extensively in operating street railways and electric lights. The land at the proposed site of the dam nas been purchased and the plans have been made for an immense plant. The capital stock of the company has been placed for the present at $\$ 100,000$, but it is understood that the Westinghouse Electric Company are behind the project and that the capital will be in creased, when the work is to be commenced, to several millions of dollars. It is expected that the company will be prepared to supply power to the several cities by January 1, 1896.

Natural Gas at 1,000 1b. to the Square Inch. At Martinsville, Va., on December 20, while Captain James Clegg, foreman of a pipe line gang for the New Martinsville Natural Gas Company, was calking a pipe under a thousand pounds direct pressure, the pipe burst, throwing Captain Clegg nearly 100 feet into the air and killing him instantly, his neck being broken. Half a dozen other workmen about him were knocked down and severely injured.

The Steam Yacht Giralda.

Mr. McCalmont's twin screw steam yacht Giralda, built in England, is reported as being a most remarkable vessel. She combines all the features of a first class pleasure yacht with the speed of the fastest oceangoing steamers within the compass of 1,508 tons yacht measurement; and she has a coal-carrying capacity enabling her to make a voyage of over 3,500 nauticai miles at a speed of 15 knots, or of nearly 6,000 nautical miles at a speed of 12 knots. Upon the measured mile upon the Clyde she realized a speed of 20.9 knots, and she approached the same speed in a lengthened run in the Solent. It has been hitherto held that the capacity of an ocean-going steamer was necessary to provide engine power for a speed of over 20 knots, if in addition to the boilers and coal bunkers there should be provided the ordinary complement of staterooms. Her trials have also provided some interesting data on the question of vibration. At 17 knots the vibration is ex cessive, but below and above that speed the vibration disappears. Two Gardner guns and four Hotchkiss guns, with two electric search lights of Admiralty pattern, assist the conception of an amateur cruiser; and the crew of sixty naval reserve men, procured from the Orient service, encourage the idea that, although a private yacht, the Giralda may be regarded as at any time available as an Admiralty dispatch boat. The vessel has been designed and constructed by the Fair field Company, at Govan. Mr. McCalmont holds master's certificate and navigates the boat himself.

African volcanoes.

In 1891, when Emin Pasha started west from Victoria Nyanza on the journey that ended in his violent death he and his comrade, Dr. Stuhlmann, were the first white men to see the big mountain Mfumbiro, 120 miles from the lake which Capt. Speke, many years before had placed on his map on native information. They found that Mfumbiro was not an isolated cone, but the most eastern of a hitherto unknown range of vol canic origin. Their first purpose was to determine the outlines of Lake Albert Edward, and they did not stop to explore these mountains; but Dr. Stuhlmann sent home an interesting report of the natives that Virunga, the most western summit of the chain, was a fire mountain, from whose top smoke was often seen to issue, and from which noises were heard like the bellowing of cattle.
On December 8 a cablegram reached Europe from is his arrival on the lower Congo, after crossing Africa from east to west. About the same time a letter he contained brief but interesting details of his visit to Mount Virunga. There have been reports of plutonic activity among the Rif Mountains, in northwestern Morocco, but the hostile natives have prevented investigation. The subterranean forces that formed the great trough and piled up mountains of lava and ashes east of the great lakes show, by solfataras, hot springs, and other phenomena. that they are not yet entirely spent. But until the discovery of Mount Virunga no active volcano was known to exist in Africa.
While still far away Count von Gotzen saw a thin column of smoke ascending from the principal crater and later he found that the rim of this orifice is 11,400 feet above the sea. The volcano, therefore, is not est mow mountain, and is not so tall as its near Stuhlmann, is about 13,000 feet high. It took Von Gotzen several days to force a passage through the dense forest and to scale the steep mountain side At last he stood upon the edge of the crater and look ed down upon a most interesting spectacle.
The crater is about a mile in diameter, and the top of the encircling wall, on which the explorer stood, is about 160 feet above the crater floor. The inner side of the wall was too steep for comfortable descent, and in view of what was going on at the bottom, there was absolutely no temptation to make the journey.
The yellow-hued bottom of the crater floor was a mooth as the surface of a lake, and the explorer be ieves he was looking down upon an expanse of molten ava. Above this smooth surface rose the walls of two orifices, as regularly formed as though they had been
made of masonry. From the more northern of the made of masonry. From the more northern of the
two orifices, which was over 300 feet in diameter, small volume of smoke was issuing, accompanied by a noise that sounded like the roll of distant thunder. There were unmistakable indications that outside of this crater another center of eruption exists on the west side of the mountain, but the explorer was un able to push through the woods to reach it.
For some years a little lake has appeared on the maps some distance south of the place this volcano has been found to occupy. It is Lake Kivu, seen by no white man until Von Gotzen stood on its shores soon after he had looked down into the smoking crater. He says the lake stretched away before him like its southern shores. He believes the lake is almost as
large as Lake Albert Ed ward. Its outlet is supposed to large as Lake elbert Ed ward. Its outlet is supposed to
be the Rusisi River, which enters the north end of Lake Tanganyika.

It is too early to regard the large prizes of African discovery as all won when such interesting and impor tant results reward research as those attained by the latest traveler across Airica.-N. Y. Sun.

Swallowing Alive.

The recent strange incident at the Zoological Gar dens, London, when a boa nine feet in length swal lowed a companion of eight feet, has recalled many wonderful stories of similar kind. A few years ago a python of huge size seized a boa, and would have swal lowed it entire but for the energetic exertions of Mr Bartlett and of the keeper of the serpent house. Sev eral cases have been since narrated, sometimes by ey witnesses.
Mr. Wells, the marine superintendent of the Brighton Aquarium, in a letter, says that "fishes are as often notable for extraordinary swallowing as snakes and reptiles. Some years ago there were three large pike in one of the tanks here, from 18 to 28 lb . The pike of 281 lb . swallowed his companion of $18 \mathrm{lb} .$, but the vic tim proved too long for him, so the tail projected out of his mouth. After several days, as digestion went on, the whole of the tail disappeared. Last summer a conger eel swallowed a large dog-fish and kept it down though it was swallowed tail first, which is very unusu al with fishes."
Many will remember the curious adventure at the Brighton Aquarium, when a dog-fish swallowed a large octopus. The octopus was in the adjoining tank, and during the night climbed over the glass wall in search of prey. A dog-fish seized and swallowed the formidable intruder. The specimen wasfor many years exhibited but has now disappeared, possibly from the cost and rouble involved in preserving the contents of the im mense jar.-Public Opinion

Japanese Troops

Rear-Admiral Belknap, of our navy, now in retire ment, says :

There is not one incident of personal prowess or of individual valor in the annals of England that may not be matched by a similar deed of courage and heroism in the annals of Japan. The great sea fight of Dem No-Ura was as significant and more hotly contested than the battle of Trafalgar. No British force has ever met on the field of battle an Oriental race at all the equal of the Japanese in martial character and intrepid spirit. Her army to-day is the equal of the British army in organization and equipment, superio to it in homogeneity, mobility, and discipline. She has seen, this long while, the British squeeze upon the throat of China and the brutal means used to ac complish it, and she does not mean that such fate shal overtake her, if stout hearts and strong arms can pre vent it. No British minister will hereafter attempt to enact the meddling and menacing part of a Parkes a Tokio, nor will any British fleet bombard with im punity a second Tengoshima. The sun does not shine on a more determined or intrepid race than that of Japan. The martial spirit of Japan antedates that of Britain, and hereafter, whether on land or sea, the arch robber of the universe will find all she cares to meet if she comes into hostile contact with the force of Dai Nippon."

Typhoid from oysters.

Dr. Charles A. Lindsley, of New Haven, secretary of the Connecticut State Board of Health, says that, be yond the shadow of a doubt, the epidemic of typhoid fever at Wesleyan University, at Middletown, Conn., could be traced to oysters infected with the germs of disease.
It has been ascertained, he said, that the oysters pro vided for a series of banquets at the university had been placed in a portion of the Quinepiac River to fat ten. The fattening ground is close to the house of the dealer from whom the oysters for Middletown consump tion were obtained, and it was learned that two mem bers of the dealer's family had suffered from the fever and that excreta had been discharged into a sewe which empties into the river close to the place where the oysters had been placed.

African Saltpeter.

Deposits of saltpeter that promise to be the most valuable in existence have been discovered in Cape Colony. They are claimed to be true potassium nitrate, which is one of the chief ingredients of gunpowder, and is worth about $\$ 80$ a ton. The principal supply at present is from Chile, but the "Chile saltpeter," as it is called, has to undergo a costly chemical process before use. Nitrate of potash is found in but small quantities as a rule, as it is soluble in water, and is, therefore, washed out of the soil by the rain. The dry ness of the South African climate is supposed to ac count for the richness of the latest find, which, it is stated, will reduce the price of the mineral one-half.

THE UNITED STATES BATTLE SHIP INDIANA. We illustrate the battle ship Indiana at sea, showing one of the three most powerful additions yet made to our navy, the war ships of the Oregon type. The Indiana, Oregon and Massachusetts are sister ships, the type taking name from the Western State. The three ships were authorized by act of Congress dated June 30, 1891.
The keel of the Indiana was laid at William Cramp \& Sons' yard in Philadelphia in 1891, and the vessel was launched February 25, 1893. The general dimensions are as follows: Length on load water line, 348 feet; width, 69 feet 3 inches; draught, 24 feet; displacement, 10,200 tons. The engines of 9,000 indicated horse power, of vertical triple expansion type, drive twin screws. The coal room capacity is 400 tons, to which must be added a bunker capacity of 1,800 tons. The contract speed is fifteen knots, which was exceeded on the preliminary trial trip last March.
The armament consists of four 13 -inch, eight 8 inch and four 6 -inch breech-loading rifles, with a secondary battery of twenty 6 -pounder and six 1-pounder rapidfiring guns and four Gatling guns.
The ship is very heavily armored. Her side plates are

8-inch guns occupy four smaller turrets on top of the central superstructure, one near each corner. Six torpedo tubes and a fighting mast are provided. The ship is considered about as powerful as any vessel afloat.
The ship is furnished with a complete outfit of Blake pumps, including independent air pumps for the main condensers, main and auxiliary feed pumps, main and auxiliary fire pumps, bilge pumps and others.

New Sugar Process.

The Barbados Herald says: Rolling mills have hitherto been the means universally employed for the separation of the saccharine from the cane, but under the most favorable conditions, and after double and even treble millings, from 10 to 13 per cent of the saccharine is still retained in the tiber, or, as it is called, megass.
The new machine is designed and patented by Mr. D. Drummond. The results of the most recent test cannot be got for some days, but in several preliminary trials the issue was of the most satisfactory description. With cane that had been cut for over two months the machine succeeded in extracting within less than 8 per cent of the total juice, and the megass

American Armor Plates.

When, in June, 1887, after a careful inquiry by an official commission, our government found it necessary to place an order with European manufacturers for several thousand tons of armor plates for our new navy, the announcement was received by the public with expressions of ill-concealed disappointment and mortification. It was some compensation for this feeling when it was stated, almost simultaneously, that the government had also placed a large home order for armor plates with the Bethlehem works under such conditions as would enable the company to secure the appliances and set up an adequate armor producing plant. It required over three years to bring this plant to effective working condition in turning out armor plates for battle ships, but the Bethlehem works have since, owing to improved processes, and by the use of a nickel steel alloy and the Harveyizing of the outer surface of each plate, turned out armor plates which already have the reputation of being the best made in the world. A practical testi monial of their excellence was afforded by a cable telegram received by the Bethlehem Company on the 15 th ult., ordering, on behalf of the Russian government the whole amount of armor needed for two new Rus-

THE UNITED STATES BATTLE SHIP INDIANA.

18 inches thick. The main battery is fought from | when analyzed by Dr. Clark, city of Glasgow analyst, large and small turrets, surmounting low barbettes. | was found to contain only 7 per cent of sugar. The large turrets are 15 inches thick, and their bar- Briefly, the process is as follows: The cane is cut bettes are 17 inches thick. The smaller turrets are 6 into lengths of four or five inches, and passes, without inches thick, with 8 inch and 6 inch barbettes. The being touched by hand, into a cylinder where it is deck, of $23 / 4$ inch steel, is flat. The ship is to carry a crew of 400 men. The contract price was $\$ 3,020,000$.
The bow protruding below the water line constitutes a ram which adds to the ship's powers. On the preliminary trial trip alluded to, a speed of 14.02 and 14.12 knots was attained on natural draught at 122 revolutions, and 15.6 on forced draught at 128 revolutions. These trials were made before the ship was down to her loadwater line. When in perfect trim, higher re sults are anticipated. The pitch of the screws used on the trial was 15 feet 3 inches; it is thought that screws of higher pitch may eventually be selected. The ves sel turned through 180 degrees in five minutes.
The turrets are mounted by the new system within circular barbettes, the latter about three feet high They are always ready for action, there being no joint to be loosened before they can turn, as in the older type deck turrets. The two main turrets are situated on the main deck, one forward and one aft of the superstructure, each containing two 13 -inch guns. The
crushed. When all the juice possible has been ex pressed by a powerful pressure, the megass is dollied and subjected to a steam bath in order to extract any juice left in the cells of the cane. The pure juice and the diluted juice are carried into separate tanks by suction pumps and the megass by a mechanical arrangement is discharged by the crushing cylinder, to be used as fuel. The whole of the operations of feed ing, crushing, discharging and pumping are per formed by one man. lt is intended to make five different sizes of machines, capable of dealing with 5,10 15,20 and 25 tons of cane per hour, and the largest does not occupy more than 8 feet of floor space. The advantages claimed for the machine, which is equally suitable for treating beet root, are : Complete extrac tion of the sugar at one operation; minimum risk of breakdown, as there is no gearing or revolving shafts, and that a number of machines can be worked at con siderable distance from each other, from one hydraulic and steam installation.
sian battle ships, the Sebastopol and Petropavlovsk. The contract called for 2,080 tons of armor plate, which is said to be the largest single order ever put out in Europe, and means a full year's employment for all hands in the armor department of the Bethlehem works. The value of the order is estimated at between three and four millions of dollars, and the gratification of the successful bidders and of the public is heightened by the fact that the order was obtained over the keen rivalry of fourteen competitors, among whom were the leading armor plate manufacturers of England, France, Germany and Italy.

A Prize for a New Gas Burner.

The list of prizes offered for competition by the Committee of the Societe Technique du Gaz en France, which appears in the current number of fue Journal des Usines a Gaz, contains an item of special interest at the present time. It is a prize of $\$ 2,000$, to be awarded in whole or in part to the inventor of a new incandescent gas burner presenting some marked superiority over the burners now in existence. The burner is to be sent in before the 1st of April, 1895; but the committee will determine whether or not they will extend the time till the 1st of May, 1896.

improved gatling gun

Important and valuable improvements have recently been made in the Gatling gun, and also in its feed mechanism, by the Gatling Gun Company, of Hartford, Conn. The gun retains its primary features of revolving barrels and locks. The new feed makes it possible, however, to manipulate the gun with greater facility than heretofore. The rate of firing is greatly increased and the gun may be fired at any angle of elevation or depression, the feed being positive in its operation. In the old form of Gatling gun the feeding depended upon gravity, and this made it impossible to fire the gun at any considerable elevation or depression. The old feeding apparatus was bulky and was a conspicuous mark for the enemy. The new feed is much lighter smaller, and more economical than the old The cartridges used in the new feed are attached to strips of tin, and are fed to the gun with great rapidity. They are discharged and the empty shells thrown aside automatically while the barrels of the gun are revolving.
For fort and naval uses, the gun may be operated by an electric motor, the firing being controlled by a button, the gun being fired rapidly or slowly, as desired. The motor is attached to the breech of the gun, and appears, when in motion, merely as an elongation of the breech. It develops one horse power and weighs about 100 pounds The entire mechanism is very compact, and is inclosed to protect it from injury. This new motor attachment makes it possible to discharge the gun at the rate of over 3,000 shots per minute.
The manufacturers of the improved gun attach particular importance to the gain by the new feed in cheapness, compactness, and the general simplicity. Each feed strip holds 20 cartridges and costs but a few cents, and may be refilled, if necessary, as many as thirty times.
The space occupied by the former bulky feed mechanism may now be used for am munition. Ten thousand rounds of ammunition may now be carried in the limber for immediate use.
The improved gun and new feed are so simple and easy of manipulation that any soldier can fire the gun; and this will be found a great advantage in ordinary service, either on land or on shipboard.
Further information may be had by addressing the Gatling Gun Company, Hartford, Conn.

Preservation of Propeller Shafts.

It is now about two years ago since the first of the propeller shafts fitted with the arrangement devised

THE IMPROVED GATLING GUN-ARMY MODEL.
earth's surface, or the latitude and longitude of the camp which he occupies. He is able to do this becaus the earth is round, and the direction of the plumb line not exactly the same at any two places. It is true that a considerable distance on the earth's surface will seem very small in its effect on the position of a star. Suppose there were two stars in the heavens, the one in the zenith of the place where you now stand and the other in the zenith of a place a mile away. Tothe best eye unaided by a telescope those two stars would look eye unaided by a telescope those two stars would look
like a single one. But let the two places be five miles apart, and the eye could see that there were two of them. A good telescope could distinguish between two stars correspond ing to places not more than a hundred feet apart. The most exact measurements can determine distances ranging from thirty to sixty feet. If a skillful astronomical observer should mount a telescope on your premises, and determine his latitude by ob servations on two or three evenings, and then you should try to trick him by taking up the instrument and putting it at another point one hundred feet north or south he would find out that something was wrong by a single night's work.
We cannot measure across oceans from island to island. Up to the present time we have not even measured across the continent, from New York to San Francisco in the most precise way. Without as tronomy we should know nothing of the distance between New York and Liverpool, except by the time which it took steamers to run it-a measure which would be very uncertain indeed. But by the aid of astronomical observations and the Atlantic ca bles the distance is found within a few hun dred yards. Without astronomy we could scarcely make an accurate map of the United States, except at enormous labor and expense, and even then we could not be sure of its correctness. But the practica astronomer being able to determine his lat itude and longitude within fifty yards, the
it is at the present day. True, they did not know that the earth revolved on its axis, but thought that the heavens, and all that in them is, performed a daily revolution around our globe, which was, therefore, the center of the universe. It was the cynosure, or con stellation of the Little Bear, by which the sailors used to guide their ships before the discovery of the mariner's compass. Thus we see both a practical and contemplative side to astronomy through all history. The world owes two debts to that science: one for its prac tical uses and the other for the ideas it has afforded us of the immensity of creation.

THE IMPROVED GATLING GUN-NAVY MODEL. positions of the principal points in all great cities of the country are known, and can be laid down on maps. The world has always had to depend on astronomy for all its knowledge concerning times and seasons. The changes of the moon gave us the first month, and the year completes its round as the earth travels in its orbit. The results of astronomical observation are for us condensed into almanacs, which are now in such universal use that we never think of their astronomical origin. At some of the principal observatories of the country astronomical observations are made on every clear night for the express purpose o regulating an astronomical clock with the greatest exactness. Every day at noon a signal is sent to various parts of the country by telegraph, so that all operators and rail way men who hear that signal can set thei clock at noon within two or three seconds People who live near railway stations can thus get their time from it, and so exact time is diffused into every household of the land which is at all near a railway station, without the trouble of watching the sun. Thus increased exactness is given to the time on all our railroads, increased safety is obtained, and great loss of time saved to every one.-Prof. Simon Newcomb, in the Chautauquan.

Fireproof Buildings.

The attention of architects and builders has been directed for some time to the difficult task of constructing an absolutely fireproof building. It has been found that a rise in temperature to 300 degrees F. will throw the heaviest steel columns more or less out of place, and that a rise to 500 F . would ruin the best steel construction. Fireproof buildings are usually constructed, therefore, by surrounding the girders with material to protect them from the heat. An elaborate form of such a construction has been introduced recently in the new Tremont Temple in Boston. It consists in placing about the great steel girders terra

The practical uses of astronomy are of two kinds : One relates to geography; the other to times, seasons, and chronology. Every navigator who sails long out of sight of land must be something of an astronomer His compass tells him where are east, west, north, and south, but it gives him no information as to where on the wide ocean he may be, or whither the currents may be carrying him. Even with the swiftest modern steamers it is not safe to trust to the compass in crossing the Atlantic. Not only the navigator, but the surveyor in the Western wilds must depend on astronomical observations to learn his exact position on the
cotta blocks on all the exposed sides and strapping them together with iron. Upon this is stretched expanded metal lathing covered with a heavy coat of Windsor cement. Over this, in turn, comes iron furring, and this is provided also with a layer of expanded metal lath. The finishing plaster is laid on top of this last layer. It will be seen that this arrangement provides first a dead air space, next a layer of terra cotta, a Windsor cement covering, then a second air space, and finally a second thick layer of Windsor cement.

They cut glass now by electricity.

The "White City" of antiquity was Rome, and most
of the so-called marble houses of the Augustinian of the so-called marble houses of the Augustinian
period were not such in reality, but owed their stonelike appearance to the plasterer's art, which at that time had reached a high state of perfection, and gave to stone the appearance and induration of the finest marble.
It is on record that some of this plastering, which in some particulars resembled the white "staff" used on the World's Fair buildings, lasted for centuries, but the art which enabled man to make and apply this material was lost before the examples perished.
It is evident the ancients, at all events the Egyptians, Greeks and Romans, possessed a knowledge of eminent mortars and cements, as is proved by the phenomenal strength and durability of the remains of edifices still standing to receive their tribute of admiration. Doubtless much was due to the durability of the stone used, but builders of to-day know that more was due to the superiority of the mortar employed. True, the action of time has fostered improvement and aided petrifaction, but had the mortar been composed of inferior materials, or manipulated unskillfully, it would have been rotten centuries ago, and the stones it held together would have been lost to us forever.
In all highly civilized communities good mortar was and is a necessity. Indeed, the quality of mortar and is a necessity. Indeed, the quality of mortar
used in any community may almost be accepted as an index of its civilization.
The city of Nineveh has left us comparatively nothing of its history, as it was a city of mud and unburnt clay, adobe walls and loamy mortar. Of Babylon we know more, as it was a burnt brick built city, witb walls bonded together with bituminous mortars. Egypt, that cradle of the arts, built the massive pyra mid of Sackkara of bricks cemented with Nile silt Later, she raised her temples and pyramids of hard syenite, and held them together with imperishable asphaltic mortars ; but the greater works of this wonderful people were held together with a mortar formed by an admixture of hydrate of lime and Nile silt. The Greeks, in their earlier public buildings, dispensed with mortar to some extent, and used dowels or pins made of cypress wood to hold the stones in place. All their joints, however, were rubbed or ground together, so that the junction of the stones was almost perfect ; later on, mortar was used in many of their structures. The Romans, the most practical builders of antiquity, surpassed all peoples, ancient or modern, in their knowledge of the materials they made use of in their building operations, and it is to their intelligent attention to mortar making that we moderns are enabled to see the work of their hands. The importance of the manufacture of mortar was such that in all large works, national, municipal or private, it was deemed
necessary to employ supervising officers, called ediles, whose duties were to inspect materials and superin tend the manipulation of all mortars and cements used in the building.
We may glean some idea of the labor expended in the making of mortar from Vitruvius, who says "That men mixed the ingredients by beating them with staves until the whole mass was smooth and plastic."
In another place the same author says: "The builders mixed puzzolana with lime to give it (the mortar) greater strength, and piers built in the sea would be as strong as if built on land, as the mortars made this way would harden just as well in the water as on the land."
It is quite evident also that the Phonicians were aware of the qualities of puzzolana, for some of the docks and wharves of Carthage were built of stone and cemented together with a mixture of lime and puzzo-
lana. It is difficult at this date to trace to its source lana. It is difficult at this date to trace to its source the invention of lime mortar, but it is due either to Egyptian or Phœnician ingenuity, and was a grand it is curious to think that for several thousand years no further progress in its manufacture was made. Indeed, until about the commencement of the present century, common lime mortars were made in the same manner that was adopted four thousand years ago.
In the matter of producing a water-resisting mortar much more skill and knowledge were required ; yet we find that the possession of this knowledge by the ancients antedates the Christian era by several centuries, as the use of puzzolana mixed with lime to form a cement was known to both Phœenicians and Roman long before Vitruvius flourished.
The discovery of the manufacture of a mortar that would set and harden under water was another step forward in human culture, and evinced a knowledge of chemical conditions by the early builders that is really amazing. Hydraulic lime and the modern product of cement were unknown to them, but they seemed equal to the occasion, for they found that a proper admixture of lime, puzzolana and pounded bricks formed a cement that answered well their purposes.
It is not known at what period the fact was discov-
ered that certain limestones would yield a lime or cement capable of hardening under water. The French writer, Vicat, in the beginning of the present century, laws governing the action of limes. Up to the middle of the eighteenth century puzzolana imported from Italy and France, and from Germany via Holland, Italy and France, and from Germany via Holland,
was the standard ingredient for hydraulic mortars in England.
In 1756. John Smeaton, C.E., was intrusted to build a new lighthouse on the site of the Eddystone, which had recently been destroyed by fire, and he set to work to discover some material at home which would resist the action of both surf and sea. The lime from Aberthaw answered his purpose. He investigated the cause, and proved before long that only those limes resist water which, when treated with acids, leave argillaceous residues. The spell was broken, and artificial cements followed each other rapidly after that. Parker took out his patent for Parker's cement in 1796 This consisted of lumps of chalky clay gathered from the sea coast. It became
known as "Roman cement," because of its being known as "Roman cement," because of its being
similar in color to the Roman puzzolana. In its action it was somewhat like to our Rosendale. By inference it followed that hydraulic cements could be produced artificially of lime and clay.
Parker made a number of experiments with clinkers pulverized limestones, and the calcareous detritus produced by the wear of limestone roads near Leeds, mixed clay with it and burned it in a kiln at a red heat. He called the resultant "Portland cement," because it was similar in color to Portland stone. The name thus given has clung to this cement ever since, no matter where made.
In 1827 Sir Charles Paisley improved and cheapened the process of manufacture, by selecting English chalk as being best suited to the purpose, owing to its un crystalline, fine grained quality. He mixed it with clay from the deposits at the mouth of the Medway, near Chatham, and calcined them. This made a good cement, but as the merits of white heat calcination were then not known, the quality could not be relied upon.

The credit is due to a German, Dr. Fuch, of Munich, of first formulating a scientific theory concerning the manufacture of cement, and stripping it of its mystery. He proved in a prize essay that Portland cement could be made anywhere and from a variety of ma terials, abundant in every locality. This essay, being translated in several tongues, was the means of raising a host of manufacturers, with the result of bring ing disgrace on the manufactured article, as it lacked uniformity of quality, and could not be relied upon, and architects and engineers avoided its use and stuck to old methods.
In 1858 John Grant, a London engineer, made a number of experiments, and so far succeeded in improving the quality that he completed the Thames embankment and the London drainage works without an accident, so far as the cement was concerned. The experiments made by Grant led him to believe that the heaviest cement was the best, and his reputation,
which was high, had the effect of spreading abroad the impression that to have weight was of more importance than to be finely ground.
Thisidea did much harm, even after it had been proved beyond a peradventure that it was fineness, and not weight, that gave to the cement its superior tensile strength. Through the efforts of Reid, Brund Mann, Newman, and others in England; M Noel, MM Chatony and Rivot, and others in France; Dyckerhoff, Michaelis, and Bauschinger in Germany ; of Zuirek and Hanenschild in Austria ; Gén. Gilmore, W. W Maclay, Elliot C. Clarke, E. J. Desmith, and F. Kid der, of the United States, the truth has been established that the materials being good, it is fineness that imparts to the material its good quality. W. W. Maclas, engineer of the New York docks, made between seven thousand and eight thousand tests, to satisfy himself as to what constituted the best cement, and in every case he found-where materials were chemically equal-that the finer grades were the best adapted for work requiring strength. Mr. E. C, Clarke, of the Boston Main Drainage Works, mad some twenty-five thousand tests with a like result.
Mr. Kidder, who watched a number of tests made at the School of Technology, Boston, arrived at the same conclusion. It may therefore be laid down as an axiom, that. no matter how good the material may be if it is not qround to a fine texture, it cannot be relied upon. Brands possessing a uniformity of texture will give better results than an admixture of brands, and when once a brand has been found to do all that was claimed for it, and it fills the bill, it is best to stick to
that particular brand. A good cement, when properly set, should equal in strength good building stone, and should have a like or greater specific gravity.
At this writing there are quite a number of brands of Portland cement in the market, many of them being imported from England, Germany, France and Belgium. Some brands are exceedingly good, while a
number of them are inferior to many made in this country. Indeed, some of the Portlands made in Pennsylvania, New Jersey, and other States are as good and reliable as some of the imported high grades. though I am free to confess that but few of our own brands grade as uniformly as the Dyckerhoff or Boulogne makes. Doubtless the quality of uniformity of the two brands named is due to the care and perfecthe two brands named is due to the care and perfec-
tion of manufacture, for neither France nor Germany tion of manufacture, for neither France nor Germany
possess raw material in as good a quality as is found possess raw material in as good
The English Portland is a mixture of clay, consisting chiefly of silica and alumina and chalk, or nearly pure carbonate of lime. The clay and chalk are ground roughly, and mixed in the proportion of one to three by weight, then again ground under water. The mixture is then allowed to settle and the water to drain off, and the mass is then dried and made into cubes, bricks, or balls, two or three inches in diameter, which are placed in a kiln and heated to a white heat. They are then allowed to cool, and afterward reduced to an impalpable powder. Unlike natural cements, Portland does not deteriorate when exposed to dry air. Dr. Michaelis, a noted expert on cements, says that the "raw materials, when dried at $212^{\circ} \mathrm{F}$., consist essentially of seventy-five to seventy-nine per centum, by weight, of carbonate of lime and twenty-four to twenty per centum of silicate of alumina, clay. These when burned represent sixty-two and one-half to sixty-seven per cent of lime and thirty-three and onehalf to twenty-nine per cent of silicates, silica, alumina, oxide of iron, leaving four per cent for carbonate of magnesia and accessories. After the hardening of the hydrated cement, a transformation, by compressive reaction, has taken place into hydrates, silicate of lime as the most important ingredient, in hydrated aluminate of lime, ferruginous lime, hydrate of lime, basic sulphate of lime, and carbonate of lime."
The results of analyses by other investigators by microscope and chemical tests verify the conclusions arrived at by Dr. Michaelis. A preponderance of alumina favors quick setting, while an increase of iron has an opposite effect. Tre partial vitrification obtained in the burning causes the particles forming the whole to lose their globular character and become laminated or flattened. This feature reduces the bulk and increases the value of the cement, inasmuch as the laminated texture achieves more intimate contact by surface.
The English standard requires these tests, viz., tha: the cement shall weigh one hundred and ten pounds to the strict imperial bushel; that it shall pass through a sieve having from one thousand six hun dred to three thousand meshes per square inch; and that its tensile strength shall be two hundred pounds per square inch at the end of seven days, the first passed in damp air, and the rest under water. Ameri ome specifications calling for a strength of t wo hundred and fifty pounds to the square inch.

Army ordnance Factories.

A valuable official summary of the present facilities of the various United States ordnance factories has recently been presented to Congress in connection with the annual request for appropriations. During the past year the work accomplisbed at these plants has been highly satisfactory. At Watervliet, the great factory for sea coast guns, the output has been eleven 8 inch, eleven 10 inch and six 12 inch guns, and work is in progress on a 10 inch wire-wound Crozier and upon seven 12 inch mortars. The factory is equipped or the manufacture of guns up to and including those f 12 inch caliber, and contracts have been made for he tools necessary for manufacturing 16 inch guns. The principal need at Watervliet is for a provin ground suitable for testing the large cuns of their manufacture. At present such guns must be taken to Sandy Hook for this purpose, thus incurring great ex pense. The cost of this improvement will be $\$ 98,840$. The next ordnance factory mentioned is that at Watertown, celebrated for the manufacture of great gun car rages. This plant constructs 12 inch gun lifts, barbette carriages for 10 inch guns, 8 inch carriages and earriages for the muzzle-loading 15 inch smoothbore and 8 inch converted rifles. Cast iron projectiles and ther castings are made, and there is much valuabl nachinery for making navy chains, shackles, swivel and the life-saving shot lines. At the ordnance station at Frankford the ammunition for the new small arms is manufactured in large quantities. Last year the output was $2,537,000$ cartridges, balls and blank for the 45 caliber rifles and carbines and $2,750,000$ for the 38 caliber. The output also included shrapnel for field uns, fuses, gun sights and various similar articles.
The report also mentions the important work in gun manufacture carried on at Rock Island and Springfield, the powder supplied by the plant at Benicia and the satisfactory tests conducted at Sandy Hook. The report gives evidence of a very efficient system of ordnance factories, and it is to be hoped that Congress will provide ample appropriations for carrying on their work in the future.

BROOKLYN'S MEMORIAL ARCH.

Prospect Park, which contains 516 acres, is one of the chief ornaments of the city of Brooklyn. The management of the park has always been conservative and the result has been most satisfactory. The winding paths and bridle roads have little in them which suggests the formal arrangement of an artificial park, but rather the grounds of some large English estate. Prospect Park contains few statues, but on its huge open spaces or commons children play at will without fear of injuring the grass. In some parts of the park sheep are kept, which adds much to the rural aspect of the park. Although the park itself has not been ruined by artificial constructions, it has been given a worthy entrance. The plaza at the west entrance to Prospect Park is ornamented by an imposing fountain and an excellent statue of Abraham Lincoln. At the left of the fountain rises Reservoir Hill, a commanding site from which a glorious view is obtained of the sister cities, New York Bay, the Narrows, and the Atlantic cities, New York Bay, the Narrows, and the Atlantic
Ocean. On this hill was erected the new high service Ocean. On this hill was erected the new high serv
water tower, which forms a conspicuous landmark.
The entrance to the park is now rendered most im-
various battles in which Brooklyn men participated will be inscribed. The top is reached by stairs which will communicate with a room over the arch, where war relies will, in time, be exhibited.

The Submarine Detector

It is now a little over a year since the Russian moni tor Rusalka foundered with all hands in a storm in the Gulf of Finland. Steps have since been taken by the Russian government to discover the precise locality of the ill-fated vessel, with the view of raising her, an expedition having been organized for that purpose. This expedition consisted of a flotilla of several vessels equipped with divers and all necessary apparatus, including one of Captain McEvoy's submarine detectors, which was made in London for the expedition. It has recently been ascertained that the spot where the Rusalka sank is a reef in the locality of the Waste Tokan. The reef is submerged, and it is supposed that the Rusalka grounded there, and subsequently slipped off into the surrounding deep water. Her precise position has been localized in 30 fathoms of water by position has been localized in 30 fathoms of water by
the submarine detector, a description of which, says the

A Close Call
The exact time at which darkness gives place to dawn-the dividing time between day and nightwas legally determined, and a verdict of $\$ 25,000$ given on the decision, in the Court of Common Pleas in Philadelphia recently. A young woman was knocked down by a locomotive on the Reading road while she was walking over a crossing at Norristown at 6:30 o'clock in the morning of February 14, 1893. The en gine did not display a light, nor did it signal with whistle or bell. The company claimed that it was not negligent, because at that hour dawn was breaking and no light was needed, and the entire case rested on whether or not it was daylight when the accident occurred.
The sun rose on the day of the accident at 6:54 o'clock. Several astronomers and other experts testified that half an hour before sunrise it is as dark as at any time of night. From that time until sunrise light comes so slowly that the point of half light is reached only even minutes before sunrise. During the last seven minutes before sun-up light comes very rapidly, unti the full day breaks. The plaintiff's lawyer claimed,

MEMORIAL ARCH AT THE ENTRANCE OF PROSPECT PARK, BROOKLYN.
pressive by the triumphal arch which bears, just below the cornice, the words "To the Defenders of the Union, 1861-1865." There is no more fitting monu ment to celebrate;past victories than\}a triumphal arch and it is to be hoped that the present generation has seen the passing of the tasteless granite column, surmounted by an indifferent effigy of a Union soldier. The corner stone of the Brooklyn arch was laid in 1889 and our illustration shows the present condition of it. It has already cost about $\$ 250,000$, and will probably cost as much more before it is completed. The architect is Mr. J. H. Duncan, of New York City, and the bronze groups are to be furnished by Mr. Frederick MacMonnies, of Paris and New York, the sculptor who executed the great Columbian Fountain at the recent Chicago Exposition and the statue of Nathan Hale in City Hall Park, New York.
The arch is built of light granite and is 80 feet long, 71 feet high and 45 feet wide. On each side of the abutments are massive pedestals which are to be surmounted by the colossal bronze groups. On the inner and outer faces of the abutments bronze bass reliefs emblematic of victory are attached. Above the cornice are to be wreaths in which the names of the

Times, may prove interesting. This apparatus is based on the principle of Prof. Hughes' induction balance, and it consists simply of an electrical arrangement contained in a small mahogany box, which is carried on board the searching vessel, and a sinker which is trailed along the bottom. When the sinker approaches a mass of steel, iron, or any other metal the adjustment is deranged, and sounds become audible in the telephone, while they are reduced in intensity as the sinker recedes from the metallic object. The search was continned for several weeks, and the exact position of the foundered vessel was at length placed beyond all question, as every time the searching steamer passed over a given spot the electric indicator of the detector sounded loudly, thus affording evidence that a large mass of metal was submerged below. After the vessel was located the divers descended and examined her.

Temperature of the ocean.

The temperature of the bottom of the Atlantic Ocean, as determined by the resistance of the Atlantic cables, is said to be $38^{\circ} \mathrm{F}$., which is a mean for the whole year. That at the bottom of the Mediterrarean, measured in the same way, is said to be $57^{\circ} \mathrm{F}$.
therefore, that at the time of the accident, twenty-four minutes before sunrise, it was pitch dark. The jury rendered a verdict of $\$ 25,000$ in her favor.

A Complete Pompeiian House

A valuable discovery has been made at PianellaSetteimini, near Pompeii, on the property of a certain Mr. Vincent de Prosco. A house has been unearthed which was covered at the time the city was buried, and it is said to be in a more perfect condition than any building yet discovered. It contains several large apartments and three bathrooms, with the basins in sculptured marble, and with leaden pipes ornamented with bronze faucets. The three rooms correspond, says a writer, in describing the discovery, to the "calidarium, tepidarium, and frigidarium, which were always to be found in ancient houses of the first class. always to be found in ancient houses of the first class.
In consequence of the eruption of Vesuvius in A. D. In consequence of the eruption of Vesuvius in A. D.
79 , the Pompeiian houses brought to light beretofore have been roofless, almost without exception. Fortunately, however, that on the property of M. De Prosco is perfect, and archæologists are happy over the fact. The roof measures almost forty-four feet in length."

RECENTLY PATENTED INVENTIONS. Engineering.
Steam Engine Valve Gear.-Lemon . Burk, Corning, Ark. To permit of conveniently re the ends of the cylinder, this inventor has designed simple and durable valve gear designed to be very ef
fective in operation. The reversing link is rocked from fective in operation. The reversing link is rocked from
the main shaft, and a block sliding in the link is con nected by a rod with the valve stem, a raising and lower ing device for the rod moving the block in the link. The
device consists of an adjustable rock shaft having an arm with an eye through which the connecting ro slides. The steam chest has openings at its ends an removable cover sections, there being valve casings i
the ends of the casing, and the middle portion of th chest forming the chamber for the live steam.
Double Acting Pump. - Frank J Brown, Alfred Allen, and Solomon Allen, Halstead, Kan.
In the lower end of a tubular well casing, according to In the lower end of a tubular well casing, according to
this invention, is held a double cylinder, with differential bores, the upper and smaller discharging into a casing above, while the lower and larger cylinder has an inlet opening controlled by a suction valve. In this cylinde
is also a plunger connected by a hollow stem with plunger in the upper cylinder, there being on the upper end of the stem a valve passing the water into the uppe
cylinder. A rod connected with the hollow stem i cylinder. A rod connected with the hollow stem is
coupled to a lifting rod whereby plungers in the two cylinders are reciprocated. The construction is simple
and durable and the pump is designed to be very efand du
fective.

Railway Appliances

Switch Working Mechanism. James and Charles McGhee, Sandy Valley, Pa. This in vention provides an inexpensive mechanism for applica-
tion to an ordinary switch, by which it may be worked from a passing train, withmeans for automatically locking the switch to hold the main line open and prevent the switch from being tampered with. Vertical shafts
with striking arms are geared to a crank shaft adapted to throw the switch, an arm on the crank shaft receiving forked post, and a pin moving through the arms being
actuated by the crank, while the shaft is turned and the actuated by the crank, while the shaft is turned and the
pin moved by levers fulcrumed at the side of the track, pin moved by levers fulcrumed at the side of the
the levers being actuated by the approaching train.

Rail.-Lawrence K. Devlin, Helena Montana. To form a duct or passageway in rails fo
electric wires, according to this invention, the rails ar electric wires, according to this invention, the rails are
formed with a longitudinal recess, extending centrally up from the bottom, the web of the rail being made somewhat larger than usual, and thus forming a double web. The bottom of this recess is closed by a plate pre-
ferably of wood, snugly fitted, and at the rail joints is ferably of wood, snugly fitted, and at the rail joints is employed a hood, corresponding in shape to the recess,
the hood extending a short distance into the meeting the hood extending a
Railway Crossing Gate. - James Ruth rford, Brooklyn, N. Y. This is a sliding gate with sliding trips at each side to be operated by a mov-
ing train, there being pinions actuated by the trips and ing train, there being pinions actuated by the trips and
shifting bars connected with opposite sides of the gate, the bars having rack surfaces engaging opposite sides of the pinions, so that the action of one is the reverse of that of the other. The arrangement is such that the
gates are automatically closed by an approaching train gates are automatically closed by an approaching train
before the latter reaches a crossing, and automatically pened after the train has passed.
Street Car Fender. - William H. Brock, Brooklyn, N. Y. This is an improvement on a
formerly patented invention of the same inventor, proformerly patented invention of the same inventor, pro-
viding an auziliary shifting device whereby, when the viding an auxiliary shifting device whereby, when the
fender is drawn beneath the car, and strikes an object, the fender will automat in the morman or ripma should fail to bring it into requisition. The shifting de vice is of simple construction and very light, occupying
but little room, not interfering with other attachments but little room, not interfering with other attachments

Ball Bearing Wheel.-Hallam F. Coates, Cambridge, Ohio. Acrording to this invention which a filler of slightly less diameter is slid, the fille having annular grooves in which are bearing balls en gaging the wall of the chamber, means being provided
for adjustably connecting the filler on the axle. In this wheel the use of boits, gaskets, caps, nuts, and other loose parts is dispensed with, the axle is protected, and
he friction reduced to a minimum. The construction i simple, there being but few parts and these easily put together.

Mechanical.

Bench Stop. - Josiah Daily, North Peoria, Ill. This stop may likewise be used as a square
and marker, having a side arm and at right angles thereto a cross or head bar, the latter being graduated and at a higher level. The side arm forms a guide or abutment for the board applied to the stop, and has near its end a removable stud adapted to enter one of a series of
sockets along both edges of the bench near its top, to sockets along both edges of the be
bring the stop to any desired point.
Pipe or Hose Coupling.-Simon A. Stahley, Suspension Bridge, N. Y. This invention comprises a coupling member having a head formed with
guideways tapering from top to bottom, a rack held alongside one of the guideways, and a second head engaging the guideways, while a gear wheel turning loose-
ly on the second head is adapted to mesh with the rack. The improvement enables the operator to positively produce a non-leaking joint, and permits of readily con-
necting or disconnecting the coupling members on their necting or disconnecting the coupling members on the
full pressure and without the use of separate tools.
Belt Shifter and Brake for Cot ton Presses.-Thomas M. Wallace, Marion, Ala. This improvement is applicable for presses with a reciprocat-
ing follower, especially with "self-tramper "presses, tating screw shaft In combination with two sets of fast and loose pulleys are slidable belt shifters whereby the
$\left\lvert\, \begin{aligned} & \text { follower may be returned very quickly, to economize } \\ & \text { time in compressing the several charges of cotton. In }\end{aligned}\right.$ time in compressing the several charges of cotton. In
the same connection and coacting with the belt shifter is the same connection and coacting with the belt shifter is
a friction brake mechanism, that the speed of the follower may be maintained up to the limit of its move ment in either direction without strain or injury to the

Wall Paper Printing Machine.William H. Waldron, New Brunswick, N. J. This in by which wall paper is produced by two impressions from two machines, with an intermediate drying appar atus, the design for the paper of the second machine reg-
istering accurately with the design already printed by istering accurately with the design already printed by
the first machine, irrespective of the shrinkage or expanthe first machine, irrespective of the shrinkage or expan-
sion of the paper caused by the drying apparatus. A compensating device is provided for the printing roller speed corresponding to the design of the paper passing over the cylinder, one of the inventions covering an elec-
trically controlled compensating device and the other a trically controlled compensating device and the other a mechanical one. The latter is actuated by an operator
watching the paper while the electrical device is auto matically operated by the paper, according to its shrin matically operated
age or expansion.
Rock Drill.-Harvey P. and George B. Jones, Denver, Col. According to this invention a
track is held by a fastening device to a bed adjustably track is held by a fastening device to a bed adjustably
secured to a supporting standard, a drill frame sliding on the track, while there is a ratchet connection betwee
the drill frame and the track, and drill mechanism ca ried by the frame. The drill may be held in almost an place where it is desirable to work. The blow is given
by a spring-propelled hammer operated by a crank handle, the drill being turned after each blow by a sim le mechanism, while the recoil is made to feed it fo ward in position for rapid drilling

Agricultural.

Corn Planter and Fertilizer Dis iributer.-Jacob W. and William C. Duryea, Blawen
burg, N. J. This invention provides independent de ices for simultaneously dropping seed and distributin ertilizer therewith, each of the devices being provide fith a cut-off mechanism under control of the operating the delivery of seed or fertilizer. An end less chain marking device is also provided, the machine traveling upon the chain and thus marking the ground between the rows, the markers on the chain making im-
pressions simultaneously with the discharge of the seed Straw Conveyer.-William L. John son and William L. Hay, Franklin, Tenn. This is an chines, making the discharge end of the main blast tub the mouth of the conveyer section, there being a de chamber has its discharge mouth opening into the conveyer section. 'The improvement may be readily applied to any of the modern thrashers, being secured to the discharge end and readily thrown up and back on the ma-
chine, to give the operator full access to all the working chine, to give the operator full access to all the working
parts of the thrasher for cleaning and adjusting the

Field Thrashing Machine. - Axel Anderson, Ronda, Texas As this machine is drawn
forward in a field it is designed to harvest the tops of the
 chine thrashing the grain from the heads, separating the haff from the grain and delivering the grain into a suitathrashing cylinder by means of a feed mechanism as the machine is drawn along, and this cylinder may be readily raised or lowered and held in adjusted position, accordng to the height of the grain.
Ditching Machine. - Alfred C. Carter, Greenfield, Iowa. Operating somewhat after the manner of a plow when drawn across a field, this machine is designed to dig a ditch of uniform width and ditch Pivoposithe loosened earth at one side of the ditch. Pivoted on a pin on the plow point are paralle ribs, these knives being just far enough apart to cut the walls of the ditchand make it the desired width. The plow cuts the ditch horizontally and raises the loosened
earth to a mouldboard carried by the beam, from which earth to a mouldboard carried by the beam, from which

Miscellaneous.

Marine Velocipede.-William Dry den, Brooklyn, N. Y. This invention comprises a hull of, there being a nearly central seat from which an op-
bow erator actuating a pedal shaft may rotate a propeller,
there being also a centerboard between the hull sections and a regulating rod by means of which the operator within convenient reach, and the construction is capabla of use as a life raft when required.
Street Sweeper. - William H. Walker and Thomas H. Boyce, New York City. This which it is drawn along, when a brush rotated from the large wheels of the scraper delivers the dirt onto a pan
within an elevator casing, the sweeping being then re within an elevator casing, the sweeping being then re
moved by scrapers to buckets which discharge into Chute, down which the sweepings pass into the cart and an empty one connected in its place, a continual sweeping
Hose Bridge and Tower. - James Blake and Emil F. Begiebing, Union Hill, N. J. For an apparatus which may be collapsed and folded into small compass, or extended and raised, the bridge for carrying lines of hose over a track being extensible for a considerable length. It may also be used to discharge water from the bridge without the use of a hose, and thus serve as a fire the truck. It has a convenient and simple arrange-
from the turned and easily operated.

W I N D MILL.-Seth K. Humphrey, Omaha, Neb. According to this invention a harizontal provided whereby, through a chain belt, a group of sails re operated to cause the various sails to shift their posially upon the stationary portion of the mill to bring the sails up into the wind. The support for the sails for at achment to the main driving shaft is very simple and in xpensive and thoroughly braced.
Hydrocarbon Burner. - Charles E. ookerly, Kansas City, Mo. This burner is adapted fo eater, there being within the shell a steam supply pip and suspended fire pan, over which is an oil retori with depending discharge pipe, the oil well consisting of an liven-ended tube embracing the discharge pipe and de fire pan. A steam generator affords the livering into the fire pan. A steam generator affords the
steam combined with vaporized oil to form the hydrocarbon gas, the parts being so arranged that there are no small openings to get clogged with soot, and the steam and oil vapors being combined and burned in an eco-

Door Check.-Charles W. Hamshaw Gallatin, Mo. An arresting and holding device to auto matically engage and retain a house door in open position has been devised by this inventor, comprising a hook
nd casing holder through which projects a pivote and casing holder through which projects a pivoted spring supported on the block engagirg the under sid which a hook limb projects outwardly and downwardly, and when the door is held open it may be released by slight exertion of force.
Piano Case.-Alfred J. Newby, New York City. This invention relates to the mechanism for yotomatically moving up the front of the case by the
lifting and pushing in of the keyboard fall. The case has a swinging front, with fall and movable slide plate hinged to it, and a lever hinged on the case has its lower ending opposite the swinging front, there being also plate, and cranks secured to the guide bar and pivoted to the slide plate.
DAMPER FOR SWISS MUSIC Boxes. ing a pin cylinder acting on the teeth. For boxes havthis invention provides an improved independent damper attachment for the teeth of the comb, so arranged that
the damper only acts on the tooth immediately previous the damper only acts on the tooth immediately previous
to the sounding of the tooth by the corresponding pin of the pin cylinder.
Automatic Musical Instrument.The same inventor has obtained a patent for a musica the star wheel or other picking mechanism engaging and sounding the comb. The star cylinder has rotatable disks, each with picking pins and gravity plungers, a traveling sheet having slots for the plungers, while a revolving cylinder has blades to engage the ends of the plungers extending below the traveling sheet. The im-
provement is designed to prevent tearing or otherwise injuring the sheet, whereby the sheets may be used over again without danger of changing the tunes.
Confectionery Machine. - Simeon J. Hicks, Englewood, Ill. A machine more especially drawn and flattened piece of candy has been devised by this inventor. The invention consists principally of a hinged stripper plate to support the pieces cut by the
knives, the plate being adapted to pass over the lower knives, the plate being adapted to pass over the lower
knives, while a pivoted frame carries the upper knives, knives, while a pivoted frame carries the upper knives,
and catches held in the frame engage the stripper plate and catches held in the frame engage the stripper plate
to swing it upward to move the candy from between the Machine to cut Stick Candy.-John M. Allardyce, Galveston, Texas. A reciprocating cutter bed, and mechanism controlled by the bed-operating mechanism raises the cutter and allows it to drop, whereby the long sticks of stick candy laid on the table very simple construction and easily operated.
Box.-Zada B. Webb, Whippany, N. J. Fancy boxes for holding bonbons, etc., are the subject of
this improvement, the invention providing for making a this improvement, the invention providing for making a
simple and cheap box simple and cheap box of attractive appearance. It is of
flexible material, self-closing, and the fastening may be flexible material, self-closing, and the fastening may be
readily converted into a handle. The blank of which readily converted into a hande. The blank of which
the box is formed has side pieces with registering
apertures through which are passed ribbons or cords which are drawn up in bringing the box to shape.
Writing Tablet.-Max Rubin, New York City. According to this invention a pad or table
may be quickly and conveniently reversed while in hinged connection with the body of the tablet proper, the supports for the tablet being so constructed as to be concealed when the tablet is in open or closed position.
The hinged connection between the tablet and the pad is very simple and inexpensive, and readily applicable to the framework of the tablet.
Hat Pin.-Osborn Congelton and GerHude R. Boyd, Philadelphia, Pa. This is a simple and
nexpensive device to be fastened permanently to the nexpensive device to be fastened permanently to the hat, and is readily operated and provided with prongs
which cannot injure the head or hat, but are sure to en gage the hair and hold the hat in place. Ane eletted crown tip is fastened to the hat, and the pin has a guide frame with spring-pressed slides, prongs projecting
through the erelets on the crown tip, while there are outwardly projecting arms with knobs on the slides, by

Match Receptacle.-Fred D. Halsey yler, Texas. The boay of this match box is that of a animal with open mouth, the match repository being on
its back, from which a trough communicates with a mouth passage, a spring-pressed rod forming the tongue and serving also as a finger piece, there being ignition
devices in the passage and the tail forming a stop. But a single match can be withdrawn at a time, and the match is ignuted before it is entirely removed, thus pre-
venting the abstraction of a number of matches where
only one is meant to be offered free. Dental Napkin Holder.-George A. Bronson, St. Louis. Mo. This improvement comprises a
dished presser piece, a curved handle piece and a keeper dished presser piece, a curved handle piece and a keeper
tang, for holding in proper position in the mouth of a ang, for holding in proper position in the mouth of a
patient a folded napkin or porous pliable pad to absorb alival moisture that might otherwise obstruct the work f the dentist. The same par an additional apkin of which the tongut is held depressed and the eeth being operated upon, thus effectually absorbing the moisture during an operation.
Note.-Copies of any of the above patents will be furnished by Munn \& Co., for 25 cents each. Please send name of
of this paper.

NEW BOOKS AND PUBLICATIONS

La Metallurgie en France. Par Urbain le Verrier. Avec 66 figures
intercalees dans le texte.
Paris: Pp. xi, 333. Price 75 cents.
Poor's Directory of Railway OFFI CIALS. 1894. Ninth annual number. Contways in North America and of the leading organizations auxiliary to the railway system; lists of officers of South American and Hawaiian rail-
ways, etc. Compiled from official inways, etc. Compiled from official in-
formation. New York: Poor's Railroad formation. New York: Poor's Railroad
Manual.
London : Effingham WilManual. London: Effin
son. Pp. 400 . Price $\$ 4$.
Transition Curves. A Field Book and tables for laying out transition and tables for laying out transition York: D. Van Nostrand Company.

SCIENTIFIC AMERICAN
BUILDING EDITION december, 1894.-(No. 110.)
table of contents.

1. Plate in colors, showing a residence at Bronxwood Park, N. Y. Two perspective elevations and floor
plans. Cost complete $\$ 3,500$. A picturesque deplans. Cost complete $\$ 3,500$. A picturesque de-
sign. Mr. Chas. N. Hoar, architect, New York
2. Elegant plate in colors, showing a residence at Chester Hill, Mt. Vernon, N. Y. Two perspective elevations and floor plans. An attractive design in
the Colonial style. Messrs. Rossiter \& Wright, the Colonial style. Messrs.
architects, New York City.
3. A cottage at Mt. Vernon, N. Y., erected at a cost of $\$ 4,500$. Perspective elevations and floor plans. Mr. Walter F. Stickles, ar
$\mathrm{N} . \mathrm{Y}$. An attractive design.
The handsome residence of W. K. Clarkson, Esq.,
Brooklyn, N. Y., erected at a cost of $\$ 15000$, perspective elevations and floor plans. Messrs. J. C. Cady \& Co., architects, New York City.
residence of moderate cost at Bronxwood Park, N.
Y. Perspective elevation and floor plans. Mr. A. Y. Perspective elevation and floor plans. Mr. A.
F. Leicht, architect, New York City. A pleasing design.
The residence of W. D. Love, Esq., at. Bronxwood
Park, N. Y. Two perspective elevat. Park, N. Y. Two perspective elevations and floor
plans. Mr. W. H. Cable, architect, New York plans. Mr. W. H. Cable, architect, New York
City. A neat design treated in the Queen Anne style
Colonial residence at Flatbush, L. I., erected at a cost of $\$ 7,500$. Two perspective elevations and
floor plans. Mr. John J. Petit, architect, Brookfloor plans.
lyn, N. Y.
4. A residence at Mt. Vernon, N. Y. Two perspective elevations and floor plans. A pleasing design in the Colonial style. Mr. Chas. E. Miller, architect,
New York City. picturesque and well appointed residence at Belle Haven, Conn., recently erected for E. C. Converse,
Esq. Four perspective elevations and floor plans. An excellent design. Mr. Bruce Price, architect, New York City.
A Colonial cottage at Bayonne, N. J., recently erected for Joseph Thomas, Esq., at a cost complete $\$ 2,700$ Longyear, architect, New York City
Longyear, architect, New York City.
Miscellaneous contents.-Hints to readers.-The education of customers.-How to catch contracts.-
The latest and best designs for houses.-Diamond cement plaster.-Preserving metals in roofs, bridges, etc.-A perfect roofing material.-Stamped
metal ceilings, illustrated.- New wood stains.metal ceilings, illustrated.-New wood stains.-
Woodwork vs. flame.-Ebonizing wood.-A stove Woodwork vs. flame.-Ebonizing wood.-A stove
for heating water, illustrated. -Columbian Expoproved band saw file, illustrated.-How to move large maples.-Value of coverings for steam pipes. - Watering garden plants.-Earthquake effect on
brick buildings.-The trouble New York builders brick buildings.-The trouble New York builders
have Foothold on pavements.- Milwaukee wate have Foothold on p
elevator, illustrated.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages; forming practi cally, a large and splendid Magazine of ArchitecTries, richly adorned with elegant plates in colors and
with fine engrovings, illustrating the most interesting with fine engravings, illustrating the most interesting
examples of Modern Architectural Construction and allied subjects
The Fullness, Richness, Cheapness, and Convenience of any Architectural Publication in the world. Sold by all newsdealers. \quad MUNN \& CO., Publishers,
361 Broadway, New York.

PBusiness and Personal.

The cinarge for Insertion unier this head is one Dollar a line

jor each insertion: about eioñt worais to a line. Aaver
tisements must be receivea at puobication office as eariv as
"C. S." metal polish. Indianapolis. Samples free. For pile driving engines. J. S. Mundy, Newark, N.J. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J Enameled signs, letters. A. V. Taylor \& Co., Cin., o. port, N. Y.
Screw machines, milling machınes, and drill presses
The Garvin Mach. Co., Lairbt and Canal Sts., New York Centrifual pumps. Yor Centrifugal Pumps. Capacity, 100 to 40,000 gals. per
minute. All sizes in stock. Irvin Van Wie, Syracuse, N.Y. Emerson, Smith \& Co.., Ltd., Beaver Falls, Pa.., wil
send Sawyer's Hand Book on Circulars and Band Saws free to any address.
Guild \& Garrison, Brooklyn, N. F., manufacture steam pumps, vacuum pumps, vacuum apparatus, air pump For the original Bogardus Unive
For the original Bogardus Universal Eccentric Mill, J.S. \& G. F. S'mpson, 26 to 36 Rodney St., Brooklyn, N. Y 'The best book for electricians and beginners in elec-
tricity is "Experimental Science," by Geo. M. Hopkins. sy mail. \$1; Jiunn \& Co., publishers, 361 Broadway, N. Y. Woven wire brushes.-The Belknap Motor Co., o
Portland, Me. are the patentees and manufacturers o the best woven wire commutator brush on the market. Competent persons who desire agencies for a new
popuar book. of ready sale, with handsome profit, may apply to Munn \& Co., Scientific American office. 361 roadway, New York
The Imperial Power Building, of Pittsburg, Pa ${ }^{\text {. wil }}$, wil
be completed March 1. It It a new, eight story factory be completed March 1 . It is a new, eight story factor
building, fitted up as a model plant. with the finest machinery, electric dynamos and motors obtainable, makng it desirable for manufacturers. The proprietor pro poses to rent space as may be required by a manufac
turer. Each floor contains 7,600 square feet, capable of ubdivision, with exterior winduws all around and powe and appliances to meet any wants and give convenience not obtainable elsewhere. Located in the heart of tbe depot. Manufacturers desiring to lessen expenses and be surrounded by every convenience should address. J. Vendergrift. Pittsburg, Pa.
send for hew and complete catalogue of Scientific ad other Books for sale by Munn

hints to Correspondents
Names and address must accompany. all letters
or no attention will be paid thereto. This is for ou
or no attention will be paid thereto
nformation and not for publication
References to former articles or answers should
give date of paper and page or number of question.
In quitics not anseren in reasonable time shond
be repeated; correspondents will bear in minh some answers require not a little res though we endeavor to reply to all either by letter
or in this department. each must take his turn
ontised B uye rs wishingartment. eachin must take hise torn turn.
in our columns will be furnished with ad advertise
or

 to may be had at the office. Price 10 cents each.
Bool- referred to promptiy supplied on receipt price.
$\begin{gathered}\text { Minerals sent for er examination should be distinctly } \\ \text { marked or labeled. }\end{gathered}$
(6335) W. A. P. writes: We had erected in our office a natural gas stove, giving it a $31 / 2$ inch vent pipe; ever since there has been a continual dripping of
fluid while the stove is lit. We trust you will be able to advise us with a remedy and explain the same. A. The gas in burning produces water. We would suggest the use of a tee at the lowest point of the vent pipe, with a small drip pipe leading thence outdoors. This should be bent into a trap near the stove and the vent pipe from
the stove should pitch downward toward it. The presnce of water indicates a cold chimney, which saows
(6333) J. A. McC. asks: 1. Is there ingle cyli.aler gas engine made to-day that receives an tion? A. Double acting gas engines have been made, principally in England and in France, and some are still in use. There are some difficulties in the operation of thi class of engines that have placed the single acting engine in the lead. 2. What is the best proportion per volum of gasoline gas and air for the best results in gas engines A. The best and most economical mixture is 1 par gasoline vapor to 10 parts of air. 3 . If a jet of air and
one of gas be admitted into a cylinder at the same in stant from opposite sides, in such a manner as to strike each other with considerable force, will they mix sufficiently well to explode in contact with an electric spark, and will such an explosion take place with a considerable degree of certainty if the mixture come in contact wit iron at a good red heat? Also at what heat may iron be under such circumstances and the gas be free from dan practice is to admit gas and air at any convenient point. They will ignite by electric spark or by a heated tube into wich the mixed gases are compressed. The tube to ta full red heat. Will not explode at a black heat. 4 To what extent is a charge of gas and air compressed a ines? A. There are engines with and without com from 5 to 10 pounds, 5 . What can you say in regard to the relative efficiency of the tube and electric spark an exploder? Also with reference to safety and economy? A. The electrical ignition system claims high efficiency
in the uniformity of explosive effect. 6. Is there a work in the uniformity of explosive effect. 6. Is there a work
on the gas engine that would be of real, practical value
to a tyro, and if so, what is it ? A. There are two excel-
lent works on gas engines. Robinson's "Gas and Peent works on gas engines. Robinson's "Gas and Pe
troleum Engines," 55.50 and Donkin's "Gas, Oil and
Dond Air Engines," $\$ 6.50$ by mail. 7. Do you think it possi having sharp lines, round knuckles and flat bottom, 28 feet long, drawing 7 inches of water, at a speed of 1 miles an hour on dead water with a paddle wheel placed
etween the hulls? If so, at what position in the length between the hulls? If so, at what position in the lengt fthe hulls should it be placed, and what should be the length and width of bucket and what diameter and spee hour mar beobtained; but with the difficulty of overload ing the boat with the weight of engines and wheel, 9 to 0 miles may be attained. Wheel should be two-third he length of hull from bow. Wheel 6 feet diameter, feet wide.
(6337) C. A. C. asks: 1. What is the afe carrying capacity of No. 30 silk-covered copper wire, such as is used in telegraph relays (in amperes) hould to 20 ampere if wound in a tight coil. 2. What he same (in amperes) ?apacity of rusing wire to protect bove, for they are very safe figures 3. Also , hin lephones be used on a telegraph line about 1,500 feet the telegraph line, but wish to use both telegraph and elephones together. The batteries are located as follow rranged so that either end may call the middle statı (asing the telegraph instruments for a call), and the mid phone on to either section of the line, leaving the othe nd out or grounded? A. Use back contact keys middle station, with ground connections there. 4. Also will telephones work through the five batteries without any trouble? A. The batteries will not prevent the tele(
(6338) G. A. D. asks: Does the sun ove Is this earth perfectly round, or is it flattened
the poles? If so, how is it proved? A. The sut moves in space toward the constellation Hercules at the It also moves by revolutiocond. In this sense it moves parent daily motion of the sun through the heavens is ota real movement, but is an optical effect upon o own axis. The earth's form is a sp heroid of revolution as is proved by measures upon the meridian with their erminals conpared with observations for their latitude Also by the force of gravity, as deduced from the var ng lengths of a pendulum at different latitudes for
iven time beat. (6339) C. H. H.-No one has the righ (6340) H. A. W. \& Co. say : In Notes J. J. H. asks, "How high above level of its source wil n ordinary hydraulic ram raise water?' You answer from ram (advertised in your paper). With this ram we rais
water to our farm 243 feet high, pipe line 4,360 feet long our feed pipe to ram is 500 feet long, 5 inch pipe and 11 feet fall, and gives us 60 gallons per hour and sometimes
(6341) R. L. H. asks: 1. In what num EN Can I find dire Scientific American Supple the measurement of the following: Volts, ampere 98, $423,440,552,556,563,603,604,618,734,811$. fowne the foetro vould it take to decompose it with 20 ampar if I use square foot for each electrode? A. About 157 feet hy drogen and 78 feet oxygen, requiring about 1,000 hour The size of electrode is a supertluous statement. 3. Ar atch the gatinum the only metals from which I can heaper gea Yous int, ion of caustic soda. 4. What is the fractional hors power of the motors described in Supplement, No 71 and 641, and how many volts and ampres does each equire? A. No. 761 is about one-thirtieth horse powe olts and amperes does the dynamo in Supplement, N . 161, give? About 12 volts and $11 / 2$ amperes. 6. How 1 I catculate the cande power of a lamp? A. Allo amperes, can I make an induction coil that will give 50 volts and 100 amperes? If so, how? A. No. It would involve creation of energy.
(6342) P. C. T. asks : 1. What make of gragity cells? A. For storage batteries address some he dealers who advertise in our columns, What occurs if circuit is closed without cutting out gravit batteries? A. The storage batteries keep on receiving their charge; the circuit is necessarily closed when charg ing. 3. What causs buckling of plates? A. Too rapi discharge. 4. What capacity should they be for caute zing purposes-how many volts and amperes are moit and size of the cauterizing wire or instrument. 5. What is the difference between a galvanic and faradic current? Johnson's Cyclopedia states magneto and secondary curents from induction coils are faradic, and yet we read of galvanic medical batteries. A. Johnson's Cyclopedia is correct. In medicine it may be desirable to use a gal
(6343) L. A. F. asks: 1. How can the anger resulting from the falling of a private telephone laced over the trole be avoided? A. By guard wires the telephone wire. 2. In case of its falling onto th rolley wire, is there any danger to building upon whic but the high resistance of the telephone apparatus is to some extent a safeguard. 3. Is there any easy way to remove the crystals that form in a bichromate of potas
battery? A. Immerse completely in a tub of water then place the cell on its side with its bottom raised, a
by resting on a brick, or completely invert it. It must
be kept full of water. kept full of water
(6344) W. S. asks: When sailing from New York to Montevideo does the compass point towar The compass is not reversed in crossing the equator. Its The compass is not reversed in crossing the equator. Its
south pole points to the southern magnetic pole, with ariations due to the lines of magnetic declination. The needle, as in north latitudes the north end of the needle must be counterbalanced for the dip, which must be hanged or reversed in southern latitudes.

TO INVENTORS

of nearly fifty years, and the preparation of more than one nundred thousand applications for pa-
tents at home and abroad, enable us to understand the aws and practice on both continents, and to possess unqualed facilities for procuring patents everywhere. foreign countries may be had onapplication, and person contemplating the securing of patents, either at home abroad, are invited to write to this office for price ensive facilities for conducting the business. Address MUNN \& CO., office SCIENTIFIC AMERICAN, 361 Broad-

INDEX OF INVENTIONS

For which Letters Patent of the

December 25, 1894,
and EACH BEARING THAT DATE

An

Noll

\longrightarrow

Soldering machine, H. Miller Spinning machines, yarn separator for ring, E. L.... Spinning rail separator, A. E. Rhoades Stamp, time, Baird \& Nash. Stamping or pressing machine,Saltzkorn \& Nicolai dirent actiag, W. W. Erocating sawmill carriages Stone, composition for artificial, B. W. W. Eddy..... Stove or range, coal and gas burning, A. Stecke. Stoves, hot air attachment for, I. Brooke.. Strap. See Harıess breast strap. $\underset{\text { Swing, portable, R. E. \& G. E. Shorey.................. }}{\text { See }}$ Tank regulator, open, J. Thomas...... Tap holder, reversing, Telephone index, C. A. Orth........... Tellurian, C. G. Suli van Thill coupling, D. Parker. Trough, A. W. Ha ag. Shaw....... Truck church, N. . Truss, L. A.Smith...... Tug, shaft, A.E. Hart. Type distributing appar Type distributing apparatus, $\dddot{C} . \dddot{F}$. Hilder Typewriting machine, A. Lowe. Valve, Schrader \& Kraft. A. Wier Valve gear, steam engine, M. B. Cope Valve, water gauge safety, Ruddy.... Vaporizing petroleum or other liquids, Vehicle draw bar, R. Whalon. Vehicle wheel, evice for supporting, E. Seien Veneer curling machine Vessels, means for raising sunken, W. A. \& F. . E. Turner....................... Vashing machine, w. Sweet.	

DESIGNS.

TRADE MARKS

 Carpet sweepers, SWeeperette Company...
 clothinp for men and bös outer © Cofoempant, imimi, iee \& Company:

 Mustard and mustard prod ictiti, \& J . Coiman

 Remedies, cirtainn named, Hellark

Stays, dress and cor set, I, Janowewtitempany

broadway New Yor
ventors for tor any of the may invow be obtained by the in.

TO INVENTORS. E. K onig slow. Manúfac

Pumping Wawn by Compasend Air.

Starrett's Universal Surface Gauge

TYPEWRITERS.

 The IVDewniter EXCHANGE, 8 Barclay St., New York We will save you from 10 to
oo all mante.
a mypewiters
MATCH *MACHINERY

DAIMLER MOTOR COMPANY,
Highest Grade Single and Twin Screw Launches.

 afest, cleanest and speediest power boat built No smoke or smokestack, no boiler, no elec tricity. No steam or naphtha under pressure. Run ou one pint of gasoline per horse power per hour, and are under way in less than one minute. No licensed engineer or pilot. Also Stationary Motors.

OFFICE AND WORKS, "STEINWAY," LONG ISLAND CITY, N. Y

WWELL DRILLING MACHINERY, MANUFACTUREO BY WILLIAMS BROTHERS. ITHACA, N.Y. MOUNTED OR ON SILLS; $;$ FOR DEEP OR SHALLOW WELLS, WITH STEAM OR HORSE POWER SEND FOR CATALOGUE	

FOOT POWER MACHINERY
KEEP THE HEAD COOL

O求 ELECTRIC TELEPHONE

ARTESIAN

ARTESIAN WELLS - BY PROF. E.

Oil Well Supply Go

BUY
TELEPHONES

 GRAND RAPIDS, MICH, Manuacturers of the Sintz in

 NOW READY!
Fourteenth Edition of
Experimental Science
A GREAT BOOK FOR THE HOLIDAYS.

120 Pages and 110) Superb Cuts added.

MUNN \& CO., Publishers, Office of the SCIENTIFIC AMERICAN,

TAKES THE LEAD．
In addition to its many other attractions，illus
\because SCIENCE AND ART • form a notable feature．During 1894 the
been capital articles on such topics as ：

Ohicago Drainage Canal．
Recent Excavations at Dashur，Egypt． Gold Mines of Colorado．
Need of a National Health Board． Electrical Industries．
Cleansing the Streets of Paris．
Constant advancement in excellence is the chie and，with almost boundless resources，it will con and，with almost boundless resources，it will con＝
tinue to treat every scientific event of public in＝ erest comprehensively and at the shortest notice．

AMERICAN GAS FURNACE CO CHEAP AND PERFECT FUEL GAS GAS BLAST FURNACES， HIGH PRESSURE BLOW ERS，ETC．

Dust！Dust！ Gibbs＇Patent Dust Protector protects
the nose and mouth from inhaling poi－
sonous dust． ELEC＇TRO MOTOR．SIMPLE．HOW TO moter devised and constructed with a avie waso assisting
moters to make a motor wnich might be driven with
amater

 The United
Autographic Register Co．， 148 － 154 Monroe St．Chicag

Engineers and Firemen Send 2o．stamp for 24 taining a iles of ofuestions asked by a board of examin－
ing engineers．Strouberg Pub．Co．，st．Louis，Mo．

The Scientific American PUBLICATIONS FOR 1895.
The prices of the different pubications in the United
States，Canada，and Mexico are as follows： The Scientific American（weekly），one year
The Scientific American Supplement（weekly），one
year，
\＆
The Scientific An
1y），one year，
The Scientific American Architects ${ }^{-}{ }^{-}{ }^{-}$－${ }^{-}{ }^{-}{ }^{-}$
Edition（monthly），one year．

The Scientific American and Supplemen

The Scientific
ers Edition，
The Scientific American，Supp
tects and Builders Edition，
This includes postate Rates for Six Months． MUNN \＆CO．， 361 Broadway，New York．

6Remington

Typewriter

A DEVELOPMENT－ NOT AN EXPERIMENT．

MANY NOTABLE IMPROVEMENTS Permanent Alignment， Improved Spacing Mechanism Uniform and Easy Touch， Better Ribbon Movement Improved Paper Feed，

WYCKOFF，SEAMANS \＆BENEDICT， 327 Broadway，NEW YORK．
 Electrical Instruments，Fine Machinery，Special Appa－
atats，Teleptones，Photugraph Machines，tepairs，etc．
E．V．BAILLARD， 106 Liberty Street，N．Y． \＄24．An 8 Light， 16 C．P．，I 10 Volt Dynamo

 B
$\mathbf{S O n d}$ for circular No． 22 ．
$\mathbf{1 2 O N H} \mathbb{E} \mathbf{E C K}$ ．

VELOCITY OF ICE BOATS．A COL

Wimshurst Machines 8， 16 and namo Castings， Simple and other SCIENTIFIC
AMERICAN Motor Castings． ENGINE CASTINGS，
TELEPHONE Send stamp for catalogue．

RECEIVER＇S SALE．The entire plant and qood

米 THE＂MUNSON＂TYPEWRITER．类
 INTERCHANGEABLE STEEL TYPE WHEEL
durab and
The Munson Typewriter Co．， 171 E．Division Street，Chicago，III．，U．S．A．

CRITERION MAGIC LANTERNS And
Stereopticons．

GATES ROCK \＆ORE BREAKER

 Machinery，King－Darraagh Con
trator，Connersville Blowers． GATES SRON WORK 50 C So．Clinton St．，Chicago．
237 C Franklin St．，Boston，Mass．

＂THE DENSMORE＂

It has the Most Conveniences and Runs the Easiest．Othe manufacturers acknowledge its superiority by imitating， but not equaling，its essential features．
The U．S War Department adopted it in 1893，and bas just renewed＇he con＇ract

SGEHIS DEAD

GAS ENGINES \＆VENTILATING FANS

 A Valuable Book

12，500 Receipts． 708 Pages．Price $\$ 5$

 Those who are engaged in any branch of industry
proabiy $\begin{aligned} & \text { hiol } \\ & \text { value in in their respective boik mallings．}\end{aligned}$ that is of practical
 pee articies，will and in th hundreds of most excellent
sugkestions．

MUNN $\&$ Cend for Descriptive Cir
Cublishers，
SCIENTIFIC AMERICAN OFFICE，
A6i Broadway，New York。

Pfovertisements.

MR. BOOKIEEPER,

 best accountant and relieve
nervous and mental strain.
Write for FELT \& TARRANT MFG CO.
 K $\boldsymbol{S}^{56.00}$ to $\$ 100.00$. The lightest and most practical cameras for hand
or tripod use. Allustrated manual, free with
every Kodak, tells how to develop and print the
pictures.
Eastman

iBUSS HAND VISE This Vise (except hardle) is all steel, hard-
ned throughout and finely fishod with
 Sent by main, postpaid.
Mechanis, Fine Tools of A In Kinds.
Instruments for accurate ofeasurements Send for Illustrated cataitalogue
At $\frac{1}{4}$ Prict: $==2=$

BARNES' WATER EMERY

 Has no pumps, no valves. No to supply it with water. Always ready for use.
Simplest in conSimplest in con-
struction, most struction, most
efficient in operation. Send for ation. Send for
Catalogue and

W, F JOHN BADNES CO 1999 Ruby Street. Rockford, III. SCIENTIFIC AMERICAN SUPPLE-

The

American
Bell Telephone Company,

125 Milk Street,
Boston, Mass.
This Company owns LettersPatent No. 463,569 , granted to Emile Berliner November 17, 1891, for a combined Telegraph and Telephone, and controls Letters-Patent No. 474,231, granted to Thomas A. Edison May 3 1892, for a Speaking Telegraph, which Patents cover fundamental inventions and embrace all forms of microphone transmitters and of carbon telephones.
 - $1 / 0$

Warranted superior to any Bicycle built in the world, regardless of price. Do not be induced to pay more money for an inferior wheel. agent hasn't it. Catalogue "I" Free by Mail. 22 lb. Scorcher, $=\quad$ - 85 . INDIANA BICYCLE CO., 23 lb. Ladies', = $=75 \cdot$ Indianapolis, Ind., U. S. A.

THE "CLIMAX"

Will work either wet or dry, and deliver a finished product. Capacity, 3 to 4 tons per hour on Phosphate Rock; $1 \frac{1}{2}$ to 2 tons per hour on Portland Cement, Quartz, or Ores, depending on hardness of material to be pulverized and fineness of product. Grinds from 30 to 250 Mesh with equal facility.

Correspondence solicited, and illustrated de-
Bradley Pulverizer Co., 92 State St., Boston.

American S6 Typewriter

 American Typewriter Co., 267 Broadway, N.Y REE-HOUSE AND COLD ROOM.-BY

ROBERT POOLE \& SONT CO

ENCINEERS \& MACHINISTS. transmission machinery MAGHIVE MOULDED GEARIIG special fagllites for tie HEAVIEST CLASS OF WORK BALTIMORE, MD.

A.W. FABER

LEAD PENCILS, COLORFDD PENCILS, SLATE
PENCLLS, WRITING SLATES, STEEL, PENS, GOOD
PENS, INKS PENCIS CASES PENS, INKS PENCII, GASES IN SILVER AND IN
GOLD, STATIONFRS' RUBBER GIODS, RULERS,
COLORS AND ARTISTS' MATERIALS.
78 Reade Street, \qquad New York, N.
the only storage battery in use in central the electric storage battery co.,

 Quick process and lare stock. When in a hurry,
buy of ant
INNATI, and STROUDSBURG, PA. TOWERS and TANKS

Sancinc 1 Mrice

ESTABLISHED 1845 The Most Popular Scientific Paper in the World Only $\$ 3.00$ a Year, Including Postage Weekly--52 Numbers a Year This widely circulated and splendidly illustrated paper is published weekly. Every number contains six-
teen pages of useful information and a large number of tein pagal engravings of new inventions and discoveries,
orgina
reneres representing Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures,
Chemistry, Flectricity.TTelegraphy, Photography, Architecture, Agriculture, Horticulture, Na
etc. Complete list of Patents each week.

Terms of Subscription.-One copy of the Scien-
TIFIC AMERICAN will be sent for one year- 52 numbersTIFIC AMERICAN will be sent for one year-52 numbers-
postage prepaid, to any subscriber in the United States, Canada, or Mexico, on reciath of Three Dolluws by
the publishers; six months, $\$ 1.56$. three months, $\$ 1.00$. Clubs.- Special rates for several names, and to Post-
masters. Write for particulars. The safest way to remit is by Postal Order, Draft, or
Express Money Order. Money carefully placed inside Express Money Order. Money carefully placed inside
of envelopes, securely sealed, and correctly addressed senvelopes, securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., payable to
MUN \& CO., $\mathbf{3 6 1}$ Broadway, New York.
$=$ = THE = =
Sixutitia Gumeriaun Supplempht
arate and distinct publication from The size, every number containing sixteen large pages full of engravings, many of which are taken from foreign
papers and accompanied with translated descriptions. papers and accompanied with translated descriptions.
THE SCIENTIFIC AMERICAN SUPPLEMENT is published weekly, and includes a very wide range of contents. It preserts the most recent papers by eminent writers in
all the principal departments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Vatural
History, Geography, Archæology, Astronomy, Chemistry, Electricity, Light, Heat, Mechanical Engineering, Steam and Railway Eneineering, Mining, Ship Building, Marturing Industries, Sanitary Engineering, Agriculture, Horticulture, Domestic Economy, Biography. Medicine,
etc. A vast amount of fresh and valuable information etc. A vast amount of fresh and valuable information
obtainable in no other publication. The most important Engineering Works, Mechanisms,
and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT.
Price for the SUPPLEMENT, for the United States,
Canada, and Mexico, 85.00 a year; or Canada, and Mexico. 85.00 a year; or one copy of the
ScIENTIFIC AMErican and one copy of the SoppleSCIENTIFIC AMERICAN and one copy of the SUPPLE-
MENT, both mailed for one year to one address for $\$ 7.00$.
Single copies, 10 cents. Adress and remit by postal order, express money order, or check, MUNN \& CO., 361 Broadway, New York.

Thuilding Edition.

The Scientific American Architects' and
Builders' Edition is issued monthly. 8250 a year. Single copies, 25 cents. Thirty-two large quarto pages,
forming a large and splendid Magazine of Architecture richly adorned with elegant plates in colors, and with other fine engravings; illustrating the most interesting examples of modern Architectural Construction and
allied subjects. allied subjects.
A special featu
of a variety of the is the presentation in each enmber of a variety of the latest and best plans for private resi-
dences. city and country, including those of very moderate cost as well as the more expensive. Drawings in
perspective and in color are given, together with Plans, perspective and in color are given, together with Plans,
Descriptions, Locations, Estimated Cost, etc.
The elegance and cheapness of this magnifcent work The elegance and cheapness of this magnificent work Architectural publication in the world. Sold by all

PRINTING INKS.

