a WeEkly Journal of practical information, art, science, mechanics, chemistry, and manufactures.

HERMAN LUDWIG FERDINAND VON HELMHOLTZ. full name. He was born in Potsdam, August 31, 1821, was his due as a student. On recovering he received

On September 8, 1894, after seventy-three years of life, which yielded a record almost unsurpassed of work in physiology, anatomy and physics, Von Helmholtz died. The combination which he possessed of mathematical and experimental talents of the highest order, backed by a medical education, placed much of his work in the intermediate regions between physiology and physics, gave his investigations a peculiarly practical value and caused them to influence surgical has enlightened the world of science

Herman Ludwig Ferdinand von Helmholtz was
in which city his father held a position as a teacher in the portion of his income which had accumulated the "gymnasium" or elementary school. When seven- during his illness, and this money he at once devoted teen years old he entered the University of Berlin in to the purchase of a microscope, and begañ to study the the Frederick William school, taking up the study of nervous processes of the ganglion cells of invertebrates. medicine. He desired to be a physicist, but circum- These studies were used in hisgraduating thesis, and in stances forced him to take the more practical course of 1842 he received his doctor's degree. In 1843 he pub medicine. Later in life he was pronounced in his lished a work on putrefaction and fermentation, reject views of the great utility of the study of medicine to ing Liebig's chemical theory, and laying the foundation himself, as a guide and basis for his later work in physics.
In 1841, sick with typhus fever, he was treated in was military surgeon in Potsdam during this pubect. He yet prostary surgeon in Potsdam during this period,

HERMAN LUDWIG FERDINAND VON HELMHOLTZ.
ject was treated largely from the physiological standpoint. In it he brought out the fact that muscular activity changed the chemical composition of muscular tissue. Later (1847) he proved that muscles in action produce heat.
In the same year he wrote his famous work on "The Conservation of Force," a work which was in line with Robert Mayer's earlier publications of 1842 and 1845 , but which was written in ignorance of Mayer's investigations. This was before physicists had accurately distinguished force and energy and before J. Clerk Maxwell had worked up the theory of dimensions of physical quantities. The new doctrine, which was so near an approach to the truth, was enthusiastically received. Faraday, feeling its inconsistencies, bowed to authority and accepted it. Later, when the doctrine was changed to "The Conservation of Energy," all difficulty disappeared, and it is now universally accepted.
He was about this time professor of anatomy in the Berlin Academy of Art and next received the chair of physiology and general pathology in Konigsberg. He applied direct experimentation to the problems of animal life and examined the rate of transmission of nerve impulses and the duration of muscular contractions. This was in 1850. He finally determined that the nerves telegraphed their signals at about the speed of an express train (26.4 meters)-far slower than the velocity of sound.
In 1851 he described the ophthalmoscope. This instrument opened the "windows of the soul" to everyday inspection, and the dark chamber of the eye is now every day explored by its aid for the treatment of the maladies of sight. This invention alone was enough to make the reputation of a life. He followed this achievement by investigations in physiological optics, and his great work on the subject, "Text Book of Physiological Optics," published in 1867, represents ten years of work He was professor of anatomy and physiology at Bonn, 1855-1858, then he went to Heidelberg as professor'of physiology. In 1862 his famous work on "The Doctrine of Tone Sensations as a Physiological Basis of the Theory of Music," was published at Brunswig, the third edition appearing in 1870. This was an epoch-making work. The true nature of sounds, the relations of fundamental notes and overtones in the production of vowel sounds, the physical analysis of sound and reproduction of the same by physical means, were treated by Helmholtz by methods and processes which laid the foundation of the science of acoustics. He also tried to find a basis for the action of the ear in harmonic vibration of its membrane. How far the ear can be accepted as a string instrument is, however, as yet a matter open to speculation.
His principal work in the realm of pure physics up to this period was these investigations on sound Electricity and hydrodynamics occupied his attention after his acceptance of the professorship of physies in the University of Berlin, where he succeeded Magnus, who died in 1871. He applied experimentation to the investigation of the modern ether theory of electricity with signal success. Perceiving the analogy between vortex motions in fluids and electro-magnetism, he founded a mass of theory on the analogies, which has now been assimilated by modern physics of electricity His work in electricity and the standing a warded him in it by electricians have given him a position in the electric world comparable to that which he holds in physiological science. His recent visit to this country, to attend the electric congress at the Columbian World's Fair, emphasized this fact.
info the laws of railn formation, of lightning discharge, of tides and of waves being classic.
In 188% he accepted the presidency of the physical technical institution in Berlin founded by the German Emperor, on the basis of a gift of one-half million marks (about $\$ 125,000$) by Werner Siemens, at the same time taking the directorship of one section, the pure science department. In 1883 hereditary nobility was conferred upon him by the German Emperor.
It is futile to attempt within the limits of our space to give more than a mere skeleton of his work. His publications embrace not far from one hundred titles some of them most abstruse, others so popular and interesting as to be veritable classics.

Aluminum Horseshoes.

Recent tests made in Arizona of aluminum horseshoes indicate that while the shoe, so far as perfected will not wear quite a month when subjected to the severe mountain scouting in that section, Lieut. R B. Wallace, 2d Cavalry, who made the test, found that the front shoes lasted some 28 days (306 miles) and the hind shoes 23 days (260 miles), through country covered with lava rock. As the country traversed was unusually rough even for Arizona this test may be taken as a fair indication that steelclad aluminum shoes will answer all ordinary requirements of the cavalry service. These shoes have particles of highly tempered steel pressed into the sole of the shoe by a pressure of some 100 tons, which makes the wearing surface practically steel-clad.

Srientific Smmerian.

ESTMABLISHED 1845.
MUNN \& CO., Editors and Proprietors. PUBLISHED WEEKLY AT

No. 361 BIROADWAY, NEW YORK.

O. D. MUNN.
 A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

The safest was to remit is by postal order, express money order
draft or bank check. Make all remittances payable to order of MUNN \& CO . Readers are specialy requested to notify the publishers in case of
any failure, delay, or irregularitv in receipt of papers.

NEW YORK, SATURDAY, NOVEMBER 10, 1894.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT No. 984.
For the Week Ending November 10, 1894.

 ELL. An poMy. - Marts. The Colar Snows. - By PERCIVAL Low-
cap and curious markings. recent observations of Mars.-Its snow
 CHEMISTRY--Apparatus for WeighingOut Liquids.-A pipette
for laboratory use in weighng small quantities of volatile and
other liquids.- 2 illustrations. Determination of Combustibie Gases. - An apparatus for
tee-
lentinining the proportion of air and gas required to produce vio-
 CIVIL ENGINEERING.-A Cheap Planimeter-A curious ex
 crete, with full detatils very practicai paper treating of the
probinemerny Fats.

 III. ENTOMOLOGY.-Insect Secretions.-By E. A. A. BUTLERR.-A
curions class of insects producing secretions of use to mankind.
-2illustrations
IX. FINE ART.-The Work of Sculptors.- How the design of an
artist is carried out by the sculpor proper -3illustration artist is carried out by the sculptor proper. -3 illustrations.......
FO RESTRY.- Pterocarya Coacasica.-Note of a recent forestry
conference in England.--1 illustration.

 . PHOTOGRAPH Y.-A Double Refracting Finder.-A............ finder of
a inh doerree of luminosity, that can be used in direct sunlight.

1573315731

When unusual opportunities present themselves to astronomers for viewing certain objects or phenomena, and these events are commented on by the press, and brought to public notice by lectures, and in other ways, those who have never before given astronomical sukjects a thought begin to look with purpose and a new interest at the heavenly bodies, while some such observers, almost before they know it, become habitual star gazers, and not a few look about them for some means of seeing more than the unaided vision will re veal. They press into service an opera glass, field glass, or, if available, a small army telescope, or telescope of larger dimensions, taking such works as Serviss' admirable book "Astronomy with an Opera Glass," Noble`s "Hours with a Three Inch Telescope," Gibson's "Amateur Telescopist's Hand Book," Proctor's "Half Hours with a Telescope," or the charming tor's "Half Hours with a Telescope," or the charming
book of Webb's, entitled "Objects for the Common book of Webb's, entitled "Objects for the Common
Telescope," as a guide. They begin to make observations without any special knowledge of the objects viewed. The earliest lesson learned is that the hands make a very poor support for an optical instrument, and the first impulse is to secure some means of hold ing the instrument steadily, especially if it be one more powerful than an opera glass. After overcoming this difficulty, the next trouble arises from precon ceived notions of magnification. When the telescope is directed toward a star, the star appears smaller than is directed toward a star, the star appears smaller than
it does to the unaided eye, and when the moon is viewed through a telescope, it is with some disappoint ment at first, as regards size, because ideas of the size of the moon as seen with the naked eye are extravagant and erroneous; but let the observer view the moon with both eyes, with one through the telescope and the other without, and he will be able to superpose the image seen with the unaided eye upon that seen through the telescope. His ideas will then at once un dergo a change, as, especially in the case of a small telescope magnifying fifteen or twenty times, he will see the moon fifteen or twenty times larger in the telescope than outside of it. Now the question arises as to why the moon is magnified while the star was not. The fact is the star is so far distant that, although its size may be many times that of our sun, it becomes a mere point of light, which no optical aid at our command can magnify to such an extent as to cause it to appear in the telescope like a planetary disk, and the amateur may have the satisfaction of knowing that even the largest telescope cannot show star images any larger, although it will show them brighter, on account of the superior light-gathering power of the larger instru ment. A view of one of the planets reveals a disk of appreciable size even in a small telescope.
A three inch telescope mounted on a convenient stand is a desirable instrument for the amateur. It is very portable, and shows many of the beauties of the heavens to very good advantage. Seen though such an instrument, the stars have much of interest for the amateur astronomer-their color, whether they are single, double or multiple. Some of the star groups are a constant source of delight, as seen with a low power. In a good telescope, large or small, a star appears as a very minute disk of light, with two or three fine diffraction rings around it. Opticians tell us that the appearance of a star as a disk with diffraction rings is due to a radical defect which exists in all refracting telescopes. According to the correct theory, a star, in a telescope of any size, should appear only as a point of light.
How different the appearance of one of the planets than the full mincation or 160 , Saturn appears larger Jupiter with the same sower with the unaided diameter of the full moon, and with the power of 80 a very little larger than the moon. These statements can be readily verified by looking at the planet and the moon simultaneously, as suggested in the case of the telescopic image of the moon, superposed on its own image, as seen with the unaided eye, the telescopic image of Saturn or Jupiter being superposed on the naked eye image of the moon.
The illusion as to the apparent size of the moon may be said to be a secondary illusion. Some compare the size of the moon at the horizon to that of a small carriage wheel, others to that of a dinner plate; in fact, every observer has his own standard of size, but no one ever measured the moon by actual comparison with any object near at hand, like a wheel or plate, without having the illusion dispelled. A dime held at arm's length will eclipse the moon.
The difficulty lies in comparing the moon with objects at or near the horizon, which themselves being familiar are mentally recognized as appearing of the same size as they would if near by. A fairly tall chimney a quarter of a mile away when compared with chimney across the street is less in height than three of the bricks of the near-by chimney; in fact, it might be said, as a rough approximation, that the distant chimney subtends a smaller angle of vision than would one of the bricks of which it is composed when The across the street.
than the chimney; but how large is the chimney The illusion begins with mistaken ideas of the objec with which the moon is compared.

the heavens in november.

The present month is notable in astronomical annals for the occurrence of a transit of Mercury across the disk of the sun on Saturday, the 10th. The United States are specially favored in this case, since the event occurs in the middle of the day, so that not only will every one have an opportunity to witness it, but our astronomers will be able to study it under the best of circumstances. In Europe only part of the transit will be seen. It will begin here about 10:55 A. M., eastern standard time, and end about $4: 12$ in the after noon. The little planet will cross the sun from east to west, considerably north of the center of the disk. Some optical aid will be needed to see it. A strong field glass will probably suffice to show it as a minute black spot on the sun, but a telescope will do better. In any case, the eye must be carefully shielded with a piece of smoked or black glass. The safest and most comfortable way to view the transit with a telescope, unless proper solar eye-pieces are at hand, is to project the image of the sun through the telescope upon a sheet of white paper held a foot or more from the eye-piece. Those who watch the transit with powerful instruas the planet passes on and off the disk, it exhibits a ring of light, such as that seen surrounding Venus in similar circumstances, and the presence of which would be clear evidence of the existence of an extensive atmosphere on Mercury. Any peculiarity in the appearance of the planet as it crosses the sun should be noted. This event also offers an opportunity to improve our knowledge of the motion of Mercury in its orbit, of which certain unexplained anomalies recently led Prof. Newcomb to suggest the possible existence of a ring of planetoids revolving around the sun between Mercury and Venus. This is the thirteenth and last transit of Mercury for the nineteenth century.
Mars will continue to be conspicuous during November, although it is now receding from the earth. In the middle of the month it crosses the meridian about 20 minutes before 10 P . M. Some of its so-called continents and seas are still visible with telescopes of moderate size, but its south polar snow cap, conspicuous last summer, has disappeared. Apparently it has been an exceptionally hot summer in the southern hemisphere of Mars.
As Mars sinks toward the west, Jupiter will be seen rising in the east, a little to the left and north of Orion. The contrast between the two planetst is striking and beautiful, Mars being decidedly reddish in tone and Ju piter white. As the former loses in brightness the latter gains, and by the end of the month Jupiter will have become the undisputed sovereign of the evening skies. Already it is a marvelous object for the telescope, being more brilliantly belted than during its last opposition, and displaying an unwonted profusion of color. Jupiter is in Gemini, rising on the 15th at 7 o'clock in the evening, and crossing the meridian about a quarter before $3 \mathrm{~A} . \mathrm{M}$.
The moon will reach first quarter on the 5th at 10:16 A. M., being then near the middle of the constellation Capricornus. It becomes full moon in Aries on the 13 th at $2: 49 \mathrm{~A} . \mathrm{M}$., and attains last quarter in Leo at 9:08 P. M. on the 19th. The new moon of the month occurs on the 27 th at $3: 54 \mathrm{~A}$. M. It is in apogee on the 4 th , and in perigee on the 16 th . It is perhaps not generally understood that between apogee and perigee, the moon sometimes changes its distance from the earth by more than 31,000 miles, and that when planet is about one-quarter greater than when it is farthest away; the apparent size of the moon also farthest away; the appare
changes to the same extent.
The moon will be near Mars on the night of the 10th, near Neptune on the 14th, and near Jupiter on the 15th. Neptune, which to a practical eye, with any good astronomical telescope exceeding two inches in aperture, looks different from a star (although it is a mere point with such a glass), may be found rather more than 8 degrees northeast of Aldebaran and under the fifth magnitude star Iota in Taurus. Saturn, Uranus and Ven month.
There are many interesting objects in the stellar heavens conveniently placed during the evenings in November. Among these may be mentioned the great Andromeda nebula, which is nearly overhead at 9 P. M. about the middle of the month. It will be found instructive to turn the telescope-a three inch will do -from this nebula to the still greater and quite different one in Orion, which will be seen not far above the eastern horizon at the same hour. By waiting an hour or two later the comparison may by more satis factorily made, as Andromeda will then have passed away from the zenith and Orion will have risen out of he mists
The wonderful variable Algol in Peresus will be found some twenty odd degrees east of the Andro-
meda nebula. This star, as many readers know, after
maintaining its light at the second magnitude for more than two days, suddenly begins to fade, and in the course of about four hours sinks nearly to the fourth magnitude. In a few minutes it brightens again, and within three or four hours resumes its original brilliance. The cause of these remarkable changes, which are very regular, is believed to be the existence of an immense dark body, almost as large as Algol itself, and about the size of the sun, revolving around Algol so close that the distance between their surfaces does not
exceed $2,300,000$ miles! They swing around their exceed $2,300,000$ miles! They swing around their com-
mon center of gravity, Algol flying twenty-six miles and its mysterious companion fifty-five miles pe second. There will be a minimum of Algol on the 24th at midnight, Eastern Standard time. By adding 2 days, 20 hours and 49 minutes, the time of the next minimum may be calculated, and from that the next, and so on. If the theory of the cause of Algol's changes is correct, what those who watch that star on the 24th of this month will really see is an eclipse of Algol Just at midnight on that date the huge black com panion, whatever it is, will be exactly between us an he star, shutting off two-thirds of the latter's light.
There are also some fine double and multiple stars well placed this month. The location of those men tioned may be found by the aid of Proctor's star atlas. One of the most beautiful is Gamma in Andromeda A small telescope suffices for this object, showing with a magnifying power of 50 or 75 diameters two stars only ten seconds of are apart, the larger golden yellow and the smaller deep blue. The small star is again double, but only such a glass as the Lick telescope can t present separate it. Another beautiful double star which crosses the meridian about 10 P . M. in the middle of the month is Alpha in Pisces. The components in this case are much closer than those of Gamma Andromedæ, being separated by a space of only three seconds. The larger star is green and the smaller blue A telescope of at least three inches aperture should be used for this star. In Cassiopeia, also favorably situated, will be found the star Eta, which is double, one of the components being straw colored and the othe purple. Their distance apart is five seconds, but the purple star is so small that it may be difficuilt to get a satisfactory view of it with a telescope less than three and one-half inches in aperture
Many other splendid objects adorn these mid-au tumn evenings, but further reference to them must be omitted for the present. Garrett P. Serviss.

small caliber projectiles.

The recent movement in favor of small caliber arms or use in war has been inspired by several causes. The aving of weight, so that the soldier could carry more cartridges, is an important one. The production of a higher initial velocity is also made possible by the es tablishment of a heavier powder charge per unit of weight of bullet. To maintain a high average velocity in the face of diminished cross-section the bullet has been greatly elongated, so as to be almost a short arrow. Then, as rapid rotation has to be given it by strong rifling, a steel or other hard metal jacket is put on the bullet to prevent deformation by the lands and grooves, and the problem seems solved. The high initial velocity diminishes in flight so slowly that a low rajectory has been the result, and with one exception the arm is a great improvement on its predecessors o double its caliber. This exception is the lateral devia tion due to wind. The ratio of weight to longitudina section is so unfavorable that it is found that the new bullets are blown to one side by a cross-component o wind.
The action of the wind on a bullet as it leaves the mouth of the barrel is comparable to that of gravity upon a body beginning to fall. The pressure on the side of the bullet represents a force resisted only by the inertia of the mass of the bullet. Of course as the bullet moves laterally the wind exerts less and les orce upon it, but for a strong wind and for the first scoond or two the force is not far from constant
The force of gravity will carry in value a falling body more than sixteen feet in the first second of its all. Wind pressure in engineering calculations is taken at a maximum of thirty pounds per square foot. As one of the new bullets has a longitudinal area of about one half a square inch, such a wind pressure would act upon it even more energetically at the start than would gravity. Any strong wind would, it is clear, deflect it rapidly from its course. If rifle practice were carried on in the assumed thirty pound side wind pressure, then the lateral deviation at first would exceed the vertical.
Such an extraordinary condition practically would figures occur. But the possibilities which the above recent trial the deviation due to wind has been found to be very great. While striving for a flat trajectory and for lightness, the effect of wind in producin ateral deviation has apparently been overlooked.
The wind pressure, as has been said, is resisted by the inertia of the bullet, which varies with its mass and
weight. If the weight is increased, the deviation due weight. If the weight is increased, the deviation due
to wind will be decreased. But to enable the lead to
stand the strain to which it is subjected, it has been ound necessary to use a jacket of metal lighter than lead, which makes the bullet still more subject to the action of wind than a pure lead projectile would be. The high specific gravity of lead, $11352-11388$, makes it available for small caliber projectiles. Were it possible to use some other metal still heavier, an important advance would be made in the direction of high average velocity as well as of diminished wind action. The very heavy metals are rare. Iridium hammered) is over twice as heavy as lead. Platinum and gold have nearly as high specific gravity as iri dium, and uranium and tungsten come next with pecific gravities of 18.33 and 17.00 respectively.
A rather curious suggestion has been made to the effect that tungsten might be used for bullets and shot. This suggestion was based entirely on its high pecific gravity without regard to its other qualities. It seems quite possible that were a demand created or it, it could be produced in quantities at reasonable ates. It is difficultly fusible, combustible and brit le. At least this is as far as the properties are known. But if made in commercial quantities by alloying or otherwise treating it, there would be a chance of modifying its disadvantageous properties so as to obtain the advantages due to its high specific gravity. Even now the jacketed bullet is a com pound structure whose jacketing interferes with its efficiency. A jacket of tungsten or of uranium would increase its weight, while the present jacket diminshes it. It seems quite probable that a compound bullet of lead and one of these heavy metals could be nade which would have considerable value in the present days of small caliber rifles.
Aluminum has attracted most attention from its lightness. Another St. Claire Deville, who would initiate the production of a heavy metal to replace ead where weight is the principal requisite, might exert his powers on the reduction of the ores of tungsten and uranium.

Planet Notes for November.
The following is from Popular Astronomy
Mercury will be at inferior conjunction November 10, at 12 h .34 m. P. M. central standard time. The declina tions of sun and mercury differ by only $4^{\prime} 53^{\prime \prime}$, so that the planet will be seen projected on the face of the sun. The transit will last a little over five hours, be ginning at $9 \mathrm{~h} .55 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. and ending at 3 h .12 m . P. M. central time. [An illustration showing how to project the sun's image on a sheet of paper and watch the transit was given in the Scientific Anerican of October 27.]
On the 11th, at 10 h .21 m . A. M., Mercury will pas by Venus, only 8^{\prime} south of the latter. On the 27 th , at 10 h .58 m. A. M., Mercury will be at greatest elonga tion west from the sun, $20^{\circ} 0^{\circ}$. He will be at greatest brilliancy as morning planet, November 26.
Venus will be at superior conjunction November 30 at 9 h .17 m. A. M., being then directly behind the sun She will not be in good position forobservation during the month.
Mars has for some time been the most conspicuous object, save the moon, in the evening sky. He far out ranks the first magnitude stars in brilliancy, appearing almost to have a disk visible to the naked eye. Hav ing in October passed his point of nearest approach to the earth, he is still comparatively near and in ver avorable position for observation by amateurs. He will be in conjunction with the moon, 3° south of the latter, November 9, at 12 h .56 m. A. M. On the 22 d he will reach the end of the westward loop in his ap parent path among the stars and will then begin to move eastward.
Jupiter lights up the eastern half of the sky while Mars does the western. The two planets are nearly equal in brilliancy but quite different in color, the silvery hue of Jupiter contrasting strongly with the ruddy ight of Mars. Jupiter is in good position for observa tion after midnight. He will be in conjunction with the moon November 16, at 4 h .4 m . A. M.
Saturn and Uranus will be behind the sun during November.
Neptune may be observed all night, the best time be ing about midnight, when the planet is near the me ridian. He is in Taurus, not far from the star l.

The absorption of Odors by milk.
Parville relates some interesting facts upon this subject. If a can of milk is placed near an open vessel containing turpentine, the smell of turpentine is soon communicated to the milk. The same result.oc curs as regards tobacco, paraffin, asafetida, camphor and many other strong smelling substances. Milk should also be kept at a distance from every volatile substance, and milk which has stood in sick chambers should never be drunk. The power of milk to disguise the taste of drugs-as potassium iodide, opium, salicylate, etc.-is well known.

IT is said that the frigate bird can fly at the rate of 100 miles an hour and live in the air a week at a time without touching a roost.

A CLUTCH TO COUPLE SECTIONS OF SHAFTING. The clutch shown in the illustration is designed to hold the abutting ends of two sections of shafting so firmly together as to afford practically one continuous firmly together as to afford practically one continuous shaft, but one which may be instantly separated into
two parts when necessary. The clutch is designed for most effective use in rolling mills, as the power comes direct from the engine. The improvement has been atented by Messrs. Thomas F. McGee and Eugene J. McCarty, of Clinton, Mass. Fig. 1 represents the application of the improvement, the sections of shafting uncoupled, and Fig. 2 is a partly sectional view, the

McGEE AND MCCARTY'S CLUTCH COUPLING.

sections of shafting coupled. On one of the abutting shafts is a rigid flange with holes to receive coupling pins, which slide through holes in a flange on the opposing shaft, the pins being secured to a flange having a hollow hub sliding over the hub of the flange on the second shaft, and the hollow hub having at its outer end a sleeve torminating in a screw. The sleeve and shaft are supported in boxes in the lower end of brackets, at the upper ends of which are slides or shanks moving in boxes of the hangers, the brackets being held at the right height by set screws. The opposite brackets are connected by a cross arm, in which slides vertically the shank of the clatch blade, adapted to engage the screw, there being secured to the blade a curved guide extending beneath the screw, preventing the latter from working when the shaft sections are coupled. The clutch blade is held normally out of contact with the screw by a spring, and the upper end of its shank is pivoted to a transverse lever provided with a pull cord, which may be extended to such point as desired. In the box in which slides the shank of the clutch blade is a spring pin engaging a groove in the shank, whereby the blade is held in engagement with the screw when the pressure on the lever is removed. The clutch separates the two sections of shafting by power, but must be reset by hand. When the clutch is closed to hold the sections together, as shown in Fig. 2, the pulling down of the lever carries the clutch blade into engagement with the screw, thus pulling back the sleeve and movable flange to which the pins are secured, and withdrawing the pins from the flange on the opposing the flaft.

THE NEW P. AND 0.

STEAMER CALEDONIA.
In a recent number of the Steamship we find a collotype engraving of the new steamer Caledoniar built by Messrs. Caird \& Co., of Greenock, for the P. and O. Company. The Caledonia, built wholly of mild steel, and in accordance with Lloyd's highest ance with Lloyd's highest
requirements for a spar requirements for a spar
deck ship, was launched on the 19th May last, her construction having occupied a little under twelvo months. The dimensions of the vessel are as follows: Length, 486 feet; breadth, 54 feet; depth, 37 feet 7 inches; displacement at load draught, 11,200 tons; load draught, 11,200 tons;
and gross registered tonand gross registered ton-
nage, 7,600 tons. She has nage, 7,600 tons. She has
been supplied with triple expansion engines of about 12,000 horse power, these having five cylin. ders-two high pressure, one intermediate, and two

THE NEW P. AND O. STEAMER CALEDONIA.
sounded loudly, thus affording evidence that a large mass of metal was submerged below. The divers then descended and examined the ship. She had foundered through serious damage to her stern. The examination was only external, the hatches being so firmly fixed that they could not be opened.
Although mostappropriate for the purpose of searching for wrecks of iron ships, the submarine detector was primarily designed by Captain McEvoy to indicate the approach of iron ships to anchored torpedoes, as well as to search for stray torpedoes, lost anchors and chains, telegraph cables, and the like. The ap proach of a mass of metal, such as an enemy's ironclad, to a torpedo disturbs the balance and causes the sounds to become audible in the telephone. The tor pedo may then be fired electrically by means of the cable connection, the invention thus presenting itself as an important adjunct of coast defense.

A BURNER TO FACILITATE THE BURNING OF

 CRUDE PETROLEUM.In this burner, which has been patented by Mr Berend Kamps, the oil inlet is at the top of the casing, there being an adjacent obliquely inclined air inlet and below this a steam inlet, the nozzle having a con tracted end extending into the furnace. The inner end of the steam inlet termirates in a pipe extending into the nozzle, as shown in Fig. 2, and near the front end of the pipe is a collar forming an annular space for oil within the casing around the pipe. The collar has a longitudinal slot or recess to permit the passage of the oil upon the front end of the steam pipe. In the forward end of the steam pipe is a cone-shaped plug, causing the steam to pass out at a high velocity

KAMPS' HYDROCARBON BURNER.
in a very fine annular spray, the plug having a rearwardly extending atem on which are lugs fitted in the steam pipe to hold the plug in proper position. Further information relative to the improvement may be obtained of the Zeeland Brick Company, Zeeland, Mich.

Improvements on the Danube.
A recently issued report by Mr. Percy Sanderson, British consul-general for Roumania, gives an interest ing account of the improvements made in the navigation of the Lower Danube during the years 1878 to 1893 inclusive. The engi 1893 inclusive. The engineering works, which have
been carried out under the been carried out under the
able superintendence of Sir able superintendence of Sir
Charles Hartley, K.C.M. Charles Hartley, K.C.M.
G., chief engineer to the Danube Commission, may be classed under three heads, viz., those on the Black Sea coast line, those in the port of Sulina, and those in the river. The approaches to the port have been made safe by beacons, as well as by fog sig. nals and a "whistling' buoy, and the south pier at Sulina has been pro longed considerably. An even depth of $201 / 2$ feet has been maintained at the mouth of the river, and will be increased to $231 / 2$ feet by the completion next year of parallel dams. In the river numerous cut tings have been made, with the result that a minimum depth of 15 feet has been obtained on the whole of the Sulina branch of the river, while the course of the river has been shortened by six nautical miles.

MONUMENT TO THE MEMORY OF THE INVENTOR OF THE BICYCLE PEDAL.
The velocipede was of comparatively little importance until a few years ago, but at present its use has become almost universal. This remarkable result has been due to the bicycle. This frail machine is used by turns for sporting, exercise, industrial and commercial purposes, and in war as well as peace. The popularity of bicycling in France is largely owing to popularity of bicycling in France is largely owing to
the efforts of a popularpaper, Le Petit Journal, which, the efforts of a popularpaper, Le Petit Journal, which,
since 1891, has not ceased to speak in favor of the exsince 1891, has not ceased to speak in favor of the ex-
ercise which was formerly disdained. In 1861 Pierre ercise which was formerly disdained. In 1861 Pierre
Michaux, aided by Ernest Michaux, applied the pedal to

THE MONUMENT TO THE MICHAUX BROTHERS.
the old velocipede, which was propelled by the action of the feet on the ground. Bicycles had then considerable success in the last years of the Empire. The war ruined both the Michaux, and France took little interest in the development of cycling until 1880, when the safety bicycle was put on the market. In 1892 a committee was formed, with M. PierreGiffard as chairman, to honor the memory of Pierre and Ernest Michaux, who may be looked upon as the real initiators of the great movement in favor of cycling. In a year and a half several thousand francs were collected from cyclists, manufacturers and friends of the enterprise. As Pierre Michaux was born in Bar-le-Duc, the monument to the inventors of the bicycle pedal was erected at the intersection of the for the work was designed by M. Demoget, while the charming bronze figure is a work by the sculptor Houssin. The inauguration of this monument took place Sunday, September 30, 1894. this monument took place Sunday, September 30, 1894.
For the foregoing particulars and for our illustrations For the foregoing particulars and
we are indebted to L'Illustration.

Ceramic Photographs.

The picture is on porcelain, or other vitreous ware, and japanned; that is, its surface when finished is as
hard and durable as a good old-fashioned iapanned tea tray, for example. As the images are produced by the carbon process, it goes without saying that they may be in any color that may be desired.
The process is carried out in the following manner A carbon print is produced, preferably by the single transfer method, on the ware, which may be a porce lain plaque, a glass or metal plate, indeed upon any ain plaque, a glass or metal plate, indeed upon any
mpervious material upon which a carbon print can be impervious material upon which a carbon print can be
developed, and which will also withstand a considerable degree of heat. So far as the production of the carbon image is concerned, there is nothing different from the ordinary method of procedure; it is after this part of the work is completed that the novel portion of the process comes in. We will here digress for a moment to explain tersely what is known as japanning. This consists of coating the surface with a suitable varnish, in repeated thin layers, and then subjecting it for a time to a tolerably high temperature. The varnishes generally used for this class of work are amber and copal. The former yields, perhaps, the harder film; but the latter, if good, is little, if anything, inferior, while it is whiter, a consideration for our pre sent purpose. It may be mentioned that it is not all amber or copal varnishes that are suitable for japanning. Those that must be used are what are specially prepared for "stoving." The varnish we have used very successfully was purchased under the name of " white dial varnish." It gave a colorless film, and was exceedingly hard and bright when the picture was finished.
Mention was just made as to the varnish being applied in successive thin coatings. They are put on with a camel's hair brush, but a fresh coating must not be applied until the previous one is thoroughly dry and hard, this condition being hastened by a moderate heat. If any brush marks are apparent, they may be disregarded, as they will disappear in the final stoving or in the after operation of polishing. After the work has been stoved, that is, kept at a temperature of from 150 degrees to 200 degrees Fah. for some hours, it is allowed to cool. The surface is then polished, first with pumice powder, then with tripoli and oil, and finally with putty powder, as lenses are polished. It will now be seen that the surface will possess an exceedingly high polish, and, if amber be the varnish
used, it will be as hard and durable as the amber used used, it will be as hard and durable as the amber
for the mouthpieces of cigar holders and the like. for the mouthpieces of cigar holders and the like.
Here is the way we proceeded. The carbon print was developed on an opal plaque and allowed to dry A thin coating of the white dial varnish was then laid on with a flat camel's hair brush. It may be mentioned that the varnish used for this coating was thinned with about an equal bulk of turpentine. Successive coatings were then applied, and finally the picture was stoved and polished as just described. The source of heat for the stoving in our experiments was the oven of the domestic kitchener, and it answered the purpose well, as the heat was perfectly under control.
In making pictures by this method it may be ad
visable to employ a tissue that contains a maximum of pigment and a minimum of gelatine, so that the film bearing the image is of a somewhat porous nature. The first coating of the varnish will then permeate it, and so bind it more firmly to the ceramic base. It is needless to mention that the pictures can be colored, if desired, before they are japanned.-British Journal.

A TOBACCO OR CIGAR MOISTENER

The illustration represents an improvement designed to facilitate the moistening of the air in show cases etc., in a more effective manner than by the use o songes, as usually employed. It has been patented by Mr. Jay A. Robinson, of Denver, Col. The moistener consists of a rectangular hollow porous block, having an open bottom and with its lower edges roughened to permit the entrance of water. A number of these blocks are placed in a tray containing water, and the tray may, if desired, be connected with inlet and out let pipes to maintain a constant supply of fresh water although this will not be necessary for ordinary use These blocks are designed to present a better appear-

ROBINSON'S TOBACCO OR CIGAR MOISTENER

ance and be more conveniently attended to than sponges, while exposing a larger moist surface to the air.

The Causes of Epidemics.

In a lecture given recently to the Halifax Scientific Society, Dr. Solomon Smith drew attention to the fact that to produce an epidemic prevalence of any disease he co-operation of many causes was necessary. These actors might be grouped as

1. Those which increased the susceptibility of indi viduals, about which we knew but little
2. Those which favored the outside growth and development of the infection-heat, moisture, organic impurity of soil and water, aeration of soil, etc.
3. Those which favored the fouling of the water, floods or droughts, according to circumstances, varying level of subsoil water, construction of wells, tanks, and water supplies, their relation to cesspools, and surface pollutions, and social habits of the people by which such pollution was encouraged and carelessness as to drinking foul water induced.
4. Those by which the infection was transmitted from place to place, especially movements of large masses of people, as in pilgrimages and wars, and the rapid distribution of cholera-infected people over large areas in some part or other of which a suitable nidus for fresh growth of the infection would be likely to be found.
Cholera was, no doubt, continually being exported from its home in India; but it only occasionally became epidemic in those places where it was an exotic and when this happened we must look for an explanation not merely to water carriage, which was the mere mechanism of its spread, but to a coincidence of those varied and complex causes which assisted in the inten sification of the disease. To some extent the produc tion of an epidemic was analogous to the opening of a " word" lock. As all the letters must be placed in position before the lock could be opened, so many factors must combine before an epidemic of cholera could be caused. The converse of this, however, was also true, and on this was founded our protection from cholera, for however little we might know with precision about some of the multiplex causes of a cholera epidemic. we did know that one essential cause, one letter to the lock, was the swallowing of the poison, and thus by a provision of pure water we were able to break up the combination by which alone an epidemic could be pro duced.-British Medical Journal.

Nitrate of Soda Freezer.

Instead of ice and salt, nitrate of ammonia is used. For a small ice cream freezer, 7 pounds of the nitrate and 3 quarts of water. The freezer is then rotated The cream or water is quickly frozen if the material is first cooled down before applying the nitrate. The nitrate is recovered for reuse by evaporating the solution to dryness on the kitchen stove.

Charles Ehrmann.
The death of Charles Ehrmann at the age of seventytwo. familiarly called Dr. Ehrmann by his photographic friends, occurred in this city on October 23. He was a man who took great interest in the art of photography, beginning its practice when first discovered. He was educated as a pharmaceutical Phila delphia drug store in the forties. There he met a Mr. McClees, who had opened a daguerreotype gallery, and was having trouble with his chemicals. He asked young Ehrmann if he knew anything about chemistry, he modestly replied in the affirmative and McClees en gaged him at once. Ehrmann then began to experiment with the Whipple albumen process, which was very slow. He improved the method of coating the plates by mixing the citrate of iron and ammonia solution and albumen solutions together, and flowing over the plate as one solution. A daguerreotype from the person was made, then a negative from that by the albumen process, from which duplicate daugerreotypes were printed
In 1852 he became acquainted with Mr. Ed. Thilg man, who had returned from Europe, having seen Mr Archer, of Edinburgh, who was the first to introduce the collodion wet plate process.
He met with poor success in experimenting with this process, until the patent of James Cutting, of Boston, was issued providing a method of bromizing the collodion, which made it practical. Operators who became proficient in it earned large wages. For a long time Dr. Ehrmann was the chief operator and chemist of Mr. William Kurtz, a leading photographer in this city, and took portraits by the electric light in a down town office on Broadway. The camera and person were placed on a rotating platform, which was slowly swung around during the interval of exposure, thus in ducing very soft shadows.
In 1881 he was taken on the editorial staff of the Photographic Times, of this city, as an assistant to J Trail Taylor, and remained as one of the principal editors until his death. In 1886 he was appointed in structor in the school of photography established by the Chautauqua University, and won many friends by his genial nature and kindly manner. He took up the problems connected with emulsion photography and the modern gelatine plate in a practical, scientific, ex perimental manner, was deeply interested in the new developers, particularly praising paraamidophenol.
He was a very clear writer on the chemistry of photography, industrious and thorough. He believed there was an immense future for photography, and lived to see marvelous advances. He will be greatly missed, but his work will live to perpetuate his memory.

Compliment for "Experimental Science."
Dr. Frank L. James, editor of National Druggist, in response to the request of a physician to outline a course of reading for one who desires to begin the study of medicine, says in the course of his remarks:
In physics the best book to go into the hands of an intelligent beginner is "Experimental Science," by George M. Hopkins, published by Munn \& Co., of the Scientific American. Mr. Hopkins has, in this work, made the study of physics almost as interesting and entertaining to a healthy boy or young man as base ball or cycling. He illustrates principles by experi ments, and these latter are made so simple, by careful description and profuse and accurately drawn pictures, that they can be executed by any person with the least ingenuity. The work covers a wide field, and will in troduce you to chemistry, microscopy, and other allied sciences. Eren if you have studied physics as taught in the high schools. you will find it a most admirable book, one that will be of great use to you in advanced studies.

Torrefied Pulp.

A new method of preparing and preserving potatoes to be fed to cattle or to be made the basis of dishes for the table has been devised by M. Aime Girard, of the Conservatoire des Arts et Metiers, Paris. The potatoes having been ground, the pulp is exposed to pressure for the exclusion of all the water that can be removed by mechanical means. The pulp is then sliced and heated in a furnace till it is entirely dried, at a temperature high enough to give it a pleasant taste, without being so high as to convert the starch into dextrin. The substance thus prepared is called by the inventor torrefied pulp, and is suitable for feeding to cattle.

Pictet finds that where powdered sulphide of lime -the material used in the so-called "luminous paint" -was placed in a tube, it glowed as usual in the dark after exposure to the sun's rays, but when the tube was lowered into liquid nitrous oxide at $-140^{\circ} \mathrm{F}$., the glow was quenched. The phosphorescence did not
reappear at once when the tube was removed from the cold liquid, but it returned when the sulphide had become heated again.

Artificial Marble.
Messrs. Majewsky \& Bayenbach have recently pat ented a process of manufacturing artificial marble from gypsum. The method of treatment, according to Le Genie Civil, is as follows :
The gypsum is first worked with the plane, saw, or lathe to the desired form and is then heated'in a fur nace for from seven to nine hours, in order to get rid of the water of crystallization. The dehydrated material is then immersed for a few minutes in a saturated so lution of sulphite of potassium and afterward in a solution of chrome alum, sulphate of iron, or sulphate o zinc or magnesia, according to the color that it is de sired to obtain. At the end of about twenty-four hours it is removed from the bath and allowed to dry in the open air for one or two days. It is then ready to receive a polish.
The object of the treatment with sulphite of potas sium is to facilitate the complete impregnation of the gypsum with the substances employed for producing the coloration, in the production of which it plays a direct important part, itself becoming oxidized at the expense of the coloring materials. It forms sulphate of potassa. At the same time it removes from the col oring solutions the oxides of the metals to which the particular color of the finished product is due.
During the course of drying the solutions with which the gypsum is permeated crystallize in the pores o the material, and, filling them, form a solid and in permeable mass.
If the piece of gypsum is of considerable thickness, he complete impregnation of the mass is assured by orming longitudinal apertures and sucking out the ai while the material is immersed in the solutions.

Aluminum not Suitable for Boats

The Navy Department has just completed a test of aluminum as a material for ship boats, with the object of determining its adaptability to naval uses, with re sults that demolish some of the elaborate claims made or the new metal.
On account of its comparatively light weight, its atility on board ship would be almost inestimable if it were not for the fact that it has been now shown to be exceedingly susceptible to the corrosive action of salt water.
Two sheets, one-sixteenth of an inch thick, were im mersed for three months at the Norfolk navy yard One was of pure metal and the other slightly alloyed with nickel. The pure plate was thickly covered with large barnacles throughout its surface and was moreo less pitted by the action of salt water. The alloyed plate was incrusted with smaller barnacles and was badly corroded, being perforated and eaten away over much of its exposed surface. This plate was as injuriously affected as a combination of iron and coppe would have been with the same exposure.
The claim that barnacles would not adhere to th metal was not substantiated in the smallest degree.
In the opinion of naval experts it will not be advis able to build aluminum boats if they are intended to remain any length of time in the water, though its use nay be ad.vantageous on account of the great gain in lightness for metal work exposed to salt water only oc casionally. The use of aluminum cannot be recom mended near salt water under any circumstances.

Eyes and Eye Doctors.

In no branch of surgical science has more progres been made of late years than in that which concern tself with the eye. Within the memory of men now iving persons with defective vision were divided into myops or short-sighted people and hypermetrop or long-sighted people, and for the former con cave spectacles were devised which threw the focus of vision back, while for the latter convex spectacle brought the focus in front of the retina. It was as sumed that the only differences in these two forms of visual disturbance were differences of degree, and when the half-blind person could by a violent effor ead through the spectacles which the optician tender ed him he was supposed to have got all the relief which cience could furnish him. Science has now done fo he eye what specialists are trying to do for the nerves t has diagnosed a variety of ailments which were un nown to our fathers, and for these it is busily engag ed in devising remedies. The human eye, when stud ed under the microscope and in accordance with the aws of optics, is found to be one of the most imperfect organs in the body. There are few perfect eyes in the world. The refracting surfaces are constantly curved so as to blur the image, and to produce what doctors call astigmatism. There are frequently opacities in the transparent media, which cast a shadow on the retina and distort the vision. Sometimes the retina acts like a lens and disperses the various pencils which constitute white light. These and other defects can be detected by the modern oculist, and treated by the knife or counteracted by suitable glasses. But it is plain that this is work for which the skill of the oculist is required and which cannot be intrusted to an opti-
cian, however well trained he may be. A learned Ger-
man named Helmholtz some years ago invented an instrument called the ophthalmoscope. With this instru ment the structure of the eye can be determined at leisure and its departures from the normal detected. The oculist then goes to work and devises a pair of glasses with just the curves required to correct the defects of the eye; these glasses, described in mathe matical symbols, are handed to the patient as a pre scription to be filled by a competent optician. Ther are in European and Eastern cities opticians who do nothing but fill such prescriptions. They work over glasses as Alvan Clark works over telescope lenses the curves must be mathematically true or the glasse will not fulfill their purpose. But when the mechanic knows his business, and the work is done according to the prescription, the defects of the eye are cured.-San Francisco Call.

Western Union Annual Report.

The annual report of the Western Union Telegraph Company for the year ending June 30, 1894, shows that as compared with 1893 there was a decrease in the revenues of $\$ 3,125,787$. There was a reduction in the expenses of $\$ 1,422,235$, leaving the net profits lower by $\$ 1,703,733$ than in the previous year. The company constructed during the year over 1,300 miles of new pole line and nearly 22,000 miles of new wire, but lines taken down reduced the net increase of pole line to 367 miles; while the net increase of wire was reduced to 21,591 miles. More than half of this is copper; the cost for these additions to the property amounting to $\$ 557,021.64$.
The average toll per message was 305 cents, and the average cost per message 23.3 cents. The higher cost per message is due to the general depression of busi ness and the impracticability of reducing expenses at the many smaller offices beyond a standard that would provide for the proper handling of the messages. The argest amount expended during the year was for wages. It was found possible to so arrange the hours of duty of the employes of the company at the large offices as to give each one a fair share of the reduced work at command without materially reducing the number emploved. Since the expiration of the fiscal year the system of the American Rapid Telegraph Company, which comprised 2,684 miles of poles and 0,370 miles of wire, extending east to Boston, south to Washington and west to Chicago, lias been purchased or $\$ 550,000$ in Western Union stock at par. The com pany has also purchased since the close of the fisca year 10,000 miles of copper wire, which will be erected before January 1 on important trunk routes. A five per cent dividend was declared.

The Last of the Buffaloes.

Hunters know that buffaloes will never unless forced cross the iron of a railroad track, and this fact figured argely in the unfortunate work of extermination hich these animals have suffered since the Western plains have been spanned by railroads.
The greatest blow dealt the bison herds of the Northwest was the completion of the Northern Pacific track west from Bismarck to the Rocky Mountains The road practically divided the herds, and those to the south were soon swallowed up in the genera slaughter waged by Indians, pot, hide and tongue hunters, foreign sportsmen and others who were out to kill anything they saw on sight.
This was during the winter of 1882-83. The buffaloes o the north were in many scattered bands, but there was one great herd of not less than 75,000 head, which had found a temporary refuge in the triangle formed by the Musselshell, Missouri and Yellowstone rivers in Montana, and as yet they had not been 'smelled out" by either red or white hunters. But they were as surely doomed as though already kiiled, for the rail road iron cut them off from the southern range, and the Indians of the Canadian northwest, as well as hose of our country, barred their retreat into the far North, and so they were hemmed in between the two with no possibility of escape in either direction. Thi ast herd was completely wiped out of existence in less than four months, and before the close of the year here were but a few singles and pairs left as fugitive in that vast country where but a year or two before hey could have been counted almost by the hundreds of thousands. At the end of that season 800,000 buffal hides were shipped east from Glendive, on the Yellow stone River.

Increasing Demand for Otto Gas Enginew.
Contracts have just been given out for the erection of several large additional buildings to extend the facilities of the Otto gas engine works in Philadelphia The company are now also building marine engines in sizes from 2 to 250 horse power, plans of which have been received from the Otto works in Germany, which have a capacity of from 2,500 to 3,000 engines per year The latter type of machines will also be adapted to the use of running dynamos for electric lighting direct from the engine.

Sorrespondence.

The Hut-building Cicada.

To the Editor of the Scientific American
I was much interested in the article which you published in your issue of October 13 on the "Hut-building of the Seventeen Year Cicada," by Mr. Lander. I think he is on the right track to a solution of the problem by agitating the matter, but I can hardly agree with him in his explanation.
According to my experience, he is quite right in not regarding the seventeen year cicada as a migrating insect; but it seems to me that the lack of this trait will not and, in fact, has not prevented it from spreading over a large extent of country. It must have had some means, or may be many means, of being transported from one place to another. Whether the transportation is intended or purtly accidental I cannot say. It seems to me that there are many ways that the insect can be spread over the country, the extent of the dispersion depending only on time. In support of this view I will state the following instance:
On Decoration Day I took a long drive about the country in which my home is situated. I drove about 30 miles through all sorts of country; in some places the seventeen year cicada was plentiful, in others scarce, and in many places was not to be seen at all. During the course of the drive I stopped on top of the Watchung Hills, at a point about 400 feet above the sea level and perfectly dry; that is, it was not swamp land. As I was putting blankets on the horses I noticed a seventeen year cicada on the back of one of them. I picked it off and observed that it was a female and then let it go. I thought nothing more about it until I read Mr. Lander's article, then the thought came to me that if that female had been a hut-builder from some lowland, then, according to Prof. Riley's theory, there would be mud huts on top of that hill for the next few generations anyway. How long it would take the trait to die out I am not able to say.
We have stories of their getting on railroad trains. In this way they could be carried quite a distance before the train would be clear of them. So it seems to me that the hut-builders could very easily be carried from low to high land in one way or another.
I do not think it possible for the earth to become in a few weeks so warm from the solar heat rays that any creature living in the earth would be forced to come to the surface; which action I think would only make the matter worse, by reason of its getting into much warmer strata. In the case of the hut-building pupæ, it seems to me that they could do nothing worse than to build such a hut. It would be out of the frying pan and into the fire, as the old saying goes. Dr. Southwick gave me some huts which he collected at New Baltimore, N. Y., they were hard and dry, having the appearance of sun dried clay. Surely the pupa would find it much warmer in such a position than it would below the surface.
The hut receives the heat rays on all sides. It would also receive a great deal of heat by radiation from surrounding ground.
I offer as an explanation of this matter, that the pupæ build these huts to receive heat instead of avoid ing it, and that this habit has been developed by those who happened to emerge in wet places where the earth could not become as warm as in dry places.

That these hut-building insects have been in various ways transported to high ground, and have not yet lost the hut-building trait-this I believe is practically Prof. Riley's explanation of the matter.

Stephen A. Krom.
Plainfield, N. J., October 24, 1894.
Homemade Beef Powder.
Dr. William R. Huggard (Davos Platz, Switzerland)
writes in the British Medical Journal of June 9, 1894 writes in the British Medical Journal of June 9, 1894:
Some of the beef powders in the market smell and taste of the chemist's shop, and are not readily taken by an invalid whose palate requires to be coaxed. A happy idea struck the writer several months ago that beef powder might without difficulty be prepared fresh and on a small scale by any ordinary cook. The ex periment was made, and the result was satisfactory beyond expectation. Beef powder made at home is appetizing, has a delicate aroma and flavor, and can
be taken with pleasure by invalids who turn with averbe taken with pleasure by invalids who turn with aver-
sion from ordinary food. If a little pepsin be taken at the same time, it is digested even when the ordinary peptonized foods are not retained. The mode of preparation is simple. Lean beef is cut into small pieces these are put into boiling fat, dripping, or butter for a couple of minutes until the surface is browned. They are then removed from the fat and placed on a strain er for a few moments. Afterward they are placed in a mincing machine. The resulting mince is placed in a slow oven and dried. The drying process may take from five to twenty-four hours, or even longer, accord ing to the heat employed. When thoroughly dried, the meat is quite crisp, and can be ground in a coffee mill that has not been used for any other purpose. In the drying process the meat loses a trifle more than
four-fifths of its weight. This beef powder can be taken in various ways-with hot water or soup, with mashed potatoes, with bread and butter in a sand wich, or with a little pepsin in a starch wafer. The writer has given this homemade beef powder with such excellent effect in several cases where there was much difficulty with food that he thinks others may find it useful.
Beef powder, carefully prepared according to the directions above given, has an agreeable flavor, and admits of being used like potted meat by persons of delicate or fanciful appetite. By regulating the heat applied in making the powder, the albuminous constituents need not be coagulated, but merely dried, and the digestibility of the powder would then be increased ; in any case, the finely divided condition would facilitate digestion. A very good beef tea may be made from the powder by infusing it in moderately hot water. For the preservation of the powder it would be necessary to keep it from contact with atmospheric air and to avoid the access of mites or similar deteriorating influences.

Natural History Notes.

Fountain Trees.-Mr. Duchartre recently made known to the French Academy of Sciences the results of an experiment made by Mr. Maxime Lecompte in Congo upon a tree of the genus Musenga. Upon making incisions in the trunk of it and placing a pail at the foot of the tree more than ten quarts of pure water were collected in thirteen hours. The gorillas, it seems, are in the habit of slaking their thirst at these hidden fountains, and regulate the flow of the liquid at will by pulling off different sized branches.
Many years ago, Dr. Wallich found in the province of Martaban, Africa, a plant belonging to the same natural order, whose soft and porous wood discharged, when wounded, a very large quantity of a pure and tasteless fluid, which was quite wholesome and was used as a beverage by the natives. This plant was named by Dr. Wallich the water vine, and has been placed in the genus Phytocrene, which signifies "plant placed in th
These plants form a remarkable exception to the usual character of the order, which embraces species that produce a milky juice, such, for example, as the celebrated cow tree, or Palo de Vaca of South America, which yields a copious supply of a rich and wholesome milk, as good as that of the cow, and used for the same purposes.
The Exploits of Diving Birds.-Engineers have often announced that submarine vessels would some day acquire a speed much greater than that of ordinary ships. The diving birds furnish us with a powerful argument in support of this opinion, for they move with surprising rapidity under water. The penguin, for example, can neither fly nor walk, but hops along as if its legs were tied together. Nor does it swim, for it literally flies under water. When, at the Zoological Garden of London, the keeper brings food to these birds, a sudden transformation is witnessed. The bird, which is heavy and awkward, suddenly becomes a superb and rapid creature, covered with globules of silver formed by the air imprisoned in its plumage, and flying in the depths of the placid water with a rapidity of evolution that is unknown in aerial flight. The motion of its wings is identical with that of ordinary flight, and its feet, extended in a line with its body, serve neither as motors nor as rudders. Steering is effected through the acceleration of the motion of one of the wings at the expense of the other. The fish thus chased is captured and swallowed without any retardation of the speed of the bird being visible. The cormorant, on the contrary, swims with his feet, which act like the paddle boards of the wheel of a steamboat. Yet the conditions of the submarine medium are so exceptionally favorable that the speed obtained therein by the cor morant is three or four times greater than that which Intercellular the surface.
Intercellular Communication in Lichens.-Mr. G. Poirault has found in the thatlus and apothecia of ichens indications of very minute channels in the cel walls, permitting of the intereommunication of the ell contents, the protoplasm communicating through the perforations in the membrane. Fresh material is ot necessary for the examination, and previous fixation of the protoplasm is not required, as in the case of the phanerogams. In Usnea barbata communication is said to exist between distant elements, as well as be tween adjoining cells. Other species in which simila phenomena have been observed are Cladonia rangiferina, Peltigera canina, and Calicium chrysocepha lum. It is proposed to illustrate these peculiarities of structure in a subsequent note.
Classification of Plant Tissues.-Recent attempts to found an internal morphology of plants have given a new life to the study of botany
The recent progress in this direction is mainly du to Van Tieghem, the French botanist, the characteris tic feature of whose anatomical teaching is the recog nition of the central cylinder or "stele," as a definit region comparable to cortex and epidermis. In the
root the central cylinder is perfectly well defined, in
cluding within it the ring of alternating bundles of wood and bast, accompanied by a certain amount of parenchyma (conjunctive tissue), the outer layer of which constitutes the pericycle, or limiting layer of the stele. The cortex, the inner layer of which is the endodermis, surrounds the stele, and outside the cortex is the piliferous layer or epidermis
The same three regions-central cylinder, cortex, and epidermis-exist in the stem. The stele is made up of the vascular bundles and conjunctive tissue, the latter constituting the pith, primary medullary rays, and pericycle. The last named is often less obvious than in the root, but is characterized by the same power of forming new tissues and organs. At every node the continuity of the main stele is interrupted, and its limits may be difficult to rocognize, but it is none the less a distinct region in the stem because it possesses prolongations into the leaves. Where the vascular bundles bend out from the stem into the leaf, they are accompanied by conjunctive tissue, and the name "meristele" is applied by Van Tieghem to such a bundle or group of bundles entering a leaf, with their endle or group of bundles entering a leaf, with their en-
veloping conjunctive tissue. Thus the stele tissue of veloping conjunctive tissue. Thus the stele tissue of
the whole plant is seen to be continuous through all the whole plant is seen to be co
its organs-root, stem, and leaf.
In the typical stems of phanerogams there is a single central cylinder in direct continuation with that of the main root. This "monostelic" condition is constant in the embryonic stem of all vascular plants. But in many vascular cryptogams and in the genera Gunnera and Primula, section Auricula, the cylinder divides up above the hypocotyl or first stage of the stem, a number of equivalent steles thus resulting. In most ferns, and in many selaginellas, this "polystely" occurs.
"Astely," or "schizostely," is a departure from typical structure characterized by the stele completely breaking up into the individual bundles, each surrounded by its own "peridesm" (the conjunctive tissue at the periphery of any portion of a subdivided stele, as distinguished from the pericycle which surrounds an entire stele) and endodermis. Typical examples oc cur in Equisetum limosum and other species, in Nymphæa and aquatic species of Ranunculus, etc.
Change of Color in the Hare.-From a study of seventy-five specimens of the northern hare or white rabbit (Lepus americanus, Erxl.), collected for the purpose of investigating the spring and autumn change of color, Mr. J. A. Allen reaches the following conclusions :

1. The change of color, both in autumn and in the spring, is due to change of pelage, and not to a change in the hair itself.
2. The change is gradual, occupying many weeks. 3. The method of change, as regards the parts first affected, is the reverse in spring in the order characterizing the autumnal change
3. In the early part of spring, after the white over hair has been shed, the pelage consists of the heavy coat of soft winter underfur. This gradually disappears as the summer coat thickens.
4. In spring the moult occurs quite as early and proceeds just as rapidly in the females as in the males and the moult is practically completed before the young are born.

These conclusions differ widely from views hitherto entertained by both scientific and non scientific writers.

Coothold on Pavements

Some little time ago officers of metropolitan police were deputed to make certain observations concerning road traffic generally during the discharge of their daily duty in the busiest thoroughfares. These obser vations extended over fifty days of twelve hours each day, namely, from 8 A. M. to 8 P. M., and granite asphalt, and wood pavement were considered. In one day of twelve hours no fewer than 12,366 horses and vehicles passed along Cheapside, and 5,350 along Can non Street. During the fifty days upon which obser vations were taken, 542 accidents took place on wood pavement, 719 on granite, and 1,066 on asphalt. From these figures it was estimated by an expert that a hors could travel 330 miles on wood pavement during the fifty days without meeting with an accident, 191 on granite, and 132 on asphalt; therefore the great superiority of wood pavement over all others-at least where horses are concerned-is at once apparent Altogether, 1,054 falls were recorded, and an analysis of this number (London says) affords some curious infor mation. On asphalt, 247 partial and 190 complete falls took place; on wood 326 -only 39 complete falls. Roughly, for every fall on wood pavement four took place on granite and asphalt.

An Atom of Electricity.

According to a recent determination of Professor Richarz, the smallest possible quantity of electricity which may be termed an atom of electricity, is such that 430 multiplied by a million three times, that is. by the cube of a million, willgive the number of thes toms contained in a coulomb. That such a thing as an atom of electricity exists is the opinion of no less an authority than Professor Von Helmholtz.

STREET PIANO INDUSTRY.

The handle or street piano was first manufactured in Torino, Italy. They are used principally by Italians, who push them around the streets in twowheeled carts or wagonettes, stopping from house to house, grinding out the popular airs of the day. A great many are now in use as parlorinstruments. The construction of the soundboard of these pianos is similar to those used in our upright pianos, the framework in the street instrument being made of wood instead of iron. The frame over which the soundboard and strings are placed is made of strips of thoroughly width, about 5 inches in thickness, and placed about 6 inches apart, blocks of the same material being bolt ed and glued between them at the ends and through the center. The strips containing the tuning and hitch pins, which are bolted at the top and bottom of
proper widths, ranging from $1 / 2$ inch to $3 / 4$ of an inch. The felting is white in color, and runs from $1 / 8$ inch to $1 / 2$ inch in thickness. After drying, the felt hammers are covered with a strip of thin leather. The hammers are connected to the keys by means of a straight piece of iron wire, which is screwed down into the top about $3 / 4$ of an inch. These keys are made of maple and are also sawed off a prepared strip into the proper width. They are about $1 / 2$ inch in width and about 6 inches in length. The key frame is also made of maple, a number of slots being sawed into the strip $1 / 2$ inch in width and about $1 / 2$ inch apart. The lower ends of the keys are then put into the slots. A wire running through the center of the end of the frame passes through the

the strings. These pins are of three sizes. The large or square pins representing whole notes, the circular medium size, the half notes and the small ones the trills. When the cylinder revolves, these pins strike or come in contact with a pin connected to the bottom of each key. As the pin on the cylinder moves forward it pushes the key pin backward, which in turn draws the hammer forward. As soon as the key pin escapes from the cylinder pin the hammer flies back and strikes the strings. The space between the pins and their height above the surface of the barrel distinguishes the whole and f notes from the half notes. These pins project from the surface of the barrel from $1 / 8$ inch to $1 / 4$ inch. The half notes, which are the medium sized pins, project up about half the height of the whole notes. The trills are made with the small pins, they being placed one after the other as close as possible. In striking, the hammers are drawn back from $3 / 4$ of an inch to 2 inches. The tune is formed on the barrel in the following manner. The barrel is first covered with a clean piece of wrapping paper and placed in position in the case. A line is then drawn across the top where the tune is to begin. If the piece begins with the note A or B or C, etc., the key above with the projecting pin that strikes the string marked A or B or C, etc., is drawn down so that the pin punctures the paper. This operation is repeated until the tunes, which are ten in number, are punctured on the paper. The barrel is then withdrawn and is ready for the
the frame, are made of maple, about $11 / 2$ inches in thick ness. The soundboard, which is made of strips of $1 / 4$ inch sprace, is placed snugly between the tuning and hitching strips. The frames range in size from 30 by 44 to 42 by 54 inches. The tuning pins are made of steel, about 2 inches in length and about $1 / 4 \mathrm{inch}$ in diamet r, the bottom end being threaded. Slanting holes are bored into the pinboards, their diameters being a little less than the pins. The ends of the pins being a little less than the pins. The ends of the pins are then inserted into the holes, the hitching pins being driven and the tuning pins screwed in by means of a key fitting over the square top. The strings are made of the best steel wire of seven different sizes, ranging from No. 13 to 19. They are arranged over the sound board containing the bridge in sets of from \mid center of each key, holding them in place. Connected three to five strings each. The tuner first making a to each key is a brass wire spring, one end being atloop in the end of a string and placing it over the tached to a key and the other to the key frame. hitch pin, the other end is passed through the hole or eye in the tuning pin, the operator twisting it around by means of the key until it is drawn taut. Each set of strings is lettered A. B, C, etc., each string of each set being tuned up to the same pitch, according to the note wanted. There are from 40 to 48 sets of these
strings in each piano, which contains from four to five octaves. The hammers are made of maple and English felting.
The felting, which costs about $\$ 5$ per pound, is first glued to a prepared maple strip and sawed off into the

When the stroke of the hammer is made this spring draws the hammer back instantly, causing the strings to give a full round tone. If the hammer remained against the string after the stroke, the tones would be dead. The barrel or cylinder containing the pins runs from 28 to 36 inches in length and 141/2 inches in diame ter and is made of whitewood about 1 inch in thickness. The barrel revolves on a movable table or plat form which can be removed from the case by means of a circular door in the side of the piano. The placing of the pins on the barrel causes the hammers to strike
pins. These pins are about $3 / 4$ of an inch long and made of steel. They are forced into the surface of the barrel by hand, the operator putting the pins into the slotted jaws of a pair of pincers and pressing them down and into the paper and wood, where it is punctured. For ten tunes it takes about 6 pounds of these steel pins, amounting in numbers to about 16.800, the operation taking from 3 to 6 days. The barrel is shifted from one tune to a nother by means of a small shifted from one tune to another by means of a small wheel, the surface of the side nearest the barrel being
raised at different elevations. The wheel is operated by turning a knob or button on the outside of the by turning a knob or button on the outside of the
case. A small pin projecting out of the end of the shaft bears against the small wheel, which when turned causes the barrel to shift its position. The barrel when turned revolves at the rate of 1 revolution per minute, each revolution making one tune. It takes four skilled men about three weeks to make one of these pianos. They cost from $\$ 160$ to $\$ 180$ and are
guaranteed for two years. New tunes are put on the barrels at a cost of $\$ 5$ each. The cases are made of birch highly polished. The piano when finished weighs about 300 pounds. The sketches were taken from the manufactory of Giovanni Mina, New York City.

Food for Fever Patients.

Dr. Peabody, in the Medical Record, expresses his belief that, in all kinds of illness, and especially in fevers, attention should be paid to the appetite and desire of the patient, and that, if a patient is really hungry, solid food, of a properly selected kind and in judicious quantities, will rarely disagree with him. Dr. Peabody believes there is less danger of doing harm to an ulcerated ileum in typhoid fever by giving finely divided egg, beef or chop than by giving milk, and habitually gives his typhoid patients who are hungry such food. He believes that it is a mistake to withhold solid food merely because a patient has fever, and that it is incorrect to regard milk as a fluid food, as is commonly the case, the simple fact being that milk will always remain the most serviceable general food in disease, but where it fails to nourish the patient, or where it is not well borne, or for any reason cannot be taken, it is to be considered that efficient adjuncts and substitutes are within reach.

A MUSSUCK RACE.

At the Calcutta swimming bath ladies attend in large numbers to witness the annual sports and races. Among all the exhibitions of swimming, racing, and diving, none produce merriment like the mussuck race, which has to be swum in full costume, with boots and tall hats, any competitor being counted out who ar rives at the goal-one hundred feet from the starting point-with head uncovered. A mussuck is a tanned goat skin, which, when used by water carriers, has all the openings sewed up except at the neck, and is in use throughout all those parts of India where British civilization has not laid on pipes. For the race they are inflated with air, the neck of the opening closed, and the racers have to bestride them and make their way by paddling along the bath. Our illustrations (which are from sketches by Mr. Frank Scallan, of Calcutta) show how those who hurry get underneath, while the wary one who goes slowly preserves his equilibrium till the end.-From the Graphic, London.

A LOCKING STOP COCK FOR TRAIN PIPES.
To prevent the interference by unauthorized persons with the operation of air brake systems, a locking mechanism for the stop cocks of train pipes has been invented by Mr. John T. Eldridge, of Murfreesboro, N. C., and is illustrated herewith. The stop cock casing has in its lower portion a segmontal recess at whose ends are shoulders or lugs, and the stem of the valve has on its upper side a lug which works in the recess,

ELDRIDGE'S LOCRING STOP COCK FOR TRAIN PIPES

engaging one shoulder when the cock is open and the other shoulder when the cock is closed. On the lower side of the handle, near its inner end, are longitudinally aligned studs, and a locking sleeve turns and has longitudinal movement on the handle, being held from a removal by a stop at the outer end. The sleeve has a longitudinal internal groove, permitting it to pass the studs, and is cut away on opposite sides to form an open chamber within which are permutation rings having internal annular and intersecting transverse grooves which operate in connection with the studs, as shown in Fig 2. The inner end of the sleeve also has on opposite sides notehes which alternately engage the outer edge of the lug on the valve stem when besides an inner extension or arm of the sleeve which engages one of the shoulders of the valve casing, as shown in Fig. 1, when the cock is to be locked in open position, the arm engaging the other shoulder when the cock is locked in closed position. When the oute sides of the permutation rings are turned to bring the figures which form the "combination" into align
ment, the internal transverse slots or grooves of the rings will register with the studs on the lower side of the handle, and the locking sleeve will then be free to be moved and rotated.

The Trouble New York Builders Have

A prominent builder tells one of our city contempo raries that building in New York is at the present time quite a game of chance. After the contracts are all made, the cellar blasted out and the foundations laid, it would appear to be an easy matter to go ahead to completion.
"On the contrary," said he, "your troubles are likely to just begin. There are the stone workers, the brick contractors, the terra cotta man, the plasterers, the trimmers, etc. I've got some houses not done yet which were to have been completed by the first of September. My money is invested in an expensive piece of ground, and the houses will not be ready to catch the fall renter and buyer. Even when completed now they will probably remain vacant till next May. The stonework was delayed, in the first place, by trouble between a contractor and his men. Then the brick contractor commenced delivering the wrong kind of brick. When that dispute was settled in my favor and the brickwork begun, we were a full month behind. The terra cotta came from the West and the bricklayers had scarcely got to it before we found certain pieces missing and had to send out to Ohio or Indiana for them. Then everything appeared to be going on satisfactorily and we thought of catching up the lost time. But as soon as the first coat of plaster was on, a strike among plasterers broke out. We had nothing to do with it, but all our men went out just the same. This threw out the trimmers. By the time the difficulty had been settled with the plasterers we were threatened by a similar row among the trimmers and joiners. I don't know how it is going to come out. The building trades of this city are united, and no builder is really safe until he is completely out of the woods. These sympathetic strikes have so many ramifications you never know where you are. There are hundreds and thousands of dollars tied up in uncompleted work in this city-yes, and other hundreds of thousands that would go into labor if there were any ertainty aboutit. Wherever we lose money by this labor also loses, for it makes building cost more and makes capital timid of investment."

THE START.

THE RACE.

THE PLUNGE.

Mr. Edison's Kinetoscope in London.

The latest, and not the least remarkable, of Mr . Edison's inventions is the kinetoscope, of which a private demonstration was given recently at 70 Oxford Street. The London Times says: This instrument is to the' eye what Edison's phonograph is to the ear, in that it reproduces living movements of the most complex and rapid character. To clearly understand the effect it is necessary to explain the cause, but to appreciate the result the working of the invention must be witnessed. The moving and, apparently, living figures in the kinetoscope are produced in the following manner : Mr. Edison has a stage upon which the performances he reproduces are enacted. These performances are recorded by taking a series of 43 photographs in rapid succession, the time occupied in taking them being one second only. Thus every progressive phase of every single action is secured, and the photographs are successively reproduced on a film of celluloid of the length required for recording a given scene. When this film is passed before the eye at the same rate of speed as that at which the photographs were taken, the photographically disjointed parts of a given action are united in one complete whole. Thus supposing a person to be photographed taking off his coat-as is done in one case-the successive views representing the phase of action at every forty-third part of a second are .ioined up, and the complete operation of taking off the coat is presented to the eye as it would appear in reality. In other words, the kinetoscope is a perfect reproduction of living action without sound.
The apparatus in which the reproduction takes place is a cabinet about 4 ft . high, 2 ft . wide, and 1 ft . 9 in . deep. It contains the celluloid film band. the apparatus for reconstructing the disjointed views, and a small electric motor for driving the apparatus. The chief detail of the mechanism is a flat metal ring having a slot in it, which makes about 2,000 revolutions per minute. The film passes rapidly over the ring, beneath which is a light. The spectator looks through a lens on to the film, and every action recorded on it passes under his view. Ten machines were shown, in which the most rapid and complex agtions were faithfully reproduced. One scene represents a blacksmith's shop in full operation, with three men hammering iron on an anvil, and who stop in their work to take a drink. Each drinks in turn and passes the pot of beer to the other. The smoke from the forge is seen to rise most perfectly. In another view a Spanish dancer is shown going through her graceful evolutions, as is also Anna Belli in her serpentine dance. There is likewise a wres tling scene and a cock fight, in which feathers are seen to fly in all directions. All the features of an original stage production are given, of course on a small scale, but possibly only for the present on a small scale, for Mr. Edison promises to add the phonograph to the kinetoscope and to reproduce plays. Then by amplifying the phonograph and throwing the pictures on a screen, making them life size, he will give the world a startling reproduction of human life.

The Hygiene or sorrow.

In a recent issue of a New York newspaper an article by Dr. Louise Fiske Bryson formulates some distinctly modern views upon the effects of grief. The attempt to act as if nothing had happened after the advent of some misfortune, and to conduct.life exactly as before, is one of the greatest possible mistakes. It is an out rage on nature, which she resents sharply in the end. Pay day comes sooner or later; and the overth row caus ed by blinding catastrophe arrives, even if deferred.
The nervous system requires complete rest after blows caused by sorrow. Resent medical observa tions (Fere, Bassi, Schule, Zenker) show that the phys ical results of depressing emotions are similar to those caused by bodily accidents, fatigue, chill, partial star vation, and loss of blood. Birds, moles, and dogs which apparently died in consequence of capture, and from conditions that correspond in human beings to acute nostalgia and "broken heart," were examined after death as to the condition of their internal organs. Nutrition of the tissues had been interfered with, and the substance proper of various vital organs had undergone the same kind of degeneration as that brought about by phosphorus or the germs of infectious disease. The poison of grief is more than a name. To urge work, study, travel, the vain search for amusement, is both useless and dangerous. For a time the whole organism is overthrown, and temporary seclu sion is imperative for proper readjustment. After some bereavement the custom of wearing mourning has a distinct moral value. But its period of use must be brief: a few weeks, months, perhaps a year; otherwise dense black draperies become a burden, an æsthetic blunder, and a source of depression in themselves. For a time they have a place, securing consideration from strangers and silence from mere acquaintance, since sorrow is one of the touches of nature that make the whole world kin.
Where there is nearuess of relationship to nature, rambles in the open air, days alone with the sea, alone
drives, or even short journeys by rail, will reveal a
new heaven and a new earth to one fatigued and worn by sorrow. Music, when itcan be borne, has a soothing power beyond words. Books, too, have their place, those gentle companions without speech whose calm society helps annihilate time and space, and who always receive us with the same kindness. The familiar faces of newspapers and journals bring a stray comfort that even the tenderest heart is powerless to bestow. The care and companionship of children is another source of strength. Children are not watching to see how the afflicted are bearing up under sorrow, nor are they waiting for some expression of sentiment or the overthrow of self-control. A child is al ways the best comforter, uttering no word of sympathy, yet rousing in
Grief cannot be ignored, neither can it be cheered up. It must be accepted, and allowed to wear itself away. Readjustment comes slowly. Sorrow, grief, and all great misfortunes should be regarded as con ditions similar to acute infectious diseases, which they resemble in result; and later, as convalescence from such diseases. Seclusion, rest, sleep, appropriate food, fresh air, sunshine, interests that tax neither mind nor body, these are requirements in this class of illness. The care of the condition following depressing emotion for the same

AN IMPROVEMENT IN HARNESS,

The illustration represents a harness with which horse may be readily hitched to the shafts or in stantly detached therefrom in case of a runaway. It forms the subject of a patent issued to Mr. Ricardo Ortega, of Ciudad Porfirio Diaz, Coahuila, Mexico On the jockey plate, on opposite sides of the saddle,

ORTEGA'S HARNESS.
s secured a separate bar, as shown in Fig. 1, havin in its lower end a recess to receive the apertured end of a plate engaged by straps fastened to the shafts as represented in Fig. 2. The latter plate is locked in place on the bar by a pivoted U-shaped bolt, the pivoted end of the bolt having an upwardly extending arm connected with one end of a cord passed around the base of the terret and thence extending to the driver's seat. There is a spring connecting the bolt and bar, to hold the bolt normally in the position shown in Fig. 1, but by pulling on the cord the outer end of the bolt is withdrawn to release the plate en gaging the straps attached to the shafts, thus releasing the animal from the vehicle. The saddle ha the usual belly band, and on the shafts are held loop connected with an additional band passing under the belly of the horse, to prevent the rising of the shafts

Medical Etiquette among the Ancients.
There is an old manuscript in the National Library, at Paris, which has the following: "On approaching the patient you should assume a calm expression and avoid any gesture of greed or vanity, greet those who salute you with an humble voice, and sit down whe they do. Then turning to the sick person, ask him how he is, and examine his urine. To the patient you promise to cure, but immediately on leaving the room you say to the relatives that the disease is grave. The sult will be that if you cure him, your merit greater, and you will receive the greater praise and hope, if he dies, they will say that you had n for the doctor, it proceeds to say: ${ }^{60} \mathrm{~W}$ hen those who preside over the house ask you to the table, conduct yourself in a seemly manner. Each time that a new dish is brought on do not fail to ask for the condition of the patient. This will give him great confidence in you, as he sees that in the midst of the variety of tbe repast you do not forget him. On leaving the table return to the patient, and tell himthatyouhave dined
most excellently, and that everything was served to perfection. The sick person who was anxious about these points will rejoice at your words."

Why Leaves Fall.

Why leaves fall is thus explained in a recent number of the Gardeners' Magazine :
As Kerner remarks, in stating his views on the ques tion, it appears strange that the fall of the leaf should be sometimes connected with the approach of cold, and sometimes with hot weather ; but it is very con clusively shown that this is the case. Heat and cold are only indirect causes, the primary cause being the danger threatened to the plant by the continuance of transpiration; and it is contended that the throwing off of the transpiring surface and the temporary stoppage of the sap current furnish one of the best protective measures in plants surrounded by air against excessive transpiration. Again, in autumn the absorbing activity of the roots is so reduced by the low temperature of the soil that the water which is lost by transpiration is no longer replaced. Frost hastens the fall of the leaf, but it was partially accomplished before frost set in; and where the leaves still cling to the branches preparations are already made for their detachment. Kerner is careful to point out that it must not be assumed that the plants foresee the approach of either the dry season or the winter, and he explains the phenomenon on the assumption that in a climate which renders a long cessation of transpiration neces sary those plants flourish best whose natural characteristic is to follow a period of energetic working by a season of rest. Plants differ materially in the time of their shedding their leaves, trees growing on moun tains losing their foliage several weeks in advance of those in the plains, although much later in coming into leaf. Primarily, the stripping of the leaves de pends upon the drying up of the sources from which they obtained their water, and the detachment is brought about by the formation of a special layer of cells known as the layer of separation. This consists of a parenchymatous tissue, and the walls are so con structed that they are easily separated by mechanica or chemical agents. As soon as restriction of trans piration commences, thin-walled cells are formed in the lower part of the leaf or leaflet, and form a zone When the layer has attained its proper thickness it cells separate from each other, the so-called middle lamella of the cell wall is dissolved by organic acids, and continuity between the cells of the layer of sepa ration destroyed, with the result that the most trifling cause will effect a fracture and bring the leaf to the ground.

Sunken Vessels Raised by Air Bags.
An improved method of raising vessels, in which air bags are employed, has been invented by Grant Brothers, of New York and Tacoma. The bags ar attached to the vessel and air pumped into the bags, the invention being such that the air pressure never exceeds the water pressure; hence no bursting of the bags can take place. When a sufficient number of bags are attached to the vessel and the air pressur admitted to them, the vessel rises to the surface and there remains so long as the air pressure is main tained.
The new method was lately applied in raising a chooner which had been sunk in this harbor by a col lision with steamer. Messrs. Grant write as follows :

We raised the schooner Alwira, register 90 tons 33 feet beam, 95 feet long, 5 feet 8 inches hold, on Saturday, October 13, 1894, at Quarantine Station, Staten Island, which was sunk in about 10 feet of water, or 4 feet over all. She was stove in so the tide rose and fell in her, rendering it impossible for any pumps now in use to keep it clear or raise her. It re quired only six bags, $41 / 2$ feet in diameter and 24 feet ong, to give sufficient displacement to raise her, leav ing her decks dry. Her deck was partially torn of and several deck beams were broken away at the ends In one hour and five minutes after lying alongside w had the bags placed and ready to raise, and inside of four hours from that time we had her at the drydock at Port Richmond. The drydock being in use at the ime, we let the schooner sink near by, and on Thurs day, October 18, we raised her the second time and placed her on the dock for repairs, and upon examina tion, after she was on the dock, disclosed the fact that she was in such a condition that it would have been impossible to pump her out or expel the wate by any other process except Grant Brothers' air bag system."

Dr. Roux's Cure for Diphtheria.

A few weeks ago the Paris Figaroopened a subscrip tion list in order to enable the Pasteur Institute to supply Dr. Roux's antidiphtheria serum to all medical applicants. The appeal has resulted in a sum equiva lent to about $\$ 50,000$ being raised. It is hoped that in stitutes in which experienced physicians will adminis ter the cure will soon be established. The Paris Academy of Medicine has reported in favor of Dr. Roux's treatment.

A STONE BAPTIST CHURCH

Our engraving represents the Eirst Baptist Church, recently completed at Warberth Park, Pa. The design is unique. It is of the Gothic style of archi tecture. It is built of rock-faced Chestnut Hill granite of a grayish blue color, laid up at random in red mortar. Roof slated and finished with a tiled cresting. Dimensions: Front, 29 feet; side, 69 feet. The interior thoughout is finished with oak. The auditorium, 26 feet $\times 57$ feet, has a seating capacity of 280 . It is lighted by stained glass windows, shedding a pleasant light over the auditorium, altar and choir box. The pastor's study is placed conveniently. The basement contains Sunday school room, two class rooms, and furnace room, besides other apartments. These apartments are furnished complete. Class rooms are connected to Sunday school room by double sliding doors, and are so arranged that they can be thrown together at pleasure. Cost of church, exclusive of furniture, $\$ 6,000$. The stone was accessible,
horizontally and vertically, no part of the building being omitted; and, further, in building the exterio slightly inclined inward. The walls are built unusu ally thick. The designs purposely showed no gables, and in vaulting very narrow spans were arranged for On referring to official information regarding the earth quake, we hear that at Tokio and Yokohamatogether no less than 4,551 buildings were damaged, and that sixty-one persons were killed and 428 hurt by falling houses. Thirty-two buildings collapsed completely and eighty-one were practically razed; five bridges gave way. Of course, the majority of these buildings were of native construction; but these, as usual, ap parently withstood the shock far betler than the ave rage "European" structure.-The Builder.

A Great Tunnel Completed.

A notable piece of mining work was brought to completion, says the Mining and Scientific Press, at Park
tons from the Ontario and Daly-this would effect a saving of $\$ 280,000$ and the tunnel would more than pay for itself in two years. Add to this saving the amount that has been expended yearly in the tunnel, and it will be seen that the mines will be in a position to resume dividends. The mines will continue to be worked, notwithstanding the low price of silver.

Another Large Telescope.

The great 16 inch equatorial telescope under the guidance of Dr. Lewis Swift, at the Lowe Observatory on Echo Mountain, Cal., was inaugurated September 16. The Mount Lowe Echo says : The night was black dark, the atmosphere clear and pure, and the stars stood out as brilliantly as diamonds. Dr. Swift says, never before in his experience has heenjoyed such perfect brilliancy, and in these conditions, observations become a rich delight.
In sweeping over a field doubtless often before explored when in Rochester, to his intense delight he

A SIX THOUSAND DOLLAR STONE CHURCH.
rendering the cost less than the church could be built for in many other places

Our engraving was made direct from a photograph of the building, taken specially for the Architects and Builders edition of the Scientific American.

> Earthquake Effects on Brick Buildings.
> A letter of Messrs. Ende \& Boeckmann, of Berlin, to our contemporary, the Deutsche Bauzeitung, gives us some interesting particulars of the effects of the late earthquakes on the new public buildings these architects have erected at Tokio. We refer to the earth quake that passed over Japan on June 20 last. It seems that the shock lasted no less than four minute and fifty seconds, and that the buildings rolled perceptibly. While all the other brick buildings suffered badly, Messrs. Ende \& Boeckmann's blocks apparently withstood the shocks without showing a crack. This escape seems to have been mainly due to the precaution of tying in all the brickwork with iron bands, both

This is the Ontario drain tunnel, which will drain |speedily discovered four new nebulæ, thus, at once, the Ontario, Daly and Daly West mines, with which it demonstrating the superior capacities of his wonderful has direct connection. It is expected that it will also glass in this pellucid atmosphere, and giving a fore reduce the water in the Silver King and other properties. The rate of flow through the tunnel before its connection was made was about 13,000 gallons per minute. As soon as the cleaning up is all done the great Cornish pump will be stopped, and all the water will flow through the tunnel. The mines are capped at a depth of 1,500 feet
This tunnel is 15,490 feet long and it took six years and three months to run it. The average cutting per day was six and three-fourths feet. The completion of this tunnel will effect an enormous reduction in the operating expenses of the mines. The great Cornish pumping plant, which represents an outlay of nearly $\$ 500,000$, will now be stopped, and no fuel will be required except for hoisting. It is estimated that the cost of ore production will be reduced about $\$ 5$ per ton. On the basis of last year's production-56,000 train.

The Relative strength and Length

From the last report of the Anthropometric Laboradata of to the relative strength and length of limbs in man and woman.
In man, in $50 \cdot 9$ cases out of a hundred, the right arm is stronger than the left. In 16.4 cases, the two arms are of equal strength. Finally, in $32 \cdot 7$ cases out of a hundred, the left arm is the st onger. Thus (and here is a fact that appears to be lit le known), out of every ten men, there are more than three whose right arm is not as strong as the left. The proportion is better distributed in women. Out of a hundred, only 46.9 possess more strength in the right arm, and 24.5 (say nearly one-fourth) have more strength in the left. Dynamometric experiments have likewise proved that in women the upper limbs possess the same strength much oftener than in men, since out of a hundred there are 28.6 that have given the same results in the two arms. As regards the respective length of the limbs, we see that in most cases the right arm and the left leg are the longer. Upon measuring fifty skeletons of adults, of men as well as women, the Laboratory found the following proportions. In twenty-three cases, the left leg and the right arm were the longer, in six cases it was, on the contrary, the right leg and the left arm, and in four cases only the limbs of the right side were longer than those of the left. Finally, in seventeen cases, all the limbs were more or less unequal in length.

Curious Facts About the Eskimos.
Mrs. Peary, the only lady to take part in any Aretic expedition, spent a year in Greenland. She has recently published her journal,* the contents of which are summarized in the Spectator, London. We quote :
"The wooden house which the exploration party built on the north coast of Inglefield Gulf, some miles due north of Whale Sound, was the base of operation for Mr. Peary's expedition to the north coast of Greenland, across the inland ice. The explorers sighted Greenland on June 24, 1892, and at the end of July landed and built the house. Mr. Peary, his leg having been broken by a blow from the ship's tiller, was unable to take any active part in work, and it was not till the spring was at hand that the broken limb recovered its real strength, just in time, indeed, for the ice
journey. When the house was finished, several men of the expedition were sent to search Herbert and Northumberland Islands for an Eskimo settlement and to induce a family to settle down uear the house and make themselves useful-the man to act as hunting guide and the woman to do the sewing of the many skin garments. They returned with one family, and the first proof of his skill the Eskimo gave was_to cut up a huge walrus with a six-inch pocket knife.
"Of course the prevailing characteristic of the Eskimos in Mrs. Peary's estimation was their dirtiness, and it was as a very great favor that she finally allowed the best sewer to squat on the floor in her own room. Indeed, the habits of the Eskimos never failed to escite her disgust, and she tells with horror how, when the Eskimo man had been given leave to bring home a cached seal, the most a wful smell pervaded the place from the two-year-old corpse. Ikwa, the Eskimo, was most indignant at the refusal to allow it to be carried in the boat, declaring it to be 'the finest kind of eating for himself and family.' On November 23, Mrs. Peary notes that it was impossible to read ordinary print at noon, and henceforth the only difference between day and night at Redcliffe House was the addition of a 'large Rochester lamp' to the bracket lamps from 8 A. M. to 10 P. M., called by the Eskimos the 'Baby Sun.' A rule was made by the commander of the expedition that no member should occupy his bunk between 8 A . M. and 7 P. M.. unless ill. The best sewer was a woman named M'gipsu, and she was Mrs. Peary's favorite, having also the additional distinction of forming with her husband and children the most northerly family on the globe. Mrs. Peary tells us the manner'of preparing the clothes for the great ice jour ney. Her husband gave her an idea of the kind of garment he wanted, and she cut out experimental outfits of canton flannels; these, if satisfactory, served as patterns for the skins, so that no waste of skin occur red. How the natives prepared the skin, let Mrs. Peary relate
"The native method of treating the skins of al animals intended for clothing is first to rid them of as much of the fat as can be got off by scraping with a knife; then they are stretched as tight as possible, and allowed to become perfectly dry. After this they are taken by the women and chewed and sucked all over then they are again dried and scraped with a dull im plement so as to break the fibers, making the skins
pliable. Chewing the skins is very hard on the wo men, and all of it is done by them; they cannot chew more than two deerskins per day, and are obliged to rest their jaws every other day.
"More Eskimos arrived, till the permanent camp of the expedition became an Eskimo village. Two of the men were reported to 'swap' wives every year; they were the only two men in the tribe who did so; and though the other men regarded it as reasonable, the women were not satisfied with it. One of the newcomers, who had recently lost her husband, drowned by a seal, was asked by Mrs. Peary if the three children she had with her were all; she burst into tears, and left the room. On questioning her favorite, M'gipsu explained, after much hesitation, that Klayuh, the widow, had just strangled her youngest child, about two years old. She could not support the child herself, and no man would take her to wife with a child in the hood, where the women carry their children till they can get about themselves. M'gipsu, when asked if this was always done. said, ' Oh , yes; the women are compelled to do it.' When M'gipsu sat in Mrs. Peary's room, her husband, Annowkah, came in as often as he could find an excuse for doing so. 'He frequently rubs his face against hers, and they sniffle at each other; this takes the place of kissing. I should think they could smell each other without doing this. but they are probably so accustomed to the (to me) terrible odor that they fail to notice it.'

Railway Across the Devil's Dike.
A new telpher railway across the Devil's Dike, on the Sussex Downs, was recently opened by the Mayor of Brighton. The track cables of the railway are carried upon a series of supports attached to a powerful eatenary cable which is secured to the sides of the gorge, the structure being steadied and further strengthened by iron columns at about 200 feet from the extremities of the railway. The main cable is 1,200 feet in length, the space between the two stations about 1,100 feet, while the span between the columns is 650 feet. The wheels on which the cars run cannot et off the tracks, one set of wheels always controlling the opposite set. The cars are conveyed at a height of about 230 feet above the lowest point of the gorge, and are moved by an endless cable worked by a Crossey's oil engine. There are two cars at present in use. The mayor and mayoress were the first to cross and spoke of having had an agreeable experience.

RECENTLY PATENTED INVENTIONS.

 Railway Appliances.Car Ventilator.-Benjamin F. Hughson, Cold Spring, N. Y. This device has a tubu-
lar body, open at both ends, which flare outwardly, and is fastened to the side of the car roof to afford passageways leading into the interior, there being pivoted at the junction of the two passageways a flap valve, operated by the
motion of the car to create a current which draws out the motion of the car to create a current which draws out the
foul air. The device is very simple and cheap, and may be readily applied to an old car as well as when the car is being built. It operates autom
also be conveniently operated by hand.
Mail Bag Handler.-Edward Davies, Whittington Hall Farm, near Stourbridge, England. To deliver mail bags, etc., to or from trains in motion,
this inventor has devised an apparatus consisting of two members, one attached to the car and the other to the roadside platform, the members acting as radius links, and the package while being transferred gradually acquiring or ceasing to partake in the motion of the train. conjointly on the package throughout its flight, both as regards the initiation, the change of direction, and the
arrest of its actual or relative motion.

Mechanical.

Grinding Mill.-Charles C. Howe, Westerly, R. I. This is a mill more especially designed has a receptacle with a bed in its bottom and a circula band at the side, the muller carried aronnd resting on the bed, while there is an elastic band in the periphery of the muller in frictional contact with the band in the side
of the receptacle. In grinding mica the muller is of of the receptacle. In grinding mica the muller is of
stone and runs on a hard wood bed, the blocks having their grain on the end, and thus giving great bri'liancy to the mica, which is rather smoothed or flaked than

Water Elevator.-Joseph McMurrin, Shoshone, Idaho. This elevator is adapted to be A substantially triangular frame is temporarily anchored or permanently placed in the stream, its upper portion carrying a sprocket wheel, and there being at its lowe corners drums having sprocket sections, actuating an nd drums on the lower hryizona series of buckets. Th are driven by paddles propelled by the current, these paddles being on endless belts passing over the end por tions of the drums.
Chill for Making Chilled Cast-ings.-Herbert Schon, Apollo, Pa. The chilling surface constituting cooling chambers, each connected at its lower end by a port with an annular waterway connected with a water supply source and also with a steam supply, Each chamber is also connected at its upper end with chill may thus be first heated up with hot water and team, and cold water only be circulated through it afte the metal has been poured, the temperature of the water,

and the conseq under control.

gricultural.

Riding Attachment for Plows. James Kleihauer, Jr., Johnson, Neb. This is a device o
imple and inexpensive construction, readily applied and ample and inexpensive construction, readily applied an prises two frames, a forward and right hand frame em bracing a cross bar and attached parts, and a left hand rear frame, both frames being of angular construction.
When the plow is to be used again as a walking plow When the plow is to be used again us a
the attachment may be readily removed.

Miscellaneous.

Drag for Suction Pipes.-Ernest O. Patterson, Charleston, S. C. The body of this device has
wide, downwardly curved mouth, on the front side o which is a shaft carrying a valve for closing an inlet ne he mouth opening, there being on one end of the shaft weighted lever connected by a rope with the dredging boat on which is the pumping machinery. The valve is
normally closed, but when a large amount of sand or ormer material fills the mouth so as to cut off the necessary supply of water to insure proper suction, the valve is opened by means of the rope, permitting water to be
drawn in to cut up the choking material. The improvement precludes the necessity of pulling up the suction

Bailing Device.-John Fatkin, As
Ben, Col. A bucket having a valved outlet for its lowe ortion, and also an inlet valve, with a tripping device or unseating the valve in the outlet, form the main featemptying flooded mines of their surplus water. It tem porarily takes the place of the usual cage, and automatically fills itseli when lowered into the water in the mine shaft, automatically discharging into an outlet chute when raise
ing point.
Refrigerating Apparatus.-Ernest W. Carleton and James M. Odell, Austin, Texas. This invention provides means for lowering the temperature
in a partially closed chamber by evaporating water by in a partially closed chamber by evaporating water by means of capillary attraction, automatically maintaining, sood ventilation of the cooling chamber chamber and cood ventilation of the cooling chamber. The warme
the weather, the greater will be the difference between the temperature inside of the cooling chamber and adapted for preserving meat, butter, eggs, milk, etc.,

Bale Box Clamp.-Thomas M. Wa lace, Marion, Ala. With a bale box of the ordinary con struction, whose ends and sides open by the expansion of the bale when the clamping devices are released, prefera-
bly two clamps of this design are used, one near each end of the box, suspended above the box by chains. The clamps have at one end a catch to engage one side eyes in which is held a shaft resting in closed position against plates whereby the side and end doors are held
closed. The shaft has a handle by which it may be
rolled ap and off the plates when the doors open, Teaving rolled ap and
the bale free.
Floor Clamp.-Moses Schlatter, Inman, Kan. The body of this device consists of two ing toothed studs, one of the studs being held to turn in its member, and the other turning and sliding in the opposite member, there being a lever and cam for actuating he sliding stud. With this clamp board for flooring, siding or ceiling may be brought and held in close con
tact while being secured in place. The construction the device is very simple and inexpensive.
Umbrella. - Zebulon Wirt, Monti cello, Ind. The frame of this umbrella may be readily and placed in a pocket or small bag. It has a tubula shell, with cap flange and latches, a runner sliding on
tee shell and sectional ribs hinged to its the shell and sectional ribs hinged to ite cap, while sec-
tional braces are pivoted to the runner and to the ribs tional braces are pivoted to the runner and to the ribs. A second runner engages the latches of the shell and
braces connect this runner and the ribs. The cover is araces connect this runner and the ribs. The cover is
attached to the frame in any manner known to the

Ribbon Display Cabinet. - Lewis
Display Cabinet. - Lewis with a transparent front, a wire forming a guide and handle for the drawer, and the casing and drawer being made slanting rearwardly, so that the rolls of ribbon are readily retained and can be easily placed in the drawer, where their size and color may be
tage. The drawer is dust proof.
Portable Burglar Alarm. - Lars G. Larson, Moscow, Idaho. This is a small device, to sound an alarm should the knob be partly torned operative mechanism is held in a small case, with hanger loop to hang on the neck of the door knob, when a eleasing a spring-driven escapement wheel, causing lapper to vibrate and sound a bell.
Child's Cradle.-Willis E. Phillips, Saguache, Col. The rocking supports of this crade are pivotally connected with its ends, one at each side of the
center, and pivotally connected with one another. There are link connections between the legs of the supports at opposite ends. The cradle may be readily swung with a ong, regnlar motion, instead of the usual short, quick least the child held therein. The construction is particularly adapted to self-moving mechanisms, such as clockwork, electric motors, etc.
Sash Fastener.-William R. Abrams, Los Angeles, Cal. This is an improvement in sash
fasteners in which a toothed pawl is pivoted in a box on the window frame to engage a rack on the sash. The fastener has two toothed pawls, with teeth projecting in
opposite directions, and with transverse bores in which are internal lugs out of alignment, a key engaging either lug independently. With this device the window may ment of the upper and lower sashes in either direction will be prevented.

Curtain.--Albert M. Branshaw, Escanaba, Mich. This curtain is designed to render air
tight the opening over which it is drawn, and to afford a ight the opening over which it is drawn, and to afford a Slideways are located at opposite sides of the opening to be closed, and have apertures through which extends a guide slot, while the curtain roller has guides which project into the slideways, and a slat bar at the lower end of
the curtain has spring-controlled latches entering the the curtain has spring-controlled latches entering the
apertures in the slideways. When made of fireproof cloth, for use as an awning, it is designed to afford the so that it will not be necessary to have any curtain on inside of building.
Fruit Holder. - Thomas Leach, Taunton, Mass. This device has in its inner walls rigid
vertical ribs and a series of downwardly projecting vertical ribs and a series of downwardy projecting ratchet teeth, designed to hold oranges and other fruit
placed therein, thereby enabling one to serve the fruit in a dainty way without it being necessary to hold the fruit

Portable Coal Box.-Thomas Buenhofer and Ernest H. Weiss, Terre Haute, Ind. This is a receptacle having a hinged cover adapted for extension as a scooping or discharge chute, there being a transverse bail on the upper part of the box and a looped
handle at its front. A full box may be carried with more ease than the ordinary coal hod with the same amount of coal, and when the top of the box is closed there is no danger of spilling the coal.

Designs.

Lamp Heater.-Frances Rader, Prescott, Wis. This heater design consists of a truncated penings at the top.
Handle for Forks, etc.-Charles Osborne, New York City. This design has rosettes and eaves at the base and top of the handle and bud-like igures at its sides.
Carpet.-Pierre C. Chambellan, West Hoboken, N. J. The carpet body, according to this deign, is decorated with bouquets of the rose, dahlia and
ilac type, and it has a shaded subborder lilac type, and it has a shaded subborder.
The same designer also produces a desi
The same designer also produces a design in which the
carpet body is decorated with connected leaf scroll carpet body is decorated with connected leaf scrolls, al-
ternate scrolls being reversely curved and varied, the ornate scrolls being reversely curved and varied, the
Fabric Renovator.-Mary S. Kjellstrom, New York City. A conical tube-like figure has a narrow opening at one side, from which extend side
plates in the shape of triangles, with projecting sides united.
Last. - Nicholas Bier, Salem, Oregon. This design represents the ball portion of t
Notr.-Copies of any of the above patents will be furnished by Munn \& Co., for 25 cents each. Please
send name of the patentee, title of invention, and date of this paper.

NEW books and publications.

A Laboratory Manual of Physic AND APPLIED Electricity. Ar Nichols. In two volumes. Vol II Senior Courses and Outlines of Ad vanced Wurk. By George S. Moler
Frederick Bedell, Homer J. Hotch Frederick Bedell, Homer J. Hotch

We have before now reviewed the author's course of
hysics for the lower clasees. In the present book ond physics for the lower claseses. In the present book one
finds more advanced researches, with the use of satisfactory apparatus given in full detail, with especial refer-
ence to electrical work. As arranged, it makes excellent reading, being far more than a mere laboratory guide, and in it the author no longer appears to avoil proper apparatus, something which, to our minds, ha
been a defect in some manuals used for the lower classe in practical physics; so it may be recommended to readers not only as an exponent of college teaching an methods, but also as an actual manual of physics. It make-up is of the most advanced description, as indicated by the capitalization of as few words as possible although italics are used in considerable number.
The Religion of Science Library. of Philosophy as a Systematic Ar rangement of Knowledge. By Dr. Paul Carus. Second edition, en Open Court Publishing Company.
1894. Pp. xii, 373. Price, cloth, $\$ 1.50$; 1894. Pp. xin, 50 cents.

SCLENTIFIC AMERIGAN

BUILDINGEDITION

NOVEMBER, 1894.-(No. 109.)

TABLE OF CONTENTS.
Elegant plate in colors showing a cottage at Bronxville, N. Y., recently erected for B. L. Clark, Esq. Two perspective elevations and floor plans. Esti-
mated cost $\$ 5,000$. Mr. William A. Lambert, archifect, New York City. A modern and pleasing d
Plate in colors showing the residence of John Cot tier, Esq., at Bensonhurst, L. I. Three perspec
tive elevations and floor plans. Cost $\$ 6,750$ complete. A good example of Colonial architecture
Messrs. Parfitt Bros., architects, Brooklyn, N. Y.
3. A dwelling at Edison Park, Ill. Cost $\$ 1,700$. Architect, Mr. F. W. Langworthy, Cricago, mi. tive elevations and floor plans.
4. A very attractive residence recently erected for A. C. Garsia, Esq, at Flatbush, L. I. Two perspective
elevations and floor plans. Mr. John E. Baker, elevations and floor plans. Mr. John E. Bake
An $\$ 800$ summer cottage built for A. R. Doten, Esq at Casco Bay, near Portland, Me. Perspective architect, Portland, Me.
6. Perspective elevations and floor plans of a handsome Esq., at Bensonhurst L I A George W. Cat design. Cost $\$ 8,100$ complete. Mr. S. s. Covert architect, New York.
7. A church at Short Hills, N. J., built entirely of rubble stone. Estimated cost $\$ 6,000$. Perspective
elevation and floor plan. Messrs. Lamb \& Rich elevation and floor plan. M
architects, New York City.
8. The house of Francis I. at Abbeville, France.
9. A stable and conservatory attached to the residence of John Cottier, Esq., at Bensonhurst, L. I. Per spective elevation and ground plan. Messrs.
Paritt Bros., architects, Brooklyn, N. Y. A residence at Ardmore, Pa., in the Queen Annestyle. plete $\$ 6,750$. Architects and builders, Messrs. J. B. Cornell \& Sons, Philadelphia, Pa.
11. A cottage at Edgewater, In., erected for EdgarSmith, Esq. A unique design in the Colonial style. Cost
$\$ 7,800$ complete. Two perspective elevations and floor plans. Mr. G. W. Maher, architect, Chicago, Ill.
12. An attractive cottage at Bath Beach, Long Island, N. Y., recently erected for G. W. Snook, Esq. Two perspective elevations and fioor plans. Mr. Pe
Emmett,architect, Bath Beach, Long Island.
13. Miscellaneous contents.-Wood pavementin London. -Preservation of wood.- Methods of constructing chassing of red brick.-Long distance house mov-ing.-Carved and fancy mouldings, illustrated. -A new sash lock.-Automatic heat regulation in houses, etc., illustrated.-Woodwork vs. flame. Curiosities about wood.-Cement water tanks.An improved hot water heater. illustrated.-How to cool a cellar.-A new woodworking machine llustrated.-An improved stage bracket iron, illus. ments, illustrated.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies, 5 cents. Forty large quarto pages, equal to abou
wo hundred ordinary book pages ; forming, practically, a large and splendid Magazine of architec Tr RE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting examples of
allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Larabst Circulation of any Architectural Publication in the world. Sold by

Business and Personal.

is head is ome Dollar a lin

 for each insertion: aiout eiont wordis to a l line. Alvere.tisements nust be received at puobication office as eariv as 't hursaiay morning to appear in the following weeik's issu
L. metal polish. Indianapolis. Samples free. Wood pulp machinery. Trevormfg. Co.. Lock port, N. For mud dredging engines. J. S. Mundy, Newark, N. J. Metallic bag and sack tie patent for
ddress W. W. Carder, Oldtown, Md.
We make absolutely a perfect loose pulley oiler. Krid Screw machines, milling machines, and drill Garvin Mact. Co., Laiebt and Canal Sts., New York Universal drawing tables and steel ribbed drawin
oards. Just out. Morse Machine Co., Rochester, N. Centrifugal Pumps. Capacity, 100 to 40,000 gals. per
inute. All sizes in stock. Irvin Van Wie, Syracuse, N. Guild \& Garrison, Brookiyn, N. Y., manufacture steam cumps, vacuum pumps, vacuum ap
Spitit Pulleys at Low prices, and of same strength and
ppearance as Whole Pulleys. Yocom \& Son's Shaftin ppearance as Whole Pulleys. Yocom \& Son's Shaftin orks, Drinker St., Phadelpha. Pa,
Emerson, Smith \& Co., Lta.. saw manufacturers
Beaver Falls, Pa will send Sawyers' Hand Book on Cit ceaver Falls, Pa., will send Sawyers' Hand Book on Cir Forthe original Bogardus Universal Eccentric Mill Foot and Power Presses, Drills, Shea s, etc., addres
J.S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y The best book for electricians and beginners in elec
ricity is " Experimental Science," by Geo. M. Hopkins By mail. \$4; Munn \& Co., publishers, 361 Broadway, N. Y A Frenchman speaking English wishes to represent references. Write to F. Demesmay, a Cysoing, Nord France.
Competent persons who desire akencies for a new popuiar book. of ready sale, with handsome proft, may
apply to Munn \& Co., Scientific American office. 361 apply to Munn \& Co.,
Dend for new and complete catalogue of Scientif New York. Free on application.

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters,
or no attention will be paid thereto. This is for ou information and not for pubication.
References to former articles or answers shoul References to former articles or answers should
give date of paper and arape or number or question
nquiries not answered in reasonable time should be repeated; correspondents wasil bear ine mind that
some answers requir not and litle rearch, and
thongh we endeavor to reply to all either by lett shome anve ens reaquire not a little research, an
thongh we enderor to to to the either by lett
or in this department. each must take his turn.
Buyers wishing to purchase any article not advertise Buyers wishing to purchase any article not advertised
in our columns will be furnished with addresses o
houses manufacturing or carring the same. houses manufacturing or carrying the same.
pecial VVitten Information on matters of
personal rather than general interest cannot be cientific American s.upplements referred
to may be had at the office. Price 10 cents each. Books referred to promptly supplied on receipt
price.
Minerals sent for examination should be distinctly
marked or labeled.
(6285) W. A. S. E. asks how or in what way the canvas is prepared which is sold at art stores or sized. A 1 part white lead, 2 parts whiting; a sma portion of litharge and sulphate of zinc for driers; mix with equal parts of boiled linseed oil and raw linsee ralground. The canvas is tacked upon a stretchin rame, and sized with weak glue size, to which a smal portion of zinc sulphate is added. When dry it is stippled over with some driers and linseed oil, as thin as possible, ot saturated. When very nearly dry the white lead,whit ng, etc., is mixed up very smooth, and put upon it very ver with a large sash tool, drawing it across hatched and then at right angles, until the face presents a face ike a piece of fine linen or cartridge paper, when it
(6286) W. H. S. and A. K. W. ask for a last from twelve to fifteen years if coated with Burgudy pitch 1,500 grammes, old gutta percha in shreds 250 grammes, pounded pumice 750 grammes. Melt the gutta percha, mix with the pumice, and add the pitch. A ho ron passed over the sarface shoothsit, and assists an esion. The box
(6287) H. F. asks : Does not the attrac tion of the field (in a motor) of the armature, at al points directly opposite the poles, tend to stop the revo
lution of the armature? In other words, are not lateral attraction of the outer edge of the fild, of the pole of the armature, and theequal repulsive force of the opposite outer edge of the field, the only propelling forces that cause the armature to revolve? A. Your query is not very clear. The simplest general statement
is that the armature is kept so polarized that the line with the the poles of the field is constantly at an angle the latter are constantly shifting in the direction opposed the rotation
(6288) L. P. says: Given a 30 inch tur bine water wheel to work under 7 or $71 / 2$ feet fall, wha the wheel? What would be the minimum space that could be allowed between bottom of wheel and bottom of wheel pit to give good results? About what horse
power could be expected from a wheel of a good make
of size named, working under 7 feet of fall, having all he water it could use? A. A 30 inch turbine using 750 abic feet or water per minute under $\%$ feet head will qual 9 horse power and will need a race 3 feet de. \mathbf{p} ume. There should be at least $21 / 2$ feet clearanc various sizes up to 114 inches, with proportional increas in quantity of water used and size of raceway. The 114 nch wheel under 7 feet head will use 10,000 cubic feet of
(6289) W. L. B. says: In a double cylder gasoline.engine with cylinder $41 / \times 6$ inches, makin 50 revolutions per minute, giving 6 horse power, what s the pressure per inch at time of explosion and at what point of stroke should exhaust be located to give best re
ults? A. There is considerable difference pressure and expansion lines in gasoline engines, owing the various mixtures of gasoline vapor and air, it
nost powerful effect being for a mixture 1 part vapor to 10 parts air. Under the various conditions in ordinary use, the explosive pressure may vary from 50 to 100 pounds per square inch. The exhaust should take place at the end of the stroke. See a valuable work on "Gas Gasoline and Petroleum Engines.'
(6290) J. B. D. asks : Does it make any ifference in the working of a bicycle if the larg whecel? wheel is set higher than is a little difference. The chain grip
whe best when nearly horizontal. A slight departure from
(6291) F. M. M. writes: 1. I wish to now how large an air pump running at say 200 feet piston speed should hold a pressure of 30 pounds per quare inch, with $1 / 4$ inch nozzle outlet, open wide oper says steam has a velocity of 1,601 feet per secon at 30 pounds pressure. Now, figured on this basis, ho nuch air will be delivered from $1 / 4$ inch orifcee,
does the velocity of air differ from that of steam Knowing the velocity at point of discharge, at what pres sure is the cubical contents of discharge represented, mean, at free air pressare, tank pressure or an interme diate? By answering the above you will confer a grea ir capacities can be flgured? A. The vata by whic from a nozzle of be figured? A. The velocity of air feet per second. Hence the flow from a quarter inch nozzle will be

r say 40 cubic feet of free air per minute, and

$40^{\mathrm{c}^{\prime}}$ t. pr. m.

or 298 square inches, but owing to the loss in the pump by clearacce, leakage and imperfect piston packing, not ess than a cylinder 8 inches in diameter will do the work at the feet per minute speed as stated. The stated flow of steam as above is the theoretical velocity of steam How ing into a vacuum, but practically it is but 900 feet from 10 pounds pressure into the atmosphere. The flow of air, second into a vacuum, and varying in nozzle velocity from 632 to 658 feet per second, between 15 pounds and 75 ounds pressure and flowing into free air. Computations are made on the basis of free air volume plus pressure We have no complete works on air compression, but nuch can be gained from back numbers of Scientipic American Suprlement, on air compression and its Haswell's "Engineer's Pocket Book," \$4 by mail.
(6292) D. P. B. says: Please answer through the columns of your valuable paper, when and where the first electric car in the world was operated, also when and where the first cable car ? A. The electric with cars driven by electricity in 1899, in New York A practical trial was made on the Edinburgh and Glasgow Railwayin 1842. See Scientific American, November 3, 1894, for an interesting account of the first trials. The first cable car was operated in San Francisco by A. S. Hallidie, in 1871.
(6293) E. S.-The bird's skin sent is that of a female golden crowned kinglet (Regulus satrapa), a ward.-F. M. C.
(6294) W. A. V. asks how to make stencil paint. A. Take shellac, 2 oz.; borax, 2 oz.; water, 25 oz.; gum arabic, 2 oz.; lampblack, a suf-
ficiency. Boil the borax and shellac in water till they are dissolved, and withdraw from the fire. When the solution has become cold, complete 25 oz . with water, and add lampblack enough to bring the preparation to a cil, it must be made thicker than when it is to be ap plied with a marking brush. The above gives a black ink; for red, substitute Venetian red for lampblack; for blue, ultramarine ; and for green, a mixture of ultramarine and chrome yellow.
(6295.) M. J. W. asks for a formula or economical fuel. A. Mix coal, charcoal or sawdust,
part ; sand of any kind, 2 parts ; marl or clay, 1 part part ; sand of any kind, 2 parts ; marl or clay, 1 part
in quantity as thought proper. Make the mass up wet into balls of a convenient size, and when the fire is sufficiently strong place these balls, according to their size, a iderably more bar, and they will produce a heat conaving of one-half the quantity of coals. A fre thus ade up will require no stirring nor fresh fuel for ten
(6296) G. de B. asks for a formula for French mustard. A. The following is M. Lenormand's eceipt : Flour of mustard, 2 lb.; fresh parsley, chervil, celery and tarragon, of each, 1/2 oz.; garic, 1 clove (or together, add salt, 1 oz;; grape juice or sigar to sweeten, and sufficient water to form the mass into a thin paste by trituration in a mortar. When put into pots a red hot iron is momentarily thrust into the contents of each, and a little wine vinegar added.

TO INVENTORS.

INDEX OF INVENTIONS

United States were Granted
October 30, 1894,

ND EACH BEARING THATR DATE

[See note at end of list about copies of these patents.]
dvertising device, automatic. May \& Morrisey.. 528,33
Advertising sign device. W. C. Morrison........ 52, Sish

18

DESIGNS.

TRADE MARKS.

 We take pleasure in announcing that by arrangements
made with J. . Fohle, we are enabled to furnish our
customers with ine
POHLE AIR LIFT PUMP,
protected by numerous A merican and Foreign patents.
sonais separtment of ourvision of or Dr. Pohines, the will inventor and and peateer-
THE INGERSOLL-SERGEANT DRILL CO.,
Havemeyer Building, 26 Cortlandt St., New York

lection of interesting letters to the editor of the SCIEN-
TIFIC AMEHCAN in the question or the seed of ice
boats, de morstrating how and why it is that these craft

WELL DRILLING MACHINERY, WILLIAMS BROTHERS, ITHACA, N.Y. MOUNTED OR ON SILLS, FOR DEEP OR SHALLOW WELLS, WITH
STEAM OR HORSE'POWER

ARTESIAN WELLS - BY PROF. E

Oil WELL SUPPLY GO.

 ARTESIAN WELLS\qquad

TO INVENTORS, E. Konigslow. Manufac and Models, offers Special Faciiline Machiner
ors. Guarantees to work out ideas in strictest secret
 velop. Novelties and patented articles manuffactured
by contract. 181 Seneca St., Cleveland, Ohio. GATES ROCK \& ORE BREAKER
 Capacity ap to 200 tons per hoor.
Has prounced more ballast, road
meta, and broker borl
all other Breakers coreore than
combined. meta, and broken more ore than
all other Breakers corbine
Maulders of high ramade Mining
Machnery, King Darragh Moncen-
trator, Connersive Bilowers. Machin ery, King Dinarragh Min
trator, Conersille Blowers.
Send for

[^0]

Parson's Horological Institute.
School for ZWatchmakers engravers and jewelers.
 TYPEWRITERS.

 Min "7pewilitr EXCHANGE, 8 Barclay St., New York. We will save you from 10 to
so por cant.
of myper makes.
 THE W. MODE.

 New Full Mounted Lightning Screw Plate,

\qquad CND ANDTATTION INVENTORS.

A Valuable Book

 MUNN \& Co. Publishers,
SIIENTIFIC AMERICAN OFFICE
SCIENTIFIC AMERICAN OFFICE,

TAKES THE LEAD.

In addition to its many other attractions, illus-
\because SCIENCE AND ART •~
form a notable feature. During 1894
been capital articles on such topics as
Ohicago Drainage Oanal.
Recent Excavations at Dashur, Egypt. Gold Mines of Colorado.
Need of a National Health Board. Electrical Industries.
Cleansing the Streets of Paris.
Constant advancement in excellence is the chief
guide in the direction of HARPER'S WEEKLY, guide in the direction of HARPER'S WEEKLY,
and, with almost boundless resources, it will continue to treat every scientific event of public in-
Ginn © Gompany PUBLISH

SUHEINER'S ASTRONOMICAL SPECTRO-

 Descriptive Circulars sent free to any address.
GINN \& COMPANY, Publishers,
Map of the United States A large, handsome Map of the United States, mounted
and suitable for office or home use, is issued by the
Burlington Route. Copies will be mailed to any address, on receipt of ffteen cents in postage, by P. P. S .
EUSTIS, General Passenger Agent, C., B. and Q. R. EUSTIS, Gen
Chicago, Ill.
Experimental \& Model Work Electrical Instruments, Fine Machinery, Special Appa
ratus, Telephones, Photograph Machines, Repairs, etce
E. V. BAILLARD, 106 Liberty Street, N. \mathbf{Y}.
 STODEEKEEPER manal hao

 Protocirapht AS APPLIED TO

WOODENTANKS.

 Alrchitectural Books Usefull, Beautiful and Cheap. Any person about to erect a dwelling house or sta-
ble. either in the country or city, or any builder wishing to examine the latest and best plans for a church,
school house, club house, or any other public building of high or low cost, should procure a complete set of
the ARCHITECTS' AND BOILDERS' EDITION of the SCIentific American.
The information these volumes contain renders the
work almost indispensable to the architect and builder work almost indispensable to the architect and builder,
and persons about to build for themselves will find the
work suggestive and most useful. They contain colored work suggestive and most usefnul. They contain colored
plates of the elevation, plan, and detail drawings of
almost every class of building, with specifcation an
approximate cost. Seventeen bound volumes are now ready and may
obtained, by mail, direct from the publishers or from any newsdealer. Price $\$ 2.00$ a volume. Stitched in
paper covers.
Subscription price, per annum, $\$ 2.50$ aper covers. Su

[^1]\boldsymbol{E} CO., Publishers,
361 Broadway, New York.
类 THE "MUNSON" TYPEWRITER. 当
 Easily operated, with Universal hey Board.
INTERCHANGEABLE STEEL TYPE WHEEL, durable and easily kept in order. 30 keys, 90 characters. Weight, with carry-
ing case, 16 pounds.
Special wheels fir
firiferent languages. Hıghest Medal Awarded, World's Fair, Chicago, 1833. Send for circular to
The Munson Typewriter Co., 171 E. Division Street, Chicago. III., U. S. A

SCIENTIFIC AMERICAN DYNAMO.
 for the beneit of the readers of the scientific Anpericin,
by Mr. W. S. Bishop, of New Haven, Conn. It is de-
signed to meet the wants of mechanics and amateurs

8METAL and WOOD TOOLS
FOOT PK ERYD,

 send 4 cents for larye Illus. Catalog.
THE WILKINSON CO.
83 Ra.ndolph St., Chicago. MATCH * MACHINERY. Latest improved
DONNELLY,
Complete plants furnished. JOS.
Buttonwood Street, Philadelphia, Pa: RECEIVER'S SALE. The entire phant and good

MAXIM'S FLYING MACHINE.-FULI

KEEP THE HEAD COOL
 ti so me can supply you. All sizes
keot inted and
 2d Floor. Wilshire, Cleveland, 0 . ICE-BOATS-THEIR CONSTRRUCTION

The Bailey Automatic Bicycle Brake

CINTZ GAS ENGINE CO Grand rapids, MIOH., Manufacturers of the sintz stan

 ELECTRICAL APPARATUS DESIGNED
Invenions Dicepolined

NEW CELLULOSE DERIVATIVEA.-

How To Make a Dynamo

BUY

TELEPHONES

 THE NANDU; AN ORNITHOLOGI

Sole Agency for the United States.

CRITERION MAGIC LANTERNS stema

 AVE HAD 13 YEARS, EXPERIENCE INTRO-
Califocing Mining and
Connia and the Pentrating Machinery in

Wanted, one young man with yeneral knowlegre

 HOW SHALL YOUNG MEN BE EDU-

NOWV READY:
Fourteenth Edition of
Experimental Science

Just the thing for a present for any man, woman
tudent, teacher, or any one interested in maience. In the newmatter contained int he last edition will be

MUNN \& CO., Publishers, Office of the SCIENTIFIC AMERICAN,

[^0]: The Scientific A merican PUBLICATIONS FOR 1894.
 The prices of the different pubilications in the United
 States, Canada, and Mexico are as follows: rates by mail.
 RATES BY MAIL.
 The Scientific American (weekly), one year

 COMBINED RATES.
 The Scientific American and Supplement - --
 The scientificic American and Architects and Build-
 ers Edition,
 The Scientific American, supplement, and Arehi-
 tects and Builders Edition,
 This incudernpostanate, Rates for Six Mont we pay. Remit.
 or express money orger, or draft to order of express money order, or draft to order of
 MUNN \& CO., 361 Broad was

[^1]: MUNN \&

