a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

. Short circuiting the 80 light are machine. 2. The great 125 arc light machine. 3. Six thousand light direct-driven alternator.
THE FORT WAYNE ELECTRIC CORPORATION-THE WOOD DYNAMOS.-[See page 219.]

§xieutific ghmuriau.

ESTABLISHED 1845.
MUNN \& CO.. Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

The anest way to remt thy by patal ored, oxpress money order . Reaerarare spoilaly reopusted to onotify the.

NEW YORK, SATURDAY, OCTOBER 6. 1894.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT NO. 979.
For the Week Ending october 6, 1894.
 II. ARBRORICUUTUEE-The Ginko - A beautiful tree occupying III. BROGRAPHY. - Deato of Brayssh Pash.- Note on the life of

 climate. and law

 times had revolutionized the world. For in modern is the most important business of humanity. The idea of the steam railroad was the creation of large units of transportation. Great trains of cars bearing several hundred passengers became the railway manager's ideal.
The steam railroad seems to have reach ${ }_{\text {ed }}$ pretty nearly its limit, and now a most formidable competitor for local traffic has come upon the seene in the electric road. The five and six car steam train is supplanted by a number of single trolley cars run at frequent intervals.
These matters the capitalists have in charge. But the improvement of roads and streets affects the municipalities, the county and State authorities, and very directly the individual. For on roads and streets the horse-drawn vehicle and the bicycle travel, and the latter, once a toy and now an everyday vehicle, is a principal cause of the new agitation. With good roads
all over the face of the country, and with proper city all over the face of the country, and with proper city
pavements, a new field of work for the inventor at once is open. The horse is being more and more rele gated to the background. The bicycle surpasses him in its powers of transporting humanity. It illustrates the iminense reduction of friction on journals by the use of ball bearings. After ball bearings had settled this part of the problem, the rolling friction difficulty was solved by the pneumatic tire, and the bicycle, in great measure a perfected type of machine, is going into universal use.
In France recently there has occurred a competition between road vehicles driven by power. From the early days of this century repeated efforts have been made to produce a road engine. To the existence of this machine a good road surface is essential. France is peculiarly adapted to its introduction on account of her good roads. There the bicycle is in universal use, and the power-driven road wagon may become a use, and the power-driven road wagon
part of the machinery of transportation.
In the United States, with cobblestone pavements and with sandy and muddy roads disgracing city and country alike, much has to be done before the work of producing a successful traction engine or carriage can be accomplished. But the production of the bicycle so many of the mechanical problems of the perfect road vehicle, that it seems a pity that the power problem cannot also be solved. The motor is now what is wanted. It must be light. The bicycle of twenty-five pounds weight carries a two hundred pound rider. The motor carriage of the future must be light.
With good roads all through the country traversed on bicycles by every one, and with power-driven vehicles for freight, in place of horse and wagon, the life in the country districts would be revolutionized. Daily delivery of the mail and of light express mat ter would become practicable, and the progress of the individual would be favored. But until good roads come this cannot be. The trolley road as an approach to the desired cheap traction has proved welcome to country and suburban dwellers. The advent of a practical power-driven vehicle coupled with good roads would prove just as welcome and more in consonance with the vested rights of the community in such roads as they possess; rights in which are now surrendered ness.

Kentucky Hemp.

Mr. James K. Reeve, in the Country Gentleman, says: In 1882 the crop amounted to about 4,000 tons; it had not varied much from this for a long time. Cheaper fibers were brought in to help meet the demand for lower priced goods, and jute and sisal for a while nearly drove American hemp from the market. The fall in price has reduced the value from $\$ 160$ per ton to $\$ 100$. The Kentucky crop for the present year is estimated at only $3,0 c 0$ tons, but there is no prospect of an advanced value.
Besides the introduction of cheaper substitutes in the way of fibers, hemp has met disastrous competition from another source. Tne use of metal in the place of fibers has assumed large proportions: The first step in this
direction, and one which largely curtailed the market direction, and one which largely curtailed the market for hemp, was the use of iron cotton ties-the straps which are used to bind the bales. Then came the introduction of steel wire cordage for standing rigging on ships. In connection with the baling of cotton, bagging made from jute butts was also adopted in
place of the former hemp bagging. Thus, while its value is as fully recognized as ever, the relentless de mands of competition have forced manufacturers to use cheaper substitutes, until the demand for it has almost ceased. Its principal employment now per haps is for the adulteration of flax, with the single ex ception of which it is doubtless the best fiber proception
duced.
To help the reader understand the cost of harvest ing, and to realize the difficulties that are in the way of producing it more cheaply, a few words of explanation may be necessary.
From the time when the harvesting begins, which is in the latter part of August or by the first of September, a period of five or six months is required for pre paring the crop for market. Generally speaking, a year may be said to intervene between the sowing of the seed and the selling of the product. The hemp is cut by hand, a knife set in at right angles to the han dle being used. The work is pretty severe, as the stalks must be cut close to the ground, necessitating a constant stooping posture on the part of the workman. Cutting by machine has been tried, but it leaves a couple of inches of the butt of the stalk standing. This is just where the heaviest fiber is produced, and it is estimated that 200 pounds of fiber to the acre is lost by machine cutting. This, at 5 cents per pound, would amount to $\$ 10$, which is much more than the cost of hand labor. The subsequent handling includes stack ing and spreading-which consists in laying the canes out in regular rows upon the ground, to undergo the process of retting. A good crop is calculated as one that when thus spread will fully cover the ground upon which it has grown. It is left thus for some weeks, depending upon the weather, until the retting (the word is probably a corruption of rotting) has pro gressed so far that the pith or inner part of the cane will separate readily from the husk or fiber. The sepa ration is then done by means of a brake, a clumsy wooden tool operated by hand, which thrashes the woody portion of the stalk out from the fiber and leaves the latterfinally ready for market. All of these processes are expensive, the braking alone costing $\$ 1$ per 100 pounds. The securing of the crop entails so much expense that it is quite common for the growe to secure advances of money for this purpose from dealers and manufacturers. But I am glad to say they are not under such thraldom of crop mortgages and usurious rates of interest as have been too common with another class of fiber producers in the South-the cotton growers. One of the largest buyers of hemp in Lexington told me that he was already advancing money for the payment of harvesting expenses, charg ing no interest and only requiring that he should be given the opportunity of purchasing the crop at it market value when ready.
After passing through the brake the hemp is twisted into a coil of about 5 pounds weight, which is called a "hand," and in this rough state goes to the dealer. In this warehouse or factory it is hackled or dressed, which is also a hand process, and is then ready fo baling and shipment. In hackling, the short fiber is separated from the longer, and makes a second quality The fine waste product is called tow, and when mixed with tar becomes oakum, which is used in calking ships.
From 800 to 1,400 pounds of hemp is considered an average crop. Even at the present price of $\$ 100$ per ton, it is a crop that gives a fair money yield per acre, and might still be a profitable one were it not for the extraordinary expense of handling. As it is, farmer are preferring to grow more corn, and to make up the difference in their incomes by letting more land for tobacco.

Maxim's Flying Machine.

In reply to an inquiry whether his flying machine will fall edgeways like a kite in case the propelling mechanism should break down in the air, Mr. Maxim

The Anglo-Saxon kites, as made by boys in the United States and England, are rather crude affairs. They have to be provided with a tail, and, as we all know, they often fall to the ground edgeways, striking a very powerful blow in proportion to their weight. But in China men, and not boys, make and fly kites, and these kites are so perfectly made that they never fall to the ground edgeways, neither is it necessary to provide them with a tail. My flying machine is made somewhat in the form of a kite, and 1 have modeled it after the Chinese rather than after the Anglo-Saxon variety. It will not fall to the ground edgeways. In case the machinery should stop while it is in the air, the machine would be brought to the ground not in a vertical line, but would run down an incline on the air, striking the earth while moving ahead at a comparatively high velocity, while its vertical velocity would not be great enough to cause any serious damage to the machine or its crew.

-

Twenty years ago Southern planters paid men to from $\$ 6$ to $\$ 8$ a ton for it.

We may smile at the ignorance and arrogance of the old Romans because they called their golden milestone in the Forum "umbilicus terrarum;" but after we have spent some days among her ruins, her churches and monuments, have had associations of more than twenty-five centuries ;ecalled, and have noticed the activity and vigor in the present life of the city, we are almost, if not quite, ready to say, "Of course, Rome is the center of the world."
I presume that it is very common for travelers who come here to-day, to wish they could have come a century, or even a generation, ago, when old Rome was less obscured by the bustling capital of the young kingdom of Italy. However, there are compensations. Some of the interesting discoveries are very recent ones, and modern Romans are but repeating the history of their ancestors, in building on old foundations; tory of their ancestors, in building
It is a curious fact that this city, which in the past has had the vicissitudes of war and pestilence and prosperity, is suffering now from what is known in America as a "boom." There has been over-building, banks have loaned money on sccurity which did not secure, and unfortunate depositors are beggared. In their haste to build, too, they have forgotten that they live over enormous caverns, and some large structures have collapsed after they were finished, in much the same fashion that others have ished, in much the same fashion that others have
in a land that had not been dreamed of when Rome in a land that had not b
was mistress of the world.
was mistress of the world. thrift and stability. The new streets are wide, clean and well lighted ; so many railway tracks run into the central station that one instinctively says, "All roads lead to Rome!" The new churches have a splendor about them that the old ones lack, albeit tbere is no Michael Angelo to be their architect and no Raphael to paint their Madonnas. The monument to Victor Emanuel, which is being built on the Capitoline Hill, will doubtless be grander than any other in Europe. will doubtless be grander than any other in Europe.
It is to include 200 frescoes, 400 statues, and to cost It is to include 200 frescoes, 400 statues, and to cost
$12,000,000$ francs. The equestrian statue of the King will overlook not only the present city, but those wide outlying lands which were thickly populated when Rome was half as large as London now is.
And it is that Rome and her beginnings which most interests the stranger. So much and so well have the best known objects of interest been written about, that I cannot say anything new about them ; the most I can hope to do is to refresh the memory of them in some readers' minds and suggest to others that it is worth while to spend a short time in Rome if one cannot do more.
With a scholarly guide, who is thorough master of the history and geography of the city, ancient and modern, a great deal can be accomplished in a week. Such a guide is indispensable to the visitor who wants to make the most of his time.
The seven hills seem to-day more traditional than real. Standing on the Capitolina, the Esquiline, the Coelian, the Viminal, the Quirinal, the Palatine and the Pincian are pointed out as quarters of the city; they differ so slightly in elevation from the valleys be tween them that we drive from one to anotherscarcely noticing any change in the level. It is hard to believe that once they were distinct and each had its own wall. The hills were never high, and Rome's masters have not scrupled to level them as they have her palaces and temples when they saw fit.
The present city is from 16 to 22 feet above the level of the ancient Forum. Some of the most interesting ruins stand upon the site of others which far antedate them. Emperors and Popes alike have sought to beautify the city or immortalize themselves at the expense of whatever they could lay hands upon.
The Coliseum, for example, was for 130 years used as a quarry, and because it was so well built that it was more labor to get stone from it than from the hills near by, the Popes not only robbed it themselves, but one of them offered a premium to any one who
would take building material from it. And yet it is to day the most impressive ruin in Rome. The outer walls are made of large blocks of travertine from the Sabine Hills; they are laid without mortar, but still are closely joined, and age has given them a soft, gray brown tone. 'They cover walls of enormous thick ness made of brick and tufa in alternating layers.
How dazzling must it have been when these walls were covered outside and in with white marble and ornamented with tiers of marble columns! The lower columns were Doric, the next Ionic, and the third tier
Corinthian. The fourth story, built by Titus, had windows separated by Corinthian pilasters. The interior marbles, which, like the exterior ones, have all been carried away to be used in other buildings, were taken from Nero's golden house, which was near. The Coliseum stands in what was his palace garden, its center, where was an artificial lake. Its present name,
given in the eighth century, it is supposed, was given given in the eighth century, it is supposed, was given
from the colossal statue of Nero. Before that time, it was known as the Flavian amphitheater. It will be remembered that it was begun by Vespasion in
A. D. and was finished in eleven years. Twenty thousand captive Jews worked upon it. It is a third of a mile in circumference, and not round, as some pictures represent it, but oval, its longest diameter about 205 yards, the less 169 yards. The height of the walls is 165 feet, and this also, I was told, is the depth
of the foundation. There are four tiers of seats; the lowest was for the Emperor, the nobles and vestal virgins; the next was for the freedmen ; the third, for gins; the nest was for the freedmen; the third, for
the soldiers ; and the upper row was set apart for the slaves. From 87,000 to 100,000 peoplecould be seated, and so numerous were the entrances, and so perfect was the arrangement of the staircases for the different tiers of seats, that it is believed that the great theater could be emptied in ten minutes. The audience was protected by a movable awning which was drawn by sailors from the imperial fleet, stationed in the soldiers' tier. Some of the iron fixtures used for the awnings, or the grooves in which they were, are yet to be seen. The arena, which measured 98×58 yards, as now seen is at two different levels. The upper one was made in the fourth century, the older one has been excavated only in part. It was the custom to keep the wild beasts in dark dens for forty-eight hours without food, before they were to fight, and then from thirty gates they bounded together into the arena. A sloping bronze wall with an ivory coping protected the sitters in the lower seats from their attacks, and slaves were stationed behind gratings, where they could strike an animal which attempted to cross this barrier. The arena was three times flooded for naval contests. After Constantine's time, gladiatorial fights were no
longer allowed, but beasts still furnished entertainment to the crowds.
In the eighth century, these fights, too, had ceased, and the huge structure was used as a hospital; the wide arches supporting the walls were shut in with boards, and rows of beds were placed under them. When, in the seventeenth century, the French turned the Coliseum into a fortress, the horses were kept on the lower arena. Pope Pius VI. made a chapel of one of the 26 rooms from which the gladiators and Chris tians came upon the arena. The beauty of the ruin by moonlight has not been exaggerated; but only a poet can describe the scene when to the majesty of
the pile dimness and mystery are added.
A. D. Rome, 1894.
A. D.

The silver Dollar.

The purchasing power of the silver dollar, which is now equal to that of the gold dollar, would be redtced if the present policy of the Treasury were abandoned
Silver dollars would remain a legal tender, but that would not preserve their purchasing power. They would have the same debt-paying power as gold, but no debts would then be paid in gold. Silver or its equivalent would be exclusively used to pay debts, and would have for that purpose the same power as at present; but when used to purchase commodities its value would be reduced, because the prices of goods, in silver, would be raised. The purchasing $23 \cdot 22$ grains of fine gold, whether in bullion or gold coin. There are 37114 grains of fine silver in a dollar, but it requires about twice that amount of silver bul lion to purchase 23.22 grains of gold bullion. ' This
simply means that we are using the gold standard. If simply means that we are using the gold standard. If
we had the silver standard, the purchasing power of we had the silver standard, the purchasing power of
the dollar would be that of $371 / 4$ grains of silver bullion, which at present is about fifty cents.
The ratio of 16 to 1 of gold to silver simply means that 16 ounces of silver are of equal value with one ounce of gold. Recently an ounce of gold has been selling for as much as 32 or 33 ounces of silver; as the exact ratio varies from day to day, we will call it 32 ounces. Now it is obvious that the dollar cannot be
worth at the same time the value of the gold bullion worth at the same time the value of the gold bullion
which it contains and the value of the silver bullion, which it contains and the value of the silver bullion, but it cannot be both. At present it has the purchas ing power of the gold bullion, and the different kinds of dollars are kept at a parity, that is, at equal purchasing power, by the policy of the Treasury depart ment, which gives to the citizen the sort of dollar which he desires. A note which calls for coin is paid in either gold or silver at the option of the holder This prevents gold coin from going to a premium.
Free coinage means that the government shall take $3711 / 4$ grains of silver, worth about fifty cents, and give possible for the Treser that happens to and silve without distinction. Gold will then only be obtainable rom private individuals, and will go to a premium while silver dollars will have the same purchasing power as $371 \frac{1}{4}$ grains of silver bullion. Free coinage dvocates say the price of bullion will rise. Possibly it might rise 10 per cent; if so, the purchasing power
of the dollar would be 55 per cent of what it is now. If it rose 20 per cent, its purchasing power would 'be 60 per cent of what it is now. In order for the dollar
to retain its present purchasing power, it would be necessary forsilver bullion to rise 100 per cent, and this is extremely improbable. It is quite probable that the
adoption of the silver standard would put up the price of siver bullion for a time. The passage of the Sherman act in 1890 put up the price of silver to $\$ 1.21$ an ounce in a bout a month. Then it began to recede, and it is now from 64 to 65 cents. Probably something of the same sort would follow free coinage, but in the end the purchasing power of the dollar would probably not be materially higher than the present prico of bly not be materially higher than the present price of
$3711 / 4$ grains of silver bullion. Our adoption of the $3714 / 4$ grains of silver bullion. Our adoption of the
silver standard would slightly increase the demand for silver standard would slightly increase the demand for
silver, but it would not be equal to the demand which existed prior to 1873. Hence the need of an international agreement as to the use of silver and its ratio to gold.-Louisville Courier-Journal.

The Quince.

The quince, says a writer in the New York Weekly Tribune, is one of the most valuable fruits we have for preserving, though it can be used for little else, except to add flavor to the plain dish of apple sauce. The best quinces are the large apple quinces, which make such beautiful red preserves. Some fable says that the quince, and not the orange, was the golden apple of Hesperides. Certain it is that the quince is one of the oldest of fruits, and was in use in early English times, and even in ancient Greece.
Quince jelly is one of the easiest jellies made, and therefore one of the best for the amateur to attempt. Cut the quinces into bits, without peeling them, and put them in a porcelain kettle with a little water in the bottom to prevent their burning. Put in all the cores that are not wormy. Cover the quinces closely and let the juice gradually draw out, until the whole mass is a soft liquid pulp. Squeeze this pulp through a linen cloth, and measure the juice. To every pint of juice add a pound of sugar. Boil up the sugar and juice until they turn to a jelly. It requires to be boiled from half to three-quarters of an hour, according to the amount of water that was added. Long boiling tends to make the jelly light and clear colored, but it should not boil long enough to be stringy and tough.
A most delicious jelly is made of one-half pound pippins and one-half quinces. This apple and quince jelly is more delicate than a jelly of pure quinces, and is especially nice for layer cakes and puddings. For jelly use the ordinary small quince or the large smooth quince.
To preserve quinces, core, pare, and quarter them. Lay aside the cores and parings and any imperfect piece for marmalade. Drop the pared quinces in boiling hot water and cook them until they are just ten der enough to pierce with a straw. Then put them in bottles. Make a sirup of the strained water in which he quinces have been cooked, allowing two pounds o sugar to a pint of water and three-quarters of a pound of sugar to every pound of quinces. When this sirup is boiling hot pour it over the quinces in the jars. Seal them up and cook them for ten minutes longer, the jars set in water boiling around them. A rich, wellflavored quince treated in this way makes a preserve in which the sirup forms a light jelly around the pieces of quince.
To make a nice marmalade, add about one-quarte pippin apple to the skins, cores and pieces laid aside. Add any water left in which the quinces are boiled. Let the fruit boil for half an hour, then strain it through a colander fine enough to strain out all the seeds, but coarse enough to allow the pulp to go through. Allow three-quarters of a pound of sugar to a pound of fruit, and let the whole mass boil for an hour and a half longer.

A Rainbow Show Bottle.

To prepare this, first ascertain the capacity of the ottle and divide by 7 , to find the volume of liquid equired for each layer. Then take sulphuric acid to begin with, and tint it blue by the addition of indigo sulphate. For the next layer use chloroform; for the third use glycerine tinted with caramel ; for the fourth castor oil colored with alkanet root; for the fifth, proof spirit tinted with green aniline; sixth, cod liver oil, containing 1 part of oil of turpentine to 99 of the fish oil ; seventh, rectified spirit tinted with violet ani line. Each of these should be poured in through a tube, the lower point of which should be directed against the side of the bottle, so that the liquid may trickle gently over the surface of the layer below it. National Druggist.

A Co-operative Rolling Mill.

The result of an attempt to operate a rolling mill at Hubbard, O., on the co-operative plan is interesting. After paying up all outstanding indebtedness there was a surplus of about 25 per cent to distribute to the stockholders out of the 50 per cent of the wages that have been retained by the managers to create a capi tal. This is equivalent to a reduction of 25 per cent in wages for the time that the mill was in operation. In other words, in order to get out even the company could only afford to pay 75 per cent of the wage scale. Doubtless the hard times was the cause of this ill suc

THE LONG-RUNNING METEOROGRAPH OF THE MONT BLANC OBSERVATORY. \quad adopted by Mr. Richard : A cylinder carrying a cer-
By reason of the difficulty of reaching the Mont tain number of spirally arranged cams receives its Blanc Observatory in winter, it became necessary, in motion from a weather vane or a Robinson rotary aporder to obtain the registering of the principal phenomena of the summit, to construct an instrument that should run for a very long time (that is to say, during the winter' and spring) without being wound up.
This is a problem that I asked Mr. Jules Richard to solve, and that led him to the construction of the remarkable instrument which I have just presented photographs of and which Mr. Richard has placed before the eyes of the Academy.
The entire instrument (Fig. 2) is actuated by a weight of 200 pounds descending from a height of about 20 feet in 8 months. This weight moves a pendulum that actuates and regulates the motion of the apparatus.
As a pendulum was required that should be affected as little as possible by the variations of temperature, $\mathbf{M r}$. Richard selected the escapement one of Denison, which he improved (Fig. 2, A).
The advantages of this escapement are, on the one hand, the permitting of the use of a very small quantity of oil, that may be even null when the surrounding atmosphere is entirely free from dust. Denison states, even, that it has been impossible to observe any variation in the amplitudes of the arc of the balance when the oil was frozen and had the consistency of tallow.

All the motions of the meteorograph are communicated to it by a horizontal shaft, which receives its motion from the pendulum, at the rate of one revolution in twenty-four hours and communicates it to the bobbins and the various parts of the registering apparatus.
These bobbins with a speed variable in each instrument unwind the paperupon which the pens of the registering apparatus are to write.
BAROMETRIC REGISTERING apparatus.
The apparatus that registers the variations in barometric pressure is seen in the center of the engraving (Fig. $2, \mathrm{~B})$.
The motions of the needle are controlled ly those of the mercury in the lower branch of a Guy-Lussac barometer with a very large reservoir. I have adhered to the use of mercury on account of its offering a great guarantee of exactitude. THERMOMETER AND HYGROMETER.
For the registering of the temperature and humidity, we have been obliged to have recourse, for the former, to the Bourdon system of metallic reservoirs, and for the latter to the hair hygrometer of Saussure. The thermometric reservoir and the cable formed by the hairs are connected with their respective pens by long rods, so that these parts can be exposed to the action of the external atmosphere, while at the same time preserving the registering in the interior.
REGISTERING ANEMOMETER. The registering of the velocity and direction of the wind is done upon the same

Fig. 1.-View of mont blanc observatory at the beginning of the year 1894

Fig. 2.-LONG-RUNNING METEOROGRAPH.
A. Clockwork running eight months. B. Registering system of the barometer. C. Barometer. D. Anemometer. E. Pen of the thermometer. F. Pen of the hygrometer. E^{\prime}. Reservoir of the thermometer. F^{\prime}. Hairs of the hygrometer. G G G. Motive counter poises. H. Pendulum. I. Transmission of motion of the clock to the different registering apparatus.

Fig. 3.-DETAILS OF THE METEOROGRAPH.
No. 1.-K K. Gearings of the weather vane and anemometer rods with the registering apparatus. L. Cam roller for velocity of the wind. $L^{.}$Cam roller for direction of the wind. M. Group of inscribing needles. N. Paper roller. O. Drum upon which the inscribed paper winds. P. Device for winding the paper after the registering. No. 2.-General view of the writing system. Q Q'. Battons to allow of the removal of the needles. $R R^{\prime}$. Wheels actuated by the cams, L and L^{\prime}. T. Details of a tube pen of the anemoscope.
U. Details of a tube pen of the anemometer. V. Series of tube pen carrierso the apparatus carries eight pens, representing the eight principal directions of the wind. For the ve locity, the cylinder is provided with ten cams that act in succession upon ten pens. Each pen is engaged during a tenth of a revolution of the cylinder, which represents a six-mile travel of the wind. The velocity is therefore represented here by the greater or less length of the traces left by the pens. The perfection with which the entire ap paratus is executed does credit to Mr. Richard, and I am sure of being the interpreter of his feelings in giving praise also to Messrs. Emile Honore and Henri Libeert, who had spe cial charge of the execution of this fine instrument. Such is the entirely new apparatus that is to be mounted upon the summit of Mont Blanc. I do not conceal the fact, despite the minute precautions that have been taken, that we are still in the pres ence of the unknown. But the interest of the question of these long-running register ing apparatus, which will render so many services at elevated stations in which it is impossible to remain, is so great in my eyes that I have not hesitated to begin the experiment at once, leaving to experience the care of instructing us as to the modifications that it will be well to introduce into them in order to secure a sure and entirely satisfactory operation. - J. Janssen, in La Nature.
Protection of the Heet.
Many agronomists now re commend a very excellent method for the destruction of the May beetle and its larvæ, besides several other insects belonging to the same family The Sylpha type makes it appearance on wheat fields that have followed beets in the rotation. The eggs have been deposited upon fermenting vegetable residuum left on the fields after harvesting. Many plans, says the Sugar Beet, have been adopted, such as sulphide of carbon combined with water and soap, arsenic preparations, etc.; none of them give en tire satisfaction. The best of all modes consists in using strips of zinc placed on and slightly penetrating the ground in a slanting position The joints between strips must be well looked after. The beetle cannot climb on the surface of the zinc, but continues along the border, to subsequently fall into ditches placed at regular in tervals. In these a small quantity of sulphuric acid is plac ed, causing the immediate destruction of the beetles The portions of the fields to be protected are those corresponding to the direction of adjoining fields, from which the army would make its march. Other preparation, such as tar, quicklime, etc. have all been tried. The tar scon acquires a hard surface, and the lime exposed to air will quickly become carbonated. The beetles would then find no hindrance to the de struction of a crop of beets found in their path.

Manufacture of Plumbago

Graphite crushed and passed through a sieve of from 120 to 150 meshes per inch is stirred into a saturated solution of alum or aluminum sulphate at $212^{\circ} \mathrm{F}$.; steatite is then added, and more water if required. After mixing, excess of water is evaporated until a consistency suited to grinding in a chilled steel or other mixer is obtained. More graphite may here or other mixer is obtained. More graphite may here
be added ; then, after thorough grinding, the material may be compressed into cakes for household use, or is ready for the manufacture of pencils or crucibles. The average formula for the mixture is: Graphite, 80 ; steatite, soapstone, or talc, 14 ; alum, 6 ; but this varies with the purpose to which the material is to be applied. When several different kinds of graphite have to be employed, the richest in carbon is first mixed into the alum solution. By this process graphites previously regarded as incapable of being compacted are utilizable, and are improved in polishing power; for pencils, the material may be hard without being brittle, and black without being soft; while crucibles made from the treated graphite are at once harder, more durable, and lighter.-P. F. Johnson.

A PLATFORM GATE FOR CARS, ETC.

The gate shown in the illustration is of exceedingly simple construction, easily operated and readily locked in either open or closed position. It has been patented by Mr. Frederick W. Young, of No. 9 Hill Street, Bloomfield, N. J. It has a post-like partly open casing secured to the car platform and the dashboard at one side of the latter, and in the sides of this casing near the middle are pivoted two members of a set of lazy-tongs, the other members of the set being pivotally connected with the post forming the free end of the gate. This post is adapted to engage keepers on the car opposite the casing when the gate is closed, and in its upper and lower ends are vertical slots in which are pivoted the ends of another pair of lazy-tongs, whose opposite ends are connected by pivots with links having vertical movement in the casing, the links being pivotally connected with a handle lever, as shown in the small figures. The two sets of lazy-tongs

F. W. Young's safety gate.
are independent of each other, and by moving the handle lever up or down the gate is opened or closed, bevel catches on the inner face of the dashboard locking the lever in either the lower or upper position. The casing at the side of the dashboard is of such width as to accommodate all the members of the gate proper, so that no part of it projects when the gateway is open.

The New British Torpedo Boat Destroyers.
The torpedo boat destroyers Havock and Hornet, during the recent maneuvers, although they rolled about in an unmerciful manner to their crews, proved to be good sea boats. The Havock had to return to port for repairs, while the Hornet broke down altogether, and, had she been alone, would most probably have foundered. She had only just been asked to show the stuff she was made of by catching a torpedo boat when the cylinder cover cracked, two piston rods bent, and a large hole was knocked in her condenser. Both engines were placed hors de combat, andshe was towed into port by the Speedy. In consequence of the defective working of the machinery of these catchers, it is reported that vessels of this type are in future only to be employed in couples.
Two wore torpedo boat destroyers have taken the water, the Sturgeon, on July 21, from the shipbuilding yard of the Naval Construction Company, at Barrow-in-Furness, and the Rocket, on August 14, from the yard of Messrs. J. \& G. Thomson, at Clydebank.
The Lynx and Decoy have made successful trial trips. The latter vessel, during six consecutive runs mean speed of 27.641 knots. During the three consecu
tive hours of full speed steaming the mean speed attained was 27.77 knots, or more than three-quarters of a knot over the contract. The Lynx had attained a maximum speed of $28 \cdot 3$ knots, when a joint of a smal pipe broke, and the trials were postponed.

A VELOCIPEDE TO RUN ON SNOW AND ICE.
This machine, patented by Mr. Samuel Young, is preferably made in the form shown in the illustration,

samoel young's ice velocipede.

although its body may be constructed substantially like that of a safety bicycle. As shown, the front legs form hangers for the pedal shaft and the rear ones are detachable and each connected with a ruñer. The steering rod, with a handle bar on its upper end, passes through the front portion of the body, and its lower end is secured to a runner. In a recess of the body above the pedal shaft is a vertical U shaped hanger adjustably secured to the front legs by screws passed through one of a series of holes, whereby the height of the hanger is regulated, and the hanger supports the pedal shaft, mounted in suitable boxes. The driving chain from this shaft extends backward over a sprocket wheel, connected with a large sprocket whee journaled in vertically moving slides which project up into the body of the machine, the large wheel carrying a spur chain adapted to contact with the snow or ice The slide frames are carried by a slotted clip in the under side of the body, and the spur chain runs over a sprocket wheel on a shaft journaled in vertically adjustable boxes in the upper ends of the slides, the latter resting on springs which also support a portion of the saddle. Connected also with the slides are rods which extend upward on opposite sides of the body and ter minate beneath the rear end of the saddle. Chains connect the rear runners with the front legs. Further information relative to this improvement may be ob tained of Mr. Samuel Young or Mr. Michael A. Powers, Ontonagon, Mich.

Welding by Pressure

According to Nature, M. W. Spring, who about fifteen years ago. proved the possibility of welding metallic bodies by simple pressure at temperatures far below their fusing point, publishes an interesting extension of his researches in the Bulletin de l'Academie Royale de Belgique. He was led to the conclusion that at a certain temperature, where a metal is to all appear ances a perfect solid, a certain proportion of the molecules attain a rate of vibration corresponding to the liquid state, and that these molecules, by softening the body, make it capable of welding and of producing alloys with other metals. The metals were put in the shape of cylinders bounded by plane surfaces, upon the purity of which great care was bestowed. They were then mounted in a stirrup, and pressed together by means of a hand screw. In this state they were placed in a heating oven, and kept at a constant temperature between 200° and 400° for from three to twelve hours.
The most perfect joints were produced with gold lead, and tin, and the worst with bismuth and anti mony. Two cylinders thus welded together could be put in a lathe, one of them only being held in the chuck, while the other was being worked upon by a cutting tool, without coming apart. They could be separated with the aid of pincers, but then a rough breakage was produced which did not coincide with the original plane of separation. It appears that the more crystalline the bodies are the less do they exhibit this phenomenon of incipient liquefaction, which be-
gins to show in the case of platinum, for instance, a^{t} $1,600^{\circ}$ below its fusing point. That such a liquefaction or softening actually takes place was proved by cutting a delicate spiral 0.2 mm . deep on the end surface of a piece of copper weighing 130 grammes, and placing
t upon a sheet of mica. After keeping it at 400° for eight hours, the spiral had entirely disappeared, and
the surface looked as if just fused before the blowpipe. Where two metals were employed, alloys were formed which, in the case of lead and tin, were fusible and flowed out at 180°. By placing a perforated disk o mica between the two, the outflow could be prevented, but the alloy formed at the center and the metals were hollowed out in the proportion of their degrees of liquefaction. In a lead-antimony couple, the hole in the lead was 8 mm . or 9 mm ., and that in the antimony 2 mm . The most striking and novel experiments, how ever, were those showing the evaporation of metals, or rather their sublimation, at temperatures between 300° and 400°. This was also shown by inserting a disk of mica say between a zinc and copper couple at 360°. When air was carefully kept away from the surfaces, the copper was tinted a golden yellow over the area of the hole in the mica, the exact color of tombac, and a brown layer was produced on the zinc, which chemical analysis proved to contain copper. Similar results were obtained with cadmium, the thickness of the mica being 08 mm .

Lighting of Trolley cars.
A system of lighting tramcars by electricity has been devised by Mr. W. M. Miner, the electrical engineer of the American Manufacturing and Engineering Com pany, New York, and a demonstration of it was recent ly given as installed in a car in Hoboken, N. J. The visitors were conveyed in the car, and in running over the line the trolley circuit was frequently broken in order to show the value of this system in always keep ing the car illuminated whether the trolley wheel is on or off. The system consists in the use of a smal storage battery of six Donaldson-Macrae storage cells, which are used to light a duplicate set of lamps should the trolley come off or the motor current give out or be interrupted in any way, the battery being switched on automatically when the motor circuit is broken. A trolley current is passed through an electromagnet which completes a circuit through incandescent lamps connected in series in the usual manner. The same current also passes through the storage battery, keeping it charged. If the trolley comes off, or the current gives out or is interrupted in any way, the armature of the magnet is drawn back against its backstop, closing the supplemental circuit from the storage battery through a switch to the armature of the magnet, backstop and lamps, returning to the storage battery, thereby insuring light in the car whenever lights are required, independent of the action of the trolley When the main circuit is restored by replacing the trolley or otherwise, the current takes its original course through the main circuit lamps, energizing the magnet (drawing its armature away from the backstop), stor age battery, and ground, recharging the storage battery and lighting the car as before, thus automatically in suring a constant light in the car under all circum stances.

A LINE CHALKER FOR CARPENTERS' USE.
This simple and inexpensive device, while serving as a holding reel for the cord, is also a line fastener or securer, to hold the line after it is chalked at any desired point from which the mark is to be made. It has been patented by Mr. John W. Neff, of Buckhan non, West Va. Journaled in a frame having a convenient handle, as best shown in the small view, are

NEFF'S LINE-CHALKING DEVICE.
a line reel and a chalk-holding shaft, geared to be operated together by means of a crank on the line reel shaft. The frame is preferably made in two sections, held together by screws, to facilitate placing and removing the shafts. The chalk-carrying shaft has one end threaded and fitted with an adjusting screw, which bears on a disk sliding on the shaft, to clamp a centrally apertured cylindrical piece of chalk thereon. A notched, spur-like projection from one end of the frame forms a convenient means for holding the line after being chalked to a fixed point.

Preston, of Breatment of apoplexy
apoplexy more might be done in the treatment stage if this condition were more carefully studied and oftener recognized. There are no constant or certain prodromata, but in a considerable proportion of the cases here related the history obtained afterward from the patients showed the existence of headache, vertigo or a sense of fullness in the head, numbness of one side, etc. These symptoms in some instances existed for a week before the apoplectic attack. It is very important to heed these warnings, especially in cases where there is atheroma of the vessels, or where there is high arterial tension without atheroma. Rest, vascular sedatives, nitro-glycerin, large enemata, will often modify the force of the circulation and thus tend to avert the rupture of the artery. Some years ago the writer called to see an elderly woman, stout, with flushed face, headache, and unusually high arterial tension. While waiting for the family physician she was kept absolutely quiet, with ice to her head. While consulting in the next room, the patient, against orders, got up to use the commode; the arteries could stand no further strain, rupture occurred, and she died in half an hour, with all the symptoms of intracranial hemorrhage. Venesection would probably have averted this disaster. It rarely happens that the physician sees clearly enough to make use of bloodletting. After the rupture of the artery has taken place, it is doubtful whether venesection does any good. The mostimportant part of the treatment of apoplexy is rest. There is no way by which the bleeding can be stopped, and it is probable that in the great majority of cases the increased intracranial pressure tends to controlthe hemorrhage. The ruptured artery or miliary aneurism is small, as a rulo, and it is generally soon occluded by clot. If the amount of hemorrhage is moderate and not in a vital part of the brain, recovery, more or less complete, will take place if the clot remain in its first position.
Very often it happens that the original location of the clot was not specially dangerous, but from gravity or as the result of exertion the clot has forced its way through the soft brain tissue and done irreparable injury to more important structures. This can often be seen post mortem and the track of the clot made out. From this it follows that the greatest care should be exercised to prevent any more moving of the patient than is absolutely necessary. If it be possible, the patient should be laid down on a sofa or mattress in the room where the attack occurs and no attempt at movement made for twelve or twenty-four hours. It is better to slightly elevate the head by pillows, since this probably tends to modify the force of the heart's action in the cerebral vessels, and at the same time allows respiration to be carried on rather better than when the patient is perfectly flat. Opening the skull has been resorted to, but it is doubtful whether this is advisable, except in the case of meningeal or cortical hemorrhage. The ice cap to the head is of some use in allaying restlessness, and is extremely good treatment for the relatives and friends. In regard to drugs in this early stage there are practically no therapeutic indications that can be successfully met. The use of ergot and that class of remedies is of more than doubtful propriety. Aconite may sometimes be used to advantage in controlling a too forcible heart's action. As soon as the patient can swallow, it is the author's custom to administer a mixture of bromide and iodide of potassium, 30 to 40 grains of the former and 10 grains of the latter, and this is kept up for severa days, then the bromide is omitted and the iodide used alone in increasing doses. In regard to the custom of administering croton oil or some drastic purge during the early stage, although sanctioned by almost im memorial usage, it is not only useless, but exposes the patient to the risk of making dangerous exertions, be sides putting him in a filthy condition. The same objections in part apply to blistering and to the use of mustard. It is important toattend to the bladder and draw off the urine at regular intervals. The throat should be kept as free from mucus as possible and the surroundings of the patient rendered comfortable These points have, perhaps, been dwelt upon with unnecessary minuteness, but one so often sees these case handled in a mischievous manner. The physician realizing the futility of any active treatment, is too ap to yield to any suggestion made by the family, and the object of this paper is to insist upon a simple and ra tional treatment of this condition.-Maryland Medica Journal.

Glycerin for Softening Leather.
Glycerin imparts considerable suppleness to leather; but soon sweats out in damp air. To fix it in the leather, it should first be incorporated with four times its weight of the buttery mass made by dissolving beef fat in warm cod oil. Another method of rendering the glycerin a permanent constituent of the leather is to incorporate it with a small proportion of white of egg. This mixture may be applied alone or may be followed by the above described glycerin oil. A solution of dextrin may be substituted for white of egg if this
latter be too costly. By dissolving a tan stuff in glycerin and mixing it with cod oil and fat, a valuable stuffing for leather may be obtained.

Street Car Fenders Wanted.

By an ordinance of the authorities of Baltimore the treet car companies are required to provide their cars with fenders. With this view a commission was formed, consisting of the mayor, city register, and city commissioner, for the purpose of considering the subject of life guards for trolley cars. Mr. Mendes Cohen, Past President Am. Soc. C. E., was employed to investigate and make a report on all fenders which came to his notice. In all, 70 different types were offered, but out of this number, which included nearly all, if not all, of the best known fenders, none met with his unqualified approval.

In concluding his report, Mr. Cohen says, in part: What is needed is a very simple piece of work, the ore simple the better.
It is required that the front surface of the car, striking a standing human being, shall be so arranged as to afford a reasonable prospect of saving the person from being dashed to the ground; and, further, so arranged that it shall do the least possible damage by its own impact; and, further, if it fails to do the duty expected of it, and the person does fall to the ground, or is already lying there, that it shall be so devised as to pass over him without causing further injury; and that there shall also be on each car a suitably arranged wheel guard, preferably of angular or "pilot" form, which shall be automatically brought in clos : contact with the street and rails, in order to prevent the crush ing of the victim, whom the front device has failed to

EASILY READ THERMOMETERS

The instrument shown in the illustration, styled by its manufacturers "a distance reading thermometer," is designed not only to be up to a good standard of accuracy for all ordinary requirements, but it presents the special advantage of being easily read at a distance of ten to fifteen feet in the small styles, and at proportionately greater distances in the larger sizes. As large figures are used, they are placed alternately on opposite sides of the scale, which is di vided into alternate light and dark spaces by sections of ten degrees, the limit of each section being thus distinctly seen in such manner as to show at a glance the indicated temperature. The tube is filled with red spirits, guaranteed to be non-fading, and the liquid presents to view a wide surface. The makers of these instruments, Messrs. Ward \& Doron, of Rochester N. Y., have had forty years' experi ence in the manufacture of thermome ters.

The Influence of Sugar and Tobacco on

In 1892 an important series of experiments wa undertaken by Dr. Warren Lombard upon the influ has been the results of his observations are recorded in the first part of the Journal of Physiology for the present year. Dr. Vaughan Harley agrees with Dr. Lombard in con sidering that the amount of work done by the same set of muscles at different times of the day undergoes periodical variation; so we may accept as a fact that there is a diurnal rise and fall in the power of doing voluntary muscular work, in the same way as there is a diurnal rise and fall in bodily temperature and pulse. it is remarkable, however, that instead of the greatest amount of work being done, as might have been expect ed, on rising in the morning after a night's rest, it is found that at $9 \mathrm{~A} . \mathrm{M}$. the smallest amount of work is accomplished, the powers of doing muscular work in Dr. Harley's case increasing each hour up to 11 A. M. Immediately after lunch there is a marked rise, followed an hour later by a fall; while again an hour later, or about 3 P. M., the amount of work accomplished reaches its maximum. Then, from some unexplained cause, by a rise at 5 P . M., after which a progressive fall take place during each successive hour until dinner. Even during a prolonged fast more work was capable of being executed from 11:30 A. M. to 4:30 P. M. than at 9 A. M. Dr. Harley admits, however, that further experi mentsare required to determine this point satisfactorily. It was found in his experiments on the muscles of the middle finger that, in corroboration of a well-known physiological fact, regular exercise caused increase in the size of the muscles brought into play, and at the same time up to a certain point rendered them capable of performingmore work. Sugar, taken internally, provtomach, there was on ; since, when taken on an empty
cent in the work done by the left middle finger, while the right middle finger showed an increase of no less than $32 \cdot 6$ per cent. Dr. Harley varied the experiment of administering sugar in many different ways, but always with the same result; the vigor of the muscles was always augmented. The influence of tobacco was not so marked in Dr. Harley's experiments as in those of Dr. Lombard. Dr. Harley considers that moderate smoking, in one accustomed to it, neither increases the amount of work nor retards the approach of fatigue. It perhaps slightly diminishes muscular power and hastens the onset of fatigue. Dr. Lombard holds that the use of tobacco has a powerful influence in this direction. Such experiments as these, even when no absolutely definite result is arrived at, are of importance, and if carried out with due precaution against error, in a large number of men, would undoubtedly constitute the most satisfactory basis on which a sound s
Lancet.

Mouth Breathing.

The mouth is the entrance to the digestive rather than to the respiratory oreans.
Mouth breathing is neither natural nor healthful, but nature has so provided, that when, through diseased ondain air the nasal passage
The nose, however, is the entrance to the respiratory ract.
Within the cavity of the nose are scroll-like bones, covered with mucous membrane, which greatly in crease the surface of exposure in order to furnish the three special functions of heating, moistening and filtering the inspired air. The fact that mouth breathing is injurious is not sufficiently known. The air rushes into the lungs in such volume that its tem perature is not regulated, its force is not controlled it is in no way purified, and can thus easily give rise to diseased conditions of many kinds
The winter season is the most prolific in the produc tion of these resulting maladies, because of the differ ence in temperature of the external air and the body and among the diseases liable to arise are pneumonia bronchitis, laryngitis, croup, etc.; whereas the same air taken normally through the nose, being prepared for its reception into the delicate lungs, simply fulfill the natural law, and no harm results.
The habit of mouth breathing generally arises from some obstruction in the respiratory tract, but may be prevented in most cases by timely care. Parents real ze too little the importance of nose breathing. In the minor ailments of children, when the nose may b slightly obstructed for a time, it can still, by persist ent effort, give full respiration; but because it i easier, the child breathes through its mouth and ac quires more or less of the habit.
If there is obstruction at any time, it is particularly liable to occur at night, showing itself by restles sleep, heavs breathing, and a cross child in the morn ing. It is quite safe to say that when a child persist ently breathes through his mouth there is something radically wrong. There are several forms of obstruc tion to free nasal respiration - thickening of the mucous membrane within the nasal chamber, due to repeated colds; the presence, between the nose and throat, of glandular tissue, normal in character but un naturally developed; enlargements of the tonsils and glands of the neck.
Each of these conditions may be remedied by skill ful treatment, and a child who has been restless and noring may be made to sleep quietly and restfully.
Persistent attempts to breathe through the nose will often be rewarded by success, and prevent the devel pment of the disease commonly called catarrh
Catarrh itself is not a disease, but a symptom of some obstruction or irregularity within the respiratory tract. It is much easier prevented than cured, while both are possible.
Keep your mouth closed and breathe through your nose.-C. Gurnee Fellows, M.D., in the Northwestern Sanitarian.

Weather and the Mind.
The psychology of the weather is suggested by Dr T. D. Crothers as a promising subject for study. H says, in Science: "Very few persons recognizo th sources of error that come directly from atmospheric conditions on experimenters and observers and others In my own case I have been amazed at the faulty deductions and misconceptions which were made in damp, foggy weather, or on days in which the air was charged with electricity and thunder storms were im pending. What seemed clear to me at these times appeared later to be filled with error. An actuary in large insurance company is obliged to stop work a uch times, finding that he makes so many mistake which he is only conscious of later that his work is use less. In a large factory from ten to twenty per cent less work is brought out on damp days and days of threatening storm. The superintendent, in receiving orders to be delivered at a certain time, takes this factor into calculation."

Gorrespondence.

An Induction Coil Phenomenon-Why does it

To the Editor of the Scientific American
By holding a broken lamp to one of the secondary terminals of an induction coil, the glow can be increased by touching one of the primary terminals with the other hand. If the lamp is made to touch a primary terminal, it can be made to glow just as strongly as before, by touching a secondary coil terminal with the other hand.
Brooklyn, N. Y.

The science of Rubbing.

No method of treating the various aches and pains to which the flesh is heir is more agreeable to the sufferer, or oftener effective, than a course of intelligent rubbing or massage.
We may believe that the benefits derived are due to the personal electricity which is imparted from the body of the one who performs the rubbing, or we may say that a counter irritation of the superficial parts is set up by the friction. There are those who assert that it is the activity into which the parts in question are urged by the process that is of benefit. The last explanation is probably the most nearly correct.
But, however we may explain the fact, it is certain that even unskilled manipulation may be productive of relief and comfort to a wonderful degree; while if the manipulator is acquainted with the anatomy of the human body, his touch may seem at times almost magical in dispersing pain.
By tracing out an inflamed nerve it is possible for masseurs-as professional rubbers are called-to reduce the most troublesome of neuralgias, even to the extent of relieving the ever-dreaded and long-lingering sciatica. Muscles which refuse to contract, and joints which for a long time have been stiff, may be brought into renewed activity.
Of course, it is not possible for every one to show the skill of a trained masseur : but any of us can do much in an humble way toward relieving the sufferings of those who are dear to us.
We should always be careful to assist the flow of the blood in its course through the painful parts, as this fluid bears with it both food and strength. Whether a muscle, which is very often the seat of the pain, is tired and sore from overuse, or cramped and stiff from non-use, the soothing action of a fresh supply of blood is equally acceptable.
Nerves require more delicate handling, as they are often exquisitely sensitive to the slightest touch; but patient persistence and care are certain to be productive of greater or less relief.
It is not necessary in every instance to exercise so much delicacy, however, as there are many conditions which are more rapidly benefited by the vigorous use of a crash towel till the superficial parts over the seat of the trouble are aglow.
Circular motions, pinching, and slapping, all enter into the methods of a successful masseur
Finally, the success of the treatment of pain by rub bing is to be found, not so much in the brute force exhibited in the manipulations, as in the gentle, educated touch which is able to recognize at once the requirements of the individual case.-The Youths' Companion.

New Candelabra for St. Paul's.
An interesting addition has just been made to the furniture of St. Paul's Cathedral, London, in the shape of two colossal bronze candelabra, copies of famous originals at Ghent. A curious history attaches to them. Cardinal Wolsey, when in the heyday of his power, set about preparing a sumptuous tomb for himself in the Wolsey (now the Albert) Chapel at St. George's, Wind sor. Before it was completed his fall came. The sarcophagus-of black marble-intended for the cardi nal ultimately became the resting place of Nelson in the crypt of St. Paul's. The four giant candelabra by Torregiano, designed for the corners of Wolsey's sepul cber, were presented by Henry VIII. to old St. Paul's. Being covered with gold leaf, they were valuable, and a century later they were sold by Cromwell to the authorities of Ghent Cathedral, where they have re mained ever since.-N. Y. Evening Post.

Long Distance House Moving.

A curious case of house moving was recently witnessed in Oregon: A man who owned a residence at Seattle, which cost him $\$ 5,000$ to erect, remaved to Olympia and did not have sufficient funds to build another house. He bought a lot and concluded to re move the building he owned at Seattle. Every one laughed at him, but he persisted. Rolling the house down to the river, he loaded it upon a scow and it was soon at Olympia, a distance of about 60 miles. Then he had it rolled upon his lot and, strange to say, not a timber was strained nor even a piece of furniture broken, although he had not removed the contents be fore starting the house upon its unusual journey.

Margarin Compared with Butter.

Various statements have been made as to the relative values of margarin and genuine butter as food stuffs, the general outcome of which is that while there is not much to choose between the two as regards digestibility and nutritive value, butter has a slight advantage over margarin in these respects. The author has carried out a long series of observations with a dog fed during four consecutive periods with butter and margarin alternately; the urine and fæces being collected and examined for fatty matter, nitrogenous constituents, etc., so as to obtain the data for determining how much fatty matter passed unassimilated through the animal under each set of conditions as to feeding. In the first and second periods more fat and less carbohydrates weregiven; in the third and fourth, less fatty matter and more carbohydrates; the fatty matters being butter in periods 1 and 3 and pure mar garin in periods 2 and 4. The various articles of food (wheatmeal, sugar, etc.) were carefully analyzed and made up into dog biscuits, so that the amounts of the different kinds of food constituents consumed during each period were accurately known. In this wayit was possible to trace out during each period the propor tion of proteids, fat, non-nitrogenous matters (starch, etc.), and mineral constituents (ash), which were either digested and assimilated or passed out undigested in the fæces. So far as fatty matters were concerned 97 to 98 per cent was uniformly digested, whether butter or margarin; the figures obtained during the four periods respectively were as follows (in grammes) :

Hence the conclusion is drawn that under similar conditions of feeding, butter and margarin have prac tically identical coefficients of digestibility and nutritive value.

The Blackwall Tunnel, London.
A paper on this great work was read before the British Association by Mr. Maurice Fitzmaurice. He commenced with some interesting details of works of a similar nature which have been constructed in differ ent parts of the world, and went on to say that the tunnel under the Thames at Blackwall, which is being built for the London County Council, under the direc tion of their chief engineer, Mr. A. R. Binnie, has now been under construction for more than two years. In 1891 Messrs. Pearson \& Son's tender for the construc tion of the Blackwall tunnel, amounting to $£ 871,000$ was accepted by the London County Council, and the work was commenced in 1892. Mr. D. Hay and the author were appointed as resident engineers under Mr. A. R. Binnie, and Mr. E. W. Moir took charge of the works for the contractors. The Black wall tunnel is much larger than any tunnel yet constructed by the methods adopted. The outside diame ter of the St. Clair tunnel, which is the largest one a present, is 21 feet, while that at Blackwall is 27 feet in external diameter.
The following leading dimensions were quoted by the author : Length from entrance to entrance, 6,200 eet. This total distance is divided as follows: Open approaches, flanked by retaining walls, 1,735 feet; cut and cover portion, built of brick and concrete, 1,382 eet; cast iron lined portion, 3,083 feet. The width of oadway is 16 feet and the width of each footpath 3 feet $11 / 2$ inches. The tunnel is level under the river, and the gradient on the north side is 1 in 34 and on the south side 1 in 36 . There are four vertical shafts, two on each side of the river, and varying in depth rom 75 feet to 100 feet below ground level. Each shaft is a wrought iron caisson of 58 feet externa diameter at the bottom and 48 feet internal diame ter throughout, and lined with brickwork. Each caisson consists of two wrought iron skins, 5 feet apart, braced together, and terminating in a cutting edge. Two circular holes, which are temporarily plugged while sinking, are left in each caisson to give way for the tunnel through the shaft, and provision is made for an air-tight floor above the level of the tun nel when necessary. The space between the two skins is filled with concrete. Two caissons are in place, and the two others are in course of being sunk. The tun nel is constructed of cast iron rings 2 feet 6 inche long, and each ring consists of 14 segments and a key piece. The thickness of metal is 2 inches, and eac egment has flanges 12 inches deep, and both longitudi nal and circumferential joints are planed.
The shield used for the construction of the tunnel is 9 feet 6 inches long, and is 27 feet 8 inches in externa diameter. The outer shell consists of four $5 / 8$ inch steel plates. The shield is divided into a front and back portion by two vertical diaphragms at right
angles to its axis. It is thus possible, when necessary, to have a higher air pressure in the working face of the shield than in the completed portion of the tunnel. The space between these two diaphragms forms an air lock, both diaphragms, of course, being provided with doors, by which access to the working face is obtained. At the back of this air lock the shield consists only of the outer shell, which always laps over and outside at least one completed ring of the tunnel, and inside of which all the rings are built. The space of 4 inches left outside the rings when the shield is shoved for ward is filled with grout, forced in by air pressure through screwed holes made in each segment for the purpose. Everything is quite solid at the back of the cast iron lining. At the air lock and in front of it there is an inner shell, connected stiffly to the outer shell by circular girders and in other ways, and both joining together at the cutting edge. The working face is divided into four horizontal floors and 12 working chambers by vertical and horizontal diaphragms in the line of the axis of the shield. A hanging iron screen in each compartment about 6 feet back from the cutting edge forms a safety chamber at its back, where men could stand with their heads above water in case of a rush of water in the face due to air blowing out suddenly or from other causes. Provision is made for using iron poling boards at the face, shoved forward by jacks, when in ballast, if necessary. The shield, which weighs about 250 tons, is shoved forward by 28 hydraulic jacks fixed at the back and butting against the cast iron lining, and able to exert a total pressure of over 3,000 tons

The Passing of Red Brick.

In no department of human industry, says the Washington Post, has there been greater evolution of late years than in the business of making bricks. Formerly we had nothing but old fashioned red brick that reached its climax of perfection at Philadelphia, and was shipped thence at great expense all over the country where a high grade article was in demand. But the red brick has had its day for architectural use and in its place has come to stay the brick of lighte hue-pink, buff, yellow, and, in fact, of nearly ever shade.
A brick can be made that is as mottled as a sea gull's egg, or one that will show the varying tints of an autumn leaf. It is done by adding certain metallic ingredients to the clay after the latter has been ground to the finest powder. It is the iron in the clay that gives the ordinary brick its deep red. In future most of our city residences are going to be constructed from brick of these pleasing colors. They give relief to the eye and variety. What can be more monstrous than a row of red brick houses? Washington is taking to the new style, and in this clear atmosphere, unspoiled by the soot from soft coal combustion, a house of this beautiful material will stand fresh for a century and be solid years after one made of granite had disintegrated.

Mines of Wood.

A curious source of wealth is reported by the French consul at Mongtze, in upper Tonquin. It lies in wood mines. The wood originally was a pine forest, which the earth swallowed in some cataclysm. Some o the trees are a yard in diameter. They lie in a slanting direction, and in sandy soils which cover them to a depth of about eight yards. As the top branches are well preserved, it is thought the geological convulsion which buried them cannot be of great antiquity The wood furnished by these timber mines is imperish ble, and the Chinese gladly buy it for coffins. Along the coast regions of some parts of New Jersey there are trunks of cypress trees, deeply buried in the sand the recovery of which forms a valuable industry, the timber being used for making shingles

Simple Process for Bronzing Copper

Mr. Mondit, of Caen, publishes a formula which is aid to be capable of giving every tone from bronze to antique green, according to the length of time that the copper is allowed to remain in contact with the liquid. After the piece has been scoured, it is covered with the following mixture by means of a brush

Abstract

Castor oil. Alcohol.. Alcohol... Water. | Parts. |
| :---: |
| $\ldots . . .80$ |
| . .80 |

The mixture is left on till the required shade is obtain ed, then dried with hot sawdust and coated with a very dilute varnish.

A Blue Ink for Use on Glass.

A blue fluid for writing on glass, which is not attacked by water, can be made, according to Neueste Erfindungen und Erfarhungen, as follows: Shellac, bleach ed, 10 parts ; Venice turpentine, 5 parts; oil of turpentine, 15 parts; indigo, in powder, 5 parts. Mix the shellac, turpentine, and oil of turpentine, and place in a waterbath, under gentle heat, until solution takes place, and then stir in the indigo.

MULTIPHOTOGRAPHY.

A very pretty system of photography, enabling us to see ourselves as others see us, and affording opportunity for much range in the art of posing, is the multiphotograph. If an image is placed in front of two mirrors inclined to each other at an angle of 90°, three mirrors inclined to each other at an angle of 90°, three images will be produced in
images will be produced; and images will be produced; and at 45°, seven images; and if
the mirrors are parallel, theoretically an infinite number of images will result.
In the process of photography which we illustrate advantage is taken of this to produce at one exposure a number of different views of the same subject. The person to be photographed sits with the back to the instrument, while in front of the face are two mirrors, set at the desired angle to each other, their inner edges touching. In the case illustrated these mirrors are inclined at an angle of 72°. Four images are produced. The exposure is made and on the developed negative appear not only the negative appear not only the also the four reflected images in profile and different threequarter positions. The courses taken by the rays of light are determined by the law that the angle of incidence is equal to the angle of reflection. In the diagram we have traced the rays of light on their course from subject to mirror and back to the camera, giving a good idea of the relation of the images to the subject and of the five images to the focal plane, the virtual position of the images being further from the instrument than is the subject proper.

The gallery equipment for this class of work is shown in one of the views, while the appearance presented by a full length figure with the aid of the mirrors is shown in another cut. A very interesting illustration of what can be done by this process is presented by th reproduction of a photograph actually taken, where the interesting expression and marked characteristics of the face serve to bring into strong prominence the utility of this process for representing the human face.

It is obvious that simple as the process and idea appear, it might have many uses in the study of other forms of nature.

The report of the American consul at Marseilles contains some facts concerning the manufacture of peanut oil, which is largely coming into use for various economic purposes. Extraction of oil from peanuts is rapidly increasing. no fewer than seventeen factories being at present engaged in the industry, and the quantity of nuts im ported at Marseilles for this purpose during 1893 exceeding by 314,000 metric quintals ($69,224,400$ pounds) the importation for 1892.

The general method of producing the oil is as fol lows: On arriving at the factory the peanuts are first placed in a machine of the nature of a "winnower," in placed in a machine of the nature of a " winnower," in
removed. Having been thus superficially cleansed, the nuts are conveyed by an Archimedean screw to the shelling machine, where they are deprived of the shells. Thence the nuts fall into the first triturating machine, consisting of a pair of cast iron rollers, where they are coarsely ground, and at the same time any they are coarsely ground, and at the same time any
foreign bodies, stones, etc., are by an ingenious

REPRODUCTION OF A MULTIPHOTOGRAPH.
used as salad oil and in the composition of margarin Large quantities are also sold as olive oil, principally in the United States. A smaller amount is used for illuminating purposes.

The cake left after pressing is particularly rich in nitrogen and forms an excellent cattle food, and comshelled nuts.

Meadow Lake.

Meadow Lake, which has such a wonderful history, is situated about eleven miles north of Cisco, Cal. There still remain portions of the old wagon road which was hewn out of the rock during thos palmy days. At one time it palmy days. At one time it was traversed by scores o freight wagons, and severa trips daily were made with eight horse fourteen passen ger stage coaches. The man ager of the Colfax Sentinel recently made a trip on horse back. The old stage road was crossed again and again by the trail. In some places trees many inches in diameter have grown in the very center of the road. For the greate part of the distance the road is still in good condition, though in many places the stone walls have given away. At 'best the trip by stage to Meadow Lake must have been a wild one. At one time Meadow Lake had a popula arrangement rejected. From this machine the meal tion of 5,000 . During many years subsequently Old passes to another, where it is again ground finer, and Man Hartley, the hermit, was the sole inhabitant thence into a long hexagonal case forming a sieve, Hartley's death occurred, however, about two years through which the fine meal passes, while the coarse ago. A more picturesque spot than the site of this is sent back to the rollers again. The meal is then once world-famed mining town would be difficult to pressed in "scourtins" made of horse hair, a pressure fond, while the lake itself is enchantingly beautiful of 2,850 , pounds to the square inch being exerted and The lake is about a half mile in width and extends left on for an hour, which is sufficient to extract all along the depression of this mountain meadow a dis that can be obtained in the first yield. The meal is tance of nearly four miles. Surrounding the lake is then removed from the "scourtins," ground a second a tract of level land comprising 40 or 50 acres, and the time, heated to a the scour of about

dIAGRAM OF THE PRODUCTION OF FIVE VIEWS OF ONE SUBJECT BY MULTIPHOTOGRAPHY. A score of buildings are all that mark this once busy city. The others have succumbed
to the ravages of fire or been crushed by the heavy snows of this region Here at one time could be found fine churches, theaters and dance houses, school houses, saloous, bakeries, breweries, banking houses, hotels, and a daily newspaper, and a mining stock board in daily session. The ruins of one stone building may still be seen. It was built by Perkins \& Smith, of Brady City, Sierra County, at a cost of $\$ 32,000$. Many persons who have never visited the camp will remember it distinctly from the fact of and a second pressing is effected. If oil of a very fine \mid the regular assessments which they paid on mines quality is required, the nuts are crushed only once, located in the camp for them. partially ground nuts yielding a smaller but finer product. The yield varies according to the quality of the nuts. Mozambique nuts produce about 50 per cent in the first pressing, and the value is from 70 f . to 95 f . per 100 kilos.; the second pressing yields about 12 per ent, the value of which is from 45 f . to 50 f . per 100 kilos.
The oil is largely devoted to the manufacture Some persons who have never visited the camp are hasty in saying that the gold is not in the quartz. After visiting a half dozen ledges and prospecting the ore, the writer did not find a ledge that showed less than twenty colors to the pan. He even took a horn of the tailings that passed from the plates at the old California mine (formerly the property of Ralston) and secured from it more than a score of white soap, for which it is highly prized. It is also $\left.\right|_{\text {colors. }}$

GALLERY ARRANGED FOR MULTIPHOTOGRAPHY.

ImAGES OF A FULL-LENGTH FIGURE.

MR. MAXIM'S FLYING MACHINE.

by prof. c. v. riley

Upon my return recently from the meeting of the British Association, at Oxford, I gladly availed mysalf of a kind invitation to visit Mr. Hiram S. Maxim, at Baldwyn's Park, Bexley, Kent, where for the past four years he has been experimenting with and perfecting what is usually called the Maxim flying machine, but were more correctly termed a soaring machine. Accounts of the experiments have been published from time to time, but the most complete and authoritative is contained in a paper recently read by Mr. Maxim himself at the above-stated meeting in Oxford. I send you a manuscript copy of this, which he has furnished at my request, ${ }^{*}$ and a photograph showing the machine as it appeared immediately after the famous experiment of July 31 last.
This paper renders it quite unnecessary that I should give any descriptive details; but no one who has not inspected the various parts of this huge soaring mechanism can fully appreciate the marvelous ingenuity and the truly scientific method brought to bear in elaborating the various details, which provoke admiration the more one studies them. The engine, the boiler, the numerous automatic devices for feeding and regulating the fire, the screws, the aeroplanes, the re-
chine broke away, first by bending and breaking the rear axle and then by the forward retaining wheel on the underside of the left retaining guide breaking away. Being thus lifted a way from the guides at three points, the momentum broke the heavy retaining timbers to the right, some of which became entangled in the framework (the engine being already stopped), and the machine embedded its wheels in the ground.
The lateral brasure made by the left forward wheel in breaking from the retaining wooden guide gives one a graphie idea of the power exerted, while the fact that the machine fell outside the guide to the right, without in any way affecting the iron traction rails within, is the best evidence that the machine was lifted from the ground just as described by Mr. Maxim. Hence, notwithstanding the accident, the machine was made to soar above the ground, and this was the first time in the history of the world that this feat was accomplished in the same way. The meaning of this accomplishment can best be appreciated by remembering that the machine, with water, fuel, and three men, weighed nearly $8,000 \mathrm{lb} . ;$ that the screws were 17 feet 10 inches long and 5 feet 2 inches wide, and that the area covered by the aeroplanes was some 4,000 square feet.
Mr. Maxim has thus demonstrated his ability to
making mechanical toys sustain themselves against the ceiling by rapid screw rotation on a vertical axis and I cannot help feeling that had Mr. Maxim devoted as much energy, ingenuity and means to the application of power to horizontal screws, depending on these for his lifting power, and using aeroplanes as auxiliaries only, he might be to-day much nearer the end which he seeks. I venture this opinion after pretty careful tudy of the flight of various orders of insects and of birds, and after following pretty closely the mechanical experiments of the last thirty years.
Mr. Maxim, by his wonderfully ingenious boiler and motor, has solved the chief difficulty as to power, and ascertained many other important facts as to form of propeller, etc. Let him now perfect an adjustable and reversible screw, to be applied at first on the horizontal plane for lifting and then gradually to be brought to an oblique angle for propelling forward, and the next great problem is solved. Laterial dirigi bility is easily controlled by cuneiform rudders fore and aft; while soaring power could be gained when once in the air by long aeroplanes of relatively narrow dimensions in the line of direction, to be held vertically in ascent and brought to the horizontal position dur ing forward movement. Safe descent under such con ditions will be far more thoroughly within control, and

MR. MAXIM'S FLYING MACHINE.

cording devices, in fact, everything about the mechanism has been beautifully done and represents great originality and inventive power.
The two dynagraphs are good illustrations in point. One of them indicated the lift off the hind axletree the platform of the machine being so attached to the axletrees as to constitute a sort of weighing machine, and any change of weight resting on the axletrees be ing shown on the cylinder, which turns once round in 1,700 feet. The other not only recorded the lift on the forward axletree, but made a diagram which recorded the speed with which the machine was passing through the air.
It must not be forgotten that the mechanism in all its parts had been repeatedly tested at various steam pressures, and that the casualty of July 31 was really due to its almost unanticipated lifting power under high pressure. Most of the test trips had been made with a lifting effort of not more than 3,000 pounds, a steam pressure of not more than 200 pounds to the square inch, and a maximum rate of speed of 35 miles an hour, as it was difficult to stop the machine at a greater rate. But on the last test made Mr. Maxim raised the steam pressure to 320 pounds to the square inch, and the velocity and lift were beyond the holding power of the retaining guides, and the ma-

[^0] details.
soar by mechanical means on a scale which will per-1
mit a greater lifting power than that necessary to mit a greater lifting power than that necessary to
carry the men and machinery, and there can be very ittle doubt that he will ultimately succeed in soaring through the air, and thus add, as he designs to, one of the most unique and most formidable engines of destruction in modern warfare
But my visit only confirmed a belief which I have long held, viz., that the practical solution of aerial transit by mechanism is not to be found in imitating the soaring of birds, or other animals, but rather in imitating the fish and by use of adjustable screws, the inclined aeroplane to be used only as a means of reducing power when momentum is once attained. This would involve the use of a float in the form of bags of hydrogen gas to assist the vertical screw thrust as lifting power.
Mr. Maxim for lateral dirigibility depends on the slackening or stoppage on one or the other of his propellers, and as the lifting power depends on the angle of incline of his aeroplanes, there can be no use in reverse screw power. Hence the difficulty when once in the air of easy and safe descent. The management of the machine, in air, and the proper control and security of such vast canvas surface, with the now well known variability in the wind gusts, must always be risky, if not absolutely unsafe.
I have"been deeply interested from a boy in the subject of aeronautics, and years ago amused myself in

I am of opinion that it is along these lines that ultim te success will be attained.
The whole skeleton of Mr. Maxim's machine is made of cylindrical hollow steel tubing, manufactured in France. In future he proposes to use oval-shaped tubes, so as to offer less resistance to the air. Mr. Maxim has found that aluminum is useless and unworkable for his purposes.
There is a current belief that, deterred by the late accident, Mr. Maxim intends abandoning further experiment. All interested will be glad to learn that this is not so. I found the men under the intelligent superintendence of Mr. Roberts all busy repairing the breakages, and Mr. Maxim occupied, as far as his engagements with the Maxim-Nordenfelt Co. will permit, in devising improvements and means of overcoming past difficulties.
Margate, August 24, 1894.

Connecting Metal to Earthenware。

The portion of the earthenware with which connection is to be made being unglazed, or the glaze having been removed, it is coated with plumbago, and placed in an electrolytic bath, whereby a firm metallic coating is obtained. The lead pipe is then soldered to this coating by a plumber's "wiped" joint. By this means are avoided the imperfect joints made with India rubber sleeves, washers or putty.

[From Popular Abtronomy.]
 HE PLEIADES

As a group of stars the Pleiades has attracted more attention, in ancient or in modern times, than any other cluster known to astronomy. When above the horizon the group is easily seen by the naked eye because of its definite outline and its bright and beautiful light. Long ago the sacred writer said of it "Canst thou bind the sweet influences of the Pleiades?" Whatever that may mean, in fact or figure, it certainly cannot be less than the mystic reveries of those ancient untutored races who saw in them the seven beneficent sky spirits of the Vedas and the Zendavesta, and the abode of Deity himself, became the center of the universe. The time of the Pleiades was the beginning of the year for some primitive peoples; for others, the midnight culmination of the group was the sign for great feasts and royal mercy and favor for every petitioner. Even now savage Australian tribes dance in honor of the "Seven Stars," because they are good to the black fellows.* They are called "the hoeing stars of South Africa, and their last visible rising after sunset is, and has been, celebrated with rejoicing all over the southern hemisphere as betokening the waking up to agricultural activity." The influence of the Pleiades has been widespread and unique in all time, and modern science has not yet set a limit to the wonders of their starry realm.
At the present time six stars of the group are easily seen by the naked eye. Their names are: Atlas, Alcyone, Merope, Maia, Taygeta and Electra. By referring to the accompanying plate these and others less bright may be readily identified. The two bright stars on the left hand side are Pleione and Atlas. Pleione is above Atlas and they are midway in the plate from top to bottom. Alcyone is in the middle of the plate, with three little stars on the left and surrounded with a faint nebulous halo. 'The wonderful Merope is next and a little below. It looks somewhat like the nucleus of a telescopic comet with the tail pointing downward and to the right. The star and the nebula bear the same name and are wonderful objects. Notice the numerous parallel channels in that vast nebulous mass. Maia is next above, forming nearly a right-angled triangle with Alcyone and Merope. It is surrounded by a nebulous halo. A little to the right and above is Taygeta. The sixth bright star, Electra, is on the right side of the plate about midway from top to bottom. It has a nebulous streak from it to the left. Stronger eyes will see five more stars in the group. Pleione is one, the two stars by the one name, Asterope, looking as one just above Maia, make two usually harder to see by the unaided eye. The third is Celæno, nearly midway between Taygeta and Electra, and the fourth and fifth, not especially named, are seen respectively at the bottom and the top of the plate. Alcyone is a 3d magnitude in brightness, Electra and Maia are about 3.8 magni tude, Maia is 4th, Merope and Taygeta are not so bright as Maia by respectively a quarter and a half magnitude, and Celæno is a 7th magnitude.
The word Pleiades is from the Greek, meaning full or complete, so that it is not certain that the name limits the number of stars visible to the naked eye in ancient times, although the number seven is frequently applied to the group in such records. However, it seems probable that seven stars could be as easily seen in the past as the six that are now commonly visible. Professor Pickering suggests the probable explanation from a study of its spectrum that Pleione is the missing Pleiad, as its variable character might account for its fall to 6.2 magnitude. The record of naked eye observations on this group of stars is an instructive one. Moestlin in the time of Kepler saw 14 and mapped 11 with surprising aceuracy. This was before the time of the telescope. Miss Airy, of England, has marked the places of 12 . Carrington and Denning have counted 14, and Carl von Littrow spoke of seeing 16 , and that 11 werefrequently perceived.
An opera glass helps the eye amazingly in the study of the group in regard to color and number. Nearly one hundred stars come out at once on the astonished gaze, 25 of which are of the 7th magnitude or brighter, with many others less bright, and yet distinct enough to count with certainty

In a region about Alcyone covering an area of 135 by $90, \mathrm{M}$. Wolf, in 1876, catalogued at the Paris Observatory 625 stars to the fourteenth magnitude. MM. Henry's sensitive plates showed in a smaller space 1,421 in 1885, and by four hours' exposure in $188^{\prime 7}$ the same space revealed the astonishing number of 2,326 , including stars undoubtedly as small as the sixteenth magnitude. The meaning of this statement may be more fully realized when we remember that the sharpest eye unaided can never see well, at one time, more than 2,000 or 3,000 stars. Before the time of telescopes the total number of stars that the ancient observers could see well enough for record was 1,100 . The marvelous thing in the count on the Henry photo-
graph is the fact that $2^{\circ} 15^{\prime}$ by about $1^{\circ} 30^{\prime}$ of the space occupied by the Pleiades group contains stars enough to fill the whole sky, if the 2,326 were brought near enough to us and sown broadcast in the sky as the lucid stars now appear.
The accompanying plate covers a little smaller area than the Henry photograph just referred to, and our reproduction from the original negative has occasioned the loss of many of the stars plainly shown in making positives or pictures of any kind from the origina photograph.
Another useful line of work on the Pleiades group is the measurement of the distances and positions of all the principal stars from the central one, Alcyone. This has been very carefully done three or four times during the last fifty years, so as to obtain data for the study of the relative motions of these stars in order to learn something about the physical constitution of the group. Dr. Elkin, of the Yale Observatory, has also recently done some work of a similar kind by the aid of a fine heliometer, which is sometimes called a survey of the Pleiades by triangulation. His results are useful in getting the exact time of the occultation of stars in the group by the moon as she moves rapidly through it, by knowing the exact place of each star so occulted.
The most surprising advance in our knowledge of the Pleiades is the discovery of vast nebulous masses scattered over a large portion of the area of this clus ter. If we except some earlier accounts that seem doubtful, the first observer that called attention to nebulous matter in the Pleiades was Tempel, an Italian astronomer, in the year 1859. His drawing is found in No. 5 of the publications of the Milan Observatory, and represents a hazy, comet-like mass surrounding Merope and extending sonth ward from it to the distance of half a degree. In 1882 Mr . E. E. Bar nard, then of Nashville, Tenn., observed this nebula

he Pleiades Nebula and Trail of Asteroid No. 203 Pompeja.-From photograph by H. C. Wilson at Goodsell Observatory January 30, 1894. -
with a small telescope and made a drawing of it which was published in No. 3 of the Sidereal Messenger of that year. Quite generally, however, astronomer were in doubt in regard to the existence of this nebula, some claiming that search for it with first class instruments had been fruitless, while others maintained that its extreme faintness made its form and extent very uncertain. In 1886 the Henry brothers, of Paris, photographed the Pleiades cluster, showing plainly traces of the nebula that could not be mistaken

In the years immediately following the study of the quality of photographic plates was vigorously pushed forward, until in the years 1888 and 1889 the highly sensitive film came into use, after which it became possible to get by the aid of such plates most wonder ful details in nebular structure never before dreamed of. The strange and complex background of this cluster as seen in our picture is a good example o the progress in astronomical knowledge which has been mad

A few years ago the best telescopes visually gave only hints of what we now photograph easily with small instruments. In this cluster the stars Alcyone Merope, Maia and Electra are all involved in this vas nebulous mass. Alcyone seems to be separated from the others except by a branch from its surrounding nebula that makes a crooked path to the main nebula, involving the other three stars, and which can be traced right through that nebula, as a line of light, to the star Electra. Another faint line of light may be traced through three stars above Alcyone which is nearly parallel to the streak just mentioned. Other similar features can be seen on the original negative but mention of them here is not necessary in order to give the reader a good general idea of the beauty and excellence of photographs that can be made at the present time with instruments adapted to such kind of work
call attention to the little planet trail of Pompeja, as teroid No. 203, which will easily be found near the right hand lower corner of the plate. Its place is three-quarters of an inch from the bottom and about one fourth of an inch inward from the right hand side. The trail is about one-sixteenth of an inch long and although rather faint, when once seen, it wil afterward be recognized at a glance. It ought also to be added that the negative from which this plate wa made also contained the trail of another asteroid which was detected on it by the careful scrutiny of Dr. Wilson, of Goodsell Observatory. The last-named asteroid proved to be a new one; so Dr. Wilson has been credited with the discovery of it.

The Fall in Prices.

The American Grocer, in its twenty-fifth year an iversary number, publishes the prices of leading articles of food compiled from its market reports for twenty five years. The prices given are wholesale prices, and the changes are quite remarkable, as illus trated by the following table:

	1869.	1894.
Flour, per bbl.	\$6.62	\$3.30
Sugar, per lb.	.13\%/8	.043/8
Coffee, per lb.	.15\%/8	.18\%/8
Tea, per 1 l .	. 59	.203/4
Rice, per lb .	. 0634	.041/2
Mess beef, bbl.	11.41	8.19
Mess pork, bbl.	31.04	13.80
Lard, per lb.	.181/2	.075/8
Butter, per lb.	.251/2	.2512
Cheese, per lb.	. 14	.105/8
Canned tomatoes. No. 3, doz.	2.10	. 95
Canned corn No. 2, doz.	275	. 80
Canned peaches No. 3, doz	3.50	1.30

The only item which is higher now than in 1869 is coffee, and this article has, during the twenty-five years, fluctuated between 9.01 and 19.72 cents per pound. The coffee market is just emerging from a period of high prices and is now tending downward. Dairy products have also fluctuated largely and are now above a parity with other articles of food, but the tables of the American Grocer, which are given fo each of the last twenty-five years, illustrate quite as marked a tendency toward lower prices for nearly al varieties of food as is seen in other lines of produc tion.

The all-rail rate on grain from Chicago to New York, which was 70 cents per hundred pounds in 1869, is bu one-third that amount in 1894. The rate on live stock and dressed beef was 95 cents in 1872 and 45 cents in 1894 Dry goods from New York to San Francisco in 1860 paid $\$ 6.50$ per 100 pounds and in 1894 one-half that sum. Carloads of fruit from California to the Atlantic seaboard cost $\$ 4.20$ per 100 pounds in 1869 and $\$ 1$ per 100 pounds in 1894. Dry goods from New York to Chicago were charged $\$ 1.50$ per 100 pounds in 1869,75 cents in 1894. In 1869 the N. Y. C. R.R. averaged over 2 cents per ton per mile on all its traffic, while the average now is 7 mills per ton'per mile; the Illinois Central charges have in like manner fallen from $21 / 2$ cents to 9 mills per ton per mile, and the Louisville and Nashville from $33-10$ to 1 cent. Ocean freights have fallen in equal measure. Wheat which paid 13 cents per bushel from New York to Liverpool in 1869 is now being carried for $41 / 2$ cents. Inventions, ma chinery, and competition have done it.
Within twenty-five years the national debt per capita has been reduced from $\$ 64.43$ to $\$ 12.55$, a steady decrease which, in connection with increasing popula tion, has made the burden of taxation comparatively light.
In 1869 the government paid in interest $\$ 3.32$ for each inhabitant, while that charge in 1893 was only 34 cents. On the other hand, the sense of the nation's obligation to the survivors of the civil war was so great that the charge for pensions was increased from 78 cents pe capita in 1869 to $\$ 2.37$ in 1893.
The net ordinary receipts of Uncle Sam in 1869 were $\$ 9.82$ per capita, against $\$ 6.91$ in 1893.

Storage Battery Traction in Paris.

The accumulator cars, which have been running for some time on the lines of the Northern Tramways Company, of Paris, appear to be proving fairly satis factory, as the cost is reported to work out at about the same as horse power on the Paris lines. The cars are arranged to seat fifty-two persons, and run at a speed of about $71 / 2$ miles an hour within the city limits which outside is increased to 10 miles. Inclines of about 4 per cent have to be mounted at certain parts of the line, and each car runs 80 miles a day. The mo tive power is supplied by a battery of 108 cells, having eleven plates each. These cells are fitted into twelve cases. They are coupled in four groups of 27 cells each, the electromotive force of each group being about fifty volts. The groups can be arranged either in parallel or series, so that a wide range of speed is at the service of the driver. The two motors which drive the car can also be coupled in series or parallel. The total weight of the car, with accumulators and passen gers, is twelve tons, the weight of motors and accumu lators being about four tons.

THE FORT WAYNE ELECTRIC CORPORATION-ITS DYNAMOS AND GENERAL ELECTRIC LIGHTING AP paratus.

The Fort Wayne Electric Corporation has, during the last year, attracted considerable attention by its secession from the General Electric Company. Originally it was one of the members of this consolidation, which includes the Edison and the Thomson-Houston companies. In carrying out the combination it was proposed to close the Fort Wayne works and make the apparatus at Schenectady. This was opposed by the president of the Fort Wayne corporation, and, a a result, it left the consolidation and is established on its own responsibility again. The works are of large size, occupying some twelve buildings in Fort Wayne, Ind., the buildings practically covering a large block of ground. Eleven years ago, the Fort Wayne Jenney Electric Light Company occupied a singlesmall build ing. The present great concern is the outcome of this building, and its president, Mr. R. T. McDonald, it is in teresting to note, was one of the organizers of the origi nal company, whose charter dates from the fall of 1881
At present the company is engaged in the manufac ture of apparatus under the Wood patents, Mr. James J. Wood, the present electrician of the company, being the inventor. The apparatus manufactured includes all the details as well as the generating apparatus for arc and incandescent direct current and alternating current lighting, and our illustrations show not only some of the great dynamos made by the company, but also some typical pieces of apparatus which illustrate the minor features.
We illustrate in Fig. 1 the Wood automatic dynamo, designed for arc lighting by direct currents, one of the standard sizes for this machine being for eighty 2,000 candle power lights. This machine possesses the Wood automatic regulator, which perfectly controls the action, enabling the machine to give a constant current whatever changes of resistance may occur on the light ing or other circuit. This operation is effected by an automatic shifting of the brushes. We illustrate an experiment shown in which the machine is ab solutely short circuited without producing any disastrous results, a brilliant arc appearing at the point of connection. A nother test is throwing on or off fifty or more lamps at once, which can be done with the production of scarcely any sparking on the commutator. The experiment in short circuiting we illustrate as performed with the 80 arc light machine alluded to above, and in another cut, Fig. 2, we illustrate the giant constant current 125 arc light machine. On this appears very distinctly the automatic regulator. To one side is seen one of the workmen producing a long metallic are by drawing apart metallic terminals connected to this machine.
One of the most striking pieces of apparatus pro duced by the factory is the great 6,000 incandescent light alternator given in Fig. 3 of the illustrations. The general construction of the dynamo proper is shown in the cut. It is directly connected to a 300 horse power Ball cross compound engine. The field is of cast iron, with radial pole pieces projecting inwardly, in whose ends slots are cast to prevent Foucault currents. The winding of the pole pieces is compound. Back of the main dynamo and driven by a belt upon a shaft will be seen a comparatively small direct current dynamo. This is the independent exciter. A current from it is taken to the field, carried by comparatively fine wire wound in four coils on the field pieces of the alternator.

The shaft of the alternator carries next to the armature face a commutator from which a rectified or di rect current is taken to the field. Heavier wires wound upon the field carry the rectified current. The result of this system of compound winding is that the dynamo is self-regulating. Outsidc of the commutator on the shaft arc seen the two collecting rings, whence the al tornating current is taken to the line. The armature of ${ }_{j}$ he alternator is made of sheet iron stampings, and its winding is composed of copper ribbon. A field of 51,000 lines of force per square inch is maintained, and threc and six-tenths feet of armature conductor per volt is employed. The efficiency of the machine is 95 per cent. It makes 240 revolutions per minute.
The alternating current is recognized as peculiarly adapted for are lights, as it insures equal combustion of the positive and negative carbons, and the Fort Wayne Corporation makes a specialty of the full arc plant of this type. The transformer made by them, also due to Mr. Wood, possesses several special features. Mica insulation is used. The cores are wound by machinery, in doing which mechanical counters are used to determine the number of turns of wire to maintain the desired ratio of reduction. When the correct number of turns is reached, a bell rings to notify the opera tor. After the coils and cores are stacked up, they are placed in the iron case. This is a cast iron box provided with a number of projections on its inner surface to prevent the coils lying against its side, so as to insure ventilation. An opening at the bottom admits air, and a weather-proof cap at the top covers another opening. The iron box is in magnetic con nection with the cores so as to form a portion of the
magnetic circuit. One of our illustrations shows one
of the lamps connected with the converter, above of the lamps connected with the
which is seen the primary fuse box.
This embodies several new features. The fuses run across porcelain blocks, in whose center is a depression determining the point of fusion, so that if a fuse blows out, the contacts are not injured. As a measure of safety the cover is so arranged that the act of open-

THE WOOD FUSE BOX

ing the box breaks the circuit on both sides, so that the fuses can be examined with perfect safety.
In the near future the Corporation is expected to enter the field of electric railroad work. In this event it is fair to assume that some important developments may be looked for in this department, where so much work has already been done by others.

The English Cotton Seed oil Industry,
Lorin A. Lathrop, Esq., United States consul, Bris tol, England, in a report to the State Department says : There are a considerable number of seed-crush ing mills in England, nearly all of which crush cotton seed. None of these mills have any connection with the American Cotton Seed Oil Company of the United States. They are independent of each other and of any controlling organization whatever.
They obtain their entire supply of cotton seed from Egypt. From 15,000 to 20,000 tons are annually imported into the Bristol district. Cargoes are pur chased through London brokers, who guarantee weight The freight from Alexandria to the port of delivery
runs at the present moment from $\$ 1.94$ to $\$ 2.19$ per ton.

ALTERNATING CURRENT WOOD ARC LAMP, WITH FUSE BOX AND CONVERTER.

The Egyptian seed is quoted to-day at $\$ 26.75$ per ton, spot, and $\$ 27.96$ two months for ward. The price of oil cake, ex mill, is from $\$ 17.64$ to 19.56. The price of refine cotton oil is about $\$ 91.24$

Egyptian cotton seed comes unmixed with fragments of cotton fiber. It is therefore easier to handle than
the American seed. There is a further important the American seed. There is a further important consideration : Insurance is a great tax upon seed-crushing mills, and I understand that the premium is coniderably enhanced where the American seed with its adherent fiber is either handled or stored.
The seeds are crushed undecorticated. The oil cake has not, therefore, the excellent appearance of the American cake made from the decorticated seed; but
sale and price. "That last pinch of the screw," said a man to me, " is what hurts the cakes. You don't wan to pave the floor with them; you want to feed them to cattle." The oil expressed from the seeds finds a market in the soap factories, in the fish-frying shops, and in the Mediterranean.

Protection of Fruit and Vegetables in Transit A bulletin which has just been sent out by Professor Mark W. Harrington, Chief of the Weather Bureau, gives the opinions gathered from many shippers of perishable products throughout the country in relation to the proper protection of fruits and vegetables by heat and cold during transportation. These men generally concur in the statement that the danger in transportation from freezing has been eliminated by modern methods. The so-called lined car, which has a par tition of tongued and grooved boards at the sides and ends, placed so as to leave an air space of about fou inches, answers for spring and autumn and during most winter weather, while the Eastman heating car in extreme weather has proved a perfect protection Perishable goods can be shipped with safety in ordinary freight cars when the outside temperature is twenty degrees Fahrenheit, and in refrigerator cars when it is ten degrees. Fruit wrapped in heavy brown paper will endure fifteen degrees more cold than if it is not so wrapped. Dampness is very injurious, and products which are shipped in a dry condition can en dure a much lower degree of temperature withou injury than under moist conditions. It should always be remembered that the kind of packing which keeps out the cold will keep in the beat, so that there is of ten more danger from heating by process of decomposition than from injury by the cold. When a north wind is blowing on the prairie, cars which contain fruit ar often covered with canvas on the north side. Oranges that have been frozen may be thawed without injury by putting them in cold water or in tight barrels immedi ately after arriving, allowing them to thaw out gradu ally. These are some of the points picked almost at random from what is altogether a most instructive circular.

by anding Glass.

The design or inscription is first engraved on a printing plate, for which rubber is a suitable material ; the design being engraved positively, that is to say, in the ame way as that in which it will be afterward seen The plate is then coated with varnish color and pressed upon a glass plate. The glass plate is strewed with bronze powder, sheet aluminum or other suitable material, the portions forming the design or inscription remaining empty, and being, therefore, transparent. The glass plate is then placed in a frame having a backing of strong paper board, on the front face of which is mounted a brilliant sheet of tinfoil or tin plate, provided with prominent squares placed in suit able positions. The design is thus shown by a brilliant reflected light visible through the transparent part of the glass, the other portion of the glass forming a back ing stamped in relief.
Heretofore raised enameled writing and designs in relief on glass have been produced by means of a brush and thin enamel paint. The inventor uses stencil plates, preferably of tinfoil or other flexible material, and a composition made of glass powder, made up to the consistency of treacle, with turpentine and "glaze." The composition is applied with a spatula through the openings of the stencil plates, and the article is then fired. If the surface on which the design is to bc pro duced is irregularly curved, or is curved both ways the stencil is applied to sized paper, and the design is transferred from the damped paper to the glass or ware.

Liquid Fish

Fish are reduced to small pieces, mixed with a suitable quantity of water and cooked in a close vessel by means of steam, the temperaturo being raised to $160^{\circ}-$ $170^{\circ} \mathrm{C}$. When all the soluble parts have been extracted by the water, the liquid is first passed through a sieve, and after skimming off the fatty matter, it constitutes the fish essence, which may be used as food, either alone or in conjunction with other nutritious substances. The waste parts of the fish, together with what remains on the sieve, are used for manure, after being first mixed with a suitable amount of lime, clay, or similar diluent.

Insulating Material

Ozokerite, asphalt, and amber are subjected to distillation in a closed still to a temperature of $400 .^{\circ}$ After the mass has been heated until gases, vapor, or oils cease to escape, it is allowed to cool. In that condition it is of pliable consistency, and may either be used alone or incorporated with other substances for insulating cables, such as resins, fats, or oils, the proportions of these being from 30 to 70 per cent. By this method those substances present in fossil resins which prejudice or deteriorate the insulating properties are removed.-A. Gentzsch, Vienna.

RECENTLY PATENTED INVENTIONS.

Engineering.

Blower. - Thomas Kitson, Strouds burg, Pa. This is an improvement which may be ap.
plied to an ordinary furnace without changing or r newing the grates, enabling an even steam pressure t be kept up with the use of cheap fuel: It comprises a pipe with bell-shaped mouth through which extends a
steam nozzle delivering in the pipe an approximately steam nozzle delivering in the pipe, an approximately
conical valve being secured to the nozzle and held withconical valve being secured to the nozzle and held with-
in the mouth, the valve being adjustable in and out upon the nozzle to permit the passage of the requisite and adapted to create a very strong draught.

Rallway Appliances.

Car Coupling.- John J. Schairer Clint, Texas. This improvement comprises a knuckle pivoted in the drawhead and provided with cam sur-
faces on opposite sides of its pivot, an arm mounted to swing being adapted to engage the cam surfaces to oper and close the knuckle and to lock it in either open or
closed position. The improved coupling is of simple and strongconstruction, designed to prevent accidente uncoupling, and permit of coupling withont the brake man going between the cars, while ald

Car Coupling.-James O. Miller, Rochester, Ind. According to this invention the draw head is arranged to rock laterally in contact with a sup.
ported spring-cushioned yoke piece, there being a elid ported spring-cushioned yoke piece, there being a alid
able spring-retracted drawbar whereon the drawheã rocks and slides, while a spring-pressed arm vibrate in a side slot of the drawhead, a pivoted link swing ing laterally thereon. A hook having an elongated
limb is pivoted in an opposite slot of the drawhead, spring throwing forward the limb of the hook. Car provided with this coupling are automatically coupled as
they come together, the uncoupling being effected from either side, and the device may also be used
tion with the ordinary link and pin coupling
Express Car. - Miguel Morell and Ramon M. Ferrer, Santa Barbara, Cal. This is a bur-
glar-proof car with cages which can be opened only glar-proof car with cages which can be opened only
from the outside, to contain safes and valuable parcels and accessible onll to the depot man at the station to
which consigned. If robbers enter the car they will be exposed to the fire of the messenger, in a bullet proo compartment, which is so arranged that the messenge
may also protect the engineer and shoot along the sides may also protect the engineer and sh
of the car without exposing himself.

Electrical.

Cut Out.-Elmer E. Hersh, Denver Col. This device is more particularly designed for elec tric cars, and comprises a revoluble cylinder over the
face of which extends a series of fuse wires introduce in succession between contact springs connected with
the conductors as the cylinder turns, the fuse wire melting and the circuit being broken when the curren exceeds the prescribed strength. Each motorman is
preferably supplied with an extra cylinder fitted with fuse wires, so that when all the wires of one cylinder are melted, it may be easily replaced by a cylinder containing a full set of wires.

Mechanical.

Mechanical Movement. - William W. Beaumont, London, England. This invention com device, a rotatable link being connected;with the spindle and an unbalanced weight on it. It is especially designed to impart a gyratory motion to sieves, such as
sifters in flour mills, coal screens, machines for sizing and sorting grain, etco, to advantageously replace th ordinary crank me
harmful vibations
Wire Forming Machine.-Frank H. Howe, Port Towssend, wassington. This is a machin rotary spindee carries the disk from which the rod od wire is to be formed, a feed mechanism feeding the disk to rotary cutters for cutting the strip, which passeg
between drawing rollers, whereby the disk-carrying
 spinde is rotated, the drawing rollers and cutters being
simultaneously operated by gearing. The disk is thus simultaneously operated by gearing. The disk is thus
cat into a continuous strip of wire or rod of any desired cross section.

Agricultural.

Plow. - Thomas J. Kelly, Tolosa Texas. The share of the plow designed;by this invento Is reaily and quickly remoraite, sely, consected wit port by a locking connection not involving the use of justed to suit the plowman, and all braces and othe like barriers, usually located at the back of the wing, or share, or land side, are dispensed with, thus allowing
the plow to run free. The clevis also is of peculiar construction, being adjustable as to position to bring the team into desired draught, and a
Pulveriziva Cultivator.-Henry Strasser, Thornburg, Iowa. This is an improvement
on a formerly patented invention of the same inventor, providing for such construction that two teeth-carrying bars may be located at angles to one another and adjust able upon a yoke, to accommodate the cultivator to
rows of varyin width A dooble cultivato is alas so
made that either one of the sections may be used as a made that either one of the sections may be used as as
single cultivator. A simple and inexpensive attachment facilitates the ajjustment of each section upon the yoke ground and effectually remove weeds.
Corn Harvester.-Winfield S. Osborn, Giboa, Ind. This is a construction capable of
reada yatcachment to the box booy of any wagon, the ping the ears from the stalks and delivering them
the rear, where the ears are estripped of their husks an
silk and the husked ears delivered to an elevator to be silk and the hasked ears delivered to an elevator to be
conveyed to the box of the wagon. The driving shaft driven from the axle of the vehicle, and pivoted in ward slotted end of which work longitudinal spira rollers, over one of which are stripping bars moving in ng frame is an endless apron, adjacent to which are the husking rollers, the faces of which may be either smoot

Cow Mileing Machine.-William B Bland, Maquon, Ill. This is an improvement on a for merly patented invention of the same inventor, simplify-
ing the construction and improving the action of the ing the construction and improving the action of the milking fingers, the means of ajuasting the fingers and
their carrying frame to different positions, the main rame filking finges consist of a series of leaf-like spring leaves provided with tension devices designed not to njure the surfaces with which they come in contact, an
resembling in their action the pressure of the' fingers of resembling
Draught Equalizer.-Henry Sturm, Nauvoo, Il. This invention relates more particularly to
four-horse eveners for use with either tiobt or our-horse eveners for use with either right or lert
tongue, or tongueless gang plows. The evener device tongue, or tongueless gang plows. The evener devices
are so arranged that the plows can be drawn to work close up to the ends of the field, the front draugh nd allow more space for the horse in the furrow with out crowding others. The construction is simple and inexpensive, and the several parts can be readily assem-
bled and adjusted, and easily replaced in case of breakage

Miscellaneons.

Cable Grip for Logging, etc.-Gil bert Gagnon, Nanaimo, Canada. In the use of this de
vice the drag or resistance of the log or other object be vice the drag or resistance of the og or orher object be
ing hauled, and also the draght of the cable, are utilzed to hold the jaws closed on the cable. The body of urface on its ander side to act sa a runner, a rearwardly xtending arm carrying an ider around which the rop passes, while a movable jaw is pivoted on a lever ful
rumed above the fixed j aw, and a rope connects the cumed above the fixed jaw, and a rope con
Printing Press.-Daniel Maurer Middle Village, N. Y. In this press the type bed is hel
in vertical position when the press is being operated by in vertical position when the press is being operated, but
may be given a rearward inclination to facilitate securin the type in a frame or chase on the bed. The platen is pivoted, and held normally in such position that
it will bear against the frame of the type bed t will bear against the frame of the type bed ever causing the platen to approach the type bed with paick movement. The constr
Drifing Machine. - Peter Cooper Hewitt, New York City. This is a machine particularl desimned for spreading melted glue or gelatine into sheet invention consists in an endess apron supported o rums and traveling through an evaporating chamber heated by steam or hot air, there being also a device for cleaving the dried sheet of glue or gelatine from the
apron as it emerges from the machine. The flow of apron as it emerges from the machine. The flow of
liquid glue to the apron is regulated according to the Seed of the apron and the evaporating power of the a assing through the e eaporating chamber. The machin
made of different lengths to adapt it to drying film fo different thicknesses without producing bubbles
Fiber Driting Apparatus. - Willy souning textile fibers has been devised by this invento providing means whereby a dried and heated current o air is passed throogh the fiber-holding receptables, the thers come in direct and indirect contact with the hot ir current. The weighing of the receptacles takes plac oot during the conditioning itself, but after its termina
tion and the cooling of the receptacles.
Aluminous Cake.-Jean V. Skoglund Brooklyn, N. Y. This cake consists of sulphate of alu-
mina, ferrous iron, an excess of a stannous compound, mina, ferrous iron, an excess of a stannous compound,
and a stannic compound, and the invention provides for making it by reduccing aluminum sulphate free from ferric iron by treating the crude material, as bauxite,
with sulphuric acid to disoolve the aluminum oxide and the iron oxide, adding a weaker reducing agent, such a sulphurous acid or a sulphite, then heating the solution,
nd finally adding any stannous compound, and con and fnally adding any stannous compound, and con The product is especially suited for the sizing of pape ne product is especialy suited dor the he pulp
Composition for Tanning.-Jesse B Yodges, Salem, Ark. Extract of palmetto root, stra nonium, gambier and salt, in stated proportions, wit
water, form this patented composition, with which it designed to tan light hides in two days, and the heavies ides in twenty days, at a cost of about three cents per pound to the tanned leather. The hides are to be limed unhaired, fleshed, and bated, in about the usual way, an plunged and handled in vats in liquor made with th
composition. It is claimed that the palmetto roots conain twice as much tannin as oak bark, and

Bit Stock. - Francis M. Hay, Erie Pa. According to this invention, there is an elastic he stock proper, the screw connection having a slo ment may be slid longitudinally therein to close quickly he jaws, and the other sleeve then turned with a rotar sial adjustment to tighten the screw connection an vided whereby the screw segment mecial means are pro vided whereby the screew segment may be made to more
certainly and easily enter into mesh with the othe for longitudinal adjustment.

Vehicle Pole.-Edward Clark, Ne York City. This pole is made of a metal tube or pipe, and into its rear end extends a metallic bar fastened to recess in the hounds, where it is secured by rivets an op and bottom plates, and the head, carrying rings end of the pole. This pole is comparatively inexpensive is not liable to break or bend, and is not flexibl
so injuriously bear down on the neck of the animal.
Bridle Bit.-Max Lesser, Duncansby Kiss. To facilitate managing an unruly animal and pre vent him from breakng loose when hitched to a posi,
his inventor has devised a bit comprising cheek piec nd a main mouth bar cranked between its ende and ha ng a surface groove throughout its length, while an aux. iary mouth bar pivoted in the cheek pieces has a a cran
and lies wholly within the groove, there being opétiting ranks whony within the groove, there being operatin re slides on the cheek pieces linked to the end crank and levers pivoted to the upper ends of the cheek piecee nd slides.
Vehicle Seat Corner Iron.-Charle
. Field, New York Citty. An angular body is, accordin ide and back of, titted into the corner formed by the resting on the seat bottom, while a top portion has angeadapted for engagement with the outer faces he seat back and one of the siles, beeng so curved as ly applied, and is inexpensively made in in in is rea
Package.-Marion J. Meeker, Puyal p, Washington. This is an inexpensive device fo out of small apertures, the package also being readil ransformable into a cot beed, and, when made of wate roof material, suitable for use as a portable bath tub Combined with a pair of poles is an attached sack of such width that it may be slipped over the ends of the
poles, thus fastening the ends of the sack, trestles being poles, thus fastening the ends of the sack, trestles being ab, and looped cords preventing its spreading whe nted on trestles.
Refrigerator. - George A. Green Regers, Texas. A cooler for preserving milk, butter, et constitues the improvement designed by this invento hc contents of the cooler may be let ata lower te perature than that of the outside atmosphere. Th water-holding receptacle has a covering of absorbe material hugging the bottom and entering into the wate while a dish-like water-holding cover has also a cove ing of absorbent material whose ends adhere to the cover ng of the body, and ad
Check attachment.-Robert Sears Newark, N. J. This is a device for use in connectio oosition to prevent choking and keep the animead control. It comprises a bowed frame with rearward extending arms, a nose band having its lower ends co nected with the rear upper ends of the frame, and
chin strap having its ends connected with the frame point in advance of the nose band, the frame bein dapted at its front end to receive an overdraw chec In the use of the attachment, the lowering movement dhe animar's head causes pressure on the
Account Keeping Device.-Ernes McCulley, Houston. Mo. In a flat-topped case, with de paper stripa there being a roll for dech denoitor in bank, this device being especially designed for use keeping bank balances. The strip may be readily pulle along from the roll so that succeeding balances may be
lasily written on it, the balances coming near the nam easily written on it, the balances coming near the na the depositor, that they may be easily seen,
Stringed Instrument. -John Conhe mandolin type, and the invention provides such on nstrument having an attachment whereby the instrin nent may be played after the manner of a violin, rawing a bow back and forth. The estringsare arranged the top of the in trument, the bow being adapted to move on the guid and having pins or teeth which project through its slo engage the strings.
Folding Snow Shoe.-Hermann Bre mer, Halberstadt, Germany. This shoe sections, with adjacent overlapping enas, the parts bed joined by a pivoted lever or turning clasp to form on to
Bottle Stopper-Gilbert
Bor ing gaseous liquids, the pressure of which holds the topper in place. It is very cheap and simple, compric the button being pivoted on the bent lower end of a wit bop, curved portions of which spring apart and engas the sides of the bottle neck
Truss.-Carl B. Rostel, San Francisco, cal. (608 Sacramento Street, room 2). This invento has devised an elastic truss belt for the support of ab ize of the person, and being provided with pads having an elastic prussure derice whereby the tension is adjust able to any part of the pad and to any degree o
strength. It also has relieving pads to prevent sorenes strength. It also has
at points of contact.

Designs.

Centrifugal Machine Casing.Henry B. Weiper, Durand, Wis. This is a circular cas.
ing with upper opening somewhat contracted and witt bottom raised at the center for most of the diameter the casing.
Base for a Game Apparatus.-Frank M. Whiteman, Canton, ohio. This is a design for
device by which a ball may be thrown or tosed by
trap. It has a hollow cylindrical body, from one side of
which extends an arm like the trailof a gun carriage, a whichestends an arm like the trailof
Nors.-Copies of any of the above patents will be furnished by Munn \& Co.., for 25 cents each. Please
send name of the patente, title of invention. and date send name of
of this paper.

NEW BOOKS AND PUBLICATIONS
Theory and Construction of a Ra-
TIONAL Heat Motor. By Rudolf Diesel. Translated from the Ger-
Dan by Bryan Donkin. New York:
Spon \& Chamberlain. 1894.
Piii, 85. Price $\$ 2.50$. No index. viii, 85. Price \$2.50. No index.
This monograph describes and explains the theory of himernal combustion engine. The principle on which hen bune is based is that coal or other combustible arge excess of air (100 parts by weight to 1 part of th combustible) is essential to utilize the heat. The autho
objects to discharging it at a exhaust, and properly recognizes the water jacket as worked out in the greatest detail, and the work is illue rated by a very full series of figures.and plates. On gen eral principles, the want of an index is to be regretted.
The Diesel motor is ow being tested in
Germany, using tomized petroleum for fuel. The petroleum in question the translator states, is "pulverized," rather a peculia djective to apply to a liquid
F. B. Vandegrift \& Co.'s Handbook OF The UnTED STATES TARIFF of 1894 . New York and Philadel
F. B. Vandegrift \& Co.
This convenient sized book, with very full schedule o be found a most useful manual for all interested in com nerce between this and other nations. In one thing it open to criticism. The extensive use of ditto marks the alphabetical schedule sometines causes a large num ber of pages in succession of the index, for such it real s, to be printed without the initial word, which should course, have been repeated at the top of each page pages so thir and pages 371 and 382 it is wholly problematic what the ditto nark refers $t o$, and this can only be ascertained by gut or by turning back a number of pages. The same troube appears elsewhere. The work, bowever, is so complete,
portable, and well arranged that otherwise we warml commend it.
Statistical Supplement of the En The mineral industry, its statistics echnology and trade, in the United earliest times to the end of 1893 . Vol ng Company. 1894. Pp. $\mathbf{x x x}, 89$ Price $\$ 5$.
The Department of the Interior of the United States, the pited Stiten of reports on the mineral resources sent volume to a certain extent carries ont the system he government work alluded to, but on a much enlarge is far better printed, and with more detail. will be found.a most useful work, and one which any on nerested in these topics will bo lizely to make frcquen is the publication of thess interesting feature of the boo abstracts of their lives. It is the second volume, by whic he subject is carried down to the end of 1893, and w bhich will make the publication one the most imp ant scientific works of the day
Lessons in Qualitative and Volu METRIC Chemical ANALYSIS. By by Dr. F. Beilstein. Saint Louis ionery Co. 1894. Pp. xii, 295. Price $\$ 1.50$.
This work is designed principaly for the use or med nder such restrictionss may seem a little inadequate for ts subject, but we do not hesitate to say that, even by hose who have gone through a more thorough course with one of the larger works, this will be found an es

Induction Coils and Coil Making. By
F. C. Allsop. New York: Spon
Cis. C. C. Arsop.
Chamberlain.
New
1894. York: Price $\$ 1.25$.
Mr. Allsop's books are characterized by their practical aspect. In the present work a very good description with umerous illustrations of the construction of induction oy many electrical one which will be found of interes is illustrated by a number of figures, some newer tha others, some being advertising cuts. On the whole, the conjo treated as fully as we woula like, but addition to electrical literature.
MODERN METHODS OF SEWAGE DIS TIONS AND ISOLATED HOUSES. B D. Van Nostrand Company. Lon don: Sampson Low, Marston \& Com Price \$2.
Mr. Waring appears once more before the pubic treat ng of one of his favorite topics. In his graphic and de which he considers to be wrong giving his views with trong and decided expression. By his advocacy and de velopment of the Moule draining process, which as ap-
plied in this country has received his name and is know
as the Waring system, his name has obtained wide car rency among suburban residents. He himself, on page
215, says that the term "Waring system "is a misnomer He says that it would be better to cell it Mr. Field's system. But the author's qualifications for speaking of sewage, sewage irrigation and sewage farms givethe book an especial value and a peculiar timeliness at the presen day, when suburbsare known to offer so importanta fiel for the work of the sanitary engineer. An excellent in

Cavalry Life in Tent and Field. New York: J. Selwin Tait \& Sons. 1894. Pp. 376. Price, cloth, \$1.

This excellent account of cavalry life in the American army will, no doubt, make interesting reading formany The prefacealone, describing the trials of Captain Boyd,
the husband of the authoress, at West Point, in itself describes a curious episode in West Point life. In the appendix, written by Richard H. Savage, the same episod is referred to, and the infamous persecution to which as a boy the authoress' husband was subjected at West Point is described. Not the least interesting part o the book is Mrs. Boyd's description of her own life in
the field, and the trials which she has been obliged to go through.
Before the Gringo Came. By Ger
win Tait \& Sons. Pp 306. Price cloth, $\$ 1$; paper, 50 cents.
Eleven stories of old California in the days before the make up this work, which will, no doubt, be found inter esting reading for many.
Any of the above books may be purchased through this office. Send for new book ratalogue just pub
lished. MUNN \& Co., 361 Broadway, New York.

SCIENTIFIC AMERICAN
BUILDINGEDITION
SEPTEMBER, 1894.-(No. 107.)
TABLE OF CONTENTS.

1. An elegant plate in colors, showing a Colonial residence at Portchester, N. Y., recently complete views and floor plans. An attractive design. Mr. Louis Mertz, architect, Portchester, N.
Plate in colors showing a residence recently com pleted for R. H. Robertson, Esq., at Southampton,
L. I. Two perspective elevations and floor plans L. I. Two perspective elevations and floor plans
A picturesque design and an admirable model fo seashore cottage. Mr. R. H. Robertson, arch tect, New York City.
2. Residence of Frederick Woollven, Esq., at Rosemont, Pa. Two perspective elevations and floor plarrs. A neat design in the Colonial style. Cost complete
$\$ 4,800$. Mr. J.D. Thomas, architect, Philadelphia, $\stackrel{P}{P a}$
3. A cottage at Roger's Park, Il , recently erected for Edward King, Esq. Two perspective elevations Maher, architect, Chicago, Ill.
. Cottage at Hollis, L. I., recently completed for the German-American Real Estate Co. Two perspec tive elevations and floor plans. Cost complete $\$ 3,200$. Mr. Edward Grosse, builder, same place. Perspective elevation with ground plan of Saint
Gabriel's Chapel, recently erected at Hollis, L. I. A unique and most excellent plan for a smal chapel. Cost complete $\$ 6,500$. Mr. Manly N. Cutter, architect, New York City.
4. Two perspective elevations and an interior view, also
floor plans, of a residence recently erected at Orange, N. J., for Homer F. Emens, Esq. Mr Frank W. Beall, architect, New York City. pleasing design in the Colonial style.
cently erected at Flatbush, L. I., for F. J. Lomer Esq. Cost complete $\$ 4,600$. Mr. J. C. Sankins architect and builder, Flatbush, L. I.
A residence at Yonkers, N. Y., recently completed
for Mrs. Northrop. A very unique design for a for Mrs. Northrop. A very unique design for plans. Messrs. J. B. Snook \& Sons, architect New York City
5. Club House of the Sea Side Club, Bridgeport, Conn. A good example of Romanesque style. Perspective elevation and floor plans, also an interior view Messrs. Longstaff \& Hurd, architects, Bridgeport,
6. A residence at Hinsdale, Ill., recently erected for C. E. Raymond, Esq., at a Shannon, architect, Hinsdale, III.
7. The Castle of Bonnetable. Half page engraving.
8. Miscellaneous Contents: Tne irrigation of lav illustrated with two engravings.-Viaduct for street railways, Cincinnati, Ohio, illustrated.-The fire proof building construction of the New Jersey
Wire Cloth Co., illustrated. - Silvester's remedy against dampness.-Palmer's "Common "Sense" rame pulley.-"The ord water heater, illustrate The Caldwell Tower, illustrated.-The America Boiler Co.-The "Little Giant" floor clamp, illus-trated.-The Akron air blast furnace.-Laundry glaze.-The " Piqua " metallic lath, illustrated. The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies,
25 cents. Forty large quarto pages, equal to about 25 cents. Forty large quarto pages, equal to about cally, a large and splendid Magazine of ArchitectURE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting
examples of Modern Architectural Construction arid examples of
allied subjects.

allied subjects. The Fullness

The Fullness, Richness, Cheapness, and Convensence
of this work have won for it the Larabst Circulation
of any Architectural Pubication in the worla. Sold by
all newsdealers. \quad MUNN $\&$ CO., Publishers,
361 Broadway, New York.

Business and Personal.

for chargefor Insertion under this head is One Dollar a line for each insertion, about eiont woras to a line. Adver-
tisements must be received at puobication office as eariu Insements must be received at pubicication office as eariy as
Ihursaay morning to appearin the jollowing week's issue
"C. S." metal polish. Indianapolis. Samples free. Shorthand by mail by W. G. Chaffee, Oswego, N. Y. im. catalog tools, 15c. Frasse, 19 Warren St., N. Y. Handle turning machinery. Trevor Mfg. Co., Lock We make absolutely a perfect loose pulley oiler. Krid
Mfg. Co., Grand Rapids, Mich. Send for circular. Distance Reading Thermometers.-See illus. adv
isement, page 159. Ward \& Doron, Rochester, N. Y. Screw machines, milling machines, and drill presses,
Ghe Garvin Mach. Co., Laight and Canal Sts., New York Centrifugal Pumps for paper and pulp mills. Irrigating
nd sand pumpingplants. Irvin Van Wie, Syracuse, N. Y. Split Pump ppearance as Whole Prulleys. Yocom \& Son's Shafting Works, Drinker St., Philadelphia, Pa.
The best book for electricians and beginners in elec icity is "Experimental Science," by Geo. M. Hopkin Competent persons who desire agencies for a ne opular book, of ready sale, with handsome proft, may Broadway, New York.
LP-Send for new and complete catalogue of Scientifi nd other Books for sale by Mun
New York. Free on application.

 HINTS TO CORRESPONDENTS

Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our
infor information and not for publication. This is for ou eferences to former articles or answers should
give date of paper mand page or number of quastion
nquiries not answered in reasonable time shound
be repeated ; correspondents will bear in mind that
some answers require not ill some answers require not a little research, and
though we endeavor to reply to all either by lette
or in this department. each must take his turn. or in this edepartment. each must take his turn.
uy ers wishing to purchase any articl hot advertised
in our columns will be furnished with addresses of houses manufacturing or carrying the same.
pecial
personal rithen rather than genenation on matters of interest cannot be expected without remuneration.
sientifice American Supplemts referre

to may be had at the office to may be had at the office. Price 10 cents each. | Miner. $\begin{array}{l}\text { price. s sent for examination should be distinctly } \\ \text { marked or labeled. }\end{array}$ |
| :--- |

(6248) W. S. F. writes : In a late num ber of the Scient Ific American, vol. 70, page 86, there pressing into block and baking it. This product was in ended for burning, and it was stated that it had man dvantages over coal. Tfollowed out the formula, an ot the oin in a solid state. On baking it, however, it al or transportit, and on burning it a very dense, black moke was emitted. Will you please give me some adice on this subject ? A. Possibly you baked at too hig a temperature or for too long a time. Try the addition of wastust and clay.
(6249) E. J. asks how to get the gear of bicycle. A. Count the teeth on the two sprockets. Di-
vide the number on the large or crank shaft sprocket b he number on the driving wheel sprocket and multipl (6250) L. V. H. says : Will you give me a formula for sticky flypaper? A. Resin 1 pound, mo lasses $31 / 2$ ounces; linseed oil $31 / 2$ ounces. Boil until thic nougn. 2. Also how to treat old files with acia, trong soda and water to clean off all grease, oil or gum. Then dip for a few minutes in a bath of nitric acid 1 part, water 4 parts; the length of time being less on fin files, as your experience may suggest. 3. Will you also windmill, in hot or cold weather, the barometer pressure nd velocity of the wind being the same at each trial ? A There would be little, if any, difference
(6251) H. C. S. asks how to make a stage dimmer for 30 or 40 lights alternating current. A.
Use No. 6 or 7 wire made into a coil with a movable laminat d core. The size required depends on the fre-
(6252) S. T. W. asks for a receipt for naking a cement that will cement paper, canvas or leather Scratch the face of the pulley with a rough file thor oughly, so that there are no bright or smooth places. Then swab the surface with a solution of nitric acid, 1 part; water, 4 parts; for 15 minutes; then wash with boiling hot water. Having prepared a pot of the best tough glue that you can get, stir into the glue a half ounce of a strong solution tannic acid, oak bark, o glue; stir quickly while hot and apply to the paper pulley as convenient, and draw the paper as tightly possible to the pulley, overlapping as many folds as may be required. By a little management and moistening of the paper, it will bind very hard on the pulley when ry, and will not come off or get loose until it is worn t. UB) W. I. S.
(6253) W. L. S. says: Please let me know what is the best thing to use on collars, cuffs, and shirts to make them stiff and glossy. A. Starch, 1 ounce;
 with soft water into a thick, smooth paste, add nearly or quite a pint of boiling water, with the salt and sugar disat least half an hour, stirring to prevent burning. Strain
the starch.and use while hot. Sufficient bluing may b added to the water, previous to the boiling, to overcome
the yellowish cast of the starch, if necessary. Spermaceti may be used in place of paraffin. Starched linen can only be properly flisished by hard pressure applied to the
(6254) C. H. T. says : Will you kindly etmeknow in your Notes and Queries of a cheap fixa tive for charcoal drawing? A. 2 tablespoonfuls of rice
boiled in1 pint or 11/2 pint of water ; strain, and pass the drawing quickly through the liquid; use a large fla
(6255) G. W. C. says : Will you pleas sive me the formula of a solution to remove corns? A austic potassa, 1 drachm; alcohol, 1 fluid ounce. Mix in a stoppered phial, and agitate until solution is com plete. The corns are either moistened with the abov
or a small piece of lint, or rag, of the size of the corn, is moistened with them and then bound on, care being taken, particularly with the last one, that the liquid does not touch the surrounding parts.
(6256) J. G. R. asks: 1. How many en gas can I get in one hour by decomposing wate with a battery of 3 volts or 10 volts? A. The gases genrated depend on the amperage, not on the voltage directly. The voltage of course is concerned as being the ause of the amperage, the latter depending on the volt ge and the resistance of the circuit. 2 . If water is decomposed by passing steam through red hot iron tubes,
the oxygen free or will the oxygen unite with the iron A. The oxygen unites with the iron, and hydrogen onl is evolved. 3. If water is heated to such a degree that it will decompose through heat only, will not the mixture of gas unite with a terrific explosion as soon as they are
liberated (because the heat is over its kindling point) iberated (because the heat is over its kinuing point)
A. The gases will unite when the temperature falls below A. The gases wiss unite When They may however be separated to some extent by diffusion through a poicelain dia
phragm. 4. Is a living milk white raccoon more valuable than when of common color? A. We should imagine so Address some menagerie or dealer in wild animals. (62j7) F. W. W. asks : 1. With a cur ill lift 100 vounds to make an electro-magnet th core, and, size of wire. A. You should say " potential of 500 volts"-a volt is not a unit of current. A magnet cor with 20 or 30 layers No. 24 wire; use at least 20 pound of wire. For magnetic traction calculations and other ee Sloane's "Arithmetic of Electricity," \$1 by mail. 2 s an armature upon two or more electro-magnets would the bar become a magnet throughout its length of equal power as magnet? I presume this would depend n cistance between magnets. If so, how far apart ma the magnets be placed and retain uniform power of mag net throughout length of bar? A. By placing two nor or two south poles in contact with the bar, you can ed how some polarity, but the center will show the most . At what distance from such a magnet would its powe be available? You will confer a favor by answering the rapidly. At an inch the attraction would be greatly re (625) J. N. P. ask how.
(6258) J. N. P. asks how to separate gold from rubber and the materials to use. It is pure abber, used to clean from my work waste gold leaf hat I use. A. We would suggest metallic mercury plate might be used. Scrape off the amalgam from time time, distill off the mercury, and gold will be left.
(6259) W. J. H. asks what effect an in ductive load has upon the speed of a Shallenberger meter, such as is used in houses on incandescent ligh berger meter indicates the amperage of the current berger meter indicates the amperage of the current.
(6260) H. S. B. asks: What is the po tential necessary to cause a spark of $1 / 8$ iuch ? A. Per
haps 12,000 volts. No really reliable figure can be given. (6261) C. B. W. asks : 1. How much No. 26 magnet wire is required to give 50 ohms resist
nce ? A. Allow $2: 35$ feet to one ohm. Multiply the ohms desired by this, and the product gives the feet $17 \cdot 5$ feet in your case. 2. How many lamps are required to be placed in a circuit to have a motor run from 100 v must give the amperage of the motor. For each amper required for the motor, use four 100 volt lamps in par
(6262) W. J. W. asks : 1. Why is perxide of manganese, also chloride of lime, placed around the carbon in the Leclanche cells? A. To act as a depolarizer and dispose of the hydrogen which tends to ace-
cumulate on the carbon. 2. Does it make any differ ence if a zinc rod is used in place of a sheet, and which i best ? A. A rod is less liable to corrode and fall in electrical point of view. 3. Why is water so conductive to an alternating current, and offers such great resistance to a continuous one? A. Water is no more conductive, properly speaking, to one than to the other. 4. What is the object in having such great variations in the resistnce of telegraph instruments, being all the way from 20 to 200 ohms? A. It depends on the resistance of the ine. A line of high resistance requires higher resistance
instruments. 5. Please state the number of volts and amperes generally carried on an electric street car line ? A. 500 volts; amperes variable, depending on the number of cars operated at once.

TO INVENTORS.

INDEX OF INVENTIONS

For which Letters Patent of the

 September 25, 1894,
IND EACH BEARING THAT DATE

 Detachable hook, H. A. De Reaismes. R. Sailer...
Distilling crude turpentine, apparatus for, R.
Carter.

 \mathfrak{c}

THE NEW TOWER BRIDGE, LON

"OTTO" gas and gasoline ENGINES. 13 to 100 hi . p . Ca
be usea in cities o t of gas wor
Danger,

30,000 SOLD.
Otto Gas Engine Works, Incorporated, Philadelphia
No Engineer.

The value of the SCIENTIFIC AMERICAN as an adver-
ising medium cannot be overestimated. Its circulation is many times greater than that of any similar journal
now published. Jt goes into all the States and Territories, and is read in all the principal libraries and reading
rooms of the world. A business man wants something rooms of the worli. A business man wants something
more than to see his advertisement in a printed news paper. He wants circulation. This he has when he adthe advertising agent influence you to substitute some other paper for the Scientific American when se lecting a list of publications in which you decide it is for
your interest to advertise. This is frequently done for the reason that the agent gets a arger commission from
the papers having a small circulation than is allowed on the Scientific American.
For rates see top of first column of this page or ad
dress MIUNN $\&$ CO. Publishers

${ }_{6} 61$ Broadway

CASTINGS Thustrated stamp forker.

LATHES, $\begin{gathered}\text { Shapers, Planers, Drills, Machine Shop }\end{gathered}$
THE LINK-BELT COMPANIES,
Originators of the best practice in the use

VANDUZEN STEAM PUMP THE BEST IN THE WORLD.
Pumps Any Kind of Liquid.

Star * Maps

By Richard A. Proctor, F.R.A.S. A series of twelve elegantly printed Maps of the
Heavens, one for every month in Heavens, one for every month in the year. Specially
prepared for use in North America. With descriptions accompanying each map, giving the names of the prin-
cipal stars and constellations, showing their relative cipal stars and constellations, showing their rel
positions at given hours and days of the month. A most beautiful and convenient work, specially a general knowledge of the starry realms. To which is added a description of the method of
preparing and using artifcial luminous stars as an aid in fixing in the mind the names and places of the various stars and constellations, by Alfred E. Beach. Altogether this is one of the most popular, usef
and valuable works of the kind ever published. One quarto vol
\$2.50, postpaid

MUNN \& CO., Publishers,

ARTESIAN WELLS - BY PROF. E A. Smith. A paper on artesian wells as a source of
Wiater supply
sian well
supential
supt

Oil Well Supply Go. ARTESIAN WELLS
 - Pittburg 0il (ity and on requesest

BUY

TELEPHONES
 guarantee our customers against loss by patent suits.
Our guarante and instruments are 101 PI GOOII.
wns WESTERN TELEPHONE CONSTRUCTION CO.,
440 Monadnock Block, CHICAGO.
 TRANSMISSION OF POW ER BY

NOWN EREADI:
Fourteenth Edition of
Experimental Science

120 Pages and 110 Superb Cuts added.
Just the thing for a present for any man, woman,

 tifc readers, 82 fine cuts, substantially and beautifully
8ound. Pages Price in cloth, by mail. \$4. Half morocoo, \$5.

MUNN \& CO., Publishers, Office of the SCIENTIFIC AMERICAN,

 MAN'S WORK IN THE DEFENSE OF

MTCH MACHINEPY

THE SIMPLEX TYPEWRITER

catas pat for

Parson's Horological Institute. School for TUIatchmakers ENGRAVERS AND JEWELERS.
 ROLOGICAL Institute,
PEORIA, IL

 Fine Mrodel and Experimental work
at moderate prices. Dynamos and Motors repared.
Armatures rewound. Ain kinds of Electrical ApplianRubber Rolls and Wheels.
 The Bailey Automatic Bicycle Brake
 The $\underset{\text { PUBLICATIONS }}{\text { Soientific }} \mathrm{Am} \stackrel{\text { merican }}{1894 .}$ The prices of the different publications in the United
States, Canada, and Mexico are as follows: RATES BY MAIL.
The Scientiff American (weekly), one year
The Scientiflc American Supplement (weekly), one year,
 COMBINED RATES.
he Scientific American and Supplement The Scientific American and Architects and Build
The Scientific A
The Scientiflc American, Supplement, and Archi-
tects and Builders Edition, -
Proportionate Rates for Six Months.
This includes postage, which me pay. Remit MUNN \& CO., 361 Broadway, New York

sis

BELTING of Various Styles, ELEVATORS, CONVEYORS, COAL MINING and HANDLING MACHINERY. disposal of the garbage and

 Towers, Tanks and Tubs

Patent sectional
all iRON TOWERS. ALL WOOD TOWERS ELEVATED TANKS

C CO., COLUMBUS, O.
Branches: CHICAGO-NEW YORE
 Scientific Book Catalogue RECENTLY PUBLISHED

MUSIC AND LONGEVITY.-A PAPER

GREAT MINING TUNNELS. - DEseription of the Revenue tunnel near Ouray, Coln con-
structed by the Carolina Company. on Mount Snefles,

($\mathrm{D}^{\mathrm{D}} \mathrm{J}$ Inger Long Distance Electric Telephones

Engineers and Firemen send de. .tsam for

KLIP BINDERS
 for sample dozen. Covers to order. Nend rsc.
H. H. BALLARD, 188 , Pittsfeld, Mass.

Our New Catalonge containing over 100 pages, includ-
ing works on more than ffty difreren mubjects. Will
be mailed free to any adress on be mailed free to any address on application.
MUNN $\&$ CO., Publishers SCIENTIFIC AMERICAN,

You CNM BECOME

 a WATCHMAKER

 NICKEL: ITS HISTORY, USES, AND Huwize
Merelephones wiw wiwnim AMERICAN GAS FURNACE CO. CHEAP AND Pomplet system for the generation of as. GAS BLAST FURNACES, HICH Por all tidid of Meehanical Adreess $\mathbf{8 O}$ O NASSAU STREET, NEW YOR K.
The Most Ueffil Tool in any shop is the FanEul WARCHT TOOL CO.

 DEAFEES \& HEAD NOISES CURED

 U s . HNGLINGHR OFFICE, ARMY BULDING, NEW

DEAFNESS

aud HEAD NOISES relieved by using
Wilson's Common Sense Ear Drums
New scientific invention, entirely diferent
 Sist we dear when all other devices fall
and where meeical skill has given norelief
Thay are safe comfortable and invisible,
 PHOTOGRAPHIC Lescrition by Gaston Tissandier of an inexpensive and
 "DIETZ" TUBULLAR DRIVING LAMP.

HOW TO MAKE TELEPHONES AND

巴DGE TOOIE are often nearly ruite by wising agrib

\qquad
ANS SHTTATION INVENTORS.

A Valuable Book

 and Oueries of correspondents as pubhished in the tele
and
withic Amer ican durine the pastafty years ; together

 t Instructions for

MUNN \& Send for Descriptive Circul
SCIENTIFIC AMERICAN OFFICE

COLD FORGED PRODUCT. Fluted Tire Bolt

Is stiffer and stronger than a common bolt. The shank prevents the bolt from turning
in the rim and tire. COLD $\quad\left\{\begin{array}{l}\text { MACHINE SCREWS } \\ \text { STOVEBOLTS }\end{array}\right.$ FORGED $\left\{\begin{array}{l}\text { LOCK ©AP SCREWS }\end{array}\right.$ HREADED wIRE american screw company, PROVIDENCE, R. I.
SAVE $3 /$ YOUR FUEL By using our (stove pipe) RADIATOR. sq. in. of iron get intensely hot, thus making ONE stove or furnace do the
work of TWO. Send postal for proofs work of TW0. Send pos
from prominent men.
To introduce our Radiator, the first rder from each neighborhood flled
t WHOLESALE price, thus zecuring agency. Write at once.
ROCHESTER RADIATOR CO.

Rochester, N.
The "Missing Link" Found at Last

The
American
Bell Telephone
Company,
I25 Milk Street, Boston, Mass.

This Company owns LettersPatent No. 463,569 , granted to Emile Berliner November 17, 1891, for a combined Telegraph and Telephone, and controls Letters-Patent No. 474,231, granted to Thomas A. Edison May 3, 1892, for a Speaking Tele graph, which Patents cove fundamental inventions and embrace all forms of microphone transmitters and of carbon telephones.

Joir Whime Eleratic ©apaparan

Main Office and Factory, FORT WAYNE, IND. Eastern Office, No. II5 Broadway, NEW YORK.
"Wood" System of Arc Lighting, Slow Speed Iron-Clad Alternators,
Direct Current Incandescent Lighting, Power Generators, Motors and Appliances.

BRANCH OFFICES :

PHiladelphia, Pa.		chicago, itl.
SAN FRANCISCO, CAL.	10	Pittsburg, PA.
NEW ORLEANS, LA.	ve	dallas, texas.
MEXICO CITY, MEX.	笅	PORTLAND, ORE.
COLUMBUS, онio.	T	havana, cuba.
Cincinnati, ohio.	ind	SYRacuse, N . Y .
BOSTON, MASS.		RICHMOND, VA
MINNEAPOLIS, MINN.	OMAHA, NEB.	BALTIMORE, MD.

 THE NEW KIND OF CAMERA.

 Ilustrated in ScIENTIFIC AMERICAN, MarchLICHT PROOF FILM CARTRIDCES. NO DARK ROOM REQUIRED.
Best. Most Practical Camera in the World regar Most Practical Camera in the World regar
less of price.
Prices, $\$ \mathbf{8}$ to $\$ 1 \overline{5}$. Send for Description, with Sample of Work. oston Camera Mfg. Co., 382 Tremont St. Boston, Mas

ASTRONOMY

Made easy and interesting with the help of our ne
Celestial Planisphere and Handbook. POOLE BROS., Chicago, III

GRIFFIN

 The Only Perfect Pulverizer of all $\mathrm{Re}=$ fractory Substances.

Will work either wet or dry, and deliver a finished product. Capacity, 3 to 4 tons per hour on Phosphate Rock; $1 \frac{1}{2}$ to 2 tons per hour on Portland Cement, Quartz, or Ores, depenaing on hardness of material to be pulverized and fineness of product. Grinds from 30 to 250 Mesh with equal facility.

 TO CONSTRUCTION AND CAPACITY. FIRST COST, WEAR, AND OPERATING EXPENSE MUCH LEESS THAN
LARGE NUMBER OF MILLS IN USE ON DIFERENT MATERALIS WITH POSTIVE SUCCESS IN EVERY INSTANCE. Correspondence solicited, and illustrated deBradley Pulverizer Co., 92 State St., Boston.

HW.JOHNS ASBESTOS SECTIONAL PIPE 1 COVERINGS'

NON-CONDUCTING COVERINGS FOR STEAM ANDHOT WATER PIPES,BOILERS ETC. READLY ATTACHED OR REMOVED BY ANY ONE S®®®૭ ASBESTOS BOILER COVERINGS
 H.W. JOHNS MANUFACTURING COMPANY

COMPACT, LICHT, PERFECT IN DETAIL

ETV ESTABLISHED 1845. The Most Popular Scientific Paper in the World Only \$3.00 a Year, Including Postage Weekly--52 Numbers a Year.
This widely circulated and splendidly illustrated paper is published weekly. Every number contains sixteen pages of useful information and a large number of representing Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity,Telegraphy, Photography, Architecture, Agriculture, Horticulture, Nata
etc. Complete list of Patents each week. Terms of Subscription.-One copy of the SCIENpostage prepaid, to any subscriber in the United States, Canada, or Mexico, on receipt of Three Dollars by the publishers; six montbs, 81.50; three months, $\mathbf{3 1 . 0 0}$. Clubs.- Special rates for several names, and to
masters. Write for particulars. The safest way to remit is by Postal Order, Draft,
Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Address
all letters and make all orders, drafts, etc., payable to all letters and make all orders, drafts, etc., payable to
MUNN \& CO., $\mathbf{3 6 1}$ Broadway, New York.
$==$ THE $=-$
Gricntitic Guncricant Supplement SCIENTIFIC AMERICAN, but is uniform therewith in SCIENTIFIC AMERICAN, but is uniform therewith in
size, every number containing sisteen large pages full of engravings, many of which are taken from foreign papers and accompanied with translated descriptions. The Scientific American Supplement is published presents the most recent papers by eminent writers in all the principal departments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Vatural History, Geography, Arcbæology, Astronomy, Chemis-
try, Electricity, Light, Heat, Mechanical Steam and Railway Engineering, Mining, ship Building, Marine Engineering, Photography, Technology, Manu facturing Industries, Sanitary Engineering, Agriculture, etc. A vast amount of fresh and valuable information The most important Engineering Works, Mechanisms, nd Manufactures at home and abroad are ilust and aice for the Supplement for
Canada, and Mexico, $\$ 5.00$ a year; or one cons the Scientific American and one copy of the SUPPLEMENT, both mailed for one year to one address for $\$ 7.00$. order, express money order, or chend,
MUNN $\&$ CO., $\mathbf{3 6 1}$ Broadway, New York

TBuilding Fedition.
The Scientific american Architects' and
Builders' Edition is issued monthly. $\$ 250$ a year Single copies, 25 cents. Thirty-two large quarto pages, forming a large and splendid Magazine of Architecture, richly adorned with elegant plates in colors, and with
other fine engravings; illustrating the most interesting other fine engravings; illustrating the most interesting allied subjects.
A special feature is the presentation in each number of a variety of the latest and best plans for private residences. city and coantry, 1nche expensive. Drawings in perspective and in color are given, together with Plans, Descriptions, Locations, Estimated Cost, etc.
The elegance and cheapness of this mag. The elegance and cheapness of this magnificent work have won for it the Largest Circulation of any
Architectural publication in the world. Sold by all newsdealers. \$2.50 a year. Remit to

MUNN \& CO., Publishers,
361 Broadway, New York.
PRINTING INKES,

[^0]: * Mr. Maxim's paper is given in full in our Supplement of this week, No. 979 , and in Supplement No. 976 will be found some twenty figures of

