a WeEkly journal of practical information, art, SCIENCE, MECHANICS, CHEMISTRY, and ManuFactures.

NEW YORK, JULY 21. 1894.

hardening composite plates for bank vaults. layers of soft steel or iron and of hard steel. In ${ }^{4}$ he cen-
The manufacture of iron and steel burglar-proof ter is a layer of soft steel or iron, next to it come two vaults ror insurance companies, trust companies and layers of chrome steel, one on each side, and outside or similar institutions is one of increasing importance. As the safe maker advances in his processes, and while he is improving the burglar-proof quality of his safes, so fast does the burglar improve in his method of attack, so that it is often the burglar himself who is in advance of the safe builder.
The illustration accompanying this article shows a somewhat curious operation incidental to the manufacture of steel and iron vaults, the hardening of the plates. The process is the one employed at the works of J. B. \& J. M. Cornell, in this city, and consists in dipping
all are the two layers of soft steel or iron. These plates are rolled of various thicknesses, the different ayers welding together, plates one inch thick and one half inch thick being most generally used. For the corners angle irons made of the same material are used.
The safe walls are built up of the composite plates, laid against each other and screwed together. In one usual construction the outside plate is an inch thick. Next to it comes a half inch plate, secured to the out side plate by flat-headed screws, whose heads are
are then removed from the furnaces and as quickly as possible dipped edgewise into the river. In this way they get a salt water hardening. They are then to be rolled cold for the purpose of straightening them. Previous to the heating the blind holes in the one inch plate are stopped with clay to prevent cinders from getting in. After rolling, flattening, and cleaning the plates are ready for shipping and erection.
The object of the combination of hard and soft iron is to secure the safe against attack by sledge or by drill. A drill could hardly be forced through the chrome steel, and at best it is only after many hours work that the material can be perforated. Again, on account of the soft iron, sledging is without effect, for

HARDENING COMPOSITE PLATES FOR BANK VAULTS BY IMMERSION IN THE HUDSON RIVER.
the hot plates into salt water. Advantage is taken of countersunk in the half inch plates, while their ends the water front held by the firm in utilizing in situ the salt water of the Hudson River for the purpose, a brine dip being considered superior to one of fresh water. There is unquestionably a difference between the two. The addition of a soluble salt to water raises its boiling point, and to some extent improves its hardening power.
A curious and unique industry in this city is represented in the plant in question. Special heating furnaces are built in the open air upon the margin of the river, and plates of steel heated in them are dipped into the river to harden. Except for docking and shipping purposes, it is about the only technical use made of the river proper.
Curious as is this step of the process, the general manufacture of the vaults is of great interest. They are made of steel and iron. For the walls of vaults a composite plate is used, consisting of five alternate
screw into blind holes in the one inch plate. The next plate, also a half inch one, is screwed to the second plate in a similar manner except that the tapped holes in the first half inch plates go entirely through. In this way a wall of any desired thickness is built up, one object on constructing it of such thin material being to secure frequent breaking of joints.
The work on the plates, including the drilling and tapping of holes, shaping the edges, etc., has to be done while they are soft. The entire vault is built up f the unhardened plates, each one having its exact place assigned it. The vault is next taken down, piece by piece, and the pieces are hardened. It is this opertion which we illustrate. On the edge of the dock on the North River front near the foot of Twenty-Seventh Street in this city reheating furnaces have been built dapted for heating the metal to redness. The plates are put in and are brought to a good red heat. They
ven if the hard steel should be cracked, it is so em bedded and welded to the adjacent layers of soft iron that no harm is done. In one great vault now building by J. B. \& J. M. Cornell for the Equitable Life Insurance Co.'s Boston office as an additional protection, a vault of the construction just described is to be erected within a protecting structure, built up of a special section of 54 pound railroad iron, rolled for the purpose.

A species of cage for the safe is made up of these rails laid interlocking, with their interstices filled with Portland cement. Inside of the rails the steel structure described is made up, the inch plates being first put in position and the half inch plates screwed to their inner surface. The vault is to have two doors, each with its time lock, and moving on ballbearing hinges. Each time lock has three clocks, any one of which will operate it, so that as long as one clock out of six is in order, the vault will open.

ES'PABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.

O. D. MUNN.
A. E. BEACH.

TELMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, for the U. S. Canada or Mexico..
One copy, six months, for the U.S., Canada or Mexico
One coopy sin yearto

MUNN \& CO., Publishers, $\begin{aligned} & \text { Pus, } \\ & \text { 361 Broadwa }\end{aligned}$
:IF 'The safest way to remit is by postal order, express, money order
raft or bank check. Make all remittances payable to order of MUNN
co Readers are specially requested to notify the
failure delay, or irregularity in receipt of papers.

$$
\text { NEW YORK, SATURDAY, JULY 21. } 1 \times 94 .
$$

table of contents of
SCIENIIFIC AMERICAN SUPPLEMENT

No. 968.

For the Week Ending July 21, 1894.

 for houses.
in.
BoLOGOY.
Mr. Becent researectece of Great Cold on Animals. - Notes on Pictet's

A Hothouse on Rails,-1 iulustration
CIVIL ENGINEERING.-A Temporary Trestle

 IL ENGINEERING.-Engineering a Learned Profession. - By R.

$\mathrm{XI}_{\text {in }}^{\text {in Eucepe. }-1 \text { illustration }}$-. Boy Giant.-A young giant exhibiting

an american bullet proof shield.

Mr. W. J. F. Lennard, a stairbuilder, of Brooklyn, N. Y., has invented a bullet proof shield claimed to be superior to that of Herr Dowe, the Mannheim tailor, described in the last issue of the Scientific Ameri can. It is said to be composed of cotton, felt, wood, and a chemical compound of parts mineral and vegetable. A public test of the bullet proof qualities of the new shield was made at one of the Brooklyn parks on July 12. It was in the form of a pad seventeen inches long, thirteen inches wide, and a trifle less than two inches thick, being somewhat flexible, and weighing eleven pounds. This pad was hung on the neck of a wooden figure, and shot at by a marksman with a
45 caliber army rifle, the cartridges being loaded with 45 caliber army rifle, the cartridges being loaded with seventy grains of powder and 405 grains of lead. The bullets partially penetrated and embedded themselves in the pad, but did not go through it. The inventor afterward put on a similar pad, and was shot at by the marksman, the same gun and cartridges being used, when the shield proved an effective protection against the bullet. The inventor said there was no feeling from the impact of the bullet, except a slight sensation as if some one had poked him with a finger. The inventor does not claim that this shield would be effective against steel bullets, but only against lead bullets. His shield is the result of experiments for a composition to use in armoring ships, which he claims will be lighter and better than steel plates.

failure of a large armor plate

An armor test of a Carnegie nickel-steel Harveyized plate, seventeen inches thick, took place at the Indian Head proving grounds on the Potomac near Washington, July 12, and like the eighteen inch Bethlehem plate tested May 19, ended in the failure of the plate. The same gun-the 12 inch rifle-was used in both cases. The plate was secured to a 44 inch oak backing, heavily braced. The distance of the gun from the target represented a range of about 1,200 yards. The Carpenter projectile weighed 800 pounds and was propelled by 260 pounds of brown prismatic powder; the muzzle velocity was 1,410 feet per second. The first projectile fired penetrated $131 / 2$ inches and then bounded back 50 feet. In the second Wheeler-Sterling shot the velocity was increased to 1,858 feet per second and the striking energy was advanced to 20,370 foot tons. The havoc wrought was terrible; the shot crashed through the plate and backing, deflected up, and landed 300 feet away. The head of the shot was somewhat injured, but the body of it was intact. The result was a great surprise to all concerned, especially to the makers, who had used all possible care in its fabrication, the plate being left in the Harvey furnace for twenty-eight days. Upon this test depended the acceptance of 287 tons of armor for the battleship Oregon, worth $\$ 246,000$. The loss to the company for the plate, eve if the armor is finally accepted, will be $\$ 20,000$.
The Secretary of the Navy ordered another test the next day, using the same shells as were used in the June test of a Bethlehem plate. The Carpenter projectile penetrated the plate and stuck fast in it; the plate was cracked. The Navy Department will conduct exhaustive tests on Harveyizing armor before accepting more plates.

education in america.

We publish in the Scientific American Supplement of this week a very remarkable paper on the schools of America, by Duane Doty, Superintendent
of Public Instruction of Chicago. It is a summary of the last report, just issued, of the United States Bureau of Education. From the earliest days of the
republic, the necessity of education for the people has republic, the necessity of education for the people ha
been a generally accepted doctrine, and the impost of taxes for the purpose has been generally acquiesced in willingly. It is hard to see how any substitute for the public schools could be invented. It would seem more logical for each individual to pay for the education of his own family. But private schools would never be so widely distributed as are the public schools. In the rural districts. far from any village of account, will be found the public school, to which children resort from miles away in all directions. Private enterprise would never do the work done by the rural public schools.
The statistics and data contained in the article referred to are of deep interest. They go to show what an immense machinery is used in public school education, and reveal an industry of the largest dimensions devoted entirely to intellectual culture and advancement. The same statistics show the rapid growth of the system. Every year sees it more developed and more difficult of replacement. The great area of our country is one of the causes which will tend to make it permanent.
The paper referred to, however, is devoted to education in general, not merely to the public school system. It shows that as the higher departments are reached, the percentage of scholars attending private schools increases. But the facts that in the elewentary grade of public school ninety per cent of the school popula-
together the public schools and colleges educate eighty hine per cent are impressive. The agency which con trols the education of so large a proportion of the population of the country is one which should receive the greatest consideration and care from those administer ing it, for education can be a power for evil as well as for good.

BROOKLYN MEETING OF THE A. A. A. S

The scientific and educational institutions of Brook yn have united in inviting the American Association for the Advancement of Science, with its affiliated societies, to hold its forty-third annual meeting in that city. The hotel headquarters of the officers and others will be at the St. George Hotel. The official time as announced will be from August 15 to August 24, although some of the special societies may meet earlier or later than those dates. The opening sessions will be held daily in the Polytechnic Institute, the evening addresses and receptions will be in the Academy of Music and Art Building, and the sections will meet in the rooms of the Packer Institute. Every facility for lantern illustration will be in constantreadiness for the day meetings, as well as when required in the evening Many eminent foreign scieutists have accepted invitations to be present, which will add much to the interest of the occasion.
Excursions have been planned for combining science with social pleasure to various mines, quarries, mountains, cliffs, and marl beds; to Long Branch for the study of marine algæ; to Cold Spring to inspect the State fish hatchery; to West Point to inspect the Palisades and Highlands and Military Academy; various local trips to points of interest about the harbor, navy yard, etc., and finally, at the close of the sessions, an excursion to the Forestry Congress at the White Mountains. These plans are liable to be modified, and additional ones may be arranged for, of which notice will be given in due time. As far as possible these ex cursions are to be free, or at greatly reduced rates The regular railroad rates to and from the meeting will be reduced, and special terms are to be had for hotel accommodations. Concessions will also be made by the express, telegraph, and telephone comparies. In a word, everything will be done to make the Brooklyn meeting delightful and successful.
Full information can be had on application to the local secretary, Prof. G. W. Plympton, or to Mr. E. T. Johnson, relating to hotels and lodgings. It will be sufficient to address simply in care of A. A. A. S., Brooklyn, N. Y. Communications as to seientific pa pers, membership, etc., should be made to Prof. F. W. Putnam, permanent secretary, Salem, Mass.

the great railroad strike.

It is an accepted doctrine in political economy that the loss of one person's property is the loss of all When a building burns in a large city, in some form or other the entire community has to bear the loss. Property is never destroyed without all suffering in some way. In the science of government a very gen eral opinion is expressed in the saying that the best governed people is the least governed. Like some other sayings this cuts both ways; there is no doubt that a community of individuals, so orderly and wellbehaved as to require but little government, would live very happily, and from their very nature would, in being self-governed, be little governed and well governed. But unfortunately the law has to deal with all classes of men. America especially has been re ceiving the outpourings of Europe for many years and there is a strong feeling that the class of immi grants of the last ten or twenty years does not com pare favorably with those of the preceding epoch.
The law throughout is based on the doctrine of ex pediency. A country governed by strictly logical laws would be far from practicable, at least under present conditions. The object of government being the pre servation of order and peace and the prevention of crime, the law should secure these ends by the simplest and most efficacious means possible. Thus in a large city, if a given procession of innocently disposed people would be the occasion of a riot, no complain could be made if the police took the practical though illogical step of prohibiting the parade and preventing the riot.
The great strike which has occupied so much of the attention of the country during the last few weeks is apparently on the point of collapse and illustrates the above points. The Federal troops have gone into action and seem to have done good work at the expense of very few lives. A vast amount of property has been destroyed, striking workmen have lost an immense sum in wages, and Cook County, Illinois, together with other railroad centers where rioting has taken place, will probably be burdened with a very heavy tax bill for the payment of damages to property incidental to the rioting. Incalculable harm has been done and the en tire United States will have to foot the bill. It is easy enough to criticise the use of the Federal troops in the matter, it is natural for lucal militia to object to fight their own neighbors and friends, it is well for the upholders of the strong arm of the law to exult in the
thought of the suppression of mob violence by militar force, but a question of the utmost difficulty of practi cal politics lies back of it all. How are strikes with in cidental riots and destruction of property and idlenes of thousands of workmen to be prevented in future.
The evils of a strong government for the repression of riots on the one side are confronted with the evils of a weak government unable to cope with the evil-disposed classes. In the United States, by general consensus, the Federal power is recognized as the strong element, one to be called on as seldom as possible, and whose direct intervention is looked on with disfavor and as an unfortunate necessity. The individual States are less powerful and less arbitrary in their governmental actions. Both have united in coping with the rioters. But until strikes of the magnitude and evil effects of the present one are made impossible, until the paralysis of a country's business by enforced idleness of workmen supplemented by rioting becomes a matter of history never to be repeated, the laws of the country will not be perfect.
We may object to being too much governed, but a comparative despotism is preferable to a condition of things involving the calling out of soldiery to cope direetly with what should be a peaceful populace of workmen. War with a foreign power is held to be a not unmixed evil ; civil war, and fighting with mobs, are bad in every sense-in cause, in prosecution and in results.
To-day millions of people are suffering from the strike. Its consequences may last for many months to comc. Pittsburg is still paying for the damages doneduring the riots of 1877. Expediency calls for the prevention of such occurrences, and an evasion of the strict laws of logic may be excused if !such prevention can be brought about by a law, even if it be one of expediency only.
laying an atlantic cable in twelve days.
On the 2d of July the Faraday completed the laying of a new Atlantic cable, the actual time occupied in the work of laying the deep sea portion being but twelve days. When the Great Eastern, in 1866, completed the laying of the first successful Atlantic cable, the entire world joined in congratulations. The event was justly looked upon as marking an era in the progress of the world. Since that time, however, the making and laying of ocean cables has become a practical, everyday business, and the new cable was not only laid in the short est time, but is a much better cable than any of its predecessors, having the largest copper conductor and bing the speediest ever laid for its length.
Although the Faraday left Woolwich on June 12, she did not, owing to unfavorable weather, reach the vicinity of the previously laid and buoyed shore end of the cable, off Waterville, Ireland, until the 18th, and then, the buoy rope, having been wrenched off by a passing propeller, had to grapple for the cable itself, at a depth of about 250 fathoms. Such work now presents no substantial difficulties. The heavy grapnel, attached to 600 fathoms of chain and rope, was three times dragged across the cable's path, when the cable was hooked and hauled up, two miles inside of the end that had been buoyed. The end communicating with the shore was at once tested and spliced to the cable in the tanks, the other piece hauled aboard and the buoys picked up, when, at $10: 30 \mathrm{~A}$. M. on the 20th, the vessel was ready to start on the actual work of laying the deep sea cable. At the rate of about seven knots an hour the cable passed up round the core in the center of the tank, along the troughs and directing sheaves, under the sheave of the strain-measuring dynamometer, and sank to the ocean's bed. For several hours the depth varied from 250 to 500 fathoms, when a great declivity was reached and 1,000 fathoms were indicated, followed by a varying bottom, nearly three miles deep in places. Thence it gradually rose to 1,600 fathoms, dropping subsequently to over 3,000 , as hill top and val ley in the ocean bottom were passed, until the shallow water of the Newfoundland Bank was reached, some seventy-five miles from the buoyed end of the previously laid shore end on the American side, 502 miles from Canso, Nova Scotia. During all this time communication was constantly kept up with the Water ville station, the news of President Carnot's assassina tion being received on the Faraday the evening of its occurrence. When at 1,585 knots' distance from the Irish coast, and the soundings indicated a depth of 891 fathoms, the lighter deep sea portion of the cable was spliced to a shallow water type, which was continued to the still heavier Canso shore end. Fogs, icebergs, and bad weather prevented the finding of the buoy on this shore end, but after a good deal of dragging the cable was hooked and drawn aboard on the 30th, just ten days from the actual start on the other side, although the final splice was not completed until the morning of July 2.
The new cable was laid for the Commercial Cable Company, being the third cable of that line. It was manufactured and laid by Messrs. Siemens Brothers \& Co., who have very extensive works at Wool wich, Eng land, for the manufacture of electrical appliances. The Faraday was specially constructed by the Siemen

Brothers for the work of cable laying, and has thre large tanks for the storage of cable, with many ingen ous appliances to facilitate the paying out,grappling, and hauling up and making all the delicate tests re quired in all stages of the work. The new cable has a much greater weight of copper conductor or core and of gutta percha insulation than any of the cables previously made. The shore ends and intermediate sec tions of the new cable comprise about 700 nautica miles and the deep sea portion is nearly 1,600 nautica miles in length.

Eight Hours in England.

The forty-eight hours week has lately come into operation in all the British government works, and new regulations have been forwarded to the works. A careful examination of these, says Engineering, indi cates that in making the concession the Admiralty have withdrawn many "privileges, which in grea measure counterbalances the less number of hours worked, and by this means at least they bring the dock yards into line with the private establishments hroughout the kingdom. The men will still have the four public holidays as hitherto without loss of pay; but the half holidays on the occasion of a launch, or of a visit of the Lords of the Admiralty, are to be discontinued. Nor will a half holiday be given for a par liamentary election, since the polling booths are now open until eight o'clock. Hitherto three minutes has been allowed the workman to go from the yard entrance to his work every time he enters the works, which meant thirty-three minutes per week. This is discontinued, and the men must be at the pay ticket box close to their work at the time of starting. The five minutes allowed to get to the pay table is discontinued. Hitherto an hour was granted in the morning or evening without stopping of pay in the event of urgent family affairs. No such excuse can now be accepted, while grant of leave without loss of pay to attend Confirmation is also to be discontinued, and blacksmiths will not now have ten minutes to wash each time they leave the works. Again, overtime pay, i. e.,time and extra, will only be granted after the men have worked a full 48 hours in the week. It frequently happens that a Saturday precedes or follows a public holiday-Good Friday, Whit Monday, etc.-and on such occasions the men used to work overtime before the holiday to make up the time to be lost on Saturday when not infrequently the machinery was running as usual. This is not to be allowed in future, even if the works are closed on the Saturday, the desire being to meet the men's demand for no overtime, except, of course, where the exigences of the service urgently re quire it. In this one almost recognizes an Admiralty Roland for the workmen's Oliver. As to the hours fixed, these vary to suit the seasons of the year, the day being shortest in the winter months, $71 / 4$ hours, and longest in the summer and early autumn, 9 hours. On Saturday the duration is 5 hours throughout the year. The earliest start is 7 A. M., and from December to March it is $7: 30 \mathrm{~A}$. M., and the hour of closing the work is $4: 15$ to $5: 30 \mathrm{P}$. M., $11 / 2$ hours being allowed at midday for dinner. These are the hours for Portsmouth, Chatham and Sheerness, while for Devonport and Pembroke, which are further west, they are a quarter of an hour later. The hours are for the beginning and starting of work, no allowances being made. The variation in the hours involved the readjastment of the day pay ratings to bring the 48 hours pay to the same as the 51 hours pay; but no change is made in overtime rates, so that in the latter case the same work must be done in the 48 as in the 51 hours week to earn the same sum. The writing staff will continue to work 45 hours, but overtime rates will only be paid after 48 hours have been worked, instead of after 51 hours work as heretofore. Enginemen, stokers, and furnacemen will work longer hours, as at present, to have the plant ready for the workmen.

When charcoal which has been allowed to absorb as much sulphureted hydrogen as it can take up is introduced into oxygen gas, the charcoal will burst into flame, owing to the energy of the action of the oxygen upon the sulphureted hydrogen.
This fact is stated in most text-books on chemistry, but no description that I have ever seen of this experi ment is calculated to bring about the effect with certainty. The following is a simple method for illustrating this reaction upon the lecture table, which I have never found to fail:
A few grammes (from five to ten) of powdered char coal are introduced into a bulb which is blown in the middle of a piece of combustion tube about twenty-five centimeters long. A gentle stream of coal gas is then passed over the charcoal, which is heated by means of
a Bunsen lamp until it is perfectly dry. This point may be ascertained by allowing the issuing gas to impinge upon a small piece of mirror, and when no further deposition of moisture takes place the charcoal may e considered to be dry, and the heating may be stopped. The charcoal is then allowed to cool in the stream of
coal gas until its temperature is so farreduced that the
bulb can just be grasped by the hand, when the coal ras is replaced by a stream of sulphureted hydrogen. The sulphureted hydrogen should be passed over the harcoal for not less than fifteen minutes, by which time the bulb and its contents will be perfectly cold, and the charcoal will have saturated itself with the gas. (In practice it will be found convenient to prepare the experiment to this stage, and allow a very slow stream of sulphureted hydrogen to continue passing through the apparatus until the experiment is to be performed.) The supply of sulphureted hydrogen is then cut off, and a stream of oxygen passed through the tube. Alnost immediately the charcoal will become hot, and moisture will be deposited upon the glass. The supply of oxygen should be sufficiently brisk to carry the moisture forward from the charcoal, but not so rapid as to prevent it from condensing on the glass tube beyond the bulb. In a few moments the temperature of the charcoal will rise to the ignition point, when it will inflame and continue to burn in the supply of oxygen. G. S. Newth, in Nature.

A Coloring Matter for Grapevine Leaves.
The green portions of plants contain besides chlorophyl, as a rule, only a yellow coloring matter, called carotin, chrysophyl, or erythrophyl, which is insoluble in water. Several investigators find, however, that some kind of leaves give aqueous extracts of a more or less impure yellow color, an observation which is explicable from the fact that in most of these instances mature leaves were used. Young leaves yield an almost colorless extract. Yellow autumin leaves, howver, contain considerable quantities of soluble coloring matters. Thus the authors found that fallen beech and horse chestnut leaves give deeply colored aqueous extracts. They have also succeeded in isolat ing a yellow coloring matter from vine leaves, the in vestigation being suggested by the use of these leaves for dyeing purposes in Persia. Like most vegetable coloring matters, this substance is a glucoside. It can be prepared by the addition of lead acetate to the decoction of the finely powdered leaves, treatment of the precipitate formed with sulphureted hydrogen, and subsequent extraction of the dried lead sulphide with boiling alcohol. The residue, obtained by evaporation of the alcohol, is freed from sulphur by means of carbon bisulphide, the glucoside remaining as an indstinctly crystalline brownish yellow substance. By boiling with dilute sulphuric acid it is split up into a sparingly soluble brown body and glucose. This coloring matter may, after washing with water, be purified by adding to its alcoholic solution an alcoholic solution of lead acetate and treat ing the previously washed and dried bluish green precipitate with ether containing hydrochloric acid, by which the impurities are taken up. The remaining coloring matter is then dissolved in alcoholand precipitated from this solution by the addition of water. It forms a reddish brown powder, soluble in alkalies with a brown color. Its aqueous solution produces upon chrome mordanted wool fine brown shades, and dyes wool mordanted with tin a fine yellow. The color ing matter may possibly be of practical value. The vine leaves were also found to contain up to two per cent of potassium hydrogen tartrate. $-E$. Schunck, E. Knecht, and L. Marchlewski.

Sugar as a Promoter of Muscular Power.

The subject of sugar as a food producing muscular power has been disctussed by Dr. Vaughan Harley. During a twenty-four hours' fast, on one day, water alone was drunk ; on another, 500 grammes of sugar were taken in an equal quantity of water. It was found that the sugar not only prolonged the time before fatigue occurred, but caused an increase of 61 to 76 per cent in the muscular work done. In the next place, the effect of sugar added to the meals was investigated. The muscle energy producing effect of sugar was found to be so great that 200 grammes added to a small meal increased the total amount of work done from 6 to 39 per cent. Sugar (250 grammes -about eight ounces) was now added to a large mixed meal, when it was found not only to increase the amount of work done from 8 to 16 per cent, but increased the resistance against fatigue. As a concluding experiment, 250 grammes of sugar were added to the meals of a full diet day, causing the work done during the period of eight hours to be increased 22 to 36 per cent.

Vaselone.

Vaselone is a substance introduced as a substitutefor vaseline. According to an analysis by Villon, it is a solution of stearone and margarone in neutral mineral oil. Stearone is prepared by distilling stearin with lime. Margarone is prepared in a similar way from beef suet. Vaselone consists of 15 parts of margarone and 5 of stearone in 100 of thoroughly purified and odorless mineral oil. The fatty product obtained, after cooling, resembles vaseline, but is not as transparent. It is white, odorless, neutral, and not affected by acids and chemical reagents.

Uuilization of Garbage.
The process of garbage disposal is, according to the American Architect, probably carried on now with greater perfection in St. Louis than anywhere else in the world. In the new establishment just completed there, at a cost of nearly a quarter of a million dollars, by the company which holds the contract for disposing of the garbage of the city, the carts bringing the material ascend an inclined plane to the third story of the receiving building, where they discharge into enormous vertical cylinders, which are surrounded by steam jackets. Superheated steam is forced into the jackets, and the water, which constitutes from 75 to 80 per cent of the garbage, is thus evaporated, or rather distilled off, the vapor being condensed, and the condensed water, which is perfectly harmless, and even drinkable, allowed to run off to the sewer.
At a certain stage of the drying, naphtha is pumped into the cylinders and allowed to remain there for thirty or forty hours. This dissolves out all the fats, oil, and grease from the mass. Other chemicals are said to be mixed with the naphtha, but this is probably for the sake of mystification, the naphtha alone being quite sufficient for the purpose. After the proper time has elapsed, the naphtha, with its dissolved oil, is pumped out again into stills, where it is distilled by steam heat, the volatile naphtha being allowed to run back from the condensers into the storage tanks, while the fat, which is left in the stills as a brown, oily mass, is drawn off into barrels. It may be bleached, so as to be perfectly white, and it is said that the pure and delicate Ivory soap, which has gained such popularity all over the country, was originally made of refined garbage grease, before it was found advisable to use cottonseed oil instead. After extracting the grease, the residuum in the cylinders is dried a little more, the last vestiges of naphtha being driven off in the process, and is then removed through a door at the bottom. It is now a brown mass, free from all unpleasant odor, and apparently dry, although it still contains 5 or 6 per cent of water. As it has not been heated sufficiently to cause destructive distillation of the solid portions, it contains practically all the nitrogen of the fresh garbage, with, of course, all the alkalies and phosphates; and, after grinding coarsely and packing in barrels or bags, it commands a ready sale all over the United States. The dealers usually analyze a sample and fix their price mainly in accordance with the proportion of nitrogen found in the sample; but the St. Louis "garbage tankage," as it is called, readily brings in

New York and Boston from nine to twelve dollars a ton, and the demand for it far exceeds the supply.

AN IMPROVED TELLURIAN

This tellurian is more especially designed for use in schools, to show without much trouble, and in a very effective manner, the causes of the seasons and the

NICHOLS' TELLURIAN.
relative positions of the sun, earth, and moon. It has been patented by Mr. Grant B. Nichols, of Wapako neta, Ohio. It comprises an inclined table on a suitable stand, with a central recess, in which is a rod car rying a ball representing the sun, around which is a series of 365 apertures, made in the surface of the table in an ellipse, representing the path of the earth around the sun. These apertures are preferably numbered according to the days in the month, the names of which appear at their respective places, and a vertical rod carrying a globe representing the earth is designed to be placed in one of the apertures. Another series of apertures, also preferably marked or numbered, repre-
sent the path of the moon relative to the elliptical path
of the earth, a rod carrying a ball representing the moon being placed in one of these apertures. The rod carrying the ball representing the earth may at any time be inserted on the proper date in the aperture provided for it, the rod carrying the moon being likewise placed in correct position, when the relative positions of the different bodies will be practically illustrated. The apertures for the rod carrying the ball representing the earth are all of the same depth, but those in the path of the moon are of different depths, so that the moon's orbit about the earth is not so much inclined as the earth's orbit about the sun, the moon being thus always represented in the proper position relative to the earth and sun.

ELECTRIC LIGHT ENGINES, MANCHESTER CORPORATION

We illustrate the engines constructed by Messrs. Galloways, Limited, for the Manchester corporation We are indebted to the Engineer, London, for our engraving and the following particulars :
The engines are arranged at either side of a gangway, this gangway giving access to the upper staging of all the engines in the installation. The steam pipes below are in duplicate, as also are the steam valves on the boilers and the stop valves on the engines, so that either series may be used at will. The lower pipe over the gang way is the water supply from the tank over the boiler house; this pipe supplies the Korting ejector condens rs. The engines have high pressure cylinders 17 inches diameter, low pressure 34 inches diameter, with a piston stroke of 3 feet, and they are intended to run at a varying speed of from 75 to 90 revolutions per minute. The admission of steam is controlled by expansion valves arranged in accordance with Messrs. Galloway's plans, the in accordance with Messrs. consisting of a block working in a slotted link directly in connection with the governor. The governor is of the parabolic type adopted by Messrs. Galloway some years ago with unequivocal success, but in this case a portion of the center weight has been removed and a spring substituted to give a vary ing load. Both cylinders are steam jacketed, and a receiver is formed round the jacket of the high pressure cylinder, so that the two cylinders have appa rently the same diameter.

There are 11 American cities that spread over more erritory than Paris, while Berlin is excoeded in area by 17 of our cities.

IMPROVED COMPOUND ELECTRIC LIGHT ENGINES.

The Action of Acids upon Glass.
Experiments made with flasks of different kinds of lime-alkali glass proved that the loss of weight resulting after heating with diluted acids to 100° for six hours was always the same with the same kind of glass, and was entirely independent of the strength of the acid or of its chemical composition. Sulphuric, hydrochloric, nitric, and acetic acids gave identical results. Only very strong acids had less effect than dilute ones, which again have less action than pure water. Similar results were obtained in working at temperatures of 160° and 190° with pieces of glass tubing inclosed in sealed tubes. The influence of the degree of concentration was, however, more pronounced thán in the previous experiments and was again in inverse ratio to the strength of the acid used. The dissolving action of the acids is therefore governed by the amount of water contained in them. Bearing in mind that the action of water upon glass consists in the liberation from it of alkali, which again further increases its vulnerability to water, the passive part played by the acid may be readily understood. In the case of glass containing an unusually large amount of alkali, the action of the acid, however, is more pronounced than that of pure water, the decomposition being analogous to that of many natural silicates. Lead glass exhibits the same peculiarities as lime-alkali glass, according to the proportion of lead contained in it. The nature of the base in combination with the silica likewise seems to influence the resisting capacity of the glass. Thus a zinc-lime-soda glass (Jena thermometer glass 16 III) was more attacked by concentrated acid than lime-soda glass of equivalent composition. The action of pure sulphuric acid is less strong than that of boiling water, but at very elevated temperatures its vapors produce a more marked effect.
Dry carbonic acid does not affect glass, hence the action of the atmosphere primarily depends on the aqueous vapor contained in it. The liability of a glass to suffer changes by atmospheric influences can therefore be ascertained by estimating colorimetrically the amount of alkali separated on treatment with water. Glass, especially when rich in alkali, is capable of absorbing water, which can only be completely expelled by heating to about $500^{\circ} \mathrm{C}$. The water combines chemically, forming hydrates, which represent the intermediate stage in the process of the decomposition of the glass by the action of water. An important part played by the alkali split off by water seems to consist in its facilitating the formation of such hydrates.

VIADUCT FOR STREET RAILWAYS, CINCINNATI.

The business portion of Cincinnati occupies a plateau nearly three miles wide, rising abruptly about eighty feet on the north side of the Ohio River, and beyond this is an irregular line of bluffs some 400 feet high, over and beyond which the city has spread. One of these hills is known as Mount Adams, and our illustration represents a view on the Mount Adams and Eden Park Railway, forming part of the street railway system of Cincinnati, the park being on a hill in the eastern part of the city, and containing t wo hundred acres. The heights are all reached by inclined planes, cable roads, and in some instances by electric lines. There are six inclined planes, on four of which the electric cars are transferred are transferred from one level to the other and continue their course, the planes being provided with triangular shaped trucks with platforms on a level forms on a level, so that the electric cars are readily run on or off at the terminals. In the Cincinnati electric roads the double trolley is employed, both employ ed, both arms of the circuit being thus more equally balanced than with a track return, and the necessity of tearing up the streets is a voided, while
is avoided, while
the possibility of destruction of water and gas pipes by electrolytic action is entirely removed. The cars are also provided with electric heaters, and the closed cars have vestibules at the rear end, with an opening at one side. We are indebted for our illustration to the Street Railway Journal, New York:

There are 10,000 copyrighted volumes of American poetry in the Congressional Library at Washington.

A NEW TELEPHONE.

Mr. Eloy Noriega, the well known electrical inventor of the city of Mexico, has recently patented in Mexico some improvements in telephones, for which greatly improved results are claimed.
The double receiver, shown in perspective in Fig 1 and in section in Fig. 2, is sensitive to weak impulses and gives excellent results with the normal volume of sound and current at the transmitting end of the line.
This instrument has a cell or casing provided with

NORIEGA'S TELEPHONE.

two separate chambers containing diaphragms. The two chambers terminate in an ear piece. Each dia. phragm is in the field of a polarized magnet attached to the side of the casing, and the bobbins of the two magnets are connected with the telephone line.
In Fig. 3 is shown in section a double telephone, in which two polarized electro-magnets are supported on opposite sides of the iron diaphragm. The diaphragm carries two arms of insulating material, one on either side of the diaphragm, each provided with a metallic electrode at its free end, which rests on a contact block attached to the binding post. The metallic electrodes are connected with the bobbins, and the arms which support them are connected with delicatecurved springs extending to the blocks attached to the binding posts.
This instrument may be used for receiving from separate lines, also for transmitting to two circuits. It may also be arranged for use as a repeater, for repeating from one line to another, as indicated in Fig. 5.
The magnets used in these instruments are made from a new alloy of iron and tungsten, which is more efficient than iron or steel. The inventor claims the efficiency of these magnets ten times greater than that of the ordinary steel magnet.

Maryland Ship Canal.
The construction of a ship canal across the Maryland
veys, which were carried out by Major N. H. Hutton Five routes were surveyed. In 1882 another route was suryeyed by Capt. Thomas Turtle, Corps of Engineers, U. S. Army, which, with an early survey made by Mr. B. H. Latrobe,makes seven separate routes which have been more or less thoroughly surveyed.

Dyeing Leather.

by J. J. Hummel and h. r. procter

In applying basic coal tar colors to cotton, it is well known that the latter requires to be mordanted with tannic acid. In the case of leather tanned with sumac and other similar tanning matters, such preparation is of course unnecessary, not only because the leather already contains tannic acid, but because the substance of the leather itself as a protein compound has a natural attraction for the coloring matter. Nevertheless, very poor results are frequently obtained in dyeing leather, e. g., skivers with the basic colors, the colors being pale or irregular. An examination of the dye liquors in these and other cases revealed the fact that the coloring matter was very largely precipitated, due no doubt to tannic acid dissolving off the leather.
Two methods of getting rid of the defect naturally occur to one, viz., to remove the excess of tannic acid present by previously steeping the leather in tepid water, or to render the excess inert by fixing it upon the leather in an insoluble form.
Both methods were tried, with the result that the second proved to be the most reliable and effective. To this end it is merely necessary to work the leather in a tepid bath ($45^{\circ} \mathrm{C}$.) containing the requisite quantity of tartar emetic for $1 / 4-1 / 2$ hour, then to wash, before proceeding to the dyeing operation.
By adopting this simple precaution, the dye liquors are maintained in a perfectly clear condition, and since they are invariably unexhausted, they can be used for dyeing further quantities of leather; moreover the dyed colors are perfectly level, and many shade darker than without this preliminary treatment. The leather itself is in nowise injured, and since the antimony is in a perfectly insoluble form as a tannate, there can be no fear of injurious consequences arising in the ordinary use of such leather.

Dr. Cook's Arctic Expedition.

The steamer Miranda sailed from New York July 7, bearing Dr. Cook's Arctic exploration party. She has been chartered for two months and a half, to take a party to explore the coasts of the frozen North.
There were fifty passengers aboard, most of whom are scientists and sportsmen, a few of whom are going simply for the crisp northern air. The scientific men will make researches along the coasts of Labrador and Greenland, and the sportsmen will shoot polar bears and reindeer.
The Miranda will stop at points in Nova Scotia and Cape Breton, cruise around Newfoundland, cross Davis' Strait to the west coast of Greenland, where some of the party will remain to explore the fjords and to examine the fossil beds, the Norse ruins and the other

things of interest to scientists.
 things of interest to scientists. The Miranda will enter Melville

 Bay later and go to

VIADUCT IN EDEN PARK, CINCINNATI, FOR STREET RAILWAY CARS. the headquarters of Lieutenant Peary, and perhaps the sites of the winter quarthe winter quar-
ters of Kane, Greely and Hayes will be visited. The return will be along the coast of Greenland and Labrador to New York, where it is expected the vessel will arrive on September 15.
Among the party were William H. Brewer, professor of agriculture, Yale University; C. Fred Wright, of Oberin College ; Professor B. C. Jillson, Professor G. W. Dove, of Andover; L. L. Dysche, professor of zoology, Kanof zoology, Kan-
sas State Univers-
peninsula between the Delaware and Chesapeake Bays is again being agitated by the citizens of Baltimore, Md., a mass meeting having been held at that city June 25 to devise ways and means of promoting the project. At this meeting a permanent committee of 21 members was appointed to investigate the subject and to report to the city councils. The movement to construct this canal was started many years ago, and in 1878 the federal government appropriated money for making sur-
ity ; Professor Charles E. Hite, of the University of Pennsylvania; Professor Elias B. Lyon, of Chicago; and Professor A. A. Freeman, of Andover.

The Bhatgur reservoir, a great artificial lake in India, said to hold about 4,641,000,000 cubic feet of water, acts as a feeder to the Nira Canal. It is formed by a masonry dam 103 feet high and 3,020 feet long.

Sorrespondence.

To the Editor of the Scientific American
In one of the late issues of the Scientific American there appeared an article concerning the Wimshurst electrical machine without sectors. I have constructed such a machine, the diameter of the plates being $231 / 2$ inches. I have found that, after starting the machine, the "neutralizing brushes" may be removed an inch or more from the plates without decreasing the effectiveness of the machine.
This may be known to others, yet I have never heard or.read of it, and I think it would be valuable, since it decreases the strain of the plates and reduces the labor of running the machine.

John Hertner.
Dayton, O.

Chemically Preserving Potatoes

In a paper on this subject M. Schribaux states that, from the numerous experiments made on the best method of preserving potatoes, it has been established that any action should not be on the skin of the tuber, but rather on the tuber itself. I have proved, says M. Schribaux, that by radically destroying the shoots when more or less developed, the potato retains all its qualities at least till the time when the next year's growth has become abundant in the market.
Where the number of potatoes to be dealt with is small it is sufficient to remove the eyes, or the shoots, with the point of a knife, or better still with a steel penholder in which a steel pen has been placed with the point turned inward; this will be found to act in the manner of a gouge. By inserting this for rather more than a tenth of an inch into the potato, the eye is easily removed. I have in the laboratory potatoes of the year 1891 which have shriveled owing to evaporation. but of which the substance is firm, and has not sensibly deteriorated. A singular circumstance is that they have become sweet, and contain a sugar which differs in no way from cane or beet sugar.
It may be said that the process is slow, but I find that an unskilled laborer was, in a working day of 10 hours, easily able to deal with 300 lb . of potatoes. Cooking potatoes, which have a small number of eyes, can, of course, be easier dealt with. If a large quantity have to be treated a chemical process must be resorted to, in order to destroy the shoots.
The tubers then are immersed for a space of from 10 to 12 hours in water containing from one to two per cent of ordinary sulphuric acid. The potatoes must afterward be dried and put in a cool and well-aired place. The acid solution should be placed in a receptacle of wood.
The solution keeps good for a long time if the tubers are carefully cleaned so that no earth adheres to them before being put into it.
The acid acts in the following way: It eats in for about a tenth of an inch in the region around the eves where the skin is tender, while it does not affect the rest and thicker part of the skin. About the eyes it will be found that an incrustation has formed, which completely blocks them up.
The following remarks are to be noted: It is useless to treat any but sound potatoes in this way, as the treatment does not stop disease, but merely keeps the sound potatoes wholesome. The potatoes should be carefully cleared from earth before being put into the solution, as earth adhering checks the action of the acid. It is well before treating any large quantity of potatoes to experiment on a few as follows: Take three dishes of glazed earthernware and fill them with solutions containing respectively 1 per cent of the acid, $11 / 2$ per cent and 2 per cent. Then immerse half a dozen potatoes and leave them in for from 10 to 12 hours. After that take them out and dry them, and after three days' interval examine them by cutting into the eyes to see whether these have been destroyed. The external aspect of the potato will, moreover, show whether the action of the acid has been too great on the skin, and the proper strength of the solution to be used on the particular class of potato to be dealt with will by this means have been arrived at. The skins of some potatoes, it should be observed, are much coarser than those of others, and the solution requires to be regulated accordingly.

Transfusion of Blood in Its Legal Aspects.

A gentleman named Lefevre being sick unto death, transfusion of blood was had recourse to, and the patient's gardener volunteered to supply the vital fluid. The offer was accepted. Some time afterward the gardener fell ill in his turn, and the worthy delver attributing his illness to his act of generosity toward his master, claimed 60,000 francs damages. Three experts were appointed to examine and report on the case, but before the report was forthcoming the man died. His widow continued the action, and the Civil Tribunal of the Seine has delivered judgment in favor of the defendant. A post-mortem examination of the gardener's body had revealed as the cause of death cancer of stomach. The court held that even had the transfu
sion lessened the powers of resistance of the man to th ${ }^{\mathrm{e}}$ ravages of the disease that caused his death, the fact of his having voluntarily offered his blood for the benefit;of his master absolved the latter fromany financial responsibility that might be urged against him.Lancet.

Steam Consumption of Locomotives.

In the Revue Generale des Chemins de Fer M. Desdouits gives the results of a number of experiments on the steam consumption of locomotives per indicated horse power per hour. Experiments made in France in 1867 showed that at that time express engines used on test 36.38 pounds of water per indicated horse power per hour, and goods engines 33.07 pounds. It is stated, however, that the priming water amounted to 30 per cent, which, if correct, reduces the true consumption of steam to about 26.5 pounds per indicated horse power per hour. In 1882, a locomotive tested on heavy inclines on the Lyons Railway used 27.44 pounds of water per indicated horse power, the priming being 9 per cent ; this figure corresponds to about 25.5 pounds net. The cut-off was at about 30 per cent of the stroke. In 1893 an elaborate series of tests were made on the French State Railways. The engines used were four coupled, the wheels being 6 feet $63 / 4$ inches in diameter, and the cylinders $17 \cdot 27$ inches in diameter by $25 \cdot 6$ inches stroke.
The clearance at each end was 5 per cent of the piston displacement. The working pressure varied from 128 pounds to 142 pounds per square inch. The engines were first tested on the regular express service between Versailles and Chartres, a distance of 43.7 miles. The speed ranged from $37 \cdot 2$ to $40 \cdot 3$ miles per hour on five different trips, and the average consumption of water amounted to 25.61 pounds per indicated horse power per hour. It was slightly greater at the lower speeds, and slightly less at the higher ones. On another occasion one of these engines was run by a driver who preferred to throttle the steam instead of linking up, and the engine then used $29 \cdot 1$ pounds of steam per indicated horse power, while on the same trip made with the regulator wide open and the speed governed by linking up, the steam consumption fell to $24: 37$ pounds per indicated horse power per hour. By giving the valve negative inside lap, this consumption was further reduced to $23 \cdot 96$ pounds. M. Desdouits considers the experiments to show that with simple engines the best results are obtained with a working pressure of about 142 pounds per square inch, with a cut-off at one-fifth the stroke, and the valves designed so as to give negative inside lap.

Spontaneous Combustion of Sodium Peroxide and Aluminum.

Sodium peroxide $\left(\mathrm{Na}_{2} \mathrm{O}_{2}\right)$ is for many purposes an ad mirable oxidizing agent, which, however, must be used carefully, as Victor Meyer has already shown.
The authors use it in aqueous solution to oxidize the esidues they have obtained when making phosphorus by the action of aluminum upon the phosphates. It acts on these residues vigorously, but not dangerously.
The reaction is quite different when aluminum powder and sodium peroxide are mixed together. When this mixture is exposed to the air for a short time, the moisture that is absorbed by the sodium peroxide suffices to set up a spontaneous combustion. This may likewise be induced at once by the addition of a few drops of water, and is accompanied by the production of a very high temperature. This mixture must, thereore, be regarded as highly dangerous, and should be used with caution.-A. Rossel and L. Frank.

The Trolley.

"There is no use in our trying to compete with the trolley lines," said a railroad man the other day, to a reporter of the Philadelphia Record, as he glanced ruefully over some figures, which showed a decrease of
$\$ 40$ a day in his company's receipts from suburban ravel on a branch line since the opening of a trolley road. "We have to give too much to our patrons," he continued. "We provide handsome terminals, fine suburban stations, heat, water, light and a seat for every passenger, while the trolley lines furnish almost nothing but transportation. They furnish no stations; crowd the passengers in, so that many have no seat,
and in that way manage to make money. We can't do things that way, and so I see no money for us in trying to compete with the trolleys. Of course, they can't touch us on long distance traveling, but in the near future I expect to see them absorb a large amount of our suburban travel."

Ammonium Nitrate.

On mixing solutions of sodium nitrate and ammonium sulphate and refrigerating, most of the sodium sulphate formed separates out; the remainder is treatd with nitric acid, whereby sodium nitrate and sulphuric acid are formed, so that by repeated coolings ammonium nitrate separates. The mother liquors are neutralized with soda and used over again to dissolve sodium nitrate and ammonium sulphate.-Fr. Benker,
Clichy.

Fireproofing compounds.
The systematic testing of about fifty different subtances for their capacity of rendering materials uninflammable showed that the compounds recommended for this purpose are of very unequal value. Thus, by holding in the flame of a candle strips of filtering paper uniformly impregnated with solutions of the various bodies containing $20,15,10,5,3 \cdot 5,2,1$, and 0.5 per cent of anhydrous substance, or charged with an insoluble body precipitated from such solutions, it was found that, while some were rendered practically uninflammable, others did not appear to be much affected by the impregnation, or had become even more combustible than pure paper. In accordance with the results of a great number of such experiments, the substances employed are classified as follows :

1. Substances Increasing Combustibility.-Sodium sulphate, sodium sulphite, sodium thiosulphate, sodium silicate, sodium carbonate, sodium stannate, sodium tungstate, sodium chloride, potassium sulphate, potassium phosphate, potassium chloride, zinc carbonate, calcium carbonate, magnesium carbonate, calcium sulphate, ferrous sulphate, magnesium hydroxide.
2. Indifferent Substances, or Bodies which are Effective Only When Used in Lar.ge Quantities.-Magnesium sulphate, aluminum borate, zine borate, calcium phosphate, magnesium phosphate, aluminum phosphate, zinc phosphate, sodium acetate, potassium acetate, silicic acid, sodium phosphate, aluminum hydroxide precipitated from an acid solution, tungstic acid, ammonium tungstate, potassium carbonate.
3. Substances which Render Cellulose Specifically Uninflammable. -Ammonium sulphate, ammonium phosphate, ammonium chloride, calcium chloride, magnesium chloride, zinc chloride, zinc sulphate, stannous chloride, alum, borax, boric acid, aluminum hydroxide precipitated from sodium aluminate.

The lowest strengths of solution and the least quantity of substance (anhydrous) necessary for rendering 100 parts of cellulose uninflammable are given in the following table. The figures to be taken as approximate only.

Name of Substance.	$\begin{array}{\|c} \text { Lowest Percentage } \\ \text { of Substance in } \\ \text { Solution } \\ \text { necessary to } \\ \text { renders Cellilosee } \\ \text { Unin flammable. } \end{array}$	Least Quantity of Substance required for rendering 100 parts of Cellulose.
Ammonium chloride.	15	42
"، phosphate...........	1.5	45
	1.5	4.5
Calcium chloride.........	1.5	4.5
Magnesium chloride...	1.5	4.5
Aluminum hydroxide..........	$1 \cdot 5$	$3 \cdot 8$
Alum. ${ }^{\text {andphate }}$	2.0	
Stannous chloride................	$2 \cdot 5$	
Borax	1.5	8.5
Boric acid..	2.5	10.0
Potassium carbonate.	7.5	$10 \cdot 0$
Magnesium sulphate	7.5 15.0	15.0 3500
$\underset{\text { Sodium }}{\text { silicate................ }}$	${ }_{17.5}^{15.0}$	350 500
Silicic acid.	$12 \cdot 5$	30.0
Potassium chloride.	20.0	45.0
Sodium phosphate..	$7 \cdot 5$	30.0
	20.0	
Aluminum borate........ phosphate..	12.5 10.0	24.0 300
Calcium pheyt.	$12 \cdot 5$	30.0
Magnesium	$12 \cdot 5$	30.0
Zinc borate.	7.5	20.0
"" phosphate...	Above 15	
Tungstic acid.....	" 10	Above ${ }_{\text {c }}{ }^{15}$
Ammonium "	7.5	10
Clay (air-dried)................ Sodium and potassium acetates.		75.0
Sodium and potassium acetates.	75-50	.

Of these substances, the three first mentioned ammonium salts and aluminum hydroxide may be considered to be the best adapted for practical purposes. The explanation of the fireproofing properties of the ammonium salts is to be found in their becoming volatilized and dissociated by the influence of heat, the vapors formed producing an uncombustible mixture with the combustible gases. Calcium, magnesium, and zinc chlorides act in a similar manner through the separation of hydrochloric acid. Sodium and potassium chlorides being unalterable by heat are also ineffective as fireproofing materials. Zinc sulphate and alum likewise owe their effectiveness to dissociation by heat. The action of aluminum hydroxide is a purely mechanical one, hence the striking difference in the behavior of the granular modification left after drying of the voluminous precipitate from an aluminum salt and that of the exceedingly finely divided product obtained by the action of carbonic acid upon a solution of sodium aluminate.
As regards the increased combustibility of paper after impregnation with the substances enumerated above, this appears likewise to be owing to a mechanical aetion, resulting in the prevention of loss of heat.
For practical use the following strengths of solutions are recommended:
10 to 15 per cent for textile fabrics, stage decorations,
20 to 30 per cent for pasteboard, thin boards, etc.
25 to 30 per cent, applied twice or three times, for heavy timber, "thick boards, etc.
As an addition to the water used for extinguishing Ares, calcium or magnesium chlorides might be useful. -P. Lochtin, Dingler's Polyt. J., 290, 230-235.

Oleomargarine and Vegetable Lard.
v. WILET.

As a distinction between a pure and an adulterated article, take the cases of butter and oleomargarine. Pure butter for instance must be clean, sweet, wholesome, and made of the fat of cow's milk, and must sontain only a certain proportion of water, curd and salt. Oleomargarine may be as sweet, clean and wholesome as the butter mentioned above, yet when sold as butter it is clearly not pure food, but a spurious article.
Again, when the housewife buys lard it is supposed that the article she obtains has been made from the fat of healthy, freshly slaughtered hogs, carefully selected and cleaned and rendered in clean kettles or tanks. Cotton seed oil and beef tallow, in respect of cleanliness, nutritive properties and wholesomeness may equal and even excel pure lard, but the admixture of these articles with hog's lard, or their sale as such, without the knowledge of consumers, is clearly a fraud and an adulteration.
Butter.-In regard to butter, the character of adulteration is well known. The use of oleomargarine as a butter substitute has been practiced for many years. The oleomargarine law, which imposes a tax of two cents a pound on the manufactured product, has not helped to restrict its use, but has rather increased it, by giving to the consumer a guarantee of purity. The amount of tax collected on manufactured oleomargarine for the fiscal year ending June 30, 1892, was $\$ 945,675$, which shows that there were $47,283,750$ pounds of oleomargarine
tates in twelve months.
The number of retail dealers in oleomargarine increased during the year more than 22 per cent over the preceding year. The amount of tax paid by retail dealers for the fiscal year ending June 30, 1891, was $\$ 146,293.70$, and for the fiscal year ending June 30, 1892, $\$ 204,215$.
The increase in the number of wholesale dealers was nearly 100 per cent. The amount of tax paid by wholesale dealers for the fiscal year ending June 30, 1891, was $\$ 53,191$, and for the fiscal year ending June 30, 1892, $\$ 106,036$.
There can be no reasonable objection to the use of oleomargarine; it is clean, wholesome and digestible. When it is to be kept for a long time before use, as on shipboard or in distant mining camps, it is preferable to butter, because it has but little tendency to become rancid.
Lard.-For similar reasons there can be no possible objection to the use of cotton seed oil as a substitute for lard or when mixed with lard, provided it be sold for what it is. Most of you are familiar with the great fight which was made against the use of the term "pure refined lard," which was the trade name of a mixture of lard stearine with cotton seed oil. A'Pure refined lard," it was claimed, was a term which had been used so long to designate the mixed product that it had become in reality a trade mark, and was, therefore, entitled to respect and protection. In the investigation which was held before the Congressional com'mittees, it appeared that as to the trade the contention was quite justifiable. Goods sold under that name were understood to be mixed. When, however, the mixed product was offered to the consumer, it was purchased with the idea which the name naturally implied, that an extra fine quality of hog's lard was secured.
All attempts to pass a pure lard bill, modeled on the oleomargarine act, have heretofore failed in Congress, but several of the States have prohibited the sale of mixed lard, except when offered under the proper name. Manufacturers have, therefore, been gradually forced to abandon the term "refined lard" when applied to this commodity

I am of the opinion that many persons would prefer a cooking fat largely of vegetable origin to a pure animal product. To me, it seems that some State legislatures have taken a reprehensible course in prohibiting the sale of vegetable oils as a substitute for lard for cooking. The grower of hogs undoubtedly has a right to contend against the sale of vegetable oils as hog fat, but when he pushes his claim still further, and demands that the markets be closed to products as pure and nutritious as his own, he passes beyond the bounds of public support. Every person in the United States who prefers cotton oil to lard should be allowed to purchase his supplies without let or hindrance. Every grower and maker of pure lard has the right to an equally open market from which every adulterated and mixed lard offered as pure should be rigidly excluded.
For a time, a few years ago, when a popular fad prevailed in favor of nitrogenous foods, the true value of fats to the digestive and nutritive economy was not well appreciated. At the present day this is all changed, and we know how to value a fat properly.
It is, therefore, a matter of no mean importance to protect the public in the use of olive oil instead of $\frac{\text { cotton oil, of cotton oil instead of lard, and lard instead }}{*}$ rom a lecture delivered before the Franklin Institute by H. W. * rom a lecture delivered before the Franklin In
Wiley, Chemlst of the U. S. Department of Agriculture.
of a mixture of beef and cotton oil stearine. It is
true that cotton oil, when carefully refined, is almost true that cotton oil, when carefully refined, is almost
as good a salad dressing as olive oil, but is very much cheaper, and those who prefer to pay the high price should be secured against fraud. In respect of wholesomeness and digestibility, it would be hard to choose wisely between the two.
One of the great difficulties in securing the enactment of a national pure food bill has been the feeling in cotton-growing regions that such a bill would restrict the market for cotton oil. This is true, if the fraudulent market is meant. By that I mean the serreptitious sale of cotton oil as olive oil and as lard. But such a bill would not interfere in the least with the legitimate market for the product. Cotton oil as a food has such merit of its own as to warrant the belief that it does not require any smuggling to secure for it a wide and rapidily increasing use. The South as well as the North would be the gainer from honest markets for honest foods, and it is a shortsighted policy that leads to a crusade against such legislation as will secure the desired result. It would be a rather unfortunate thing for the whole country should an irrepressible conflict bet ween the sus and the gossypium keep our interstate market forever open to mixed or doubtable fats.

The Preparation of Carding.

So much has been written on these two processes that, to those who really appreciate their importance and shape their practice accorringly, it must seem that to say anything in addition to what has already been expressed is but a waste of words. A visit, however, to many of the smaller woolen mills, and some of the
larger ones as well, will prove that there is still a wide larger ones as well, will prove that there is still a wide
field for missionary work. The theory and practice still prevails that any one, no matter how incompetent, is generally good enough for a picker tender. If there is nothing else in the world that such a person is capable of doing, he can at least tend the picker well enough. Any old shed, to follow out this theory and practice, too, is good enough for a picker house, if it is only sufficiently disconnected from the main buildings to meet the insurance requirements. This is chiefly the only end a picker house is expected to fulfill. It makes no matter how rough it is, or how open at the top, sides, or floor. The little matter of wool that it takes to cover the roughness is of no consequence, as the cost of wool to be wasted is of no account when it is to be wasted by the employer. It is when the carder wishes a little more to help out his poor stock that he is givento understand how expensive it is. The machines and belts of the room may get watersoaked in every storm. But what of it? They are nothing but picking machines. They simply blow the stock through. There is no roving, or yarn, or thread to keep up, as in the case of the cards, mules, or looms ; and as for the belts, the carder's time that may be spent in repairing them, although much needed elsewhere, is of no consequence. It makes no difference if the rain does ruin them. At least it so appears until the time comes when they must
be replaced by new ones, and then there is a loud complaint that they have been so quickly destroyed. Proprietors and managers are not altogether blamable for the existence of such a state of things. They are often the effects of the carder's indifference and carelessness in regard to what is really one of the most important branches of his business.
The picker house should be just as carefully constructed and its appointments justas perfect as the card
room. These things are essential in order that the stock may go to the latter room in good working condition. If a certain degree of warmth and moisture are requisite for the proper working of the wool, it is in the picker room that it must receive it, and every precaution should be taken to keep it both warm and
moist. How can this be done in a room which is an oven in hot weather, a swimming pool in wet weather, and a refrigerator in winter? Nothing but a thick walled brick building, with high and smooth ceilings, is fit for the picking or storage of stock. If the inside partitions of the compartments are of the same material, they will be all the better. Then with a card room of similar construction, filled with and containing only carding machinery, a carder will have some chance of getting his stock worked up while it is in a suitable condition; that is, if he has seen that it has first been properly prepared.

Almost if not quite as long as the carding machine has been used, it has been the practice with more or less care to lay down the different kinds or colors of stock in layers, one upon another, until all the stock intended for the lot or batch was built up in a single
pile. This heap is then broken down at the sides as it is fed to the mixer, so that as much as is possible of all the different kinds or colors may be fed to it at the same time. After this long practice, and after all that has been said and written about doing this carefully and thoroughly, one would hardly expect to find all these precautions neglected in a modern establishment. Within a short time, however, the writer visited a mill and found it to be the praciice in the picker room to
et a fourteen year old boy take one kind of stock from bag here, another from a bale there, and so on, using his own judgment as to how much of each he put into the mixture before changing to another. No one who knows anything about picking need be told that the resulting product of this operation was not as uniform as a well laid batch of stock is before it goes through the mixer. And yet the manager of this establishment had the greatest confidence that all the imperfections resulting from this lack of system would be made all ight by the sixty doublings on the second breakers. These doublings are regarded as a sure and never failing corrective for all defects in the preliminary processes. In this very case they were expected to even up such bungling work as we have noted in the picker room. They are alsq expected to overcome the bad work from half cleaned, worn out cards, with slipping gears, as well as the imperfect work from dirty, neglected and dilapidated feeders.
In a recent article in this series something was said concerning the impossibility of getting coarse and fine drawings into a creel so as to make even drawing from the card to which they were fed. The unevenness must be slight and come with some degree of regularity to be corrected in this manner. Again, they must be used by the second card as fast as they are made by the first. In the room of which we have spoken there would be at times two or three creels full of drawings on the floor, so placed and used that there was a creel full in separate piles. Many of these piles were so nearly all coarse or all fine as to make a decidedly injurious change in the roving as each one was used.
But suppose this second breaker doubling was such universal remedy from ali previous unevenness, there is something to be said against the abuse of the stock and the first breaker, as well as the second card.
"Stock well mixed is half carded" is an aphorism among old carders. If this claim is too broad, it is certainly not too much to maintain that stock well cleaned, mixed, and picked is half broken, so far as the first breaker is concerned. If the stock is a mixture of long and short stapled wools, and it is so imperfectly mixed that the long fibers are fed separately to the card, then it is working harder than at other times. The same result will follow when light and heavy stock is fed to the scale pan in like manner, and if one portion of such half-mixed stock is what is called a "carrying stock." while the other is such as requires better stock to carry it through, then the card will at times make more flyings, which must be reworked at another loss, which of course affects the profit side of the balance sheet. Again, any one can see that there are greater chances for breakdowns and more clean stock, whether good or poor, be thoroughly worked together before it reaches the card at all.
If the second breaker gets perfectly even drawings, it does not require any argument to prove that it will do better carding than if it has at one time to take drawings that are needlessly large, while at others the feed is so very light that, but for the bolstering it gets from the heavier, it would be absolutely useless. Nor will drawing so made, although it may have evenness in weight, yard for yard, give such smooth roving as that which gets its evenness and smoothness from the first card, other conditions being equal.-Industrial Record.

Improved Method of Manufacturing Hydraulic
In order to render the usual preliminary crushing of cement clinker in stone breakers unnecessary, the patentee adds 5 to 30 parts of granulated blast furnace slag to 100 parts of the ordinary raw materials for the manufacture of hydraulic cement, and burns the mixture in the ordinary way, obtaining a product which is granular and brittle and can be fed direct to the grinding machinery without passage through a stone breaker. By the use of a larger proportion of slag, e. g., 30 to 125 parts to 100 of cement raw materials, and modifying the process of burning, a product can be obtained similar to hydraulic lime or Roman cement, or Portland cement.--G. W. A. Stein, Wetzlar, Germany.

Lount Logan, the Highest Peak in North America.
The last number of the Bulletin of the American Geographical Society announces that the recent study of the observations on mountain summits in the neighborhood of Mount St. Elias shows that Mount Logan is the loftiest peak in ${ }_{\mathrm{a}}$ North America, with a height of 19,500 feet, thus being 1,200 feet higher than Orizaba and 1,500 feet higher than Mount St. Elias.

Waterproofing for the soles of shoes.

The compound is applied over the welt and insole, or over the seams, joints, peg holes, etc. Two and onehalf pounds of wax are melted and three pounds of powdered talc, steatite, or soapstone are mixed therewith; four pints of rubber paste or caoutchouc (Brazilian gum) are then incorporated with the mass. $-E$. H. Lewis.

A STEAM ICE CREAM MANUFACTORY

The ice cream now in general use is manufactured from a combination of milk, pure cream and gelatine, flavored with different extracts, such as vanilla, lemon, strawberry, etc., the ingredients being first mixed up together and placed in circular metal vessels or runners which revolve around inside of circular wooden tubs, the runners being surrounded by a quantity of cracked ice and rock salt. Each runner is furnished with a beater having a number of blades which revolve around on the inside, beating up the material, the ice and rock salt causing it to thicken and form itself into ice cream. Some manufacturers use eggs, corn starch, etc., and boil the ingredients before freezing. The
first process is the mixing together of the ingredients: About 10 quarts of pure cream, 10 quarts of milk, and tub with the runner of cream is then rolled one side
glass windows in the cover of the runner. The wooden
top of the grinding machine, are two gearing wheels, which are geared to another attached to the shafting of the machine. When the machine is in motion the
beater, containing ten $11 / 2$ inch iron blades, and the runner revolve around in different directions, making about 55 revolutions per minute. As ANoon as the muchine is set in motion, a small quantity of ice and rock salt is added, which is renewed every few moments until the tub is filled, taking in all about 25 pounds of ice. The beating operation takes about 12 minutes, the salt and ice gradually freezing the 24 quarts solution, while the gelatine swells or raises the material up to 40 quarts. The grinding operation is completed when the ice cream shows or adheres to the

A STEAM ICE CREAM MANUFACTORY.
about 8 pounds of sugar (granulated) are first mixed together. If the ice cream is to be flavored with strawberry, about 6 to 8 drops of pure red coloring and $1 / 4$ pint of essence of strawberry is added. A quantity of gelatine dissolved in about a quart of warm water is then added to this, bringing the solution up to about 24 quarts in bulk. It is then run through a strainer or fine sieve into the runner. The runners are made of copper, the inside of which is coated with tin, which, after about four weeks' constant running has to be renewed, the coating of tin being worn off by the working of the beater. The runners are about 23 inches in height and about one foot in diameter, and hold about 40 quarts. The wooden tubs in which they revolve are 2 feet 4 inches in height and are about 20 inches in diameter on the inside, leaving a space of about 4 inches for the ice around the runner. Attached to the top of the cover of the runner and perpendicular
shaft of the beater, which revolves in a socket at the
and another is put in its place to pass through the same operation. The ice cream is then taken from the runners and put into cans ranging from 1 to 10 gallons each, and packed into ice and rock salt for delivery, which is ready in about two or three hours' time.
Chocolate ice cream is made by dissolving about 11/4 pounds of chocolate cakes in about one quart of hot water, which is added to the milk and cream in the ame manner.
For vanilla flavoring about $1 / 2$ pint of the extract is used for a can containing 40 quarts of ice cream.
The machine for breaking up ice consists of a re volving cylinder 14 inches in diameter and 20 inches in length, riveted to which are 9 conical shaped wrought ron teeth about 5 inches in length, which, when the machine is in motion, pass between a number of other teeth connected to the frame-work of the machine. The cakes of ice, which weigh about 50 pounds each,

500 to 2,000 quarts of ice cream per day. The ketches were taken from the plant of George Schmid, Jersey City, N. J.

Improvement in Beer.

This relates to the application of a preparation of he fruit of the carob tree (Ceratonia siliqua) in brewing, with the object of imparting a pleasant aroma and giving greater body to beer; also to mask the vapid, bitter flavor and render the beer better fitted for keeping and more wholesome. The fruits are treated with warm water, and are washed and dried at about $30^{\circ} \mathrm{C}$. until they present a brownish color, and the juice of the fruit when the latter is broken is dark red. The dried fruits while still warm are cut into pieces and may be stored or added directly to the mash in the proportion of about 2.5 kilos to a hectoliter of ordinary beer.-J. Pikhart, Mahrisch Schoenberg, Moravia.

ROARING ALLIGATORS IN THE ZOOLOGICAL GARDENS AT HAMBURG.
It is a dull, lazy company that one finds in that part of the reptile gallery devoted to crocodiles in the Hamburg Zoological Gardens. A lady once told the writer of these lines that he might as well have wooden models of crocodiles in the water, and they would answer the same purpose as the living animals; and in fact, a wooden block cannot lie more quietly than a crocodile, which will not move from one spot for hours, often for a whole day. When we watch these creatures, it is easy to understand the stories told by travelers about the crocodiles and alligators lying on the sand-banks of the rivers in the tropics, as still as trunks of trees. The lazy creatures move about only on rare occasions; when there is food, when they are disturbed by the cleaning of their cage, and-when they roar.

But let us first learn what conditions are necessary to make captivity endurable to an alligator. For his welfare, he needs, first of all, water ; and if the temperature of his bath is from 68^{\prime} to $75^{\circ} \mathrm{F}$., he certainly will not leave it unless obliged to do so; he will lie there for a long time with only the top of his head above water, so that his nostrils are free for breathing purposes; he can see all about him, and the slit-like ears (which can be closed to exclude the water) are ears (which can be closed to exclude the water) are
also above the water. They can be studied best when
from his hand; but the uncouth fellows are not very careful, and if the keeper were not on the watch, his hand might be taken with the food. They are fed only twice a week, and their slow digestion corresponds with the lazy nature of these reptiles. Nevertheless, and perhaps for this reason, it is perfect. On the whole, they are well fed, and the quiet life of captivity suits them admirably. The oldest of these creatures, an alligator from the Mississippi River, has already been in the Hamburg Gardens, fourteen and a half years. When he was brought he was only 2 feet long; now he measures 8 feet 6 inches, being one of the largest of the company.
Large crocodiles look so malicious, and are so dangerous when free, that the keeper does not handle our reptiles even when cleaning the cage and tank; the crocodiles are very peaceful among themselves, and only once in a while is there a bloody fight; wounds received at such times heal quickly and easily.
The artist has represented a very peculiar and unusual occurrence in the life of our captives. These creatures, which are usually so phlegmatic, are evidenty greatly excited-they are roaring. And the cause? In cleaning the neighboring cages the keeper has closed the windows suddenly, and it seems that the alligators are nervous; the unusual slamming noise dis-
moves all matters deleterious to lithography. They are then dried and subjected to the sandblast process to produce a grained surface. When this has been done they are placed in a bath composed of 4 parts of nitric acid, 1 part of phosphoric acid, and 500 parts of water, after which they are washed with water. A second and sometimes third treatment with this solution and washing with water is resorted to. In some cases, when fine-grained plates are required, a bath containing 1 part of sulphuricacid in 100 parts of water is used instead of the mixture of nitric acid, phosphoric acid, and water, as the former in no way interferes with the grain. Finally, the plates are washed with a weak solution of alum (1 part of alum to 50 parts of water), after which they are dried and are then ready for use. The plates produced by this process are absorptive and sensitive to grease, and of a similar nature to lithographic stones. Moreover, they retain their light color after being submitted to the aforesaid baths.-E. Forrest, New Southgate, and F. L. H. Bucholz, London.

The Blanco Encalada.

The Chilean government may be congratulated on their new cruiser, the Blanco Encalada, built by Messrs Armstrong, Mitchell \& Co., at Elswick, and engined by Messrs. Humphrys \& Tennant, which has

ROARING ALLIGATORS IN THE ZOOLOGICAL GARDENS AT HAMBURG.
in this position. The large alligators and Nile crocoiles that sh similar; a learned zoologist tells us that the chief dif ference between the alligator of the New World, or the cayman, and the crocodile of the Old World lies in the formation of the mouth.
The canine tooth in the lower jaw of a true crocodile passes into a notch or furrow in the upper jaw, while that of the alligator passes into a cavity or pit in the upper jaw. We have also noticed that the snout of the Nile crocodile diminishes toward the front, while that of the Mississippi alligator, or cayman, broadens and is rounded, not unlike the snout of the pike when looked at from above; and for this reason it has been called the pike crocodile. All crocodiles, without exception, are provided with the wellknown armor, and the scales on the tail stand upright. like a comb. The tail is flattened at the sides and answers for a rudder.
While we are diligently studying the exterior of our reptiles, the lazy company suddenly begins to show signs of life. The keeper is approaching with the food basket : all eyes are turned toward the door of the cage, every movement of the attendant is closely watched, and the fish, dead rats, ducks and young rabbits which he throws to the alligators and crocodiles are skillfully caught. The boldest of these come close to the keeper, who remains outside of the door, and take the food
the other raised itself, and then there was a roar. In doing this the animals drew a deep breath and sent orth a powerful bellow, their flanks moving in and out so rapidly that the water on both sides of them was forced up in jets. This moment was seized by the artist.
The alligators are making all the noise during this unusual excitement, the Nile crocodiles being quiet, simply because they are kept out of the water by their arger and consequently stronger relatives, of whom they are afraid. The Nile crocodile is the only one that has been heard to roar when free, and neither crocodiles nor alligators have ever before been known to roar in captivity.-Dr. Heinrich Bolau, in Illus rirte Zeitung.

Zinc Plates as Substitutes for Lithographic

 Stones.The zinc plates, as pure as can be obtained commercially, are passed through highly polished cold rollers to remove any surface marks. They are then placed in dilute nitric acid (1 part acid to 100 parts water). This brings to the surface of the zinc a blackish mass containing impurities, which is removed by washing with water and scouring with pumice powder. This is epeated until the nitric acid and water no longer produces any appreciable amount of the blackish mass. Such treatment renders the plates absorptive and re
just completed her official trials off the Tyne with the most successful results. The new vessel, which has a displacement of 4,500 tons, is built of steel and is sheathed with wood and coppered, so as to enable her to keep the sea for some time without the necessity of being docked. At her speed trials she averaged $21 \cdot 75$ knots with natural draught and 22.78 with forced draught, which results were considered most satisfactory; she was also found to be exceedingly handy under way. Her armament consists of two 8 inch breech-loading guns, mounted as bow and stern chasers, ten 6 inch quick-firing guns, of which four are carried in sponsons, and can fire two ahead and two astern, the remainder being carried on the broadside ; she also carries a very powerful armament of smaller quick-firing guns, and is fitted with five tubes for discharging torpedoes. She has bunker accommodation for 900 tons of coal, which we may assume will enable her to steam over 8,000 knots at 10 knot speed. Her vital parts are protected by a steel turtle back running the whole length of the ship. She is fitted with two masts with military tops, has a high freeboard throughout, and altogether gives one the impression of being a handy and weatherly ship.

The Rio Grande for more than 200 miles above El Paso, Tex., is probably the crookedest and most winding stream on the continent.

New Mode of Sinking Fo $\underset{\text { ways. }}{\text { Fin }}$
The lighthouse board has, on its own account, been trying to ascertain the character of soil under the Dial ond Shoals, which run from Cape Hatteras, N. C., ten miles out into the ocean, and upon which many vessels have been wrecked, as there is an appropriation of $\$ 500,000$ available for a lighthouse.
Under the direction of the board, Julius E. Rettig, superintendent of construction, some time ago began the construction of a simple but ingenious apparatus which is described in the Baltimore American. It had the form of a skeleton prism, 20 feet square and 32 feet high, built up of hollow wrought iron columns, hollow wrought iron struts and tie rods, and cast iron sockets at the corners, carrying on the upper end a platform. The structure weighed about thirty-two tons, and was floated by two pontoons, each 24 by 9 by 6 feet, which were clamped to the structure so that they could be liberated as soon as the skeleton was sunk upon the shoal. Through each of the four hollow vertical columns of the structure passed a solid wrought iron pile, 6 inches in diameter and 50 feet in length, having on its lower end a cast iron disk 3 feet in diameter and on its upper end a screw thread and a cast iron llange nut. The pile was held up by a clamp neatly fitted into a recess, which was tifteen feet from the upper end. The disk at the lower end was cored in such a manner that a water current could pass through it and that the water could escape through two $11 / 2$ inch openings through the face of the lower disk. A number of wrought iron water pipes and lines of rubber hose we \cdot also put on this structure, in order to conduct water uisder pressure from the tug boat, which was in attendance, to the four disks.
The apparatus was erected first upon a barge an The apparatus was erected first upon a barge and
then lifted off by the large shears at Newport News and transferred to the water. When properly rigged for transportation to the site, it drew 21 feet. In this condition the apparatus was towed out to the shoal, and after waiting a day or two for favorable weather the structure was successfully sunk at a point previously marked by the United States Coast and Geodetic Survey. Within fifteen minutes afterward the pontoons were disconnected and drifted off, and when the vessel had been securely moored alongside structure, it required but three-quarters of an hour to sink the iron disks of the piles 13 feet below the bottom of the ocean. By bolting the flange nuts of the piles to the upper sockets of the structure, the apparatus was completely secured to the bottom. In order to determine the character of the soil, a pipe of two inches in diameter was sunk from the platform of the framework into the bottom of the ocean to a depth of 105 feet.
This is the first time that borings have been made
by such an apparatus in such manner, and the whole by such an apparatus in such manner, and the whole
work, as designated, proved a complete success in its application. The planting of the framework at the site and making the borings occupied in all only nine and one-half hours. The material brought up from the depth of 105 feet consisted of fine black alluvial sand mixed with small shells and mud-a material most unfavorable for carrying heavy loads, and easily scoured by the strong current existing on the shoals. The results thus far obtained seemed to indicate that perhaps a skeleton structure, with its lighter weight and small wind and wave resistance, will be more suitable to the conditions than a solid building, especially when it is considered that the appropriation made by Congress is far too small for the latter, even if such were feasible, but ample for a skeleton one. The cost of making this examination of the soil was but $\$ 6,000$.

Another Expedition to the North Pole.

A paper was recently read before the Geographical Society, London, by Mr. F. G. Jackson on "The Jack-son-Harmsworth Polar Expedition." Mr. Jackson said that he was on the eve of leading a fully-equipped expedition to the north. He had selected Franz Josef Land as the first objective of his expedition. The day of large expeditions was gone. Nansen sailed into the ice with thirteen men, and he proposed to disembark on Franz Josef with no more than eight or nine. One of the great features of their plan and the advantage of their chosen route was the almost elaborate series of depots which it was their present intention to erect. Their supplies would be moved up from the base to the first depot, and then frow'depot to depot until they had behind them a long array of well-stocked larders; and at the last would require only to carry with them food for a few weeks.
Mr. Alfred C. Harmsworth, a fellow of the society was bearing the whole of the large cost of this expedition and sparing no pains to make the expedition successful. The ship in which they were to sail from the Thames in July was the Windward, the well known Peterhead whaler, built with special reference to ice navigation, and consequently of enormous strength. Of boats they had several types, foremost, of course, being the familiar whaling boat; next came a copper boat, with deep collapsible canvas gunwales, invented
by the Rev. E. L. Berthon. Then there was an alumby the Rev. E. L. Berthon. Then there was an alum-
inum boat, built on the lines of the copper boat, but
of course very much lighter. There were also boats of light pinewood, bolted and pinned with oak, and a birch-bark canoe. Of sledges they had seventeen, made of ash, with side rails in most cases of bamboo. The furs were, "perhaps, one of the most interesting
parts of the equipment. The first garb was the reinparts of the equipment. The first garb was the rein deer skin militza, a tunic made of brown reindeer hide
with the fur inside, and slipped over the head. The mitts were attached to the sleeve, but there was a small mitabove the wrist for thrusting the hand through when necessary. The next garment was the siluk, made on the same pattern as the militza, but of the white rein deer skin, and with the hair outside. The pimmies or long boots of the Samoyads would form their usual footwear. The traveling tents were two in number, and only about thirty pounds in weight, in spite of their double walls and ribs. They shut up much like a Chinese lantern, being crescent shaped when closed and domed when opened.
His companions would be Mr. A. Armitage, second officer in the \mathbf{P}. and \mathbf{O}. service and a lieutenant in the R. N. R , a skilled nautical astronomer; Mr. H. Fisher the botanical curator to the museum, University Colege, Nottingham, an ardent collector of wide experi nce; Mr. Childs, a clever chemist and a highly skilled carpenter, engineer, and photographer; a good geolo gist; and a surgeon.

Queer Things in Anmal Life.

The greyhound runs by sight only. This is a fact The carrier pigeon flies his hundreds of miles homeward by eyesight, noting from point to point objects that he has marked. This is only conjecture. The dragon fly, with 12,000 lenses in his eve, darts from angle to angle with the rapidity of a flashing sword, and as rapidly darts back, not turning in the air, but with a clash reversing the action of his four wings and instantaneously calculating the distance of the objects, formation of the eye does this power consist? No one can answer.
Ten thousand mosquitoes dance up and down in the un, with the minutest interval between them, yet no one knocks another headlong on the grass or breaks a
leg or a wing, long and delicate as they are. Suddenly a leg or a wing, long and delicate as they are. Suddenly a
peculiar, high-shouldered, vicious creature, with long and pendent nose, darts out of the rising and falling cloud, and settling on your cheek, inserts a poisonous sting. What possessed the little wretch to do this? Did he smell your blood while he was dancing? No one knows.
A carriage comes suddenly upon some geese in a narrow road and drives straight through the flock. A goose was never yet fairly run over, nor a duck. They are under the very wheels and hoofs, and yet they contrive to
flap and waddle safely off. Habitually stupid, heavy, flap and waddle safely off. Habitually stupid, heavy, emergency.
Why does the lonely woodpecker, when he descends from his tree and goes to drink, stop several times on his way and listen and look around before he takes his
draught? No one knows. How is it that the draught? No one knows. How is it that the species of an ant which is taken in battle by other ants to be
made slaves should be the black or negro ant? No one knows.
The power of judging of actual danger and the free-and-easy boldness that results from it are by no means uncommon. Many birds seem to have a correct notion of a gun's range, and are scrupulously careful to keep beyond it. The most obvious resource would be to fly right away out of sight and hearing, but this they do not choose to do.
A naturalist of Brazil gives an account of an expedition that he made to one of the islands of the Amazon to shoot spoonbills, ibises, and other magnificent birds which are abundant there. His design was completely baffled, however, by a wretched little sandpiper, which preceded him, continually uttering his tell-tale cry, which at once aroused all the birds within hearing. Throughout the day did this individual bird continue its self-imposed duty of sentinel to others, effectually preventing the approach of the hunter to the game and yet managing to kee
Philadelphia Times.

The Black Death in China.
The symptoms of the disease as it appears there are fever, headache, glandular swellings in the neck, armthe skin. Death takes place in 80 to 90 per cent of the cases, and usually within forty-eight hours. This is the classical description, in fact, of the plague, or, as it is variously known, the black death, the great death, the Bubo plague. We commented upon its appearance
in the autumn of 1892 in Turkestan, where 1,300 people died of the disease in a small town in six days. It is the most frightful of all contagious diseases, yet one
with which our modern civilization is totally un with which our modern civilization is totally unfamiliar. The pathologists and bacteriologists have At least it has not made its appearance in any region where a scientific student has been enabled to study it.
manner of propagation. We do know that it has paid wful visits to European countries at intervals during two thousand ycars. It was the plague of the time of Trajan. In the fourteenth century it ravaged the whole of Europe and Asia, so that $25,000,000$ people perished on the former and $36,000,000$ on the latter continent. During five months of its visitation in Naples, in 1656, 300,000 people succumbed to the malady. Those who have read "A Journal of the Plague Year," by Daniel Defoe, will remember the horrors of that London visitation in 1665 as depicted by his inimitable pen; for however much we may doubt the author's actual presence in London at the time, his striking descrip-
tions are based on facts. Sixty-nine thousand persons tions are based on facts. Sixty-nine thousand persons were carried off by the scourge in that city within a few months. Defoe speaks thus of the symptoms of the plague:

Some were immediately overwhelmed with it, and t came to Violent Fevers, Vomitings, unsufferable Head-achs, Pains in the Back, and so up to Ravings and Ragings with those Pains: Others with Swellings and Tumours in the Neck or Groyn, or Armpits, which, till they could be broke, put them into unsufferable Agonies and Torment."
The black death visited Toulon in 1721, destroying one-third of the population. Its last appearance in Europe was in 1840-41, in Turkey and Dalmatia. European physicians of some skill were enabled to study it in Egypt in 1833-1845, but that was before the science of bacteriology was dreamed of. Since then it has occasionally broken out in western Asia, on the Euphrates in 1867-1873, in Bagdad in 1876, on the Tigris in 1877, and in some parts of Mesopotamia in 1884. There was a mild visitation on the banks of the Volga in 1878, and several European governments sent medical commissions there to investigate it, but it had disappeared before they arrived. We have already referred to its prevalence in one or two villages in Turkestan in 1892.

Not only is the plague the most fatal of all epidemic diseases among human beings, but domestic and wild animals perish, likewise, from its attacks.
We might possibly remain tranquil during its prevaence in its favorite haunts in western Asia, which are not closely united with us by the bonds of commerce and travel, but we believe there is occasion for serious consideration of the scourge now that it has begun to ravage Asiatic ports with which we have frequent communication. A disease so awful in its character and manifestation, so terrible in its progress, and one for which we are so utterly unprepared, knowing as we do nothing of its causes or manner of infection or of the means for intercepting it, certainly merits serious con sideration from our government and from our health officers, especially those stationed at ports of entry for vessels from Asiatic ports.-N. Y. Sun.

Piperazine as a Uric-acid Solvent.

Dr. John Gordon, physician of the Aberdeen General Dispensary, has carried out a series of experiments on the comparative solvent action of piperazine (the base itself), borax, lithium citrate, sodium carbonate, and potassium citrate on uric acid in the form of (1) calculi,
(2) deposits, and (3) the artificially preared (2) deposits, and (3) the artificially prepared substance. His investigations differed from those which have been previously carried out-pre-єminently by Continental physiologists-in that this indicated the solvent action of piperazine in the presence of urine instead of water. The modus procedendi consisted in digesting the calculi, placed in ordinary test tubes containing 10 c.c. of normal urine, and maintained by a water bath at 39° C., with $1,2,5$, and 7.5 per cent of the solvents. Charts are given which exhibit graphically the results obtained. In the trials with a 7.5 per cent solvent t is seen that sodium carbonate had practically no effect, potassium citrate (recommended as the remedy par excellence by some authorities in the uric-acid dia thesis) was a very little better, dissolving only 4 per cent of the calculus in thirty-two hours. borax and lithium citrate were close together with 9 and 10 per cent dissolved, while piperazine is a long away ahead. the total loss of the calculus in the same time (thirty two hours) amounting to 22 per cent. Where a port. dered calculus of known composition was employed a 1 per cent solvent of piperazine dissolved 96 per cent in twenty-four hours. In the earliest stages of the experi-
ment borax was equally effective, but its action ceased ment borax was equally effective, but its action ceased after eighteen hours.
The summarized results of the work-which was car ried out in the pharmacological laboratory of Professor Cash, under a grant from the Scientific Grants Committee of the British Medical Association-show that the solvent action of piperazine upon uric acid under similar circumstances was greater than that of the other substances employed, while it further had the peculiar property of rendering any undissolved residue in the case of calculi soft and pulpy. The effect was more rapid and marked as stronger solutions were used (up to 7.5 per cent), though not in direct proportion to the increase of strength. This latter fact was held to the increase of strength. This latter fact was held to body, a considerable amount being excreted unchanged

Quicksilver Mining in Tuscany
The quicksilver mines of the district of Monte Amiata rank among the most valuable and important mineral resources of Tuscany. Monte Amiata, the Mons ad Meata of the ancients, is situated in the province of Grosseto, 36 miles from Siena.
The mines are found to the southeast of the village. It has been clearly proved that cinnibar (the ore of quicksilver) was known to the ancient Etruscans, red mercurial pigments having been used by them in decorating their vases and in such paintings as the frescoes in the rock tombs of the cities of Saturnia and Sorana. Moreover, in the mine of the Siele, stone implements have been found which are held to afford proof that the cinnibar ore there was worked in the flint age. In 1878, when a French company were carrying on prospecting operations in the vicinity of Castell' Azzara, some human skeletons were found in the course of driving an adit, and close by them a gold coin bearing the inscription of Philip of Macedon. These facts would point to the conclusion that the cinnibar deposits of the Monte Amiata were known and to some extent worked at a period of extreme antiquity.

The revival of mining operations in this district dates from the year 1846, when the accidental discovery of some pieces of rich cinnibar in the bed of a torrent induced a speculator to acquire the mining rights over the surrounding lands, and subsequently to form a small company for the purpose of searching for quicksilver. No satisfactory results were obtained, and with the exhaustion of the small capital of about $1,200 l$., operations ceased. After various vicissitudes the property was bought at auction, in the year 1865, by a Jewish mer chant of Leghorn, Signor Rosselli (whose family hold it to the present day), for about $3,000 l$.; but no one then could have foreseen the bril liant future in store for the mine.

In fact, in the year 1866 it pro duced only 58 hundredweight of quicksilver, of the value of about 600l. But gradually the yield increased until, in 1876, the produc tion reached 1,908 hundredweight, while in 1890 the Monte Amiata district produced 8,837 hundredweight, of which quantity about 85 per cent came from the Siele mine, the balance being the production of some mines of secondary impor tance in the same district which were discovered more recently. The total production of the quicksilver of Monte Amiata during the years $1866-93$ is put at 86,507 hundredweight, of the approximate value of $800,000 l$., the great bulk of which has come from the Siele mine, which remains to the present day as productive as ever.
The splendid success of this mine, while it stimulated research for the same mineral in the surrounding territory, which in some cases has met with favorable results, was also the cause of a plentiful crop of lawsuits before the Italian courts, involving disputes as to the rights of property in the mine; but prolonged litigation proved that the title of its present proprietors could not be successfully called in question.
In connection with quicksilver mining it may be mentioned that some fifty years ago quicksilver was discovered at a place called Capita, about twelve miles from the town of Orbetello, on the southwestern boundary of the province of Grosseto. A mine was opened up under the management of a Cornish mining "captain" named Davy, and for account of an Englishman. Some quicksilver was produced, but for some reason or other the work was abbandoned in 1867 , and continued so until 1893, when the mining rights were acquired by Messrs. Rae Brothers, of Leghorn, and operations of a prospecting character were commenced. The geological formation is the same as that of the mines of Monte Amiata, and the abundant indications of cinnibar met with so far encourage the expectation that the mineral in paying quantity will be found as the workings advance.

Brick Pavements.

The Director of Public Works of Philadelphia, Mr. James H. Windrim, states in his annual report for 1893: "The streets repaved with vitrified bricks, which have been subjected to the wear of ordinary business travel, have not lasted five years; there are bricks in these streets disintegrated and gone, while others are in a fair condition to withstand longer wear. If all had shown the same endurance, bricks as a material for street paving would be in greater favor. The maker knows the quality of his bricks. Those from the por
tion, of the kiln that are 'firsts' should be sold as such, after selection by the maker. The buyer or inspector cannot always know the grade of bricks by their looks, and as long as bricks are put on the market without selection to guarantee uniformity in their quality there will be distrust and their general use for street paving will be delayed."

THE ALBATROSS.

The albatross, a bird of the genus Diomedince, and of which there are several known species, is characterized by its great size, its powerfully built body, short, thick neck, and long and powerful beak, which is compressed at the sides and curves suddenly downward with a sharp hook at the point. The feet are short, the three toes long and completely webbed; the wings are long and narrow. The abundant plumage is of a grave color, which varies somewhat, according to sex and age, and also, perhaps, according to the season of the year.
The common albatross (Diomedea exulans), of which we publish an engraving-for which we are indebted to Brehm's "Thierleben"-is pure white, except for the black of the wings and a sprinkling of more or less brown over the white ground when it reaches a certain age. The eye is dark brown, the bare eyelid pale green, the beak pinkish white, shading to yellow toward the point; the feet are tinged with red. The common albatross is the largest sea bird known, weighing from 12 to 28 lb . The usual extent of its

The English Language in the United States.
There has been, from time to time, serious talk in England of the reform of English orthography. The word is a misnomer in relation to the English lan guage, for , there is nothing orthographic in it. No language, except perhaps the Etruscan, was ever reduced to such phonetic decay. The simplest and most easily acquired, as a spoken language, of all European tongues, its spelling brings the foreigner to despair. It is impossible for any man who has learned the sounds given to the letters, and acquired them in the highest possible exactness as elements, to go on from that and learn to talk the language so as to be generally under stood. This is a disgraceful fact, explain it how we may. To say that our language is the simplest of the European tongues in its grammar, in its construction of phrases, and especially in its inflections, is to claim what no one contests; and that it is the easiest to learn is a common remark by those who have studied it; but coupled always with the qualifying criticism that the written word gives but a poor indication of the pronunciation. Make it phonetically correct, and t becomes the easiest language to acquire in the world. This is for the foreigner. For ourselves, however, there is a kindlier service in the elementary education of our children. As this is now carried on, it requires in many cases two or three years for a child to learn to read, and, in not a few, many years to master the spelling of the language. By a phonetic system this time is reduced, for any language, to six weeks on an average. The suggestion of the Americanization of the English language carries with it, as the logical consequence, a radical reform, which the insular mind is too conservative to accept but which will, when accepted by the expanding branch of the race. so facilitate the acquisition of the language that no excuse will remain for the construction of a new universal speech; and it will at once establish the position of our tongue as not only the simplest in construction and the widest in extent, and, therefore, the most useful, but as the most easily acquired of all human languages. To this end, however, the reform must be radical. It is trifling with the subject to throw out a useless $g h$ here and a superfluous m or l there; not only must the useless be eliminated, but the incorrect and inexact must be made correct and exact ; there must be no two characters for the same sound, or two sounds for the same character. The change must, therefore, be radical in character, but conservative in form. The means of combining these conditions is furnished by the Merington alphabet. For the silent letters it employs italics; for the sounded vowels, accents : and for sounded consonants, modifications of the form so slight as not to offend he accustomed sense, while they the accustomed sense, while they convey to the beginner all that is requisite in the indication of modi fication of sound. The printed page, therefore, corresponds so nearly to wings is about. 11 ft ., but one was shot off the Cape of the present form that the eye is not offended, the hisGood Hope that measured $171 / 2 \mathrm{ft}$. Its powers of flight are extraordinary, as might be presupposed from the extreme lightness of its hollow wing bones, which are said to be as long as the whole body. Sailors have many stange notions about it, one of which is that it sleeps on the wing.

Damages for Electrical Shock.

In March last, while two men were taking a constitutional in Innsbruck, they discovered a telephone wire hanging down to the ground, when one of them picked it up and promptly yelled for assistance. His friend came to the rescue, knocked the wire out of his hand with a stick, and received a shock which rendered him unconscious. On recovering, he found that the picker up of unconsidered trifles was dead. A court of inquiry has now been held, at which three of the officials of the local electric lighting company were charged with culpable negligence. It appears that they had been warned several times that telephone wires above their conductors were broken, but no attention had been paid to the matter. The telephone wire in question had fallen across the conductor, resulting in the accident. One of the officials has been sentenced to one month's imprisonment, the second to four months' imprisonment, and the third his been discharged. In addition, an indemnity of 100 florins has to be paid to the injured man. Nothing has been awarded to the relatives of the dead man. It therefore appears that in Innsbruck it is less expensive to
kill a man than simply to knock him down.
tory of the language is kept intact, and the books already printed will have only a slightly archaic character to those who follow us, while the words once learned in the new character will be perfectly well known in the old. That afterward the progressive reform shall proceed little by little to throw out the use less letters, and insist more forcibly on the differentia tion of the modified, we cannot foresee or provide for or against. What is certain is that a reform will come when the desire for it has reached the requisite strength ; and the longer that reform is delayed the more reckless of conservative conditions it will be, and the more our immediate successors will have lost. And, after all, the changes will be only the putting of what we now get in our dictionaries into our text books. With this change, however, an intelligent foreigner can learn English in six months, not only, as now, to read it, but to be able to speak it intelligently and correctly-an accomplishment which is usually the result of years of study.-Century.

Wonderful Speed of Atlantic Liners.

The highest recorded speed on the Atlantic as an average for the whole passage is $21 \cdot 9$ knots per hour, performed by the Cunard line steamer Lucania. This has now been nearly equaled by her sister ship. the Campania, which has just made the passage from New York to Queenstown in 5 days, 13 hours, 8 minutes over a total distance of 2,905 knots, her average speed having been 21.82 knots per hour.

Wonderful speed of a New Torpedo Boat. The Havock and the Hornet proved themselves able to do-one a little over 27 knots, the other a little of Chis but the Daring, built by Messrs. Thornycroft, Sands measured mile, June 23, and attained the unexampled speed of more than $291 / 4$ knots. The run was made against the tide, moreover, and the Daring all the time was blowing off steam hard; as though she might, if it had been thought necessary to press her powers to the uttermost, have put on certainly another
half knot to her top speed. Having, however, as it was beaten all records so triumphantly, Mr. Thornycroft preferred for the occasion to let well alone and rest on his laurels. There was no possible doubt about the performance, for it was independently checked point by point by the Admiralty inspectors sent out in the Daring to report officially on the run, as well as by the special recording instruments set up on board, and by a number of experts, including Sir Frederick Bramwell, who watched the behavior of the Daring, chronograph in hand, with the closest interest. The exact figures for the record-breaking run were-from sea mark to sea mark, constituting the Admiralty measured miletime, $2 \cdot 3$ minutes; speed, $29 \cdot 268$ knots; revolutions of propellers, 395.
There were three high speed trial runs on the measured mile in all, after a series of progressive trials to time the mile at various revolutions of the propellers. The Daring, by the way, is a twin screw vessel. The records of the first two high speed trial runs were: No. 1. Against the tide--time, $2 \cdot 76$ minutes; speed, $28 \cdot 214$ knots; revolutions, 383. No. 2 . With the tide-time,
$2 \cdot 6$ minutes; speed, 28.571 knots; revolutions, 385 . The final and record-breaking run of $291 / 4$ knots, or $331 / 2$ miles per hour, was made against the tide, with a slight sea, and against a strong breeze. In spite of the tremendous pace, the vibration of the little vessel, as she literally tore ahead through the water, was practically insignificant, and the Daring could have fought her guns throughout without inconvenience to steadiness and accuracy of aim.
The Daring's trial trips were carried out under the personal supervision of Mr. John Thornycroft, Jr., and Mr. S. Barnaby, and among those present on board to witness the day's work were Sir Frederick Bramwell, Mr. H. O. Arnold-Forster, M.P., Professor Crookes, F.R.S., Professor Vernon Boys, Mr. J.T. Thornycroft, F.R. S., Professor Vernon Boys, Mr. J.T. Thornycroft,
Sr., who himself designed the Daring, and Mr. John

Donaldson. The brilliant result of the day's performances proved, it was announced, more successful than even the builders of the ship had quite expected, and surprised them not much less than it astonished every one else who had the good fortune to be on board the Daring.

Photography without a camera.
There are many who would "take pictures" were it not for handling of chemicals and possible staining of fingers which the development of the image on the plate involves, and the labor of carrying a camera and the necessary "traps." But photography offers a wide its votaries, as well as to those whose dainty fingers may not be soiled by contact with pyro and other darkroom "messes." It is not necessary to have a costly "box," or an expensive astigmatic, double back-action telephotoscopic objective to get lots of pleasure out of one of the many stages of photographic work. With
an ordinary 50 cent printing frame, a sheet of clear an ordinary 50 cent printing frame, a sheet of clear
glass to fit it, a bottle of prepared toning solution, package of printing-out paper and a pin, it is easy to make a fine collection of pictures. Fabrics, laces, leaves of trees, certain flowers and other things can be reproduced, and a little artistic handling will accomplish surprising results.
All such reproductions will give a white picture on a
black ground. For laces, except of the thinnest most back ground. For laces, except of the thinnest, most handling. Lay the frame face down, with the back out. Put in the glass, and then lay the lace you wish a picture of on the glass, being careful to see that it is smooth. Then put in the paper, film side to the lace,
and then the back goes in place, and is fastened by its springs. The pin is to be stuck in a corner on the face of the frame, standing straight up, and when the frame is held so that the pin casts no shadow, the sunlight is falling squarely on the lace and the paper. When the paper not covered by the lace is black, take out the sheets and follow the directions on the bottle of toning solution.
In reproducing leaves it is well to expose them to direct sunlight for some time before placing them in contact with the sensitized paper, in order to be sure
there is no moisture on them, dampness having a bad effect on the paper. For greater convenience the leaves are sometimes fastened to the glass in the frame.
and are caused by the slow decomposition of the epidermis, give a beautifully delicate lace-like picture by this process. These skeleton leaves can be prepared by spreading the perfect leaf over some smooth, soft surface, and gently striking it with a soft brush. The framework of the leaf will soon be left clean and enfram
tire.
One of the beauties of this method of making picures is the wide scope given to taste and skill in the matter of selection. The numerous contact and print-ing-out papers, the carbon, bromide and platinotype processes, are all available, and each in turn is suscep-
ible of variation and change until a bewildering variety of prints in different colors and styles can be produced. The simplest of all, however, is the ferroprussiate, or common blue-print. While this does not always give such exceeding sharpness of line as some picture makers seem to think indispensable, the fact that all the treatment necessary is a thorough washing in clean water, letting the print, after being pressed between blotters, dry in the sunlight, is a strong argument in its favor.
The question of expense need hardly be considered. The first outlay for a 4×5 inch picture would be less than $\$ 1.25$, and that would supply material enough for wenty-four blue-prints, after which the running expense of the plant would be almost nothing. $-N . Y$ Tribune.

Sir Henry Layard

The Right Honorable Sir Austen Henry Layard, ex plorer, archæologist, diplomat, and art critic, died at his London residence on the 5th of July, after an illhess of several weeks. He was born in Paris in 1817 After studying law he started on an exploring tour in 1839. The British Museum owes some of its chief treasures to this tireless explorer. His works on Nineveh gave him an enviable reputation, and as they were charmingly written, were extensively read both in Europe and the United States. Sir Henry's edition of Kugler's "Italian Painting" is a very authoritative work. He was connected with the British embassy in Constantinople from 1849 to 1852, and was Under Secretary for Foreign Affairs in 1852 and from 1861 to 1866. In 1869 he was appointed minister to Spain. He was ambassador to Turkey from 1877 to 1880. He was Lord Rector of Aberdeen University in 1855-56. During the latter part of his life Sir Henry lived much of his time in Venice.

RECENTLY PATENTED INVENTIONS.

Railway Appliances.

Carfender.-William V. Cleary, New York City. This fender is normally held a little distance above the errack, but may be instantly released
from the platform, when it springs downard into close from the platform, when it springs downward into close
contact with the track, so that nothing can pass beneath contact with the track, so that nothing can pass beneath
it. It has an inclined front end, is made of a light frameit. It has an inclined front end, is made of a light frame-
work covered with netting, and held to slide vertically work covered with netting, and held to slide vertically
on parallel shafts supported beneath the car, arms conon paralel shafts supported beneath the car, arms con
necting the shafts with the fender, while thete is a spring for depressing the arms, and a catch rod connected
with one of the arms extending up through the car

Pilot Bar Lifter.-Peter G. Cotter, Yuma, Leonidas Holladay, Pima, and Ransom J. Duncan, Yuma, Arizona Ter, A cylinder connected with
the steam or air supply is mounted at the front of the locomotive, in such way that its piston may either di
rectly or through a cam be made to lift the pilot bar, the rectly or through a cam be made to lift the pilot bar, the
cylinder being capable of an oscillating or swinging mocylinder being capable of an oscillating or swinging mo-
tion to accommodate the movement of the pilot bar tion to accommodate the movement of the pilot ban
to either side, and the mechanism being under the conrol of the engineer in the cab. The improvement ren-
ders its unnecessary for the brakeman to mount the ders its unnecessary for the brakeman to mor
cowatcher to make a coupling with the pilot bar.
Conduit Electric Railway.-John H. Tyrrell, New York City. According to this improve
ment the slotted conduit has a metalic supporting tube ment the eloted conduit has a metallic supporting tube
with diverging flanges at its lower side, there being an with diverging flanges at its lower side, there being an
open bottomed clamp embedded in insulating material within tube, the line wire being held by the clamp and projectung from the insulating material in such manner that easy contact may be made with the line wire, which.
is perfectly protected and insulated. Means are also is perfectly protected and insulated. Means are also
provided for easily shifting the trolley from side to provided for easily shifting the trolley from side to
side, and the construction is such that the trolley may be side, and the construction is such that the tr
easily disconnected and the brakes applied.
Refrigerator Car.-Ferdinand E. Canda, New York City. In this car a hatch is arranged
inthe roof above the ice crate, there being superposed air intthe roof above the ice crate, there being superposed air
tight doors for closing the hatch and a recess frame tight doros for closing the hatch and a recess frame
rigidy secured to the top of the car over the hatch, while rigidy secured to the top of the car over the hatcch, while
a lid made in two sections is hinged to the screen frame at the center. The arrangement is such that a low or high temperature is secured by means of a constant and high temperature is secured by means of a constant and
natural circulation of dry air, the temperature being
maintained with maintained with great economy.

Electrical.

Telegraph Repeater.-Alfred D. P Weaver, Jackson, Miss. This invention relates to in
struments to cause a message coming over one line to be struments to cause message ching over one ine to be
repated over another line without the aid of an intermediate operator. The improvement consists in the peculiar construction and arrangement of parts and of the
circuits and their connections, the object being to circuits and their connections, the object being to
cheapen and simplify the instrument, reduce the number cheapen and simplify the instrument, reduce the number
of connections, economize the tocal batteries, reduce the liable it to be more easily understood by inexperienced able it to
operators.

Machine for Teaching Telegra PHy.-Thomas M. Crepar, Clare, Mich. Upon a case
having a slot in itsupper side is a receiving instrument, there being also on the case a circuit breaker having an arm projecting through the slot, the arm being engaged
by proections on a traveling belt, one end of which is by projections on a traveling belt, one end of which is
supported in the case and the other end on adjustable supported in the case and the other end on adjustable
pulleys outside of the case, the belt being driven by a clock mechanism. By this means telegraphy may be rapidly, accuratell, and mechanically taught, the ma-
chine being adjustable for a chine being adjustable for a greater or less ca.
words or characters, and for the desired speed.

Mechanical.

Stóp Motion for Doubling Frames. -Elias Richards and Robert Lucas, New Orleans, La. his invention relates to spinning machinery, and com prises two rohers between which pass strands, slivers, or
sheets, and locking devices with movable and stationary portions for holding the rollers, the movable portions normally locking with the fixed portions, and being held in disconnected position by the strands, slivers, or sheets, in such a manner that, on the breaking of one of the strands, slivers, or sheets, the rollers will be held immo-
vable. This stop motion is automatic, and prevents vable. This stop motion is automatic, and prevents
single strands from passing through the drawing rollers single strands from passing throug
in case one of the strands breaks.

Agricultural

Pulverizer and Harrow.-Albert D. Powers, Owensborough, Ky. In this machine rows of teeth are located at the front and rear of a wheel-
supported frame, the teeth being actuated from the same supported frame, the teeth being actuated from the same by the driving mechanism and dropped by gravity. The teeth are so shaped that the front ones act as a series of hoes and the rear teeth act in the capacity of a rake. Al
of the teeth may be readily raised from the ground when the machine is to be moved from one field to another a construction is also provided for which will enable machine to pass over young plants and cultivate the ground at each side of the plants.

Miscellaneous.

Pneumatic Grain Conveyer.-Frederic E. Duckham, Millwall Docks, London, England.
This is an improvement on a former patented invention of the same inventor, of an apparatus for loading and unloading ships' cargoes, and consists in the combination _with oscillating two-chambered air lock delivery boxes of pneumatic apparatus working by exhaustion,
with means whereby the conveyance of grain is effected with means whereby the conveyance of grain is effected by a current of air under pressure, the means comprising
a closed chamber into which the air lock delivery box disa closed chamber into which the air lock delivery box dis-
charges, supplied with air under pressure and containing a norges, supplied with air under pressure and cone grain and connect.
Pneumatic Grain Conveyer DelivERY Apparatus.- This is a further patent of the same
inventor for an improvement to cause equilibrium of air inventor for an improvement to cause equilibrium of air
pressure to be automatically established between the ex-
hausted hopper and the chamber of the air lock delivery hausted hopper and the chamber of the air lock delivery
box about to be filled therefrom before the chamber
arrives at the filling position. This invention is also an improvement on a former patented invention of the same inventor
Shoe Fastening.-Thomas U. Walter, Huntington, West Virginia. The shoe body, according to this improvement, has an upper flap with button
holes, each having a downwardly and outwardly project ing keeper portion, while an elastic member so connect a button-holding flap with the shoe body that when this
flap is pulled on it moves diagonally outward and upfap is pulled on it moves diagonally outward and up. ward. The heads of the buttons on the button flap are
adapted to register with the inlet portions of the button adapted to register with the inlet portions of the button
holes in the upper flap;when the lower flap is pulled upward. The fasteners are all engaged or disengaged by he shoe.
Heater.-Harriet C. Cowdrey, New York City. This is a simple device in which a lamp is vitiating the air. A shell having a series of openings is provided with a shield fiting tightly yound the lamp, the shell having near its lower end a row of openings for permit the egress of the heated air. A pipe from nea the upper end of the shell leads either to the chimnes
Ice Cutter.-John G. P. Putnam, Claremont, N. H. In a main frame is journaled a driv
ing shaft, with which is geared a propelling shaft car rying propelling wheels and a shaft carrying a circula saw, there being hinged runners for raising and lowering the main frame. As the operators turn the main
driving shaft a simultaneous forward given to the frame and a rotary motion to the saw, to cause the latter to cut the ice as the machine moves forcause t
ward.
Bucksaw Frame. - Thomas C. Knowles and William J. Adams. Newton, Mass. The
frame proper, according to this improvement, is made of a single flat piece of steel, bent in proper shape to upper portion of the handle end a second handle is adjustably held by a set screw, a suitable handhold being also secured on its lower end. A light and comparatively
strong saw frame is thus aftorded which may be made strong saw frame is thus afforded, which may be made
to serve in cutting logs of considerable thickness.
Pipe Holder.-John B. Davis, Mo ine, Ill. This is a device for holding a stove or furnace pipe securely in the chimney, and also to fasten the sections of the pipe in position to form a gas and dust
tight joint. A bar secured to the pipe projects betwels tight joint. A bar secured to the pipe projects between
the pipe and a a thimble, the bar having an inwardly the pipe and a thimble, the bar having an inwardly
extending hook receiving the pipe and an nutwardly
Rubber Hand Stamp.-Robert S . Hall, New York City. This stamp has a flexible rubber backing of cellular structure, its walls connected at all gin, while the walls and the outer margin have trans-
backing is afforded, giving the necessary resiliency and Marking
Markiva Tool. - Louise Schaefer, Oneida, N. Y. This is an inexpensive and simple tool naving a spur wheel adapted toi penetrate 'the fabric to
be marked and pick up pigment from a marking board on marked and pick up pigment from a marking board holder in which chalk is held adjustably to mark the upper side of the fabric ver which the tool is run. The spur wheel may be placed in adrance of or behind the
chalk holder, or the wheel may be dispensed with and chalk holder, or the wheel ma
Register for Baskets, etc.-Ausin B. Culver, Westfield, N. Y. This improvement is more especially designed for registering the count of aning the labor and saving the time of the operator, while insuring the keeping of a proper tally. Combined with a sliding and spring-supported table is a dial carryanlet head engaging the ratchet wheel, and a spring. pressed pitman connecting the lever with the table.
Water Closet Seat.- Patrick J. Cahill, Utica, N. Y. This is a seat which may be quick-
I and conveniently fitted upon the bowl, the spud of Iy and conveniently fitted upon the bowl, the spud of
he bowl and the spud coupling being utilized as fastening devices, or an equivalent of the spud, and the seat being so connocted with the bowl that it is adjustable to any size bowl. The construction is such that when ty, the hinges will not be placed under undue tension. Sash Weight.-George S. Sergeant, dco diconnecting and interlocking two or more short or light nottedcords being employed for connecting the weights, nd the sectional weights being as cheap as the old style ingle weights. All of the weights, in each of several orms, may be used as taken from the mould, and a secanal weight of given diameter weighs almost the
Penholder. - Edwin P. McCollom, David City, Neb. The holder proper, according to this
mprovement, isformed of a rod having a head with in. ermediateandireturn wings witha pentseat beetween them, while a sleeve sliding on the head incases and compresses it to clamp the pen. The pen may at any time be conveniently discharged from the holder without soiling the bands or it may be incased and put in the pocket when
,
TENT AND Support. - Patrick F. Noonan, Fort Stanton, New Mexico. This tent has a central tubular support capable of use as a stove pipe,
dispensing with the ordinary pole and tripod. The cap is o arranged as toobviate the necessity of its removal, and prevent leakage in wet weather, the improvement providing for a stove in the center of the tent and the Note.-Copies of any of the above patents will be urnished by Munn \& Co., for 25 cents each. Please end name of the patentee, title of invention, and date

NEW BOOKS AND PUBLICATIONS. Clinical Manual for the Study of
Diseases of
The Throat.
By
$\begin{array}{ll}\text { James Walker Downie. M.B. } & \text { New } \\ \text { York: Macmillan \& Co. } & \text { 1894. } \\ \text { Pp. }\end{array}$
York: Macmillan \&
xvi, 268 . Price $\$ 2.50$.
This work is a clinical manual which, from the standpoint of the physician, seems to be very attractively pre-
sented. Of late years the throat has been much more an sented. Of late years the throat has been much more an
object of interest than in older days, and the bearing of throat diseases on the entire nervous system, and even on the intellect itself, are fully recognized. It is not too much to assume that this work, in view of the general
interest now taken in the throat, will find a place in many much os assum ta in the throat, will find a place in many
interest now taken in
libraries other than those of the physician or specialist.
Headwaters of the Mississippi. By Captain Willard Glazier. Chicago and New York: Rand, McNally \&
Co. 1893 . Pp.
527. No index.
A much vexed subject, the source of the great American rver, is here treated from the historical point of view as
well as from the geographical one. The book is enlivwell as from the geographical one. The book is enliv-
ened by very numerous illustrations, graphically showing the scenery and the adventures of the exploring parties in the wilderness, and the grounds for believing that Lake
Itasca is not the ultimate source of the Mississippi are given in detail.
Celestial Objects for Common TelESCOPES. By the Rev. T. W. Webb. Revised and greatly enlarged by Rev.
London and New York: Longmans,
Green \& Co. 1893. Pp. xvii, 233 .

The Rev. Mr. Webb's work has now reached the fifth edition. A very short biographical note of the author, now deceased, with his portrait, is a feature to be noted.
By common telescopes achromatics with apertures of 3 to 5 inches are meant. The book treats of the instrumen and mode of observation, and then goes on with the
treatment of special objects of view in the planetary treatment of special objects of view
worlds as well as comets and meteors.

SCIENTIFIC AMERICAN

BUILDINGEDITION.

JULY, 1894.-(No. 105.) TABLE OF CONTENTS.

1. An elegant plate in colorsshowing a half stone and half frame summer cottage erected at a cost of
$\$ 4,500$. Perspective views and floor plans. Mr. H. Howard, architect, New York City. An attrac tive design.
2. Plate in colors showing a Queen Anne dwelling at Melrose, Pa., recently erected for W. H. Miller Esq. Perspective elevation and floor plans. Cost
$\$ 8,500$. Mr. A. M. Walkup, architect, Philadelphia, Pa.
3. Full page engraving of Nonsuch Palace.
rected for Jo house at Rosemont, Pa., recently erected for John H. Converse, Esq., at a cost of
$\$ 11,000$. Perspective elevation and floor plans. Mr T. P. Chandler, Jr., architect, Philadelphia, Pa. A handsome design.
4. Engravings and floor plans of a cottage at Jamaica, L. I., recently completed for B. S. Waters, Esq
A popular design of American style. Cost $\$ 5,800$ A popular design of American style. Cost $\$ 5,800$
complete. Messrs. Dons \& Oborne, architects, complete. Messra:
Brooklyn, N. Y.
5. Residence at Yonkers, N. Y., recently erected for Cheever N. Ely, Esq. Perspective elevations and
floor plans. Mr. Augustus Howe, architect. New York. A pleasing design.
dwelling at Hackensack, N. J., recently erected for Mrs. Maria Bogart. Perspective elevations and floor plans. Mr. W. L. Stoddard, architect,
Tenafly, N. J. A model design. colonial cottage at Hartford, Conn., erected for
W. F. Goody, Esq. An attractive design. Floor plans and perspective elevations. Cost $\$ 4,750$ complete. Mr. Henry D. Hooker, architect, New York City.
6. A residence at Edgewater, III., recently erected for G. F. Lange, Esq. Perspective elevations and floo
7. A residence at Bryn Mawr, Pa., recently erected for Prof. Herbert W. Smyth. Three perspective eleMr. J. C. Worthington, architect, Philadelphia, Pa.
8. A picturesque country cottage at Greenwich, Conn. Perspective elevations and floor plans. Messrs.
A. H. Throp \& W. S. Knowles, architects, New York City. An attractive design.
9. Design for a stairway.
illustrated. Contents: The passing of the carpet illustrated.-Why not remodel the old home? illus-
trated.-Mott's "Sunray" steam boiler, illustrated. -Modern brick machinery.-The "Ideal" sash pulley, illustrated.-Improved wood working machinery, illustrated.-Elevators for the New Com
mercial building, Philadelphia. - Architectura wood turning, illustrated.-The Beveridge cooker illustrated.-The Variety wood worker, illustrated -The "Monarch" fireproof partition, illustrated.
View of the Hotel Phœenix, Winston, N. C. View of the Hotel Phœnix, Wiston, \mathbf{N}.
The Scientific American Arclitects and Builders
Edition is issued monthly. $\$ 2.50$ a year. Single copies Edition is issued monthly. $\$ 2.50$ a year. Single copies,
25 cents. Forty large quarto pages, equal to 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages; forming, practically, a large and splendid Magazine of Architec TURe, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting
examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largest Circulation of any Architectural Publication in the world. Sold by

MUNN \& CO., Publishers,

PBusiness and Personal.
The charge for Insertion under this head is one Dolar a line
for each insertion : about eioht words to a line. Adver for each insertion: about e eioht words to a line. Adver-
tisements must be ereceivedat mublication offce eariy Thursday morning to appear in the following week's issue
C. S." metal polish. Indianapolis. Samples free. Stave machinery. Trevor Mfg. Co., Lockport, N. Y. For best hoisting engine. J. S. Mundy, Newark, N. J. Microbe Killer Water Filter, McConnell Filter Co
Buffalo, N. Y. ffal
Wanted, a Coffee Pulper or Huller for plantation use O. Box 10, Hunh Plon, Mass.

Distance Reading Thermometers.-See illus. advercre Screw machines, milling machines, and drill presses. Centrifugal Pumps. Capacity, 100 to 40,000 gals. pe Centrifugal Pumps. Capacity, 100 to 40,000 gals. p. Patent for Sale-Wire implement, useful in all fruit lorida.
Emerson, Smith \& Co., Ltd., Beaver Fals, Pa., will send Sawyer's Hand Book on Circulars and Band Saws
free to any address. Guild \& Garrison, Brooklyn, N. ₹., manufacture steam umps, vacuum pumps, vacuum apparatus, air pump The be
The best book for electricians and beginners in elec icity is "Experimental Science,"by Geo. M. Hopkins. For the original Bogardus Universal Eccentric Mill, oot and Power Presses, Drills, Shears, etc., addres Competent persons who desire apencies for a new
pouiar book, of ready sale, with handsome proft, apply to Munn \& Co., Scientific American office. 361 Put
Patent Electric Vise. What is claimed, is time saving.
No turning of handle to bring jaws to the work, simply To turning of handle to bring jaws to the work, simply
ne sliding movement. Capital Mach. Tool Co., Auburn

Y/ Send for new and complete catalogue of Scientific d other Books for sale by Munn $\& \mathrm{Co}_{\text {. }} 361$ Broadwa

HINTS to CORRESPONDENTS.
Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our
information and not for publication. give date of paper and page or number of question
Inquiries not answered in reasonable time should
be repeated ; correspondents will bear in mind that some answers require not a little research, an
though we endeavor to reply to all either by let
or in this department. each must take his tury.
Buyers wishing to purchase any article not advertised
in our columns will be furnished with addresses of
houses houses manufacturing or carrying the same.
pecial vatters of
personal rathen Finformation on man general interest cannot be
personal rather than general interest cannot be
expected without remuneration.
cientific American Supplements referred
Scientific American Supplements referred
to may be had at the office. Pruce co cents each.
Books referred to promptly supplied on receipt of
Mi price.
marked sent for or labeled.
(6153) A. H. M. asks: 1. How can shelac be thinned after it has become thick? A. Add alco-
ol. 2. Suppose a bullet be fired perpendicular to surface of a flat rock. Will it rebound with as much orce as it went, and what per cent? (Provided the stone fired at were considerably harder than the bullet.) A.
No. The lead will flatten or go to pieces and develop No. The lead will flatten or go to pieces and develop
heat. 3. How can iron and brass be soldered together, eat. 3. How can iron and brass be soldered together,
using common solder? I have tried the usual way, but con't make it work. A. If the iron is wrought iron, use oldering acid. If cast, you cannot make a gooo jo is racket improves the racket? A. This is considered good practice, as tending to preserve the strings. 5. I conandescent lamp (run by an alternating current) in place of the lamp. The motors merely buzzed. I tried sevral methods of connection and finally hit upon the hunt method. The motors all started up violently. Why oo when the shunt would ? A. The relative lag of the o when the shunt would ? A. The relative lag of the
parallel coils and cores is the cause of the working. 6 Is there such a thing as a pea sheller? A. Such have been invented. 7. What is the lifting power of the average man of 21 ? A. Perhaps 250 pounds. It de-
(6154) F. L. B. writes : I wish to pump a quantity of water into a tank abont 20 feet high, using small gasoline engine for the motive power. Please inthe pump on the will require the and use it as a force pump o have it at the top of the tank and draw the water up by action, the water being pumped from a pond near by . There will be no difference in the actual power re of always having the suction pipe fully charged, or if not charged, of easy charging by the pump alone ; always a recommendation to set the pump as near the water level as possible or convenient.
(6155) F. W. writes: On June 28, in my capacity as display man for the weather bureau, I hoisted morning on taking the lights down I noticed that the white light had attracted thousands of small insects, the ght which hung only two feet below had attracted none When the red light hangs alone it is usually covered with insects in the morning, as the white light was on the above occasion. A. It has been noticed that insects that
around and above the light before coming in contact with it or its lantern. The glare of the white light would par-
tially blind them as to the presence of the red light above, and the insects would lodge against it in their erratic flight above the white light.
(6156) V. G. A. asks why it is that copper runs frecfrom blow holes from the smelting furnace
into the ingot, and then when you remelt and cast it, it is full of bow holes. A. Copper vaporizes or boils a temperatures above its high melting heat. In casting
ingotsa lower temperature is used, on account of the easy low of the copper into the open ingot mould. The open op and iron body of the mould allows the copper to solidify from the bottom and the vapors to readily free themselves at the liquid surface, which is the last to
solidify. On the contrary, when casting copper in sand or other close moulds, the whole surface of the casting commences to solidify at the instant of contact with th gases within the body of the metal. Two to three per cen of tin added to the copper just as the metal begins to melt makes the copper more fluid and reduces the melting emperature. This allows the metal to flow more freely into the sharp parts of the mould and gives better ven oo its contained gases. Such castings have the value an properties of pure copper for
additional quality of solidity.
(6157) F. O. W. says: Would you kindly tell how to remove freckles from one's face and hands? A. The following is quoted by New Remedies
from a German medical journal : Sulphocarbolate of zinc, 2 parts; glycerine, 25 parts; rose water, 25 parts; spirits 5 parts. Díssolve and mix. The freckled skin is to be anointed with this twice daily, the ointment being a washed off with cold water. Anæmic persons should also take a mild ferruginous tonic. In the sunlight ark vell shoula be worn.
(6158) A. H. L. asks : 1. What horse power are the motors on the trolley cars usually ? A . How operate them on a ten mile road, the road being wired in the most economical manner possible without losing energy, with either the three voltages, $500,1,000$ and 1,500 ?
A. Your conditions are incompatible. If there were as you stipulate no loss of power, the amperage asked forwould for 50 horse power be respectively $a \frac{50 \times 746}{500} b \frac{50 \times 746}{1000}$ and $e \frac{50 \times 746}{1500}$. But the cars are really run at such high power and there is always a loss on the line. 3. What size wire, and also what would be the most economical
manner of wiring 10 miles of road (taking into consideramanner of wiring 10 miles of road (taking into considera
tion the cost of wire, and the amount of power lost tion the cost of wire, and the amount of power lost
through resistance) at the three voltages $500,1,000$, and , 500 ? A. It depends on the number of cars to be run for the same loss of energy.
(6159) D. writes : It is reported in the technical papers that about 160,000 cubic feet of gas is only 7,000 to 10,000 cubic feet of illuminating gas is made available in gas works for commercial supply. Will you please inform me if these figures are correct and what becomes of this large difference of gas product? A. The large yield quoted refers to producer gas. This is mad by blowing a mixture of air and steam through coal which is thereby kept incandescent and burns. The oxide and some carbonic acid gas and all the nitrogen of the air used. Such gas is of very low quality and only
(6160) E. F. C. asks: How many am peres pass on a 500 volt lamp circuit with nine 54 volt
lamps in the series? A. It depends on the size of the lamps. Assuming them to be 450 watt lamps, then a current of $81 / 3$ amperes is required.
(6161) W. E. C. asks : Will steam heat 100 pounds pressure draw the temper from steel o the steam? What is the temperature of steam at 100 pounds pressure? A. Yes. Steel springs if made some what harder than the usual spring temper, will last a yea or two, depending upon their work. With considerable movement they soon lose their tension, and after a few times setting up, lose their strength. Brass springs are of little value at the temperature of steam heat. Stean
at 100 pounds pressure has a temperature of 338° Fah.
(6162) C. E. P. says : Kindly inform me how to make an amalgam for the rubbers for an electrical (frictional) machine. A. The rubbers of glass electric machines are coated with amalgam, consisting of equal
weights of tin and zinc melted together, with twice their joint weight of mercury added during fusion.--Kienmayer. Another amalgam is tin 1, zinc 2, mercury 4 glass. Grease is mixed with the powdered amalgam to give it softness and make it stick. In France bisulphide of tin is used.
(6163) A. N. M. asks : If wood weighing 395 pounds per cubic feet is under water a great caused by water soaking? Is there any way to preven this absorption, as by treating with pitch, creosote, etc. What timber would be the best for use for buoyancy on floating pipes in a river, considering cost, weight, durability, etc.? How would you constrnct the piston an packing of a hydrostatic machine (mercury being the fluid), so as to prevent any leakage of mercury with a pressure on piston of 40 pounds per square inch? A. The
time for becoming non-buoyant varies very greatly with different woods, depending somewhat upon their porosit and resinous nature. The commonly called hard woods may lose their buoyancy in from one to five years, accord ing to their porosity. The flotation can only be maln tained by thoroughly pitching the dry wood, thereby closing the air cells from the entrance of water. The best wood for flotation is yellow and white pine, cedar and hemlock, dry and thoroughly coated with hot pitch. cupped packing rings of rawhide kept moist wit
cerine are suitable for a mercnrial pressure pump.

INDEX OF INVENTIONS For which Letters Patent of the July 10, 1894,

and each bearing that date.

 $\begin{array}{r}522,854 \\ : 52,731 \\ 522,748 \\ \hline\end{array}$

Is, w. E. Castelem.	Staat support and antriatier, combined.
Uebling \& Steinbart.................................	
lowines.j. J. P. Paper.	
, ete. rom their	Sole
	Stiamm
	Sterem
	Stra
Treme and laaer,	
Heater, , haterer when	
Endand. HiAmate	
bearsict read	
creat ireerere	
jarit see frut	This roongr jon
cor	Tire pneumatic,
statee A. Feite:	
Sivee eeric. E. Hoph	
atione	Turunin maceia
$\begin{aligned} \text { ren } \\ \text { cine } \\ \text { piec } \end{aligned}$	
couteau	Yalle
cele	Seseme
meter:	Wall cating and making same,
See Grinding mill. Malt grindin	
Hiole	wat
	wa
	Nater
(eat	
	Weil lianing deidice, S.w
ander jemers	Wele
	Sileat dive tor operatig
	Windew seren, B. Bid Worte
formatinery dit	
	DESIGNS.
	$\xrightarrow{\text { Areh palor, }}$
Seem	
	Dispay rab
边	er bold
	Rock
	TRADE MARKS
	read carse, nan
隹	
orin	Fiols
ays	
ays swite . Fi. ifo	,
ays smiteo:	
Railway troil	${ }_{\text {Preme }}^{\substack{\text { rowa } \\ \text { Reme }}}$
aro. Seee pres	

 Study Electricity at Home

 STARRETT'S $\overline{\text { IMPROVED }}$ INDICATOR.

BUY
TELEPHONES

"Llaht Ninc" screw plates with
Birmingham(Stubs)Wire Gauge Sizes

Whachine Shop and Laboratory their mechanical troubles. Will send
primer that is itself a help.

The Bailey Automatic Bicycle Brake

120 Pages and 110 superb Cuts added. Just the thing for a present for any man, woman,
 onlcal hilusion known as the A northosocope, topenther

MUNN \& CO., Publishers, Office of the SCIENTIFIC AMERICAN,
361 BLOADWAY. NEW YORK.

 AGENTTSWANTED For FINE TOOLS IT EvERYSHOP.

THE COPYING PAD.-HOW TO MAKE and how to use; with an engraving. Practical directions
how opreparet the gelatine pad, and also the aniline ink
by which the copies are made how to apply the written

The

American

Bell Telephone Company,

125 Milk Street,

Boston, Mass.
This Company owns LettersPatent No. 463,569, granted to Emile Berliner November 17, 1891, for a combined Telegraph and Telephone, and controls Letters-Patent No. 474,231, granted to Thomas A. Edison May 3, 1892, for a Speaking Tele graph, which Patents cover fundamental inventions and embrace all forms of micro phone transmitters and of carbon telephones.

 A New Printing-Out Ready Sensitized Paper

 MANUFACTURE OF BICYCLES.-A

assessios STEAM PACKING

Computing Figures
 easy, is twiee as maick in in
sures acuracy and relieves
sure all mental and nervousstrain
Why don't
Write our zet one?
on FELT \& TARRANT MFG CO
62-50 ILLINOIS ST., CuIICAGo.

Eastman Kodak Company, Rochester, N. Y.

 AGENNS WANTED for Grinders' Supplies. Lib-

E MERY Rmery Wheels, Grinding Ma- May

 LICHT PROOF FILM CARTRIDGES. Best and Most Mractical camera, in thew indid regardBot Send for Description, with Sample of Work.
Boston Camera Mfg. Co., 382 Tremont St.. Boston, Mass.
 FIREPROOF FLOORING.-DESCRIP-

ナ 포

Sernix (Meriax

The Most Popular Scientific Paper in the World

This widely circulated and spiendidy illustrated paper is published weekly. Every number contains six. teen pages of useful information and a iaree number of original engravinks of new inventions and discoveries,
representing Engineering Works, Steam Irachinery representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures, Chemistry. Electricity Telegrapby, Photography, Arch:-
tecture, Agriculture, Horticulture, Natural History, etc. Complete list of patents each week.
Terms of Silbscription.-One copy of the Scizin. Trere Am ERRACAN will be esent for mee yena, -52 numbers-
postage prepaid, to any subscriber in the United States postage prepaid, to any subscriber in the United states,
Canada. or Mexico, on receipt of three dollars by the publishers; six montins, 81.50 ; three months, 81.00 .
Clubs. - Special rates for several names, and to Masters. Write for particulars.
The safest way to remit is oy Postal Order, Draft. o
Express Money Order. Money carefully placed inside Express Money Order. Money carefully placed inside
of envelopes, securely sealed, and correctly addressed of envelopes, securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk. Address all letters and make all orders. drafts, etc., payable to
MUN N CO., $\mathbf{3 6 1} 1 \mathbf{1}$ roadway, New Yorls
§cientific Americat §upplement This is a separate and distinct publication from 't're
SCIENTIFIC AMERICAN, but is uniform therewith in size, every number containing sixteen large pages sull of engravings, many of which are taken from foreign papers and accompanied with translated descriptions. The
SCIENTIFIC AMERICAN SUPYLEMENT is published week ly, and includes a very wide range of contents. It pre-
sents the most recent papers by eminent writers in all the principal departments of science and the Usefu History, Geograpiny, Archroology, Astrenalogy. Natura $t_{i} y$, Electricity, Light, Heat, Mechanical Engineering, Steam and Railway Engineering, Mining, Ship Building. Marine Engineering, Pbotography. Technology, Manu facturing Industries, Sanitary Engineering, Agricuiture
Horticulture, Bomestic Economy, Biography, Medicine etc. A vast amount of fresh and valuable information obtainable in no ot her publication. and Mancfactures at home and abroad are Mechanisms and Mastiacd in the Smppuineve Price for the SUPPLEMENT for the United States Canaaa, and Mexico, $\$ 5.00$ a year; or one copy of the
SCIENTIFIC Amexican and one copy or the SUPPLESCIENTIFIC AMARICAN and one copy or the SUPLLE-
MENT, bouh mailed for one year to one address for \$7.00. express money order, or check.
MUNN $\mathbf{C O}$. 361 broad way, New York.

血xixdixy giditixu.
The SCientific American Architects' and
Bulle Single copies, 25 cents. Thirty-two large quarto pages forming a large and splendid Macazine of Architecture. richly adorned witb ciegrint piates m coiors, and with
other fine engravings; illustrating the most interesting examples of modern architectural construction and allied subjects.
A special feature is the presentation in each numbe
of a variety of the latest and best plans for private residences, city and country including those of very mod-
erate cost as weil as the more expensive Drawings in erate cost as well as the more expensive. Drawings in
perspective and in color are given, together with Plans, perspective and in color are given, together
Descriptions, Locations, Estimated Cost. etc. The elegance and cheapness of this magnificent work
have won for it the Largest Circulation of any Architectural publication in the $\$ 2.50$ a year. Remit to
MUNN \& CO.. Pu

PRINTIING INKS:

