
a WeEkly Journal of practical information, art, science, mechanics, Chemistry, and manufactures.

$\underset{\text { Eistablighed }}{\text { Vol. }} \mathbf{~ L 4 5 .}$.	NEW YORK, JUNE 23, 1894.	
THE CALIFORNIA MIDWINTER EXHIBITION.	within sound of the breakers which dash against the	of this great achievement. Many of the exhibitors at
e rapid creation of the White City at Chicago	cliffs that guard the Golden Gate.	Chicago sent their wares directly to the California Fair,
a remarkable achievement, but even this wonder-	Following so closely upon the great Columbian Ex-	and a visitor there would easily recognize many familiar
feat of the skill of the architect and the engineer	position, the Midwinter Fair has not attracted the at-	scenes from the Mid way Plaisance. He could attend,
ranscended by the rapidity of transformation that	tention that its merit deserved or that	if he pleased, the fantastic nuptial ceremonies that
took place at the San Francisco Midwinter Fair. Last	received had it been held at any other time. The	took place each noontide in the Cairo Street. He
August the western portion of Golden Gate Park was	financial depression has also prevented great num-	could, if it gave him pleasure, watch the contortions
almost a wilderness made up of sand dunes and scat-	bers from visiting it, who, at a more propitious	called dances of the Oriental houris from the
ed trees. Under the hand of the landscape gar-	season, would have made a pilgrimage to San Fran-	civilized East or the barbarous but less offensive war
er, the park has been transformed into a veritable	cisco. We have from time to time published views	ances and songs of the Samoan warriors. Then there
den of Eden and a dream city was created in five	of the buildings and grounds, so that a good op-	are many scenes of interest illustrative of early Cali-
ths. A city has grown up in the midst of many	portunity has been afforded the readers of the Scien-	life, the camp of the Forty-niners, with full (Continued on page 393.)

THE CALIFORNIA MIDWINTER EXHIBITION-THE GREAT BONET ELECTRIC TOWER.

grientifir smmican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.

NEW YORK, SATURDAY, JUNE 23. 1894.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No. 964.
For the week Ending June 23, 1894. I. AGRICULTU RE.-Winthrop Gardens. - A farm in Massachusett II. ARBROLCLITURE,-The Sassafras.-The history of this tree.

 ${ }^{1}$ III. HORTICULTURE.-Dendrobium Nobilie. var. Schroderianum.

XII. MINLGG ENGINEERING. AA Great Mining Tunnel.-Tunnels

 ceent reatree and Germany.- Disposal of African territory bs re
c. SANITARY SCIENCE. - A Plea for the suppression of Vice.

 other.

It is noted by authorities, however, that in England there have been very many great disappointments with thick armor plates. In the manufacture the the Bethlehem Steel Works $\$ 20,000$, and, naturally, impaired confidence in the product of the manufacturers, so that when the time came to test sample plates to represent 650 tons of curved armor for the protection of the battle ship Massachusetts, a reduction of the velocity of the projectile was pleaded for. But when the Carnegie Company, of Pittsburg, offered to submit one of their own plates to the trial, the Bethlehem Company faced the encounter and submitted a 17 inch plate. The results obtained in the trial, which took place at Indian Head on June 12, were truly remarkable, and showed that a Harveyized plate possesses the highest possible qualities. The same 12 inch rifle whose projectile had demolished the large Harveyized plate in the preceding trial was used. The first shot struck the plate almost normally to its surface, penetrated it a distance of six inches without developing any cracks in the plate or bulging it in the rear. The Carpenter projectile was broken to pieces, small fragments flying 200 yards. A second projectile, fired at a higher velocity and caused to strike in another place, penetrated about ten inches, producing only one very ine crack, and the plate was left in condition for further service. Authorities in England have been much exercised over Harveyized plates, as it has appeared that the United States government, by the use of this process, is producing armor superior to any It is
metal issubjected to enormous internal strains in the

proposed railway from india to ceylon.

 The island of Ceylon is one of the most valuable possessions of the British Empire. It has an area of over twenty five thousand square miles, and a population of over three millions. Great progress has been made within the past few years. Railways and telegraph lines have been extended. The people are industrious and education is making progress.Ceylon is situated off the southeast side of the extremity of India, and the island is supposed in past geological ages to have formed a part of the mainland, between which and Ceylon there are now some islands and some reefs. The depth of water on the latter is small. A railway is now projected to connect Ceylon with India. It is estimated that the waterway requiring to be bridged is about thirty miles in extent. The whole work, it is supposed, will cost not more than $\$ 5,000,000$.

the island of atlantis.

Among newly projected enterprises is one for the formation of an island, ten or eleven miles out at sea, off the coast of Long Island, with the object of establishing there a summer hotel, for the benefit of citizens who wish to keep cool and avoid mosquitoes during hot weather. The projector of this enterprise, Mr. Charles Coen, and a party of coadjutors went out recently in a steamer and selected the spot, planting thereon a buoy with an attached white flag with a single red star. The water at the selected place has a depth of about 70 feet. It is proposed to sink a group of sixty iron caissons each 15 feet in diameter and to erect the hotel building upon them. The spot selected is claimed to be outside the jurisdiction of the United States or any other nation; hence the corporation will be subject to no taxes and will be subject to no laws except its own legislation. Atlantis is to be the name of the new territory.
There is nothing impracticable in the formation of an island in the manner proposed, and no great engineering difficulty stands in the way. Its accomplishment is chiefly a financial question. If the money is forthcoming-one million dollars is the estimated cost -the island can soon be created. The parties claim they can command the funds.
As defenses for the harbor of New York the building of such islands has heretofore been suggested in the Scientific American, and illustrations thereof showing the method of construction have been presented.

RECENT trials of naval armor.

Not long since there was chronicled in our columns, and in those of the daily press, the failure of an 18 inch Harveyized plate, which was tested by the government as a sample of the armor plate for the cruiser Indiana. This plate was 7 feet 6 inches wide, 16 feet long and varied in thickness from 18 inches to 8 inches, the latter thickness being only at the bottom edge, which, as the plates go on the ship, was to be under the water. The plate was the representative of six hundred tons of armor. The attack was to have been made by a 13 inch rifle, but operations were commenced with a 12 inch rifle. The projectile from the latter penetrated the plate to a depth of 8 inches, breaking it into three pieces, while the projectile suffered hardly any injury. Although this proved the plate unable to stand the test, another shot was taken at what was left of the plate, the 13 inch rifle being employed.
This completely destroyed the plate, while the projectile itself was shattered to pieces. The test cost
cooling process, which are liable to produce a plate under very high and irregular stresses. Such thick and enormous masses of metal, especially where they vary in thickness, inevitably cool irregularly, and then the use of subsequent hardening processes subjects them to still further strain. It is conceded that the system used by our government of testing sample plates selected from the lot by their own officers enables us to arrive at a much better judgment of the value of our armor than do any tests which have hitherto been applied abroad.
It causes a shock to the rational mind to see the amount of metallurgical skill which is devoted to the manufacture of armor plates and projectiles designed for offensive and defensive purposes only. The modern projectile of the finest steel turned to accurate shape is almost a work of art, yet its sole uses are to destroy an armor plate as fine a piece of work as the shell in its own way, or worse yet, to destroy life. The above may sound like platitudes, but it is a strange spectacle to see the talents of the engineer devoted to destruc tion.

How Metals are Afrected by Very Low

Before the Royal Institution Professor James Dewar recently delivered a lecture, in which he dealt with the properties of solid bodies, especially of metals, as affected by very low temperatures. He began with experiments on the effect of breaking strains and of pressure upon metals; small metal wires or bars were used, and magnified by projection upon the screen, so that those present could see, for instance, the elongation of a small copper bar under strain, and its extra contraction in diameter near the point at which it finally broke. By applying pressure to small blocks of tin and of lead, the metals were forced through a small hole in the receptacle in which each was placed, as if they were viscous liquids.
To show how metals behave under extremely low temperatures, he applied strain, by means of a commercial cement-testing machine, with the jaws modified so that they dipped into a small vessel containing liquid oxygen or air, at temperatures of from -180° to $-200^{\circ} \mathrm{C}$., and he could gradually apply a strain of about two tons by means of a double lever, upon whicl pressure was brought to bear by water gradually permitted to run into a suitable receptacle. The tensile strength of non-crystalline metals was greatly increased by low temperatures. He said that at $-180^{\circ} \mathrm{C}$. the breaking strain of tin was increased from 200 to 400 pounds, that of lead from 77 pounds to 170 pounds, and of fusible metal from 140 pounds to 450 pounds. These experiments involved a great waste of material, as the liquids boiled off vigorously while cooling down the containing vessel and the jaws of the machine, so that, he said, "some people think that it is a very large waste to obtain so small a result; but such is the way of the world." Tin has small extension at low tem peratures, and lead a great deal. He produced a few small rods of mercury, and they had a great tendency to weld and stick together wherever they came into contact. One of these circular rods, of slightly less than one-tenth of an inch in area in the cross section, broke at a temperature of $-180^{\circ} \mathrm{C}$. in the testing machine; its breaking strain was 31. pounds. It first elongated a great deal near its place of fracture, like lead, to which class of metals it belongs. By experiment he showed that the rigidity, as regards flexure, also the torsional rigidity of metals, is increased by cold. He took two tuning forks, which were synchronous at the same temperature, but on intensely cooling one of them, they gave musical beats which sounded at the same time; the rigidity and the torsional rigidity run parallel to each other. The magnetic powers of metals are enormously increased at low temperatures, and magnetisu seems to be in some remarkable way directly related to tensile strength.

	$\begin{aligned} & \text { BREAKING STRESS } \\ & 15^{\circ} \mathrm{C} \quad-180^{\circ} \mathrm{C} \text {. } \\ & \text { Tons per square inch. } \end{aligned}$		$\begin{gathered} 15^{\circ} \mathrm{C} . \mathrm{C} \text { ation }-180^{\circ} \mathrm{C} . \mathrm{C} . \end{gathered}$	
Copper.	... $22 \cdot 3$	30.0	6.8	$13 \cdot 4$
Iron....	... 34.0	62.7	8.2	47
Brass... 25.1	31.4	$35^{5} 5$	32.2
G. silver	... $38 \cdot 3$	47.0	10.7	20.4
steel....	. 354	60.0	$29 \cdot 4$	19.5

The comparative merits of different paving materials for Chicago have been classified as follows by Mr. D. W. Mead :

First cost. 2
5
5
5
2
4
6
6
5
3 $\begin{array}{ll}1 & 6 \\ 3 & 2 \\ 4 & 3 \\ 3 & 2 \\ 6 & 5 \\ 5 & \\ 3 & \\ 4 & \\ 1 & \\ 6 & \end{array}$ $\begin{array}{ll}6 & 3 \\ 2 & 6 \\ 3 & 1 \\ 2 & 6 \\ 5 & 1 \\ 3 & 6 \\ 2 & 4 \\ 3 & 5 \\ 2 & 3 \\ 5 & 4\end{array}$

Foreign competition on cottons.

According to an article in the Boston Commercial Bulletion, the cotton cloth industry prospects in the United States are far from rosy. Increasing pressure of foreign competition on our markets, foreign and
domestic, seems to be the destiny of our cotton manufacturers.
'The industry in Europe is particularly depressed.
At the international meeting of textile workers at Roubaix. France, last November, the official reports told a terrible tale of foreign wages in the cotton industry. The weavers of Manchester, England, according to this report, earn on the average $\$ 6.63$ for a week of 56 hours. The spinners average $\$ 8.53$, the girls from eighteen to twenty years earning $\$ 4.30$ to $\$ 4.50$. Piecers earn on an
$\$ 1.76$ to $\$ 1.95$.
In France the daily wage for fourteen hours' work, in Cambresis and the Department de l'Aisne, is $133 / 4 \mathrm{c}$. to $191 / 2 \mathrm{c}$. for weavers.
The representatives of a large German factory employing 1,500 hands and running 90,000 spindles reported the average earnings of girls and women at $\$ 1.45$ for a week of 66 hours.
The capitalists of England conceived the idea that operatives who required no clothing worth mentioning, and no food but oil and rice, could work more cheaply even than these unhappy toilers. So they established large factories at Bombay for the manufacture of the coarser cotton yarns.
The experiment was successful, and Manchester is suffering from the competition of Bombay, not only in India, but also in China.
More recently Japan has come to the front, and is taking the China trade away, not only from Manchester, but from Bombay. Last year there were 360,000 spindles in operation in Japan, and by the end of this year 750.000 will be turning.
The factories in Japan are at Osaka. They have the advantages of cheap coal, cheap skilled as well as unskilled labor, and a fixed rate of exchange, both Japan and India being on a silver basis. The average wages are 16.2 cents per day for male operatives and 8 cents per day for females. The prices on Japanese cotton yarns at Shanghai and Hong-Kong are cut sharply below both Manchester and Bombay rates, but the Mikado's country is doubling its machinery yearly and already has nearly as many spindles as the State of Maine.

The old University Building-1ts Once Distinguished

 occupants.The old gray granite building on University Place, facing Washington Square, which until a few weeks ago was the home of the University of the City of
New York, is now in process of demolition. For a long time, as time is measured in this quick-moving new world of ours, the building has added character to a very picturesque part of the city ; but new times and new needs have come, and now the University is to be removed to a new site beyond the Harlem River, and the familiar old building itself is to be replaced by a tall and stately business building. For nearly sixty years, or since its completion in 1835, the building has not only sheltered the schools of the University, but it has been the home of many men who have achieved fame in literature or art, and within its highceilinged rooms some of the most important inventions of the nineteenth century-inventions of great influence upon the advance of civilization or the betterment of mankind-have been made or perfected.
In the front room on the third floor of the north wing of the building Morse made his perfected apparatus for the transmission and recording of messages by electricity. : Samuel Finley Breese Morse was born in Charlestown, Mass., on April 27, 1791. He was graduated at Yale in 1810, where, while an undergaduate, he received his first instruction in electricity. Upon leaving college he studied art under Washington Allston, whom he accompanied to Europe. He was admitted into the Royal Academy in 1812, but he continued his studies uuder Allston and under Benjamin West, and in 1813 he gained a gold medal for a plaster model of the "Dying Hercules" Soon after he returned to America, and he practiced his profession with varying fortunes for many years. In 1818 he wrote to a friend from Charleston, S. C., that he was "painting night and day." In 1823 he returned to New York, thereafter, except for a few occasional absences, to make this city his home. He was one of the founders of the National Academy of Design, and became its first president, serving in that capacity for a number of years. He again visited Europe for purposes of study, his wife having died meanwhile. On October 1, 1832, he sailed from Havre for home on board the packet ship Sully.

While on board ship Morse, in conversation with a fellow passenger, learned something more of the power of electricity and the possibility of its almost instantaneous transmission through wire or other suitable conductors, and with his quick intelligence and foresight he perceived that human intelligence might control
this power. It was so that the idea of the electric tele-
graph first came to him, and with characteristic energy he began at once to develop it, and before the ship had arrived at New York he had conceived and formulated the dot and dash system of transmission. In New York Morse then lived for two or three years in one room provided for him by his brothers, in a building on the corner of Nassau and Beekman Streets. He endured many hardships, but he worked constantly upon his models and plans. In 1835, however, he was aphis models and plans. In 1835, however, he was ap-
pointed professor of the literature of the arts of design in the University, and in the same year he was able to show to his friends a working model of his invention, and also the relay magnet which he had designed to re-enforce the electric current upon a long circuit. In September, 1837, the instruments were shown to visitors in the cabinet of the University and messages were then sent from instrument to instrument over 1.700 feet of wire arranged about the room. On May 24, 1844, Morse, stationed in the chamber of the Supreme Court in Washington, received a message
sent to him from his assistant Mr. Vail, in the Mount sent to him from his assistant Mr. Vail, in the Mount
Hope depot in Baltimore. The message was dictated by a daughter of H. L. Ellsworth, the then Commissioner of Patents, and was "What hath God wrought!" Numbers xxiii. 23. The telegraph was offered to the government for $\$ 100,000$, but this offer was declined, aithough Congress at length appropriated $\$ 8,000$ for the cost and maintenance of the line then in existence. For a while Morse had other hardships to endure, and his title to his invention was disputed; but his rights were finally settled by a decision of the Supreme Court of the United States. There are now said to be $2,000,000$ miles of telegraph wires in operation in the world, in addition to 150,000 miles of submarine cables, and in 90 per cent of the connected offices the Morse instruments are in use. For many years after the demonstration that his invention was practicable Morse lived, secure in the esteem and admiration of 1872. Upon the front wall of ap house on the north side of 22 d Street, a little west of Fifth Avenue, a tablet recounts simply, "In this house, S. F. B. Morse lived for many years and died.'

While in Paris, during one of his later trips, Prof. Morse made the acquaintance of Daguerre, who was then experimenting with photograpiny or the effect of sunlight upon sensitized silver plates. Morse had previously experimented unsuccessfully in the same direction: but he learned the process of Daguerre, and working to improve his own knowledge as he could at intervals, he was, at length, able to take a sun picture. He was the first to do so in this country. Morse told of his discovery to John William Draper, who was
then a fellow professor of his in the University. Prof. Draper had studied the effect of light upon organic and inorganic matter, and he improved upon the knowledge so conveyed to him, and he was the first to take a photograph portrait from life, Daguerre having confined his attempts to landscape. Prof. Draper's sitter was his sister, Miss Dorothy Catherine Draper. Her face was powdered and the lines upon it drawn, and the sitting was long and arduous.
John W. Draper was born at St. Helens, near Liverpool, on the 5th of May, 1811. In 1832 he came to America. When the University was organized the faculty asked the authorities of Yale and other colleges to suggest a man able to become the professor of chemistry in the new University, but they could not. The faculty were in difficulty until one of the number recalled some papers upon chemistry he had then recently read, of which Draper was the author. It was then that he was elected to the chair. In 1837 he was elected professor of proposed medical department year caused an abandonment of the project for the time ; but in 1839 he was elected president of the Medical College, retaining that position until 1872, but continuing his lectures until 1881. He died at Hastings-on-Hudson, January 4, 1882.
Prof. Draper was associated with Morse in the development of the magnetic telegraph, and the series of experiments conducted by him in the laboratory of the University was the first to establish with certainty the practicability of utilizing electricity for sending messages over long distances.

Samuel Colt was another inventor who once made his home in the old building. Colt was born in Hartford, Conn., on July 19, 1814. He began work in his father's factory, but he early ran away from home and shipped as a sailor before the mast. In 1829, when only fifteen and while upon an East Indian voyage, he made the first model of his revolver. Returning home, he again entered his father's factory, and in the dyeing and bleaching acquired an accurate and extensive knowledge of chemistry, and this knowledge he put to use and profit immediately when he delivered lectures throughout the United States and Canada. The money he made in this way he devoted to the perfection and manufacture of his models. In 1835 he patented his invention, and. with some New York
capitalists, formed a company, under the name of the Patent Arms Company, with a capital of $\$ 300,000$, for Patent Arms Company, with a capital of $\$ 300,000$, for
the manufacture of his revolvers. The government
objected to the arm at first, because of its supposed tendency to explode several chambers at once and for other reasons, but Colt was able to modify and improve his invention, and in 1837, when Lieut.-Col. Harvey was at war with the Florida Indians, a few of the troops armed with this weapon were able to drive the Indians from the Everglades. The conclusion of the Seminole war stopped the sales of the revolvers, and the Patent Arms Company was forced to suspend In 1847 Gen. Taylor sent to Colt for a supply for use in the Mexican war. Colt had in the meantime parte. with his last one to a Texan ranger, and had to make a new model, after advertising in vain for an old one. In this model several new improvements were made and the government duly adopted the arm. Other improvements were made after the Crimean and other Indian wars until the weapon assumed its almost per fect shape. Col. Colt died on January 10, 1862.
Prof. Martyn Paine, who also lived in the University, although not an inventor, should be remembered for his services to humanity. He was born in Williamstown, Vt., July 8, 1794. After graduation he practiced medicine, at first in Montreal but later in this city. In 1841 he united with other physicians in establishing the University Medical College, now the medical department of the University. Dr. Paine was the author of many books upon medical subjects, and was mainly responsible for the passage of the law permitting the practical study of anatomy. Until 1854 a very stringent law was in existence forbidding the dissection of the human body. A bill was introduced in the State legislature repealing this law, but its passage was doubtful. At the earnest solicitation of his colleagues, Dr. Paine went to Albany and for three months labored with the members of the legislature, removing their prejudices and explaining the benefits which would follow its passage. He was at last successful. Di: Paine's long and useful life ended in New York on No bember $10,1877$.

Electric Photography.

In the May number of the Cosmopolitan Magazine, Prof. A. E. Dolbear makes the following suggestive re marks on the above subject :
For a long time it was believed there were three different kinds of ether waves, known as heat, light and actinic rays. The latter were supposed to be the ones that produced the chemical action on photographic plates, while light consisted of rays of a different kind, capable of affecting the eye. It was discovered, however, that the same rays that can produce vision can also heat a body, and also do photographic work, and what any ray can do depends upon the kind of matter it falls upon, so that all rays have similar characteristic properties. This discovery makes it plain that there is no peculiar kind of ether waves which can be called light, as distinguished from other kinds of ether waves. What is called light is a physiological phenomenon, and has no existence apart from eyes. So well assured is this, that the serious proposal is made to banish the word "light" from physics.
The sensitive coating upon a photographic plate is an unstable chemical compound, which may be broken up by mechanical pressure, by heat, or by ether waves. The proper wave length for a given plate depends uper the nature of its surface. The tanning of the skin, the darkening of newly laid shingles, the coloring upon apples and other fruits, is a photographic process, as can ie shown by shielding them from the sun's rays. It has long been known by photographers that pictures may be taken with ether waves much too long to be seen by the eye, if some otber substances are used in place of the simple silver salts in common use. Since it has been shown that ether waves of all lengths have an electromagnetic origin, it has been apparent that all the effects of light can be duplicated with suitable electric apparatus. Lay a coin, like a half dollar, on a plate of glass and let a few sparks from an electric machine fall on it. Remove the coin, and the glass surface will not appear to have been affected; but if it be breathed on, the image of the coin will at once be seen, and that it is really engraved on the glass surface is evident, for it will not easily rub off. If a piece of photographic paper takes the place of the glass, it must have the imprint of the coin made upon it. It is not needful to have the sparks fall upon the coin, for, if it be inclosed in a dark box. brought near to an electric machine having short sparks passing between its knobs, the ether waves set up by the latter will be sufficiently short to affect the photographic surface, which may be developed afterward in the ordinary way. So it is actually possible to take \approx photograph of an object in absolute darkness, with the ether waves set up by working an electric machine. Not much has yet been done in this direction, but it is a new clew to chemical possibilities, and one may confidently look forward to the time when the qualities and colors of surfaces of many things will be changed to suit the taste by an application of electric waves of suitable length to bring about the proper chemical reactions, and an electric machine may become a necessary adjunct to the apparatus of
the photographer may become a nec
the photographer

AN EFFICIENT MAGNETO TELEPHONE.
Until lately, it has been generally believed that magneto telephone could not be used to advantage except in connection with a microphone transmitter. This may be true of magneto telephones heretofore in use. Lately, however, a new telephone has been introduced by the Viaduct Manufacturing Co., of Baltimore, Md., which is adapted for use in manufacturing establishments, hotels, asylums and public and privat buildings and small exchanges.
A number of exchanges in which these magneto telephones are used have been established in several small towns, among which are West Winsted, Conn., Great Barrington, Mass., Emporium and Laceyville, Pa., Reidville, N. C., Liberty, N. Y., Vineland, N. J., Clin ton, Tenn.. Gaffney, S. C., Suffolk, Va., and Newport, Pa. The number of subscribers varies in the ditferent exchanges from ten to on hundred.
Our engravings show the combination magneto transmitter and
case and connections for attachment to the house sup ply service, the filter cylinder in the small illustration being $31 / 2$ inches high and of 2 inches outside diameter. The prime merit of this filter lies in the peculiar quality of the filtering cylinder, which is made of infusorial earth from the kieselguhr mines of Hanover, Ger many, composed of minute skeletons of diatomaceæ. and having an enormous number of exceedingly small pores, designed to intercept the flow of the minutest suspended organic or inorganic matter, while their hard silicious nature affords a firm and practically indestructible material. The pores are so minute as to be practically impassable by the minute germs which develop into the organisms causing putrefac tion, fermentations, and the various zymotic diseases, and yet the filter may be easily cleaned, ordinarily by simply brushing off the surface of the filtering cylinder or it may be thoroughly sterilized by being boiled in water, being gradually brought to the boiling point The capacity of a single cylinder small filter is a gallon of filtered water in three minutes at a pressure of fort
abounding in bacteria, after having been thus treated will be found perfectly sterile when tested in suitable culture media. The amount of active chlorine present is reduced within the two hours by about $9 \cdot 1$ per cent, and the remainder may be neutralized by the addition of sodium sulphite in sufficient amount-the addition of an excess would not be detrimental, as it would be soon converted into sulphate by the oxygen dissolved in the water. After treatment in this manner, water has a pure taste and a perfectly neutral reaction. Whether pathogenic bacteria are completely destroyed by such treatment has not been exactly ascertained.Zeitschr. Hygiene ; Pharm. Jour.

A NEW ARTICLE OF MANUFACTURE

The illustration represents a few of many samples of goods put on the market within a comparatively recent period, and made from "fibrone" by hydraulic pressure by the Fibrone-Terraloid Co., of No. 97 Oliver Street, Newark, N. J. The goods have a polish pounds, equal to about ninety feet head, and at other equal to the finish of the dies, and are designed to pressures in proportion. The larger illustration represents a large supply filter, especially adapted for hotels or manufacturing purposes, mineral water makers, brewers, etc., and provided with special facilities for easy cleaning. A is the inlet pipe, the filtered water passing out through F , and C represents a funnel through which a silicious wash may be introduced. An air pump is connected at D, and G and E are air cocks to be operated in connection with it, whereby suspended silica is made to do the internal scouring of the cylinders without removing them from the casing. Among the high testimonials commending this filter are the indorsements of Professors Koch, of Berlin, and Flugge, of Breslau, Surgeon-General Sternberg,
call both closed and open. In the open view is shown the powerful magnet of the transmitter which is depended on for superior results. The small cut shows one of the switches used at the Central Office.
Purchasers of the Viaduct instruments, magneto bells, transmitters, receivers and switch board, it is said, run no risk of litigation, as the company claims not to make anything which infringes existing patents.

THE BERKEFELD FILTER.

A filter which will mechanically perform its work so well as to thoroughly sterilize water, necessarily at the same time removing all minor impurities, and which will operate so rapidly as to be practically applicable to the ordinary household supply faucet, without greatly delaying the flow, presents the first elements of merit, the further most essential practical matter being that such filter may be readily cleaned and kept in its state of original efficiency. Such a filter the Berkefeld Filter Co. claim to offer, Mr. August Geise, proprietor, No. 4 Cedar Street, New York City. The small figure shows a filter of this kind attached to an ordinary water faucet, and the larger figure represents a group of such cylinders combined in one, as might be necessary in hotels and large manufacturing establishments, with added appliances to facilitate the frequent and ready cleaning out of the filters. The filtering cylinder, or the filter proper, is made in several different sizes, with inclosing metal

fibrone-terraloid electrical supplies.

take the place of hard rubber in nearly all articles for which the latter is employed. They are made in all colors. and in marble and wood imitations, and are colors. and in marble and wood imitations, and are
not affected by damp walls. In our illustration Fig. 1 shows a battery jar cover, Fig. 2 a switch handle, and Fig. 4 a telephone handle, Fig. 3 being an insulating disk, and Fig. 5 a mouth piece. The material is adapted to fill a most useful place in the making of a wide variety of articles.

How to Make Ice

To procure ice in the laboratory, even when intended to illustrate the same as an experiment, is generally brought about either by the clumsy method of mixing large quantities of the original compound with sodium or calcium chloride, and exposing to its influence the substance under examination; or when in larger quantity, by employing one of the costly refrigerators now upon the market. With a practical chemist all such apparatus is ridiculed. Take for the expensive refrigerator a fractional distillation flask; place the flask in the desired quantity of water which is in tended to freeze, contained in a suitable receptacle. Through the neck of the flask is now inserted a rubber tube terminating in a glass point, which should all but touch the surface of the liquid contained in the but touch the surface of the $1 \mathrm{c}^{2} \mathrm{c}$. c. of an equal mix
flask, which consists of about flask, which consists of about 20 c . c. of an equal mix-
ture of ether and carbon disulphide. The further ture of ether and carbon disulphide. The further
end of the rubber is now connected to a pair of constant bellows, and a brisk current of air continued

AN IMPROVED TUCK MARKER.

for about three minutes; almost immediately the thermometer will sink to zero, the vapor of the mixture introduced escaping through the small tubular of the flask, while the outside vessel, containing the water, will be found to have become inseparable, owing to the thickness of the ice formed. This constitutes a beautiful experiment for a lecture table, where the gradual development of the ice can be readily observed. By this means I have frozen a liter of water when the room was at $70^{\circ} \mathrm{F}$. in half an hour.-Chem. News.

THE SIMONDS STEAM WAGON

On account of electric and cable traction, not to mention the more humble bicycle, the tendency of the present day is that the horse must go, must go metaphorically, for his days of labor seem nearly passed. In the furtherance of this view, we illustrate a steam road wagon, in which steam is to do his work on country roads and city streets, something which has been for many years one of the foremust aims of the inventor.
abled and have to be drawn off the track, and the grip may have to be removed. The patrol wagon is provided for all of these emergencies. Two or three men working with the jacks can in a very few minutes throw a car completely off the track, leaving the way clear for others. A broken grip can be taken out, a truck with broken axle can be removed to one side, and any similar work can be quickly performed.
The most characteristic service of the patrol wagons, however, is that which they perform at fires. Each
ignal station. From this station the inspector signals for the wagon in case it is required, calling it either up or down town. On receipt of the signal, the wagon proceeds up or down the line as ordered, the driver watching as he goes until he reaches the place where his services are needed.

pontaneous combustion of colored paper.

A correspondent of the London Times says: "One of my children complained that a smell of burnt paper of my children complained that a smell of burnt paper
was perceptibie in the house. This smell had been noticed some hours previously, but was not then traced to its source. A careful search led to the discovery that a paper lamp shade in one of the rooms had been entirely consumed by fire. For two days prior to the accident, the lamp, a duplex, had not been lighted, and 'there had been no fire in the room. Since the morning of that day, when the room was dusted and the shade apparently in its usual condition, no one had entered the room. The shade was made about a year ago from so-called crinkled tissue paper one white and one yellow sheet, gathered together on the upper part where it was fixed to the wire frame, where it formed a considerable bunch, and spreading thence over the frame below. On examination the yellow paper was found to be colored by chromate of lead, and this no doubt was the cause of the accident There can, I think, be no doubt that this was a genuine case of spontaneous ignition, though I have not as yet been able experimentally to reproduce the necessary conditions leading to such a result. Fortunately there were no readily inflammable articles near, or a serious firt might have resulted, the origin of which would probably never even have been suspected. The dangerous paper is readi ly recognized by setting fire to a piece of it and blowing out the flame. In the case of ordinary paper it will be found that the glow along the burnt edge is very soon extinguished, whereas in the case of these chromate papers, it continues until the whole is consumed, as is the case with ordinary touch paper. I find that besides the yellow paper, pale greer paper also contains chromate yellow paper, pale green paper also contains chromate dually dangerous, and possibly there are papers of other colors contain ing the same material. It would be interesting to learn whether any similar case has been observed before.'

Gold Production.

Current statistics of the country's gold product in 1893 estimate it approximating $\$ 36,000,000-\$ 3,000,000$ more than 1892. The silver product for 1893 is estimated at a little over $\$ 78,000,000-$ a decrease of $\$ 6,000,000$
from the previous year. The returns published in various papers lately show the yield of gold in Australasia for 189:3 to be $1,876,561$ ounces. Giving this a value of $\$ 20$ an ounce would make that worth $\$ 37$,531,240 . It will be ob served that Australasia produced more gold last year than the United States. For the first three months of 1894 the Witwatersrand district in South Africa h as produced 467,056 ounces, an increase of nearly 50 per cent over last year. The South African gold, so reputed, is about 0.82 fine. If the African output is kept up during the year, the total will be about that of the United States for the same period. The average annual gold yield of the world for the last ten years has been $\$ 32,000,000$.

So great is the echo in one of the rooms of the Pantheon that the striking together of the palms of the hands is said to make a noise equal to that of a 12 pound cannon.

The Telegraph and its Inventor.

On May 24 last occurred the fiftieth anniversary of the sending of that famous message, " What hath God wrought !" by the electric telegraph. A line had been constructed by government aid from Washington to Baltimore, and over this line that message was transmitted on May 24, 1844. This was considered the first practical demonstration of the invention. To estimate the value of this invention would be most difficult. It has bound the world together, made possible the daily press and the modern systems of business. Electricity in the industrial and commercial world dates from the above event. Since that day invention has followed invention, until it seems to the practical man of to-day that the summit has been reached; and yet possibly the same thought came to
sing of the first message
Samuel F. B. Morse, the inventor of the telegraph whose name is famous the world over, had the advantage of educated and wise parents, who directed his studies and whose counsels guided his conduct through life. He was educated at Yale College, graduating at 19 in 1810. His chosen profession was that of a painter. Under the best masters he studied in England, France and Italy. In 1813 his painting, "Dying Hercules," was placed among the twelve selected from those in the exhibit of the Royal Academy, London, and for a bust of Hercules he received a gold medal. This was his first success. His reputation grew rapidly and he executed many important commissions. A great disappoint ment, and one which even his later successes did not efface, was his failure to receive one of the commissions for the paintings for the capitol.
Inventors have come from nearly every walk of life, yet it is seldom that a person forsakes a calling in which he has attained prominence to enter upon the laborious duties of an inventor. Such, however, was the case with Morse. The field he entered was not unfamiliar to him. While at college he attended the lectures of Profs. Silliman and Day on electricity, and took great interest in the subject. In his studies and following the duties of his profession he added to his fund of general knowledge. He was a personal friend of Profs. Dana, Henry and others, who were experimenting with electricity. His inventive talent had previously manifested itself in many ways. Morse dates the in vention of the telegraph from his voyage on the ship Sully, from Havre to New York, on his return in 1832 from Europe, where he had spent three years in executing numerous commissions and in study. It wa suggested by conversation on the ship on the discover-
ies recently made in electricity. He spent almost the ies recently made in electricity. He spent almost the ing by means of drawings his system of telegraphy. The systems of telegraphy previously devised were limited to the distances the sight or hearing could cover, but his system was not limited by distances. Immediately upon his landing in New York he commenced the work of constructing his instruments. The history of the next ten years is similar to.that of other in ventors Without the means to perfect and to place before the public in a desirable way his apparatus, he was obliged to make his own instruments and at the same time earn his expenses until he secured, in 1837, the aid of Mr . Alfred Vail, who became his partner and valuable assistant.
After having exhibited his instrument before various scientific societies and prominent citizens, he determined to place it before Congress. He set up his instru ments in a room of the capitol and exhibited them to the President and members of Congress, but it wasnot until February, 1843 , that he succeeded in securing an appropriation of $\$ 30,000$ to test the capacity and use Baltimore was determined upon as likely to prove the most beneficial. The wires were to be placed underground, incased in lead tube, but after seven miles had been laid it was found that in the process of manufac-
ture the insulation of the wire had in many places been destroyed. This plan was then abandoned and the wires were placed on poles. The work was prosecuted from both ends, and in May, 1844, the two parts were joined and the line completed. On the 24th the public trial took place. Two days later the national Demo cratic convention assembled in Baltimore, and the dispatches transmitted during the convention greatly increased the interest in the telegraph. All these dispatches were recorded on strips of paper, which wa then considered an important part of the system.
For the operation of this line Congress appropriated $\$ 8,000$ and placed it in charge of the Postmaster-General. Commencing April 1, 1845, a tariff of one cent for four characters was laid. For the trst four days the revenue amounted to one cent; on the eighth day the revenue increased to $\$ 1.30$. It was the intention of Morse and his associates to sell the patents to the government, and that the government would establish lines in connection with its postal system. In this he was not successful. In May, 1845, the Magnetic Telegraph Company was organized to build a line from New York to Washington, which was the first step in the establishment of the vast system that covers the civilized world. Prof. Morse received greater honors
from the different nations than were paid to an American citizen. His life, which covered over four score years, closing in 1872, was full of activity.
Many interesting souvenirs of the telegraph and its inventor are preserved by his grandson and namesake, Mr. S. F. B. Morse, of Chicago, who is identified with connected with the telegraph, and at present is a memconnected wilh known firm handling, in the West, insulated wires. Mr. Morse was a favorite of his grandfather, and retains a vivid recollection of many incidents and interviews with him.-Electrical Industries.

Compo-board, a New Huilding Material.

- One of the factories that form the new huge plant of the C. A. Smith Lumber Company, at Forty-fourth Avenue North and Lyndale Avenue, Chicago, is a factory for the manufacture of what they call "compoboard." This material is designed to serve instead of lath and plaster, and is described as follows by the Northwestern Lumberman: It is made of $1 / 8$ inch strips of wood, from $3 / 4$ to $11 / 4$ inches wide, placed between two sheets of heavy straw board and united under heavy pressure with a strong cement. The process of manufacture is peculiar. Into the machine that moulds the board are run two sheets of the straw board from rolls, one from above and one from below a table onto which are fed from a feeding device the strips of wood. A roller running in a tank of the liquid cement rolls upon the inner surface of the sheets of straw board, and the three layers of material run together between rolls and into a hydraulic press capable of exerting a pressure of 120 tons to the square inch. Ten feet of the board is stopped automatically for a few seconds in the press, then run out upon a table fitted with cut-off saws, where it is sawed to the
desired length. It is then run upon trucks, placed in desired length. It is then run upon trucks, placed in
the dry kiln, and when taken out is trimmed to 48 inches in width
The strength of the board as compared with its weight is marvelous. The ends of an 18 foot board can be brought together without breaking or warping it. No conditions can warp it. The new office building of the C. A. Smith Lumber Company is sheeted within with this material. Wall paper is put upon the board, and the finish is as fine as upon any plastered
wall. The strong points claimed for the board are : wall. The strong points claimed for the board are forms an absolutely air-tight wall. It stiffens a building much more than any coat of mortar and lath can. It is quickly put on, and produces no dampness, thus ausing no swelling and shrinking of floors and casings. It is light, thus avoiding the dragging down of the house frame, the consequent cracking of walls, and the warping of door frames. It forms a solider, cleaner, warmer, drier wall at no more expense than is involved in the old way.

The Chinese Language.

Mr. C. Imbault Huart, in a manual for the acquisition of the spoken Chinese language, analyzed by the Revue Scientifique, gives some very interesting information about this tongue, concerning which very little is generally known, and that little very inaccu ately.
Mr. Huart lays it down as a principle that there are two distinct languages in China, or, more accurately speaking, two forms of the same language, the one written, the other spoken. The first consists of signs or characters of one or more strokes of the brush to
each of which is conventionally attached a sound. As the keyboard of the human voice is limited, and as it was impossible for the cycle of Chinese knowledge to be so, it results that we find a host of characters that have identically the same sound, that is to say, that are pronounced alike, while at the same time having a particular sense. In consequence of this multiplicity of homophonous terms, this language cannot be
spoken; it is only to be written. It has as its principal poken ; it is only to be written. It has as its principa guage, on the contrary, is polysyllabic. Most of the words therein are formed of the aggregation of two or more sounds, to each of which, in the written language, corresponds a single character. It is spoken, but not written. This statement is worthy of meditation, and may be recommended to the consideration of those philologists who still insist upon classing the
Chinese language as monosyllabic, and who perpetChinese language as monosyllabic, and who perpet-
ually confound the written with the spoken lan guage-the signs with the words that they represent.
The principal character of every primitive lanuage has been monosyllabism ; there is no longer any doubt about that. Every language, monosyllabic in its nfancy, has afterward developed by means of various processes, which, in the Indo-European languages,
have been juxtaposition, attraction, composition, etc., and, in the Semitic languages, deflection; and thus polysyllabism has been reached. The same has been the case with Chinese. The spoken language, says Mr. Huart, had necessarily to originate before the written, and the Chinese characters were devised for figuring the idea that the sounds of the spoken lan
y exhausted and it soon happened that such or such sound was found to answer to several characters. The sounds were limited, but the figurative signs could not be. The Chinese then conceived of tones and aspirations, and this produced a certain number of new sounds; but this did not yet suffice, and they had to have recourse to another system. The sound fou, which, in the spoken language, expressed the idea of "father," "happiness," "housewife," "ax," "to hide," "to lift," etc., could indeed be varied by the aid of tones, but not by means of aspirations. The Chinese then invented a simple, regular and ingenious lexicological system. They formed words by the method of composition, that is to say, they comlanguage according to fixed rules.
Mr. Huart gives an example that clearly shows how the spoizen language passed from monosyllabism to polysyllabism. The sound fou, above mentioned, having several meanings, would have inevitably led to confusion. Upon this sound being heard isolatedly, it could not have been known what fou it was a question of: whether it concerned fou, "father," fou, "wife," or fou, "to hide," etc. In order to avoid such ambiguity, the Chinese added to fou, "father," the word ts'inn, "relative," and fou-ts'inn, "father-relative," then signified "father ;" to fou, "wife," was added jenn, "human being," and fou-jenn then signified "woman," "wife;" before fou, "to hide," was placed mai, "to inter," and mai-fou took the meanng of "to place one's self in ambush," etc.
Mr. Huart states that the Chinese language is easy to learn. Its grammar is simple, and free from all those stumbling blocks that arrest the progress of students of the European languages. In Chinese there is no article, no gender, no declension and no conjugation. The relations of substantives, tenses and moods are marked by particles, which are very few in number. In itself, the syntax is quite simple, and has the logical order for its basis. The rules are few and easy to remember.
The Chinese themselves, even the most highly educated, have no knowledge of the grammar of their language. They do not know what a noun in the genitive, dative, instrumental or ablative is, nor what a substantive, adjective or verb is. They divide the words of their language into two great classes-the "full" and the "empty" words. The former are those that have a proper signification, such as nouns, and the latter are particles that serve merely for modifying the meaning of the former or for marking the relations that connect them. Their language once created, the Chinese have not known how to derive rules therefrom. The idiom has become fixed by usage-a word under the protection of which everything is placed in China. The most learned member of the "Forest of Pencils" (Institute of China) would be incapable of analyzing the first sentence presented to him or of explaining it grammatically. If he were asked why the sentence was constructed in such a manner rather than in another, or why such a word was found at the beginning and not at the end, he would never be able to tell. He would answer that he knew that it should be so, but that he did not know why. „The Europeans and Americans are the only ones capable of analyzing a sentence, and they alone have been able to deduce rules of grammar and syntax in order to guide students and teach them to learn how to construct correct Chinese sentences.

Mr. C. Wher Gitric Actd

. Wehmer, in carrying on experiments upon genus (to which he gives the name of Citromyces) that has the remarkable power of converting carbohydrates into citric acid. Of the genus, he describes two species, C. Pfefferianus and C. glaber. Their ordinary mode of multiplication is by conids, but they occasionally produce other structures, which may be sclerotes or asci ; and a yeast-like budding also occurs. The production of citric acid is in the first place due to oxidation of the carbohydrate, and is dependent on the presence of oxygen. The most favorable nutrient substratum for its formation is a moderately concentrated solution of sugar. The change is probably due to a process of oxidation represented by the following equation :
$\mathrm{C}_{6} \mathrm{H}_{12} \dot{\mathrm{O}}_{6}+3 \mathrm{O}=\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}+2 \mathrm{H}_{2} \mathrm{O}$.
A full description of the conditions under which it takes place is given in a paper that was communicated to the Berlin Academy of Sciences last June. This mode of producing citric acid is now being worked at Thann and Mulbausen, and there is a prospect that, in addition to its scientific interest, it will be of industrial importance.
In connection with this subject, the Kew Bulletin calls attention to the interesting coincidence that citric acid has been found in sugar cane juice, and that it ometimes makes its appearance during the process of sugar manufacture.

There are 10,000 copyrighted volumes of American poetry in the Congressional Library at Washington.

©arrespondence.

How to Mend an Incandescent Lamp.

To the Editor of the Scientific American:

T. R. E., in query 5978, date April 28, 1894, asks how to mend an incandescent lamp when the wires are blown off close to the glass. I mended a small lamp of the Swan type by filing off the glass (with an ordinary steel file) close to the broken wire, making a rightangled cut, then carefully bending the projecting piece of platinum wire into a small hook; round this I lashed some thin platinum wire, so as to form a loop to take the place of the broken one. These loops can be easily fitted in the two bent wires in the holder, taking the precaution of pressing back the spring wire when inserting the lamp. I advise T. R. E. to buy lamps in which the glass neck is surrounded by a metallic ring, the space filled with some insulating material, out of which two strong copper wires, soldered to the platinum wire, project. These wires are twisted several times into a loop. This kind of lamp, as I know from experience, can stand almost any kind of rought treatment.
Propaganda, Rome, Italy.
F. Haushahn.

Artificial Perfumes.

Almost all the natural perfumes are of vegetable origin, and are derived from the treatment of flowers and fruits. In this way are obtained the aromatic essential oils of rose, mint, anise, santal, thyme, cloves, etc., and the perfumes of the violet, iris, and jasmin. Musk is the only important perfume that is of animal origin.
For a long time now, the odor of fruits has been imitated with the aldehydes and ethers of fatty acids, such as the acetates, valerianates, benzoates, salicylates and butyrates of methyl, ethyl and amyl, which, mixed in definite proportions, recall the odor of strawberries, raspberries, apples, pears, etc. The following are two examples of such mixtures:

PERFUME OF THE PINEAPPLE.

Chloroform.	10 grammes.
Aldehyde.	10
Butyrate of ethyl.	50
" of amyl.	100
Glycerine.	30
Alcohol, 100°.	1 liter.
PER	
Chloroform.	10 grammes.
Nitric ether.	10 "
Aldehyde.	20
Acetate of ethyl.	10
Valerianate of amyl	100
Glycerine	40
Alcohol, 100°	1 liter.

The aroma of rum and cognac and the bouquet of wines have also been reproduced artificially. We shall not dwell upon the danger that accompanies the use of these products in a large quantity when they are mixed with beverages and alimentary substances. We shall occupy ourselves here more particularly either with products like those that we find in nature, such as vanilline, or with perfumes such as musk and the odor of violet, which are designed not for alimentation, but for perfumery properly so called.
Among the aromatic products employed as perfumes we may first mention methylsalicylic ether, which reproduces the oil of wintergreen (Gaultheria procumbens). The oil of bitter almonds, too, has been frequently replaced by nitrobenzine, which is prepared in large quantities by manufactories of coloring materials. Nitrobenzine, as regards composition, is absolutely different from the oil of bitter almonds, but it resembles it in odor. Benzaldehyde, likewise, has re placed the oil of bitter almonds in certain cases.
Such substances possess but a secondary importance; but vanilline, on the contrary, which reproduces the odoriferous principle of the vanilla bean, is the object of an extensive and very prosperous manufacture. The first process that gave rise to it was elaborated in 1874 by Messrs. Tiemann and Haarmaan. In studying coniferine, these scientists found that it was formed of a glucoside which, under the influence of a special ferment (emulsine), split up into glucose and coniferic acid. This latter, through oxidation, gives vanilline. The coniferine itself, oxidized with a mixture of sulphuric acid and bichromate, furnishes vanil line. It was by this process that it was first manufactured. The method of purification was very simple. Like aldehyde, vanilla possesses the property of forming an insoluble bisulphite combination, which was separated from the mass and afterward decomposed.
Chemically, vanilline is methylprotocatechic alde hyde:

$\mathrm{C}^{\bullet} \mathrm{H}^{3}-\stackrel{-\mathrm{CHO}^{-} \mathrm{OCH}^{3}}{ }\left(\begin{array}{c}(1) \\ \backslash \mathrm{OH}\end{array}\right.$

The figures to the right of the atomic groupings rep resent the relative positions in the benzenic nucleus. They are of considerable importance, since isovanilline, which is constituted by exactly the same groupings, but differently placed, has no odor. After the formula of vanilline became known, an endearor was made to
employ the neighboring bodies, to add the grouping
that were wanting, and to properly place them with re spect to each other. A host of methods was proposed to this effect, in making use of eugenol (De Laire and Tiemann), which was oxidized by permanganate; of eugenol and bromide of methylene (De Boissieu); and of guaicol and pyrocatechine (Tiemann and Reimer). Vanilline is even found in certain natural products, such as the benzoin of Siam, crude beet sugar, asafœetida, and opium. A certain number of these profœtida, and opium. A certain
cesses is employed industrially.
Piperonal or heliotropine is closely connected with vanilline. It is, in fact, the methylenic ether of protocatechic aldehyde. In order to prepare it, piperic acid is oxidized by permanganate, but it can also be obtained by means of safrol. It is found in the oils of sassafras and shikimal, and can also be obtained from the oil of camphor. Coumarine is the anhydride of ortho-oxycinnamic acid. It has been obtained synthetically by Perkin by causing acetic anhydride to react upon the sodium salt of salicylic aldehyde. It is especially extracted from natural products, such as the Tonka bean and the "vanilla plant" (Liatris odoratissima) of the United States.
Spirit of turpentine has likewise yielded a perfume, the terpineol of De Laire. To this effect, one can either dehydrate terpine or treat spirit of turpentine directly. This perfume is known under the name of lily of the valley or lilac.
We now come to the two most recent discoveries, viz., the perfume of musk and that of the violet. Natura musk is the product of a secretion of the musk deer, a ruminant mammal that inhabits certain regions of Asia. The perfume is found in a sac which usually contains from 14 to 20 grammes of it. It is also found, but in much smaller or even minimum quantity, in other animals, such as the civet, the musk rat, the badger, and the marten. Certain plants, too, often possess the odor of musk. This product is of the highest importance, since it is the base of all artificial perfumes, which sometimes contain considerable quantities of it.

The first process of preparation of a product having the odor of musk was discovered by Messrs. Schaafer and Haffeld, who heated a mixture of dimethyl-benzine, isobutylic alcohol, and chloride of zinc, which they afterward broke up and nitrated. The truly industrial discovery of an artificial musk dates back to 1889 , and was made by Mr. Baur, on the occasion of some researches upon the oil of resin.
In order to prepare the Baur musk, chloride of isobutyl is made to react upon toluene (methyl-benzine) in the presence of chloride of aluminum. We thus obtain isobutyl-toluene, which, under the influence of nitric acid, is converted into trinitroisobutyltoluene, which is the somewhat cumbersome chemical name of commercial musk.
There exists, theoretically, a host of analogues and homologues of this musk. A certain number of them have been prepared from xylene, cymene, and the diphenyl and xylyl methanes. A large number of A products possess the characteristic odor of musk.
A no less important discovery is that made a year ago by Mr. Tiemann, who reproduced synthetically the perfume of the violet (called ionone), after a series of researches of the greatest interest, from a scientific standpoint.
In order to prepare this perfume, we start from citral, which is itself derived from the oil of lemon, or from the oxidation of the alcohols of the formula $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$ that we find in certain essential oils: geraniol, linaleol, aurantiol, and lavendol. The citral is shaken with acetone and barytes, and pseudo-ionone is thus formed. This body is odorless, and in order to render it odorous it is necessary to convert it into ionone, a product which is very closely related, but which is cyclic, while the pseudo-derivative is of the open chain series. A long series of similar products can be made with other acetones, and these have been studied with the greatest care by Messrs. De Laire and Tiemann.
Messrs. Tiemann and Kruger, on treating orris root with appropriate solutions, have separated various products, and, among others, irone, which is the odorous principle of this root, and it was in the wake of these experiments that the synthesis of ionone was made, these two bodies being, in fact, isomerous, and consequently very closely related.-Le Genie Civil.

Electrically Driven Cotton Mills.

The Ponemah mills are located at Taftville, Conn., not far from Norwich. An electrical apparatus has lately been installed by the General Electric Company for driving Ponemah machinery. The motive power is furnished by water wheels located at Baltic, on the Shetucket River, which is $41 / 2$ miles from Taftville. At this point a dam 625 feet long has been thrown across the river, which furnishes motive power with a
head of 32 feet for turbines that yield 1,500 horse power. Here the dynamo machines are located. The wires leading from Baltic to Taftville are No. 0 bare copper, four in number, supported on standard oil insulators. The efficiency of the complete transmission at full load from the power applied to the dynamo pulley to that delivered to the motor pulley is 80 per
cent. There are 1,700 looms in the new mill, which is lighted by electricity.

How Gas Companies Swindle the Public.

Among the papers read before the Western Gas Association at its recent meeting in Cleveland was one by Mr. Wilkiemyer upon "The Best Method of Introducing Gas Stoves." In the discussion which followed Mr. Evans told how his company worked the subject as follows :
We adopted rather a novel method of introducing gas stoves, by distributing circulars to every family on the line of our street mains, offering to give them a gas range free. Of course the object of this circular was to bring possible consumers to the office, where we could explain what we meant by it. Of course we had a "string" to the offer. Our explanation was simply this: If the consumer would pay for $\$ 20$ worth of gas in advance we would give him a $\$ 25$ gas range, or, rather, a gas range he could not purchase for less than $\$ 25$ at retail. Of course they could not understand such an offer. Our explanation was that by the use of $\$ 20$ worth of gas, having acquired the knowledge of how to use gas properly, they would become permanent consumers. Of course the facts were simply these : They paid for the gas in advance; we had the money to buy the stoves with; we made a profit on that $\$ 20$ worth of gas sold which was nearly enough to pay for the stove (laughter); and we got a permanent consumer. Perhaps I will modify that a little by saying that it does not cost any more to distribute 200,000 feet of gas than it does to distribute 100,000 cubic feet. In figuring on the cost of gas, in that deal especially, we figured on the cost of the gas in the holder; and our profits accrued on the margin beyond that. As a matter of fact it did bring us in immediate business. On that plar we put out 1,500 gas ranges within three months; and. those gas ranges brought us in a consumption of 150 . 000 feet per day; and as a matter of fact we made $\$ 9.40$ per thousand profit (laughter)-I mean $\$ 9.40$ profit on each $\$ 20$ worth of gas sold ; and between that and what the gas ranges cost us was certainly an advertisement that paid us to adopt that system.
The President-The idea is a good one, and I think it has been tried by some others, though not perhaps in exactly the same way.

A Letter from William Penn.

The Leisure Hour says: The spade of Mr. J. J. Cartwright, F.S.A., has been busy among Lord Lonsd凤le's muniments at Lowther Castle, and has dug up some literary treasures of decided historic value. One s a letter in which William Penn describes Pennsylvania. It is written to Sir John Lowther at Whitehaven, and dated in the orthodox Quaker fashion :
' $16.6^{\mathrm{m}}, 1701$, Pennsberry.
"Honored Friend, I would not but have thought my selfe lost in thy country entertainments but I finde that Whitehaven is much kinder than Whitehall to Pennsylvania, for the one sends its good wishes and the other suffers itselfe to be mislead to crush such prosperous beginings. I return my most hearty acknowledgements for thy obligeing remembrance and beg the continuance of thy good word and wishes for our prosperity ; for whatever interested men suggest, we are an approved experiment what sobriety and industry can do in a wilderness against heats, colds, dustry can do in a wilderness against heats, colds,
wants and dangers. The Crown gets best by us, but its officers less than by other Governments, and that's our crime; but time will sett truth in a better light, to which I adjourn my resentments. We thrive, our town, I think, too much for the country, not keeping a ballance in all things in Government is (perhaps) the hidden but sure cause of visible obstructions and entanglements in administration. I finde the country 70 miles back, the best land. Sasquehanah a glorious river boatable upon freshes. We are planted 170 miles upon Delawar and in some places 16 miles back into the woods. Our staple corn and tobacco; we are trying for rice, converted timber for shipping and hemp. Returns for England is what we want, and either we must have less from thence or better ways of making them. Barbado's and those Islands are our market and we are too hard for our neighbours for our flowr and bread, being the whitest and preferred; we spare much of both to our neighbour colonys also, as New England, Maryland, Virginia, and Carolina, where wheat will hardly grow, but rice to perfection, and silk is got to a good pitch, and will certainly be a commodity. We have had a good share of health since our arrival and my family increast by a little son, and if ill treatment call us not home are like, if God please to prolong life, to pass away a year or two at least. Only my privat affairs could make me leave it any more, but they will compel it once again, and then it would not displease me to lay my bones where I have layd my labour, mony, and solicitation, in Pennsylvania.
"I shall close with this assurance that I am with great esteem and affection
"thy very faithfull Friend
Wm. Penn."
operator beginning at one corner，cutting out the flow ers one after another until the whole sheet is used up． The cutters are made of steel the size and shape of flowers，among which are the buttercup，daisy，rose etc．The cutters are about one－half inch in depth，so that when the operator strikes with the hammer，the tool passes down through the material，cutting out about one dozen flowers at once．An operator can cut out about 2,000 flowers per day．
The flowers are then taken and veined．The veiner consists of two dies the shape and size of flower，one being made to fit inside of the other．The bottom of each die is veined，one being raised and the other sunk． The flower is first placed into the bottom die；the attendant then places the top veiner，which fits exactly into the other，over the flower，and places both under the press．The attendant，by turning the wheel of the press，forces the top veiner down into the other，the pressure of which forms the veins into the flower．A good hand can vein about three gross of flowers per hour．Flowers that are more or less cup－shaped go through what is called the gofering process．The flow－ ers after being veined are placed on a cushion or pad． The operator heats the gofer，which is a circular steel ball attached to the end of an iron rod，over a lamp； when it is properly heated，the gofer is waxed and the operator presses and works it round the center of the flower，the pressure and heat of which causes the flowe to curl up into a circular or cup－shaped form．
The flower is then put together，the parts of which are composed of muslin，velvet，etc．，wire，jute，tissue paper，muslin tubing，wool and corn meal．The first operation，if forming a buttercup，is fastening the cen－ ter piece and the stamens to the wire stem ；the cen－ ter piece is made of corn meal fastened to a coarse
thread by means of rubber gum．This in turn is

FLOWER AND FEATHER MANUFACTURING

The great number of artificial Howers used in trim－ ming ladies＇hats and for other ornamentation are made mostly of muslin，linen，velvet，satin，and silk．The material if for white flowers is first fastened on to stretchers in sheets and their backs coated with a solu－ tion composed of dextrine and starch．This solution stiffens the material so that it can be worked and formed into shape．After drying it is ready for cutting． For colored flowers the material is dyed．About five gallons of aniline dyeing solution is mixed up into cop－ per boilers and heated hy steam；the material is then placed into it and dyed in a few minutes．They are then run through a wringer and placed upon stretch－ ers to dry and have their backs sized．The sheets when dry are then taken to the cutter．About a dozen at a

gummed to the wire stem．The stamens，which are made of jute，are then placed around the center piece and stem and the whole carefully wrapped around with tissue paper．The stem is then run through the bottom of the flower and into the muslin tubing，the parts being thoroughly gummed together．The daisy centers are made mostly of wool dyed．
By moistening a quantity of white flowers in alcohol and water and placing them separately on to wooden frames they can be colored by the point of a brush the alcohol solution making them take the aniline color．The feathers and birds，which are also used for trimming purposes，come from all parts of the world． There are over four or five hundred different varieties． The natives shoot them with guns or kill them with the skin and feathers stuffed with wild them，and
birds and feathers are preserved from moths and vermin by sprink－ ling them with the ashes of burned wasp nests． The natives sell the birds for about two
of the feather causes them to straighten out and be－ come smooth．The edges are then trimmed and either frosted or covered with jet．A great many of the col－ ored frostings are made of gelatine．Gold metallié， copper，and silver are also used，the material being fast－ ened on by means of rubber gum．Ostrich feathers are dyed and beaten dry in the same manner as the common feathers．After beating they are pared or scraped down to give greater flexibility．
The barbs are curled by drawing them singly over the face of a blunt knife or the cautious application of a heated iron．The best feathers come from the male bird，those coming from the wings and rump being white，and the short feathers jet black．In the female the feathers are tinged with a dull gray．Dull－colored feathers are usually dyed black with logwood and sulphate or acetate of iron．There are as many as $1,000,000$ birds imported into this country yearly．The sketches were taken from the plant of L．R．Alexander， West Hoboken，N．J．When running fuil with about 60 hands，they turn out $\$ 20,000$ to $\$ 30,000$ worth yearly．

A Practical Turn of Mind．

The Medical Record tells of a woman in Ohio who utilized the high temperature of her phthisical husband for eight weeks before his death，by using him as an incubator for hens＇eggs．She took a number of eggs，and wrapping each one in cotton batting，laid them along－ side the body of her husband in the bed，he being unable to resist or move a limb．Fifty was the number of eggs first used as an experiment，and after three weeks she was rewarded with

THE ARTIFICIAL FLOWER AND FEATHER INDUSTRY．

cents each．Great numbers of turkey，goose，and forty－six lively young chickens．The happy result of chicken feathers are used．The feathers that are to be the first trial prompted her to try it again，and this dyed are first fastened at the quill end to a string and time she doubled the quantity，and was again rewarded put into a dyeing boiler．After dyeing they are put for her ingenuity with another brood of chickens．An－ hrough a wringer．From the wringer they are beaten dry by an operator holding the ends of the string in his hands and striking them down on a paper－covered table．This operation causes them to dry in about ten to fifteen minutes．After drying they are taken

The steamer is oval－shaped and made of copper；it is bout three and one－half feet in length，about fourteen nches in height，and about twelve inches in width． Projecting from the top are a number of conical shaped tubes through which the dry steam issues．The attendants hold the dried feathers into the stean for a ew moments，which moistens them slightly，and then
other hundred eggs were placed in the bed，but this time her husband was so near the end that the neces－ sary heat was lacking，and he passed away，leaving behind one hundred half－hatched chicks．The schem－ ing wife，not to be outdone in her plans by grim death， placed the eggs in the oven，thinking to finish the work her husband had failed to complete．During the bus－ tle and excitement of the funeral，however，she allowed the fire to get too hot，and the eggs were all cooked． The editor says he hopes there is no incubator await－ ing this woman in this world，at least ！

The deepest boring is that of Schadebach，in Prus sia，5，736 feet deep－a little over one mile．

THE CALIFORNIA MIDWINTER EXHIBITION. (Continued from first page.)
equipment of stage coach, "road agents," keno layout, etc. All these could be found and many more, but of these diversions we have no concern.

In the middle of the Great Court of Honor of the Midwinter Fair stands the Bonet electric tower. Owing to its height of 272 feet, and its central position, it will readily be seen that the tower is one of the main features of the Exposition. The tower is built throughout of steel and was erected by Leo Bonet \& Company, architects. To make the foundations, piles were driven in 17 feet and over 30 tons of cement were used. The Belvista Cafe is situated on the first platform, at an elevation of 80 feet above the level of the ground. It forms a delightful feature of the Fair for visitors to be able to lunch and dine at such a height apparently suspended in mid air, and a delight ful view of the grounds and surrounding country may be obtained from it. The second platform is 146 feet high, and the third is 220 feet high. On the fourth platform is placed one of the largest searchlights ever constructed.

Access to the various platforms is gained by the use of an electric elevator constructed by the Otis Company. This elevator was removed from the Manufactures building at the Chicago Fair, and was illustrated in the issue of the Scientific American for October 28, 1893. The elevator runs up to the third platform, which is ten feet wide, and affords an excellent oD portunity to study the arrangemeut of the Fair grounds At night the Exposicion is suverb, and some idea of the brilliancy of the scene may be obtained when it is stated that on the tower there are 3.213 incandescent lamps, which by an interrupter are constantly "blinking" or forming patterns of various colvarious colgrounds are brilliantly ilIuminated and the outlines of the buildings are picked out in lines of light by the use of in candescent

THE CALIFORNIA MIDWINTER EXHIBITION-INTERIOR OF THE JAPANESE TEA HOUSE.
lamps. It is somewhat difficult to appreciate the in Japan from time immemorial always suggests someheight of the cafe, owing to the structure that appears thing mysterious, and hints at heathen rites even in front of it. This represents an elevated path when the buildings are transplanted to our more rigorending in a spiral inclined plane. The wonderful ex ous country. Although Japanese villages have been tent to which the sense of equilibrium can be devel- from time to time exhibited in the United States, oped is demonstrated by the performance which is still the true Oriental effect was lost on account of incongruous surroundings. At the Columbian Exposition, the Tea Garden and the Hoo-den or the Japanese phenix palace were objects of great interest, and were enjoyed by many visitors, but when the Midwinter Fair was propos ed, it was soon seen that many Oriental effect could be obtained without the ne cessity of a mira cle of the land scape gardener's art. The sur roundings of the Tea Garden at the Midwinter Fair are most ap propriate. Gorge ous flowers, fine trees and shrubs and a miniature lake furnished un bounded possibilities to the promoters of the en terprise. In thi ideal garden were erected a numbe of grass-thatched buildings. In the foreground will be noticed the dwarf trees, the raising of which is quite represented in progress. The performer causes the an industry in Japan, and one in which the Japanese ball to travel along the path, ascend and descend the excel. The storks are tame, and they have acquired spiral, and finally brings it and himself in safety to the bad habits in America, as they are very prone to loot platform below by the mere effort of balance. the pocket of the visitor. The Japanese regard the The colossal statue of Columbus, one of the special birds as sacred, and hold them in veneration. Our features of the Fair, appears quite near the tower. other illustration shows the orchestra in the tea Our engraving was prepared from a photograph kindly house. A Japanese female dancer is just ready to perfurnished us by Mr. A. W. Cornwall. form one of the graceful little dances which are so cele-
brated. Looking at this dainty little creature, it is no furnished us by Mr. A. W. Cornwall.
 wonder that Pierre Loti says: "The little cabinet little cabinet curiosity, the Japanese woman.'" The minute scale on which every thing is constructed makes the visitor feel truly Brobdingnagian. The household utensils are like children's toys. Even the pipes which the animated figurines are perpetually smoking are infantile, being no larger than an acorn cup. They look with surprise at a foreigner with his large-bowled pipe, and saying, "At saying, At the bottom of a pipe
there lives poison."
Some of
the mysterious little cupboards and closets which form such a distinctive feature in Japanese houses are shown in our engraving. It is strange that some one has not reproduced a Japanese house for a summer villa, for the construction would not be costly, the furniture must be simple to harmonize and there are wonderful artistic possibilities. The tea is presented in the tiny cups with a politeness which casts a shade upon the Frenchman.
The Japanese Tea Garden is an interesting feature of the Midwinter Fair, and rarely have both nature and art been blended with such satisfactory results. Our illustrations are made from photographs taken by Mr. A. A. Martin.

Earth, Sea and Sky Advertisements.

Lord Rosebery made a speech at the Royal Academy dinner lately, and the Lancet says the most amusing portion of it was on the various advertisements now occupying earth, air, and water, which have become common also on this side of the Atlantic. It is not altogether that the landscape is affected by hideous boards, which, by spoiling its beauty, influence injuriously the good taste of the traveler; it is the effect of the reading of those boards on the health both of mind and body against which we too would raise a protest. When a person leaves his home to travel through the country, whether on business or pleasure, there is always, in properly conducted journeys, some benefit derivable from the charm and picturesque character of the landscape that comes before him. He forgets himself, his worries, his troubles, his pains, in the diverting objects he sees. There is the church forming the center of the pretty village, calling up memories and suggestions which fill the mind with thoughts of the past and hopes of the future. There are the distant blue hill, the green meadow, the copse, the wood, the cottage, the castle, the park, the mansion; and connected with these there is always some bit of romance gathered from past readings and meditations which comes as a relief, a dream outside the busy world, changing the monotony of life, and by the very forgetfulness of past troubles giving a repose in variety which has the effect of cure in some instances, of relief in all. But what shall be said when from place to place the mind of the traveling sufferer is, nolens volens, forced to dwell on his own ailments, real or imaginary? Why is he obliged to learn that he has a liver that is not in working order; or that his digestion is, day by day, failing; or that he is getting every hour weaker and weaker; or that his heart is palpitating; or that his kidneys are involved in the universal break-up of his frame; or that his brain is altogether losing its balance; or that he is becoming prematurely old; or that, in short, he must soon die if he neglects to treat himself with some particular life-giving pill, potion, lotion or plaster, to say nothing of two or three ointments which have the facility of going direct to the bone? Lord Rosebery's humor ought not to be misapplied. There is many a true word spoken in jest, and, emphatically, his words were true. We hope he will not stop here, but that, holding the reins of power, he will go beyond the misfortunes of the Royal Academy and, pitying the misfortunes of the public generally, will suggest such legal measures as shall clear earth, water, and sky of these irritating abominations.

Matter-Solid and Liquid.

In the course of the last of his lectures on this subject at the Royal Institution, Professor Dewar dealt with what he said might be called the elastic problem -the relations of force or stress to the corresponding alterations produced by them in matter. At the outset he remarked that the determination of the concase of liquids, on account of the smaller changes in volume that took place. In the case of a solid there were three constants to be found-its extensibility, its torsional variation at different temperatures and pressures, and its general compressibility. The extensibility of a metal was expressed by Hooke's law that elongation was proportional to the force producing it, while the alteration which occurred simultaneously in cross section was given by "Young's modulus." Some idea might be gained of the resistance of any material to compression or tensional strain by investigating the force necessary to break it at various temperatures. Non-crystalline metals at low temperatures would bear a much greater strain than at ordinary ones. It was experimentally shown that a rod of tin which at ordinary temperatures had a breaking strain of 200 pounds required at 180 degrees below zero a strain of about 380 pounds to break it. In the same way iron and lead at low temperatures would bear twice as much strain without breaking as they would at ordinary
temperatures. The determination of the breaking strain of mercury was also shown. The mercury was first frozen in a tube. The resulting solid rod was then immersed in liquid oxygen and tested in the usual way, when it was found to break with a force of 31 pounds to the square inch. Some other experiments were also made to show the changes in the physical
constants of metals at low temperatures. Two equal
rods of the same material were supported at their ends and one of them was cooled to - 180 degrees, the other being at the temperature of the room. A weight which at once bent the warmer one had no effect on the other. Two tuning forks which sounded in unsion became decidedly dissonant when one of them was cooled to - 180 degrees, a fact which shows that the period of vibration had been altered by the change in rigidity. Professor Dewar concluded from his ex periments generally that the resistance of metals to strain increased as the temperature was lowered, and he supposed that at -273 degrees, the zero of absolute temperature, all metals would be infinitely resistant.

Simple Process of Bronzing.

The 'very pretty artistic effects that are obtained rom galvanic bronzing cause this process to be highly esteemed by manuiacturers; but it requires apparatu that one does not always have at hand. Mr. Mandit, of Caen, says Le Genie Civil, has recently made known a very simple formula, which is capable of giving every tone, from that of Barbedian bronze to antique green according to the length of time that the copper is allowed to remain in contact with the liquid. Its very simplicity will cause it to be appreciated by those inrested.
After the piece has been well scoured it is covered with the following mixture by means of a brush :

The piece, left to itself for twenty-four hours, becomes bronzed, and if the duration of the contact be prolonged, the tone changes. An infinite number of tones, pleasing to the eye, may thus be obtained. The drying is finally effected with hot sawdust, and it then only remains to coat the piece with a colorless varnish greatly diluted wlth alcohol, in order to obtain an emi nently satisfactory result.

On the Origin of Death.

The most remarkable phenomenon of life is death To the superficial observer it may appear a matter of course that every living thing, the smallest speck of protoplasm as well as the most complicated organism, should bear the germ of death within itself, but to the more penetrating vision death presents itself as an insoluble mystery. From time immemorial the subject has been made the battle ground of metaphysical discussion; but the question of its origin, of its biological significance, of its physiological explanation, has only in quite recent years become the subject of rigorous scientific discussion.
Investigation into the duration of life constitutes the first link ini the chain of Weismann's achievements in this direction of research. "Organic bodies are perishable; while life, with a show of immortality, passes from one individual to another, the individual himself dies." So said Johannes Muller, and Weismann characterized the expression as significant, and exhaustive of all that can be said on the subject.
Be that as it may, so much at least is beyond doubt, that the life of the individual, in so far as concerns the experience of non-scientific observers, has its natural limitations. It is equally beyond question that these limitations vary with different species of plants and animals. The physiological constitution of the plant or animal has been supposed to determine the duration of life, but however much it may condition that duration, it is certainly not the only factor. In the last analysis the determining cause must be sought in the organism itself. The moment we endeavor to base the duration of life upon size or complexity or physiological constitution we realize that the theory is irreconcilable with the very divergent facts. The elephant lives to 200 years, but so also do the carp and pike; the horse may live to 40 years, but so also do the toad, the cat, and the sea anemone. How indeed could we reconcile with this theory the fact that working ants live for years, while the males live only a few weeks? The physiological conditions are most assuredly not the sole factors.

This brings us to the fundamental idea of Weismann's theory. According to him, external conditions operating by natural selection are the prime factors in determining the duration of life. It will be evident to every one familiar with the operation of natural selection that the aim to be achieved is the perpetuation of the species and not of the individual. The individual needs no greater capacity of persistnce than is necessary to the propagation of the species, and this being provided for, we might reasonably assume that the individual, having performed its chief ife labor, would immediately die, unless the care of the young is necessary to the maintenance of the species. And this indeed is the fact. All mammals and birds survive the completion of their reproductive which care for their young, die on completion of their task.
It is not our intention here to follow Weismann into
all the details of his argument; but his line of thought
takes us directly to one of the most difficult problems of physiology-the cause of death. Death, in the last analysis, is an adaptation. "I do not believe," says Weismann, "that the duration of life is prescribed because its nature is inconsistent with unlimited duration, but because an unlimited duration of the (no onger procreative) individual would be a purposeless luxury for the species." Death, that is, the limitation of the continuance of life, is not really an attribute of all organisms. There are numerous ower life types, amœbæ, unicellular algæ, infusoia, etc., which are not necessarily subject to it. They are not, of course, indestructible; heat or corrosive agencies will decompose their tissues, but as long as the necessary conditions of life persist they do not die; they have within themselves the capacity of indefinite life. They multiply by fission, and if the amœbæ were endowed with self-consciousness, there can be no doubt that after the fission each new cell would regard itself as the parent of the other. But since, according to the Darwinian theory, multicellular organisms spring rom unicellular, the question arises, How has this capacity for eternal life been lost?
This is probably the result of the specialization of function of the several cells in a multicellular organism. We may divide the cells in such an organism into two opposing groups, the somatic and the propagating -the individual and the reproductive cells. The latter could not lose their capacity for unlimited multiplication without danger to the species; but that the somatic cells should gradually lose their power of unlimited multiplication, that they should be limited to a prescribed if even to a great number of cell generations, is explained by the impossibility of the individual cell guarding itself absolutely against accidents, and by its consequent perishableness. Unicellular organisms were exempted from death by the fact that the individual and reproductive cell were one and the same; in higher organisms the individual and re productive cells were differentiated, death became possible, and the unlimited duration of the life of the ndividual superfluous; and the inexorable laws of naural selection left it, like every other superfiuity, to disappear.-Die Nation (Berlin) ; Public Opinion.

Cars Driven by Compressed Air.

In a recent paper by M. Victor Popp, of Paris, the author described the compressed air system used for propulsion on the Nantes tramways and on the line rom Paris to Nogent-sur-Marne. On the latter line each car is fitted with nine steel storage reservoir fixed underneath the car body, containing air at a pressure of 100 lb . to 176 lb . per square inch. Three of the reservoirs form a reserve in cases of emergenioy. The air is heated on its passage to tlue motor by hot water, which at starting has a temperature of 300 deg . Fah. The cars seat 50 passengers, and weigh upward of 14 tons. They will run 12 miles with a single charge on the level, but owing to the heavy grades one charge suffices for but $8 \frac{2}{3}$ miles, the consumption of air being 35 lb . per mile on the grades and about 24 lb . on the level. One objection to this system of traction is the great weight of the reservoirs. By providing for the automatic recharging of these reservoirs at feeding points distributed along the line, M. Conti has succeed ed in reducing the weight required very materially The feeding points are placed at intervals of about $11 / 2$ miles, and the car as it runs over the points automat ically makes connection with mains supplied from a central station, a stop of a few seconds only being required to fill the reservoirs.

Big Money in Ambergris

The Sydney Bulletin is responsible for the following ambergris story: Two years ago one of Macgregor's (Tasmania) whaling captains, having cut the blubber from a whale, was about to cast the rest of it adrift, when there came alongside two Hobart fishermen"Portuguese Joe" and his mate, an African negro. The Portuguese begged to be given the carcass, so that they might tow it ashore and make what they could out of it. "All right," said the skipper, with the generosity of a satisfied exploiter who knew the blubber business to its omega. Joe, having got the leviathan's framework on the beach, began to search for ambergris, which drug was quoted at that time in the current price lists at somewhere about $\$ 65$ per ounce. He found 174 pounds. Many people interviewed him, and wanted to give him $\$ 25,000$ to $\$ 45,000$ for the lot; but the man understood the luck of his find.
Meanwhile the ambergris was lodged in a bank which was presently served with an injunction on behalf of the Macgregor firm to restrain the sale of the precious prize pending a discussion on the ownership. But these legal fireworks fizzled out, and the ambergris is still being realized in London, the two fisher men having already received several thousand pounds apiece.

The Austrian poor law gives every man 60 years old the right to a pension equal to one-third of the amount per day which he had earned during his work- ing days.

LANTERN SLIDE ILLUSTRATING SOUND WAVES.

by gec. m. Hopeins.

In demonstrating the theory of sound, it is usual to illustrate the condensations and rarefactions of air which produce sound waves by light and dark bands, which give an idea of the condition of the air at any instant in which it is transmitting sonorous vibrations. But these bands do not represent the progression of the sound waves. For an illustration of this, reference is often made to the concentric undulations produced on the surface of a mill pond by a pebble dropped in the water. This depends for its value upon the student having noticed the mill pond phenomenon and upon his ability to realize that these spreading rings relate only to the feature of progression as it would present

Fig. 1.-SLIde FOR ILlustrating concentric waves.
itself in a section taken through a sound sphere in any plane that would intersect the center of the sphere at which is located the source of sound.
The mechanical slide shown in Fig. 1, when projected, is capable of producing on the screen a series of concentric rings of light and shade, representing the condensations and rarefactions of a succession of sound waves, and these waves, beginning at the center, constantly enlarge in circumference until they disappear at the periphery of the disk. This effect is produced by means of two thin metal disks arranged to revolve on the same axis, and each provided with a spiral slot extending from center to periphery, the slot of one disk being oppositely arranged with respect to that of the other disk. One disk is secured to a sleeve which fits on a stud supported by a fixed bar extending across the opening of the slide. The other disk turns on the sleeve. The sleeve and the disk which turns upon it are each provided with a small pulley. One of these pulleys is slightly larger in diameter than the other, so that when the two disks are projected and revolved rapidly in the same direction, one turning at a very slightly increased speed causes the points of intersection of the spiral slots to move outwardly and thus produce on the screen a series of light rings, which increase in diameter like mill pond waves. To cause the light rings and intervening dark rings to blend into each other, the slide is thrown a little out of focus.
To show interference of sound waves two images of

Fig. 2.-INTERFERENCE.
the slide may be projected. one being superposed on the other as shown in Fig. 2. This is easily done by arranging at a suitable angle in front of the lantern objective a series of glass plates, such as are employed in a glass plate polarizer, as in Fig. 3. A portion of the beam is transmitted, forming one image on the screen, and a portion is reflected upward and intercepted by a mirror which throws it upon the screen, forming a second, which may be made to coincide with the first, or it may be made to overlap the first image so as to produce the interference effect shown in Fig. 2. In this case the centers or wave sources are separated more than the semi-diameters of the disks, and the interfering waves approach each other from opposite directions. In Fig. 4 are shown, diagrammatically, superposed wave disks with centers one wave length
apart. The waves' "crests" coincide, and re-enforce-
ment along a line joining the two centers is the result. If the centers were a half wave length apart, the "crests" would alternate and one set of waves would neutralize the other.
In Fig. 5 are shown diagrammatically two disks of different size produced by dividing the beam before it passes through the objective, projecting the two parts of the beam with objectives of slightly different power. In this case, owing to the difference in the size of the disks, the relative velocities of the wave rings differ, so that the waves of one series overtake the waves of the other series at a, thus illustrating the phenomenon of beats.
The Decline in Price of Electrical Equipments.
In commenting on the business situation and the decline in prices of electrical apparatus, the Electrical cline in prices of electrical apparatus, the Electrical
Revieu" says: "Six years ago the price for a complete equipment for a trolley car, including two motors, was about $\$ 4,500$. This price held for a year and a half and then dropped to $\$ 3,850, \$ 3,500$ and $\$ 3,300$, until two years ago it was about $\$ 2,850$. One year ago $\$ 2,000$ was the price of the same equipment, greatly improved in quality and efficiency, while to-day the average price is between $\$ 1,000$ and $\$ 1,200$. We have been told of an and $\$ 1,200$. We have been told of an
electric railway manager who desired quite recently to purchase an equipment for a single car. He wrote to seven manufacturing companies, and immediately was called upon by seven salesmen, all of whom had paid traveling expenses to try for the order. The prices quoted ranged from $\$ 1,500$ to $\$ 640$. The manage bought the $\$ 640$ apparatus. Here we have a decrease in actual selling prices from $\$ 4,500$ in 1888 to $\$ 640$ in 1894, a period of six years. In 1888 there were seven electric railways in the United States. In January, 1890, there were 162 electric railways in operation and in process of construction. In January, 1891, this number had grown to 281, while to-day there are probably over 500 cities in the United States equipped with electric roads, many of them of great mileage, as in Boston, Brooklyn, St. Paul, Minneapolis and Cincinnati.

This marked reduction in the price of railway apparatus during the short period of six years is due largely to competition between manufacturing companies, but chiefly to a reduction in the cost of manufacture, accompanied by an increase in the quality of the product. The margin of profit on the equipment mentioned at $\$ 4,500$, in 1888, was not as large as it was on a better equipment at $\$ 2,850$, in 1892 , owing to the reduction in the cost of manufacture. While prices have been fearfully cut during the last year by all the manufacturing companies, partly due to intense competition and partly to the business depression, we do not believe that any company can make and sell a satisfactory car equipment for $\$ 640$ and clear a profit on it."

The Nickel Armor Plates.

Speaking of the recent failure of a Harveyized plate,

 the Engineer, London, says :"There is nothing surprising in this result. With very thick plates terrible disappointments have taken place in our own country. We have known a case where visitors were specially invited to witness a trial and when the disappointment was most crushing, but we did not telegraph the result to America. This was many years ago, and we have since that had further experience with very thick plates, much more than has been acquired in the United States. There has been one remarkable success reported in America with 14 inch Harported in America
veyed nickel steel. We expressed our veyed nickel steel. We expressed our
surprise and admiration at it. Our surprise and admiration at it. Our
own makers have not as yet obtained own makers have not as yet obtained
so successful a result with thick armor, and having thus expressed ourselves, it is not to be expected that we should be surprised when thick Harvey armor falls short of such a standard.

Fig. 4.-RE-ENFORCEMENT.
we do. But are our readers aware that in testing sam ples systematically for acceptance of the supply of 18 inch plates, the United States authorities are doing what has not been done in this country, and we doubt f it has been done in any country? Individual 18 inch plates we have undoubtedly tested at Shoeburyness, but the regular selection of samples for the acceptance test of 18 inch armor has, we think, not been attempted as it has been with the thinner kinds, for which only provision exists on board the Nettle. The United States authorities have instituted a system of inspection and tests of armor which aims at a completeness and at a standard not attempted elsewhere. They have been hoodwinked and met with disappointment, but let us make no mistake in the measure to which the disappointment extends.
"Until recently, the United States had produced plates which defied all comers. Then our own Sheffietd makers were literally "put on their metal." Mr. White took steps and made such arrangements that we pushed on without hinderance, employing Harvey's process in combination with the much more complete system of water chilling which had been patented by

Fig. 3.-ARRANGEMENT FOR PROJECTING TWO IMAGES OF THE SLIDE.

Tresidder, whose patents, we understand, have held good on the Continent, where Harvey's have failed. We hold that what was then done in England can hardly be too highly praised. We have since that time obtained results with treated steel armor of medium thickness that will compare with anything. It was the successful Vickers treated plate that finally: led us on our present path. Cammell and Brown have sibee pro duced the first-class armor to which we refer. 'Mr. White decided-and, we were inclined to believe, rightly decided-to discard nickel, and recent events, as far as they go, bear this out. We hope that at the present moment we have taken the lead again in armor, but we cannot say more than 'hope' until we have had a fair competitive trial with America."

Photo Etching on Copper.

As explained by Mr. Calmels, the polished copper plate is sensitized with the following solution :

Abstract

Fish glue. Albumen ... 2 oz. 2 oz. 4 oz. Ammonium bichromate................. 60 grains

The plate is then placed on a whirler so as to produce venness of coating, and remove the superfluous solution. After drying, the plate is ready for exposure under the negative, which, of course, has been associated in the camera with a lined screen. In this case it may be mentioned the screen used had 135 lines to the inch. The exposure necessary for a copper plate prepared in the way described is about two minutes to direct sunlight. Development is brought about by imple washing in water, which dissolves out the coat ing solution where the light has not acted. It will be observed that no rolling up with printing ink is neces sary, as in the case of a zinc plate etched in acid. The
"The actual measure of the failure,
as shown by calculation, is as follows: as shown by calculation, is as follows : The first blow represented a perforation of $18 \cdot \%$ inches of iron only. The second blow represents
on the English system $251 / 2$ inches of iron, or $20 \frac{1}{4}$ inches of steel, and on Krupp's system $271 / 2$ inches of iron, or 22 inches of steel. It was sanguine, indeed, to expect this 18 inch plate to stand the second blow, but it undoubtedly should have borne the first if its quality had been anything approaching to that of the thinner plates. In the light of past experience with thick armor, however, we think very little of the matter, and are inclined to believe that the United States authorities will have to lower their standard, or else that the Indiana and her sisters will wait a long time for their armor. We have before noticed the admirable belaviot of Carpenter projectiles, which are perhaps the best we have seen of large caliber.
' We are not taking a popular view in speaking as

Fig. 5.-BEATS.
plate is next strongly heated until the coating assumes a brown color. The lecturer used an iron plate for this purpose which was heated from below with a powerful Bunsen burner. After cooling, the plate was put into an ordinary porcelain developing dish and covered with an etching solution of perchloride of iron (strength 30° Baume). The coating was evidently of a very tough nature, for the lecturer rubbed its surface with a pledget of cotton wool while in the bath. At the end of about a quarter of an hour the etching operation was complete, when the plate was washed, dried, and a proof in printing ink of a very satisfactory nature, considering that hand pressure only was applied to it, was quickly obtained.-Photographic News.

Some words in the Chinese language have as many Some words in the Chine
s forty different meanings

recently patented inventions.

Engineering

Smoke Arrester.-William P. Shank, Cairo, Ill. This invention comprises a water tank and collecting chamber, with nozzles leading from the cham ber to the tank, and blast devices discharging into the tank for the separation of the soot, the nozzles opening charge openingse of the water and in esention is designed to effectually stop the emission of heavy products usually dis harged in smoke from furnaces.
Coal Chute.-John Scully, South Amboy, N.J. This invention relates to chutes for discharging coal from cars into vessels, coal bins, etc., and pro-
vided with screens over which the coal passes. The chute is supported on the usual framework, with track and openings between the rails for dumping the coal into
pockets, in connection with which is an adjustable slidpockets, in connection with which is an adjustable slid
ing gate, arranged below which is a screen bottom, while ing gate, arranged below which is a screen bottom, while
a lower or swinging chute is hinged to the fixed chute. a lower or swinging chute is hinged to the fixed chute.
The pitch of the swinging chute may be arranged as deThe pitch of the swinging chute may be arranged as de-
sired, and the stream of coal is somewhat retarded, so
thil be run steadily over the screen, the coal will be kept and delivered in good condition.

Rallway Appliances.

Car Brake.-John Mayer, Amsterdam, N. Y. According to this improvement peculiarly
constructed frictional contact blocks are supported above constructed frictional contact blocks are supported above
the track rails near the car wheels, and means are provided to rock the blocks to cause them to have more or less bearing on the top faces of the rails, the faces of the blocks acting in a measure as cams to lift the car body
from the track, and, in cases of extreme urgency, thus from the track, and, in cases of extreme urgency, thus
lifting the entire weight of the car upon the brakes.
Freight Car.-John J. McClimont and Peter Marron, Aspen, Col. A simple device applica
ble to the roof of a box car has been provided by these inventors, so that openings in the roof may be easily made when necessary to facilitate loading and unloading the car. The covers of these openings are so arranged that in connection with an ordinary chute they will form a hopper through which grain, ore or other freight may be loaded on the car, and a simple lock is provided for
fastening the covers to the openings on the inside of the

Railroad Rail or Tie Distributer. ment for a car adapted to carry rails or ties, consisting of a series of roller sections and supports adjustably and removably connected, whereby the distributer may be together and rigididy held at the desired angle. The speed of the material passed over the distributer may also be regulated, and the rails be directed either to the right a
the left in discharging them.

Mechanical.

Wrench-Archibald McCallum, Conrad, Pa. This is a quickly adjusted and convenient tool in which the handie and head are adjustably connected to enable the handle to be placed at the desired angle to
the head. This adjustment of the handle may be easily effected, and provision is made for working the wrench as a ratchet wrench in either direction, the tead being
locked at any angle in fixed relation to the hande, against movement in either direction.
Oleat.-John C. Steelman, Linwood, V. J. This inventor has provided a clamp consisting of
a body with a recess or mouth in one of its ends and inclined lower roughened wall, a jaw eccentrically pivoted improvement forms a simple, strong and inexpensive device adapted for use wherever the clamping of a rope is required, the cleat biting the rope or cable forced in con act with it.
Leather Stripping Machine. Michael J. Ryan, New Orleans, La. This machine is
adapted to cut an entire side of leather into a series of strips of a desired width at one time, the leather being properly fed and guided and the strips smoothly and rapidly cut. The machine has a pair of feed rollers, the apper one with projecting bearing faces, and mounted
above it is a swinging bar, to which is secured a number of downwardy projecting and lad erally adjustable knives.
The leather as cut is delivered in parallel strips at the rear end of the table
Match Making Machine.- Henry a. La Chicotte and Walter B. La Chicotte, New York City.
The veneers of wood fed to this machine are cut int splints of the desired cross section, and the splints are fed to an apparatus which cuts them of a uniform length the splints before being cut being engaged by gripping
devices which carry the splints after being cut to an oil devices which carry the splints after being cut to an oil or paratuine bath, and next to a bath of an ignitable com-
pound, finally removing them to bedried and delivered to a suitable receptacle, the operation being continuous and automatic after the veneers have been once fed into the machine.

Agricultural.

Potato Digger. - Nathan Sturdy, Chicago, Ill. In this machine an elevator frame and a draught frame are pivoted on the axle on which the two
supporting wheels are loosely mounted. An adjustable shovel removes the pctatoes from the ground, to be
received, together with the vines or roots that may cling received, together with the vines or roots that may cling
to them, by the elevator, which has a vibratory motion, deto them, by the elevator, which has a vibratory motion, de-
signed to free the potatoes from dirt, etc., and deliver them to a hopper, whence they are directed to reeeptacles on a platform at the rear of the machine.
Transplantivg MACHiNk. - August,
Willner, Germantown, ohio. This is an improvement in
machines having furrow openers and liquid discharging whereby the furrow is opened to place a plant therein, the soil is moistened, and the loose earth carried around the roots of the plant and pressed down by a covering or pressure wheel. This machine is adapted to rise and fall according to the inequalities of the ground or to pass
an obstruction, being fitted for work on a hill side or on rough ground as well as upon a level.

Miscellaneous.

Photographic Lens, etc. - Henry ander Weyde, London, England. This invention relates to portrait photography and consists essentially in
nterposing in the pencil of rays lens-like media of pecu liar form, convex or concave, whereby the rays of light will be so refracted as to produce the effect desired, and
yet the parts modified will flow into and merge with yet the parts modified will flow into and merge with
the surroundings. The media may be interposed either the surroundings. The media may be interposed either
within or without the camera, the curvature and form of the lens-like medium varying according to the desired effect, whereby different portions of a picture fied.

Trigger for Double-Barreled Guns.-William Fleming, Newberry, Pa. In this fireerm a single trigger is combined with two sears, the trigin connection with a spring for throwing it to a middle position, and locking devices for holding it to either side The invention is designed to dispense with the necessity for more than one trigger for double-barreled guns, and provide a trigger by which either barrel may be fired in-
dependently or both barrels together, or either one in seuence after the other.
Safety Match.-William Barnhurst, New York City. According to this invention the match plint is detachably connected with a sleeve or envelope,
he sleeve having a rubbing compound and the splint an igniting compound, each held normally out of engagement with the other, and yet located one in
the path of the other, ignition being effected when the splint is separated and drawn from the sleeve. The which is ignited as the splint is withdrawn from the which is
casing.

Gate Latch.-Gabriel Rohrbach, Del Rio, Texas. This improvement relates especially to
latch attachments for swinging gates which move the latch attachments for swinging gates which move the pivoted latch arranged to engage a catch consisting of ppositely arranged pairs of converging flanges separated
o receive the latch, swinging detents being pivoted inside the entrance slots, and a keeper being placed below the lower flanges. The device is very simple, durable, and

Stopper.-Max Rubin, New York City -This device comprises a shell having an inlet in its while a plug valve fitted to travel up and down in the shell has at its upper end a lip closing over the outer end of the spout when the valve is seated in the shell. The mprovement is adapted for use with bottles of any de-
scription, cans, or other receptacles, the stopper automatically and perfectly sealing the outlet when seated in its shell.
Display Box.-Nicholas Schroder, ew York City. A box to conveniently hold scarfs and similar articles in position for shipment and display in
tores has been provided by this inventor, the box being strong, simply made, and inexpensive. A flanged holder is secured to the bottom of the box, while triangular pro-
jections between the flanges form notches for the recepjections between the flanges form notches for the recep-
tion of the article, tongues extending from one flange tion of the article,
nearly to the other.

Pendulum Escapement.-Charles E. Buckbee, Flushing, Mich. The escapement wheel, according to this invention, has on one surface a series of periphery, the planes being located at stated intervals, nd friction rollers on the ends of a crosshead secured on he pendulum rod are adapted for alternate engagemen
with the inclined planes on the wheel. The construction is durable and simple, and the escape wheel has no re coil.
Ice Cream Freezer.-Joseph B. But er, Brooklyn, N. Y. This is an inexpensive and easily idual creams in numerous compartments, creams of dissimilar flavors being thus simultaneously frozen. The
several compartments or cups are so arranged that they may be readily removed, and each is hermetically sealed by a cover which prevents contact with the brine or

Checkrein Support.-Joseph Carter, Blyth, Canada. This is a combined checkrein suppor ffectually preventing the checkrein from wearing upon effectually preventing the checkrein from wearing upon
or rubbing against the head of the horse, while the winker stay is adapted for attachment to the winkers or animal's head, and be quickly and conveniently adjusted in the required position.
Cigarette Wrapper Holder.-Jose R. Hernandez, Havana, Cuba. This is an improvemen on a formerly patented invention of the same inventor
for a device for holding and smoothing the wrappers before they are rohed around the filler. A lever is pivotally connected with uprights in a table on which the wrappers are laid, a pedal being connected with the rear arm also is pivotally connected a ring, in connection with guide secured to the table, and a spring bearing on the

Note-Copies of any of the above patents will be furnished by Munn \& Co., for 25 cents each. Please
send name of the patentee, title of invention, and date

ßusiness and Personal.

 he charge for Insertion under this head is One Dollar a line for each insertion; about eight words to a line. Adver-tisements must be received at pubbication office as eariy as
Thursday morning to appear in the following week's issue
C. s." metal polish. Indianapolis. Samples free. For pile driving engines. J. S. Mundy, Newark, N. J. Microbe
Buffalo, N. $\mathbf{~ K i l l e ~}$

Bookbinding.-All classes of work. Magazines
specialty. Haddon \& Co., 139 Center St., New York. Steam Hammers, 1 mproved Hydraulic Jacks, and Tub Screw machines, milling machines, and drill presses Centrifugal Pumps. Capacity, 100 to 40,000 gals. pe Emerson, Smith \& Co.. Ltd., Beaver Falls, Pa., wil free to any address.
Guild \& Garrison, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vacuum appa
acid blowers, filter press pumps, etc.
The best book for electricians and beginners in elec ricity is "Experimental Science," by Geo. M. Hopkins
By mail. \$4; Munn \& Co., publishers, 361 Broadway, N. For the original Bogardus Universal Eccentric Mil Foot and Power Presses, Drills, Shears, etc., address
J. S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y. Patent Electric Vise. What is claimed, is time saving
No turning of handle to bring jaws to the work, simply one sliding movement. Capital Mach. Tool Co., Auburn,
N. Y.

Competent persons who desire agencies for a new popular book. of ready sale, with handsome profit, may
apply to Munn \& Co., Scientific American office. 361
Broadway, New York.
**'Send for new and complete catalogue of Scientific and other Books for sale by Munn \& Co., 361 Broadway

SULENTIFIC AMERICAN

BUILDING EDITION JUNE, 1894. -(No. 104.) TABLE OF CONTENTS.
Elegant plate in colors showing a cottage at Rochelle Park, recently completed for Dr. N. M. Beckwith complete $\$ 11,000$. Mr. G. K. Thompson, architect, New York. A very unique design in the old Dutch style of architecture.
Plate in colors showing a handsome residence at
Evanston, Ill., recently completed for H. D. Cable, Evanston, ill., recently completed for H. D. Cable Esq. Two perspective views and floor plans,
Messrs. Raeder, Coffin \& Crocker, architects, Chicago, Ill. An elegant design.
completed for Albert S. Cook, Esq. Conn., recently complete. Mr. A. U. Scoville, architect, Hartford Conn. A pleasing and attractive design, two per spective views and floor plans.
Perspective elevations and floor plans of a residence
at Portchester, N. Y., recently erected for Willia at Portchester, N. Y., recently erected for William
Mertz, Esq. The design is severely classic in its treatment and illustrates the American progress in
architecture. Mr. Carl Volz, architect, New York architecture. Mr. Carl Volz, architect, New Yor Ashbourne, Pa., for Addison Foster, Esq. Per$\$ 5,500$. Mr. Samuel Milligan, architect, Phila delphia, Pa.
for J. E. Brown, Es, L. I., recently comple an floor plans. Cost complete $\$ 6,950$. An attractive design.
The dwelling of J. S. Benner, Esq., at Reading, Pa. P. Barber, architect, Knoxville, Tenn.

A colonial cottage recently completed for Howell E. Beane, Esq., at Ashbourne, Pa. Cost $\$ 4,000$. Perspective elevation and floor plans. Mr. Horace Perspective elevations and floor plans of
recently erected for A. P. Dunn, Esq., at Lowere N. Y. An elegant and attractive design. Cost New York. California M
California Midwinter Fair. Half page engraving,
showing a bird's eye view, the Mechanic showing a birds eye view, the Mechanic As Miscellaneous Contents: Damage to water pipes by electrolytic action.-Red slate.-Treating stones for construction.-Metal plated lumber.-Damage by lightning.-Gas from wood.-The steel-clad bathtub, illustrated.-An attractive greenhouse,
illustrated.-The band resaw.-The "Grand" fireplace heater,'illustrated.-Fly screens, illustrated.-
The Norris patent sash pulley, illustrated.-Glu The Norris patent sash pulley, illustrated.-Glu of the home.-The Peerless steam and hot water heater, illustrated.-Reproducing architects' draw-
ings.-Cortright metal roofing shingies, illus-trated.-A fine metalwork arch, illustrated.
The Scientific American Architects and Builders
Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages; forming, practially, a large and splendid Magazine of Architecrure, richly adorned with elegant plates in colors and
with fine engravings, illustrating the most interesting examples of Modern Architectural Cons̄truction and examples of
allied subjects.
The Fullness, Richness, Cheapness, and Convenience of any architectural Publication in the world. Sold by $\begin{array}{ll}\text { all newsdealers. } & \text { MUNN } \& \text { CO., Publishers, } \\ 361 \text { Broadway, New York }\end{array}$

Maldex (axuris

HINTS TO CORRESPONDENTS.

(6098) R. B. asks : 1. What is the specific gravity of the vapor of benzine? Is it heavier heavier than air. Its specific gravity being from $2 \cdot 9$ to
$2 \cdot 5$. 2. Mercury boils at 6622° Fah. How high a temperature will it record reliably? A. Mercurial thermo meters are made for temperatures up to $600^{\circ} \mathrm{Fah}$. 3.
What are the temperatures required for distilling of benine, gasoline, kerosene, lubricating oils, and paraffine, and hat is the greatest heat required in any process of dis illing crude American oil ? A. Light benzine boils and
distills at from 189° to 200° Fah. Naphtha and gasoline t 250° to 300° Fah. Kerosene, 300° to 390° Paraftine is separated after the last distillate. About 400° Fah. is the highest heat. 4. What is the difference between the oil stills purified by filtration the Scientific American Supplement, Nos. 439, 485, for details of the process, 10 cents mailed. It is virtually a soft paraftine. 5
In distilling crude oil there is a very poisonous gas comes In distilling crude oil there is a very poisonous gas comes out of the tail pipes. What is it chemically? When therc
is sulphur and arsenic in the crude oil, do they make the escaping gas any more deleterious? A. There are lighter hydrocarbon gases distiling under 170° Fah. that may carry off vapors of sulphur and other poisonous sub-
stancesconstituting the first gases from the tail pipes. 6. About what proportion of air and benzine vapor is
explosive? A. Any proportion of air and benzine or explosive? A. Any proportion of air and benzine or
gasoline vapor between equal parts and 1 of vapor to 2 of air is explosive
(6099) R. M. G. asks : What is the shot? What is the greatest range attained by modern guns y What is the greatest range of the guns (heaviest) he Blake siakhed? For what distance are the guns of that a gun is, or has been, chained to the rocks at Doyer England, which threw a shot across the English Channel to Calais? A. Seven or eight miles is probably the greatest range actually made. Twelve to thirteen mile made. To obtain this range an elevation of nearly 45° i required. The mounting of the guns of the Blake and ther ships carrying heavy ordnance is not intended for the greatest possible range. They can be sighted
ranges up to 7 or 8 miles. Shooting across the English Channel has been commented upon in journals and military circles.
(6100) M. W. asks what kind of paper to put on pulleys to keep them from slipping. Also a the toughest wrapping paper that can be obtained. If the pulley has been used and is polished, scratch the face with a coarse file and remove all grease or oil with a so lution of sal soda. For the cement use the hest glue he paper, add a half gill of hot strong decoction of oak or hemlock bark to each pint of glue. Have the pulley warm and apply the glue to the paper in strip may be desired Six to eight thicknesses make a marking pulley, durable, according to the severity of the
wores months to 3 years.
(6102) M. L. R. asks: 1 . Which is the drawn copper wire or No. 12 galvanized iron wire ? A The copper wire. 2. How many cells of the diamon would it require to ring one bell through a line 1,000 fee ength with earth return? A. Allow four to six cells. How much does No. 12 galvanized iron wire weigh per mile ? A. 32.7 pounds. 4. Can a common telephone re-
ceiver, such as was fully described in the Scientific American of February 3, 1894, be used successfully as both receiver and transmitter? A. Yes. 5. Will th volume of sound over a given magnet give any mor ceiver with a round bar magnet? A. The compound magnet telephone is the best. 6. What is the charging fluid of the Samson battery ? A. Solution of chloride of ammonium. 7. Which is the better for open circuit work and which has the longer life, the Samson or the Dlamond carbon battery ? A. We cannot undertakc to
pronounce as to relative merit in such cases. 8. Will you please give me the address of some reliable company where I can get a good receiver at a low price? A. Conan get a good receive
(6103) W. A. asks how to determine the amount of current and number of volts necessary to run an electric motor, the size and number of feet of wir
being known. I have a small motor: the armature i wound with twelve coils of No. 22 wire, twelve feet in 350 feet of 144 feet in all, and the fields are wound with 350 feet of No. 18 wire, and I wish to know the amoun
of current and number of volts it will require to run it t its full capacity. A. The current and voltage required depend on whether the motor is shunt or series wound If shunt wound, allow all the current the field wire wil stand, and calcollate by Ohm's law the voltage for this
current based on the resistance of the field. If series
wound，then give twice the current the armature wire
would stand and apply Ohm＇s law as above．For elec－ would stand and apply Ohm＇s law as above．For elec－
trical calculations we refer you to Sloane＇s＂Arithmetic of Electricity，＂$\$ 1$ by mail．
（6104）W．S．E．asks：1．Introducing a resretance into the field of thedynamo，are the E．M．F． alone reduced or is the E．M．F．and C．both reduced？A．
if shunt wound，both are reduced．2．Has aluminum ever been reduced directly from common clay？A．Not to any great extent．3．Give chemical formula for the hydrated oxide of aluminum．$A . \mathrm{Al}_{2}(\mathrm{OH})_{6}$ ．4．In the electrolysis of a compound body，what disadvantage，if any，is there in employing an electromotive force greatly
in excess of the E．M．F．necessary to effect the decompo－ in excess of the E．M．F．necessary to effect the decompo－
sition＇？A．None except perhaps wastefulness of energy． sition？：A．None except perhaps wastefulness of energy．
5．What is the present market price of aluminum？A 5．What is the presen
About $\$ 1$ a pound．
（ 610 ⿹勹）H．G．K．asks ：Kindly inform me of the method of obtaining the amount that a safety
and high wheel is geared to．And supposing it is 60 ，what and high wheel is geared to．And supposing it is 60 ，what
Is the denomination of 60 ？A．For a safety count the Is the denomination of $60 ?$ A．For a safety count the
teeth on the sprocket wheees，divide the number on the crank axle sprocket by the number on the driving whee axle，and multiply the diameter of the driving wheel by the quotient．We do not understand what you mean by the other query about the high wheel．If you refer to a
geared ordinary or front driver，try how many times the geared ordinary or front driver，try how many times the
front wheel revolves for one revolution of the pedal and front wheel revolves for one re
multiply the diameter thereby．
（6106）B．asks（1）how to construct a simple，long－lived，effective battery for bell work．A． Make a sal－ammoniac zinc carbon couple with large area
of carbon．2．How many cells and what number copper of carbon．2．How many cells and what number copper A．Wind with No． 22 or 24 wire，using two or three oances．3．Where can I purchase shell，diaphragm，etc．， for telephone described in ScIENTIFIc American of February 3，current year？A．Address some of our ad－ vertisers who sell telephones．
（6107）R．W．R．asks ：1．What should be the voltage and amperage of a current to run 641 mo－
tor to best advantage，the armature being wound with tor to best advantage，the armature being wound with
No． 16 wire，having 4 layers of 7 convolutions each to each coil？A．Eight or ten amperes and seven volts．2．
What would be the resistance of water in a glass tube of What would be the resistance of water in a glass tube of
half inch inside diameter for each inch between elec－ half inch inside diameter for each inch between elec
trodes？A．It depends on size of electrodes and on the purity of water．3．Would the armature core of 641 No．18，also would it make any difference if the wire was not all one piece，or must there be perfect connection through its entire length？A．Any wire will answer．It ure of 4 parts resin， 1 part gutta percha，and a little boiled oil，for coating wooden battery cells，that unless the amount of boiled oil is extremely small，the solution will not harden；is this due to a bad sample oil，would not paraffine answer instead of oil ？A．Use oil．Be
is boiled oil．You might add some liquid drier．
（6108）G．F．D．asks：1．Which has re－ latively the most conductivity，viz．，a No． 16 galvanized size wire or a common fuse wire？A．If of lead，the fuse wire has least sze as iron wire？A．If of lead，the fuse wire has least
conductivity．2．In building a metallic circuit telephone line with No． 16 galvanized iron wire，what size fuse wire should be used for safety cut－outs？A．Use fuse wire of the diameter of the copper house wire．
（6109）L．P．asks ：1．In what number of the Scientific Americas was the induction coil for Can the coil give an alternating induced current with－ out stoppage while the primary circuit is closed？A Yes．3．What firm makes a transformer to change a low voltage to a high voltage？A．Address any of our advertisers of electrical goods，such as J．H．Bunnell \＆ Co．， 76 Cortlandt Street，New York．4．Does the am－ perage of a transformed current rise with the voltage or
not？A．Yes，if a circuit of low impedance is open
（6110）R．W．S．asks ：1．Will you please nform me how to find the amperes of an incandescent A．You cannot unless you have also the voltage．Allow－ ing 3 watts to the candle power，you can calculate the amperage if you have the candle power and voltage． 2
Will six cells sal－ammoniac battery charge a storage bat Will six cells sal－ammoniac battery charge a storage bat－
tery 4 plates $3 \times 31 /$ ？A．No．3．What kind of acid tery， 4 plates， $3 \times 31 / 2$ ？A．No． 3 ．What kind of acid
would you use in a storage battery？A．Sulphuric acid ．Is there any kind of closed circuit batteries not using trong acids？A．The Danien a
（6111）E．F．B．asks ：In your issue of May 26 I find an article on＂Hard Water，＂from The Asclepiad．To soften hard water，the addition of lime water is recommended．The water of this section is ＂carying coals to Newcastle，＂to chalk deposits？A．The softening process alluded to is designed for water charged with calcium bicarbonate For gypsum－charged water it is ineffectual．We pre
sume that your region haswater of the latter type．See sume that y
next query．
（6112）W．A．C．writes ：In your issue of May 26 is an article by Sir B．W．Richardson，＂How to soft－ en Hard Water by the Use of Lime．＂I always supposed hard water was caused by its being already impregnated with lime．In one of your issues will you kindly explain how this can be？A．Hard water may be charged
with calcium sulphate（from gypsum rocks）or with cal－ cium bicarbonate．If the latter is present，the addition of calcium hydrate or lime will produce calcium carbon－ The reaction is $\mathrm{CaH}_{2}\left(\mathrm{CO}_{3}\right)_{2}+\mathrm{Ca}(\mathrm{OH})_{2}=2 \mathrm{CaCO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$ ． The CaCO_{3} is precipitated．
（6113）W．P．C．writes：What differ－ ence does it make if a receiver is wound to 75 ohms？ Will it work as well on a short line as it does on a long
line，and what does the resistance have to do with the working of the telephone？A．Resistance does not help， but injures the working of a telephone．The statement of＂resistance 75 ohms＂is merely a convenient way of
prescribing how much wire shall be wound on it．The
working is due to the turns of wire；if the resietance conld
be zero，it would be all the better．The turns of the tele be zero，it would be all the better．The turns of the tele
（6114）W．A．H．writes ：If two electro－ nagnets are mounted on a base，each provided with an armature，connected to the same lever，the lever pivoted
between the two magnets（walking beam style），and one pair of magnets excited by a battery to an attractive strength of 2 ，which will hold the seesaw lever against is held？Now，if the other pair of magnets be excited to an attractive strength of 3 ，can it overcome the attractive force of the first pair，and draw the lever in the oppo－
site direction？A．It is a question of relative distance． If the lever has any amount of play，it will stay attracted y the magnet whose poles it nearly touches．
（6115）E．S．asks what difference there is between an electric horse power and the horse powe relating to steam engines．A．The electric horse power is equal to 746 watts or volt－amperes，the steam horse
power to 33,000 foot pounds per minute；one is converti－ ble into the other．
（6116）H．R．E．asks ：In purifying a mineral（clay）I am using hydrochloric acid．What will entirely remove the acid or neutralize its effect？A．
Washing with water or neutralization with dilute caustic Washing with
soda solution．
（6117）F．P．R．asks ：By whom and when was the first piano made on this continent？A．
Jonas Chickering was the pioneer maker，beginning in 1822，and exposing his first piano for sale in Boston April 15，1823．Previous to this some unimportant at－ tempts at piano making，it is said，were made
（6118）J．W．B．asks how to obtain the gold from a solution of its alloys in nitro－hydrochloric reducing agents will precipitate metallic gold from the solution of its chloride．
（6119）C．A．C．writes ：I have just finish ed an 8 light dynamo describedin Supplement 600 and it ing tank，and what is it painted with inside？A．Smea wooden cell，when perfectly dry，with a cement of 4 parts resin， 1 part gutta percha，and a little boiled oil，melted together．2．What amperage should dynamo give for eneral plating？A．One tenth ampere per square inch of electrode at starting，dropping to one－fifth this amount after starting．3．I have a sparking coil made with one inch core of fine wire wound with six or eightlayers
No． 14 D．C．magnet wire and is 8 inches long o． 14 D ．C．magnet wire and is 8 inches long． not give enough spark to run my gasoline engine．A． Your coil needs more turns of wire；simply add ten to twenty layers of No． 20 wire．The length of spark is due to number of turns of wire；a small wire is not as good as a coarser one．It might pay better to remove the large wire，and rewwind with thirty
No． 20 ．The latter is coarse enough．
（6120）J．C．P．and S．write：We have built the 8 light dynamo as described in Supplement， No．600，winding field magnets each leg with four layers
No． 12 magnet wire．One leg of the magnet seems very No． 12 magnet wire．One leg of the magnet seems very
softiron and the other appears harder，as though they were soft．iron and the other appears harder，as though they were
not both cast at the same time．It runs very nicely as a not both cast at the same time．It runs very nicely as a
motor，but as a dynamo will run one 52 volt lamp at only about half its candle power，and when more lamps are per minute，one lamp and volt meter in circuit，meter shows 35 volts．Can you give us information that will help us out of our difficulty？A．You may have either too weak a field or too few turns on your armature．The re－ lation between armature and field resistances depends on external resistance and on whether the connections are in shunt or series．The difference of hardness of
two arms may affect the working of the dynamo． （6121）W．L．B．asks：Which would be the most economical to use as power，compressed air
＂dry＂or a vacuum power？In producing vacuums，is there a loss corresponding to the heat generated in com－ than a vacuum for power purposes．A larger range of pressure can be used with compressed air and with less loss from engine friction than with a vacuum．There is loss in heat by expansion and consequent shrinkage of pressure，alike in both systems；with the additional dis－ advantage of limited pressure practically below 12 pounds in the vacuum system．

TO INVENTORS．
An experience of forty－tour years，and the preparation
of more than one nundred thousand applications for pa－
tents at home and abroad enable us to understand the tents at home and abroad，enable us to understand the
aws and practice on botth continents，and topossess un－
equaled facilities for procuring patents equaled faciitities for procuring patents everywhere．A
synopsis oof the patent laws of the United States and all
foreign countries may be had on application，and persons

INDEX OF INVENTIONS

for which Letters Patent of the

June 12， 1894
AND EACH BEARING THAT DATES．

Ladder．F．B．Mallory．．． Lamp，W．A．Phillips．：． Lamp，automatic electric

 aus 2azan amanau－
䗑

 521,286
$.512,242$
511,233

PRINTS.
"Dis. Kilmer Swamp Root," J. Ottomann Lithograph-
A printed copy of the specification and drawing o
any
Batent in the

Phovertisements
 OR DINARY RATES. Inside Page, each insertion -- 75
 Back Page, each insertion - - - $\mathbf{8 1 . 0 0}$ a lin
 Hipher rates ame core ceasusesed.

 695 Water St, Seneca Falls, N.Y.

\#A
IGHT \& CLARK, ALEANY. IRON AND BRASS FOUNDERS,
\qquad of Every Description. Also BRASS, COM POSITION, ALUMINUM and ALUMINUM INAS free from blow holes.
Japanning and Nickel Plating. Light Machine Work
ALL work strictur First CLASS.

nd Veneer Cutting
sena for Cat. 4 . Handie Machinery
for Turning Handes orr Brooms, Axes
et. Send for Cat. B, $\underset{\text { chinery. }}{\substack{\text { Wulp } \\ \text { Send } \\ \text { Sor } \\ \text { for }}}$ Trevor Mfx. Co FIREPROOF FLOORING.-DESCRIP

Fertilizers ane unportatele

 German
Grait
Works,

BICYCLES, Berone You Buy n Whet,

Experimental \& Model Work Hiectrical Instruments, Fine Machinery, Special Appa-
ratus, Telephones. AMMONIA MOTORS.-A DETAILED

KELLEY'S IMPROVED BERRYMAN
 Made by B. F. KELLEY \& SON, 91 Liberty St., New York, 8 Oliver St., Bostor
and 441 Chestnut St., Fhiladelphia, Pa.

INOWN ERIGIDT:

 Fourteenth Edition of Experimental Science
revised and entarged.
O Pages and 110 Superb Cuts added.

With other new anow interesting optical illusions, the
Optical Proiection of Opaque objects. new experiment
in Projection, Iridescent Glass, some points in Pho
and

\&F Send for illustrate
MUNN \& CO., Publishers,
Office of the SCIENTIFIC AMERICAN

INSTRUCTION•MALL

 Mechanices, Drawing,

${ }^{\text {Engilisid }}$ Branches, RIICITY.

4000STUDENTS

Study Electricity at Home

Parsons Horological Institute. earn the Watch Trade
Engraving and Jewelry Work. PARSONS, IDE \& CO.

302 Bradley Ave., PEORIA, ILL.

(0) BULL'S-EYE

 LICHT PROOF FILM CARTRIDCES. Best and Most Practical Camera in the world regard
less of price. Prices, $\$ 8$ to $\mathbf{3} 15$. Send for Description, with Sample of Work.
Bomen Camera Mfg. Co., 382 Tremont St., Boston, Mas朝 New Friction Disk Drill.

ARTESIAN WELLS-BY PROF. E

OIL WIELLSUPPLYGO

MATCH * MACIIINERY Litatimprove. Complete palants furnished JoN.

GATES ROCK \& ORE BREAKER

 ailo then drake sen more orened than
 GATES IRON WORKS,
TOCS.Clinton S.. HYPNOTISM: My oripinal method \$1. Sugges

Fine Experimental Machine Work.
D'Amour

Learn the Watch Trade anden

ESTABMISHED 1845.
The Most Popular Scientific Paper in the World
 This widely circulared and spiendidly illustrated paper is published weekly. Every number contains sixteen pages of useful information and a large number of
original engravings of new inventions and discoveries, representing Fngineering Works, Steam Machinery New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity Telegraphy, Photography, Arch:-
tecture, Agriculture, Horticulture, Natural History, tecture, Agriculture, Horticulture, Natural History,
etc. Complete list of patents each week. Terms of Subscription.-One copy of the Scienostage prepaid, to any subscriber in the United States, anada, or Mexico. on receipt of three dollars by the
ublishers; six montins, 81.50 ; three months, $\$ 1.00$. publishers; six months, 81.50 : three months, $\$ 1.00$.
Clubs.- Special rates for several names, and to Post Masters. Write for particulars.
The safest way to remit is dy Postal Order, Draft, or
Express Money Order. Money carefully placed inside of envelopes. securely sealed, and correctly addressed. all letters and make all orders., drafts, etc., payable to
MUN N COO., $\mathbf{3 6 1}$ Brond way, New Yorls.

Scientific Americat \$upplement This is a separate and distinct publication from 'The
SCIENTIFIC AMERICAN, but is uniform therewith in size, every number containing sixteen large pages full of en-
gravings, many of which are taken from foreign papers and accompanied with translated descriptions. Tre Iy. and includes a very wide range of contents. It presents the most recent papers by eminent writers in al the principal departments of Science and the Usefu
Arts, embracing Biology, Geology, Mineralogy, Natural History, Geography, Archæology, Astronomy Chemis-
tiy, Electricity. Light, Heat, Mechanical Engineering. Steam and Railway Fngineering, Mining, Ship Building Marine Engineering, Photography, Technology, Manu
facturing Industries, Sanitary Engineering, Agricuiture Horticulture, Domestic E Economy, Biography, Medicine
etc. A vast amount of fresh and valuable information btainable in no other publich and
The most important Engineering W orks, Mechanisms and described in the SUPPLEMENT
Price for the SUPPlement for the United States,
Caraaa, and Mexico, $\$ 5.00$ a year; or one copy of the MEIENTIFIC AMERICAN and one copy of the SUPPLLE MENT, both maileo for one year to one address for $\$ 7.00$,
Single copies, 10 cents. Address and remit by postal order

Tinulding Edition.
The Scientific American Architects' an:
BUILDERS' EDIIION is issued monthly. $\$ 2.50$ a year Single copies. 25 cents. Thirry-two large quarto pages,
forming a large and splendid Magazine of Architecture forming a large and splendid Marazine of Architecture,
richly adorned with eiegant piates in coiors, and with other fine engravings; illustrating the most interesting
examples of modern architectural construction and allied subjects.
A special feature is the presentation in each number of a variety of the latest and best plans for private resi-
dences, city and country including those of very mod dences, city and country including those of very mod
erate cost as well as the more expensive. Drawings in perspective and in color are given, together with Plans,
Descriptions, Locations, Estimated Cost, etc. The elegance and cheapness of this magnificent work have won for it the hargest Gircuiation of any
Architectural publication in the world. Sold by all newsdealers. $\$ 2.50$ a year. Remit to
MUNN \& CO., Publishers,

FVANDUZEN STEAM PUMP

 BUY TELEPHONES

 440 Monadnock Block, CHicago.
Largest Manufacturers of Telephones in the United States SINTZ GAS ENGINE CO

TYPE WRITERS.

MUSIC AND LONGEVITY.-A PAPER
 and nerve force. That music is physiologically capable
of enlarging the chest and the eupinaries and of calming
and reaulating, it not increasing nerve force, and that
 VEGETABLE PARCHMENT.-A A VALL-

 Star * Maps

By Richard A. Proctor, F.R.A.S. A series of twelve elegantly printed Maps of the
Heavens, one for every month in the year. Specially
prepared for use in North America. With descriptions
accompanying each map, giving the names of the prin-
cipal stars and constellations, showing their relative
positions at given hours and days of the month.
A most beautiful and convenient work, specially
adapted for the use of those who desire to acquire
a general knowledge of the starry realms.
To which is added a description of the method of
preparing and using artificial luminous stars as an aid
in fring in the mind the names and places of the
various stars and constellations, by Alfred E. Beach.
Altogether this is one of the most popular, useful
and valuable works of the kind ever published.
One quarto volume, elegantly bound in cloth. Price
$\mathbf{\$ 2 . 5 0 , ~ p o s t p a i d . ~}$
MUNNN \& CO., Publishers,
M61 Broadway, New York.

EGGS

PERFORATORS OF ALL METALS

TO MANUFACTURERS

 LOCATION $\begin{aligned} & \text { and others seeking a desirable } \\ & \text { FACTORIES. }\end{aligned}$.. PELLONIA, ILL.

American Watches.

IIE "OIIN"

GAS AND GASOLINE ENGINES,

 fROM 1 TO 10 HORSE POWER, FOR ALL POWER PURPOSESTrem Oinin Gas bivginf OO., 222 CHICAGO STREET, BUFFALO, NEW YORK.

$\frac{\text { DEAFNESS! }}{\text { DME }}$

THE CARBOPHONE

 No Rider
 bailey mpg. Co., 200 S. Canal stat chicago.

Deer Park

Oakland
On the Grest of the Alleghanies. (MAIN LINE B. \& 0. R.R.)
SEASON OPENS JUNE 23, 1894
Ratesest sc, 875 and 80 a month, accorcing to location.

KEEP THE HEAD COOL.

A New and Valuable Book

12,500 Receipts. 708 Pages. Price $\$ 5$. This splendid $\begin{aligned} & \text { work } \\ & \text { the contains a careful, compiliation of } \\ & \text { the most useful Receipts and Replies given in the Notes }\end{aligned}$
 with many valuable and important additions.
Over Twelve Th Thsand selected Receip ts are
here collected; nearly every branch of the usef ul arts here represented. It is by far the most comprehensive
bolume of the kind ever placed before the public. The work may be regarded as the product of the studworkers in all parts of the world; the information given
being of the highest value. arranged and condensed in
concise form convenient for ready use. Almost every inquiry that can be thought of. relating
to formulzused in the various manufacturing indus-
tries, will here be found answered. Instructions for working many different phocesses in
the arts are given. Those who are en agas in any branch of industry
probabiy will find in this book much that is of practical
value in their respective callings. Those who are in search of of independent business or
empoy ment, relating to the bome manufacture of sam-
ple articles, will find in it hondreds of most ple articles, will find in tit hundreds of most excellent
puggestions.

MUNN \& CO., Publishers,
SCIENTIFIC AMERICAN OFFICE,

COLD FORGED PRODUCT
Fluted Tire Bolt

Is stiffer and stronger than a common bolt. The fluted shank prevents the bolt from turning COLD $\quad \begin{aligned} & \text { MACHINE ScRE } \\ & \text { STOVE BOLTS }\end{aligned}$ FORGED $\left\{\begin{array}{l}\text { LOCK CAP SCREWS }\end{array}\right.$

AMERICAN SCREW COMPANY,
PROVIDENCE, R. I.

Eastman Kodak Company

Rochester, N. \mathbf{Y}.

Standard Strainer ©0. ${ }^{36}$ New York
Mistakes in Addition, Office Headache,
and mistakes in harrying forward
dont ocur where tie Compto
 meter 1s used. It saves half the
time in doing the work and all
time looking for erros. Solves
with greatrapidity and bsolve time looking for errors. solves
with greatrapaidity and ansolute
accuracy all arithmetical prob-
lecms. Why dorit
 ELT \& TARRANT MFG CO
$52-56$ ILLINOIS ST., CHICACO

The

American
Bell Telephone
Company,
125 Milk Street,
Boston, Mass.
This Company owns Letters Patent No. 463,569, granted to Emile Berliner November ${ }^{17}$, 1891, for a combined Telegraph and Telephone, and controls Letters-Patent No. 474,231, granted to Thomas A. Edison May 3, 1892, for a Speaking Tele graph, which Patents cover fundamental inventions and embrace all forms of microphone transmitters and of carbon telephones.

Victor Bicycles

All about the best bicycles ever built since the world began is contained in the Victor catalog which will be sent you on request, or it can be obtained of any Victor agent.

The Victor Resiliometer, the only tire testing machine in existence, has proved conclusively that

Victor
 Bicycles

Victor Bicycles

the Victor Pneumatic Tire is the most resilient of any. Victor Tires, like Victor Bicycles, are unequaled, unapproached. Why not ride the best?

OVERMAN WHEEL CO.
\qquad

Victor Bicycles

咉 TELEPHONES. THE VIADUCT CO. 2 So. Howard St., Baltimore,
 AFENTS WANTED FORFINE TOOLS IN EVERYSHOP CaMLIEGOR C. H. BESEY\& CO.

LOVELL DIAMOND CYCLES
highest grade. fully warranted For Men or Women \square Boys or Girls.
JOHN P. LOVELL ARMS CO. Manufacturers,

BOSTON, MASS.
H. W. JOHNS M'F'G CO.,

ROOFING, LIQUID PAINTS, ASBESTOS MANUFACTURES, NON=CONDUCTING AND INSULATING MATERIALS,

87 maiden lane, new york.
Jersey City.
Chicago.
Philadelphia.
Boston.

JESSOP'S STEEL TM wiviv

SCIENTIFIC AMERICAN SUPPLE-
 10 cents. A
the country.

Bates Automatic Numbering

 1893. BATNEA MFG. CO.
44 Broad St., N. Y., U. S. A

The distribution of your power is as mportant as its application. I know a good dea! about the economical distribution of pow r. Perhaps I could give you a few pointers. nquiries answered free, catalogues sent free. Chatanues: A, woodworking mach'y; B mach'y for
brass, ivory, horn, etc.; \mathbf{C}, shaft'g, pulieys, hangers, ett. Prass, ivory, horn, etc.; C, shaft'g, pulleys, hangers, etc.

THE ELECTRIC STORAGE BATTERY CO.
The Chloride Accumulator.
CENTRAL STATION IN-TALLATIONS. DREXEL BUI DREXEL BUILDING.

Conumidia Popunaitiy Is Prupring $\begin{aligned} & \text { and the Columbia } \\ & \text { models for } 1894 \text { are } \\ & \text { achieving a popular- }\end{aligned}$ ity never before accorded even to Columbias. Seven new peerless wheels which need only to be seen to be
appreciated. Their beauty appeals to beauty appeals to
the eye, and their the eye, and their
construction to the good sense of every
wheelman in the land, while their standard price of $\$ 125$ proves particularly attractive to purchasers of high grade bicycles.

POPE MFG. CO
Boston, New York, Chicago, Hartford. All Columbia agents furnish our catalogue
ree, or we mail it for two two-cent stamps.

Elements of all sizes, from 100 up to 10,00 watt-hours capact

PHILADELPHIA, PA

CASH PALD Rer all kind of good seondihnd

Ride a गribune: That's The Wheel!

THE BLACK MFG. CO., - ERIE, PA. MANUFACTURE OF BICYCLES.-A
 PIEMEST. No. 908. Price 10 ct
oftice and from all newsdealers
Towers, Tanks and Tubs
a p itent sectional
all wood towers Elevated tanks

Louisiana Red Cypress Tanks
W. E. CALDWELL CO.

$$
19 \text { E. Maiu street, }
$$

The "Missing Link" Found at Last!

ICE HOUSES. - DESCRIPTION OF

[^0]53 N. GIBE GAS ENGINE COMPANY,
PRINTING INKS,

[^0]: Marine and stationary. 1 h. p. to 75 h. p.

