
[Entered at the Post Office of New York, N. Y., as Second Class matter. Copyrighted, 1894, by Munn \& Co.]
a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

Vol. LXX. - No. 19. Rstablembi 1845 .	NEW YORK, MAY 12. 1894.	

THE PARK AVENUE IMPROVEMENT IT NEW YORK CITY-THE TEMPORARY HARLEM RIVER BRIDGE AND THE MOVING OF THE HOTTHAVEN STATION. We have recently illustrated some of the operations which are now in course of execution for the Park Avenue improvement in New York Cits As we New York City. As we stated in the article re ferred to, which appeared in our issue of April 28, there is included in these changes the erection of a new bridge over the Harlem River to re Harlem River, to re place the present one. In order to give the railroad transit across the river while the new bridge is in course of erection, a temporary drawbridge and viaduct has been built crossing the river to the crossing the river to the
west and north of the west and north of the
old one. The tempoold one. The tempo-
rary tracks diverge from the present line some distance south of the Harlem River and

return again to the existing line north of the river in Mott Haven. Some years ago, when the necessity for an auxiliary draw bridge in the then existing bridge over the Harlem became apparent, which necessity was brought about by the liability to injury of the rotary draw in régular use, a tower lift drawbridge was added purely as an auxiliary. This gavean opening of 50 feet span, available in emergencies, and consequently was but little used. Eighteen months ago, after the present imrove han provements had been arranged, it was decided to utilize the tower of this draw for the temporary bridge, moving it to the new line and adding thereto a new lift span, so as to supply a drawbridge in connection with the viaduct. The operation of moving the tower was described in our issue of December 31, (Continued on p.296.)

THE PARK AVENUE DMPROVEMENT IE HEW YORK CITY-MOVING THE MOTV HAVEN STATION.

ダruentific Agmexican．

ESTCABLISHED 1845.

MUNN \＆CO．，Editors and Proprietors．

 published weekly atNo． 361 BROADWAY，NEW YORK．
O．D．MUNN．A．E．BEACE．

TEICMS FOR THE SCIENTIFIC AMERICAN．

The Scientific American Supplement

NEW YORK，SATURDAY，MAY 12， 1894.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT No． 958.
For the Week Ending may 12， 1894.
Price 10 cents．For sale by all newsdealers．

During the last few weeks our country has been the scene of a series of pilgrimages，all directed to the shrine of the Federal capitol，and having for their ob－ ject some mysterious alleviation by governmental methods of the hardships of the poor man＇s life．The central idea underlying these organizations seems to be that as money is the embodiment of man＇s possessions and opens up to him the road to happiness on earth，and as the government possesses the right to coin money in its mints and print bills in its printing offices，that it also can be for the nonce the creator of money．The members of these pilgrimages，termed Coxey＇s Army Kelly＇s Army and the like，propose to go to Washing ton，and by their presence to give soimposing a demon stration as to influence legislation in the desired direc tion．One scheme is to haye the government issue bonds，bearing no interest and payable in install ments．
Whatever one＇s opinion may be of the right of a man to be rich，it is far from clear how the proposed issue of bonds could be conducted so as to produce any good effect．As the world is organized and as humanity is distribution there will al ways be rich and poor．The deserv ing inventor who has worn his life out in devising im－ provements in mechanical things，the scientist who has worked for hours evolving in the laboratory new chemical products，the bacteriologist who flnds a panacea for the most dreaded diseases，certainly rank as the benefactors of humanity；but the history of the world shows that it is precisely these classes who re ceive the benefit least commensurate with the value of their work，when its importance to the rest of hu manity is considered．The inventor invents and pat－ ents and the capitalist makes the fortune from the in vention．This is the story repeated over and over again．Yet unjust and severe as it seems，this is the definite lot of humanity，and there is no probability that the cure of inequality of fortune will ever be discovered．
The typical inventor invents because he has to，and he may hope to reap a modest reward from his work． Whether he does or does not，his very genius will not allow him to be idle．The apparent injustice has to be endured．But in spite of the communistic tenden－ cies of the age on one side，and of the undue accumu－ lation of wealth by the few on the other side，ex－ amples sometimes appear where the benefactor of humanity from the staudpoint of scientific or me－ chanical advancement meets with an adequate re－ ward．In a recent address before the old New York society，the General Society of Mechanies and Trades men，Mr．Abram S．Hewitt，well known from his prominence in the iron industry，as well as from his political record，gave a most graphic presentation of the results of the work of one of the world＇s greatest benefactors，Bessemer．We quote from the concluding portions of his address．
＂You all know about the Bessemer invention of steel．It was made in 1855 by a student in his labora tory．He propounded his idea to the world，but it took fifteon years before it was successfully put in operation．I know Mr Bessemer very well．He is a modest man who never sought to make a fortune，but he has taken the rewards of his great invention，and he told me the last time I saw him in London that he had got out of his invention $£ 2,003,000$－nearly $\$ 10,000,000$ ．The contribution which he made to the world by that invention in the saving it has effected in the ordinary operations of society is simply incal culable．If I were to say we were saving $\$ 1,000,000,000$ a year in this country alone as the result of that in vention applied to every branch of industry，particu larly in the transportation of the goods and the products of the country，I should certainly underesti－ mate the amount．And now I am going to say some thing even more surprising．Taking the world together， the satal value of all the movable capital of the world one hundred years ago．

One man，by a single invention，has contributed to the aggregate wealth of the world more value than existed fifty years before his birth．Now he has got ten millions of dollars．It is a great sum．He will leave it to his children，who have done nothing，have contributed nothing to the acquisition of this money． Whom has he robbed ？Whom will his children rob ？ Who would be the gainer if he had never received one penny for his great discovery？How much would the distribution of his $\$ 10,000000$ over the face of ociety add to the fortune of any single individual，and ow much has his invention added to the fortunes of ll mankind ${ }^{\prime \prime \prime}$

Waterproofing Fabrice

According to Holfert＇s process for waterproofingifab rics，the materials are first passed through a bath of gelatine，then exposed to the action of formaldehyde a gaseous state．The gelatine is thus rendered in oluble and imparts water－resisting properties to the fabrics．

Pipe Lifting by Expansion．
An interesting illustration，to be commended to the otice of popular lecturers，of the old aphorism that ＂knowledge is power，＂as well as of the more modern definition of science as＂organized common sense in regard to things，＂is supplied by some recent proceed－ ings of Mr．Howe，the engineer of the Clay Cross Col－ lieries．It is reported that some weeks ago the second pipe from the bottom of a $61 / 2$ inch rising pump main， 140 yards long and 30 tons in weight，in one of the Clay Cross pit shafts，broke off at the branch connecting it with the underground pumping engine．The whole weight of the line of piping rested upon itself，so that it was a question of how to get the broken memberout and replace it．Mr．Howe decided，with the concur－ rence of Mr．Jackson，the manager，to lift the pipe column by the force of expansion due to steam heat． Accordingly，a cross beam was inserted in the shaft at a height of 60 yards from the bottom，bearing close against the defective main，and not far under one of the flange joints．The pipe being then empty，steam was turned into it at the bottom through a $1 / 2$ inch pipe and regulating cock；and in the course of an hour the main had moved up $21 / 2$ inches at the point where the cross beam was fixed．The main was then secured to the beam by strong clamps，and as soon as the weight had been taken in this way，steam was shut off； and the pipes，contracting，began to lift the broken end from the pit bottom．The broken pipe was changed for a sound one，and steam again turned on until the clamps could be taken off．The time occu－ pied in the operation，from first turning on the steam to restarting the pumps，was only four hours；and the operation was effected without a hitch．

Dr．Brown－Sequard＇s Orchitic Fluid．
The death of D_{r} ．Brown．Sequard has served to re， vive in some minds an interest in his orchitic fluid，in which the great physician had himself much hope．
The Lancet in a recent number publishes some sig－ nificant notes upon experiments with the fluid made by Dr．Guy M．Wood and Dr．A．J．Whiting，both physicians to the Hospital for the Paralyzed and Epi－ eptic，Queen＇s Square，London．
The fluid used was obtained directly from Paris， through Dr．Brown－Sequard＇s personal kindness．The injections were hypodermic，made with a Koch＇s syringe，kept aseptic in absolute alcohol．The dose was from one gramme of the fluid to six grammes，and in all but three cases，diluted with an equal quantity of water．Except when the doses were large，no imme－ diate effects were perceptible．In those cases some pain was felt at the point of injection．
Twenty－three patients were treated．In eighteen cases there was no change from the treatment；three patients were slightly better；two were worse．
At the beginning of the observations several patients said they felt better after the injections．At the sug－ gestion of Dr．Buzzard，two women were given daily injections of two grammes of distilled water only，for three weeks．Both the patients declared that they felt decidedly better after each treatment，though of course there was no change in the physical condition．

The physicians，therefore，conclude that in all the cases treated，the sensation of being better was due to the mentaleffect of theinjection andnot to the orchitic fluid，and they do not think that the results obtained warrant any further trial of the remedy．

J．©．Davidson．

In the death of Julian Oliver Davidson，the art and publishing world has sustained a severe loss．Born in Cumberland，Maryland，in 1853，he early exhibited a talent for drawing，especially of marine and battle scenes．His pictures were characterized by life and spirit，and as an artist he soon rose into prominence． As an illustrator he was well known；he worked for the leading magazines and weekly papers．For many years Mr．Davidson designed marine views for the Scientific American，the last occasion being views of the Vfgilant and Valkyrie，published in the issue of October 14，1893．Mr．Davidson died at his Nyack（N． Y．）home on April 30，after an illness of several months．

Peroride Bleaching．

This is the invention of Konigswarter \＆Ebell，who ecommended the process for the bleaching of straw， wood，and similar fibers．To 100 liters of soft，cold water， 1,600 grammes of pure crystallized oxalic acid are added，and then 1,000 grammes of peroxide of sodium are slowly stirred in．The liquor，when this is done，will still be acid，and must be made feebly alkaline with silicate of soda or with more peroxide． The stuff to be bleached must be clean and free from grease，and is put into the alkaline bath of the mix－ ture and kept in it until bleached at a temperature of from 90 deg．to 100 deg．F．It is then rinsed and freed from any traces of yellow in a weak acid bath， tartaric，for instance，or by slow drying in the open air．The above bath can be used over and over again， and to save time may be made stronger．An economy may also be effected by substituting sulphuric for ozslic acid．

The Role of Microben in Society.
The Revue Scientifique publishes an address upon this subject, before the Society of Anthropology, in Paris, by M. L. Capitan
Quoting from an address before the same society by the distinguished scientist Broca, he speaks of the gradual overcrowding of our plariet, and of death as necessary to make room for coming generations. After showing that the decomposition of dead matter is also necessary to this preparation for new life, and that the process is the work of microbes, M. Capitan thus continues: "Microbes have an important role in digestion. Ordinary digestion takes place in the stomach and intestines by means of soluble ferments secceted by organic cells, which attack the foods, separate them, and make them fit to be assimilated; it is work similar to that of microbes. But the digest ive tract contains great quantities of microbes con stantly brought in by food. They multiply indefinitely and play most complex roles. They necessarily take part in the digestive phenomena, as aids in the break ng up of organic compounds, and, again, they are the only effective agents to that end. M. Duclaux insisting upon this point, says that certain kinds of cellulose can be attacked by microbes only; no or ganic juices have that power. M. Pasteur cannot con ceive of the possibility of digestion where microbe do not exist.
The purely chemical work of the microbe is enor mous. What we know about it is nothing in com parison with what it must be. Every kind of microbe every race, every variety, is charged with a specia unction; the division of labor is pushed to the ex reme limits, so that for any chemical reaction what ver to be realized, the microbe makes several at tacks. Each variety takes part in the work, begin ning a partial separation of the matter, which is com pleted by another kind, and this goes on until the or ganic matter is reduced to its elementary constituents, or to a state of sufficient simplicity for the plant to assimilate it.
Further, as old as the world, contemporary with the first generations of vegetables, the microbes have con tributed materially to the constitution and formation of the geological strata. Microbes made the peat which later became coal; they had their part in the complex work of precipitation which made the great beds of calcareous deposits; they played their part in the complex reactions which resulted in the deposits of sulphur, iron and many of the other metals.
Industrially, the chemical work of microbes is often utilized by man. Two.typical examples may be given. First in the preparation of indigo. It is obtained from a wood cultivated in India, Japan and Central America. This plant contains a sugar, indiglucine which is removed by washing with warm water; this indiglucine is then submitted to special fermentation. The microbe separates it into indigotine and sucrose The indigotine, which is white, is oxidized by the re action due to the microbe, and is changed into indigo with its blue color. And this preparation would be impossible without these peculiar reactions produced by microbes.
Again, the chemical action of microbes is illustrated in the preparation of opium to smoke.

But
it is especially in the preparation of many of the most indispensable foods that certain micro-organ$i s m s$, thus domesticated (i.e., in the preparation. Tran.), show themselves incomparable chemists. Without them these different preparations would be impossible. Such is the case with bread, alcohol, wine beer, the different milk ferments (koumiss, kephyr) heese, sour-krout, etc.
I cannot show you in detail the part which the micro-organisms have in the elaboration of each of these products. Besides, you all know what characterizes bread. Yeast is the principal agent in the fermentation. There are milk ferments, aud many other kinds of microbes. For alcohol, wine, and beer there are the different kinds of yeast, with the addition of various nicrobes and their numerous diastases, which, as the case may be, separate the molecules of starch and change them progressively, by successive separations, into dextrine,'glucose and finally into alcohol ; or again, change sugar into alcohol, or even, separating from the malt, make alcohol, and finally make the complex products, wine, brandy, and beer.

I have spoken thus at length about microbes and I have not yet presented them to you. They are, as you know very inferior algaformed of one cell, generally with an envelope. They live almost everywhere upon and in living creatures, in the soil, water, upon solids, etc., multiplying with extreme rapidity. They have very varied actions, often useful, as you have seen, or, on th contrary, hurtful, as you will soon see.
Sometimes they take a rounded form, are little spheres with a diameter of about a half thousandth of a millimeter. Sometimes they are isolated, and, again they are in strings composed of a more or less considerable number of grains. They may present themselves n the form of little sticks from a half to one or two thousandths of a millimeter in diameter with a very
variable length, thus forming, sometimes, short sticks (tuberculose), sometimes long threads (charcoal en cul ture). The little sticks are immovable, or, on the contrary, movable, rigid or curved. They may take the form of a half circle, as in the cholera microbe, or they may present themselves in a spiral form, as the mi robes of intermittent fever.
They generally color easily with the aniline colors. Finally, when they are placed in a medium suitable for their culture, such as bouillon, peptonized gelatine or solidified blood serum, they multiply in great abundance. These elementary facts give you a general idea of the morphology and biology of microbes. You know them now. I have shown you how they may be useful in society. Now let us see how they are harmful.
If microbes decompose dead matter, they may also decompose living matter! Certain kinds especially have the power which is called virulence. They are called pathogenes, that is to say, they may determine the diseases. Every kind of microbe, moreover, pro duces a special kind of disease and has a power which varies much, according to a number of circumstances.
But the microbe cannot alone make the disease; the intervention of the organism of the subject in whom the disease is to develop is necessary. If you please, following the forcible comparison of Professor Bou chard, the organism is a stronghold, the microbe is the assailant, the struggle between the two is the infectious disease.
Thus the condition of the organic domain, which the microbe seeks to invade, is important. In fact, if the person is very well, he offers a great resistance to mi crobes. If, on the contrary, his health is not perfect it is a stronghold poorly defended, and the danger is long time, a person does not become ill, except when he is already not in very good health. But there are he is already not in very good health. But there are
many means for getting into bad health. One may many means for getting into bad health. One may may be summed up, essentially, in two grand classes Troubles of organic functions and disorders of tissues. Many of the processes leading to the production and development of disease are directly dependent upon various social influences. Do you wish some examples?

Wealth, like poverty, is a powerful agent in disease The rich man, from his frequent overeating, his want of exercise, his excess of comfort, easily acquires obesi y, the gout or diabetes; his kidneys, his heart, are fre quently affected. The poor man, on the other hand from want in its different forms, from overwork, exposure to inclement weather, or want of cleanliness, may suffer from various derangements of the interna organs, the lungs, the liver, the kidneys, the bowels, etc. He has, like the rich man, a special pathology in certain points and very different from the last; a pa thology, moreover, due absolutely to his social condition.
The occupations create also special diseases. They may poison those who engage in them. Laad pro duces chronic poisoning among those who handle it (painters, printers, manufacturers of white lead) ; it s the same with mercury (silverers of looking glasses, gilders, hatters). Every poison produces its special effect upon the system : lead upon the kidneys, the intestines, the brain, and mercury upon the brain and the nerves. These examples might be multiplied; they show the occupation may affect the organs, cre ate actual diseases, or induce such a state of health as to facilitate the invasiou of the microbe. Is it necessary to mention that dreadful form of poisoning, alcoholism, which produces its effect upon kidneys, heart, liver, brain ; alters all the internal organs and thus prepares the way for disease-producing mirobes?
All the natural cavities of the body opening exte riorly (the nose, mouth, alimentary canal) are filled with microbes that come from without, borne by the ir or foods, and subsequently multiplying. There re even some for the skin. In the midst of these there are others which are the remains of previous in fectious diseases which have attacked the subject ac tually cured.
All microbes, in a normal state, live a latent life often useful as we have seen for digestion, most often noffensive, thanks to the resistance of the cellula ining of the organic cavities, thanks to the activity of the white globules, zealous defenders of the organism thanks to the chemical action of organic liquids. But when various circumstances, external conditions, or internal ones, modify these elements of defense, alte the texture of linings (as in the case of poisoning from he occupation), or when one or more of the microbes take a sudden virulence, then the barriers of protection are broken, the microbe enters into the interior of the tissues, and may determine the greatest variety of diseases, from pneumonia to erysipelas, meningitis or a abscess in the liver.
The microbes which live outside the organism have equally diverse origin. We have spoken already of the innumerable varieties living in the soil, the water, and n plants which play such numerous and importan roles. Certain ones may, under the right conditions
take on a disease-producing power, and determine a disease, but there are others which, disease-producing by profession, have been eliminated from diseased organisms, and instead of having succumbed have fallen into the outer world, have adapted themselves to new places and live another life, it may be in the earth or in water. They are all ready, when introduced by food, or by respiration, to penetrate anew, into a living organism, to develop there, if the circumstance are favorable, the disease which they characterize, such as is the case with the vibrion of cholera or the bacillus of lockjaw

To these innumerable special causes of infectious diseases, the invasion of microbes and their development in the organism, hygiene may oppose numerous means of protection or of defense. This is the role of pro phylactics. On the other hand, medicine may aid the system in struggling victoriously against the microbe : this is the role of therapeutics. But upon these two points the social influences have an important bearing: the place in society of the patient may modify profoundly these preventive measures and make them effective or insufficient, according to circum stances. . . . You see, then, though I have given only a simple outline of it, that the role of microbes in society is immense.
Bad or good, hurtful or useful, all have a role which is, on the whole, indispensable to the regular evolution of society. And, however paradosical that assertion may at first have seemed, I believe I have given you a clear demonstration, and in closing, I may formulate it thus: Society could not exist, it could not live or subsist, except by the constant intervention of microbes, the great carriers of death, but also distributers of matter, and thus the all-powerful carriers of life.

Miscellaneous Notes

Nature reports that the Czar has authorized the trial of tea culture on the eastern borders of the Caucasus, where the temperature is about the same as that of the parts of China where the plant thrives.
Les Annalen de Physikalischen Central Observa toriums, of M. Wilds, reports that a temperature of $-69.8^{\circ} \mathrm{C}$. (157.64° below zero, Fah.) was registered at Werckojansk, Eastern Siberia, in February, 1892. This is the lowest temperature which has ever been regisered on the surface of the earth.
The Hungarian government has established an Intitute of Bacteriology at Budapest, intended to facilitate the scientific study of infectious diseases.

Natural Science deplores the fact that there is no laboratory for psychological experiments in England, and speaks of institutions of this kind which exist on the Continent. Revue Scientifique (Paris), commenting upon this, says " there is only one such laboratory worthy the name in France," and adds, "It is in Germany, but especially in America that these institutions are well established, and any one in England who wishes to start one must look to these two countries for his inspiration.'

The University of Edinburgh hastaken steps toward ome notable improvements. It is to have two new halls for public ceremonials; a third one is to be built as a dormitory for the women students; a chair of public health has been endowed; and, finally, a field or athletic sports has been bought at a cost of $\$ 45,000$.
The Canary Islands possess not only the most wonderful climate, but an extremely fertile soil. The only difficulty in agriculture is the want of water. It has lately been found that there are great quantities of water in cavities of the mountains of Teneriffe. An English company has undertaken to get it out. They find that boring to a depth of a hundred feet is enough to procure a large supply of water. If they succeed in getting an unlimited supply in this way, the islands, which have declined in prosperity in recent years, will probably develop greater productivity than hitherto. Russian industries are developing with great rapidity. In the construction of the new railway train for the Czar and his suite, Russian materials were used, with the exception of axles and wheels, which were furnished by the Krupp works, at Essen. This train consisted of eleven carriages, made after American models. Unusually strong brakes were attached, enabling the train to be brought to a standstill very suddenly.

orwecian Cooking Stove

During the last maneuvers in Russia experiments were made with the Norwegian cooking stove, the bject being to provide the troops on the march, ithin the least possible space of time, with warm food. The apparatus used was the ordinary camp kettle fitted into a thick felt covering. The soup or stew being placed in the kettle is raised to the boiling point, and then removed from the fire, the lid clamped down, the kettle inserted in the sheath, and the whole slung in the usual manner below the wagon. The process of stewing continues automatically, thanks to the heat retained, and even after several hours' marching the temperature does not fall below 100° Fah.-Journab R. U. S. I.

AN IMPROVED STEAM ACTUATED VALVE.
The valve shown in the illustration is more especially designed for use with steam pumps, and is of simple and durable construction, very effective in operation, and arranged to positively control the movement of the main piston valve. It has been patented by Mr . Joseph J. Kwis, of Findlay, Ohio. The pump has the usual steam cylinder, with the end inlet ports and central exhaust port, controlled by the usual slide

RWIS'S STEAM ACTUATED VALVE.

valve extending into the steam chest, within which also is an auxiliary piston valve adapted to be directly actuated from the piston in the steam cylinder, the steam chest having a main bore and an auxiliary bore. Steam inlet ports lead from the auxiliary bore to the ends of the main bore and exhaust ports independent of the inlet ports, and lead from the end of the main bore transversely'through the auxiliary bore to the common exhaust passage. The auxiliary balanced piston valve sliding in the auxiliary bore has reduced portions controlling the steam inlet ports and the exhaust port, whereby the auxiliary piston valve is directly and positively actuated from the main piston rod, avoiding all undue friction, and positively shifting the main piston valve whenever the piston nears the end of its outward or inward stroke. In the illustration the exhaust is shown open at A, and enters main exhaust through the opening at B. The live steam which supplies the recess C, is admitted through hole, D. The live steam port is shown open at E, and en tering steam chest at F
Further information relative to this improvemen may be obtained of the Adams Brothers Company the Findlay Machine and Boiler Works, Findlay Ohio.

A WIDOW SASH FASTENER.

This is a device especially adapted for use in connec tion with window sashes pivoted at their centers at top

KIRSCH'S WINDOW SASH FASTENER.

and bottom, and is very simple, durable and inexpensive, and capable of quick and easy manipulation. It has been patented by Mr. Richard Kirsch, of Bay Ridge, L. I., N. Y. Near the upper central pivot of the sash an outwardly projecting rack is secured to the window frame, the rack being preferably of a quadrant form, and having a downwardly projecting flange which serves as a stop to prevent the sash from passing over a center line when opened. Extending across one side of the top rail of the sash, and passing adjustably through a block adapted to act as a pivot, is a locking lever, one end of which works in a bracket-like guide secured to the sash, there being at this end an adjustable locking pin adapted to engage one of the apertures of the rack. The locking lever is capable of lateral
adjustment in its pivot block, and in an outer end block by which it is connected with a vertical connecting rod extending down one side of the sash. This rod is held to slide in one or more guides, and has at its lower end a guided movement in a plate in which is pivoted a connected operating lever, which may be either an elbow, an angle or a crank lever, forming a suitable handle by means of which the locking pin may be made to engage any one of the apertures in the rack, according to the position in which it is desired to adjust and lock the sash.

Protection of Iron from Rusting.
Mr. W. Thomson, of Manchester, is continuing his researches into the oxidation and corrosion of iron and steel; and he recently published some further observations on the subject in the Journal of the Society of Chemical Industry. According to this statement, Mr. Thomson had a number of sample pieces of thin sheet iron, of uniform size, weighed and painted with one coat of each of the paints, and weighed again; then left for about a week exposed to the atmosphere, and again weighed. The difference between the two first weighings gave the weight of the wet paint employed, which was calculated out to the square yard of surface; while the first deducted from the third gave the weight of dry paint. The coatings thus tested upon the sample strips, which measured 4 inches by $13 / 4$ inches, varied in weight from $\frac{3}{4}$ ounce for linseed oil alone to 7 ounces for oxide of iron paint; tar weighed 1.56 ounces; solution of pitch, 1.24 ounces; red lead, 6.24 ounces; and so on.
Having tried in vain the effect of spraying the samples with a saline solution, Mr. Thomson proceeded to immerse the samples in a glass vessel containing suficient saline solution to half cover each. He observed that, after two or three days, the clear solution bigan to grow turbid; and in a few days more it threw down a precipitate of the peroxide of iron. Some time later on it could be observed that the iron beneath some of the coatings of paint was undergoing oxidation to a much greater extent than others. It suggested itself to Mr. Thomson that if each plate of iron were placed in a separate glass beaker with the saline solution, the turbidity of the clear liquid would be some criterion of the progress of the rusting action. This was done in a case of a second series of experiments. which went to show that this observation is just; and Mr. Thomson was able to ascertain that oxide of iron paint, white ead, and the ordinary paints of commerce, have comparatively little protective influence on iron as con trasted with red lead, for the latter showed no signs of turbidity in the saline solution after all the others had become turbid, and deposited a considerable precipitate of ferric oxide. Mr. Thomson further lays stress on the electrolytic corrosion of iron; and he suggests that for the protection of large iron structures from this ef fect, it might be advisable to place a large ball of zinc in wet ground in metallic contact with the iron of the structure by means of wires, which he believes would tend materially to prevent corrosion at comparatively small cost.

The Germ of Smallpox.

Professor Guamuri, of the University of Pisa, is of the same opinion as that published by him in 1892, in the Archivi di Scienze Mediche, viz., that the process of pustulation, both of cowpox and smallpox, is origi nated by a parasite which develops in the epithelial cells. He has studied both the morphology and biology of this organism. It is capable of amobic move ments, which can be seen on examination of lymph taken from the initial vesicle at the temperature of the human body. By this process Professor Guamuri has also verified the multiplication of the parasite under the microscope, and the fact of phagocytosis by poly nucleated leucocytes. With a stain of gentian and methylene, the structure of this low organism may be studied. It consists of a roundish body with a clear outline. Professor Guamuri has succeeded in repro ducing the parasite in the cornea of rabbits with inocu lation of the same lymph, and he has verified the fact that no other source of irritation is capable of producing anything of the appearance of the same parasite in the cornea. Professor Guamuri believes that it is a zooparasite belonging to the class of rhizopode, and that it is the cause of both cowpox and smallpox.

A Home for Truants.

Boston is soon to have a home school for truants and troublesome boys. They are to be gathered into families of about twenty-five, under the care of a superintendent and his wife. A teacher of rare gifts of mind and heart is to be assigned to each group, and under his direction, three hours a day are to be devoted to study. The boys are to do all the household work and to cultivate the estate of thirty acres where the home is to be placed.
They are also to devote four hours a day to training for occupations to be had in the city.
The instruction on Sunday morning is to be moral and religious, and in the afternoon it is to he denominational.

AN EFFICIENT HEATING GAS BURNER

As shown in detail in the Scientific American of April 7, the base of this burner, where it is attached to the gas supply tube, is supplied with apertures to admit air to mingle with the gas before it reaches the point of combustion, while the tube which surrounds the flame has air-receiving openings on its under surface and smaller air-discharging apertures in its upper surface, where the tube is impinged upon by the flame. The tube thus being raised to a high temperature, and correspondingly heating the air discharged therefrom to mingle with the burning gas, is designed to afford the most perfect combustion, with the attain-

WILLIAMSON \& BUZBY's HEATING GAS BURNER
ment of the highest possible degree of efficiency for the quantity of gas consumed. The illustration represents the practical construction followed in the application of the improvement recently patented by Messrs. John R. Williamson and Isaac W. Buzby, of Seattle, Washington.

A HIGH WINDMILL.

Among the windmills shown at the late World's Columbian Exposition, that of the Aermotor Co., of Chicago, represented in the accompanying illustration, was perhaps the most unique and striking. It was 55 feet from the ground to the turret of the old Dutch windmill, from which sprang a galvanized steel tower 87 feet high, surmounted by a 16 foot wheel, making a total height of 150 feet. This windmill towered above

all competitors at the Fair, and around the lower structure was a balcony nearly 150 feet in circumfer ence, from which an impressive idea of the height of the tower was obtainable.

THE BICYCLE UPON RAILS

It is from Russia this time that comes to us a curious cycling apparatus. The accompanying engraving re produces a photograph taken in the vicinity of Mos cow a few hours previous to the passage of the imperial train. Some Russian gendarmes, one of whom is seated upon the apparatus, have just made an inspection of the track. The Czar may now pass, as there is oothing to be feared from the Nihilists !
As will be understood, the person in the center is utilizing a sort of bicycle for his police service which rolls upon the rails of a railway track. In reality, the word bicycle is a misnomer for this apparatus, which rests upon three wheels. Through its two principa wheels it rests upon the rail to the right, but is kept in equilibrium by a metallic arm terminating, on the rail o the left, in a small wheel. It is a crude apparatus, moreover, whose two heavy main wheels are con nected by a compact body, the various parts of which are roughly shaped, and which weighs no less than 110 pounds.
As primitive as the machine is, however, it exhibits some very original peculiarities. It is actuated both by the arms and legs of the rider, and thus puts one somewhat in mind of the Valere running machine. Here, the rider, not having to occupy himself with the steering of the machine, since the latter, being fitted to the rails, follows all the curves thereof, devotes his entire attention to its propulsion. Two levers, actu ated by the arms, are, through a slide at their lower extremity, connected with each of the cranks of the bicycle. It will be remarked that, contrary to the ar rangement of the Valere machine, which causes its rider to take an ambling gait (that is to say, causes him to put forward at the same time the leg and arm of the same side), the Russian railway bicycle employs the ordinary gait of man's trot, that is to say, causes the rider to put forward at the same time the righ arm and left leg, and reciprocally.
We shall not expatiate here upon the genuine services that may be rendered by this inexpensive and very rapid apparatus, which necessitates scarcely any cost of maintenance and which one man can easily remove from the track, in order to allow a train to pass, and afterward replace upon the rails. It is too evident that the switchmen, inspectors and engineers of railways would find it of great interest to utilize itaccording to circumstances.
Much is being said about military cycling; we are not so very sure whether in time of war railways would not be the only routes cyclable. We may remark, however, that this homely Russian apparatus is not an innovation, but far from it. Almost from the inception of cycling it has been understood that the railway is the most practical, the surest and best rolling roadway. The oldest example of cycling upon rails that we know of is mentioned in the Albany Courier of August 20, 1869, which states that upon the banks of the Muhawk, two landowners had had constructed for themselves, in order to visit their possessions, small cars that they actuated by their arms and legs upon the railways.
This journal adds that one evening, in a fit of jealousy, the two inventors ran into each other upon an embankment one hundred feet in height. in a sort of real Yankee duel, and that the cars were smashed and one of the duelists was killed outright. Without dwelling upon this perhaps fanciful story, we shall further recall that at Paris, on the 28th of December, 1887, the military engineers, represented by Capt. Houdaille, tried a railway quadricycle, constructed by Mr. Vincent, upon the line of the East, near Villette. A speed of 18 miles per hour was obtained. Unfortunately the apparatus weighed 198 pounds, and for this reason was abandoned. Afterward, Truffault, the bicycle manufacturer, who played so important a part in the history of cycling, established after the manner of the Americans a railway quadricycle that weighed but 55 pounds, and gave a speed of 24 miles per hour upon a level. The Brench state railways began some ex-

BICYCLE FOR THE INSPECTION OF RAILWAY TRACES
of Pathological Histology"), an especially important work that brought to light much that was new.
It took him only ten years to rise from the position of student to that of professor and scientist. In 1859 he was called to Greiswald as professor of pathological anatomy. Fortunately for surgery, he refused this flattering call, but two years later he accepted a call as professor and director of the surgical clinic in Zorich. He left here in 1867 for a similar position in Vienna. When in the Swiss high school his great industry and brilliant surgical talent showed to advantage, and his methods of work here, following up the questions of the day in his studies and his teaching, are set forth not only in his "Clinical Reports," but also in his "Fifty Lectures on General Surgical Pathology and Therapeutics," a work of classical value and universal importance that lived through many editions and was translated into all civilized languages. In Vienna he continued to publish his experiences in "Clinical Reports," and heand Pitha produced the great compilation "Handbuch der Allgemeinen und Speciellen Chirurgie" ("Handbook of General and Special Surgery"), which is prized by physicians in all parts of the world as a mine of surgical experience.
Lister's epoch-making discovery of the use of antiseptics in operations, which opened to surgery heretofore unsuspected paths, was not without its effect on Billroth. He was one of the first in Germany to ac knowledge and appreciate the importance of the antiseptic method. With his accustomed zeal he undertook the study of the suppression of surgical fevers and diseases, but he was not tempted even by his great success to perform unnecessary operations. Step by step he followed up carefully the branch of surgery which had been so suddenly opened, and we have to thank him for many operations in internal surgery that are of the greatest importance in saving life, and such as no one had dared to perform before. Among these we may mention the removal of the larynx and the resection of the pylorus end of the stomach, which added new leaves to his crown of laurel. This was before the time of Koch ; but Billroth was then a pioneer. By his work on the vegetable nature of the septic coccus bacteria, he increased the knowledge of wound infection so that he might be called the apostle of antiseptic surgery.
His ability in two other branches should be mentioned here, viz., that of military surgers and popular authorship. As a result of his voluntary service in the Franco-German war, he presented the medical world with "Chirurgischen Briefen ans den Kriegslazarethen von Weissenburg und Mannheim," 1872 ("Surgical Letters frow the Hospitals of Weissenburg and Mannheim "), as well as with his dissertations on the transportation by railroad of those wounded and taken ill on the field (1874). As a teacher of the people he publisbed, in 1881, a handbook on "Die Krank enpflege im Hause und im Hospital" ("Care of the Sick at Home and in the Hospital"), that has been univer sally translated, and shows how a true German savant can present questions of hygiene in a form that is agreeable and at the same time comprehensible to the uninitiated.
Billroth has taught many famous pupils, and the students' thorough appreciation of his abilits as a teacher is shown by the document which they pre sented to him on the occasion of the anniversary of his fiftieth term at Vienna (1892). In his "Lehren und Lernender Medicinischen Wissenschaften" "("Teaching and Learning Medica Science", 1876, he made a valuable gift to those whe are interested in reform in medical instruction.
Billroth was a person of the greatest charm; his finely formed head, clea eye, and brilliant orato rical gifts will long be re membered by all who knew him. He was a real "path finder" for his associates, his bold and successful methods of performing operations restored thousands of suffering people to health, and being ex tremely self-sacrificing and magnanimous, he was a true benefactor to the sick and a fatherly friend to the student. - lllustritte Zeitung.

The strongest animals in the world are those tha live on a vegetable diet The lion is ferocious. rather than strong. The bull, horse, reindeer, elephant and antelope, all conspicuous for strength, choose a vegetable diet.

[Cmatauquan.]

What is Chemistry?

Everybody who thinks must be impressed by the great variety of things found on this earth, and the question, What does the earth consist of ? must often suggest itself. Among the important results reached in studying the things around us is this, that notwith standing their great variety they are made of simple things, and these in turn of still simpler-that there are, in fact, only about seventy distinct kinds of mat ter, and that all the complex things around us are made up of these seventy elements. The solid crust of the earth, as far as it has been possible to investigate it, all living things, both animals and plants, the air and water, consist essentially of twelve elements. The elements do not, as a rule, occur as elements. They are generally found in combination with one another Oxygen and nitrogen are, to be sure, found in the air as elements, uncombined; but such familiar substances as water, salt, and quartz consist of elements in combiuation. Thus water consists of hydrogen and oxy gen. Hydrogen, the element, is a colorless, tasteless, inodorous, and very light gas that burns readily. Oxygen, the element, is also a colorless, tasteless, in odorous gas. It does not burn, but burning things burn with much increased brilliancy in it. When hy drogen and oxggen aremixed together in a vessel under ordinary conditions, no action takes place. They mix thoroughly, forming a mixture that is also a colorless tasteless, inodorous gas. If a spark is applied to this mixture, a violent explosion occurs, and this is the signal of a great change. The two gases have entered into chemical combination; they are no longer the gases hydrogen and oxygen; they have entered into combination and now form the liquid water, a substance with properties entirely different from those possessed by the constituents.
Again, chlorine, the element, is a greenish-yellow gas that acts violently upon other things and causes changes in them. Inhaled even in small quantity it gives rise to distressing symptoms, and in larger quantity it causes death. Its odor is extremely disagreeable. Sodium, the element, is an active substance that has the power to decompose water and set hydrogen free. When chlorine gas is brought together with sodium, the two combine chemically and form the well known compound salt, or, as the chemist calls it, sodium chloride. From this the elements chlorine and sodium can be obtained by the chemist. These two examples serve to show what is meant by chemical combination and by a chemical compound. Chemical com pounds are generally found mixed with other compounds. This is shown, for example, in many of the varieties of rocks, as granite which consists of three different chemical compounds. It is shown much more striking ly in living things, all of which are made up of a large number of chemical compounds, mixed, to be sure, not in a haphazard way but beautifully adjusted and working to gether in wonderful harmony. Just as olements combine chemically to form compounds, so their composition. Thus, oxygen is constantly acting their composition. Thus, oxygen is constantly acting of fire, rapidly and with tremendous energy. It is com monly said that fire destroys things. In fact, it changes their composition, and the principal products of the change are gases. This kind of chemical change is the most familiar that is brought about by the action of an element upon compounds. Compounds, too, act upon compounds, and cause an infinite number of changes in composition. Thus the food we partake of consists of chemical compounds. In the body these compounds find others and they act upon one another so as to repair the wasted tissues and cause growth. The gas known as carbonic acid, that is contained in the air, acts upon the compounds in the leaves of plants and causes changes that are absolutely essential to the life and growth of the plant.
Look, then, in any direction and you will see evidence of changes in composition that are constantly taking place, and that are essential to the existence of the world as it is. These changes in composition and the compounds themselves that are involved in the changes form the subject of chemistry. In the light of what has been said it is clear that chemistry must be a very broad science. Remembering that chemical action is the cause of the formation of chemical compounds, that without chemical action the compounds would cease .to exist and would be r $;$)lved into their elements, it is impressive to think what would take place if chemical action should cease. Most of the things familiar to us could not exist. The solid portions of the earth would, to a large extent, be replaced by the element silicon, something like charcoal, and by oxygen and a few metals such as sodium, potassium, and aluminum. Water would be resolved into the two g ases hydrogen and oxygen. All living things would fall to pieces, and in their place we should have the
gases, hydrogen, oxygen, and nitrogen, and the solid element carbon, most familiar to us in the form of charcoal. Life would, therefore, be impossible.

New Cave Discoveries at Mentone

The first discovery of a skeleton and some other remains at Mentone, France, was made in 1872.
In January last another skeleton was found. It is that of a man almost six and a half feet tall; it was lying on the back with the left hand under the head. Around it were bones of animals, perforated shells and stag's teeth. Near by were a very sharp unused flint knife and a crystal of carbonate of lime. In the neigh borhood vertebræ of the mammoth and what appears to be a paleolithic stone implement were found. Globus.

A DEVICE EAABLING THE TYPEWRITER TO SEE

 AND READ WORK AS IT IS WRITTEN.One of the annoying features of several of the most deservedly popular of the typewriting machines is the fact that the carriage has frequently to be lifted, that the operator may examine the work as it progresses The necessity for this is obviated by a simple device recently introduced and styled the "Typewriter Prism," a rod of polished cut glass fastened to the carriage be and and inclined to each other at an angle of 45 degrees, and the third side is a strong cylindrical curve, per fectly reflecting the writing and presentingitrightside up and in normal position to the eye of the operator.
The accompanying engraving illustrates the application of the improvement to the Smith-Premier machine, the position of the prism being shown by dotted lines on and in a broken-away portion of the impression roller. The prism can also be adjusted with best results to the Remington, Caligraph and Yost machines.
The prism in no way interferes with the operation
freezing point it is sufficient to exert upon it a pressure thirty-six times greater than the pressure of our atmo-thirty-six times greater than the pressure of our atmo-
sphere to have it as a liquid, the density of which is four-fifths of the density of water. If its temperature be raised to 59° Fahrenheit, a pressure of 52 atmospheres is again sufficient to overcome the tendency of its molecules toward scattering in space; it becomes a liquid.

But when Andrews took the same gas at a temperature of 96°, he could exert upon it a pressure of 108 atmospheres and more without seeing any traces of liquefaction. Under this pressure the gas was reduced to $5 \frac{1}{30}$ part of the volume it occupied at the freezing point; its density wasequal to the density of liquid carbonic acid, and yet it was not a liquid, although, like a liquid, it yielded but little to a further increase of pressure. However, as soon as its temperature was brought below 88°-the pressure remaining the samethe gas was found to be in a liquid state, without any alteration of its volume, or any sudden evolution of heat, having taken place. -A temperature of 88° is thus its critical point. Below that limit its liquefaction is easy; above it, it is impossible. Further experiments convinced Andrews that other gases behave in the same way at their own critical temperatures, and he at once understood the philosophical bearing of his observations. There is, he wrote, a close and intimate connection between the ordinary gaseousand the ordinary liquid state of matter. The two are but widely separated forms of the same condition, and they may be made to pass into one another by a series of gradations so gentle that the passage shall nowhere present a breach of continuity. From carbonic acid as a perfect gas to carbonic acid as a perfect liquid the transition may be accomplished by a continuous process. But if any one ask whetler the carbonic acid, taken at a temperature above its critical point, be in its gaseous or liquid state, the question does not admit of a positive reply. It stands "nearly midway between the two, and we have no valid ground to assign the one or the other." As to the explanation of this state, it must be sought for in the cohesion between the molecules; and further research, he added, will probably disclose the continuity of the liquid and solid states as well.
Andrews came to his discovery by starting from the gaseous state of matter; Mendeleeff came to the same discovery by starting from the liquid state. All liquids, he wrote in 1861, have a certain cohesion between their particles; this is what distinguishes them from gases; but the heating of a liquid steadily diminishes its cohesion, and consequently there must be for each liquid a certain temperature (the absolute boiling point) at which cohesion between its particles must entirely vanish, so that at and above that temperature it cannot exist as a liquid. It must then form a gas, and so long as it has not been cooled below the above limit, no amount of pressure will be able to restore it to its liquid state. Thus, starting from the two opposite ends of the scale, Andrews and Mendeleeff a, ame to identical conclusions. Deduction and induction had joined hands. It is now known that their generalization was correct. All physical bodies have their oritical temperatures or absolute boiling points, above which they cannot exist as liquids, whatever pressure they might be submitted to. For water this critical point is 689° of the Fahrenheit scale; for ether it is 383° or 386°; but for several gases it lies so deep that in order toliquefy them one must approach the absolute zero (459° below the freezing point), at which no thermic vibrations exist and even chemical affinity disappears unless stimulated by electricity. Thus, oxygen must be cooled down to 299° below the Fahrenheit zero, and nitrogen to -315° in order to be liquefied; while the critical temperature of hydrogen must be still lower-somewhere about 360° of cold. This is why Professor Dewar, who liquefies air in an open tubethat is, at the ordinary atmospheric pressure-could not yet liquefy hydrogen in the same way; and Amagat saw this gas at the ordinary temperature of our rooms remaining a gas, even under a pressure of 2,800 atmo spheres, when it was squeezed within one-thousandth part of its previous volume.-Prince Kropotkin, Nineteenth Century.

Opening of the Exhibition at Lyons, France.
The great Exhibition of Arts, Sciences, and Industries was opened at Lyons April 29. A throng of conspicuous men attended the ceremonies. The whole Cabinet was present, but the President was unable to come. The exhibition, although formally opened, is far from ready for the public. Theinterior of the main building is still in the hands of the carpenters and the decorators. The main building covers 5,000 square yards, and is surmounted with a fine cupola. There are large pavilions for exhibits of viticulture and agriculture, greenhouses, and baildings for the fine agric

Sorrespondence.

How to Make Magnets.

To the Editor of the Scientific American:
It is frequently asked, "how to make and charge nagnets." It is somewhat a vesed question. The plan of touching the steel to be magnetized to the pole of a dynamo is beset with this difficulty: The eld is so large, and the currents so strong, that if one pole of a U magnet is laid on the pole of a dynamo the influence of the polarity of the dynamo will ex tend beyond the contacting pole of the U magnet and partly destroy the polarity that should arise in the off or farthest pole of the \bar{U} magnet. I hare devised and successfully used a plan that I give to the readers of the Scientific American. First, I take good too steel, harden at the ends, and draw the temper to a bluish straw color or edge tool hardness. Next, take a piece of one inch iron gas pipe, about eight inc̣he long, then fill the hole from end to end with one quarter inch iron rods, filling the interstices with smaller iron wire. Dress both ends smooth. Now, if there is a friendly street car or electric light dynamo in reach, apply one end of the gas pipe to either pole of the dynamo, and draw the U maguet at righ angles with the end of the pipe that sticks out. Apply the δ steel about half way from the bend to the poin or pole. Draw the σ then down to the point until it leaves the pipe, then draw the U away, and apply in the same manner again, using care not to approach the U any nearer to the dynamo than the outer end of the gas pipe. Then take the gas pipe to the other side of the dynamo and treat the other pole of the U in the same way. I made a magnet in this way that held up four and. five-eighths its weight, which is es teemed excellent magnetism. Roy A. Cribfield.
[The above plan answers very well, but two rods o iron applied one to each pole would probably prove more effective. It would be neceessary to clamp the into contact with each other.-EDS.]

[Friot tir Sun, N.bw Yozk.]

The Starry Heavens in May

The Lion watches in mid-heaven and Saturn rules the night. At 8 o'clock in the evening at the beginning of May the constellation Leo may be seen upon the meridian, its star-marked figare of a sickle standing upright in the sky near where tbe sun had been at noonday. Following Leo from the east comes Virgo, made doubly beautiful and interesting at this time be cause of the presence of the planet Saturn near its chie star Spica. Saturn is the brighter of the two, and i situated about five degrees north of Spica. By 10 o'clock they are so high up toward the meridian tha Saturn can be studied to advantage with a telescope. Its rings are slowly opening wider, and the spectacl yet brought within the reach of human eyes. The nearest approach to the form of Saturn's rings that I nearest approach to the form of is seen in the heavens is presented by a little nebula in the constellation Gemini, which I had the pleasure of viewing through the Lick telescope with Prof. Barnard last autumn. With most telescopes this object appears only as a rathercurious planetary nebu la, but with the great glass on Mount Hamilton it isseen to consist of a round, nebulousdisk, having a star set in ts center, and something like half way from the cente to the circumference of the luminous disk is a circular division, looking exactly like a narrow black ring en compassing the star, and sharply contrasted with the glow of the nebula within and without. It seems impossible to resist the conclusion that this phenomenon possesses a real resemblance to the rings of Saturn, bu in place of a planet it presents a son, and, instead of a system of meteoritic rings 170.000 miles across, it show us circles of glowing nebulous matter that may well be hundreds of millions of miles in diameter!
It ought to be the aim of every educated person to get a look at Saturn with a powerful telescope at least once in a lifetime. The first glance may be disappoint ing, but the second will make an unfading impression. There is no science in which seeing begets thinking as it does in astronomy.
But while Saturn holds the place of honor during the month, its more distant planetary comrade, Uranus, commands attention also. On the third, Uranus, still remaining near the star Alpha in Libra, will be in opposition to the sun, and in the best situation for telescopic observation.
It is a curious fact that all four of the first discovered asteroids, Ceres, Pa,llas, Juno, and Vesta, are now visible simultaneously, and ${ }^{\prime}$ three of them, Ceres, Pallas, and Vesta, are in the constellation Leo. Juno is in Serpens, just above Libra, and some 15 degrees from Uranus. Unfortunately none of them can be seen with the naked eye. These are the little planets whose
discovery early in the present century led to the theory, now generally abandoned, that they were the fragments of an exploded world. The largest of them, Vesta, is probably not less than 300 or more than 500 Vesta. is probably not less than 300 or more than 500
miles in diameter. But since the discovery of the
original four several hunefred smaller asteroids have been found, and now celestial photography is adding dozens of them to the list every year. Some of these are, no doubt, only five miles or less in diameter. On a 5 -mile world, if it had the same average density as
the earth, a 200 -pound descendant of Adam would the earth, a 200 -pound descendant of Adam would
weigh only two ounces; and a cannon ball dropped from his hands would require a quarter of a minute to reach his toes; and it wouldn't hurt when it hit. He could hurl a stone that would weigh a ton on the earth with such velocity that it would escape from the attraction of the little world and never come back to it.
The May moon begins its career on the 5th at 9:42 A. M., attains first quarter on the 12 th at $1: 21$ A. M., fills on the 19th at 11:43 A. M., and reaches last quarter on the 27 th at $3: 04 \mathrm{P}$. M. Its visible course lies through many interesting constellations. As it emerges from the sun's rays it enters Taurus, meeting Jupiter and the Pleiades on the 6th. From Taurus it enters Gemini, passing on the way through a part of Auriga. On the evening of the 9th it will be near the celebrated twin stars, Castor and Pollux, and will serve to point them out to those who do not already know them. Crossing Cancer, with its strange glimmering "bee hive," and its sprawling lines of stars outstretched in true crab fashion, the moon will enter Leo and be nea the bright star Regulus on the.evening of the 12th. Having traversed Leo, it will be found on the 15th in Virgo, south of the great Field of the Nebulm, where those mysterious objects are scattered like thistle down over the face of the sky-an unfinished corner of crea tion which might twell represent that wild abyss of chaos through which Satan took his fiight when, a described by Milton, he went in search of the new born earth :

Ton thoosand fathom deep, and to town he drops
 own had tee tham deep, and to the hour
 The strong been ralling, had not by lll chance
 nstinct with Alre and niter, harried him As many mlles aloft; that fory strayed
 Nor grood dry land, nigh foundered on he fare Dreading the crrade conelatence, half on foot Hal? flying,
 With head, hande, winge, or feet, puranees his way, And swims, or elinks, or wadee, or creeps, or fies.

Unfortunately the light of the moon renders the ob ervation of nebula exceedingly difficult, and the eader who wishes to explore this wonderful region with a telescope must wait until the end of the month, when, in moonless nights, the pale gleam of these un housed ghosts of the sky, these uncreated worlds, wil antalize the sight, and awaken in him a new sense he mystery of the universe.
Having passed close to Saturn on the 16th at noon the moon will cross from Virgo into Libra, and will. on the morning of the 18th, pay its respects to Uranus Thence on into Scorpio Diana's course will lie, and as, on the morning of the 20th, she passes Antares, that great red sun, which conceals a smaller bright green uminary in its blaze, her form will show the first ev ence of decay; from the full moon phase she will hav begun to decline toward last quarter and toward ex tinction. On the 21st she will be in Sagittarius, wad-
ing through the.broad shallows of the Milky Way, which there spreads wide and divides into currents and pools interspread with islands of stars. On the 24th she will be in Capricorn; on the 27th in Aquarius, and at 3 o'clock in the morning of the 28th she will be very lose to the planet Mars. From Aquarius she will pass nto Pisces and Aries, and her fading form, becom now a very thin crescent, win disappear in the rays o the morning sun at the opening of June, until, rejuve-
nated, she shines again in the sunset glow, the celestial queen of the month of roses.
Both Mars and Venus will remain morning star during May, but Venus is fading, and Mars has not yet come into a position to command general attention. Next summer and autumn the eyes of the world will be upon him. Then the poet's dream will come true:

Ao the red planet Mara.

Mercury will be hidden in the sun's rays during the month, but it is interesting to follow.that little world with the mind's eye, for on the night of the 22d Mercury, then on the opposite side of the sun from us, will be in perihelion, or at its nearest approach to the sun This means a great deal more for Mercury than it doe for the earth. Our distance from the sun varies only about $3,000,000 \cdot$ miles, which cuts no great figure in total distance of more than $90,000,000$. But Mercury whose average distance from the sun is only $36,000,000$ miles, is at perihelion $14,000,000$ miles nearer to the sola furnace than at aphelion! When furthest from the sun that planet endures a degree of heat more than fourand a half times as great as the earth receives, while when it is nearest to the sun, as it will be on May 2a, it broils under a temperature eleven times as intens as that with which the sun warms the earth. All the water must be steam on the planet Mercury, except. perhaps, around the poles. As the summer heats come
much worse it would be if we lived on Mercury. This world of ours evidently does not deserve the evil reputation that some people would fasten upon it. Our worst discomforts assume a pleasant aspect when compared with roasting on Mercury or freezing on Saturn.
But there'is another thing to be considered about Mercury: apparently it is not blessed like the earth with the rapid alternation of day and night. Signor Schiaparelli, the authority of whose eyes is great among astronomers, says Mercury keeps the same side always facing the sun. If so, that world has a day hemisphere and a night hemisphere. Which is inhabited, if either? Can people live where the sun never shines? Can people live where the sun always shines? If they can endure the unending night on the sunless side, they may have some compensations; they can see Venus and they can see the earth, both more brilliant in theirsky than any star or planet ever is in ours. On the other hand, if they choose to live on the sunward hemisphere of their world, their lot cannot be altogether a happy one. Accustomed as they may be to a greater heat than we endure, they yet have to face most trying alternations of temperature. They are now rushing toward perihelion with fast increasing velocity, for Mercury travels 35 miles in a second at perihelion and only 23 at aphelion, and we may well pity them as they whirl along out of our sight behind the sun, for three weeks from before the end of May they will be broiling under a temperature much more than twice as hot as that from which they suffered only three weeks previously.
But if this picture is unpleasing to the imagination, we can substitute for it another, in which Mercury appears as a barren rockbound globe-hot, dry, and hard-baked by the close and unclouded sun. And, indeed, the latest results of investigation favor the view that Mercury is a lifeless planet. But has it been always so?

Garrett P. Serviss.

Dr. G. Gore has communicated to the Birmingham Philosophical Society the results of an experimental research on the "Decomposition of Liquids by Contact with Powdered Silica." By placing a solution of an acid, salt, or alkali, of known composition, which had no shemical action upon pure precipitated silica, in a stoppered bottle, adding to it 50 grains of the silica, thoroughly agitating the mixture, and after sixteen hours analyzing the portion, he found the chemical composition of the film of liquid which adhered to the powder to bestrongerin the chemical than the solution itself. The amount of solid abstracted from the solution varies with the kind of powder employed, its degree of fineness, the kind of dissolved substance, the proportion of powder to it, the kind of solvent, the proportion of solvent to powder, the proportion of dissolved substance to solvent, and, in a small degree, with the temperature. The union takes place quickly, and proongation of the immersion has but little influence. Finely precipitated silica possesses the property in the greatest degree, and alkaline substances are the most affected; with very dilute alkaline solutions more than 80 per cent of the dissolved substance was abstracted by the silica. The results appear to throw some light upon the purification of water by filtration through the earth and upon agriculture, and to show that the alkaline constituents of soils are retained much more by the silica than by the alumina. The effects of silica upon weak solutions of potassium cyanide indicate that the great loss of the latter substance in the commercial process of extracting gold and silver from powdered quartz is largely due to the "adhesion" of that salt to the silica. The results obtained with a very weak solution of iodine indicate a possible method of extracting the latter substance from solutions.

Limit of Employers Liability.

An employe of the Buffalo Car Company was injured four years ago by the breaking of a belt on a planer, one eye being destroyed. He sued for damages in the Supreme Court before Judge Childs, in 1890, and the case was dismissed without the defense being heard. A new trial was granted by the General Term. This was held before Justice Ward in 1892, and resulted in a verdict of $\$ 3,000$ for the injured man. The car company appealed and the judgment was sustained. The case was then carried to the Court of Appeals, which has just decided in favor of the car company. In the review of the case this statement is made

The master does not guarantee the safety of his ser vants. He is not bound to furnish them an absolutely safe place to work in, but is bound simply to use reasonable care and prudence in providing such a place He is not bound to furnish tho best known appliances, but only such as are reasonably fit and safe. He satisfies the requirements of the law if, in the selection of machinery and appliances, he uses that degree of care which a man of ordinary prudence would use, having regard to his own safety, if he were supplying them for his own personal use. It is culpable negligence which makes the master liable, not a mere error of judg ment."

THE PARK AVENUE IMPROVEMENT IN NEW YORE CITY-THE TEMPORARY HARLEM RIVER BRIDGE - AND THE MOVING OF THE. MOTT HAVEN STATION. (C'ontinued from first page.)
1892, which moving was quite a remarkable engineering achievement. The tower alone was transferred, the old lift span being left to form a part of the permanent way.
Now the tower stands in line on the new bridge, a lattice truss draw span has been supplied, and at midnight on Sunday, May 6 , the operation of turning the rails and making connections for the temporary bridge began. The newspaper train leaving the Grand Central Depot at 4:40 A. M. was the first train to pass over the line. Our illustration shows the bridge with the draw span hoister.

The length of the draw span is 103 feet, its width is $191 / 2$ feet, it is carried by $71 / 2$ foot deck trusses, and its weight is $127 \cdot 7$ tons. It is hoisted by a cable hoist, and counter-weights are employed to facilitate the raising. It will be seen that owing to the moment of
is to be changed to a'four-track wayand the curve is to be made an easierone. It therefore became necessary to move the station fifty feet to the west to give room for the four tracks on the newly determined curve. The station is a brick building 185 feet long and averaging 35 feet in depth. The tower, which is seen in the cuts rising to one side of the center of the front, is 19 feet square and 80 feet high. The weight of the tower alone is estimated at 500 tons, the rest of the building weighing 1,200 tons. Messrs. B. C. Miller \& Son, of Brooklyn, N. Y., the firm that moved the Brighton Beach Hotel in 1888, were in charge of the moving, which was recently executed with great success. The problem was a very difficult one, as the least inequality in support or in moving strain would have cracked the brickwork.
The building was first placed upon Georgia pine blocking, generally of 14×14 inchescross section, the distribution of the underpinning and ways being shown in the cuts. The weight to be moved was so great and the building so liable to damage that the or-
was given to each, and the sorews being of ${ }_{4}^{\mathbf{3}}$ inchipitch, this advanced the building three-sixteenths inch for each bell stroke. As the screws had a working length of 12 inches, some fifty readjustments were required for the distance. A week of work was required. Two men were assigned for each tower screw, which had to give an average thrust of 15 tons each, and one man worked each of the other ten screws, and one foreman directed the turning. Thus nineteen men only were directly concerned in the moving.

Even the brick entrance porch was moved with the rest, although it had originally been decided to tear it down and rebuild it. The main body of the building varied from 29 to 50 feet deep. Taking this feature and the porch into consideration, it will be seen how very irregular the structure was in plan; yet, after the transfer, hardly a perceptible crack could be found in brickwork or interior finish.

Lubrication.
In a paper on lubrication, read before the Birming-

THE PARK AVENUE IMPROVEMENT IN NEW YORK CITY-THE TEMPORARY DRAWBRIDGE ON THE HARLEM RIVER.
the structure varying, the counter-weights should also dinary sostem of blocks and falls and windlasses was vary. They are accordingly distributed in 22 sections, 'discarded in favor of jack screws. Fourteen jack the uppermost weighing 3,600 pounds, the lowest 4,900 screws, each of $3 / 4$ inch pitch, $31 / 2$ inches diameter and pounds, while the intermediate ones vary proportion- 12 inches long, were distributed along the front of the ately. As the span rises it deposits the weights one by building. Each screw had as abutment for its outer one, and as it descends picks them up again in the re- end or head heavy timbers secured to the ground ways verse order. Two double cylinder Crook hoisting en- by chains. The other or threaded end of the screw engines are used to raise it, the steam for which is sup- tered a hollow beam, such as used by builders, and the plied by two boilers. Spiral springs are introduced end of this beam bore against the transverse sliding between the counter-weights in order to prevent shock: ways. or jar. Two minutes' time is occupied in hoisting. The relation of the old and new temporary tracks, where the bridge now stands, is shown very well in the cut in our issue of December 31, 1892.
The Mott Haven station was situated on the west of and close to the tracks used by three railroads, the New York Central, New York and New Haven and the New York and Harlem Railroads, immediately north of the bridge. Two tracks.occupied the roadbed. The place was reached by a curve. Two operations were contemplated by the engineers for thisplace-the road

Soap was first applied to the waysby rubbing on the exposed surfaces, while between sliding and ground ways, where one crossed the other, thin slices of soap were introduced. The surfaces were then further lubricated with tallow, and all was ready for the start. The screws were turned until all felt the strain. There were four screws along the tower point. These were gradually turned until the tower moved a perceptible amount-perhaps a sixteenth of an inch. Then the whole series of fourteen screws were turned in unison
by stroke of bell. At each stroke one-quarter a
ham Association of Engineers, Mr. Railings the author ham Association of Engineers, Mr. Railings the author
mentioned the following as the requirements of a good lubricant: (a) It should be thick enough to keep a constant film between the two surfaces to which it acts as a separator; (b) it should be as thin as possible consistent with the first requirements: (c) it should be a good conductor of heat; (d) it should contain nothing that will act chemically upon the bearing it lubricates; (e) it should be difficult of evaporation and decomposition. Sperm oil, when it is sperm oil, is one of the best lubricants, but it is dear. For surface working at low speeds and heavy pressure, graphite, soapstone, tallow, and grease are recommended. For high speed and heavy pressures, sperm, castor, and heavy mineral oils are suitable. For light pressures and high speeds, sperm, petroleum, olive, rape, and cotton oils may be used with advantage, and for steam cylinders heavy mineral oils will be advisable.

Italy has 4,800,000 lemon trees, which produce about $1,260,000,000$ lemons annually.
the centrifugal bowling alley
A. e. beach.

One of the most entertaining as well as hygienic amusements is bowling. The exertion required to pro ject the balls involves nearly all of the muscular system of the thorax. The arms, lungs, heart, back, and loins all respond to the movement, and the play is at once healthful and invigorating. For young people of both sexes it is particularly beneficial. It develops the limbs and chest, and imparts grace and flexibility to the body. But the practice of bowling is at present very limited, owing not only to the cost of the appurtenances, but chiefly to the great length of the floor space required. A first class single bowling alley costs $\$ 250$. and requires a flooring 85 feet long and 6 feet wide. The practice of bowling at home in ordinary dwellings is, therefore, out of the question. Special houses for bowl ing are required, except when the cellars or base ments of large buildings, such as clubs or hotels, are made available.
The object of the present design is to modify the longitudinal dimensions of the bowling alley and adapt it, if possible, to the requirements of domestic life, in short, to make a bowling alley that may be used in the play room or other apartment of almost any good sized dwelling house. Instead of the long house. Instead of the long cycloidal pathway for the balls is provided, the track being thus, as it were bunched up in the air, in stead of being extended out in a straight line as a floor

Fig. 1.-The centrifugal bowling alley.

Mortality from Tuberculosis.

M. Lagneau, from a comparison of many European statistics, has tabulated these results :

1. That the occupations which expose the person to dust, whatever they are, predispose to tuberculosis to a remarkable degree ; e. g., according to Swiss statistics, 10 per cent of stone cutters die of it.
2. Those who follow sedentary occupations are more disposed to tuberculosis than others According to English and Italian statistics, of students and young | English and Italian statistics, of students |
| :--- | :--- |
3. Printers in Engiand and lithographers in Italy to the number of 300 to 400 in 1,000 die of it.
4. On the other hand, people who live in the open air have almost entire immunity from the disease; this is the case with shepherds, farmers, and boatmen; only one or two in 1,000 having it, according to Swiss records.
M. Lagneau has also examined the subject with reference to the effect of habitat and density of population.
In France, sanitary statistics in regard to 662 cities show that the more the population is crowded, the more seriously are they attacked by toberculosis. In 95 towns of less than 5,000 inhabitants, only 181 in 1,000 die from pulmonary affections; 33 towns with from 5,000 to 10.000 people lose 216 in 1,000 ; 127 towns with 10,000 to $20,000,271$ in 1,$000 ; 50$ towns with 20.000 to 30,000 , 288 in 1,$000 ; 11$ towns with 100,000 to $430,000,363$ in
each hundred parts of water ; but these proportions 1,000 ; Paris with its $2,424,705,490$ in $1,000$.

This new system is illustrated in our engravings.
Fig. 1 shows a bowling alley in which the path for the ball is arranged, in part, in spiral form. The ball is projected in the usual manner, rolls up and down through the spiral path, and then proceeds straight toward the pins at the opposite end of the room.
Fig. 2 shows a similar form of path with a return spiral added, so that the ball, after traversing the spiral path, returns toward the tbrower and strikes the pins at one side, as represented. may be considerably varied, without departing from the spirit of the invention.
Among the advantages to be gained by its adoption are increased solubility in water at ordinary temperatures, the immediate impregnation of the fibers, and a saving in cost, as compared with the usual oil orgrease. In the fulling operations, an economy of time is effected and alkaline substances and soap are also saved, as there is no necessity for extracting surplus grease or oil. The fibers or the cloth manufactured from them

Fig. 2.-THE CENTRIFUGAL BOWLING ALLEY WITH RETURN SPIRAL.
The progression is regular and needs no commentary; but it is a question if contagion, increased as its dangers are in crowded localities, is not sufficient to account for the statistics. Contagion as the first cause, aggravated by the profession and the habitat as accessory causes. These seem to be the summing up of science upon the subject.-Revree Scientifique.

A Connecticut River Sea Serpeut.
Austin Rice, of East Deerfield, a plain, unimaginative farmer, who for nearly fifty of the seventy years of his life has resided in his quiet home ori the banks of the Connecticut River, said a few days ago: "I was near the bridge, a little over a week ago, when I heard what seemed to me like a grunt followed by a splash. I looked into the river, and, not more than twenty-five feet away, I saw a big snake.
"Its head was out of water, and its body raised some six or seven feet. At the neck the snake was about as large as a man's leg at the thigh, and the body was about as large as an ordinary stovepipe. His eyes were as large as those of a horse and his mouth, which was open, was nearly a foot across. The color of his body was black, and a white stripe around his mouth extended down to his belly. I followed the snake, trying to keep alongside of him. At one place he started for the bank, and I started tains in the wool the necessary moisture, while it is being made into yarn. Glycerine remains fluid at the lowest temperature, loes not evaporate on exposure to the air, and is not susceptible to rancidity or spontaneous combustion. By its employment, the fibers of the wool are moistened, lubricated, and rendered flexible and supple, without being charged with grease and they are preserved from all change. These qualities facilitate the carding, combing and spinning of the wool. Carbonate of potassium is a deliquescent salt, and is added to further maintain a state of humidity in the fibers, while it also increases the unctuousness
are capable of receiving brighter and fresher colors and are much improved to the feel. As there are no unsaponified portions of greasy matter employed in the oiling, there will exist no irregularities in color after dyeing, thus obviating any necessity for the repe tition of the operation. The risks of fire and disagree able smells are very much reduced. In use, the compound of glycerine soap and carbonate of potassium is dissolved in water at ordinary temperatures, and the wool is treated with it in the same manner as with the oilymatters commonly employed.-Textile Industries.
away from it. His power of locomotion was so strony that he had no trouble in keeping still in the river against the current. Whan he got alongside a boathouse where some boys were hammering, he heard the noise and raised himself about ten feet into the air and then fell back into the water and disappeared." Mr. Rice's reputation for veracity among his neighbors and acquaintances is good.-Boston Herald.

Horses sleep with one ear pointed to the front; but why, no man can tell.

Poisons on Pruit,

There has been much discussion of late concerning the danger of poisoning from eating fruit which has been sprayed with salts of copper or arsenic to de stroy insects or fungi upon the plant.
It is stated that experiments have been carried on or two years at the Michigan Agricultural College with a view of finding out the truth in the matter.
The important question is, Do the poisons penetrate the skin of the fruit? The tests have shown that cop per sulphate has passed into the body of the pear though more of the solution remained upon the skin. If this peel is not a protection, what can be said o the thinner skins, like those of the plum, the cherry, berries, etc. ? Dr. Kedzie, who made the analyses, says that horticulturists of ten use much larger quantities of the poisonous solutions than are necessary to destroy the life of the fungi; one-half or even a third of the quantity generally used would be enough.
It is not safe to eat fruit which has been sprayed with any poisonous salts, for while the poison received into the system from one pound might not be harmful, if no more were taken, repeating the doses may in time result in slow poisoning.
And how are people in the cities to know whether or not their fruit has been sprayed?

AN IMPROVED BOILER TUBE EXPANDER.
According to this improvement, a hub rotating on a tapering central mandrel carries small steel rollers which bear against the inner periphery of the tube a stop collar arranged about the mandrel outside the hub bearing against the tube sheet and serving as a guide for the mandrel when rotated. The invention has been pâtented by Mr. Henrs Strecker, of Marietta Ohio. At three points on the periphery of the hub there are recesses cut through to the interior bore, and holding rectangular boxes open it the top and bottom, the boxes being of somewhat tapering form, and having outer faces smaller than the holes in the hub in which they play. The boxes are inserted from the interior bore, and projected outwardly, but by reason of their taper will not pass entirely through reason of their taper will not pass en
the holes, preventing them from ever the holes, preventing them from ever
falling through the hub away from falling through the hub away from
the mandrel. In each of the boxes is loosely held a steel roller, the rollers rotating in contact with the inner periphery of the tube when the mandrel is turned, but without falling out, their outer faces bearing directly against the tube and their inner faces against the mandrel. Theconstruction permits the largest possible opening in the hub, so that a maximum range of expanding movement for the rollers is obtained. A washer and nut on the small end of the mandrel prevents the hub and stop collar from slipping entirely off the mandrel when not in use.

Coast Defense.*
Works of coast defense are required (1) to protect our cities from distant bombardment from the ocean 2) to bar the passage of fleets through narrow chan nels leading to important places; (3) to forbid the oc cupation of harbors useful to an enemy; and (4) to co operate with naval coast defenders in closing wide en trances of value leading to important landlocked bays or sounds.
In selecting the position for the works, local topo raphy often exerts a governing influence. The best conditions are where the ground rises some 100 to 200 feet above the water; where a wide development is offered to the land guns, and a contracted field of bat tle to the enemy; where the depth, tidal oscillation, and currents are moderate, thus permitting the use of submarine mines asan effective obstruction, and where the soil and sanitary conditions are suitable to the objects intended.
To forbid' to an enemy the occupation of a harbor useful for his purposes is a simple operation. It only requires a few modern mortars in a battery suitably designed to facilitate accuracy of fire and well pro tected against the operations of landing parties.
In the matter of mortar or high-angled fire it is be lieved that American ideas are in advance of any ex isting European constructions, although indications are not lacking that the subject is now attracting serious attention abroad. We have adopted a single caliber, 12 inches, in order to secure sufficient weight in the projectile to insure deck penetration, and suff cient capacity for large charges of high explosives Recent experiments at Sandy Hook, as well as reports from Europe, induce the belief that either of two varieties of high explosive may be safely used in charges as large as 100 pounds in high-angled fire, and that ranges of at least 5 miles may be employed with suff cient precision to render the service appalling to ship

* A bstracts from a paper by Brevet Brig. Gen. Henry L. Abbott, U. S Army, Colonel, Corps of Exgineers, read before the International Congres of Engineers at Chicago, and pablished in the Journal of the Military Service Institntion of the United States, by permission of Major Clifto
Comly, Chairman of the Division of Military Engineering.
ping. The greater the distance of the vessel from this kind of battery, the greater her danger if struck.
Rapid-fire guns, chiefly of 12 centimeters ($4 \cdot 72$ inches) caliber, are favored for sweeping the mined fields and water approaches. They will be mounted on the balanced pillar principle, so that perfect concealment in pits will be practicable until they are brought into action.
Submarine mines will be used to obstruct the passage of vessels past the batteries. They will not be restricted to single lines, through which it is too easy to countermine, but will be distributed over considerable lengths of the channel where they can be covered by a heavy fire of flanking guns. The mines are of the electric type, exploded automatically at contact with the vessel or by judgment at the will of the operator. Ground mines of cast iron are preferred for shallow water, not exceeding 30 feet, and buoyant mines of steel, spherical in form, for deeper channels. The size of the latter is adjusted to furnish the requisite buoyancy, which varies with the depth and strength of the currents. Experience has shown that where the depth exceeds about 100 feet and the velocity of the current is over 7 feet per second, the size becomes too great to admit of successful working. Tidal oscillations greater than 10 feet introduce serious difficulties in obstructing a channel by mines, but it fortunately happens that at none of our important ports is this range exceeded. Where more than one passage exists, channels not needed for our vessels will be closed by self-acting mines dangerous alike to all comers. A pattern perfectly safe to plant, 'self-destructive if set adrift, and exceedingly difficult to remove has been adopted.
Firing mines by judgment meets with but little avor in our service. The destructive range increases even less rapidly than the square root of the charge. and unless wasteful quantities of the explosive are used, the difficulty of determining the exact relative position of the mine and the ship will lead to failures, especially in the case of buoyant mines which swing considerably with the tide. By night and in fogs a judgment system would be worthless. Hence many

STRECKER'S BOILER TUBE EXPANDER.
small charges well distributed and exploded automati cally at the shock of the vessel are preferred. By the use of electricity as the igniting agent, such mines will harmless to our own vessels. The usual charge for contact mines is 100 pounds, and explosive gelatine or dynamite No. 1 is preferred for service. The electric fuse contains 24 grains of mercuric fulminate, and is ignited by a current of half an ampere. Mines are usually designed to be spaced at 100 feet apart, thus allowing for moderate errors of planting, since they are not mutually destructive at distances of about 40 feet. A 500 pound countermine works ${ }^{\circ}$ no injury at a range of 80 feet. It is considered that a channel defended upon the system adopted cannot be traversed with impunity until cleared by the operations of the hostile fleet, and the extreme difficulty of effecting this object under the close fire of the land guns will render such obstructions far more formidable than any other ind now known.
Space is lacking to consider, except in a very general manner, the engineering details of the coast batteries now underconstruction to receive our modern armament. Magazine accommodation for 200 rounds, of which at least 100 rounds will be stored in the immediate vicinity of the pieces, is provided for all high power guns. Shells will be stored loaded, but with out the fuses, and the propelling charges will be kept in service cartridge bags protected by waterproof zinc cases. No handling of loose powder will-thus be needed in the magazines. This condition is demanded by reason of the immense amounts of powder required by modern high power guns. Thus for 200 rounds the mount called for by an eight inch gun is 13 tons; by 10 inch gun, 25 tons; and by a 12 inch gun, 45 tons. As no funds have thus far been made available for the construction of armored land defenses, no definite decision as to the kind of armor to be adopted has been made. The matter is held in reserve to benefit by the latest developments. It is hardly probable, however, that the immense expense of the new type of ship armor will be demanded, especially as on land weight is rather an advantage than otherwise.
The batteries under construction are protected by earth and concrete. With a view to deflecting the projectiles, and to reducing cost, as many bowlders or arge masses of rock are incorporated in the latter as is consistent with the formation of a solid monolith. The rule has been adopted that the magazine cover on any probable path of a projectile fired from the larger
high power guns should be 40 feet of such concrete and 10 feet of sand, or their equivalents-2 feet of sand being regarded as the equivalent of 1 foot of concrete. Near the surface. the full thickness of concrete is used, and its exterior face is given a slope of 1 on 1 for the purpose of deflecting the shot. For parapets a breast height wall of 25 feet of concrete with exterior covering of earth sufficient to fill out to the plane of magazine cover is adopted. This total protection corresponds to a thickness of about 70 feet of sand.
The new system of coast defense is fairly inaugurated, and will be prosecuted as rapidly as Congress provides the funds. Mortar batteries are now under construction at both entrancee to New York Harbor, at Boston, and at San Francisco. A gun lift battery for two 12 inch guns has been constructed and successfully tested at Sandy Hook. Disappearing gun batteries are completed or under construction at Portland, Boston, both entrances to New York Harbor, Washington, Hampton Roads, and San Francisco. Mining casematesare built with their cable galleries at all the most important harbors, and a fair supply of the mines and their accessories are in readiness for use.

RIGHTHANDEDNESB AND LEFTHANDEDNES8 OR SIOYX

Are you righthanded or lefthanded of sight? At present, in hunting and in pigeon shooting, good marksmen generally fire with both eyes open. How can they aim, that is to say, place the eyes, the two extremities of the barrel and the target upon the same straight line? It is possible to put the gun sight, the target, and a single one of the two eyes upon the same line; but to do this with both eyes is as difficult as it is to putthe foot of the large arm of a cross and the two extremities of its small arms or the three angles of a triangle in a straight line. And yet these marksmen assure you that they aim with both eyes, and, in fact, at the moment of firing, they have both open; but they aim often with one eye only, without being a ware of it.
In order to convince yourself of this, take a piece of paper or cardboard or a playing or visiting card, and, with a sharp pencil, make a hole in it of the diameter of the pencil. Place this card at 30 , 40, or more centimeters from your eyes and at $10,15,20$, or more from
any point upon say a table or wall (Fig. 1). This point will represent the target, and the hole in the card will be the sight. With both eyes open, look at the point in placing the card, or rather the aperture, between such point and your eyes, and, while you hold it, first close one eye, and then open it and close the other without changing the position of the card. Now, you will at once perceive that you see the point sighted with but one of your eyes, unless the perforated card be shifted; that is to say, the aperture in the card and point sighted are in a straight line with but one of your eyes, without your in the least mistrusting it, since you sighted with both eyes open. The same thing happens to the marksman who aims with both eyes; one eye alone operates usefully for aiming.
Instead of performing this experiment with a perforated card, it can be made with the hand. To this effect, place the end of one of your fingers in a straight line with any more or less distant point and your eye, both eyes being open. Afterward close your eyes alternately, and you will become aware of this fact, viz., that with one of your eyes you will see your finger tip and the point that is sighted upon the same straight line, and that with the other there will be a wide space between such point and the extremity of your finger. Many of those who shoot with the two eyes open are excellent marksmen, and many of those who formerly closed one eye have changed system, having found that the advantages of this method are real. The object is seen better, the distance is calculated better, and, at the moment of pulling the trigger, one avoids the muscular effort necessary to close the eye, and which has required practice. Children donot succeed in it upon the first trial, and without grimaces. Many grown people cannot close a single one of their eyes or can close only one of them-the right or the left.
In Enyland, as we know, where first-class marksmen are very numerous, and where guns of remarkable precision are made. gunsmiths are not ignorant of the fact that the marksmen who aim with both eyes open make use effectively of but one eye for pointing; but they have, it appears, observed that this eye in some is the right one and in some others the left; that is to say, there is righthandedness and lefthandedness for the sight as well as for the hands. We say here for the sight, as we do not intend to speak of those who cannot close the right eye. or the left eye, or of those who are blind in one eye or the other, orof those whose right eye or left eye sees objects moredistinctly than its mate.
Those who are blind in the right eye might, if need be,shoulder to the left or slightly modify the position of the head or weapon. Still, no one is ignorant of the fact that there exist special guns for those who are
blind in this eye and who wish to shoulder to the right like every one else, without in anywise changing the ordinary position of the body (Fig. 2). In such guns the axes of the breech and barrel are in two different paral lel planes, in order that the barrel and the lefteye may be easily placed upon the same line, while the back of the weapon is to the right. The difference that sepa rates these two planes is that which exists between the enters of the right and left eye.
One may deduce from this fact how important it is o a gunsmith who is to construct a weapon of value for a marksman who aims with both eyes open, to know whether his customer's sight is righthanded or

Fig. 1.-EXPERIMENT TO SHOW WHETHER A PERSON'S SIGHT IS RIGHT OR LEFT HANDED.
lefthanded,.just as it is important, before placing him upon a railway, to know whether the engineer of a lo comotive, who, by his calling, ought to distinguish red and green, is or is not affected with daltonism. The majority of men do not confound these two colors, and 80, too, almost all hunters have righthanded sight but in both cases it is prudent and wise to know posi tively what to depend upon. So good gunsmiths, it seems, submit the person who orders a gun of them upon measurement to a careful examination, in order that the weapon may be as well adapted as possible to the proportions and habitudes of the future owner, and they do not neglect to ascertain whether the marksman's sight is lefthanded or righthanded, a circun stance of which he is generally ignorant. For such ver ification they employ the perforated card that we mentioned at the beginning of this article.
Do these gunsmiths obtain other information from such experiment? We do not know. The object of this article is not a study (which, however, would be interesting) of the advantages and inconveniences of firing with one or both eyes open with sporting guns or weapons of war. We shall add solely, apropos of this, that an old soldier has assured us that he has spent several days in the guard house because he did not succeed in closing the left eye at the moment of taking aim. This fact assuredly should not be isolated, and I follow it up now to ask whether it would not be more rational to teach sharpshooters to take aim, like many of he best civil marksmen, with oth eyes open a method that would cause the avoid ance by soldiers of efforts, grimaces and perhaps punish ment, even
Moreover, marksmen are aot the only ones who, having to make use of a single ere at a time, operate with both eyes open and even for very delicate work. Watchmakers and others who have made continuous use of the imple or compound microscope finally no longer close the eye with which they are oot looking, and this, without causing any inconvenience, does away with certain useless effort and.fatigue. Have such questions already keen treated of in special works on hunting and shooting or in treatises on optics and ophthalmology? W do not know. It was but a short time ago that we were ignorant of the facts of which we have just spoken, and, in our turn, we point them out to the uumerous persons who have never asked themselve how it is possible that one can succeed in aiming wel with both eyes open.
We believe, then, that it may be established without ear of error (1) that it is possible to use consciously or instinctively a single eyewhile botheyes are open, and
that such eye may be either the right or the left; (2) that there is a righthandedness and lefthandedness of sight; (3) that a person may not know whether his sight is right or left handed; and (4) that the eye upon which the attention and will is fixed-in other words the one with which a person looks-is the one with which he sees, even when both are open. This latter fact finds a confirmation in the workers with the microscope of whom we have above spoken; and we ment
ment :
lace in front of your eyes two paper or cardboard tubes from 3 to 4 centimeters in diameter, and hold them as you would an opera or field glass, but in such a way that they shall form with each other an angle of say 20° or 30°, as shown in Fig. 3. Direct the two tubes at two points, say two open books or the two somewhat widely spaced columns of a newspaper situated at a few centimeters from the extremities of the tubes that would carry the objectives if they were tele scopes. You will then observe that it is very easy and in nowise fatiguing to read with theeye to which you give your attention, while the other sees nothing, al though it remains open, and it is of little consequence whether it be the right or the left.
If, at the moment in which one of your eyes is reading or looking, you remove the tube that correspond to the one that is not looking, you will continue to see only with the eye that is looking, although the other be open. This is the case with workers with the mi croscope.
The sight is an admirable faculty that focuses or regulates itself without the aid of our will, according as the object to be seen is more or less distant, and according as it operates in a dark or highly illumi nated medium, but it may make use of but one of the two windows at its disposal, according to the require ments of vision. These operations of the sight are effeeted without our being able to suspect them.

Philosophers have discussed (and what have they not discussed ?) whether there are things absolutely indiferent. Newton, we believe, thought that there were things indifferent even to the Greator. The universe, said he, had to revolve to the right or to the left Now at the moment of the creation it wasindifferent to God whether his work began to turn toward one or the ther of these two sides.
It has also been asked whether the preferred use of the right hand and the right side is innate, spontane ous, or whether it is the result of atavism and educa tion; and, to look at things merely superficially, it would seem as if one might find some argument or other for this question in the fact of the greater or less number of cases of righthandedness or lefthandedness of sight. It would seem, in fact, as if the sight has not undergone the influence of education, in a large num ber of individuals at least, since they do not know ven whether they are right or left handed.
But, in a closer examination, we observe that the infiuence of the hand over the eye or of the eye over the hand had to exist, and that it is not easy to establish in a peremptory and convincing manner where the primordial influence is found-whether it is in the eye or in the hand.
As for us, we are led to believe that there are more
and arrow, and it is that, too, that pulls the trigger of the crossbow or gun while the head inclines to the right and one sights with the right eye. The same is the case with taking aim with a stone. The man or child raises the projectile to the height of the eyes, bends his head slightly to the right, places the right eye, the right hand and the object at which he is going to fire the stone upon the same line, after moving his left arm to the rear. The left arm plays a role, but an instinctive one, of counterbalance, of counterpoise

But, again, is it the right hand that obeys the right Be or vice versa? Does the right hand owe its advantages to education and atavism, or is it rather trained

Fig. 3.-READING AT WILL WITH THE RIGHT OR LEFT EYE, BOTH EYES BEING OPEN.
unconsciously by the greater innate aptitude of the right eye for seeing, sighting and fixing? Then, it would be the sight that has commanded the position of the body and hand in the cases that we have just mentioned.

We shall terminate this article with a few statistics. Out of twenty or twenty-five persons, we have found two who had lefthanded sight-a lady who, nevertheless, was capable of handling a sporting rife and who used it in closing the left eye for aiming, and a shortsighted monk. After explaining to the latter what it was a question of, we asked him if he thought his sight was right or left handed. He answered: 'Righthanded, assuredly, since I see better with the right eye than with the left." The experiment with the perforated card proved to us that he was deceived
Have lefthanded persons lefthanded sight, also? Are they lefthanded in the two organs in the same numerical proportion as righthanded persons? The experiment is easily made, but we have not attempted t, for want of subjects.-La Nature.

Experimerts in Freezing Alcohol.

The success attending Prof. Dewar's experiments in the freezing of absolute alcohol has a peculiar interest, in view of the fact that $200^{\circ} \mathrm{C}$. was the utmost limit of cold reached or obtained by man, viz., by the use of liquid oxygen. Prof. Dewar allowed some liquid ethylene to flow through a brass tube surrounded by solid carbonic acid and ether, and, when this cooled, it was passed into a large test tube, in the middle of which was placed a glass tube, with a flattened bulb at the end, the bulb being full of absolute alcohol. The evaporation of the ethylene was then accelerated by the use of the air pump, and the alcohol.was frozen into a mass as clear and transparent as crystal. The tube containing it was turned bottom upward, and as it melted it assumed exactly the consistence of glycerine, flowing in a sluggish way down the sides of the tube. Ether requires less cold than alcohol to freeze it, and in several of Prof. Dewar's experiments ether ice formed on the sides of the glass vessels. Besides
ght than left handednesses of sight, because the right eye has undergone the influenceof the secular education of the right hand and right side. We observe, in fact, that, for centuries, marksmen, for example, have been taught to assume attitudes in which this side has the most important role. Weapons have changed, but the position of the body has been preserved hrough the ages.
In shooting, the left arm serves only as a support; it is the right that bends the bow and sets free the string
is, the warm air of the frost on some of the con densing as snow or hoar frost on some of the vessels used in the experiments, and the chief difficulty of the occasion was the projecting of the experiments on the screen by the electric light, so that all present might see what was taking place.

With an opera glass Gale's comet may be seen about ay 10 in the constellation of Leo Minor, just above the Sickle.

BECENTLY PATENTED INUBNTIONS

 Engineering.Filling Blast Furnaces.-Thomas F. Witherbee, Port Henry, N. Y. This inventor has de vised ap improved charging apparatos deaigned to pro-
perly fit the stack, even when very finely divided ore is to be freated, sach as magnetically concentrated iro central aperture through which is adapted to peas central aperture, throagh which is adapted to pess spreading bell, while a flixed bell is adapted to close the
central aperture of the movable bell and recelve the spreading bell. A great variety of charging combinations can thereby be formed to permit of plasing the materials as deesred in the stack.
Coal Chute Reqdlator.-John F. Schmadeke, Brooklyn, N. Y. This is an apparata adapted to operate antomatically in connection with the
usasi leevator to throw mechanism into gear by the fllinin of thechate, which shall wind up a cable on a drum and open the chate doors, the mechanism being arranged so that it will work in a converee way to close the doors a the chate becomes emplts. The invention relates to coal chates 11 led by elevatora, and from which coal is with rawn for ose, where it is deairable to keep the chat the chate bottom.

Rallway Appliances.

Car Coutling.-John Cochran, Jr., Collins, Mo. According to this invention, "Bwinging balle are arranged, one in rear of the other, rods or bars which
connect the bails being extended in advance of them and conpect the baile being extended in advance or them and
supporting an inclined link guide. The bails form supporing an incinined ink guide. Ae in parallel line and swing the giide back and forth withoot changing its angle to the horizontal, so that it will be presented prois simple, and by means of the improvement the caic may be coapled from the side or top, withoat need of the trainmen going between the cars.

Mechanical.

Saw Handle.-Azeil B. Van Campen, Raymond, Cal. This is an adjustable handle for lone being adaptable to any saw of this clase, and deeigned facilitate the operation of sawing by permitting of greater freedom of movement of the hands. The inven-
tion condits of a revoluble hande for the end of the tion condigte of a revoluble handle for the end of the
saw, with a handle for the back ofthe saw and a hooked bolt for clamping the two handest to the saw.
Metallic Packing. - Frederick a. ITes, Grant's Pase, Oregon. The proper packing of piston rode, valve stems, etc., is the more expectial object of this in vention, which provides a packing consisting of Coll having ancat endo forming steam-tight bearing sur--
faces. The packing is simply made and ti readily applifaces. The packing is simply made and lis readily apph-
cable to large or mamal stuffing boxes. On one oncat end of the coil is a pin elugutog a correapondingly shaped receas in the bottom of the casing, a similar pin on the other end engaging a recees on the inner face of the gland, atted looselly on the piston rod or valive stem.
Sewing Maceine Needle Bar. Heary A. Dodge, Boston, and wiliam T. Richards, Newgibs so arranged as to effectuany take up the wear of the needle ber and prevent it trom wearing in the face of the plate. The gibs are so made that they will be interchangeable, right or left, and the surfaces adapted for engagement with the needle bar are hardened to reeist

Stone Carting Machine.-Antonio Zanardo, New York City. In this machine a table has movement in a bed and a tool carriage is held to revolve upon the table, there being a plate adjostably located in may be set eccentric to the carriage. The tool may be given any required angle to prodnce a desired ondercat and mas be regalated to carve varions embosesed or intagting of the tool is quicckly and easily effected, and with the machine circles and ovals may be made as.desirec, as well as the carving of
homan being in relies

Agricultural

Mowing Machine Attachment. William L. Hay and Robert L. Johnston, Franklin, Tenn. This is agathering attachment comprising side sapporta frame a receiving on the eickle portion of the mower frame, a receiving platform and a revolving rake, over the
rear end of whichis joornaled a revolving discharging rake. The improvement is eapecially designed to facilitate the gathering and piling up of seed clover as it is cat by the
mower. The attachment may bedetachably connected with any of the mowing machinea now in general use and it ls simple in construction and easily manipalated.

Miscellaneous.

House Mail Box.-Edwin F. Kinsey, Washiogton, D. C. This box is to be attached near the front door of a billiding, and sa so arranged as to indi-
cate to the carrier when mail is deposited in it, and to indicate by a algrai to the occapants of the hoose when he carrier places any masil in the box. The box is also arranged to effect the parchase of stampe, shamped en-
velopes, and postal cards from the carrier, in deflite quantities, and the making of change therefor, withont tisk of loss of mones or mail
Soldier's Firld EqUipment. - George H. Palmer, U. S. army. This invention compriees a half shelter canvas lent, to be united with a like balt sudfer's bedding and placed in a roll over the shoulder sind acroee the body, in combtiation with n valise simi-
laris carried, to hold ammunitoo, clothing, and toilet artcles. By the novel constraction and by certain strap and athachmenta, both the valise and hari tent roll are herd in place on the shooldere, the body and arms being
unconfined and free, and the weight being well distrib-
ated, while the whole
easilypatit on or off
Pin for attaching Flowers to Rrsegs. -Edward W. Stifel, Wheeling. Weat $\mathbf{V a}$. This in iss made of a single pieccoof wire bentand t twisteda bont
 arough which a ribbon may be pased, there being a in and hook at the ende of the each hoocting, portions. The in will secarruly hold in place fowers in spray or othe hape withoot Iinjing to coetumes or dreasea.

Designs.

Carpet.-William F. Brown, Newark, N. J. The body of this deeign is decorated with flowers of the rose and dikg type, with rifiage in feetoon
arrangentent, and the border has differently arranged arrangenients and the border has differently ar
bat correponding festoons of fowers and foliage.
Hañdle for Spoons, etc.-Charles Osborne, New York City. A foliated figure at the top of this handie represents centrally a closter of grapes.
Near the center the hande so nearily circolar in crose sec. ton, while near the bowl it is nearly rectangular with turned leaf-like Agores on the obrere and reverec there being flowing tendrils on the beck of the bowl.
Nots.-Copies of any of the above patents will be fornished by Mnnn \& Co., for 25 cente each. Please
send name of the patentee, titie of invention, and date of this paper.

SCIENTIFIC AMERICAN

BUILDINGEDITION

MAY, 1894.-(No. 103.)

table of contents.

. Wlegant plate in colorsshowing a handsomeresidence Evanston, III. Two perspective views and floo plane Mr. J. L. silisbee, architect, Chicago, III leaign.
Plate in colors showing a cottage at Mt. Vernon, N. Y., recent'y completed for E J. Walther, Esq.
Two pergpective views and floor plans. Mr. L. H. Lucas, architect, Mt. Vernon, N. Y. An excellent Cottage at Morgan Park, Ill., recently erected for G. F. Patterson, Fsq., at a cost of $\$ 3,000$ com
plete. Two perspective views and floor plans Mr. H. H. Waterman, architect, Chicago, mi.
4. A summer hoose at Soath ampton, Long Island, N. Y. recently completed for \mathbf{H}. M. Day, Feq. Two per-
spective views and floor plans. A model deaign. Mesgra. G. E. Harney \& W. 刃. Pardy, architecta,
New York. New York.
residence at Portcheater, N. Y., recently arected
for Walter S. Haviland, Rsq. Two perspective for Walter S . Haviland, Rsq. Two perspective
Fiews and. floor plans. A very pleasing deeign Mr. Lools Mertz, architect, Portchester, N. Y. 6. Floor plans, interior view, and two perspective of a residence recenty completed at Hackensack, N.J.,
for George A. Vroom, Feq. An excellent design and anigne plan. Coost complete $\$ 6,950$. M M
Christopher Meyer, anchitect, New York City.
7. The Barnam Institate of Sclence and History, of Brdgeport, Conn., donated by the late Phineas T Barnam. A one-halr page perspective view. Con
for bnilding and grounds $\$ 100,000$. A flie exam ple of the Romanesque style of architecture.
8. A residence at Stamford, Conn., recently erected fo
Oliver G. Fessenden, Esq., at a cost of $\$ 5,199$ Two perspective views and floor plans. Mr. Wm H. Day, architect, New York City. A very pleas ing deaign.
cottage of moderate cost recently completed for
Hiram R. Smith, Esq., at Randall Park, Hiram R. Smith, Esq., at Randall Park, Freeport
Long Island, N: Y. Cost complete Long Island, N: Y. Cost complete 83,900. Two A very attractive deaign.
10. "Otter Cottage," recently completed for Henry H Adams, Esq., at Belle Haven Park, Greenwich Conn. An attractive design in the colonial style o architectare. Two pergpective views anid Hoor colonial cottage at "The Bluffis", Mt. Vernon,
N.. Y., recently completed for E. A. Hant, Esq. Two perspeo ne riews, an interior view and flo plane. Wr. Loris H. Lacie, archltiet, ML. Vernon,
N. Y. 12. Halr-page engraving showing hall and staircase of London dwelling
18. Miscellaneons Contenta : Clients' right of replicating
design.-Shop and mill constraction design.-Shop and mill constraction.-Seasoning oak.-Beautiful designs in parquetry work, illus
trated.-The effect of fire on concrete.-Waterproof cellars.-Emboesing wood.- Steel battwith
ball-beanvg washers, illustrated.-"The Holland " radistors, illustrated. - Graphite paint. - Sand papering mantiines.-The Van Wagoner \& Wil. screen doors.-Maple flooring.-The Pallman sas balsnce, illastrated.- Portiand cement walks.-
Sabterranean London.-An alloy which adheres to glase.-A aaw clamp and filing goide, illostrated. The Scientific. American Architecte and Bnilders
Edition is issued monthly. 22.50 a year. Single Bdition is issued monthly. $\$ 2.50$ a year. Single copies,
25 centa. Forty large 25 centa. Forty large quarto pages, eqnal to about two handred ordinary book pages; forming, practa-
cally, a large and splendid MagAzars or ArcitrepURr, richly adorned with elegant plates in colors and
with flne engravings, illustrating the most interrating examples of Modern Architectaral Constraction and allied subjects
The Fallness, Richness, Cheapness, and Convenience this work have won for it the Labegrt ctrounation any Architectaral Pablication in the woria. Sold by all newadealets. MUNN \& CO, Poblisarks,

२ßusiness and \$Personal.

For pamplig enginee. J. e . Mand, Nerarar, N.J.
"'U. S." metal polish. Indianapoiis. Samples free. Wood pulp machinery. Trevor Mfg.Co.. Lockport, N.Y.
 Bookbinding.-All classes of work. Magazine
pecialty. Haddon \& Co., 139 Center St., New York. Distance Hadon \& Co., 139 Center St., New York. Distance Reading Thermometers.-See illis adver-
tisement, page 255. Ward \& Doron, Rochester, N. \mathbf{Y}. Steam Hammers, 1 mprovedHydraulicJackks, andTube Expanders. R. Dudgeon. 24 Columbia St., New York. Cheapest Water Power.-See top of 1st column, page
0 . Also top of 2 C column, page 239 . Look, it will pay. Screw machines, milling machines, and drill presses.
he Garvin Macb. Co.. Lsight and Canal Sts., New York.
 Inventors wishing to bring their inventions to the
ublic notice should confer with H. Pittock, Room of Beacon St., Boston, Mass.
Gulld \& Garrison, Brooklyn, N. Y., manafacture steam cid blowers, fllter prese pumps, etc Patent for Sale-Stall for comfort and cleanilness of nilk cattle. Agents wanted at 55 per cent commission
M. Schembri, 388 Van Buren St., St. Paul, Minn. The best book for electrictisns and beginners in electricity is "Experimental Science", by Geo. M. Hopkins.
By mail. $\$ 4$; Mnnn \& Co, pubisbers, 361 Broadway, N. Y. For the original Bogardas Universal Eccentric Mill, Foot and Power Presses, Drills, Shears, etc., address
J.S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y. Patent Electric Vise. What is claimed, is time saving. one sliding movement. Capital Mach. Tool Co., Aubarn one slidi
N. Y.
Wante
Wanted-A slide valve engine of about 200 H. P. Must
be in first class condition. Address, giving maker's ame, date, and full particulars, also location, J. B. J.s

Competent persons who desire afencles for a new popular book, of ready sale, with handoome proft, may
apply to Mnnn \& Co., Scientific American oftce. 381
Broadway, New York. CT-Send for new and complete catalogue of Scientific and other Booksfor sale by Munn \& Co.. 301 Broadway

HITNTS TO CORRESPONDENTTS:
Names and Address mbast accompany all letters,
or no attention will be paid thereto. This is for our
information and or no attention will be padd thereto. This is for our
information and not for pabilcation.

Rooks referred to promptiy sapplied on receipt of
minerals sent for ezsmination shoold be distinctly
marked or labeled.
(6008) C. J. T. asks: I have a motor bajlt after the Edison style, of the following dimensions:
Dram armature core 6 inches long by 48 diameters Drum armature core 6 inche long by 4 a diamelins in
woond with No. 16 B . \& $\mathrm{B}, 32$ sections, 6 convolations in each section, two layers deep. Fields woand. with 10 poands-No. 23 each. Want to rewind for a power circoit. The machine when run as a dynamo is 90 volts a
, 000 revolations. I want to make a 110 volt machine of b,000 revolations. I want to make a 110 volt machine of
t and run atslower speed. Want topat in a fan circuit of aboat ten $1 /$ horse power motors. A. You can proba bly ase your machine safely as it is. To lower speed the fleld. To keep high amperage yon mast nse as low poseible
(0009) D. S. S. asks : 1. If a bell be rang nside a vessel exhassted of gir, does it create any sonnd within said vessel, none being heard outaide of sel, except by contact with the bell or with some object tonching it. 2. If a transmitter were placed in the vea sel with the bell and connected with a telephone oatside, could we thereby hear the ringing of the bell? Has thil experiment ever been tried A. Yon coald not
(6010) E. A. S. says: One rule of me chanicsis thata belt will always ran to the highestpoint.
What is the reason? A. The length of the belt edge on the high side as it is called, when shafts are notpar allel or on the crown of pulleys, is always longer than a the low part or low side. The stretch of the belt to ac
commodate itself to this condition springs the straight part of the belt near its point of connact with the pulley coward the high part or crown and canses it to rmon in that direction; the
(6011) C. M. W. writes : In supplying moephere is so much lighter than at sea level, will a pres sure of 10 ounces fornish as mach oxygen to sapport thellame ander aboveconditions as a similar preserpe ata
ower altitude, or must the - pressure be greater to com pensate for differencein the rarefled condition of the air, owing to thealtitudes A. The atmospheric pressare a $\left\lvert\, \begin{aligned} & 9,000 \text { feet elevation is only about } 10 \text { pounds per square } \\ & \text { inch; } 10 \text { ouncespresenre at the sea levelonly represents }\end{aligned}\right.$

6\%\% ounces at the above elevation and would probably be 6\% ounces at the above elevation and woald probabily be
too weak in the blast as well as in the quantity ofairsup
(6012) F. A. M. asks: 1. How can I nake a dry battery? A. It is best to bay them. A mix tare of plaster of Paris and chloride of zine with chloride pole in center will answer. 2. How can I make fluid in
Edison-Lalande battery? What ahoald I dissolve canstic Edison-Lalande battery? What should I dissolve canstic
potash in P A. Diseolve in water. 8. Please name a flum that manufactarea batteries and supplies. A. Addres mnnell \& Co., of this city.
(6013) R. E. W. asks : 1. Would cottoncovered wire (No. 38) answer nearly as well as silk-cov-
ered for a small indaction coils A. Yes. 2. I wish to ered for a small induction coils A. Yea. 2. I wish to
make some good pernanent magneta. What kind of make some good pernanent magnets. What kind of
steel should I order, and about what will it cost pe pound 9 A. Use good quality stabs or tool steel. 8 Will the inclosed sample of wire give good resoltaon a be the objection to noing a well to gronnd the end of telephone line: A. None, unless you object to having the plate immersed in the well. Some slight corrosion will take place.
(6014) J. A. McN. asks: 1. How many cells Lecianche would I need to work a telephone syatem overaboat two miles of a circuit (transmitter and re
ceiver being alife)
Uise 4 cells. 8 . Which is th bestfor such a line or shorter 9 A. Leclanche cells are as good as any. 8. Is a metalic circuit better than a
groond circnit and does it take less battery ? A. It is groand circnit and does it take lees battery ? A. It in
superior, bat hardly saves battery. 4. A body weighs 100 superior, bat hardly saves battery. 4. A body weghs
pounds at the poles and 101 pounds at the equator. How is this compated \boldsymbol{P} A. Yoar figares are wrong. A body weighta are calculated by the formula for centrifagal
(6015) F. H. asks: Can you give me a table, or tell me how it is ascertained, what by differen
given current, length of wire, etc, will be the attiraction in ounces or poands, toward the core of a magnet 9 In other words, how can I find out what weight a magnet of any build can sustain ? A. You will have to calculate the lines of force driven oat at the poles through the armatare,
In S. P. Thompson's work on the "Electro-Magnet," \&6, In S. P. Thompson's work on the "Electro-Magnet", \&6, ou will find excellent matter on this sabject
(6016) F. H. S. asks : Is it possible to effectallof a ray of lightfrom a transparent body $?$ Will not refraction take place to some extent as long as the
ray strike the body? A. For the rear sarface of ever trangoarent body there A. For the rear surface of every within which all light is reflected. This applies to ray of light which, having passed through the body, resch th face.
(6017) L. F. D. asks: Do telephone, telegraph and electric light companies ran their cables in
the same conduits (ander groand)? if not, why? A. the same conduits (ander groand) If not, why? A.
Generally not, in order to aroidindaction and poseibility Generally not, in order to avi.
of dangerfrom, leakge. 2. Pjease give a solution how to clean hard rubber? A. Wash with ammonia an
(6018) R. asks if a good tennis court conld be made out of coal akhes. IF so, the method A. Ashes alone woold hardly answer. You might by sifting them and mixing with clay get a good surface.
(6019) J. D. asks (1) what size wire to use to wind motor No. 759 for 25 volta, and aboat what
power will it develop 9 . Wind with No 21 or 2 wire 2.! How many storage batteriea like described in Sciss tific Arxetons, and how many phates and what size shoold be to ran it aboat 12 or 15 hours, and how long will take to charge same? Will dynamo No. 600 charge them \uparrow A. Twelve to fifteen. The time of charging
will depend on the carrent. The dynamo named will be necemary
(6020j A. B. R. asks if the simple electric motor in "Experimental Science" can be ran to good advantage with the Edison-Lalande battery; if so, which
type would be most advigable, and how many cells woold be required to give aboat the same reanltas th plange battery, sug
Use ten cells type
(6021) E. L. A. writes : Where can I get history of the calendar and all its changes ? What day of the week was George Waahington born? And in what year ? (So recorded at that time.) Was 1700 a leap year
under Julian calendar? To make my meaning plain on questions 2 and 3 , I will state that I have examined differ ent encyclopedias ou the calendar and find that they not agree in this. Washington's birthday is now gene
rally celebrated as having occorred on Febroary 11, 1732, and now called Febraery 22,1 1782, bat the following noots tion from Appleton's Encyclopedia pate a different phas on it: "The change from Julian to Gregorian reckonin was made by act of Parliament in Great Brivain in Sep tember, 1752, the 3 d being called the 14th. In England from the 14th century till the change in 1752 the lega jear began at March 25 . After the change was adopte ind ba, even whe 25 the cording to the subseqnent year. Thas the revolation of 1688 occurred in February of that legal year, or as we should now say in Febraary, 1689." If the above quotation from Appleto be the correct way of compating back dates, then, since under the Gregorian calendar we celebrate Washing ton's birth as having occurred on Febrasry 22,1732 , at thetime he was born (Jalian calendar) it must have to calian February 11, ion, Friay. Or if, according to Jalian calendar, he was born on Febraary 11, 1732, his birth as having occurred on February 22 , 1733, Sun day. Which is corect 9 A. There is no special history of the calendar. It is scattered in detached details in the encyclopedias and technical works. Probably the best
account is detailed in the Dictionary of Science, Literaaccoont is detailed in the Dictionary of Science, Literatare and Art, long since ont of print, under the heads of calendar, year, cyclea, and chronology. George Wask ington was born on Friday, the 11th day of February,
1782, historical time in England and the American
colonies. The historical or basiness year in England
began on the firrt da of Jannary as established by the began on the firt da of Jannary as established by the
Romans The ecclesiastica calendar embracing the civil or legal year previous to 1752 began on the 25 th of March, and events between the 1 1st of Jannary and 25 th of March were usaally dated with both yearg, as Febranry 11,1733 . The date of Washington's birth was
fixed in the colonies to correspond with the new regulation; 1700 was a leap year under the Julian calendar, bat
(6022) C. B. W. asks (1) if the motor de scribed in Sopprkirsw , No. 641, can be ran from an al-
termating current. A. No. 2. If not, how mast it be ternating carrent. A. No. 2. If not, how mast it be
wound to run from an alternating current $\$$ A. See our
 motors. 3. What size wire shoold be ased to have it run with 100 voits and 10 amperes $\%$ A. Use No. 28 wite net on motor 641 twice as wide, which would be five inches, and the armatore core twice as large, whire
would be foorrinches, and pat twice the amount of wire or the machine, would it be twice as strong as described in the SOPPLIBENYT.? A. In general terms, doabling all
the lineal dimensions pives sixty-four times the power. the lineal dimensions gives sixty-forr times the power.
Bat as you only donblea portion, you may expect four or five times the power. 5. Canthe motor 641 be ran fron
(6023) I. R. writes: 1. Can a storag batterr be charged from an alternating circuitor 50 volts?
if so, will the corent from the batter be tipect ? If so, will the carent from the batterr be direct \& A. A ternating anddirect carrent motor 9 A. Several lind a alternating current motors have beea invented. We have descibed several in our Sopplimenve, Noe. 692, 717,244, to which we refer for their peccuiarities.
Can a 1,200 voltcontinnous arc circait be tapped in sucha way as to geta current of 50 rolts 9 A. There is no
such thing as a current of 50 volts. By a shant connection you can get anch a potential difference. We advise you not to do it, as you expose yourseli to great danger.
(6024) S. J. S. asks: How does the heat
trom the sun penetrate throngh the intense cold of the from the sun penetrate throagh the intense cold of the
apper regions, and warm the surface of this planet 9 A. Heat is supposed to be a state of molectlar motion or vi bration conveyed through space in the medium of the
luminiferons ether. A medium having no effect laminiferonas ether. A medium having no effect apon mitting the pulsations of heat, light, magnetism and elec-
th.city: It is probable that heat does exist in space to a very low degree in its radiant form and only develops
into active energy by resistanceof planetary bodies to its vibratory transmission.
(6025). W. F. asks: 1. What per cent of power developed at power honse is loat in tranemitting
for street car propulsion of the turee following methods: Cable, electricity (trolley system) and compressed air?
A. No exact figures can be biven, except that under averA. No exact figures can be given, except that under aver-
age conditions the electric road may be prononnced the
 nish me with information aboat compreseed air 9 Sopplixient catalogae, sent by mail. 3. Why is compresed air not more ased for street car propalsion q.
It is to expensive and cumbersome. See Surpusumst, Nos. $176,177,188,5558,637,747,845,866,890,903,904$.
(6026) H. R. C. asks: 1. Does the induc tion coil increase both the tension and quantity of car-
rent or just the tension alone A. The regular indaction coil increases the tension and lowers the current strength. It also prodaces a sort of alternsting carrent.
2. I used common table ealt in place of sulphar of copper 2. I nsed common table salt in place of salphar of copper
in making a gravity cell. When I connect a small motor in making a gravity cell. When I connect a amall motor
in the circuit it rung very rapidy at frat and then stops.
 can the Leyden jar be charged with a gravity cell ? A. Connect the knob to one pole and the outer coattog to the other. The charge will be so minate as to be appreciable
only by very delicate instruments. 4. Why ure the magnetic poles continaully changing? A. The reason is
${ }_{\text {(6027) }}$ C. L. writes : I have three storage batteries, and I I would like to get some idea of what power
I can
getfrom them ifattached to a proper motor. Esch cell has 14 plates (7 t o each pole), $615 \times 9 \times$ inches (measared only the part
making a total of was 4 plates in in the three cells. Can such cells be a rranged to give small power for long time orlarge power for short times A. Yorr battery will give aboot
18 amperegand 6 volts or 54 amperes and 2 volte, according to coonection. The series connection (18 amp. 6
ing volte) is preferable. This gives
cells can borse power. The as desired, according to the motor used.
(6028) F. C. H. writes: We are putting in a ateam heatingplant in a large hospital. The boilere, five in number, onst be situated on practically the same
level as the bailding to be heated, nuless an excaration lever as the buldidig to be heated, naless an ercaration
at least 18 feet deep and 40×60 is made for them. Is the gravity system of sach advantage that yon would adVise this excavation, at an enormons expense, or would
it be better to have the return water conducted into a reit be betert to have the return water condicted into a re-
ceiver with antomatic pump attached, so that the water colld bedelivered into the boilerge, A. The sink win of
the boiles in an excavation for the convenience of a re. the boilers in an excavation for the convenience of a re-
turn system is not desirable, in view of the well known applances of the present day for returruing the water of condengation to the boilers. A small cellar with tank
and automatic pump, below theline of return pipes, is and antomatic pump, below theline of return pipes, is
the cheapest and most satisfactory system. 2. In ventithe cheapest and most satisfactory system. 2. In evai-
latingal arge hospital woold it be better to propel by fans warmair into the rooms through registers placed
near the ceiling, expecting this presare of air. assisted by the steam heated rentilating stacks, to force the foul
 the heated besement permid he through registers placed near theceiling, and connect fans with foul air dncte, drawing the foal air ont of the room through registers near the floor, this draaght to canse the hot air to circulate rapidy through the room, warm it and pase oot
through the fool air ducte, the later plan being the throagh the foal air dacte, the latter plan being the
reverse of the former? A. The plenum or pressare sya-
tem slmilar to the first named gives the most satigfac-
or resalts for both witter and sammer rentilation partially coonteracts inequal heating on different sides of the bailding from outside wind preesare. It prevents dranghts from the windows by the draught of the fan in the other system. The heating and ventilation of a hospital for the insane is too Important a matter for a
general categorical answer. The plans should be passed general categorical answer. The plans should be passed upon by an expert in heating and ventilating such baild
inga. 3. Can you give me the colors used in making gis. 3. Can you give me he colors aged in
different colored sidewalk tile out of a mixture of Port
 oanganese, and chrome yellow are the principal coloring matters of cement walks.
(6029) W. L. B. asks: In that class of eostats where change of resistance is cansed by change of pressure on a carbon powder, is lampblack suitable powder that woald be? A. We advise you to ase powdered battery or electric light carbon. If the latter,see that the copper plating is dissolved before
(6030) W. W. TP. asks : 1. What would be the effect if I were to wind a flat iron ring with a coninnous winding instead of alternating them, and place it receive a great deal of carrent with low voltage, i.e. direct carrent? A. This might be donewith a proper commatator and connections. It is not adrigable. 2 H. 746 many wath do you require for one man power A. 746 watts $=1$ horse power, or 93 (aboat) $=1$ man
Dower. 3. I wish to produce Tesla carrents the simplest way for reprodacing some of his experi nents on a small scale? A. There is no simple way. W refer you to Tesla on "Alternating Carrents," \$1, and
Teslags "Inventions, Researches and Writing," jus pablished, $\$ 4$ by mail.
(6031) C. A. D. asks: Can you inform me the degree of heat recessary to transform limeston time is required to complete the process in an ordinary fornaces Does it requirea gradual heat, or woald a blas
fornace expedite the process \& A. 36 to 48 hours may be aeeded to burn a kiln of lime, and a white heat is attained in the process. The carbon of the fuel acts to facllitat he operation by its reducing action. Gradual heating
(6032) Reader writes: A says that a weight, becanse the dark colored cloth absorbs the ray inght, while the light colored reflecta them. B give ight colored coat is the warmer. Which is right? A In general terms the black cost would be warmer in the --the white one in the shade or at night.
(6033) M. M. asks : What is the ratio of he volume of high pressare cylinder to that of the in also the ratio of the intermediate to the low presengine inder Also, what are the cylinders' diameter and stroke of the largest triple expansion engine? A. The ratio of the volumes of the cylinders of triple expansion engines varies somewhat with different makers, and to meet the requirements of expansion for steam at varions pressures, usaal practice for marine engines is for steam at 100 to 130 poands pressare $1,2 \cdot 25$, 5 , and for 150 poands prescylinders. The cylinder diameters of one of our largest each are 45, 71, and 113 inches with 60 inch stroke
(6034) Inquirer, Newfoundland, asks 1. Would an ordinary kerosene lamp, with a sheet iron it may radiate slowly throagh the apartment, heat the partment better than the lamp without the above a will not be increased by the absorption by and radia tion of a metal drum through which the heat pasees, but the action of low radiant heat from such a source seems in some way to modify the suaceptibility of the nerves to he sense of heat, and in thatway appears to increase 2. Would the comparative heating value be the same
whether the room had a chimney or not ? . The effect of a chimney opening into a room is to carry off heat and may only be considered as a ventilator. 3. In case let fever (ccarlatiog) lay till recorery, wold it be suft cient disinfection to famigate once or twice with disinfectant, for three or four hoars at a time, and the pat bed in open air; or woald it be necessary to take teaters out of tick, and wash case and feathers? Please
state way to disinfect in above case. A. Th method of disinfecting as described may be proper and safe, if dizinfectants such as carbolate of camphor or other approved methods are applied to the inside of the feathera for a geason. Such a bed shoald not be ased by ther children under six months. The safest way wher there are other children is to disinfect and thoroughly wash everything appertsining to bedding and clothing.
(6035) P. S., N. O., asks : What horse power will a gasoline engine having two cylinders 434X anches stroke give at 300 revolutions $\%$ What speed will boat, propeller 18 inches, 3 blades, $41 / 3$ feet pitch 9 A The two-cylinder gasolene engine will have from 5 to 7 horse power, according to the perfection ofthe explosive mixtare of gasolene vapor and air. It will propel the boat at from 7 to 8 miles per hoar. The engine will no run with the speed named when attached to the propeller
(6036) R. W. S. asks if the valve of a high speed locomotive has to be changed to a shorte throw when running at a high rate A. The throw of is controlled by the link motion. The movement of the link from the dead point oat in either direction controls thecat-of of the valve from 0 to the largest opening that la allowed by the constraction, the amont of cut-
off being generally designated by the check notehes on

INDEX OF INVENTIONS or which Letters Patent of the May 1, 1894,

AND EACH BEARING THAT DATE

[8ee note at and of list about copies of these pktenta,

 518,949
59.279
519,211
$.518,950$
$.519,287$

\section*{| 519,193 |
| :--- |
| 519,141 |
| 599,22 |
| 519,04 |}

${ }_{518}^{5828} 5$

j. wat.........

, в.а.: вадїеу.

 O: if:

peeier.
for maizin

LATHES，Maper planers Drilly Macine Hop

\begin{tabular}{|c|}
\hline

\hline

\hline \begin{tabular}{l}
OIL WELL SUPPLYGO．

91 a 92 WA＇TER STREET， Manufacturers of everything needed for

ARTESIAN WELLS

\end{tabular}

\hline
\end{tabular}

 4000STUENTIS

TRAIE MARKS．

 DESIGNS．

BUY

TELEPHONES

 MO CONSHUCTON CO．， 40 Monadnock Block，CHicago

1
ROGK BREAKERS ORE CRUSHERS

Fine Experimental Machine Work．
Towers，Tanks and Tubs
patent sectional
aLL LRON TOWERS．
ALL WOOD TOWERS ELEVATED TANKS

W．E．CALDWELL CO． 219 E．Main Street，
UISVILLE，KY．，U．S．
Fertilizers are unporitithle．

 BREAD MAKING．－AN ESSA B BY

1Green River Drilling Machines，

 WILEY \＆IRUSELL MFG．
Greenfleld，Mass．，U．E．A． T下吾。

（x）ex Mat

CIF ESTA BIISHED 1845．
ost Popular Scientific Paper in the Worid Only 83.00 a Year．Including Postage． This widely circulated and spiendtdy illustrated aper is pubitshed weekly．Every number contains six－
teen peges of useful information and a large number of oripinal engravincs of new inventions and discoveries， representink Ensineering Works，Steam Macbinery，
New Inventions，Novelties in Mechanica，Manufactures， New Inventions，Novelties in Mechanics，Mannfactures， Chemistry．Electricity Teleprapby，Pbotograpby，Arch．－
tecture，Agriculture，Horticulture，Natural History，
 Terms of inibscribition．－One copy of the scien－
1vil AMERIGAN will be Bantior me queal－ 52 numbers－ postage prepaid，to any subscriber in the United States．
Canada．or Mexico．on receipt of three dollars by the Canada，or Mexico．on receipt of three dollars in the
publishers；six months， 81.50 tbreemontbs， 8200 ．
CIubs．－צpecial rates for several names，and to Poss Masters．Write for particulars．
The safest way to remil is oy Postal Order，Draft．or ixpress Money Order．Money carefully placed inside
of envelopes，securely sealed，and correctly addressed， seldom Roes astray，but is at tbe sender＇s 1 tbk．Address letters and make all orders．drafts，etc．，payable to
MUN \mathbb{C} CO．， $\mathbf{3 6 1}$ li－ondivay，Now York． THE
Scientitic Samericat Suyplemett This is a separate and distinct pnblication from Trie
SCIENTIEIC AMERICAN，but is uniform therewitb in size． Scientipic Am brican，but is uniform therewith in size．
every number containing situten large pages full of en－ every number mon wbicb are taken from foretgn papers
enaring，many or
and accompanied with tr slated descriptions．TaE sctientific american Supplement is published week－ ly，and fincludes a very wide ranke of contents．It pre－
sents tbe most recent papers by eminent writers in all she principal departments of science and the Useful
the Arts．embracing Biology，Geology，Mineralogy，Natural History，Georraphy，Arcbrology，Astronomy Chemis－
tiy，Electricity，Ligbt，Heat，Mecbanical Engineering． tiy，Electricity，Ligbt，Heat，Mecbanical Engineering．
Steam and Railway Fngineering，Mining，sbip Building， Marine Engineering，Pbotograpby，Technology，wanu－ facturing Industries．Sanitary Engineering，Akricuiture． Horticulture．Domestic Economy，Biograpby，Medicine． etc．A vast amount of fresb and valuable information
obtainable in no otber publication． The gnost important Engineecing，Works，Mechanisms， and Manufactures at bome and abroad are illustrated
and described in the Sitppuksient． and described in the
Price for the SUPPLEMENT for the United States， Scientific Amkican and one copy oí the Supple－ MENT，both mailed for one year to one address for 87.00 singlecopias 10 cents．Address and remit by postal order，
express money order．or cbeck．
ghaildina gedition．
TBE SCIENTIMIC AMERICAN ARCHITECTS＇AND
BUIDERE＇EDIION is isgued montbly． 82.50 a year．
SIncle copies， 25 cents．Thirty－two large quarto pages， forming a large and splendid Hasazine of Architecture． richly adorned with ciegant plates in coirrs，and with
otber fine engravings：llustrating the most interesting examples of modern architectural construction and allied subjects．
A special feature is the presentation in eacb number
of a variety of the latest and best plans for private resi－ of a variety of the latest and best plans for private resi－
dences，city and country including those of very mod－ erate cost as well as the more expensive．Drawings in
perspective and in color are given，tozetber with Plans， Descriptions，Locations．Estimated Cost．etc．
The elegance and cheapness of tbis makniffent work The elezance and cheapness of this maznificent work
have won for it the Aargest Girculation of any
Architectural publication in the world．Sold by all news－ dealers． 82.50 a year．Remit to

MUNN $\underset{361}{ }$ CO．，Publishers．

Founded by Mathew Carey, 17s5. HENRY CAREY BAIRD \& CO., Industrini. Publibhers, Bookselllers \&importera 810 Walnut St., Philadelphia, Pa., U. S. A. and Circulars. the whole covering every branch of scionce applied to the Arts.sent free and free of pogtape to any one in any part of the world who will furnish his edarest Bddress.

A. H REID'S ${ }^{\text {IMPRoved DANISH }}$ SEPARATOR
 SEPARATOR

 Has a greater capacity than any
ther separator anthe market.
 without froth.
Re nile in operation. Will also elevate theskim milk.
Full llustrated Description
FREE by mail. A. H. REID,

CONSUT穴ATION INVENTRORSS

DEAFNESS

 OIL FUEL FOR BOILERS. - DE-

VANDUZEN STEAM PUMP Pumpe BEST IN THE WORLI.
 200tion giveress. THE VANDUZEN \& TIFT CO. SCIENTIFIC AMERICAN DYN AMO.
 $5 \mathrm{~h} . \mathrm{p}$ motor. This machine was constructed nespeciall a

IOWN ERIAIDT:
Fourteenth Edition of
Experimental Science

120 l'ages and 110 superb Cuts added.
Just the thing for a pre ont for any man. .oman,
student, teacher or any ore intereated in schence.
In the nem matter contained in the last, edition will be In thenemberatier contained int the last edition will be
found the scientifc e of the Phonokrgh, the curious

 MUNN \& CO., Publishers, Office of the SCIENTIFIC AMERICAN, 3世1 BROADWAY, NEW YORE.

 GRAPHITRE PAINT

MIXING MACHINERY.

(0) BULL'S-EYE

Illustrated in Scientific American, March 3ist, p. 197

 LICHT PROOF FILM CARTRIDQES. Best and Most Practical Camera 1 n the World regardless of price. Prices. $\$ 8$ to 815.
Send for Descriptinn, with Sample of Work. Boston Camera Mfg. Co., 382 Tremont St., Boston, Mass. SINTZ GAS ENGINE CO. GRaND RAPIDS, MICH.,

. Inventions Developed, Experiments made, investigations furthered, etc. We have a machine shop
adapted to all such work, with first-class men and facilities. Primer to send.

EXCLAMATION POINTS

to make Prospective Typewriter Buyers.

National Typewriter Co.,

How to use power economically is what we are all after. Economical transmis-
sion helps solve the problem. Economical sion helps solve the problem. Economical
transmission gained by the use of the best shafting, pulleys, etc., that can be bought. upon. Send for a catalogue
 P. PRYIBIL, $488-500$ W. 41 st St.. NE W YORK.

Experimental\& Model Work

QATES ROCK \& ORE BREAKER

PEERLESS READY SENSTTIIED PAPER. Brilliant and Matt Surface. The Peerless wil give finer results than canbe obtained on any other paper. Has
only to be tried to te appreclated. Rapid and brilliant printer, Simple toningbath. Easily worked.

NO SKILLED ENGINYHER. THE SHIPMAN AUTOMATIC STEAM ENOMF.
rerosene oll fuel
No extra Insurance. Efficient, Economical, Dreble
SHIPMANENGINECOMPAHY, 200 8UMMER 8TREET, BOSTON MAS8.

F. M. HICKS \& CO rarmond GAS ENGINE: Chesper than Sterm or Eleetricty C8 8 yo South Canal st.

 mir WORKSHOP Euif.

KELLEY'S IMPROVED BERRYMAN Few Than Haw huriar Made by B. F. KELLEY \& SON, "intanasize Parsons Horological Institute: earn the Watch Trad - Engraving and Jewelry Work. PARSONS, IDE \& CO 302 Bradley Ave,$_{1}$ PEORIA, ILL. If you want the best CHUCKS, buy Westeatt

 ALWAYS FRESH AND CLEAN!

A New and Valuable Book

12,500 Receipts. TO8 Pages. Pijce
Bound in Sheep, $\$ 6$. Half-Morocco, \$8. 50.

 Over Twelve Thonsandi selected Receipts are
here collected nearly every branch of the nseful arts
being reprein lit
 The work may be regarded as the product oft tbe stud-
ies and practical experience of the ablest chemists and
workers in all parta of the worl dithe in formation given
 Almost every inquiry that can be tbonght of. relating
to formulz used in the various manufacturing indus-
tries, will bere be found answered. Instructiong for working many different processes in
the arts are given. Those who are engaged in any branch of industry
probably will frithin boik much that in of practical
value in their respective calings.

MIUNN \& CO., Publishers,
SCIENTIFIC AMERICAN ORFICE, 361 Broadway, Hew York.

OVERMAN Wheel co. $\begin{array}{ll}\text { BOSTON. } \\ \text { NEW YORK. } & \text { Philadelphia. DETROIT. } \\ \text { chicago. } & \text { denver. }\end{array}$ COLD FORGRD PRODUCT.

'Ited TIre :0ıt

atifer and strongerthan a common bolt. The fiuted ahenk prevents the bolt from torning
 PROVIDENCE R. 1.

The VanNoman Universal Bench Lathe

 なutw wizd w Wizuquix ixiz

The

American
Bell Telephone
Company,
125 Milk Street, Boston, Mass

Thîs Company owns LettersPatent No. 463,569 , granted to Emile Berliner November 17 , 1891, for a combined Telegraph and Telephone, and controls Letters-Patent No. 474,231 , granted to Thomas A. Edison May 3 , 1892, for a Speaking Tele graph, which Patents cover fundamental inventions and embrace all forms of micro phone transmitters and of carbon telephones.

DVELL DIAMOND CYCLES highest grade. fully warranted.
For Men or Women

- Boys or Girls

JOHN P. LOVELL ARM8 CG. Manufacturers,

BOSTON, MASS.
Light Ruaduter, Weight 25 Ibs. Price $\$ 115$. Popular Prices.

KODAKS

Eastman Kodak Company, $\left.\begin{array}{c}S_{\text {end }} \text { for } \\ \text { Catatogue. }\end{array}\right\}$

Rochester, N. Y.

Ean Kodak Company,

DON't Drink |mpure Water.
 war--tor onjoyment. for appearance and to
waye your wauking clotheo-one of our Bloomer Bicycle
$\$ 7.50$ Suits.
It includes Coat, Bloomer Tro sers of the Cost all wool cassimere and stanley 180 samples and booklet telling all about our
comple e bicycler's outatiUNION BICYCLE CLOTHING CO. $2: 9$ Market St.; CHICACOO, ILh.

 DELIVERED FRFE ON RECEIPT OF PRIC THE BOLGANB MANUFACTURINE CO, 415 Water 8treet, Baltimore, Md.

 Afink

THE COP YING PAD.-HOW TO MAKE

SAWS Wanted gaveargir SAWS

Cas Iron, \$3

\qquad
 Sent to any udidites on 52 Mgento recept of prca, 2 sc ,

Casting up

Figures

$-\quad$ is not only the hardest kind of work, but your time is worth money, and

PEINTHITG INKE:

