(2)

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

THE HILLSIDE LINE OF THE NORTH HUDSON COUNTY RAILWAY COMPANY.
The North Hudson County Railway Company is a corporation owning a number of miles of surface and elevated rallroads in Hudson County, New Jersey, the northern line of the county. This part of the country is characterized by the beginning of the hill which eventually forms the basis of the Palisades. Between the river and the foot of the elevated ground is a large area of flat land. The North Hudson County Railway Company has to provide transportation from the ferries on the river side to the top of the hill, involving a rise in some cases of nearly 200 feet. There are three means
of access to the hill top-one from Hoboken Ferry ing part, as from the ferry to this corner it is an ordiby elevated road operated by trolley; and an- nary surface trolley road. Here the ascent begins. other at the terminus of the West Shore ferries by ele- By two loops it climbs the hill to Palisade Avenué, the vator and elevated road. We illustrate in our present horizontal distance in a straight line between these two issue a third structure, by which the summit of the points being 700 feet. By constructing the loops as hill is reached by a trolley line, known as the Hillside shown a line 3,688 feet long is developed for the ascent Electric Road. The map and the two views show the of 160 feet. The rise begins with a wooden trestle rungeneral construction and line of the road, and its ex- ning nearly parallel with and to the east of the railtreme picturesqueness. in addition to its engineering road tracks of the New York, Lake Erie and Western interest, will be obvious features not at all exaggerated Railroad and of the New Jersey Central Railroad, the in our illustration. The portion of the road which we cars as they ascend going almost directly south. A illustrate commences at Madison Avenue and Fifteenth couple of blocks below is a curve of 90 degrees, with a Street, at West Hoboken, a point nearly opposite radius of 75 feet, crossing the tracks of the railroads Fifteenth Street in this city, and includes the interest- just mentioned on an iren truss. Going around another

GENERAL VIEW FROM FIfTEENTH sTREET.
MAP.

VIEW LOORING SOUTH.
THE HILLSIDE LOOPS OF THE NORTH HUDSON COUNTY RAILWAY COMPANY.
curve of similar radius and of $93^{\circ} 58^{\prime}$, the road carves curve of similar radius and of $93^{\circ} 58^{\prime}$, the road carves
along the face of the hill, gradually rising and crossing along the face of the hill, gradually rising and crossing
the Hillside wagon road, which course on the ascent is the Hillside wagon road, which course on the ascent is
now in a general direction to the north, until, at an elevation of 110 ft . it enters the northern loop, and with a radius of 60 ft . goes around a curve of $215^{\circ} 16^{\prime}$. The course is now to the southwest, and, still climbing the hill, the line crosses near the 140 foot contour line for a second time the Hillside wagon road, and going through an arc of $100^{\circ} 32^{\prime}$ with 100 ft . radius, it reaches its destination 160 feet abuveits commencement and connects with the rest of the system.
The road is built in the most substantial manner, parts being cut out of the face of the hill, other parts being filled and substantial retaining walls being applied when necessary. One of the latter is 70 feet high. Stone ballasting is used throughout, the material of the billside supplying the best possible material, trap rock, for these purposes. The railroad tracks are crossed by a 92 foot lattice girder, the most considerable bridge on the line. Fifty-six pound steel rails are used for the cars to run on, and these rails are re-enforced with 32 pound guard rails laid close to them and inside. The cost of the work was $\$ 120,000$ for the structural part alone. It was built by Mr. Miles Tierney as contractor, with Mr. C. B. Brush as chief engineer. The surfacing and finishing of the road is done under the inmediate direction of Mr. Wm. H. Starr, formerly of the Erie Railroad, who is now general manager of the road and in charge of its operation. Mr. Tierney is now president of the North Hudson County Railway Company.

The power for the Hillside line is supplied by a 14 ,000 h . p. compound Corliss engine in the power station of the Hudson Electric Company.

The route involves maximum grades of $511 / 2$ per cent, and on the curves a grade of $11 / 2$ per centis not exceeded. The road is reached by the Fourteenth Street Ferry, directly from this city. On reaching the top of the hill the passenger is put in communication at once, by means of the other lines of the company, with all of the elevated area beginning at Jersey City Heights on the south and ending with Guttenburg on the north The North Hudson County Railway Company operates about fifty miles of road, including twenty-four miles of horse railroad, nineteen miles of trolley and seven miles of steam railroad. A very complete system of interchanging makes the entire area accessible. The road carries about $17,000,000$ passengers per an num.

The Consumption of Artificial Manures.
An estimate has been made in the Journal of the American Chemical Society of the world's annual consumption of these fertilizers, which is put at a total of $5,500,000$ tons, made up of the following items

Tnited S	
Germany	$\begin{aligned} & 1,500,000 \\ & 1.300 .000 \end{aligned}$
France.	1,000,000
Great Britain.	1,000,000
Belgium and Holland.	300,000
Scandinavia	100,000
Spaip, Italy, and A	250,000

These figures are, necessarily perhaps, only approxi mate, but with regard to the one million tons estimated for this country, it is discoverable from another source that the quantity of manures imported into the United Kingdom in the three years ended 1891 a veraged 600,000 tens annually, so that a considerable quantity for home consumption must have been supplied within the kingdom itself, in the shape of waste from gas works and chernical manufactures. Among commercia manures would be included guanos, nitrate of soda sulphate of ammonia, potash salts, basic slag, and other mineral phosphates, together with additional sources of phosphatic fertilizers.
A hope has long been cherished by English wheat growers that as the necessity for applying manures to North American lands becomes more pressing, the cost of wheat growing will have a prohibitive influence up ou the export of the bread cereal to this country. Apart from the possibility that before such a time arrives the wheat-exporting capacity of Argentina, and even of South Africa, will have greatly developed, it will never theless surprise many people to learn that in the United States the consumption of artificial manures is already half as large again asit is in the United Kingdom. On the other hade, there cannot be much doubt that the quantity of farmyard manure put upon the land is. in an ordinary yoar, wuch less in the Enited States ihan in thiscountry. . It appears that the consumption of commercial manures bas grown very rapidy in the last twenty years in the Atlantic, and especially in the South Atlantic States. Their use, moreover, is steadily on the increase in the Central and Gulf States, and they are gradually passing into consumption in the hems remote and more thickly populated of the Western States,-Chem. Tr. Journoi.

Whit Recomes of fll the Lumber
It is estimated that, of the general lumber product, 35 per cent goes into building, 45 per cent into railroads and miscellaneous uses, and 20 per cent into boxes.

§oxutific gmmerican.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YOKK. o. D. MUNN. A. e. beach.

TERMS FOR THE SCIENTIFIC AMERICAN.

or Me
Comb
adore
Gomb
PLEM

NEW YORK, SATURDAY, APRIL 21, 1894.

TABLE OF CONTENTS OF

SCIENTIFIC AMERICAN SUPPLEMENT NO. 955.

For the Week Ending April 21, 1894.
 BIOGRA PGY.-The Eqperor Willam and His Family. -1 illustra-
Hoor- Biographical note on the ife of the present Emperor of
 V. RLELTRICITY.-Electric Signallin Without Wires.-By W. H.

 X. NABALL ENGNEERING. Speed versus Economy In Steam

Prysics. - Au Optical illowon.- A curronà delusion in dioptrio

the dtilization of the waste energy of the WORLD.

The solicitude di played by the individuals of the human race of one generation for those of subsequent generations is a very variable quantity. Meny who claim great enlightenment profess to regard the lot of the twentieth or the twenty-first century man with considerable solicitude, fearing that the consumption of accumulated stores of terrestrial energy by the present generation will result in leaving to our successors a very impoverished globe indeed for their habitation. It is assumed that a day will cổme when the wealth of fuel accumulated in preceding geological eras, and consolidated intc usable shape by the metamorphoses of ages, will be exhausted, and mankind will be without fuel. By the best geologists this is regarded as no fancy sketch. Coal is not forming, the natural growth of wood is quite insufflcient to supply the demand for fuel, and the coal mines will eventually be emptied.
Curiously enough, a parallel occurrence is now going on bofore us. But a few years ago the natural gas industry took great dimensions. The almost uncontrollable flow of gas from gas wells was the basis for the most extensive operations; gla s and steel furnaces in the industrial world, street lamps, house service, both for fuel and illumination, were supplied by natural gas, and the entire gas region became the scene of a prodigality on nature's part never equaled in impressiveness. The general assumption was that the future might take care of itself; hardly a thought was given to economizing the supply, and it now appears as if that future has come upon us, for, in accordance with the predictions of one of our most eminent geologists, the end seems in sight. Natural gas in a very few years will be virtually a thing of the past.
It is an open question how long after the extensive application of the steam engine economy of fuel began to be considered. Certain it is that a comparatively early type of engine to-day is in use as one of the most economical. The Cornish engine has some very fine examples in the most modern practice. The early steamships were almost failures on account of their coal consumption, and steamship constructors, having a double inducement to save fuel, both to get rid of a non-paying cargo and to save coal bills, have done their utmost to effect economy. Hydraulic engineers have taken a professional pride in reducing coal consumption, the "duties" of the great pumping engines of the country being quoted far and wide.
Good work has been done, the steam engine being gradually brought, perbaps, as near perfection as its inherent defects will permit. But simultaneously with this the horse power of the world's engines is increasing, and coal is being burned in greater and greater quantities. It seems clear that natural sources of energy must in the near future assume a greater importance than they have hitherto. Electricity, whose powers are as apt to be overestimated by the public as underestimated by the professional world, will be an important factor in this. The operations at Niagara Falls will be an illustration of a return to the principles of olden times, with appliances of the day. For it is a striking fact that our forefathers utilized the powers of nature to a vastly greater scale proportionately than we do. The horse power hours of wind energy utilized by windmills and sailing vessels was proportionately great for the era before steam; to-day the aggregate is very large, but the proportional amount compared with steam is small. The farmers throughout the country a hundred years ago took their grain to grist mills driven generally by water power, sometimes by wind power. Modern improvement has replaced those sources of energy by steamthe future generation may yet have to return to them. The amount of energy as far as we are concerned absolutely wasted in wind and tidal motions and in evaporation by the sun exceeds the imagination of man. Suppose a waterway such as Long Island Sound to be white with the sails of vessels. Each one utilizes a portion of the energy of the wind which its sails intercept. But remembering how high the wind ${ }^{3}$ prism may be, and comparing the sail area with the probable cross sectional area of the prism in question, the absolute insignificance of the proportion used in driving a fleet of ships may be realized.
The wind expends some of its energy in producing waves, which, besides making a sea voyage a misery to many, and besides foundering many a ship in open water; absolutely impede the progress of a vessel. But when we see these waves rising and lowering successively, wave after wave, a six or eight thousand ton mass, making it uselessly roll and pitch, the waste of energy exhibited by a million square miles of stormy water exceeds computation. . The same applies to the tides. If the power of the tons of water that rise and fall forty to sixty feet in the Bay of Fundy could be utilized and distributed, it would replace a vast quantity of steam energy.
Electricity is often spoken of as a possible method of haating, but the fact is overlooked that the energy in almost all cases is originally produced at an enormous waste by the steam engine. But were it produced by waste by the steam engine. But were it produced by
natural caused then this objection would cisappear,
and at once the possibility of electric heating is manifest. The dynamo of this day presents a very good method of changing the kinetic energies of nature, found in waterfalls, in the winds and in the tides, into heat energy. The trolley railroads exhibit the mar velous adaptability of electricity for the transmission of power.
Prof. Langley's recent investigations show that the air in motion possesses energy independent of its to tal flow, the variations in velocity affording a possible clew to an explanation of the soaring of birds. Th earth is a center of enormous energies, of which an infritesimal part only is utilized by man. With the exhaustion of coal will come about the necessity of utilizing some of these energies. The future man may eata meal copked by the tidal flow, may traverse th ocean in boats driven by wave engines, and may re gard the steam engine as a relic of a semi-barbaric age -fully barbaric in its reckless waste of the accumu lated riches of the past.
We need hardly worry ourselves about our posterity in a world without coal. The energies of nature are sufflcient to do the work of mankind many time over, and possibly to form coal again out of the car bonic acid gas of the atmosphere. Electricity has already progressed far enough to give a hint at least of its future possibilities. It may yet be replaced by some more efflcient agent for the transformation and transmission of energies.

Storage Hattery Lighting and Car Propulsion.
In 1890 a train of cars on the Big Four Railway was equipped with the Silvey batteries [W. L. Silvey, of Dayton, Ohio], using twelve cells to each car and ten 16 c. p. 25 volt lamps. The light was first operated as an experiment during a run of 90,000 miles between Cincinnati and Dayton, Ohio. As a result, fifty-five cars were similarly equipped on the C. \& O. R.R. running between Cincinnati and New York, and during three years no such thing as a short-circuited cell or buckled plate has ever occurred. The relative cost of the coal oil, Pintsch gas and Silvey storage battery incandescent light for the year 1893, after three years of constant use, is shown by the report of chief electrician W. S. Greene, of the C. \& O. R.R., just published, to be as follows :
Electric light costs $\$ 17.73$ per year per lamp; oil lights cost $\$ 24.12$ per year per lamp; and Pintsch gas light costs $\$ 29.42$ per year per gas burner or tip. The relative candle power of each light is as follows: Oil 10 candle power, gas 8 candle power, and electric liglit 16 candle power, showing that electric light by storage batteries cost 52 per cent less than oil and 69 per cent ess than gas light of the same candle power.
The battery, after having been in daily use for more than three years, proving itself eminently successful under the ill treatment and hard usage to which all railway apparatus is necessarily subjected, Mr. Silvey turned his attention to the storage battery as applied o street car traction.
The American Car Company, of St. Louis, built one of its finest 16 foot car bodies specially for the work provision being made for placing batteries |in iron trays and sliding them under the seats through open ngs at the end of the car.
The motor with which this car is operated has an armature ring $33 / 4$ inches wide by 24 inches diameter wound with 2,000 turns of No. 14 B. \& S. double insulated wire weighing about 40 pounds; the entire ma chine complete weighs 1,350 pounds and develops forty horse power. The entire equipment of motor, together with all gears, gear cases, etc., weighed less than 2,000 pounds.
The vital part of the system is the battery, as upon its proper performance the economy of the system largely depends. Low internal resistance must be as sured before it is possible to operate without regulating devices, which in all cases are absorbers of energy, and, in a sense, more or less responsible for lack of econ omy.
The aim of the constructor of this battery has not been to push the efficiency of the apparatus to the utmost limit, making it very light in weight, but rather to make an apparatus capable of withstanding almost any amount of hard usage, and at the sametime a bat tery that could be depended upon whenever needed, and one which if handled with any degree of care at all would always do its duty. It is believed that all thishas been fully accomplished, inasmuch as;' although the battery has been doing constant service operating the street car for the last nine months, no such thing as a short circuit or buckled plate in the cells has ever occurred from ny cause. Cells having a rated capacity of 30 amperes discharge have frequently been entirely discharged at the rate of 120 amperes and charged at the rate of 100 amperes without doils any harm, either in losing the active oxide or buckling the plates. These extreme charges are of frequent occurrence, as the bat teries are charged in three hours and discharged every three and one-half hours during the day, two sets of batteries being employed, one operating the car while the other is being charged.
The battery plate proper consists of an inoxidizable
alloyed lead grating, 5 by 7 incbes square and about $1 / 8$ inch thick, twenty-one of which constitute a complete battery cell. The perforations in the grid are filled with superficially oxidized particles of metallic lead and oxide of lead, after which they are subjected to a pickling process which hardens the fine particles into a firm coherent mass almost as hard as a rock, and by which it becomes firmly fixed into the holes and forms a surface layer over the entire plate. The plates are now taken and assembled in proper number to constitute a complete battery, there being one more negative than positive plate, as, for instance, eleven nega ive and ten positive battery plates. The plates are clamped together by means of a lead screw passing hrough the hole in the plate, nuts being placed be ween the plates and firmly screwed down, whereby good metallic contact is made, after which they are al welded on the surface and all soldering avoided. In case it ever becomes desirable to take the cell apart, it is easily done by removing these nuts, which by turn ing break the welded parts. The filling for the battery plates is chemically pure lead, and has been found in practice to give a useful working output of about 20 per cent greater efficiency than is possible with bat teries employing a mechanically filled plate of lead ox ide alone.
Between the sets of plates in the Silvey battery there is placed a sheet of a porous separating material, the edges of which are saturated with a preservative com pound, and which has been treated with acids and alkalies until it becomes practically indestructible in he electrolyte and capable of absorbing aboat fifty times its own weight of the acids used in the battery The latter, in fact, becomes nearly a dry cell, or in ther words, there is very little free liquid to become spilled. Should the rubber cell ever become broken the liquid held in suspension in the bibulous separat ing material is sufficient to operate the car properly during a trip
In the operation of the car 108 cells of battery are employed, each cell weighing 27 pounds, making a total weight of batteries of about 3,000 pounds, which practice has demonstrated will, in everyday service perate the car about thirty miles at each charge, run ning at full speed, which of course will exhaust the cells more rapidly than to run at more moderate speeds. In a test run made in November last the car made a round trip over the Third Street road in Dayton, Ohio in 35 minutes, the distance being 9 miles. This in cluded several complete stops, besides climbing two hills, each about 1,500 feet long and 41⁄2 per cent grade rossing 16 railroad tracks and a bridge 500 feet long so that it is evident the car can easily make 20 to 25 miles an hour, if desired. The car has a controller on each platform containing a reversing switch and hree complete changes of electrical circuits, by mean of which three speeds of the car are produced.
The car, up to March 23, 1894, has made 6,200 ca miles, and neither the batteries nor the motor have ever required a single cent for repairs; in fact, no ad ditions have thus far been made to them except a new set of carbon brushes. The total expense of every kind has been $\$ 2.50$, all of which was applied to the trucks. With such a record, which is believed to be without a parallel, it is thought that this system has no equal and that a car can easily be operated at a cost not to exceed 8 cents per car mile.

The Colored American as a Soldier

Rev. T. G. Steward, Chaplain 2\$th Infantry; U. S. A. in an article in the last number of the United Servic Magazine says: Among the military matters coming regularly before the Fifty-second Congress was a pro position to reorganize the artillery and infantry arm of the service.
Had the changes sought in this proposition bee secured, the field of the colored man in the arm would have been considerably enlarged, and the num ber of colored men in the service thereby have bee increased.
Hitherto there have been four regiments in the ser ice-to wit, the Ninth and Tenth Cavalry and the Twenty-fourth and Twenty-fifth Infantry-of which, ccording to the law creating them, the enlisted men have been colored men. It is now proposed to confe authority on the President to direct, at his discretion the enlistment of batteries of colored men to serve in any or all of the regiments of artillery as well.
This movement would indicate that the colored soldier, who won such favorable, recognition during the closing period of the civil war, has been able to main tain the same honorable standing during the long period of exacting frontier service which has followed. These colored regiments have passed all this time with but little exception, in places far away from popu ar view, and amid dangers as great and hardships a severe as have beed shared by any part of the arms In this dull and trying service they have been care fully weighed in the balances of usefulness, and the general textimony of thoee whose words are entitled to pecial weight is that they have not been found want ing. In encounters with robbers and Indians they
have manifestec both skill and bravery; so that out o
ninety-three medals and certificates won for gallantry by the enlisted strength of the army up to 1892, twelve were won by colored men, which is one third more than their proportion.
Generally quite as hardy as white troops, their record in the surgeon-general's report for 1892 presents the two following noteworthy facts: The death rate among the white troops was $8 \cdot 16$ to the one thousand; among the colored troops, $7 \cdot 11$ to the one thousand. The admissions to the hospitals for alcoholism among white troops were 44.91 to the one thousand; among colored troops, $4 \cdot 36$ to the one thousand. Twelve years' experience by the Twenty-fifth Infantry, and a very hard winter's experience by the Tenth Cavalry, in the department of Dakota, prove beyond question that colored troopscan stand the cold as well asother troops; and if well cared for, they are as well contented when the mercury is twenty or thirty below as when in "the land of cotton."

he Synthesis of Ammonia

In June and November, 1893, Mr. P. R., Lambilly, of Nantes. patented a process for the production of ammonia by synthesis-a problem that has been pursued for a long time and the importance of which is classic. According to the Moniteur de Quesneville, the operation is effected as follows:
The process is based upon the reciprocal action of nitrogen, hydrogen, and aqueous vapor in the presence of substances that act by contact. It is characterized by the addition to the gaseous misture of carbonic acid, which fixes the ammonia formed in the state of bicarbonate or formate.
As we know, ammonia, or hydrate of ammonium, has the property of forming salts with acids or the anhydrides of acids. It behaves in this case as an energetic base.
Through their formation from the elements, the bicarbonate and formate of ammonia disengage a quantity of heat that exceeds by more than 20 calories that which is produced by the union of the elements for the formation of hydrate of ammonium. According to Mr. Lambilly, this circumstance shows the advantage that may be derived from the direct preparation of these salts by means of free nitrogen. Such preparation, moreover, is realizable, since it suffices to produce the ammonia in the presence of oxide of carbon and carbonic acid or anhydrides of formic and carbonic acid. The reactions to be effected are the following

$$
\begin{aligned}
& \mathrm{Az}+\mathrm{H}^{3}+\mathrm{CO}^{2}+\mathrm{H}^{2} \mathrm{O}=\mathrm{CO}<_{\mathrm{OH}}^{\mathrm{OAz}} \mathrm{H}^{4} \\
& \mathrm{Az}+\mathrm{H}^{3}+\mathrm{CO}^{2}+\mathrm{H}^{2} \mathrm{O}=\mathrm{HCO}^{2} \mathrm{Az} \mathrm{H}
\end{aligned}
$$

$\left.2 \mathrm{Az}+8 \mathrm{H}+2 \mathrm{CO}^{2}+\mathrm{H}^{2} \mathrm{O}=\mathrm{CO}<\mathrm{O}_{\mathrm{OH}}^{\mathrm{OAzH}}{ }^{4}\right\}+\mathrm{HCO}^{2} \mathrm{AzH}^{4}$
In fact, such reactions occur when the constituents, nitrogen, aqueous vapor, and water gas, of a mixture of hydrogen, CO and CO^{2}, are brought into contact with certain porous substances, such as pumice stone, charcoal, and boneblack, especially when they are olatinized. They are produced even at a low temperaure in the presence of spongy platinum or platinum black. They are more active, however, at temperatures near the points of dissociation of the salts, that is oo say, toward $40-60^{\circ} \mathrm{C}$. for the bicarbonate and $80-160$ C. for the formate.

The gaseous mixtures pass into pipes filled with porous bodies heated to the temperatures indicated. Upon their entrance into the pipes they are saturated with aqueons vapor, either by the injection of a current of steam or by their passage into water heated to the proper temperature. Upon making their exit from the apparatus the gases pass into the water, wherein the ammoniacal salts formed dissolve. The gases that have not acted are collected and are sent back into the apparatus for a second time.
The solution of the salts is distilled over lime. If formate of ammonia is found therein, there is obtained, as an accessory product, formate of ammonia, which might serve for the preparation of formic acid or of alts.
It belongs to special industrial chemists to estimate the value of this process of synthetical fixation of nitrosen and to reduce it, outside of any pure scientific conception, to its just proportions.-Le Genie Civil.

Photographic Note

Eliminating the Pellow Color from Negatives.-A method outlined by Mr. A. Cowan at the London and Provincial Association, as reported in the British Jour nal of Photography, consists in first bleaching the nega tive with a weak solution of perchloride of iron and then in redeveloping with the ferrousoxalate developer. This changes the film to a dark black and produces any desired density. If the yellow color extends over the whole surface of the film, the plan does not answer as well, as a veil will redevelop.
Yellowness in dry plate negatives is due to insufficient fixing or insuffieient washing after the negative h as been fixed, and no remedy for it at all satisfactory has been devised. It cannot be removed by the ordinary clearing solations recommended for eliminating pyro stains.

A VARIABLE DRIVING GEAR FOR BICYCLES, The illustration shows a simple construction of vari able driving mechanism by means of which a bicycle may be driven slowly with great power, as necessary in going up hill or over rough roads, or may be pro-

EISENHART'S FARIABLE DRIVING GEAR FOR BICYCLES.
pelled with greatly increased speed, as is desirable on good and level roads, without changing the speed of the pedal shaft.
The improvement has been patented by Mr. Samuel C. Eisenhart, of York, Pa., P. O. Box 72. Fig. 1 illustrates the application of the improvement to an ordinary safety bicycle; Fig. 2 being a plan view. On the pedal shaft is a friction disk whose sides may be covered with rubber leather, or similar ma terial, if desired, and this disk is engaged by friction rollers keyed to and sliding on horizontal shafts supported in ball bear ings carried by the main frame.
The shafts are connected by meshing gear wheels and the shaft on one side serves as a driving shaft extending backward to the hub of the rear wheel with which it connects by bevel gears.
The friction rollers have grooved hubs in which fit the prongs of a fork, whose upper end is coupled to a curved and longitudinally slotted plate having at its rear end a handle within easy reach of the rider.
The plate rides on flanged guide roller held in the slot of the plate and fulcrumed at one side of the frame, and the fork is further guided and braced by a guide bar which slides in a bearing or sleeve at the upper end of a post having feet journaled on the shafts whic carry the friction rollers.
In propelling the ma chine, as the rider moves the friction rollers in toward the hub of the disk the speed diminishes, th everse movement increasing the speed, the rollers being moved by grasping the handle and pushin the plate backward or for ward as desired.
The invention also pro vides for a lighter form o driving gear in which only one friction roller is em ployed.

Milk Tickets as a Medi-
 um of Infection

In an ordinance recently adopted by the council of Menominee, Mich., to regu late the selling of milk, a good point is made in giving protection against possible infection through the medium of milk tickets.
Section 11 provides that

- No licensed milk dealer
shall receive compensation in tickets from houses or premises which are placarded by the health officer until such placard has been removed, and all tickets found by such licensed milk dealer in such houses shall at once be destroyed by burning the same and new tickets issued in place of such as shall be found in infected houses. All milk tickets sball bear date of first use and be destroyed withir three months."
What about soiled milk tickets or fouler money being left in the empty milk pails for the milkman? This is in line with the action of the health authorities of Urbana, O. An order has been adopted prohibiting the use of theater tickets brought from some other city, the manager of each troupe being compelled to issue new tickets for the people of Urbana.
It is certainly well that every possible avenue of contagion should be guarded as closely as possible; but what is to be done with our dirty paper currency?American Analyst.

The Mystery of mind

Mr. Lester Ward, in a lecture on the " Status of the Mind Problem," recently delivered before the Anthropological Society of Washington, showed that the work of Ramon y Cajal and others indicated that protoplasm is not merely the physical basis of life, but is the physical basis of mind also. In his words, "the prevailing fashion among scientific men of emphasizing the 'mystery of mind ' is unnecessary and illogical, since mind is more a mystery than matter, and all that there the greater complexity of mental phenomena due to

he higher state of development of the material basis mind, we possess as yet much less knowledge of them nature."

HOUSE OF SENOR SARACIBAR, ARCHITECT, SALAMANCA, SPAIN.

A LOW PRICED STEM WINDER.
The watch shown in the accompanying cut has been selected to illustrate the extremely low cost at which the modern American watch, with all the latest improvements, may be produced. This watch is put on the market by Messrs. R. H. Ingersoll \& Brother, of 65 Cortlandt Street, New York. at the extremely low

THE "CLIMAX" WATCH OF R. H. INGERSOLL \& BROTHER.
price of $\$ 2$. It is a stem winder, while the setting arrhagement is shown in the cut in the center of the plate
The regulating device does not differ from that usually ensployed in high priced watches. The movement itself is a three-quarter plate, quick train, American lever movement. The short wind is one of the valuable features of the watch. The watch is extremely light, weighing only $35 / 8$ ounces, will run 30 hours with one winding, and is incased in a gilt or nickel case, plain or chased. A well made chain accompanies each watch. A general idea of the appearance of the watch may be obtained from our engravings, which are threefourths actual size

Over 1,400 watches are produced daily at this fac tory, or between two and three watches a minute, during working hours. It seems very extraordinary that a real watch can be produced, which is capable of regulation, so that it will keep excellent time, for such a small sum of money. The "Climax" watch is guaranteed to run satisfactorily to the purchaser for one year. It is a watch that ought to suit everybody.
HOUSE OF SENOR SARACI-
BAR, ARCHITECT, SALA MANCA, SPATN.
a recent number of the American Architect contains a sketch and descrip tion of a newly erected house in Salamanca, which we here reproduce as an example of recent Spanish architecture in the line of private residences. Our cotemporary says:

In the broad and aristocratic district of Salamanca, and at the end of Claudio Coello Street, has been erected an elegant and artistic bouse, called "Villa Bilbao," which was designed for his own occupancy by Senor Julius de Saracibar, a well-known Spanish architect, who has passed the best part of his life erecting and embellishing the dwellings of many other persons, and bas at last been able to construct his own, being able in it to display his genius and his skill as a constructor.

This residence occupies
an area of about 8,000 square feet. It is difficult to distribute this space with more dexterity, for on this lot the villa has been built with an ample and marbled exterior escalinata, garden, small lake, grotto, kiosks, stables, departments for straw, a greenhouse and other accessories, all arranged so that nothing becomes a hindrance-everything is seen and every thing is isolated.
In this abode, all the rooms are large, with high ceilings, profusely lighted and ventilated, with great economy of the land. The access to the property is from Claudio Coello Street, by a large and wide entrance between pillars decorated with allegorical details dedicated to the unconqeerable city of Bilbao and to its famous siege.
The ground floor has its access at the level of the garden, but the floor is raised more than a meter above this level, profiting advantageously by the slope of the site and freeing the rooms from the humidity of the adjacent plantations; it contains the billiard room. bath room, kitchen, pantries, larders, lavatories and servants' rooms.
The first floor is approached by a commodious staircase, and from the exterior by the wide escalinata. that we have already mentioned; this floor contains Senor Saracibar's studio, the large drawing room, the dining room, with a charming "rotunda" on the side of the garden, a hall and the beautiful staircase that goes to the second floor; in the latter are the bed and other rooms, all with direct light and with all the best conditions of sanitary and commodious arrangements; rooms for servants and for domestic services are provided in the roof, and a pleasant and isolated study room is at the top of the turret.
We will not fatigue our readers with an exact account of the magnificence and elegance of the ornamentation of these rooms. But we think it is our duty to attest that everything that is seen in this residence, from the ironwork of the doors to the carv. ed furniture, from the curtain to the enormouschimney, the mosaic of the floors and the painted ceilings, everything has been made after the designs and under the direction of the proprietor, and everything shows the seal of the artist.
The pediment is crowned by a colossal head of the "Genius of Art." In the tympanum are sculptured the emblems of architecture, with branches of laurel and oak round them, and the heraldic shield of Senor Saracibar is suspended in a prominent place of the facade.
Forming part of this block of the building, follow at its left side and parallel to the public road other two blocks in the center of which is the entrance door, and above, on the same axis, a window; in front of the doorthere is a small terrace to which leads the broad escalinata, of which the balustrade is in the line of the street, adorned with openwork metal and vases in a very good taste.
The other block on the left side is formed by the square tower so characteristic in Spanish construction. There was in it a problem of no easy solution; in its large massiveness there were larger surfaces of the building that had to be decorated with sobriety, but in harmony with the rest of the work. A colossal bust and a statue have been enough to decide have been enough to decide ity. The first is that of Michael Angelo Buonarotti and the second the Venus of the island of Melos.
The tower terminates in a belvedere, and in the middle of the cornice is a colossal bust of Apollo, the god who presides over the fine arts.
What is particularly worthy of notice in this house is the economy of the materials of constructhe materials of construc-
tion and the employment tion and the employment
of one very seldom used of one very seldom used
in Spain. The architect has striven to give the walls the precise thickness that may correspond to the necessary condition of stability and resistance, and where walls are suppressed where walls are suppressed
he replaces them with iron columns or pilasters, pro-
perly spaced; this allows him to use thin walls, and to leave others open without complicating the construction; he abandons altogether all vertical wooden beams, and so economizes all the space he can.
The material is the "sable mortier colore," made by M. Charles Stocker, Paris. It is an artificial stone of very good quality, that can be kneaded easily, and is furnished ground or in powder so that it can be moulded, the same as gypsum ; it acquires la tera great hardness. The walls are dressed with it, and mouldings, statues, adornments, and all sorts of high and low reliefs can also be made with it. Employing this stone mortar, it is unnecessary to paint the walls, and the

WHITAKER'S 'NEW WEIGHT MOTOR

color it acquires is more uniform than can be secured with any sort of stone. All the walls of the facades and all the work of sculpture of this villa have been made with it.

Artificial Marble.

M. Moreau produces an artificial marble from ordinary limestone in the following way : The stone is first carved into the required shape, and is then immersed in a bath of soap and a kind of varnish, which is floated on water and picked up by the stone. The stone is then mmersed alternately in a bath of iron and copper sulphate, which permeates the body of the material, and when the absorption is complete the stone is immersed n hot water, which drives the coloring matter to the very heart of it. After this the stone is placed in a bath of zinc sulphate, and on being removed, after a ew hours' immersion, is found to have the consistency and the specific gravity of marble. It is then dried in

WHITAKER'S NEW WEIGHT MOTOR.
The cut illustrates a clock-work mechanism designed to execnte the heavier kinds of work, such as working pumps. The power is furnished by the two weights shown, one on each side, ropes from which arecarried to and are wound around two drums, which form part of clock-work mechanism, with pallet wheeland escapement. Immediately below the wheels attached to the power drums are pinions with square-headed shafts, on which handles can be placed, and which are used to wind up the weights. The frame which carries the two pawls engaging the 'scape wheel is pivoted directly in a vertical line above the axle of the 'scape wheel, and as tooth after tooth of the wheel passes a pawl the frame rocks like the walking beam of a steam engine. Thus, as long as weightsdescend, the walking beam keeps up its motion. By an upwardly projecting arm, slotted, and attached to its axle, the motion of the walking beam is imparted to a bent pendulum rod, carrying pendulum bobs at its lower ends. As this rod swings back and forth, it moves, by a working arm, the pump brake, and operates the pump seen on the left side of the cut. Jerks and shocks are provided against by the use of a chain or other flexible connection between pump brake and pendulum rod.
This invention has been patented by Mr. Albert G. Whitaker, of La Porte, Ind.

UNDERGROUND CONDUCTORS FOR ELECTRIC

 STREET RAILWAYS.The dangers and disfigurements occasioned by the overhead trolley wires, now so commonly used in this country, are well known. It is claimed by the managers of these railways that the overhead arrangement of the wires is necessary for tho successful operation of the roads, and that no economical or practical system of underground conductors has yet been discovered. But this is far from the truth. There is no practical difficulty in placing the conductors underneath the track, where they are entirely out of the way and can do no harm. Roads thus provided can be worked with the same economy as the overhead trolley; the only difference is a somewhat increased first cost in the building of the road. But this is nothing when we consider the better security afforded to the public against loss of life and obstruction of the streets. The ugly telegraph and telephone poles are being removed from the streets in all our principal cities, and the time has now come to include the removal of the overhead trolley wires and their posts. One of the most successful examples of the underground electric system is seen in the operation of the Buda-Pest street railways, which ramify in all directions through that city. These railways have been in operation for several years, and their success, both from an electrical as well as financial point of view, is beyond question. We give an illustration of one of these lines, for which and the following particulars we are indebted to the I Railway World. Considerable prominence has, per-

THE BUDA-PEST RLECTRIC STREET RAILWAY. haps deservedly, been given of late months to given of late months to
the system and details of the electric tramways operating in the capital of Hungary, and this for several reasons. 1n the first place, the Buda-Pest lines are, in respect of their permanent way design, quite unique, for there seems (at any rate in Europe) to be no other tramway that is operated successfully or practically by means of an underground conduit in which are placed the electric conductor wires. Secondly, the question of telephonic disturbance, due to electric tramways, has come prominently forward, and the Buda-Pest tramways have been cited as an example of the method most likely to give satisfaction to all parties concerned
to all parties concerned. Yet another reason for
the displaý of public interest in these lines may be given. As already noted in these pages, a prize of no small value has been offered by tramway authorities in the United States to the inventor or engineer who shall devise the best and most
practicable substitute for the overhead conductor wire or "trolley" system of electric traction for street purposes. It is thereby doubtless thonght that an efficient plan will be developed for the use of underground conductors in a condnit; at any rate, the Buda-Pest lines are instanced in this connection a proving suitable for all practical reqnirements. What may in some respects be considered good proof of the atter statement is given by the fact that quite lately t has been decided to adapt all the remaining tram way lines in Buda-Pest for electric traction upo
The electric lines in Buda-Pest have been built and equipped by Messrs. Siemens \& Halske during the past five years, along four of the principal tramway coutes of the city. So far as the street surface is concerned, they do not show any striking difference from ordinary street tramways operated by horses. There are no poles, or span wires across the streets, from which the electric conductors are hung in the "trol ey" system; nor is there a third rail, or a third grooved slot. There are simply two rails for each track pon which run the car wheels as on ordinary lines, and these are not employed in any way as part of the electric circuit for conveying current. The latter ravels to and from the motor cars along conductors in an underground conduit or channel made of concrete and carried underneath the whole length of one rail of the track.
The interior of the conduit or channel is egg-shaped, 13 inches high and 11 inches wide in the clear ; at dis tances of 1.2 meters apart (say 3 feet 10 inches), cast iron frames, of square shape, are embedded crossways in the concrete. These frames have ribs or flanges 7 inches broad, of a profile similar to the concrete channel, and they serve not only to strengthen the latter, but also as supports for the rails. Moreover, the conductors along which passes the current for the cars are fastened to these flanges through the medium of suitable insulators. The bottom of the interior chan nel is about 221/2 inches below the level of the rails. The latter are from the well known Haarmann Works and in section resemble two ordinary I or girder rails, with the inner flanges removed. They are secured to the iron cross frames of the conduit by means of wrought iron angles, the two rails being placed side by side along each edge of the slot or gap in the con duit. The width of slot, or distance thus left be tween the rails-for access to the conduit channel and conductors-measures $1 \frac{5}{10}$ inches. This width has been chosen so as to allow the flanges of the wheels to pass easily around curves, and is the same as that used in ordinary rails. If the electrical connection only had to be considered, this width could have been materially educed.
The current conductors of angle iron are led along the sides of the conduit channel, being fastened as already stated, to hollow insulators; one conductor serves as the lead, the other as the return. They both lie directly underneath the rails, and therefore cannot be seen or touched from above; and they are fixed sufficiently high above the channel bed to prer lie in ther vals to collect and retain such water and mud as may find access to the conduit, the overflow passing into the street sewers. There is no difficulty about this, nor any danger of water backing up from the sewers, as the base of the channel foundation does not exceed at any point a total depth of about 2 feet 4 inches from rail and street level. The second rail of each track might of course be of any desired section, since there is no conductor or conduit underneath. For in stance, a flatrail could be used, and in such a case each track would have but one groove in the street surface-an undoubted advantage.
The cars do not outwardly present any different aspect to that of any ordinary street railway car; they have no drawbar arrangement at the ends, but on the top of each underframe sill is a buffer, which also serves to carry a coupling to allow of a trail car being attached. The car motor is placed in a closed casing between the two car axles; a system of double chain gear is employed to reduce the speed ratio, driving on to one of the car axles from the motor spindle. Quite lately, however, sonie of the cars have been equipped with single reduction gear, working direct from the motor spindle to one of the car axles. Under the end platforms of each car are placed four groups of re sistances; by throwing these in or out any desired variation in the speed may be obtained. In practice, however, it is found quite sufficient to use two groups only. Regulation in this way is effected simply by means of turning a handle at either end of the car, according to the direction in which the latter moves and the same handle, for that matter, serves to regu ate the current through the motor, and change it direction
The line potential is maintained at a pressure of 300 volts, and contact is made with the angle iron conduc tors in the underground channel by means of a travel-
ing contact piece attached to each car. This is, of
course, made of two metallic parts, one insulated from the other, aud rubbing against the positive and negative conductors respectively.
There are employed 63 motor cars, 8 trail cars, and 9 large cars for the Friedhof steam line. The maximum speed is $91 / 2$ miles an hour; but a little more than this, about 11 miles, is reached in the suburban districts. On the narrower streets near the center of the city it s reduced to 6 miles; and at the crossings of important thoroughfares not more than 4 miles an hour is al lowed. In consequence of the greater speeds thus at tainable on the electric lines, as compared with horse cars, a very much larger daily car mileage can be kept up, with of course corresponding profits. Each car hours.

Frozen Hottoms.

The Agriculturist, Summerside, Prince Edward Isl and, says: The dredging at Queen's Wharf here has disclosed a curious circumstance. Much of the bottom, where the dredging is being carried on, is frozen, there being about four inches of frost in some places 20 eet west of the wharf, and from 9 to 14 feet under the surface of the water. This has attracted the attention of a great many people, who are astonished to see reat flakes of the frozen bottom brought up by the dredge. Different theories are advanced to account or this apparent impossibility, but the most plausible s that the frost follows down the timbering of the wharf until it strikes that part of the bottom adjoining the timbering, thence following the surface out quite a distance from the wharf. If any one doubts the ruth of the above-which to some might seem like a particularly large sized fish story-he has only to visi the place when dredging is in progress, and obtain
ocular demonstration" of the fact set forth above.
[The dredging appears to have been in operation bout the 1st of March or the latter part of the winte eason, when the ocean water, circulating through th Northumberland Strait, may have been near its freez ing temperature of $28^{\circ} \mathrm{F}$. The current would carry this temperature by its change of 7 to 8 feet tida height to a considerable depth-or to sweep along the mud bottom near the shore of Summerside. It is well known that fresh water in the land bordering on he sea shore moves toward the sea and permeates the soil beneath the salt water. In many places it appear as springs beneath the sea. The location of mud flats along a shore with fresh water percolating beneath would naturally saturate, the mud with fresh water, which, by contact with the cold salt water during the winter season, would naturally become frozen to a small depth and remain frozen until the temperature of the salt water should rise above 32°. The pheno menon is probably not a local one, and may be found along the mud shores of any cold sea. The dredge only brought the fact to light in this case.-ED. S. A.]

The Synthesis Sugar

The attention of the French chemical and industria world is at present attracted to a synthetical pro cess of manufacturing sugar patented June 17, 1893, by Mr. Pellegrini, and the text of whose patent is published in the Sucrerie Indigene et Coloniale of February 6, 1894
Chemists have been endeavoring for a long time to produce sugar directly, through synthesis, that is to say, by the combination of its simple elements The Messrs. Thenard, father and son, were the firs to make: tentatives in this direction, but without ccess.
Mr. Maumene, upon submitting three gases-carbonic acid, ethylene and aqueous vapor-to the action of the convective electric discharge, obtained some substances of the sugar group, but the product contained no trace of ordinary sugar, or saccharose, the chemical formula of which is $\mathrm{C}^{12} \mathrm{H}^{22} \mathrm{O}^{12}$. It was a mixture of various glucoses, which differ from sac charose in an additionsl molecule of water, and the ormula of which is consequently $\mathrm{C}^{18} \mathrm{H}^{24} \mathrm{O}^{12}$
Mr. Fischer, a well known chemist, recently under took some remarkable experiments upon the synthesis of sugars. Upon causing acrylic aldehyde, or acroleine to undergo numerous substitutions and transforma tions, he obtained some glusoses, and, particularly evulose having absolutely the properties of the levu ose extracted from fruits or inverted sugar. But he was unable to succeed in ascending from levulose to the sugar of the cane or beet, since it was impossible or him: to rid the levulose of the molecule of water the elimination of which would have given common sugar as a result.

- Ordinary sugar is, as we know, the product of the combination of three simple elements, carbon, oxygen and hydrogen, associated in the following proportions 12 molecules of carbon, 22 of hydrogen and 11 of oxy gen, whence its formula $\mathbf{C}^{12} \mathbf{H}^{22} \mathbf{O}^{11}$. It is Mr. Pelle grini's opinion that, before uniting to form saccharose the carbon, oxygen and hydrogen combine with each ther in pairs, constituting carbonic acid (CO^{2}), ethylene $\left(\mathrm{C}^{2} \mathrm{H}^{4}\right)$ and water $\left(\mathrm{H}^{2} \mathrm{O}\right)$; that these three bodies
then unite in the following proportions: 4 molecule
of carbonic acid, 3 of ethylene and 3 of water; and that the result of the combination is saccharose. This explanation, it must be admitted, corresponds to the formula of ordinary sugar. We can, in fact, write the folowing chemical equation, which exactly translates Mr Pellegrini's theory:

$4 \mathrm{CO}^{2}$
 $4 \mathrm{CH}^{4}$
 $3 \mathrm{H}^{2} \mathrm{O}$
 $=\underbrace{\mathrm{C}^{12} \mathrm{H}^{29} \mathrm{O}^{1}}$

It will be understood that the three gases, carbonic acid, ethylene and aqueous vapor, are capable of combining in such a way as to produce sugar only under certain peculiar conditions. Mr. Maumene had recourse, unsuccessfully, to convective discharge of electricity; the Italian chemist utilizes the phenomenon of osmosis. Into an iron box divided into two compartments by a partition of pumice stone, boiled in a solution of chloride of platinum to increase its porosity, he introduces on one side a current of carbonic acid, and on the other a current of ethylene, while aqueous vapor is made to circulate in the apparatus intermittingly. The three gases traverse the pumice stone through osmosis and combine therein, and the product of the combination under osmotic action, is a white sirup that it suffices to concentrate in order to obtain, as Mr. Pellegrini claims, pure sugar. Such, briefly, is the principle of the apparatus, which, according to the inventor, permits of effecting the synthesis of crystallizable sugar in starting from carbonic acid, ethylene and water.
As for the possibility of producing sugar by this process, it appears impracticable to several scientists who are familiar with theoretical speculations, on account of the schematic position attributed to sugar, and which is due to the decompositions that the latter undergoesin the presence of reagents. Chemistry, which, through theoretical considerations, has led to the synthesis of so many substances of an everyday industrial application, such as alizarine, indigo, etr., will certainly, after persevering efforts, succeed in producing sugar also, but whether the problem is practically soluble by the Pellegrini method remains yet to be seen.

Wooden Water Mains.

A recent paper read before the American Society of Civil Engineers by James D. Schuyler, member of the American Society of Civil Engineers, on "The Water" works of Denver, Col.," contained some very interest ing observations and figures relating to this subject. He states that sisteen miles of thirty inch wooden conduit were constructed in that work, in addition to a considerable length of forty-four inch pipe. The timber used was California redwood, and the thirty inch conduit was constructed to stand under a head of 185 eet. We understand from the paper named that the total average cost of the thirty inch pipe was $\$ 1.36$ per lineal foot, of which about forty-eight cents constituted the cost of trenching and back filling. A gang of eight to sixteen men laid from 150 to 300 feet of the same size conduit per day. These mains were composed of staves dressed very smooth to cylindrical sides and radial edges, and were held to the cylindrical form by mild steel bands placed at a distance apart depending upon the,head, but never exceeding seventeen inches. The pores of the wood are filled with the water under pressure, so that it oozes through to a slight extent, thus realizing the condition for permanent preservation. The pipe is framed in the trench, and all handling in full-sized sections is avoided; at the same time the interior finish is so smooth that the most advantagedius conditions of flow are secured. Mr. Schuyler estimates that the use of these wooden conduits effected a saving of over $\$ 1,000,000$ in this particular work.-Fire and Water.

New Atlantic Cable

A new telegraph cable is now being laid from Waterville, Ireland, to Nova Scotia. The entire cable will be about 2,000 miles long. The .Faraday, not being large enough to carry the whole cable, will drop the shore sections, about 500 miles, first, and then lay the deep sea cable, which is smaller than the shore ends. The cable is guaranteed to afford $331 / 3$ per cent improvement in speed over the other cables in use by the Commercial Company
This will insure transmission at the rate of thirty words per minute. The cable is much larger than any ocean cable hitherto made. The Nova Scotia end has been provided with additional protecting armor to prevent its being broken by the anchors of fishing vessels.

Test of Projectiles.

At a recent government trial of projectiles at Indian Head, half ton missiles were fired from the 13 inch gun. Thetarget was a 12 inch nickel steel plate, and two shells went entirely through it, one of them breaking to pieces and the other remaining intact after it had cleared the plate. The Carpenter shell was unhurt by the operation of rushing its half ton mass through a foot of solid steel. The17incharmor for the battle ships is $\overline{\text { pet to to be tested. }}$

Sorrespondence.

The Galveston Jetties.

To the Editor of the Scientific American
The Scientific American of January 27 has an interesting article on the four miles of jetty work at the mouth of the Columbian River, but its writer is mistaken in his statement that it is the longestjettyin the world. The south jetty, at the entrance of Galveston Harbor, is completed to the crest of the outer bar and is 32,000 feet long, which is a little over six miles of completed jetty, and there is 829 feet more uncompleted. (See annual report of Chief of Engineers for 1893, Appendix U.)
Galveston Bay, at the southern base of which lies Galveston Island, on the eastern end of which the city is situated, covers an area of about 400 square miles. Into this bay flow the Trinity and San Jacinto Rivers and numerous smaller tributaries. The ebb current discharging through Galveston Pass exceeds ten times that flowing through the South Passjetties of the Mississippi. (Vide Col. Ernest, U.S. Engineer, before U.S. Senate Commerce Committee, January 30, 1890.) In its original condition this enormous discharge found vent into the Gulf over the wide unconfined stretch between Galveston Island and Bolivar Point. The gene ral plan of improvement contemplated the compression with two rock walls of this giant force, to cause it to scour and carry to sea the sandbar which lay between the deep water inside the harbor and the deep blue water without.
The results thus far are the south jetty, extending eastwardly into the Gulf 32,829 feet, or over six miles; and the building of about two miles of the north jetty (work begun April, 1893) out from Bolivar Point, in its steady advance to a point opposite the sea end of the south jetty. When completed these two ends of the jetties will be about 7,000 feet apart.
The annual report of the Chief of Engineers for the fiscal year ending June 30, 1893, showed a navigable channel over the inner bar of 23 feet, an increase of 2 feet in twelve months, and a channel depth of 14 feet at mean low tide, an increase of three-fourths of a foot since June 30, 1892. The bar pilots report the constant and easy passage of vessels over the outer bar drawing 15 to $151 / 2$ feet, and a depth of 16 feet or more in ordinary high tides is not infrequent-an increase of a foot or more in twelve months, for actual use.
A glance at the construction of the jetties shows their substantial character. On a base of about 60 feet they rise to a height of about 5 feet above mean low tide-a riprap sandstone core, with a covering of immense granite blocks, which the heaviest wave action cannot disturb. Once inside the Galveston bar, there is a harbor sufficient in depth and area to float safely the navies of the world.
A commission of government engineers examined all the harbors on the Texas coast and reported that Galveston afforded the only possible port for 30 feet of water. This was based on the volume of water at ebb flow and the area of Galveston Bay affording a volume of water for scour not found at any other Gulf port.
Thirty feet is necessary for war ships of the govemment, and if the jetties do not give it by scour the contract for the jetties requires dredging. So far as the work has progressed it is so satisfactory that dredging has not been resorted to. For commercial purposes, 18 to 20 feet of water is adequate, and there is every prospect of that depth by the fall of 1894.
The work is done by contract, the sandstone carried by cars on track piled in advance of the work; the large granite blocks are swung in place by derricks from barges. The work was in charge of Major Chas. J. Allen, Corps of Engineers, to February 8, 1893, and of Major A. M. Miller, Corps of Engineers, since March 21, 1893, with Lieut. Wm. C. Langfiti, Corps of Engineers, from February 8 to March 21, 1893, Division En gineer Col. C. B. Comstock, Corps of Engineers. The estimated cost of the work in progress is $\$ 6,200,000$, ahd has been let by contract. This contract is a War Department matter, to avoid possibility of delay; the money to pay for the work is not a River and Harbor appropriation, but an item in War Department work. The government has no 30 foot harbor on the coast and must have one at Galveston, the only possible point and must have it as soon as possible.
The figures given as to work done and increased depth are all taken from the report of E. M. Hartrick, assistant engineer, made to Major A. M. Miller, June 30, 1893, at the end of the last fiscal year. The work and its results since then have made fine progress.
The normal tide at Galveston is about 18 inches on flood, as there is for practical purposes about an ave-
rage of 15 feet to 15 feet 6 inches of water on outer bar, rage of 15 feet to 15 feet 6 inches of water on outer bar,
the government reports being based on mean low tide. When the work commenced there was only 13 feet on the inner bar. The last government report of June 30 , 1893, shows 23 feet.
C. H. McMAster,
G. B. Cullum,

Geo. E. Mann,
Committee of Chamber of Comm
alveston, Texas, March 27, 1894.

The Gegenschoin or Zodiacal Counter Glow.

In the first half of the century a German astronomer Brorsen by name, in watching the face of the sky on moonless nights, noticed a large feeble glow of very diffused light in the midnight sky. This feeble light was from 10° to 15° in diameter. He soon found after a few observations that the object was moving nightly toward the east among the stars. A series of nakedeye observations soon showed him also that it was not only moving easterly among the stars, but that it was exactly opposite the sun and always remained so, and that its center lay exactly in the ecliptic. So exactly did it move with and in opposition to the sun, that if an imaginary line were passed from the sun through the center of the earth and prolonged to the sky, it would always pass through the center of this queer object. This fact being established, suggested to the Germans a name for it; they accordingly called it the Gegenschein-a combination of two words, gegen, oppo site, and schein, light, meaning a light in opposition.
It seems after this for a time to hare been neglected,
It seems after this for a time to hare been neglected, not almost forgotten
In 1871, however, it was again independently dis covered by Mr. T. W. Backhouse at Sunderland, England, who secured observations that confirmed its opposition to the sun. But eren this second discovery did not attract attention to it as it should have done, and many people still doubted its existence.
In 1883, about October 1, the writer in seeking comets at Nashville, Tennessee, one night happening to look up to rest his eyes, saw a faint hazy glow near the constellation of Pegasus. This was thought to be a bit local haze, though it seemed abnormally permanent. The next night it was seen again and was therefore no ordinary haze. A few nights' location of its position showed that it was moving along the ecliptic eastward about one degree a day. Could it be an immense comet ? It was certainly no ordinary meteorological phenome-
non. The positions obtained were sent to an eminent non. The positions obtained were sent to an eminent extraordinary kind of comet. He wrote back that biad discovered the Gegenschein.
Since then I have been very much interested in th object and have made numerous observations of it position. From these observations some new facts have been developed concerning this remarkable phenomenon.
I have said that this object defies the power of the telescope; this is true. From its great size and diffuse nature no telescope can grapple with it, its feeble light being destroyed by the power of the instrument and the want of contrast-the largest field being vastly smaller than the Gegenschein. Though it cannot be seen with any telescope, it is nevertheless a decid-
edly noticeable object with the naked eye when you know where to look for it.
Just what this mysterious light is no one has yet een able to satisfactorily explain.
Professor Arthur Searle, of the Harvard Collegeobser vatory, has made an extensive study of the Gegenschein and is inclined to believe it due to an infinite number of small asteroids.
Between the orbits of Mars and Jupiter are known to be no less than four hundred small planetary bodies It is probable thereare thousands and possibly millions more of these dust worlds. The smaller ones found in recent years are perhaps not over 10 or 15 miles in diameter. As they decrease in size doubtless they multiply in number, until finally theyexist in untold maltitudes of a site comparable with small stones and particles of dust, which no telescope will show individually. Each one of these small bodies is a miniature planet and must shine as a planet by reflecting the light of the sun. It therefore must present to us phases just as Mars does, but from the smallness of the objects we cannot see these phases-but none the less they must have an effect on the brightness of each little asteroid and must diminish its light accordingly.
Let us assume there are a sufficient number of these tiny planets; though they may be too small to be seen individually in a telescope, yet their combined light may be so great as to affect the eye, and thus we might expect to see a feeble zone of light extending across the sky and corresponding to the asteroidal zone. Such we actually have in the zodacal band. What would be the effect of phase of these individually small bodies upon the appearance of thiszone of light q Whenopposite the sun each of the objects would shine with full enlightened disk, and this vast collection of fully illuminated particles would augment the light of the zone and give a greater luminosity immediately opposite the begin to diminish the quantity of illumination. To this must also be added the fact that at opposition each asteroid would be nearer us and brighter from this cause also. Both causes tending to give a maximum of light opposite the sun-a Gegenschein.
This theory certainly appears very plausible, bu there are objections to it.
There is one thing certain, if the Gegenschein is not really an atmospheric phenomenon-and everything
except the fact of its existence seems to go against this
supposition-it is at a considerable distance from us. Careful observations have shown no evidence of paral. lax. Of course observationsof such an indefinite object cannot be made with anything approaching to accuracy, but if it were at no greater distance than 100000 miles, its parallax would have shown in the observations.
That a satisfactory explanation of this most singular phenomenon will be arrived at when it has been sufficiently observed there is no doubt. Therefore it is very desirable that as many careful observations of its position and descriptions of its appearance as possible sbould be obtained.
Here is a field which offers a splendid opportunity for amateurs to do new and valuable work where no instrument whatever is needed-nor indeed can be used. All that is required is a star chart and an approximate knowledge of the time-to within an hour or so. The observer will find much to interest him is watching this-one might almost say-uncanny thing as it circles the sky with its slow and measured pace.

The Gegenschein is best seen in September and October when it is passing from Sagittarius to Pisces. It is then a large and roundish glow, some 15° or 20° in dia-meter.-Popular Astronomy.

The Phonograph as a Witness in a Nuisance Suit.

In the Chancery Division. London, Mr. Justice Stirling had this case before him. The action was brought by certain occupiers and leaseholders in Manchester Street, Manchester Square, where one of the company's central stations is erected, to obtain an injunction against the defendants on the ground of a nuisance caused by vibration. Mr. GrahamHastings, Q. C., and Mr. Beaumont appeared for the plaintiffs, while Sir R. Webster, Q.C., Mr. Phipson Beale. Q.C., and Mr. VerWebster, Q.C., Mr. Phipson Beale. Q.C.
non Smith, represented the defendants.
Mr. Graham Hastings, in opening the case, said the object of the injunction sought for was to prevent the continuance of the nuisance created by the defendant's works. The nuisance was so material that the vibration consequent upon it made it intolerable to the occupants of the houses, or some of them, to dwell there. It seemed to be a most mysterious thing. Sometimes the vibration affected the top of the house, sometimes the bottom. According to the view of one gentleman, it arose from the fact that that part of the city of London was built on the bed of the river which once flowed over the locality, and the soil was of that character that it conveyed the vibration produced by the engines. It was said that this could be got rid of, but the learned counsel contended otherwise. The real defense, he contended, was that they had been doing all they could to abate the nuisance. Mr. Hastings proceeded todilate upon the effects of the nuisance complained of, and quoted instances where families were shaken in their beds, and prevented from sleeping, clocksstopped, and to touch certain objects in the house caused the fingers to tingle, and alarmed the residents.
Prof. Silvanus Thompson, in giving evidence, proProf. Silvanus Thompson, in giving evidence, pro-
duced a phonograph, which was placed on the bench before his lordship to give a repetition of the vibration and jarring caused by the working of the defendants' machinery in premises adjoining Marylebone Station. The phonograph had been set in various rooms in the houses affected, and witness produced it in support of his statement of the results of hisexamination of them. On the instrument being put in position on the ledge f the witness box, his lordship quitted his seat, and, walking to the end of his "bench," held the tubes to his ears. Apparently satisfied, his lordship, after listening for a minute or two, returned to his seat and made, as usual, a short note of the "evidence."

Some New Dyes.

In a record of some new tinctorial products found in the Moniteur Scientifique, it is interesting to note the progress-at least the holophrastic progress-making in the nomenclature of the materials that industrial chemists are producing for the use of the dyer, and of the chemicals that serve for preparing the saue. Thus we find that, under the name of metacyanotetramethylediamidotriphenylecarbinol, the Farbwerke, of Haecht-am-Main, have patented a yellow coloring material, while Messrs. Dahl \& Co., of Barmen, have taken out a patent for a blue dye derived from tetraphenyletetramidodinaphtylemethane and for a substantive trisazoic blue-black dye derived from amidobenzolazonaphtylamine and naphtylenediaminesulphonic acid. The subject of 'a patent obtained by Dr. E. Bottiger, of Dresden, is a process of preparing acetylamidodiethylepyrocatechine. Finally, on account of its apparent simplicity, may be mentioned a process of pre parent simplicity, may be mentioned a process of preparing colors irom triphenylemethane, invented and Main. It consists merely in oxidizing together dimeth yle (or di-ethyle) dibenzylediamidodiphenylemethanedisulphonic, dimethyle (or di-ethyle) benzylethylediamidodiphenylemethanemonosulphonic and diethyledibenzylediamidodiphenylemethanemonosulphonic acids with diphenylamine, methylediphenylamine, ethyle diphenylamine, and m-methoxy-(or m-ethory) diphenylamine.

Corrosion of Pipes and Telephone Cables Due to Electrolytic Action.
Since the introduction of the trolley electric system considerable has been said and written concerning the subject of corrosion of pipes, etc., by the returu current of electricity used in operating the roads. Thesubject is a very serious one, when you consider the extent of damage done the water pipes, gas pipes and telephone cables by electrolytic action. The trouble lies ininabil ity of the return circuit tocarry back to the dynamo the current discharged through the car wheels. There are several systems used in operating trolleys, the most prominent of which is the single trolley system, where but one overhead wire is used for each track. More than 75 per cent of the roads operated in this way use the overhead wire for carrying the positive or outgoing current ; but Mr. J. H. Vail, who is an authority on such subjects, in a paper read before the annual convention of the National Electric Light Association in Washing ton, D. C., last month, says: "The track system of all
age occurs at a rail joint, the electric current|immediately takes to the ground, and the earth in the vicinity becomes charged with the current which was designed for the rails, and plays to a considerable extent the part of a return wire. Iron or lead pipes (which are better conductors than the earth) extending along the route below the surface become charged. This condition involves a discharge at some point, and here the electroytic action is established, which, little by little, carries away the metal, or rather converts it into a compound which, in the moist earth, is readily detached. When this action is confined to a limited area, as at an abrupt bend in the pipes, the corrosion is rapid; but when it is distributed along a stretch of several hundred feet the destructive action is slower, but nevertheless constant and sure. Of course in some places electrolysis is more apid than in others, owing to difference in the chemical omposition of the earth. Several plans for correcting this evil have been tried, the best results so far obtained being from electrically, welding the rails in sections of

THE MIDWINTER FAIR.

The idea that was kept steadfastly in view in designng the buildings and in laying out the grounds of the Midwinter Fair was to obtain picturesqueness. The well macadamized highways wind in and out, flanked by pretty little Swiss chalets, kiosks, or State buildings. This seeming haphazard arrangement is really a triumph of art, and is a radical departure from the somewhat stiff and formal arrangement of the White City. The Midwinter Fair at no point resembles the reary sun coched, shadeless avenue of concession aires-the Midway Plaisance. Of course, the Fair requires some large open space to admit of an effective architectural grouping of the larger buildings. This is afforded by the Grand Court, which replaces the world-famed Court of Honor at the late Columbian Exposition. In the center of the court is a rich growth of grass, which is separated from the buildings by a road sixty feet wide. On the inner side of the road is a ow of vases bearing palms and other exotic plants.

THE MIDWINTER FAIR, CALIFORNIA-THE MANOFACTURES AND LIBERAL ARTS BUILDING.
enectric railways should really be the positive side or outgoing circuit. It will be readily understood that as the current travels from positive to negative, therefore any arc which occurs between the trolley wheel and the trolley wire will carry metal from the trolley wheel and deposit it on the trolley wire. If the reverse method of connection is made, the trolley wire will lose the metal, which will be deposited on the trolley wheel, and in time the strength and conductivity of the wire must be seriously impaired, eventually resulting in breakages." Some time ago a road in Boston changed from the former to the latter system for experimental purposes, finally deciding in favor of the overhead wire for the positive current. One year was devoted to each system.
In the positive overhead wiresystem the rails should act as a continuous conductor for carrying the discharged electricity back to the dynamo; but they fail, owing to improperconnections at the rail joints. Leak. ages occur at these points even when a very heavy copperbond is used. Earth, especially when it becomes damp, acts as a conductor; consequently, when a leak
about two thousand feet. Rails of a new line soon to b will be laid on this soun-Railroad Gazette.

M. Jablochkoff.

A dispatch from St. Petershurg states that M. Pau Jablochkoff died 'April 5 at Saratoff. M. Jablochkoff, who was an officer in the Russian army, invented in 1876 one of the earliest successful electric, lights. Th invention, which was known as the Jablochkoff candle attracted great attention at that time, and in 1877 it was used quite extensively in Paris for lighting stores and streets, but has since been superseded by the more economical arc light. In brief the invention con sisted in placing two carbon pencils side by side in sulated from each other by some substance which is on-conducting at ordinary temperatures but which will, when fused by the intense heat of the current, be come a conductor of electricity. The substance usually used was plaster of Paris, which gives a faint rose color to the light.

The decorative effect of the Grand Court is heightened by fountains, statues, and a series of highly colored Venetian masts. When the search lights bring out the gorgeous colors of the brilliant hued domes and minarets, the effect is superb and beggars description.
Probably the first building to attract the eye on entering the Grand Court is the Manufactures and Liberal Arts building, so named from the huge prototype at the Columbian Exposition. The great blue dome and golden lantern glistens against the intense blue of the semitropical sky like an immense jewel, while a peculiar suggestion of age isgiven by the grayish-green tiles of the roof. This building is the largest structure at the Fair. The architect was Mr. A. Page Brown, and the style adopted is Moorish. The building is situated at the eastern end of the Grand Court and faces the Administration building. The main portion of the Manufactures building measures 462 by 225 feet, while the annex is 370 feet long by 60 feet wide, so that with a gallery in the main building, 35 feet wide, the total floor space is 177,000 square feet. Under the dome there is an additional floor, 54 feet from the
ground, devoted to a roof garden. The span of the tons is identical. The process just described is repeated meter of large air piston, $73 / \mathrm{zinches}$; diameter of trunk, main trusses is 158 feet. The roof which they support is in the small cylinder. It is to be noticed that the $63 / 8$ inches; diameter of small piston, $25 / 8$ inches; 92 feet from the ground. water introduced into the first cylinder passes through diameter of trunk, $1 \frac{10}{10}$ inch; diameter of steam pistons,
The main entrance is surmounted by a dome, 6.6 feet all the stages and is always above the valves. It is $61 / 2$ inches; strokeof allpistons, $43 / 4$ inches; revolutions in diameterand 132 feet high. On each corner of the claimed by the makers that this is a feature of much per minute, 300 to 350 ; steam pressure, 43 pounds to 71 main building is a pavilion or tower, 50 feet square, covered by a dome. The roof is covered with Spanish metal tiles and glass. The building is surmounted with a series of flagstaffs, bearing national standards and coats of arms of the various States. The total cost of the building, which is constructed of wood, iron, glass, and staff, was $\$ 120,000$.
The decoration is in bright colors, but the effect is not so garish as might be expected, and the building is withal very pleasing, and adds to the Oriental effect of the whole.
In this great huilding thirty-eight nations have exhibits, so that the Fair can really lay claim to being a true international exhibition. The United States is well represented, while California is, of course, in the lead with her manufactures and the exhibition of her wonderful resources.
Pilgrims from the remotest corners of the West coast flock to San Francisco to behold the wonders of the great Fair. Among them are many of the pioneer settlers, who for years have

JUST ARRIVED AT THE FAIR. pounds per inch. The following advantages are claimed for this system: (1) The use of a low pressure to begin with reduces the loss due to clearance; (2) the division of the work into four stages permits the air to be effectively cooled between the two cylinders; (3) the last stages of compression being effected by a very small piston, it is easy to make the piston tight, and the space over which leakage could take place is reduced to a minimum ; (4) the whole machine can be taken to pieces and put together again in a very short time; (5) the delivery of the machine is independent of the pressure in the storage reservoir.
The quantity of water admitted amounts to about 15 cubic inches for every 200 cubic inches of compressed air delivered.
This compressor has been specially designed for charging torpedoes, and has, we understand, been adopted by the French naval authorities for that purpose.

Silvester's Remedy against Dampnema.
The process consists in using two been hidden away in quiet hamlets, seldom emerging from their retreats, and knowing but little of the wonderful growth and doings of modern importance in machines running at a high speed, be- washes or solutions for covering the surface of the
 people on arriving at the Fair is well expressed in one of the photographic groups we herewith present. chance to be admitted.
of a pound of soap to one gallon of water and half a

IMPROVED BLGH PRESSURE AIR COMPRESSORS.
square inch. The machines are made in several sizes. The walls should be perfectly clean and dry and the
The air compressor which we illustrate is one of a One to deliver $17 \cdot 65$ cubic feet of air per hour at the temperature of the air not above 50 degrees Fah. when type introduced and constructed by Messrs. Elwell stated pressure has the following dimensions: Dia-| the compositions are applied. The first, or soap, wash Fils, of Paris. We are indebted to the Engineer, London, for our illustration and the following particulars:
The machine consists in effect of two, double-acting compressing ${ }^{\text {s }}$ pamps, in which the air is compressed in four stages. The capacities are so calculated that the pressures shall be equalized on each side of the pistons. The pistons are provided, it will be seen, with trunks, and the first stage raises the pressure to about 57 pounds. In the second stage this is brought up to 142 pounds, in the third to 430 pounds, and in the fourth stage to 1,430 pounds per square inch. The two compressing cylinders are cast together, with a casing or jacket to contain water, in which are placed two coils of piping. The first serves as an intermediate receiver for the first cylinder, and the second coil connected with the small cylinder, serves to cool the air before it is delivered into the storage reservoir. The air to be compressed is drawn into the large cylinder at the top through eight valves in the cover and kept closed by helical springs. A spray of water is introduced at the same time, while a small quantity of oil is drawn in from the lubricator on the top of this cover.
When the piston ascends it compresses the air in the cylinder. When a certain pressure has been reached valves in the piston are forced down, and the air then enters an annular space between the sides of the cylinder and the trunk. On the return stroke the air is forced into a coil. The action of the two pis-

IMPROVED HIGH PRESSURE AIR COMPRESSOR.
should be laid on when boiling hot, with a flat brush, taking care to form a froth on the brickwork. This wash should remain twenty-four hours, so as to become dry and hard before the second, or aluin, wash is applied, which should be done in thesame manner as the first. The temperature of this wash, when applied, may be 60 or 70 degrees Fah., and this also should remain twentyfour hours before a second coat of the soap wash is put on. These coats are to be applied alternately until the walls are made impervious to water. The alum and soap thus combined form an insoluble compound, says Architect and Building, filling the pores of the masonry and entirely preventing the water from entering the wall.

A Mahogany Pavement.
The dealer in hardwood who tenderly handles his stock of mahogany with kid gloves for fear of losing a splinter now and then will undoubtedly be shocked, says the Mississippi Valley Lumberman, to hear that mahogany is being used by the Paris Municipal Council for roadways. This sounds almost like a dream of oriental magnificence, yet it is true. A portion of the Rue Lafayette has been pulled upand workmen are laying down blocks of real Brazil ian mahogany of a fine texture and color. It is. however, an experiment, as mahogany is dearer than other woods usually used for this purpose, but it is expected that the extra outlay will be more than compensated for by the greater durability of the mahogany.

Progress of the Bell Telephone.
The Committee on Mercantile Affairs, at Boston, Mass., was recently addressed by ex-Governor Long, of that State, on behalf of the American Bell Telephone Company, which asked the privilege of increas ing its present capital of $\$ 20,000,000$ to $\$ 50,000,000$. The address is full of interesting data relating to the telephone business, and we make the following extracts
The telephone is the most wonderful discovery of this half of the century. No invention for that period will compare with it in magnitude, in extent and in the largeness of the business which it immediately began to do, and which hereafter it will continue to do.
At first, you will remember, it was a string with a piece of flat metal at either end. It then developed into a means of local communication, speaking from house to house or from street to street. Very soon its larger capabilities were seen, though many were doubtful with regard to its ultimate perfectionor value.
In 1880, however, such was the recognition of the greatness of this discovery and of its possibilities for commercial and social benefits that application was made to the Legislature for a charter, and a charter was granted.
The Legislature recognized, even at that time, the unusual value of the invention by incorporating the company with $\$ 10,000,000$ capital, which was ten times the amount allowed by the general statutes. That charter provided not merely for the incorporation of the company, but also, to a cer
It provided that it might do it directly, or carry it on through local companies organized in this and other States throughout the Union, which were its licensees, and might take stock in such companies to the extent of 30 per cent of their capital.
These local companies cover the whole length and breadth of the United States, and the American Bell Telephone Company is doing business directly and also through those companies, its licensees.
To-day this corporation, which Massachusetts created, which is a child of the commonwealth, and which in every way has shown itself worthy of its parentage, is doing a work that embraces the whole Union, and is bringing all the people of the United States, or will soon bring them, within speaking dis tance of one another.
From year to year, after the incorporation of 1880 , the company went on developing its connections, en larging its plant, discovering new methods of carrying on its work, at the same time creating a demand and supplying and meeting the demand, so that in 1889 it came here again, showed what it had done with its capital, what its business was, what the prospects for the future were, and asked for an increase.
In response, its capital was doubled, making the capital $\$ 20,000,000$.
On the first day of January, 1885, the company, in itself and through its licensees, had expended the sum of $\$ 31,000,000$. That amount had been expended for materials and for labor; a great corporation had been made subject to your taxation, and was aiding in what is the real solution of the great present question of political economy-the distribution of the wealth of the world.
Since January 1, 1885, this company, tbrough itself and its licensees, has expended $\$ 14,500,000$ in the one item of subways and the cables contained in them, over $\$ 10,000,000$ for subways or conduits underground, and over $\$ 4,000,000$ for cables; that is, these great wires, which are woven together and run underground. Let me ask your attention one moment to this matter of subways.
It was early found that there might be some intricacy of wires. You have wires for street cars and wires for electric lighting in addition to these wires for telephones.
To-day you are considering the question of putting all wires underground. Let me remind you that the Bell Telephone Company, without legislative suggestion, without compulsion from the Legislature, but carrying its original and constant purpose of an honest, true development, itself initiated the system of subways. It has spent since January 1, 1885, $\$ 14,500,000$ in that one item, in addition to all previous expenditures.
Next, a subway running through a great city terminates somewhere. It comes up to the top of the ground. It must enter a building. You can see at once that it is desirable that the company should not have their subway, which had been constructed at this enormous expense, come up in a building which they rent, which belongs to some one else, and which they may have to part with.
Therefore, in the development of this great enterprise, it was soon apparent that it is necessary for the company to own their buildings. They have erected them in the various cities.
They have one in Boston, on Milk Street, on which they are paying taxes. It cost nearly $\$ 1,000,000$. They have erected buildings in New York and in other cities In the one item of real estate, since January 1, 1885,
they have expended $\$ 5,884,400$ call it $\$ 6,000,000$, which
is probably the sum to-day. Thus $\$ 6,000,000$ more has gone into real estate, and the most substantial kind of property.
That money has been expended in materials and labor, and has gone into the great work of the disribution of the wealth of the world.
Next is the aerial equipment and exchange. The wires are not all underground and cannot all be underground. Part of the work is still above ground. In the matter of overhead or aerial equipment and exchange there has been expended since January 1, 1885, $\$ 12,349,000-\mathrm{call}$ it $\$ 12,500,000$, for it is probably that by this time, as the work is going on continually.
Now you come to what is, perhaps, the most interesting and the most important part of the work and development of this invention, the one which strikes the imagination with the most force, and that is the development of the long distance telephone. The long distance telephone runs wide over the country, and is entirely controlled and paid for by the American Bell.
It was a somewhat hazardous experiment, but just as soon as we began to talk from here to Lowell, and from here to Worcester, somebody said, "Why not talk to New York?"
The effort was made, and the line was established to that city, first working imperfectly, to-day working so well that you can talk with a man in New York as I talk to you across this table. Then came the line to Philadelphia and other cities.
Then came the desire at once to reach what is now adays the center of the universe, and that is Chicago. It required some courage and some faith (I ask you to bear that in mind) to start that enterprise, and to ask people to put their money into the attempt to establish talking with Chicago and at such long distances. But sye attempt was made, and to-day there is a perfe
What does that mean? It means 1,200 miles of copper wire from New York to Chicago. This wire is copper, one-sixth of an inch in diameter, weighing 435 pounds to the mile. One circuit to Chicago-that is, a wire there and back-takes $1,044,000$ pounds of opper wire
This long distance system is still, of course, in its early infancy. It has been established for only two or three years. I cannot give yon the exact date, but it is of very brief establishment.
There have already been putinto it and other tol lines an expenditure of $\$ 10,000,000$.
When anybody says, "I can buy a telephone for $\$ 2$," et me suggest this to you: When you put tha telephone to your ear, you are holding in your hand
not merely a little piece of wood worth $\$ 2$, but you are holding in your hand and are in touch with millions of dollars of property for which honest money has been paid, which furnishes the foundation for additional taxation, and which has aided in the distribution of the world's wealth by the purchase of material and the employment of labor.
Stand in New York City, and you can talk with a man in Boston to the east, in Chicago or Milwaukee to the west, in Buffalo to the north, in Washington to the south. In other words, you are covering by the sound of your voice an area which contains half the people of the United States.
Consider what that means, and what the nature of the enterprise is which puts half the people of the United States in speech with one another.
Of course, the long distance system must be extended, and preparations are already made toward extending t. You must extend to Kansas City. You must extend to Omaha. You must ultimately reach San Francisco. You must go down largely into these developing Southern States, cities like Atlanta and Galveston and New Orleans, and still farther east and still far ther north.
Foot up these sums. Since January 1, 1885, there has been spent in hard casb. for real estate-I will give
round figures- $\$ 6,000,000$; overhead equipment and exchance, $\$ 12,501,000$; underground subway, conduits and cables in them, $\$ 14,500,000$; long distance and toll ines, $\$ 10,000,000$. These make something like $\$ 43,000$ 000 which has been spent since 1885.
Add the $\$ 31,000,000$ spent before 1885 and you have an expenditure in the neighborhood of $\$ 75,000,000$ to which the commonwealth has never been asked to contribute a penny.
The company stands committed to the expenditure right away of $\$ 10,000,000$ more to perfect its existing plans in the long distance line, to say nothing of fur ther needs.
As I say, there must be an immediate extension of the system still farther west and still farther south, to the great cities of the neighboring country.
Let me give you one or two illustrations of our
For instance, in 1881, the year after the first charter was granted, the number of miles of wire in use for telephonic purposes on January 1 was 29,714; on January 1, 1894, it was 488,521, more than fifteen times as large. Is that the end? Ask yourself. Is that all, or is more going to be expended?

Take the number of miles of underground wire. That did not begin until 1885. Without legislative compulsion, of its own motion, the company then began to establish subways, and on January 1, 1885, there were in use 1,225 miles of underground wire ; on January $1,1894,115,000$. In other words, about a quarter of all the miles of wire have been put underground since 1885.

Is that work going to stop? Is that the end of it, or is it going on? If it is going on, is not money necessary?
Take the number of telephones in use. Starting with 5,000 , to-day there are 566,491 -more than one hundred times as many. Is that going to stop?
How many people are supplied with telephones, numerous as they are to-day, valuable as they are in performing the business of your office? Is this use going to stop, or is it going on, going to increase?
If it is going to increase, is not more capital necessary? If it is, and it is a good business which is developed, shall the company have the capital, or shall they be told they cannot have it, and if they want more capital they must either shut up shop or go to some State that will let them have it.
Take the number of telephone subscribers. In 1881,
the year after the incorporation of the zompany, 47,. 800 : to-day, $237,000$.
Another interesting table is this-the number of talks. It is interesting for you to know how far people are using the telephone as a means of communication with one another. In 1884 there were $215,000,000$ talks over the telephone. In 1893 there were $600,000,000$ talks ; in 1894, 650,000,000. That is nearly $2,000,000$ talks a day. One has to stop and deliberate to get into his mind such a sum.
How many messages are sent over the telegraph lines? My memory is that there are about $63,000,000$, and the telegraph has been developed a great many years. On the other hand, telephone communication is in its infancy, and yet your telegraphic messages during the year are $60,000,000$, while your telephonic messages are $650,000,000$.
To subscribers, that has amounted to from 2 to 11 cents for each message. You pay 30 cents for a talk, say, to and from Haverhill or Worcester, or even $\$ 3$ from here to New York; but to telephonic subscribers the average has amounted, on the average, to from 2 to 11 cents for each talk. And you are not limited to ten words.
You have two or three minutes' talk, and you know how much you can do in a very few minutes, unless you are unfortunate enough to be addressing a committee and taking more time than you ought. In other words. the cost is reduced toward the cost of the United States mail.
The number of persons employed will interest you; that has increased, so that to-day there are over 10,000 persons employed.
At the building where we shall go in a few minutes, I desire to show not only the beginning of the subway and these enormous cables, but to call your attention to some details which are suggestive of the magnitude of the whole thing
Take, for instance, the switchboard. In the city of New York, one switchboard is 264 feet long, at which sit the operators. Each operator attends to perhaps 50 subscribers. There are 10,000 subseribers in the city of New York. Any one of them, by ringing his bell and calling up the central office, can be put into communication with the other 10,000 .
Gentlemen, think for one moment what this system already enables us to do. You will hear, as you hear with regard to other enterprises-I think less here than usual-complaint as to some little detail here or there; but is there, do you feel, do you know, that there is in the community any real or general restiveness under the existence of the telephone company? Is it not recognized as a great, a very great invention, and a matter of inestimable commercial and business convenience and value? You can communicate with any part of the city, with any part of the State, and soon with any part of the United States.
You send for your doctor and communicate with your lawyer. You communicate with your business partner. Your wife orders her groceries and talks with her friends.
A man will growl, perhaps, because he has to pay twenty-five cents for a telegraphic message, because he has to pay twenty-five cents for a telephonic message, or whatever the sum may be; and yet, ask him whether it is not of advantage that, staying in his home thirty or forty miles away, he has been able to communicate with Boston and perform an important piece of business, and thus save the expense of travel and the loss of a day's time, and he will answer at once that the advantage is worth everything to him.
Who are the stockholders of this company? There are 200,000 shares of stock. There are 5,277 stockholders, and of these 3,721 are stockholders who have holdings of less than 25 shares each; in other words, three quarters of the stockholders in this great company have less than 25 shares each.
We are asking the State to do something for its own
advantage. The corporation is paying into the State treasury $\$ 150,000$ a ycar in the way of taxes.

We ask you to retain this corporation in Massachusetts, that its headquarters shall be here, that its em ployment of a clerical force and of operatives shall be here, so that Massachusetts shall get the benefit of having its citizens employed, its supplies furnished from Massachusetts sources.

The Erilliance of a Candle Flame
That the Juminosity of a candle can be calculated direct from the dimensions of its flame is the rather striking theorem of Herr P. Glan, who gives the results of his measurements in the current number of Wiede mann's Annalen. The volumes of the bright portions of various candle flames were measured by taking the length by means of a scale placed behind the flame, and the breadth at various points by gauging it with calipers or compasses. These bright portions have approximately the shape of cones, each of these cones being penetrated from below by a truncated cone, consisting of the dark central portion. The difference between the volumes of the two cones gave the volume of the brilliant portion. Stearine and paraffin candles of various thicknesses, and provided with different wicks, were compared by means of a rod photometer It was soon found that the height of the flame was not the only factor determining the brightness. A stearin candle of 5.88 cm . circumference had, on the other hand a higher luminosity than another 6.49 cm . in circumference. But a determination of the ratio of the volume to the illuminating power showed that this ratio is very nearly constant, the difference between the actual luminosity and that calculated from its volume never exceeding 3 per cent. In other words, equal volumes of the bright flame of any two candles give out the same amount of light.

Soap Suds for Calming Waves.

The remarkable action of oil upon waves is wel known. This phenomenon led the officers of the steam ship Scandia, of Hamburg, to make an experiment upon the same principle that was very successful, and that appears to us worthy of mention. During its last trip to the United States the vessel, while in mid-ocean, wasattacked by a very heavy storm. It then occurred to the officers to dissolve a large quantity of soap in tubs of water. Having thus obtained several hundred gallons of soap suds in a very short time, they threw it over board in front of the ship. The effect was almost in stantaneous, and the ressel soon began to navigate without difficulty. Her officers at once addressed a long report to the Hydrographic Bureau of the United States, giving an account of their voyage, the storm, and the means that they employed to still the waves. They conclude by saying that although soap suds does not produce absolutely all the effects upon water that oil does, it at least suffices to break the force o waves in most cases. Besides, this method recom mends itself to transportation companies careful of their interests. Soap suds is much cheaper than oil and a relatively large quantity of soap can be carried without encroaching too much upon the space set apar for passengers and merchandise.-La Nature.

EOLIAN HARPS.

The following experiment, although performed aslong ago as 1855 by Mr. Wheatstone at the Polytechnic Institution, is of sufficient interest to reproduce. Upon the center of the stage were arranged, in a semicircle, four Erard harps, which, at the pleasure of the experimenter, vibrated as if they were made to resound by invisible hands. To this effect, there had been fixed to the sounding boards of each of them four vertical rods of firwood, which descended perpendicularly, passed through the floor of the stage and the ceilings beneath, and in the deep cellar of the Institution were fixed, one of them upon the sounding board of a piano, another upon the sounding board of a violoncello, and the two others upon the sounding board of violins. Iu order to render it possible to interrupt the vibrations between these instruments and the harps, the rods supporting the latter had been divided at a few centimeters above the floor. A revolving motion of the harps caused either their juxtaposition with or their separation from the rod.
This thoroughly scientific experiment was taken up under the name of Eolian harps by Robert Houdin, who introduced several scenic modifications into it. A stage elevated in the very midst of the spectators was traversed by two firwood rods, which, after passing through the floor, rested upon harps placed in the hands of instrumentalists. At the command of the skillful prestidigitator, two other instruments, supported by the upper extremity of the rods, executed a concert whose success was immense, thanks to the.careful and very elegantmise en scene. Certain operators further surprised their spectators through the pretended intervention of mediumistic spirits very much in fashion at the time.-La Nature.

CARLI'S ELECTRIC CARRIAGE.

The question of small automobile vehicles for streets and highways is at present the preoccupation of the manufacturers and inventors of all countries. The competition instituted by the Petit Journal will cer tainly bring to Paris all the systems that have been devised for the solution of the problem-steam, gas, petroleum, and electricity produced by batteries or stored up in accumulators. This latter solution, which to us appears to offer the brightest future for an application in large cities that are provided with central stations of distributions of electric energy, is, nevertheless, the one that answers the least to the programme drawn up by our daily contemporary, and too hasty and too absolute conclusions must not be deduced from the check that electricity will necessarily suffer.
We do not generally take a vehicle upon road ways for

carly's electric carriage.

trips of 60 miles. For such journeys the railwas is the proper mode of conveyance. But we do take a coach for making excursions, and visits and doing business for a few hours, in returning sensibly to the starting point, and it is for such applications, which are the most numerous, that the use of energy stored up in accumulators comes in.
However this may be, researches in this direction continue, and we shall now make known to our reader a new electric carriage, of which a description has been kindly communicated to us by Prof. G. Milani, of the University of Pisa. The essential part of the description that he senids is as follows
This carriage was constructed at Castelnuovo (Garfagnana) in the power loom weaving establishment of Count Joseph Carli, deputy to the Italian parliament. The Carli electriccarriage is actuated by accumulators of the Verdi type, this having been selected because it possesses a great specific capacity and can best resis the shocks always inevitable in a vehicle designed to run upon all sorts of roads. The battery consists of 10 elements each having a capacity of 100 amperes-hour, say 200 watts-hour. There is thus at one's disposal 2 kilowatts-hour. The model employed weighs 11 pounds and contains five plates. Under conditions of normal discharge, the battery furnishes a current of 5 amperes, sas about a half ampere per pound. The plates are arranged horizontally in a wooden cage, are held in place by small bars of ebonite and are separated from each other by a fabric of paraffined jute. The whole is inclosed in small ebonite boxes hermetically closed by an ebonite cover, in order that the liquid may not slop over through the effect of jolting. The inventors have found it of a certain advantage to have recourse

EOLIAN HARP EXPERIMENT

to a system of very slow charging. To this effect, they employ very feeble currents of a duration of from twenty-five to thirty hours, and this permits of using primars batteries. This circumstance is favorable to the best rendering and to the best rate of discharge of these accumulators, even when the external resistances
vary in a large measure. Experiments have proved that the rapid discharge presents no inconvenience and leads to no alteration of the positive surfaces. The rendering alone drops from 97 to 63 per cent, if we pass from a half to one ampere per pound of plates. The battery of 10 accumulators of the type described above confines an energy equal to 2 kilowatts-hour. The vehicle weighs but 350 pounds in running order.
The motor actuates the hind wheels directly by means of gearings. It absorbs about 550 watts and tho battery is capable of supplying it for a four or five hours' trip. The excitation is in derivation. The motor is capable of serving for the recharging of the accumulators, by virtue of the well known principle of reversibility. It is only necessary to apply a winch or a belt. There is a train of gearings between the axis of the motor and that of the wheels. By means of this gearing, it is possible, by turning a winch, to reduce the angular velocity of the motor from 1,000 revolutions per minute to 100 or to 30 . On another side, a rheostat permits of varying the angular velocity of the motor from 1,000 to 300 revolutions per minute. It is thus possible to develop the greatest power corresponding to every speed, to run at slow speed upon ascending roads, at high speed upon declivities, etc.
For starting and for unforeseen obstacles on the way, recourse is had to an impulsion box that is held in reserve. This cousists of a system of rubber tension springs that are stretched by revolving a small wheel, even during the running of the carriage. When an energetic impulsion is necessary, the springs are relaxed by means of the foot, and produce upon the axle an impetus equal to double the power of the motor itself, and sufficient for a run of at least 160 feet.
The Carli establishment, under the able superintendency of Mr. F. Boggio, is constructing two types of this carriage, one of them simple and cheap and the other more elegant and more elaborate in detail. It is the second type that is represented in our figure.

We have cared to publish this note in order to well show that the electric coach, such as we conceive it, is not a utopia. The electric carriage of Mr. Pouchain and that of Mr. Carli are already realizing the majority of the conditions necessary to this kind of exploitation. The questions of form will soon be solved by the art of the coach builder and that of the electrician.
A few more improvements in accumulators, and central stations will, in the charging of coach accumulators during the day and a part of the night, have an important market that will improve their annual rendering as well as their present conditions of exploita-tion.-La Nature.

Americau Fire Arms.

Some time ago we published the statement that the German Mauser rifle was an American invention, and we are now asked as to our authority for that statement. Those familiar with the facts are aware that Mr. Mauser, at the time the weapon having his name was invented, was a skilled mechanic in the employ of the E. Remington \& Sons, Ilion, N. Y., and that the first Mauser gun was constructed at the expense of the Remingtons, and under the supervision of their master mechanic. The Remingtons had an interest of one half or more in the invention, but Samuel Remington, who for many years represented the company in Europe, had such an unfortunate experience of the German government's illiberality. to inventors that he sold his interest in the gun to Mr. Mauser for $\$ 500$. These facts fully justify our statement, referred to, that the Mauser is an American invention. The Lee rifle was also invented and constructed originally at Ilion, and it furnishes the essential idea of most if not all of the rifles now in use in European arms, with the exception of the improved Chassepot or Gros. It certainly excites surprise in the mind of any one who is familiar with the history of small arm invention to find our government going abroad for its service weapon. The kingdom of Sweden and Norway, from one of whose subjects we obtain our new army rifle, was the first foreign government to adopt and purchase an American breech-loader, the Remington. With proper encouragement from the government our small arms manufacturer might hold the field against the world. The design and essential idea of the breech-loader and magazine gun, wherever it is found; is American. The machinery used in the manufacture of modern arms in all foreign countries manufacturing their own arms is of American invention and in large measure of American manufacture. The machinery in the armories of Germany was manufactured by the Pratt \& Whitney Co., of Hartford, Conn., and the German workmen were instructed in its use by Yankee mechanics, sent out by that company and remaining in Germany for one or more years.Army and Navy Journal.

The farmer in Japan who has ten acres of land is looked upon as a monopolist.
recently patented inventions. Engineering.
Valve Operating Mechanism.-Jacob J. Moore, Chambersburg, Pa. This inventor has designed novel means whereby the engine may be re-
versed or throttled by the use of a aingle lever and ec. versed or throttled by the ase of a aingle lever and ec.
centric. The construction is such that when the lever is adjusted to its central position the eccentric will be adjusted to set the valve to shat off steam, and if the the eccentric as to move the valve to open the port to ad-
mit steam to one or the other side of the piston to propmit eccenam to one or the other side of the piston to prop-
erly move it, to drive the engine forward or back. Duplicate eccentrics, one for each side, will be needed in plicate eccen
locomotives.

Railway Appliances.

Car Coupling.-Edward .J. Lahan, Quincy, II. In this coupler the drawhead has the usnal flaring mouth, but with its sides, top and bottom, solid, whereiy the interior coupling members are protected
from the weather and the head rendered more stable and compact. The coupling is effected by means of a gravity latch, working automatically when the drawheads come
together, obviating the need of going between the cars together, obviating the need of going between the cars, and the uncoupling may be effected from either the sides or the bottom of the
ple and inexpensive.
Switch Lock.-Samuel E. Bartlett, Red Bank, N. J. This invention relates to interlockmg
switch systems for rairoads, where the switch, signal, and switch lock are all operated from a tower. The new device consists of a switch or bolt ander the control of the
operator and adapted to engage the switch bar to lock the oparator and adapted to engage the switch bar to lock the
same in position by an ingenious system of sliding plates which are engaged by the bolt. By this mechanism the operator is prevented from locking the switch unless it
is in ition proper position, and he cannot display the proper signalcontrolling
set and properly locked.
Flanger.-Thomas W. Macfarlane, of Ellensburg, Washington. This invention consists of a novel device for removing snow and ice from the rails of
railway tracks, and is especially adapted to remove the snow and ice usaally left by the snow plow on the tops
and sides of the track rails. The flanger is secured directly to the truck, and the cutter, with its attachments as the apron whichthrows the loosened ice and snow to one
side, is operated with a piston rod connected with a cylside, is operated with a piston rod connected with a cy
inder attached to a suitable air or steam supply. coiled spring returns the mechanism to the norm
tion when the air or steam pressure is removed.

Underground Railway Conduits.wilton F. Jenkins, Richmond, Va. This invention consists of a cylindrical tabe or conduit the edges of
which are formed in a pecculiar manner at each side of which are formed in a pecaliar manner at each side of
the slot to give the requisite thickness to resist the weight of traffic in the street. Yokes pass under the
conduit tube and secare the rails, thus obvating the conduit tube and secare the rails, thus obviating the use
of bolts or rivets to fasten the rail. This connection of bolts or rivets to fasten the rail. This connection
between the rail and the yoke is a universal one and enablea the rail to be grasped at any point withoot catting holes in the rail or yoke. By the constraction of the overhanging walls and stiffeuiug web a vertical distance from the top of the slot rail to the onter periphery
of the cylinder is secured so as to allow blocks of pavof the cylinder is secured so as to allow blocks of paving material to be laid in sufficient vertical depth clo
up to the slot rail so as to secure a substantial finigh.
Conditit Electric Railwa y.-Wilton F. Jenkins, Richmond, Va. This eimple and effective device cousists of a conduit tube provided with two
horizontally projecting arms carefully insulated and bent to receive the two conducting wires which are laid loosely in a recess provided for them. A hook-shaped
trolley is provided for each conductor which raise the trolley is provided for each conductor which raises the
wire from the support and is provided with a wiping attachiqent or pad which cleans the supporting arm at each passage of the trolley.
Electrically Operated Railway swricer.-William S. Gavey, Brooklyn, N. Y. This ing electric or other car. By an ingenious system the switch may be automatically operated by a moving car so as to be thrown before the car reaches it and to be
thrown back after the car has paseed, also to provide a switch system adapted to railways having numerous sid-
ings so that each car will torn its particnlar ings so that each car will torn its particular switch, but pass over the other switches without affecting them.
The switching is done by electro-magnets, the current being obtained from an overkead trolley wire with the aid of a contact pulley.

Miscellaneous.

Amalgamator.-Nathan Leroy Raber, Corvallis, Oregon. This invention consists of cells, mercury may be cleaned or purified, and a lead or timilar conductor extended longtudinally within the cell whereby an electrical discharge from end to end of the cell
secured. Various other devices for regulating the ply of the quickening agent, the mercury, etc., are proply of the quickening agent, the mercury, etc., are pro-
vided. By the construction and arrangement of the several parts of the amslgamator the whole surface of
the mercury at the point of contact with the thin stream the mercury at the point of contact with the
of pulp is kept perpetaally clean and active.
Nore.-Copies of any of the above patents will be fornished by Munn \& Co., for 25 cents each. Please
send name of the patentee, title of invention, and date of this paper

the student and suagestions to the dranghtaman. It is
really refreabing to see a book on mechanical drawing which gives the proper amount of lettering and dimenslons. Theplates, with afew exceptions, are arranged so the proper way of inserting plates and mape, but is un-
fortunately a rarity. The whole work deara the stamp o being made by a thoroughly competent and consciention

The Tinsmiths' Pattern Mandal Patterns for tinsmiths' work. By
Joe K. Little. Chicago: The Ameri-
canArtisanPress. 1894. Pp. ix, 248 Price $\$ 1$.
This work treats in great detail of the development of themith's articles for the porpose of cutting out the
pieces therefor from the flat metal. This it does pieces therefor from the flat metal. This it does
elaborately, its porpose, evidently carried out, being to ther tha text consists of a series of problems well illustrated, and an excellent index, with both pare and paragraph refer

David of Juniper Gulch A story of the placer regions of California. By Sunshine," etc. Chicago : Laird \& me and Punishment: A Novel By Fedor Dostoieffsky. Translated erick Whishaw. Chicago: Laird \& The Egyptian Harp Girl : A Mystery OF THe Peristrle. By "Quondam."
Illustrated. Chicago: Laird \& Lee
1894. Pp. 292. Price $\$ 1$.
Padl Weiss. Ingenieur au Corps des
Mines. Le Cuivre. Avec 96 figures intercalees dans le texte. Paris
Librairie J.-B. Bailliere et Fils. 1894 Tous droits reserves. Pp. viii, $\stackrel{344}{ }$ Price $\$ 1$.

SCIENTIFIC AMERICAN

BUILDING EDITION.

APRIL, 1894.-(No. 102.)

TABLE OF CONTENTS.

1. Hegant plate in colors showing a handsome colonial residence just completed at Ashboarne, Pa , fo Charles saimon, Esq. Two perspective views and
floor plans. Cost complete $\$ 11,500$. Frank R elegant design.
2. Plate in colors of a Chicago dwelling deadgned for ap Park, Chicago, ml. Two perspective views and floor plans. Cost $\$ 4,200$ complete. Mr. H. H Two perspective views, interior view and floor plan
of the elegant residence of Judge Horace Russell recently completed at Southampton, Long Ieland
Mr. Brace Price, New York City, architect. An ad Mr. Brace Price, New York City, architect. An ad An English cottage at Buena Park, Chicago, III. Two
perspective views and floor plans. Mr. James Gamble Rogers, Chicago, $\mathrm{Ill}_{\text {, architect. }}$ A unique deaign in the Goonc ase
3. A residence at Southport, Conn. Two perspective
views and floor plans. A pictureaque design in W. Kent, New York City, architect.

A cottage at Freeport, Long Island, erected at a cost
of $\$ 2,600$ complete. Perspective view and floor of $\$, 600$ complete. Perspective view and floor
plan. A anique design. Mr. W. Raynor, Free residence at Rogers
7. A residence at Rogers Park, III. Two perspective views and floor plans.' Coot $\$ 3,948$ complete. An
attractive design. Mr. C. W. Melin, Chicago, Ml ,
8. Two perspective views and floor plans of a dwelling rently erected at Rogers Park, IIl, at a cost of
83,730 complete. A unique deagn. Mr. Robert $\$ 3,730$ complete. A unique deal.
Re, Jr., Chicago, inl., architect.
9. A cottage at Morgan Park, II., erected at a cost of
82,968 complete. Two perspective views and fioor plans An attractive design, treated In the Engliah cottage style of architectare. Mr. H. H. Waterman, Chicago, $\mathrm{II}_{\text {, }}$, archiltect.
0. The new St. James M. E. Charch at Kingston, N. Y
Perspective and plans. Architects, Mesars. Weary Perspective and plans. Architects, Meserr. Weary
\& Kramer, of New York City and Akron, Ohio. Estimated cost, 870,000. Style of architectore,
Romanesque. Romanesque:

1. Miscellaneons Contents : Vibrations of tall buillaings.
-Artificial stone.-A simple and efflcient dumb--Artifcial stone.-A simple and efflcient dumb waiter, illustrated.-An improved woodworking
machine, illustrated.-The New Era electrical gas machine, illustrated.-The New Era electrical gas
borner, illastrated.-P. \& B. Ruberoid roofng, sheathing papers, and paints.-Improved wood ing machine, illustrated. \rightarrow A large sheet metal cell ing, illustrated.
The Scientific Amertcan Architects and Builders
Edition is iesued monthly. 2.50 a year. Single copies, 25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages; forming, practi-
cally, a large and splendid MAGAZINE of Abchitrc with fine engravings, illustrating the most intereatin with fine engravings, illustrating the most intereating
examples of Modern Architectural Construction and allied subjects.
The Fallnes
of this work have won of any Architectaral Pablication in the world. Sold by all newsdealers. MUNN \& CO., Pcblishzra,

2Business and ఇexsonal.

"D.8." metal polish. Indianapolis. Samples free. Aircompressors for every possible duty. Clayton
Compressor \mathbb{W} orks, 26 Cortlandt Street. New York. The Improved Hydraulic Jacks, Punches, and Tu
Expanders. R. Dudgeon, 24 Columbia St., New York. Nickel-In-alot machines perfected and manufactured
Flectrical supplies, Waite Mfg. Co., Bridgeport, Conn. Screw machines, mulling machines, and drill presses. Centrifara Papar nd sand pumping plants. Irvin Van Wie, Syracuse, N. Y. Emerson, Smith \& Co., Ltd., Beaver Falls, Pa.., will send Sawser's Hand Book on Ctrculars and Band Saws ree to any address.
Split Pulleys at Low prices, and of same strength and
appearance as Whole Pulleys. Yocom \& Son's Shafting Works, Drinter St, Pulleys. Yocom \& Son's Shafting Perm, Dier Bal Pull 1
Patent for Bale-Stall for comfort and cleanliness of
milk cattle. Agents wanted at 50 per cent commission. M. sehembri, 308 Van Buren St., St. Paul, Minn.

Toothpicks, match-sticks, kindling wood, etc. Can be made millions a day by the new patented machine. Partner wanted. "James," care of Scientific American.
The best book for electricians and beginners in electricity is " Repperimental Science," by Geo. M. Hopkins.
By mall. 4 ; Mann \& Co., publisbers 36 Brosdmay Patent Flectric Vise. What is claimed, is time saving. ne sliding movement. Capital Mach. Tool Co., Auborn,

Competent persons who desire arencies for a new popular book, of ready sale, with handsome profit. may
apply to Munn \& Co., Scientific American office. 351
CF Send for new and complete catalogue of Scientific Now York. Free on apolication.
New for sale by Mun.

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters,
or no atttention will be paid thereta. This is for our
information and not for publication or no attention will be paid thereta. This is for our
information and not for publication.
Rerences to former anticles or ansers should
give date of paper and pare or number of question.

price.
Minerals sent for examination should be distinctly
marked or labeled.
(5958) T. R. B. asks: Will you please state in your answer to my inquiries of 24 th what is the
beat eize of wire to use for telephone liues ? A. No. 12 gatvanized lines
phon
(5959) F. J. M. writes : Referring to article on "Wind Preseure," in Scirntific Amerrioan Sup-
pinminnt, No. 950 . 1. Why should the wind pressure Phatignt, No. 950 . 1. Why should the wind pressure
quainst one side of a cabe be less than upon a thin plate of same size 9 A. In the thin plate there is a vortex formed at the back of the plate which prevents reaction,
while in a thicker body, like the cabe, the vortical space is flled by a solid, allowing the displaced air time to return behind the cube and counteract the vortex made by
the outward flow of air at the front edge. The same efthe outward flow of air at the front edge. The same ef-
fect is obeerved under the same conditions in the movement of plates and solids through water. 2. Why should
the wind pressare acting upon a hemispherical cup, when the wind pressare acting upon a hemispherical cup, when
its convexity is torned toward the wind, be greater than its convexity is torned toward the wind, be greater than
upon a flat plate of equal diameter 9 . The wind pressure is less when the converity is tumed to the wind
than when a plane sorface or concave one is turned to than when a plane surface or concave one is turned to
it. Convexity is a mistake in your question. It should
be concavity
(5960) B. writes: 1. I would like to get some data concerning the emall vanes in exhausted bulbs which are cassed to revolve by the action of the hght. I ninimum intensity of light at which they will revolve ? A. It will revolve in the dark, provided there is heat. die action does not depend on light. 2. Sappose a 18 can
die Ie power lamp were placed at a distance of 6 inchee
from the vanes, what would be the approximate number of revolunos will A. A 16 candle power mate the vanes quite rapidy, but the velocity varies with rediometers of different forms. 3 . Are they for sale, and at what price \& A. Radiometers are for sale by most dealers in physical instruments. The
price is from $\$ 3$ to $\$ 5$. 4. Has a description of them price is from $\$ 3$ to $\$ 5$. 4. Has a description of them ever appeared in the SCLENTIFIc American, and if so,
in what number 9 A. For information on Crookes' radiometer, we refer you to Sopriement, Nos. 13 and 26 .
(5061) W. S. R. asks: 1. Please tell me ow to make a Gramme ring motor. A. You will find a unNT 641. 2. Also how to make a two or three horse and a force wheel for a brook with a fall of 12 melies 61, 380 , and 704 contain descriptions of tarbines for desire from these articles. 3. Is the Piano Com-
pany a reliable firm A A. We do not furnish information of this character. 4. How cail I make a galvanic
tions for making bichromate battery, we refer you to
SUPFLRMENT 792. 5. Is there any way to make a boiler to rum a one horse power engine ? If so, how can I make it and where can I get the material ? A. For
directions formaking amall boilers, eeearticleon the sub ject contained in Supplimirnt 702.
(5962) B. S. L. asks : 1. Why, when a person looks at an object through the large end of an opera glase, the object appears smaller and ata great dis-
tance \& A. The reversal of the glasses produces the effect. the negative lens being then in front of the magnify ing lens. 2. Will No. 21 double-covered copper wire
give just as good results on the armatare of eight-light give just as good results on the armature of eight-light
dynamo, Surfzement 600, as singlecovered No. 20, and dynamo, Supreement 600 , as singlecover ins an addition
thus insure better insulation 9 And will not an thas insure better insulauion
of more wire on fild magnets give a stronger current
Also is the sheetimn isk armature core to be preferred to the wire core A. Dande-corered copper is probably to be recommended for the parpose named. The E. M. F. will be a little greater and the carrent will be a little less. There are certain ratios of resistance between armature and field which are not advantageons. 3. Is it practical
for an amateur to attempt the construction of a gas engine, and can you give me the address of a firm where gas engine castings are made? A. A gas engine is ver troublesome to baild. You might address gas engine
manufactarers who advertise in our columns doubt if any of them would furnish castings. 4. What are the dimensions of coil and size of wire used on a coil to produce a apark one inch in length 9 A. Exact dimen sions of the induction coil asked for cannot be given. Consult Supplement 160 for information in regard to a
coil giving $13 /$ inch spark. This can be regulated to pro $^{\text {and }}$. coil giving $11 /$ inch spark. This can be regulated to pro-
duce a 1 inch spark. 5. The formula for a good leather cement, also a good rubber cement. A. An India rabbe of chloroforme of : 15 grains of India rubber, 2 ounce of chloroform, 4 drachms of mastic; firet mix the India
rabber and chloroform together, and when dissolved the mastic is added in powder. It is then allowed to stand for a week or two before asing. Leather and Pasteboard, Cement for.-Strong glue, 50 parts, js dissolved with a mixture is added a thin paste, made with 100 parts o tarch. It is applied cold, and dries rapidly.
(5963) B. T. writes: 1. We evaporate from 2,100 to 2,300 gallons of water per hour in our
boilers. What should be the dimensions of such a boiler or boilers to do that amount of work with some degree of
economy ? A. The evaporative power of a boiler is approximately given by the formula $1: 8\left(\frac{s}{2 S+F}\right) e=$ pounds of water per pound of fuel, in which S is the
heating surface and F the pounds of fuel, and e the evaporative power of the fuel Taking $e=15$ we have $10{ }^{\circ} 448$ pounds water per pound of cool. Taking this as
representing your case, you will need a boiler to pounds of coal per hour, or abont 20 aquarer to barn 23 pounds of coal per hour, or aboat, 20 squarefeet of grate
or natural draught, and a heating surface of 200 to 300 square feet. Conventional horse power of a boiler is not reliable. 2. What is the market value of mercury per
pounds A. About 75 cents a pound. 3. What is the weightof onecabic foot of mencury? A. 846 poundsat 60° Fah. 4. At what temperature will mercory start to evap. orate 9 A. It evaporates slowly at ordinary temperatures.
It boils at 675° Fah. 5. Will mercury diseolve in alcohol, ether, or any other oil or grease ? A. No. 6. If mercury
be put in iron vessel, will it attack the iron 9 . No. be put in iron vessel, will it attack the iron \& A. No. 7.
ff mercary be heated to 200 or 250 degrees, will it give of any gas or fumes so as to endanger the person handling
the same \& A. It will slowly produce bad effects; the practice is an unsanitary one. 8. Have you a good book
on modern boilers ? A. We can supply you with the on modern boilers ? A. We can supply you with the
following books: "A Manual of Steam Boilers," by

(5964) W. B. J. says: Can you inform me through your valuable paper how to mark fine steel
tools with acid, ning a rubber stamps A, Have a plain bonder round thedesign, largeenough to allow a little bor der of common putty to be laid around the edge of th stamped design, to receive the acid. Forink, ose resin,
lard oil, turpentine, and lampblack. To $1 / 4$ pound of resin put 1 teaspoonful lard oil; melt, and stir in a tablespoonful of lampblack; thoroughly mix, and add enough turpentine to make it of the consistency of printer's ink when cold. Use this on the stamp in the same manner place a little ping with ink. When the plate is stamped, edge of the stamped ground. Then pour within the bor der enough acid mixtore to cover the figure, and let stand pour the acid off. Rinse the sarface with clean water take off the patty border, and clean off the ink with tor pentine. Use care not tospill the acid over the polished part of the article. For the acid, 1 part nitric acid, 1 part hydrochloric acid, to 10 parts water by measure. If the effervescence seems too active, add more water. 2. How are knife blades marked that have names on them ? A.
Knife blades are sometimes marked in this way, but gen erally the brand is placed on marked in etc., when they an a be plated with aluminum 9 If so, how can I do it $\%$ A.
Yes; copper the iron, then deposit the aluminum, using the following formula: Fifty parts by weight of alom are dissolved in 300 of water and to this is added 10 part of aluminum chloride. The solution is heated to 200° Fab., and when cold 39 parts of cyanide of potasiium are added.' A feeble carrent should be used.
(5965) F. L. asks : 1. Are all alternatng generators excited by a separate direct current ma
chine ? A. No. Sometimes theyare eelfexciting, havin a commatator in addition to the collecting rings. 2. Is an alternating currentever used for arc lights or for es-
citing the fields of a dynamo \& A. It is often used for citing the fields of a dynamo \& A. It is often used for
arc lighting, not for exciting dynamo fields. 3. Will the carrent alone be cat down by increasing the resistance o a coil or line, or will the voltage also be affected \& A Increasing the resistance of the circuit will tend to in-
crease the potential at the terminals. 4. Is the earth's A. No it greater at a high elevation than at eea level A. No; it is less. 5. How is the displacement or tonnag arbitrary and some based on approximate calculation of the immersed volume of the ship. 6. How do the suip-
poeed spiritanaliote and magicians perform the trick of lift
ing up a chair or small table by simply placing the hands
upon them ? A. Sometimes a ring is worn which has a
slot in it. A pin in driven into the chasr or table. The
performer catches the pin in the slot and so lifto the table.
(5966) I. R. asks: 1. Can a storage battery be charged off an alternating circuit of 50 volts ?
A. It cannot be socharged. 2. Whatis the difference between the make-up and winding of an alternating and continuous current motor? A. We must refer you to
our Suppisments which illustrate the same. They are quite different. 3. How many storage batteries will supply Co., Chicago) 10 hours daily 9 A. Two or three if the motor is wound for them. Otherwise, many more may be needed. 4. Can a 2,000 volt arc continuous cir-
cuit be tapped in such a way as to get a current of 50 volts, and not be able tohinder the lights nor short-cir-
cuit the wires in any way? A. It c n be done by putting in ashuntof forty times the resistance of the line included between its connections thereto. It will if used
tend to interfere with the service and will be very dangerous to admitinto a house. We advise you not to at gerous to
(5967) A. W. S. asks: 1. How much telegraph sounder? A. 903 feet of No. 28, which requires $2066 \cdot 116$ feet for a pound of wire of this size; or if you prefer, you can can wind with 568 feet No. $30,3,111$
feet to the pound. 2. Also for an instrument of 150 ohms resistance? A. 893 feet of No. 32. Of this $5 \% 3$ feet are requiredfor one pound. 3. What is the advantage of silk-covered wire over cotton-covered for this purpose? A. Can you recommend any book which treate rom. 4. Can you recommend any book which treats on tele-
graphy A. We recommend "Modern Practice of Electric Telegraph," by F. L. Pope, price by mail $\$ 1.50$; "Hand
$\$ 2.5$
(5968) B. B. M. asks: 1. Will a storage battery of 4 cells, each cell composed of 8 plates, $13 / \times 3$
and $1-16$ inch thick, be suflicient to run a 2 candle power incandescent lamp for several hours at a charging? A. o. The plates are too small. 2. Is there any good metal of which the containing jars of a storage battery could be made, and which would not be allacked by the method for making the plates of a storage batterys To merely ronghen the plates, and allow the lead oxide to be formed by repeatedly charging and discharging in opposike directions, or to coat all the plates with red lead, or 0 coat the positive plates with red lead and the negative plates with litharge. A. This is a very open question. with nitric acid, and then the roughened plate, treated In commerce pasted or porous plates are almost oniversal in this country.
(5969) J. G. says: Could you inform me whatis used by laundrymen to bleach clothes, besides javelle water, and a so what they use to remove fruit stains from clothes? A. Make a strong solutionlof chlorwater, allow to settle,and draw off the clear liquid. Rinse the goods in clean water containing about 5 per cent of sulphuricacid, and then pass them slowly throngh the bleaching solution. They should then be well rinsed in water containing a little carbonate of sods. If the cloth is much colored, it may be neceseary to allow it to remain for a short time in the bath. This is the usual method of bleaching in laundries. 2. To remove fruit phuric sid from table linen, moisten withanlute sul. phite or hyposulphite of soda in water or apr ad the tained part over a bowl or basin, and poor boiling water through it. or rub on salts of lemon and poar boiling water through until the stain disappears or becomes very
(5970) J. H. B. says : Can you tell me how a soft solder can be made so that it canbe nsed withused with a slight heat. A. Melt together in a crucible, at a very moderate heat, biemuth, 1 part; tin, 3 parts by will need acid or some flax cost in slender sticles. You that will work without, except on very clean surfaces.
(5971) M. L. Writes: Is the hypothetical ether supposed to be rigid or not? Can it be matter and be imponderable also ? If it occupies space between the molecules, say of glass, and vibrates freely among
them, must not the molecules of ether be very much emaller than those of glass, and will the molecular glass transmit light, and wood not \& Are there any otber theories of light, heat, and sound propagation besides the ether wave and air wave theories? A. The ether is very imperfectly described, and cannot have the attributes defined as in the case of perceptible matter. It is not matter in the everyday sense, and is not subject to for transparency except that certain bodies seem to exclude ether from the space they occupy. Wood however theories have been advanced, but arerathermore ungatiofactory.
(5972) E. H. E. asks: What was the composition of the mixtore called "staff," used in the World's Fair Buildings at Chicago? A. Staff is composed of plaster of Paris, alumina, Portland cement,
mixed with glycerine, dextrine, and water; coarse bagging or New Zealand hemp is nsed to give strength. The composition varies according to the particular kind of Augnst 8, 1891, and March 18, 1893.
(5973) Constant Reader asks: What is the color and general appearance of aluminum as found in the raw clay, and is it visible to the naked eye ? Also,
what is the cheapeat price that it has Deen marketed for? Are there any chances for a person to-day to try and diacover a meane by which to lessen the expense of the socallic metale. A. Alumham ho The lowest price is about 50 cents per ponnd. There is a possibility of course of reducing the cost of extraction.

For which Letters Patent of the April 10, 1894, AND EACH BEARING THAT DATE.
[See note atendof list about copies of these patents.]

.act

Speed and power regulator for motors, \mathbf{H}. B. A. Quentèi
mamine
mata
Stomer, raneese
Tileatan
ate
and joinitio
brate estmaer mresige
硡
and
ropelinn
Selle
iiesecucucuid

DESIGNS.

TRADE MARKS.

ISPOSAL OF THE GARBAGE AND Waste of Cities.- B FW. F. Morse. A statement of what
during the last two years. .has been aded to our know
ledge on the subject of the disposal of city garbage and

ANDMDATINNTVENTORS.

NOWV READY! Fourteenth Edition of
Experimental Science:

REVISED AND ENLARGHD.
120 Pages and 110 Superb Cuts added.
Just the thing for a present for any man, woman
tudent teacher, or any oneintinerested in mainence.
In the new mater contained in the

 MUNN \& CO., Publishers, Office of the SCIENTIFIC AMERICAN, 361 BROADWAX, NEW YORK.

GGHEIS DEADE

ARTESIA V WELIS -BY PROF, E.

OIL WELL SUPPLYCO.

F YOU HAVE ANY SMALL ARTICLE in quantities, write to The Jones Bros. Elec

INSTRUCTION•MALL

ELECTRICITY
 4000STUDENTS Caisoruniunia

BUY

TELEPHONES
That are good-not "cheap things.", The differ
ence in cost is little. We guarantee our apparatus and
 Or guarantee andinetruments are BOT H GOOD.
WESTERN TELEPHONE CONSTRUCTION CO., 40 Monadnock Block, CHEAGO.
Largest Manufacturers of Telephones in the United States. TECHNICAL SCHOOLS: THEIR P̄UR

 WORLD'S FAIR HIGHEST AWARDS

Reliable Incubator \& Brooder Co., Quincy, III
MATCH * MACHINERY

HARRISON CONVETOR:
 Haring Grain, Coal, Sand, Clay, Tan Bark, Cinders, Ores, Seeds,\&\&e

 TTO GAS ENGINE WORES, PHKLADELPHIA

 BELL TELEPHONES Rocrizes, Tranmit
(O) BULL'SSEYE Ilustrated in SCIENTIFIC AMEBICAN, March 3
LICHT PROOF FILM CARTRIDCES Best and Most Practical Cameram REQUIRED. IF Send for Description, with Sample of Work.

Model \& Experimental Work. Asoberout.

 Prices, from 85 to $\$ 3$. Send for circular,
SCIENTIFIC - EXPERIMENTS. - DE scription of some simple and asily performed scientific
experiments. Foucault's pendulum, xechange of water
and wine, the bird in the case the five-pointed star the

KNITTING MACHINERY.
Knitted underwear is in vogue. The best
machinery for its manufacture, such as
SHIRT MACHINES, SLEEVERS, BAR STITCH MACHINES, etc., are made by SCOTT \& WILLIAMS,
2077 E. Cumberland Street, SPECIALTY CO., DECATUR, ILL cialities, solicit propositions from
owners of patente for the handing of
and novelties of merit.
ARMSTRONG'S * PIPE * THREADING
 CUTTING-AFF MACHINES

Fertilizers are Unprofitable Unless thes contain sufficient Potash. Complete
fertilizers hound containat least 6 perc eent. of Potasi.
Fertilizers for Potatoes Tobseco
 information free. Address,
GERMAN KALI WORKs,

 FASTERTHAN SHORTHAND

Without a teacher; no knowledge ou can learn at hathnome
Don't waste your time begin practice No now and you Don't waste your timese begin practice NOW and you
will berau for WGolk next month. K. K. Anderson
th Floor, World Building, New York City.
Study Electricity at Home by our correspondence methot. Terms low. Experi-
ments. Circulars free. Scientifc Machinist, Cleveld, THE SIMPLEX TYPEWRITER
\& 20 SOSOURANTEED

ALSITE SOLDER ALUMINUM.

Does not disintegrate. The Butt joint can be rolled, ALSITE ALUMINUM CO., 106Liberty St., New York. THE LINK-BELT COMPANIES,
 PROGRESS OF SCIENTIFIC DIS

JUST PUBLISHED.

Star * Maps

By Richard A. Proctor, f.R.A.S.

A series of twelve elegantly printed Maps of the Heavens, one for every month in the year. Specially
prepared for use in North America. With descriptions accompanying each map, giving the names of the principal stars and constellations, showing their relativ A most beautiful and convenient mork. adapted for the use of those who des re to acquire a general knowledge of the starry realms. To which is added a description of the method of
preparing and using artifcial luminous stars as an aid in fixing in the mind the names and places of the various stars and constellations, by Alfred E. Beach. Altogether this is one of the most popular, useful and valuable works of the kind ever published.
One quarto volume, elegantly bound in cloth. Pric 32.50, postpald.

MUNN \& CO., Publishers,
361 Broadway, Now York

DISTANCE READING THIRMOMETERS Imqure de thetrpoce orour gooos．not instor，sisid ToWARD \＆DORON rochester NY．，U．S．A．
 DEAFNESS
 Loursvile，＂Ky

MALLEABLE

OIL FUFL FOR BOLERS－DE

\square
 v

VANDUZEN STEAM PUUMP

 OXFORD MFG．CO．， 340 Wabash Ave．，Chicago，II．
A New and Valuable Book．

12，500 Receipts． 708 Pages．Price $\$ 5$
Bound in Sheep，\＄6．\quad Half－Morocco，$\$ 6.50$ ． Bound in Sheep，$\$$ ．
Thas splendid work contsins a careful compilatio
 and Queries of correspondents aspublithed in
end iniciam erican ouringthe papt fiftyears
with many valuable and important adadions． Over Twelve Thousand selected hecelpts are
here collected，nearly ouserybranch or the tuefi arts
being represented．It is $ᄁ$ far the most comprehensive here conected，nearly every
being represented．It is by the most comprehensiv
votume of the kind ever placed before the public． The work may be regarded as the product of the stud－
les and practical experience ort theablegt chemists and
workers in all parts of the world the information workers in all parts of the world；the information given
beln of the highest raue．．arraged and condensed in
concise form convenient for ready use． Almost every inquiry that can be thought of，relatin
to formuize used in the various manufacturing in aus
tries，will here be found answered． Instructions ior
the arts are given．
Those who are engafed in any branch of industry
probably will ind inthir book much that is of practical
value in their reapective coll mon Those who are in search of independent business or employment，relating to the home manuracture of am ar－
ple artices，will find in it hundreds of most excellent
Bug gestions． MIUNN \＆ 0 ．，Publishers， SCIENTIFIC AMERICAN OFFICE， 361 Broadway，New Yor
 NEPERA PAPER． lew＊B00ks

ELECTRO MOTOR．SIMPLE．HOW TO

（1） （1） （1）

6ENGRAVING © FOR ALL JLLUSTRATIVE AND Addertisting Purposes

PATENTED \because NOVELTIES． ACENCIES WANTED Towers，Tanks and Tubs

PATENT SECTIONAL aLL IRON TOWERS．

ALL WOOD TOWERS ELEVATED TANKS

L．ouisiana Red Cypress Tanks
W．E．CALDWELL CO．

LOUISVILLE，KY．，U．S．A．．
GATES ROCK \＆ORE BREAKER

Capacity up to 20 L

 Send for Latalogues．
GATES IRON WORKS，
SCSO．Clinton st．Chicng
OMC，

EXPERT MODEL MAKING R Rataturben RAMES
 water．NO stopping
C．\＆．A．HODGKINS \＆CO．，Marlboro，N．H．
＂THE DENSMORE＂
Conveniences and the Number of Ends attained， Light Key Touch，Ease of Operation and Rapidity， Wearing Qualities and the Provision for Good Alignmen Compactness，Proportion，Finish and Beauty．
Recently adopted on couppettion by the U．S．War Department．Eighteen
Hunt ordered forthe useof ihe Booton Globe．Twenty in use by the Carnegie

 Funcy rimt

The McCONNELL Gopm Proof Filteps

REMOVE MICROBES
All Kinds of Disease Germs． The ice as it melts is filtered．

The MCC＇Onnell Filler Co．

A TALLOR－MADE SUIT Weill makio to
 FOR $\$ 10.00$

equal to any io al tallor＇s $\$ 18.00$ suit for $\$ 10$

 Express charges prepaid．Other Suitsjus！as cheap．We Save 50 per cent by buying
beg lots beg lots of material from makers－that ac
full partlealars free． LOUIS VEHON．Tailor，X 103 Adams St．，Chicago．
The Improved Monitor Incubator，

＊THE＂MUNSON＂TYPEWRITER．＊

This mach me bestits of sclentific work its prynciples appeal at once to the

INTEROHANGEABLE STEEL TYPE WHEEL

The Munson Typewriter Co， 162 S．La Salle Street，Chlcaga Ill．，U．S．A．

 Con crete，Moteto on Concrete and Works in Con
 Copperamith ing Aftof copperamithing f practi－

 Dynamos．Praceitial Manaememn of Dmamo and

 Gan

 st．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．82．06

 Metal Work．Wiemenary Meta work A Practiv

 Rlum bing Amer fran priumbint．Bk Mif ted

Fエモコ

Our entirely ner Catalogu of scientuc and Techn．
 MUNN \＆CO．，
Publishers of the＂Scientific Americans＂

COLD FORGED PRODUCT．
Fluted Tire Bolt

The

American

Bell Telephone
Company，
125 Milk Street，
Boston，Mass．
This Company owns Letters－ Patent No．463，569，granted to Emile Berliner Novem－ ber 17，1891，for a combined Telegraph and Telephone， and controls Letters－Patent No．474，231，granted to Thomas A．Edison May 3， 1892，for a Speaking Tele graph，which Patents cover fundamental inventions and embrace all forms of micro phone transmitters and of carbon telephones．

LOVELL DIAMOND CYCLES highest grade．fully warranted．
For Men or Women
Boys or Girls．
JOHN P．LOVELL ARMS CO．
Manufacturers， BOSTON，MASS．

The Folding Kodet．a new glass plate camera for 4×5 pictures．Can be used with
films by the addition of a roll holder．Latest mprovements，finest adjustments，handsome finish．

ASTRONOMY

Made easy and interesting with the help of our new
Celestial Planisphere and Handbook． For descriptive circular，andress POOLE BRO8．，Chicago，ill．
laboratory of Dr．L．K．böhm，

EASTMAN KODAK CO．，
Rochester，N．Y． S Send for＇04 Catalogue．

PARSONS，IDE \＆CO．Circular free 302 Bradley Ave．，PEORIA，ILL，

エエ゙ロ

The Most Popular Scientific Paper in the World Only 83.00 a Year，Including Pontage． This widely circulated and splendidiy illustrated paper is published weekly．Every number contains six－ orizinal engravinks of new inventions and discoveries， representing Engineering Works，steam Machinery， New Inventions，Noveltiles in Mechanics，Manufactures， Chemistry，Electricity Telegraphy，Photography，Arch：－
tecture，Agrioalture，Hortic Iture，Natural History etc．Complete Het of patents each week．
Terme of Subacripitiol．－One cops of the scien－ TIAC AMERFAN WIll be sant for ore vear－se numbers－ postage prepald，to any subscriber in the U ited States，
Cansdan or Mexico，on recelpt of tir ce do llars by the Canade or Mexico，on receipt of tir ee do hilars thy
pablishers；sixmonths， Clubs．－Wpeclal rates for several names，and to Pdit Masters．Writeforparticulars．
The satest way 20 remit is Dy The sasest way to remit is oy Postal Order，Draft，or Express Money Order．Money carefully placed inside
of envelopes．securely sealed，and correctly addressed， or envelopess securely sealed，and goes astray，but ts at the se der＇s risk．Address all letters and make all orders，dratts，etc．．payable to
MUNN \＆CO．， 361 liroadway，New Y ork．

THE

Scientific Gumericatu Supplement This is a separate and distinct publication from＇l＇He
SCIENTIPIC AM ERICAN，butis uniform therewith in size， SCIENTIFIC AM ERICAN，butis nififirm therewith in Bize，
every number containing sisten large pares full of en－
 SCTENTIFIC AMERICAN SUPPPLEMENT Is published week－
St ty，and includes a very wide range of contents．It pre－
sents the most recent papers by eminent writers in all sents the most recent papers by eminent writera in aly
the princlpal departments of Solence and the U＇seful Arts，embracing Biology，Geology，Mineralogy，Natural History，Geography，Archæolory，Astronomy Chemis－
try，Electricity，Light，Heat，Nechanical Engineering try，Electricity，Llght，Heat，Mechanical Engineering，
Steam and Rallway Engineering，Mining，Ship Building， Marine Engineering，Photorraphy，Technology，Manz－ facturing Industries，Sanitary Engineering，Agricuiture， Horticulture，Domestic Economy，Biography，Medicine，
etc．A vast amount of fresh and valuable information etc．A vast amount of fresh and valuable information
otainable in no other publication． The most important Enoineerino Works，Mechanisms，
Tnd Manufactures at bome and abroad are illastrated and manufactures at home and abroad are illastrated
and described in the supphkment． and deseribed in the SUPPLKMEINT．
Price for the Supplemenr for the United states，
Carads，and Merico， 85.00 a year；or one copy of the Carads，and Mexico， 85.00 a year；or one copy of the
Scientiplc Amitican and oue copy of the SUPPLE－ MENT，bouh malled for one year to one address for $\$ 7.00$ ． Single copies，10cents．Address and remit by postal order， express money order，or check．
MI UNN \＆CO, $\mathbf{3 6 1}$ H．

Fuilding Edition．

The scientimic american Architects＇anis RUllders＇Edition is issued monthly． 8250 a year．
Single copies． 25 cents．Thirty－two large quarto pages forming a large and sple did Magazine of Architecture，
richly adorned with elegant piates in coiors and with richly adorned with elegant piates in coiors，and with
other fine engravings；illustrating the most interesting other fine engravings；illustrating the most interesting
examples of modern architectural construction and allied subjects．
A special featare is the presentation in each number
of a variety of the latest and best plans of a variety of the latest and best plans for private resi－－
dences，city and country including those of very mod－ erate cost as well as the moreexpensive．Drawings in perspective and in color are given，together with Plans，
Descriptions，Locations，Fstimated Cost，etc． Descriptions，Locations，Estimated Cost．etc．
The eiegance and cheapness of this marnificent work The eleganoe and oheapness of this maknificent work
have won for it the Larrgest Circulation of any have won for it the Largest circhite sold by all newe－ dealers． 82.50 a year．Remit to

MUNN \＆CO．，Publishera，
361 Broadway，New York．
PRINTING INKE．

