A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

THE CALIFORNIA MIDWINTER FAIR-A BIRD'S EYE VIEW.

Bricutific Ammerican.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.
PUBLISHED WEEKLY AT
No. 361 BROADWAY, NEW YORK.

> O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

 on it, or some variation which will afford a ground for escaping from the original patent. He accuses the government of not awarding him his just rights ; or at least of not giving due consideration to his workwork, it should be stated, entirely in the direction of munitions of war. England, according to him, is a better field for the inventor, and the government there seems to have treated him as he desired, and as he feels is just. The United States government, through its officers, has, he claims, a way of taking out patents on top of his, and of so appropriating his inventions.
It is, however, in its character of purchaser of patented things that our inventor complains of the government. It is very true that until recently inventors of improved arms and munitions of war had but little chance to deal with the Federal authorities. There was little or nothing needed. The country drifted along very peacefully without an extensive navy, and with but the skeleton of an army. But now a change has come. The navy is being built up as quickly as possible, and we soon may be a participant in the race of the great powers for naval supremacy. The army, while not increased in numbers, is being supplied with new arms-arms due unfortunately not to an American inventor-and of small caliber, in sequence with approved European practice. Harveyized steel, American made projectiles and American machine guns are
now freely purchased, simply because our country has now freely purchased, simply because our country has a navy on which to employ these products.
It would appear therefore that as a purchaser of patents the government is not so very much to blame.
The authorities have to exercise care in such matters, and their fate is to be besieged by patentees desirous of having their inventions adopted. The absence of a large standing army, and our fortunate exemption from imminent danger of war, have operated to cut off one of the largest markets for inventions.
The subject of the inventor and of how he should be treated by the public is a very. wide one, on which different opinions may be consistently or at least honestly held. But the enlightened opinion can be but the one. The inventor should be encouraged. He is one of the few definitely provided for in the constitution, and the patent statutes are built directly on the provisions of that instrument. The administration of the Patent Office should be conducted for his good, the very establishment of the office being based on the theory that the inventor is a public benefactor. If an application is made for a patent, the examiners of the case should strive to discern the invention which may be in it, and not endeavor to reject it for want of this indefinable quality. The highest courts have their principal difficulty in patent cases in deciding as to invention, its presence or absence. It seems absurd, therefore, at the outset of the career of a patent application that this most difficult question should be adjudicated by the first official dealing with it.

Many lawyers have felt that a more liberal treatment should be awarded patents by the courts. The virtual abolishment of the right of reissue has done away with what should have constituted an effectual remedy for fore not err on the side of severity; it should be the inventor's friend and critic, not his enemy, and should not constitute itself a court of first resort.

The Deadly Passenger Car.
We are all going to be poisoned now by the deadly passenger car. In the laboratory of the Imperial Board of Health of Germany experiments were made between January, 1891, and July, 1892, by which the seeds of consumption were found in abundance in the dust collected, not only on the floors, but on the walls and seats, of cars. Samples of dust were taken from 45 compartments of 21 different passenger cars and 117 animals were inoculated with them. Part of these died very soon thereafter of various contagious diseases before they had time to develop consumption; of the rest, killed four to six weeks after inoculation, three had tubercles. These three, however, were inoculated with sleeping car dust, taken, not from the floor, but from the walls, cushions and ceilings. Bacteria at the rate of 78,800 per square inch were found on the floor of a fourth class car, and $34,400,27,200$, and 16,500 per square inch on the floors of the third, second and first class cars. Thus, even in the latter, the average passenger, who usually has at least half a compartment to bimself. say $8,000 \mathrm{sq}$. in. of floor, has an army of
floor alone, to say nothing of other millions in front and rear, on both flanks and overhead. It would seem impossible to escape; but the board of health is said to have reported measures for removing or reducing the danger, which the railroads are consider-ing.-Railroad Gazette.

The Tehuantepec Isthmus Railway.

The March number of the Engineering Magazine contains an interesting article on this subject by Senor Romero, the Mexican minister at Washington, from which we take the following:
The Mexican Congress, by an act of June 2, 1879. gave a charter to Edward Learned, a citizen of the United States, or the company that he might organize, to build the Tehuantepec road within three years and four months from the date of the charter, and offered a subsidy of $\$ 7,500$ for each kilometer of road built by the company and actual land opened. Mr. Learned organized a company in New York which held the grant for several years and built, in a provisional way, few miles of road from the mouth of the Coatzacoalcos River toward the south.
After long experience in ineffectual efforts had shown that it was not possible to secure this road even under the liberal concessions made by the Mexican government, it was suggested that the government should undertake the work on its own account. Congress, therefore, authorized the executive, on May 30, 1882, on account of the state, to build the Tehuantepec Railway or to contract for its construction with a company. By virtue of this authorization the Mexican government signed, on October 15, 1888, a contract for the construction of the road with Edward McMurdo, the representative of Salvador Malo, authorizing a loan of $£ 2,700,000$ for the expenses of the same, which was raised at London, Berlin, and Amsterdam by the sale of five per cent bonds at about seventy per cent. This contract was approved by an act of the Mexican Congress of December 19, 1888, and was modified by another contract signed on October 15, 1889, also subsequently approved by Congress.
To carry out this purpose it was necessary first to terminate the contract still pending with the Learned company. This company agreed to give up the contract, receiving a compensation for expense and damages of $\$ 1.500,000$ in United States gold, which I paid in New York on behalf of the Mexican government.

As the proceeds of the loan of $£ 2,700,000$ were not sufficient to finish the road, part of another loan of £3, 000,000 , recently contraeted at the city of Mexico, has been applied to that work. On December 6, 1893, a contract was signed at that city for the construction of the fifty-nine kilometers of road unbuilt, and it is provided in the same that the line shall be finished on September 6 of this year, with an additional expense of over $\$ 1,000,000$.

The Tehuantepec road is now practically completed, and Mexico offers the result of all this work of many years to the commercial interests of the world.

The comparative advantages of the Tehuantepec interoceanic route over the Panama route, in reference to geographical and commercial features, are great. Any map showing the two routes will prove in a general way the geographical advantages of the Tehuantepec route in reference to the coastwise commerce of the United States, and, in a measure, its advantages in relation to the business of western Europe.
The shortest sail or steamer route from eastern Asia to any point on the Pacific coast of the American isthmus passes in close proximity to the shore line of Tehuantepec ; in fact, the shortest great circle from Panama to Hong Kong will pass through Tehuantepec, east of San Francisco, and nearly up to the Aleutian Islands. Even the shortest route from Panama to the Sandwich Islands will pass close to Tehuantepec.

It is only a little over 810 miles from the mouth of the Mississippi River to the eastern terminal of the Tehuantepec Railroad. The total distance by rail and water from Chicago to the Pacific Ocean via Tehuantepec is only 1,875 miles.
The nautical conditions for sailing vessels are much more favorable at Tehuantepec than at Panama.
The interoceanic route established at Tehuantepec will connect, at the best possible location, the eastern and western coasts of the United States and Mexico, and will develop a coastwise business of great magnitude and of vast importance to these two countries, if controlled and managed by United States interests.

Eighty Miles in Forty-five Minutes.

M. Latruffe, whowent up in a balloon recently, at Courbevoie, outside Paris, and who was supposed to be lost, succeeded in safely reaching tirm earth. His ascent (says the Paris correspondent of the Daily I'elegraph) was to have been a short one, but he had no sooner reached the upper air than he was carried away in a north westerly direction. Hedescended with much difficulty at a little place called Beauvarde, bet ween Chateau-Thierry and Epernay, in the Champagne district. He had thus traveled eighty miles in three quarters of an hour.

How to Distinguish Textile Fibers.
It is customary, says Textile Industries, to mix, spin, and weave fibers in various proportions, and as it is important to know the quantities of different fibers contained in goods to be imitated, researches have established a number of tests for this purpose, with which every manufacturer and manager should be thoroughly conversant.
In a fabric composed of linen and cotton, a strong potash solution will color the linen fiber a deep yellow, while the cotton will be only slightly tinged with the color; a mixed yarn or fabric will, therefore, assume a spotted or striped appearance in the liquid. If a sample of the linen to be tested is dipped into olive or rapeseed oil, the fabric will quickly absorb it. When the excess of oil has been removed and the fabric appears striped, it is not pure linen, but mixed, and, further, the linen thread becomes transparent and the cotton thread opaque; while, if the linen saturated with oil is laid upon a dark substance, the linen threads will appear much darker than the cotton on account of this transparency. In order to destroy or dissolve cotton by a process similar to carbonization, the fabric to be tested is laid in a mixture of three parts sulphuric acid and two parts saltpeter for eight or ten minutes, then washed, dried, and, finally, treated with ether containing alcohol. The woolen and linen fibers have remained uninjured, while the cotton has been dissolved.
In order to distinguish animal from vegetable fibers, they may be boiled in caustic potash lye. Both wool and silk will be dissolved thereby, but not linen and cotton. If a sample of woolen goods is to be examined to see if it contains cotton, place it in a concentrated sulphide of sodium solution; by this, the wool is dissolved and can be entirely washed out in hot water. The residue will be vegetable fiber, and, if the
sample was at first weighed exactly, the actual persample was at first weighed exactly, the actual percentage of wool can be ascertained by weighing the remaining vegetable fibers. Such a fabric can be
analyzed with still greater facility in an undyed conanalyzed with still greater facility in an undyed con-
dition. Wool and silk, when plunged into picric acid, are dyed a fairly fast yellow, while botb linen and cotton remain white.
A silken thread, when exposed to a flame, ignites, evolving a smell of burning feathers, but continues to burn only as long as it remains in contact with the flame, and is extinguished when taken away, the burnt end forming a black, charred substance, thicker than the thread. Wool behaves similarly, but the odor is more repuguant.
The surest and best test, however, is the microscope, which gives unerringly the component fibers of the fabric under examination. For this purpose, several threads must be drawn out of the fabric in question (an operation best performed under water) and subjected to an examination with a power of from 200 to jected to an
300 diameters.
The linen fibers appear as cylindrical formations, with nodular swellings, the former sometimes split into thinner fibers, especially in the case of linen which has been used.
Cotton tibers, however, will show themselves as flat ribbons, and are very thin as seen where the edge is shown. With mixtures of linen and cotton, the examination of the fibers can be conducted with still greater facility, by opening a small strip of the material : to be investigated, introducing it into a dilute alcoholic solution of aniline red (fuchsine), but only for a very short time, after which it is well washed, and then immersed in caustic ammonia for two hours. In this operation the linen fibers are dyed rose red, while the cotton fibers take no trace of color, and their examination is thereby rendered much more easy.
The fibers of wool appear under the microscope as cylinders covered with scales, and their delicate structure is rendered still more visible by treatment with sulphuric acid, which dissolves the yolk that fastens these scales to the fibers; but the different qualities can also be comparatively tested to ascertain the uniformity; firmness, or strength. The microscope is a means of distinguishing the relative value of the different wools better thay is possible by any other mode. For this purpose, a "wool gauge" bas been constructed, consisting of a brass frame screwed to the stage of the microscope, into which the wool fiber is fastened in such a manner that it is first loose, but is gradually tightened with a screw for that purpose, when the diampter can be measured with a micrometer and an exact measurement of the fiber obtained. But as all the fibers are not equally thick, it is necessars, of course, to measure several, to obtain the average. To
measure the elasticity and strength of the fiber, it is measure the elasticity and strength of the fiber, it is
first drawn tight, the index placed upon zero, and the tension increased by the gradual drawing with the screw mentioned until the fiber breaks. The index will show on the scale how many millimeters a tiber may be stretched before it breaks. It is evident that this experiment must be repeated with several fibers, and that the same apparatus can naturally be used for this purpose for all kinds of fibers.
Other animal hair used for textile fibers, goat hair, horse hair, etc., can also be recognized and distinguish-
ed by the microscope. As for silk, it presents no peculiarities, but is simply a homogeneous cylinder him. without the scale layer, marrow, and bark substance of hair. The optical difference of all these fibers is aided by the micro-chemical investigation. Iodine and sulphuric acid may be used as reagents, whereby the vegetable fibers, consisting of cellulose, are always colored blue, which is not the case with animal fibers. Silk differs from the latter in that it is dissolved in concentrated muriatic acid.

Aluminum for the Preparation of Phosphorus.
The applications of aluminum in the arts multiply with much the same rapidity as do those of electricity. The Berichte describes a new method of preparing phosphorus by its use as a reducing agent. The process is so simple that it can easily be illustrated on the lecture table. Hydrogen ammonium sodium phosphate is fused in a porcelain crucible until it is changed into sodium metaphosphate; aluminum turnings are then dropped into the liquid, and the freed phosphorus bursts into flame. Now if the experiment is tried with a glass tube, instead of a crucible, a slow current of dry hydrogen being passed over the unixture of the salt and aluminum, the phosphorus distills into the cooler part of the tube withont the formation of any phosphureted hydrogen. The residue consists of alumina, sodium aluminate and a phosphide of alumina$\mathrm{Al}^{\mathrm{s}} \mathrm{P}^{\mathrm{s}}$.
By these steps in the process only 30 per cent of the phosphorus in the mineral used can be obtained; but the phosphide is decomposed entirely by heating with silica, and this may be added at the beginning of the experiment and the reaction proceeds without difficulty and without loss.
It is advised that for the lecture table a combustion tube a yard long be used; two and a half parts of aluminum, six parts of sodium metaphosphate (obtained from heating previously the hydrogen ammonium sodium phosphate) and two parts of finely pulverized silica are placed in the tube, a slow current of hydrogen is passed through, and heat is applied until the reaction begins. This is shown by sudden incandescence, and phosphorus is seen to condense in globules on the cooler part of the tube, at the end where the hydrogen

Instead of this phosphate, any ordinary phosphate may be used, but experimenters are warned not to use the superphosphates containing calcium sulphate mixed with them, such as are used for fertilizing purposes, because the sulphate is suddenly decomposed by the aluminum with an explosion when a certain tempera ture is reached.

Business Law in Daily Use.

Herewith are the most important laws, succinctly stated, that touch the needs of the average business man. An observance of them will enable one to avoid many mistakes that may be serious, and steer the innocent from many pitfalls that may be calamitous. They contain, in few words, the essence of a large
amount of legal verbiage not always very intelligible. Each individual in a partnership is responsible for the whole amount of the debts of the firm, except in cases of "special" partnerships.
Contracts made on Sunday cannot be enforced. A contract made with a minor is void.
A contract made with a lunatic (or with one who has a general reputation for weak-mindedness) is void. (The latter case must, however, be clearly estab ished.)
The acts of one partner bind all the other partners.
It is a fraud to conceal a fraud.
No consideration is sufficient in law if it be illegal in ts nature. (Many "failures" are upset because of this aw.)
A receipt for money is not alway conclusive.
An agreement without consideration is void.
The law compels no one to do impossibilities. (This must be liberally construed.)
Ignorance of the law excuses no one.
Note especially the following, as affecting the giving and taking of checks and notes:
A note made on Sunday is void.
A note made by a minor is void.
A note obtained by fraud, or from a person in a state of intoxication, cannot be collected. (This is a corollary to the law governing contracts with the weak minded.)
Notes bear interest only when so stated.
If a note is lost or stolen, it does not release the maker; he must pay it if the consideration for which it was given, and the amount, can be proved.
Signatures made with a lead pencil are good in law. A note indorsed in blank is transferable by delivery, the same as if made payable to bearer.
The maker of an "accommodation" note (one for which he has received no consideration, having lent his name and credit for the accommodation of the holder) is not bound to the person accommodated, but is bound to all other parties, precisely as if there was a
good consideration.
If the maker of a check or draft has changed his
esidence, the holder must use "due diligence" to find Checks or drafts must be presented for payment without unreasonable delay."
Ignorance or oversight of or willful inattention to f andandal injunctions is the frequent source of annoying and expensive litigation.-The Keystone.

decision relating to patents
 MAREING OF PATENTED GOODS.

Supreme Court of the United State

Decided March 5, 1894

Appeal from the Circuit Court of the United States for the Eastern District of Pennsylvania.
This was a bill in equity, filed May 7, 1889, for the infringement of letters patent issued April 2, 1889, for the term of three and a half years, by the United States to Julius Stroheim for a design for rugs.
The plaintiffs asked for an injunction and for damages in the sum of $\$ 250$ as penalty and damages under the act of February 4, 1887, chapter 105, and waived all right to any further damages, or to an account of profits. The court, on May 13, 1890, entered a decree for the plaintiffs accordingly, and the defendants appealed to this court.
Mr. Justice Gray (after stating the case) delivered the opinion of the court.
By section 4,900 of the Revised Statutes of United States (which, by virtue of section 4,933, applies to patents for designs), it is made the duty of every patentee or his assigns, and of all persons making or vending any patented article for or under them, to give sufficient notice to the public that it is patented, by putting the word "Patented" upon it, or upon the package inclosing it, "and in any suit for infringement, by the party failing so to mark, no damages shall be recovered by the plaintiff, except on proof that the defendant was duly notified of the infringe ment, and continued, after such notice, to make, use or vend the article so patented."
The clear meaning of this section is that the pat entee or his assignee, if he makes or sells the article patented, cannot recover damages against infringers of the patent, unless he has given notice of his right, either to the whole public by warking his article "Patented" or to the particular defendants by informing them of his patent and of their infringement of it.
One of these two things, marking the articles or no tice to the infringers, is made by the statute a pre requisite to the patentee's right to recover damages against them. Each is an affirmative fact, and is something to be done by him. Whether his patented articles have been duly marked or not is a matter pe culiarly within his own knowledge; and if they are not duly marked, the statute expressly puts upon him the burden of proving the notice to the infringers, before he can charge them in damages. By the elementary principles of pleading, therefore, the duty of al leging and the burden of proving either of these facts is upon the plaintiff.
In the present case, although the plaintiffs had manufactured and sold goods with the patented design upon them, they made no allegation or proof that the goods were marked as the statute required. They did allege in their bill that they notified the defendants of the patent and of their infringement; but this allegation was distinctly denied in the defendants' answer, and the plaintiffs offered no proof in support of it. They could not, therefore, recover, even if this were a suit for damages within section 4,900 of the Revised Statutes of the United States.

But these plaintiffs, waiving all right to an account of profits, or to other damages, sought and were allowed to recover the fixed sum of $\$ 250$, in the nature of a penalty, imposed by the art of February 4, 1887 (ch. 105), upon any person who, during the term of a patent for a design, and without the license of the owner, applies the design secured by the patent, " or any colorable imitation thereof," to any article of manufacture for the purpose of sale, or sells or exposes for sale any article of manufacture to which such design or colorable imitation" has been applied, " knowing that the same has been so applied." (24 Stat., 387.) This statute, according to its clear intent and effect, requires that, in order to charge either a manufacturer or a seller of articles to which has been applied a patented design, or any colorable imitation thereof, he must have been "knowing that the same has been so applied," which is equivalent to saying "with a knowledge of the patent and of his infringement." The reasons for holding the patentee to allege and prove either such knowledge, or else a notice to the public orto the defendant, from which such knowledge must necessarily be inferred, are even stronger, in a suit for such a penalty, than in a suit to recover ordinary damages only
In none of the cases on which plaintiffs rely, and by which the court below considered its judgment as controlled, was there any adjudication inconsistent with this conclusion.
Decree reversed and bill dismissed.

TERRY＇s FEED bag．

The accompanying illustrations show an article which embodies in itself a notable improvement on the horse feed bag in common use．This bag is de－ signed to prevent the waste of horses＇feed so prevalent where the common bag is now used．
Whoever may have noticed how oats are scattered about at midday in the streets of the metropolis has also probably been impressed with the thought that not only the yearly but also the daily loss of grain in the city of New York alone must be something enor－ mous．It is safe to say that where the common nose bag is employed nearly one pint of grain is lost at every feeding．In a stable of only ten horses this daily loss assumes considerable proportions．As will

terry＇s feed bag

the balance in the two side pockets，in the lower end of each of which is a small aperture through which the grain passes automatically into the bag as fast as its contents are consumed．When in position on the animal＇s head，his lips are always within reaching dis－ tance of the bottom of the bag．So long as the bot－ tom is covered to the depth of an inch or more，the grain in the side pockets cannot flow in．There are no springs，chains，metal tubes，etc．，used in the construc－ tion of this bag，and it can be trampled on by the horse with impunity without suffering injury．
The automatic method of closure prevents the grain frombeing tossed out by the shaking of the animal＇s head．
A patent to cover this improvement has been ap－ plied for by Mr．T．Philip Terry，of No． 7 Bowling Green，New York City．

ALUMINUM BOAT－THE JULES DAVOUST．

Lieut．Hourst，of the French navy，and his mate，En－ sign Baudry，in charge of the Niger hydrographic mis－ sion，left Bordeaux at the beginning of January carry－ ing with them the Jules Davoust，a boat capable of being taken apart，and of extreme lightness，owing to its hull being constructed of an alloy of aluminum． This little boat，of which we give a view reproduced from a photograph taken near the Royal Bridge，at Paris，where it was exhibited before its departure， weighs 4,840 pounds，and has a capacity of 11 tons with a full load and a maximum draught of but 1.38 feet．The hull is formed of sixteen half sections as－ sembled in pairs in the longitudinal direction upon a strong keel of hard steel that runs the entire length of the boat．In the transvere direction，each half section is connected with the following by bolts，and tightness is assured by the interposition of a strip of rubber be－ tween the flanges．The general aspect is that of a barge slightly depressed in front．This part is occupied by a wooden cabin for the captain and his mate．A second chamber，formed by the hold，is to receive the stores and the goods for trad－ ing purposes．At the rear there is a cabin for the crew． The three chambers thus formed are separated by tight bulkheads．The steering wheel is situated behind the captain＇s cabin．A movable tent arranged at this point is designed to protect the cap－ tain and his assistants during the hydrographic observa－ tions，and serves likewise to shelter the pilot．
The boat is provided with three masts，with easily handled lateen sails．These masts are light and are placed at nearly equal distances from each other．The boat may likewise be propelled with oars．Two sponsons near the center of the boat support two Hotchkiss rapid－ fire guns．
The following are the prin－
cipal dimensions and weights of the various parts ：

Total length．	42	feet．
Breadth．	9	＂
Depth．	$2 \cdot 6$	＂
Breadth outside of wales．	$10 \cdot 5$	＂
Length of captain＇s cabin．	13	＂
Mean width．	6.8	＂
Length of rear cabin．	$10 \cdot 8$	＂
＂＂central chamber	16	＂
Light weight．	4，840 por	ands．
Total displacement．	24，640	
Corresponding draught．．．．		
Mean weight ofa section		pounds．

These sections are，therefore，easily transportable and it is thus taken apart that the Jules Davoust is to reach the Niger，in the first place by sea，then by the Senegal River，and finally by the route by land from Kayes to Bamakou．
The use of aluminum in the form of an alloy，tough， yet soft enough to undergo forging（for pure aluminum is slightly brittle），constitutes a very important pro－ gress for the preparation of the carrying materiel that is to be used in the colonies，either for the construction of launches capable of being taken apart or for that of light vehicles adapted for following everywhere the of light vehicles adapted for following everywhere the
movements of forwarding columns．The Jules Davoust was constructed at the works of Mr．Lefebvre，of Paris， who has already furnished the Monteil mission with a barge of the same nature，and has made a specialty of colonial war materiel，especially of light wagons，capa－ ble of being taken apart，that our troops have made use of several times in the Soudan and Tonkin expedi tions．－La Nature．

MEANS FOR PROPELLING VESSELS．

The illustration represents an apparatus for the pro－ pulsion of vessels in which pistons are operated in open－ended pipes extending longitudinally beneath the ressel，the impact of the pistons on the water being de－ signed to act with great efficiency in moving the ves－ sel ahead，and the piston and tube being designed to handle with much better effect the same quantity of water that the screw of a vessel of the same kind would handle．The improvement has been patented by Mr．William H．Witte，of No． 253 Flushing Avenue， Astoria，L．I．，N．Y．On opposite sides of the keel are parallel rectangular，open－ended pipes，as shown in the transverse sectional view，these pipes being closed on their upper or inner sides by slide plates moving in suitable slideways，and reciprocated by pitmen pirot－ ally connected with cranks on a transverse crank shaft，at whose ends are driving cranks pivoted to piston rods whose pistons work in the common form of oscillating steam cylinders，whose trunnions are jour－ naled in suitable supports，as shown in the longitu－ dinal sectional view．The cranks extend from oppo－ site sides of the crank shaft，so that the two slides are moved simultaneously in opposite directions． Each slide carries a vertical piston moving through a slot in the slide plate，each piston having a longitudinal movement backward through the pipe， and ejecting the water therefrom in a solid stream． An upwardly extending shank of each piston has a crosshead sliding on vertical guide posts around which are spiral springs normally raising the piston，and each crosshead slides longitudinally on a guide rod forming part of a frame moving with the pistons，the top beam of each frame having a lateral arm at－ tached to the piston rod of a steam cylinder，two such cylinders being arranged vertically side by side and having a common steam chest between them．The valve stems extend upward from the steam chest to a walking beam，an arm from

ALUMINUM BOAT，THE JULES DAVOUST．
which is pivoted in a link pivotally supported on a rod suspended from an arm moved by a hand lever，the latter being held in the usual manner by a quadrant．The opposite ends of the link connect by rods with eccentrics on the main crank shaft，so that by means of the hand lever the strokes of the pistons in the steam cylinders may be reversed without stop－ ping the machinery．In operation，as the revolution of the crank shaft causes the slides to be reciprocated

witte＇s apparatus for the propulsion of vessels．
by the pitmen，the piston moves downward at the end of each forward movement of the slide，the slide then moving backward and carrying the piston with it，the piston being raised as it reachestheend of its stroke，and the alternate raising and depressing of the pistons in the slidebeing effected by the pair of verti－ cally arranged steam cylinders．Instead of the steam mechanism for effecting the vertical movement of the pistons，a very complete system is provided by means of which this operation may be automatically effected by electricity．The inventor differentiates his system widely from the ordinary methods of jet propulsion，in which comparatively small quantities of water are ejected at high speed，but proposes to expel the water with about the same velocity given to it by the screw propeller，the water being expelled at about the plane of the ship＇s bottom，and thus exerting great power．

Her Majesty＇s Ships at Sea．

The Chief Constructor of the British Navy recently read an important and reassuring paper at the Institute of Naval Architects on the subject of the qualities and performances of first－class battleships of the Royal Sovereign and Resolution class．There was but little said about that bugbear of some writers on naval subjects，the metacenter，but a great deal about the periods of the rolling motion of the ships and the periods of the wavesbeingis ochronous．＂I venture to illustrate this point by the simile of a boy in a swing and a man swinging him．If the latter exerts his force concurrently with the movement of the swing and the boy in it，as he increases his efforts the higher the swing goes，and as he uses less strength so will it tend to bring the swing to a state of rest．The ship＇s period is that of the boy in the swing；the wave＇s period that of the efforts of the man．The difficulty I find in the matter of the Resolution is that，taking the chief con－ structor＇s views as correct， and that there was＂no dan－ ger whatever，only discom－ fort，＂why did not she con－ tinue her voyage instead of returning to Queenstown， when a small craft like the Gleaner pursued her way in safety？Of course，the talk about the foreturret lifting some inches was＇twaddle， though a large quantity of water was shipped and went below．This was due，as I heard at the time on excel－ lent authority，to the tarpau－ lin cover not fitting the lower part of the turret，or the right cover being mislaid，and to a large ventilator on deck not being unshipped and the dead－light screwed down，asit ought to have been．＂－West－ minster Gazette．

In the eleventh century both English and French dandies covered their arms with bracelets．

THE BAHAMA EXPEDITION OF THE STATE UNIVERSITY OF IOWA.

by b. м. wrison, A.

During the last summer a most unusual move in educational circles was made by the State University of Iowa.
It is well known among scientists that nowhere in the world, possibly, do the waters of the sea throb with a more varied and wonderful marine flora and fauna than around the Bahamas and Florida keys. The "gardens of the sea" arethere! With the water-glass (a common wooden bucket with a glass bottom) one looks down through brilliantly hued waters upon scenes of wonder and exquisite beauty.
There are great jagged caves of coral, with curious sponges growing about their walls; long, slender sponges of lilac and ocher, and some of scarlet and others of brown and black, and still others coarse and clumsy, looking like lumps of yellow mud or clay. There the slender gorgonians, ranging through all the shades of browns and tans, lift their delicate fingers teeming with polyp life. Yonder one sees a cavern carpeted with gorgeous "sea anemones," their tentacles glowing with bright green and scarlet and maroon and flesh color. These are Neptune's sea flowers! Here those treasures of the mermaids--the "sea fans" gracefully wave their red and yellow lace-work, and the "sea feathers" toss their nodding plumes. On thi jutting coral crag a "sea urchin" bristles in long, slen der black spines, and a little further on one of its re lations glistens in a spinyarmor as white as ivory. In and out among these caves flash the tropic fishes, on which the sea god has lavished the most vivid colors of his palette-intense blue and silvery white and gold and tarquoise; and some of these dwellers in his secret halls even gleam like mother-of-pearl, with all the colors of the rainbow.
But useless would it be to attempt to appropriately picture forth the wealth and beauty of these hidden wonders.
A few years ago the student got his know edge of these marin forms from musty text books bristling with names often as mean ingless as unpronounce able. Later he had the advantage of dried and alcoholicspecimens But it was not unti But recently that erf was that an him an opportunity to study these most beau t if ul and wonderfu forms of life in their native homes.
Prof. C. C. Nutting, of the chair of systematic zoology at Iowa State University, had wice before crossed the rich zoological water around the Bahamas, and it was then that occurred to him the plan which the summer o 1893 finally saw realized.
The Emily E. John son, a two-masted schooner, 96 feet long, tonnage 115 tons, was chartered of its owner Captain C. C. Paul, of Baltimore, for three months for the use of the "Bahama Expedition of the State Uni versity of Iowa," which had for its object the "careful and systematic investigation of the marine fauna and flora around the Florida keys and Bahamas." The schooner was rapidly transformed into a dwelling vessel and floating laboratory.
A huge skylighted hatch was cut in the hold, and the hold itself fitted up to serve at once as sleeping apartments for the gentlemen of the party, as dinin room, and as laboratory.
A double tier of extemporized bunks lined either wall, long oilcloth-covered tables and camp-chairs occupied the center space, and a complete scientific library and laboratory supplies, including microscopes, chemicals, dissecting apparatus, etc., occupied shelves at one end. Provisions were stored in the fore part of the hold.
On deck was placed the hoisting apparatus, which was worked by hand and provided with 300 fathoms of wire rope. There was no steam aboard. The vessel
had been chosen for its fitness to ride the shallow waters about the keys and islands.
Charles Flowers, of Baltimore, was engaged as captain and George Merrill was mate. Three sailors, a cook (all as black as the ace of spades), and a saffronhued mulatto waiting boy comprised the crew.
The party itself was composed of twenty-one members (of which seven were ladies), and included profes sors, instructors, alumni, and students of Iowa State University, Professor Nutting being the leader. Gilbert L. Honser, instructor in biology, was the photographer, and many beautiful pictures were taken, of which our space only permits us to present a few.
All were interested in science and each was supposed to be especially interested in some particular branch of science. All had applied voluntarily for membership

Prof. C. C. Nutting.
and buckets of mollusks. One of our illustrations shows the giant star fishes captured, which measured about two feet across. The ornithologist and entomologist had captured strange birds and "bugs," the first prize of the latter being that curious luminous beetle worn by the Cuban ladies as a glowing ornament for the hair or to catch the lace of their mantillas. The botanists had their cans full and running over with ropic regetation, from the passion flower to our own familiar shepherd's purse and sand burr; and there were pans full of floating algae, "sea mosses." But it would take volumes to give an adequate idea of the poils.
From here we sailed for Havana, spent a few days exploring the city, and just outside the harbor dredged or that exceedingly rare animal form until lately supposed ${ }^{\circ}$ to be extinct, viz., the crinoid, genus Pentacrinus. We found fully 150 beautiful and perfect specimens.
Bahia Honda, thirty miles further along the western coast of Cuba, next claimed our attention The Spanish authorities, however, took us for a filibustering expedition, and forbade us to go more than thirty feet from the water line. The mosquitoes also waged war against us, and we turned toward Key West.

Here, too, however, we were forbidden to land, as a vessel clearing from a Cuban port during the quaran tine season must either lie fifteen days at sea or go to the Dry Tortugas and be fumigated.
Accordingly we chose the Dry Tortugas, and made many valuable collections, both by dredging and in shallow waters around the keys. Here we procured our first shark and investigated the coral reefs.

Returning to Key West, we dredged in the vicinity some three weeks. In deep sea dredging we used a common oyster dredge, a trawl, and a tangle bar. This last was especially useful in procuring the finer mate rials. It was merely a horizontal bar of iron, with great masses of raveled manila hemp rope tied to it, and in its meshes were caught a tangle of basket fish, crabs, sea urchins, deep-sea algae, and so on.
Clearing from Key West, we sailed for Har bor Island, Spanish Wells, and Eleuthera, Bahamas, and after a hasty run to Little San Salvador, or Cat Island, we had to turn north ward, as we were due a Baltimore August 1.
The whole summer had been one delightfu round of novelty and surprises. To one sci entifically inclined it was an opportunity for careful study and in vestigation, such as has heretofore been enjoyed only by specialists in government employ. The knowledge gained in actually seeing and studying these curious life formsin their native element was of more practical value than the perusal of whole lib raries of monographs or years of study of museum specimens.
Then the trip offered as well, glimpses of the customs and peoples o strange countries under the rule of three differ ent powers. Cuba is Spanish, Key West and the keys are Uncle Sam's southernmos Sam's southernmost possessions, Bahamas are English in the party. The university furnished all appliances \mid It was a study in comparative sociology. The trip has for dredging, for preserving materials, and for study. In addition, each member paid two hundred dollars which covered all expenses incurred by the party collectively, including car fare from Iowa City to Baltimore and return, with "stop-offs" at Washington and the World's Fair, in addition to our life aboard the ves sel for three months. It is estimated that we traveled by land and sea some six thousand miles.
On May 5, 1893, we left Baltimore in our floating ummer home and laboratory.
Seven days later we anchored in the harbor of Egg Island, Bahamas. Here we made a marvelous collection in the shallow waters and on land. Our deck was strewn with sea-fans and gorgonians. There were great
tubs of rattling crabs and star fish and sea urchins,
pened new avenues to educators; new possibilities to students, and to scientists, we feel safe in saying, it will offer many new life forms, dredged from the " unknown depths."
As the favoring breeze swelled our sails homeward bound and the foam curled, a silvery plume behind our prow, studded at night with glowing phosphores cence, our little group sat silent on the deck, awed, subdued by the splendor of the tropic sunset, the swift following night, or the indescribable beauty of the moonlight on the sea.
As we sat dumb, in trying to comprehend the infinite expanse of ever-restless water around, the infinite ex panse of burnished sky above, the infinite silence ove all, and as memory wandered back over the revelations
of the summer, one and all were humbled with the consciousness of the insignficance of manand the goodness of the Incomprehensible in granting us these glimpses of this wonderful glory!
State University of Iowa, April, 1894.

Highly Sensitive collodion Emalsion

The publication of Dr. Hill Norris' process for the production of a highly sensitive collodion emulsion induced Dr. David, of Paris, to test the three methods described in the patent. He could not obtain a satisfactory result, but by making some alterations he has succeeded in preparing a bromide of silver collodion emulsion, the sensitiveness of which increases gradually to 22 or 23 degrees Warnerke.
The method adopted is as follows: Upon a horizontally adjusted glass plate, size $18 \times 24 \mathrm{~cm}$., are poured 25 c.c. of collodion, which contains per liter 18 grammes of silver nitrate and 7 to 8 grammes of pyroxyline. After the film has coagulated sufficiently, it is changed to a bromide of silver film by treatment with the following bath

A completely opaque film must be obtained. It is sensitized by leaving the plate for a longer or shorter time in the following :

Potassium bromide.
 Distilled wat
 8 to 25 grammes
 1,000 c.c.

The sensitiveness increases with the duration of action and the temperature of this bath. At a temperature of 70° to 75° Cent., the time of action must be about two hours; at 90° to 95°, about one hour.
Upon looking through the film, it will be observed that the grain becomes gradually larger until the granularity is distinctly visible to the eye. Accompanying this increase in the size of the grain is an increase in the sensitiveness of the film.

After the plate has reached the desired stage, it is washed and dried. Contrary to what might be expected, the collodion film does not exhibit the slightest tendency to leave the plate at a temperature of 100° Cent., provided that the surface of the plate has been thoroughly cleansed.
Plates prepared in this way can be developed very quickly, washed and fixed. The negative is ready for printing in ten minutes. Varnishing is unnecessary, as the collodion film is very hard.-Photographisches Archio.

The United States Navy vs. the Britioh Navy
in 1812 .
The following, from the New York $S u n$, occurs in the course of an able review of the first volume of "A History of the United States Navy from 1775 to 1893," recently published by the Appletons. The narrative is by Mr. Edgar Stanton Maclay, and the technical revisiou of the text by Lieut. Roy C. Smith, U.S.N. The book sets forth our naval annals from the outbreak of the revolutionary war up to the beginning of the last year of the war of 1812 , the continuation of the history down to the present day being reserved for a second volume.
"It was pre-eminently in the war of 1812 that the pride of England in her navy was brought low. To appreciate the outcome of this contest, one must keep in view a comparison of the two navies, which will be found on page 319 of the book before us. At the outset of the war Great Britain had 1,048 ships, possessing an aggregate capacity of 860,990 tons, and carrying 27,800 guns, with 151,572 men and officers. At the same juncture the United States had but 17 ships, with a total tonnage of 15,300 , and carrying only 442 guns, and but 5,025 officers and men. Yet, at the end of the struggle, which lasted but about two and a half years, the little American navy, assisted by privateers, had for the time practically swept the British mercantile marine from the high seas and captured over fifteen hundred vessels, on board of which were more than twenty thousand British seamen. It was not so much, however, the number of merchant vessels lost, great as this was, which affected the British public mind. It was the fact that in duels between warships of nearly equal force the English were generally beaten. In eighteen engagements with the Americans the British navy sustained fifteen defeats, and this just after England had successfully matched her sea power against the combined strength of all the other great maritime nations of the world. At the beginning of the war of 1812 the British navy had reached the apex of renown. Mr. Maclay points out that in two hundred actions between single ships it had been defeated but five times, and on those occasions the English ship was admitted to have been of inferior force. The complete reversal of results which followed a trial of strength and skill with the Americans produced in Englishmen a kind of stupor. The London Times, when it heard of the capture of the first English ship of war, said: 'The loss of a single frigate by us, it is true, is but a small one; when viewed as a part of the British navy it is almost nothing yet under all the circumstances of thetwo countries to
which the vessels belonged, we know not any calamity of twenty times its proportions that might have been attended with more serious consequences to the worsted party.' When thereport of the loss of a second British frigate reached the Times, it exclaimed: 'In the name of God, what was done with thisimmense superi ority of force? Oh, what a charm is hereby dissolved The land spell of the French is broken [at Moscow]. and so is our sea spell!' Mr. Maclay sums up the effect of the disasters suffered in the war of 1812 upon intelligent Englishmen in the well-founded assertion that in those defeats they foresaw the eventual subversion of their naval supremacy, and they well knew that, if that were lost, nothing could avert the reduction of Great Britain to one of the least important of European powers."

THE BRISTOL CO.'S PATENT STEEL BELT LACING.
Five years ago the Bristol Company, of Waterbury Conn., began the manufacture of their patent stee belt lacing, illustrated herewith.
At that time only one size, for ordinary single leather

belts, was produced, but encouraged by the success attained, which is principally attributed to the genuine merits of the steel lacing itself, the company have developed their machinery and improved their methods of manufacture, so that now they are able to announce

a completeline of one hundred different sizes (as shown in the larger view), suited to all kinds, widths and thicknesses of belting. As a result of improved processes of manufacture, prices have also been reduced. The lacing is made of the toughest cold-rolled steel cut into'a continuous zigzag form, and so proportioned as to give maximum strength with a minimum amount of material. The wedge-shaped points, when driven through the belt, force the fibers aside so as not to cut them; hence the ends of the belt are not weakened as when holes are punched. The lacing makes a smooth and elastic joint and is easily and quickly applied without any special tools, the spurs being driven through upon a piece of soft wood, after the ends of the belt to be joined have been brought evenly together. The belt is then turned over upon the pulley or any convenient piece of iron and the spurs clinched, bending them toward the joint. The lacings are furnished in lengths varying from one to three inches (No. 1 by quarter inches), it being always possible from a box of assorted lengths to find two or more pieces of lacing which, together, may be used for a belt wider than three inches. For rubber, cotton, and woven belts the space between the spurs is a trifle greater than in the corresponding sizes designed for leather belts. Thus a better grip is obtained on the fibrous ends of such belts. The lacing was exhibited at the World's Columbian Exhibition by the Bristol Company, and was awarded medal and diploma.

Effect of Yellow Light on Diamonds.

Some diamond merchants on Maiden Lane, New York, have complained to the owner of a building opposite to them because he has painted it brightyellow, and when the sun shines yellow is reflected into their store. They say the yellow light falling upon their store. They say the yellow light falling upon their
show windows spoils their trade by making the dia-
monds look yellow, and therefore cheap; whereas the stones are in reality pure white, of the highest grade. The owner refuses to have the color of his building changed although the diamond merchants haveoffered to do it at their own expense. We suggest that the effect of the reflected yellow rays could be neutralized by placing the diamonds in glass cases slightly tinted with blue; or by a thin varnish of a blue tint, applied to the show windows.

Official Trial of H. M. S. Hornet.

On the 19 th of March the official trial of H. M. S torpedo catcher Hornet took place in the Estuary of the Thames, with the following admirable results. The propellers are 6 feet 4 inches in diameter. There was calm weather and high water. Steam is supplied by Yarrow water tube boilers; the power exerted was approximately 4,000 horse power. The Havock has locomotive boilers and gives 3,500 horse power; the difference in power is very nearly in direct proportion to the cubes of the speed of the two boats, but the air pressure for the Havock was 3 inches; for the Hornet, 11/2 inches.

The three hours' trial commenced at the " Chapman" ighthouse and ended below the "Sunk" lightship. The average speed for the whole time was found to be $27 \cdot 628$ knots per hour, or $31 \cdot 8$ miles an hour. After this circles at full speed were turned to starboard and port, and generally all the usual tests of machinery and ship, all of which were found to be perfectly satisfactory. At fiall speed and at slower speeds practically no vibration was felt. There was no heating of any parts of the engines, and the boilers made ample steam•with a mean air pressure of 1.5 inch.
The Admiralty authorities expressed themselves as highly pleased with the result in every respect.

Embossing Wood

Carving wood is too costly a process for this age and country. People like it and want it on their furniture and inside finish, but most of them are not willing to pay for it what it costs. It requires a natural turn and a long practice to make a skillful wood carver, and consequently many devices have been resorted to to secure the same appearance by cheaper methods. The most common of these is to press the figures into the grain of the wood with a hot metal die. One of the latest machines for doing this kind of embossed "carving" was on exhibition in Machinery Hall annex of the World's Fair, and is an ingenious machine and does rapid work. Patterns are cut ona hollow brasscylinder which is heated by gas jets from the inside and the wood passed underit under a pressure of several thousand pounds to the inch in width. At first the work appears very pretty, but it will not stand the test of time. In the course of time the part of wood pressed into the grain will rise to nearly or quite its original position and, in large figured patterns, unevenly, making a very rough and rotten looking figure, that is more of a blemish than a thing of beauty. Another plan is to dress the board down to a level with the embossed figure and then by steaming to raise the pressed parts to their original height to imitate relievo carving. None of these processes are "carving," nor will the work retain its form like hand carving. However, it may suit people who must have their furniture and house finish carved and are not able or willing to yay forithegenuine article, but it would be better taste, perhaps, to take it plain rather than to have alleged carving that will not last long and look well all the time.Tradesman.

The Fourth Dimension.

In an address before the New York Mathematical Society on "Modern Mathematical Thought," Professor Simon Newcomb is reported as saying: "As in space of two dimensions one line can be drawn perpendicular to another at a given point, and by adding another dimension to space a third line can be' drawn perpendicular to these two; so in a fourth dimension we can draw a line which shall be perpendicular to all three. True, we cannot imagine how the line would look, or where it would be placed, but this merely because of the limitãtions of our faculties. As a surface describes a solid by continually leaving the space in which it lies at the moment, so a four-dimensional solid will be generated by a three-dimensional one by a continuous motion which shall constantly be directed outside of this three-dimensional space in which our universe appears to exist. As the man confined in a circle can evade it by stepping over it, so the mathematician, if placed inside a sphere, in four-dimensional space, would simply step over it as easily as we should over a circle drawn on the floor."

The Founder of the First Scientific Journal.

When recently the statue of Theophrast Renaudot, the founder of French political journalism, was unveiled, the literary and scientific journals were alike full of praises of him and his work; but none of them recollected another pioneer in his field, the modest and profoundly erudite Denis de Sallo, the founder of the Journal des Scavants, who didfor letters and science what Renaudot so successfully accomplished for politics.
Without undertaking a full sketch of the history of the French scientific press, I desire only to show here
how new in 1665 was that idea, which seems so simple and natural now, of the creation of a scientific journal how many impediments were raised against its creator by the commonplace authors whom the new tribunal condemned without appeal; what patience, what erudition, what a prodigious sum of labor were required from its founders to surmount all the obstacles, a void all the perils they met every day, and give their work a vitality strong enough to permit it, rising repeatedly from its ashes, to perpetuate itself till our time.
Denis de Sallo, Seigneur de la Coudray, was born in Paris in 1626, of an old noble family of Poitou. His lessons in early childhood were not brilliant; but after he entered the courses of rhetoric at the College des Grassins he obtained all the prizes of his class; became in the next year a distinguished pupil in philosophy, and having sustained in public remarkable theses in Latin and Greek, gave himself up with ardor to the study of law. His advance was so rapid that he was able, in 1652, to succeed his father, Jacques de Sallo, in his office as counselor at the Parliament of Paris Three years later he married Elizabeth Menardeau, daughter of a counselor in the Grand Chamber, by whom he had one son and four daughters. He died on the 14 th of May, 1669, of apoplexy. His death, according to Vigneuil Marville, was caused by the loss of all his fortune in gambling in 1665; but, besides that this story has little probability in view of the character of De Sallo, who was industrious through all his life, it is controverted by a letter of Guy Patin's of the 13th of November, 1665, which proves that at that time De Sallo had no thought of dying, and by the testimony of Pere Honore de Sainte Marie, who agrees with Moreri in placing his death in 1669 and not in 1665
Having given an outline of the principal events of De Sallo's life, which was otherwise quiet enough, we pass to the study of his character and work. "He read all sorts of books," says Moreri, "with incredible care, and kept secretaries contfinually employed to write down his reflections and the passages which he marked, so that by this plan of studying he fitted himself to compose treatises on every kind of subject, as he showed on several occasions."
It wasprobably the considerable quantity of material that he collected in this way that suggested to him the thought of giving the public those extracts the utility of which he had recognized in his experiences. He as sociated with himself in the execution of this work which was colossal for that time, a number of men of science and letters: De Bourzeis, a distinguished theo logian; De Gemberville, chaplain, the famous author of La Pucelle; and the Abbe Gaulois, who, according to Fontenelle, seemed " born for that work;" hut De Sallo revised all the articles-not very numerouswhich his colaborers furnished, and himself wrote the argest number
The authorization having been obtained, the sup port of Colbert assured and the plan and periods of publication fixed, the Journal des Scavants appeared on Monday, January 3, 1665, in a sheet and a half quarto, under the pen signature of Hedouville;* and it continued to appear every Monday till the 30th of March of the same year, when the authorization was withdrawn. Although its criticisms were always moderate and just, it hàd made many enemies among men of letters, and among the Jesuits, then all-power ful " who were not pleased to see a literary and philosophical tribunal that was not set up by them, and who moreover, detested De Sallo and his friends as Parlia mentarians and Gallicans suspected of Jansenism these added their complaints to the cries of wounded self-love. They secured the aid of the papal nuncio, and he obtained a prohibition against De Sallo's con tinuing the publication." The pretext alleged for this act was a passage in the Journal in which De Saile criticised a decree of the Inquisitors, "whose delicate ears required so great circumspection."
Colbert, however, still retained a friendship for his client, recompensed him for the suppression of his journal with an office in the treasury, and, realizing the full value of De Sallo's work, commissioned the Abbe Gaulois to continue it. The Journal reappeared on the 4th of January, 1666, and was henceforth illustrated ; \dagger but Abbe Gaulois, who held the direction of

* The name of one of his servants.

+ As a specimen of the illustrations. we mention a superb engraving repesenting a lonse as seen under the microscope; it measures not less than forty or fifty centimeters (year 1666, page 232 of the reprint of 1729). Thi very rare. It is well to remark here that the Journal des Scavante, hke
the paper for nine years, published it very irregularly; thus there was only one number in 1670 and none in 1673.

In 1675 the Journal passed into the hands of Abbe La Roque, who exhibited in his work a punctuality worth y of praise, but was far from knowing as much of science as his predecessor; then in 1686 Chancellor Boucherat, who declared himself its protector, intrusted its direction to President Cousin. Finally in 1701 the Journal was acquired for the state by Chancellor De Pontchartrain, who gave the preparation of the numbers no longer to one man, but to a company of students, consisting of Dupin, Rassicad; Andry, Fontenelle, and Vertot, with Julien Pouchard as director. Thus renewed, supported by Abbe Bignon, nephew of the chancellor, the Journal des Scavants appeared again on the $2 d$ day of January, 1702, and its history till 1792, when political events compelled its suspension again, offered the single noteworthy feature that its period of publication was changed in 1764, and from a weekly it became a monthly, with supplements every six months.*

Sylvestre de Sacy tried to resuscitate the Journal in 1796; but his attempt was abandoned after the publication of twelve numbers, from the 16th of nivose to the 30th of prairial of the iyear V. It was re-established September 1, 1816, on the proposition of Barbe Marbois, Keeper of the Seals, and Dambray, Chancellor, on a report of the historian Guizot, then general secretary to the Minister of Justice, and has not been suspended since. The presidency of the editorial committee appertained to the Keeper of the Seals from that time till the imperial decree of May 4,1857 , by which it was transferred to the Minister of Public Instruction, under whose auspices the Journal is still published
Such has been the checkered career of the first French scientific journal-a career that demonstrates, better than any eulogy can, that the work of De Sallo possessed the qualities of merit and utility which make intellectual work fruitful and durable.
The detailed history of the Journal des Scavants may be found in Harin, "Histoire politique et litteraire de a presse en France," 1859, vol. ii.. p. 151, and those folowing; and in the "Memoire historique sur le Journal des Scavans," in the table of the Journal, by the Abbe de Claustre, 1764, vol. x., 595 and following pages.Popular Science Monthly; Revue Scientifique.

Longevity or Lire.

Longevity of life will always be an interesting sub ject upon which to think and write. When weread of "hale, hearty old man" taking a European trip in his 89th year, there are very few of us who would not go far out of our way to learn the secret of living to
such an age, and at the same time of retaining posstssion of every faculty. Who can but admire William E. Gladstone managing the political affairs of one of the greatest nations of the earth at his great age-over 80-and David Dudley Field, who is enjoying his tour in Italy with all the enthusiasm of a young traveler, in is 89th year? Of course these men are exceptions to the general rule, but we all are anxious to gain every idea pertaining to the lengthening of one's life. At a recent meeting of the New York Academy of Medicine, some of the specific and relative values of the important factors of longevity were discussed. In the last issue of the Medical Review are two paragraphs that are interesting and touch particularly on this point

manner of living.

"The man who was careful, considerate, and mode rate in the exercise of all his faculties, whether animal or intellectual, was one who would last longer than the man who over-indulged in any one of the numerous things which go to make up life. The men who broke down and died prematurely were usually those who had not lived temperately. It was oftensaid that men worked themselves to death, yet the more he observed people, the more did he become convinced of the cor rectness of the Western editor's assertion that men do not die of overwork, but rather of what they take be tween work. He thought it would be found that what killed men was not work, but what they did outside of their work; yet he did not believe in total abstinence in any sense. There was no law, with regard to eating and drinking and manner of living, whichcould be laid down as applicable to all individuals. Each person must find out the law which applied to himself and obey it. Each person could usually discover what agreed and what disagreed with him, and if longevity was sought after, he would have to avoid the things
all similar journala of the seventeenth and eighteenth centuries that were succesful, was reprinted as the numbers were exhanated ; than in the set hat thave congalted at the iibrary or the Arsenal, the year 1685 is of 1733 ,
and theyear 1668 of 1729 , while the eear 1676 was reprinted in 1717 . Hence and theyeari 1666 of 1723, while the year 1676 was reprinted in 1717 . Hence we add to this that the publigher has sometimee intercalated notes in the reprints without indicating that they were not in the original edition, and that some of the series have been counterfeited in Holland, one may have some idea of the difificu
ferences of the editions.
*There were also supplementary volumesfor each of the years 1707, 1708, and
lished.
which evidently disagreed
external indications.
"There are certain external indications which would give a fair idea of long and short life. It was not in one trait, but in the entire make-up of the individual who stood before the examiner. There were the color, the motions, the measurements, including size of head, which was one of the most certain indications of long or short life, for in the brain lay the great center of power. A person with a head whose diameter at the thin portion of the temporal bones measured five and a half to six inches was almost sure to give a longevity on the father's side of seventy to ninety years or over. If the head measured in front from the external auditory canal to the naso-frontal suture as much as four and three-fourths or five inches, we might be almost sure of long life on the maternal side. A beard which was darker or redder than the hair indicated iuheritance from the paternal side; if it were lighter than the hair, the inheritance was probably from the maternal side. The length of the chest, its proportion to the circumference, to the height of the individual, and other

easurements, were important."

There is a common belief, when any organ of the human body becomes weakened or debilitated from any disturbance, that it required rest to regain its lost strength. In reading over an editorial in the New York Medical Times this popular idea is certainly overthrown in the present instance. It states that Sir Andrew Clark, that distinguished doctor, wasgiven up to die from consumption, and yet, notwithstanding his hard work, his health became so firmly established that he outlived many of his contemporaries and gained a reputation exceeded by none in his profession. The Times states that the solution of this problem is simple, and should serve as an example to those who are constantly breaking down and have often to leave work for weeks or months to recuperate. In a clinical lecture in the London Hospital, Dr. Clark gives a very excellent prescription for health.
"Labor," he says, "is the life of life. And especially is it the life of life to the delicate. And when ans organ is sick it is then truer than in health that even in sickness and delicacy it is better for the organ to do what work of its own it can, provided it can do it without injury. And from a considerable experience of tuberculous pulmonary disease, I can say with perfect confidence that those who have done the best have usually been those who have occupied themselves the most. I never knew my own parents. They both died of phthisis. At the age of twenty-one 1 myself went to Madeira to die of phthisis. But I did not die, and on coming back, I had the good luck to get into this great hospital, and in those days they were not very well pleased to have the Scotchmen coming to London to occupy such appointments. The members of the staff had heard that I had tubercle, and they wagered 110 to 1 that I would only have the appointment six months at most. The reason given for that was that I did not eat and worked too hard. I got the appointment. Thirty-eight or thirty-nine years have gone since that time, and all the other doctors are gone. Only I am left here on the staff-an old gentlemannot dead yet."
Labor is life, but "worry is killing. It is bad management that kills people. Nature will let no man overwork himself unless he plays her false-takes stimulants at irregular times, smokes too much, or takes opiùm. If he is regular and obeys the laws of health and walks in the way of physiological righteousness, nature will never allow him or any other person to work too much. I have never yet seen a case of breaking down from mere overwork alone; but I admit that it is necessary above all things to cultivate tranquillity of mind. Try to help your patients to exercise their wills in regard to this-for will counts for something in securing tranquillity-to accept things as they are, and not to bother about yesterday, which is gone forever; not to bother about to-morrow, which is not theirs; but to take the present day and make the best of it. Those affectionate women who will continually peer into what lies beyond never have any present life at all-they are always grizzling over the past or prying into the future, and this blessed to-day, which is all that we are sure of, they never have."-Charlotte Medical Journal.

Subterranean London.

It gives an impressiva idea what subterranean London is fast becoming, says the Daily News, to learn that on emerging from the river the new City and Waterloo line will, in its passage up Queen Victoria Street. run for a part of the way underneath the low level main sewer, which in its turn runs along beneath the District Underground Railway. So that at this point in the City we shall have first a busy main thoroughfare, below that a steam railway, then a huge metropolitan sewer, then an electric railway, reaching its terminus at a depth of about 63 feet below the streets, and here it will communicate with another line-the Oentral London-which will lie at a depth of 80 feet.

THE CALIFORNIA MIDWINTER FAIR

 California is the wonderland of America, with it lorious climate its romark frolity its Yorical fountain in the fore- feet glorious climate, its remarkable fertility, its Yosemite ground. The building was designed by Mr. Edward The oriental style of arehitectune and brilliant Valley, and notable mountains. When the Eastern \mathbf{R}. Swain. It is built in the East Indian style. The coloring gives a suggestion of age which is very pleasStates are wrapped in snow the inhabitants of favored length of the building is 330 feet and the width is 160 ing. The total expense of the buildings has been California are in the midst of a semi-tropical garden enjoying all the delights of spring and early summer. This attracts large num bers of people from all parts of the world who visit California for health and pleasure. When Mr M. H. De Young, vice-president o he Columbian Commission, pro posed that a midwinter fair be held on the Pacific coast, the idea was everywhere received with enthusiasm. The subject was first broached at a meeting held in the California Club, of Chicago, on May 31, 1893. Notwithstanding the financial depression of the country ground was broken on the 24th of August last, and five months after ward, on January 27, 1894, the fai was ready and opened to the public Golden Gate Park, San Fran cisco, is in reality a sea-girt garden filled with the choicest blooms of all lands. This park possesses an ndividuality of its own which renders it unique among the plea ure grounds of the world. Th park is laid out in a highly artistic manner, and the profusion of palm uggests Bordighera, Nice, or San Remo. The Midwinter Fair occu pies about 160 acres of the park.

THE CALIFORNIA MIDWINTER FAIR-THE FINE ARTS BUILDING
about $\$ 1,500,000$.

The New Transandine Telegraph Lines.

The direct telegraph lines extending from Buenos Arres (Argentina) to Valparaiso and Santiago (Chile), which have been established by the Pacific and European Telegraph Company, of which Sir John Pender is chairman, were opened for traffic recently. From the Atlantic coast to Uspallata on the spur of the Andes, a distance of about 697 miles, the line is aerial on iron poles, and is of the latest type of construction. Thence to Rio Blanco, in Chile, underground cables are laid in about 75 miles of trench through the highest and wildest part of the route, where heavy snow falls in winter would sweep away any telegraphs erected above ground. The lines from Rio Blanco to Valparaiso and the branch to Santiago, consisting together of about 160 miles, are aerial. The total length of the line, which extends from the Atlantic to the Pacific coast, is about 927 miles. Arrangements have been made by which the telegraph lines have been erected adjacent to the railway lines, and exceptional facilities are

We prest several views of the shall give a view of the Manufactures and Liberal Art building.
Our bird's eye view shows the dome of the Horti cultural and Agricultural building in front at the left behind rises the Manufactures and Liberal Arts build ing, flanked by the electric tower, 250 feet in height To the right rises the prominent collection of dome and minarets which covers the Administration building; at the rear of this is he Firth wheel and th ents buildith Mechanic Arts building The other buildiags ar the Fine and Decorative Arts building, Festiva Hall, buildings for conces sions, etc.
The Administration building is situated on the outhern side of the Grand Court, and its oriental architecture and coloring comports admirably with the luxuriance of the sur rounding vegetation. This building was designed by A. Page Brown, and th architectural style may be said to be a combination of central Indian and Siamese. The main struc ure rises from a terrace and the leading feature of the building is the richly ornamented dome, which is 135 feet in height and 50 feet in diameter. The total floor area of the build ing is 16,800 feet. This dome is brilliantly illumi nated at night.
The Art building was designed by Mr. C. C. Mc Dougal. It is a modern adaptation of Egpytian architecture, and the coloring is subdued. Like all the other buildings, staff is freely used. The vestibule is very effective. It is 22 feet square and 63 feet high. The interior measurements show that the galleries are 58 feet long and 38 feet wide. Annexes give wall space so that the available wall space is 2,000 running feet. The structure is fireproof. The approach is of artificial stone, 40 feet wide, flanked by immense sphinxes. The third

THE CALIFORNIA MIDWINTER FAIR-THE ADMINISTRATION BUILDING.
afording a continuous British of telegraphs in land and the from Englane Paific Continent to America. The construction of this line was rendered necessary to enable the English Submarine Telegraph Companies to transmit with great rapidity the important traffic to and from the west coast of South America, where it is dealt with by the cable of the West Coast of America Company.

Dirt in Milk.

The author puts 1 liter of milk from each dealer into a flask closed with a plug of wadding. On its arrival in the laboratory it is transferred to a measuring glass, covered with a piece of filter paper and a glass plate, and allowed to stand for two hours. The milk is then carefully decanted off from the sediment down to about 30 c . c., the residue is made up to 1 liter with pure water, and again allowed to subside for one hour. It is then again drawn off, repeating this proceeding until all the dirt is left in pure water, which is then decanted off to about 100 or 150 c. c. The dirt is then collected in a tared filter, dried, and weighed. The dirt in the milk may be calculated as five times the dry residue. One liter of market milk was found to contain 3 m . grammes dirt at Wurzburg, 3.8 at Leipzig, 9 at Munich, 10.3 at Berlin, and 14.92 at Halle. The richness, of the milk in microphytes was surprising. - Leo. Schulz, Archio fur Hygiene.

THE MAXIM AIR SHIP.

AN INTERVIEW WITH THE INVENTOR

by h. J. w. dam, in mc clure's magazine.
Very few people are aware of the advanced result which have already been attained, and a visit to Bald wyn's Park, near Bexley, England, would be to them a revelation which can only be described as startling. To see a great air ship, weighing three and a half cons, flying across a park, on wheels, and to know that it engineer could lift it into the air, in a moment, by a turn of his wrist, makes one doubt the evidence of his own senses. It comes upon him with a shock, as if he had just awakened from a long Rip Van Winkle slum ber, during which the magic of the world's advancement had left him hopelessly behind. The big white ma chine is a practical, moving fact, however. It can propel and lift itself. And just as soon as those subordin ate experiments, upon which depends the safety of aerial voyages, are completed, one of the greatest mechanical problems of the ages will have been finally and practically solved.
Among all the scientific men whose researches have contributed to this most important re sult, Mr. Hiram S. Maxim, the uventor of the air ship in question, stands foremost. As the inventor of the Maxim gun, and many other ingenious machine of less importance, he had won a worldwide fame before the navi gation of the air became the chief object of his study and nvestigation. Beginning life fifty-three years ago, with a

The Workshop.

The principle I have worked on, generally speak ing, is that of the kite. That large cloth frame at the top of the model is the aeroplane, or main kite surface. The lesser aeroplane above the platform, or car the side aeroplanes, or wings; and the flat-pointed rudders, fore and aft, are designed to furnish additional kite surface. It is necessary to make it, however, so that we can run it in a calm, against the air, thus making our own wind, as it were; and for this purpose I have a railway track, and instead of cords to hold the kite against the wind, I employ a pair of powerful screw propellers driven by a steam engine. In this manner I can drive the machine exactly as I please, can ascertain exactly how much the push of the screws is, and at the same time find out exactly how much the machine lifts at different speeds. The machine is, in fact, a big kite. Should I fly it in the air with a cord during a strong gale and then run my en gines, I should be able to find out how fast they would As soon as the cord became slack, the machine would be flying, with its own engine power."
To more clearly il lustrate his meaning

Condensing Tubes on Edge of Aeroplane.
orm, near the front end, was a small boiler house in the shape, roughly speaking, of a truncated pyramid, and ten feet behind it was a frame eleven feet high, on which were two sets of compound cylinders, and two big wooden screwsabove the two sides of the platform and eighteen feet apart. Outside of these fundamental accessories were a water tank, a naphtha tank, and an indefinite number of rods and very small wire ropes, to give strength and compactness to the whole. The many minor elements of the machinery did not at first catch the eye, but all appeared in interesting action when details were entered upon later on. It should be noted that the machine, as it stood and as it appears in the accompanying pictures, was without the side planes, and the big rudders of cloth on steel frames, which are mounted, fore and aft, on the main aeroplane. These are not used in the experimental trials, their utility having been established, as far as is possible without a practical test in the air
Pushed by the workmen, the machine rolled slowly out of the house, and shortly stood upon the track in the park. It had completely filled the workshop from roof to floor ; but here, with only the sky above it, seemed smaller and lighter. The steam was hissing in the boiler; the big screws had made one or two preliminary revolutions, and a flight along its track was imminent "Jump on board" shouted its owner who stood at the boiler, conning half a dozen different gauges; and, climbing over an outlying rod like the outrigger of a canoe, I mounted the platform, which was of the lightest matched boards. so thin that they seemed insufficient to bear a man's weight. Prior to the start, a rope running to a dynamometer

The Maxim Air Ship

The Air Ship in the Workshop.

Details of Maxim Air Ship

HIRAM MAXIM'S AIR SHIP.

common school education and a jack-knife, in Sangerville, Maine, he is now the proud possessor of a town house in London, and is lord of the manor at Baldwyn's Park, a stretching domain of hundreds of acres, which he leased five years ago as well adapted to his preliminary experiments. Mr. Matim is a man of medium height and solid build, his weight being two hundred and ten pounds. His hair, mustache and beard are white, but his mental and physical energy are astonishing, and go far to explain the variety and extent of the results he has achieved His voice and action show great physical strength, while his eyes, which are a deep brown, full and wide open, have continuously the semi-absorbed, preoccu pied look of the student concentrated upon a problem. A courteous host, a jolly, even boisterous storyteller, and a wonderful mechanician, Mr. Maxim is, in his way, as unusual as his machine.
By way of introduction and explanation the inven tor said :
*The illustrations for this article are from copyrighted photograph taken under the supervigion of the authur and Mr. Maxm, by Pradelle Young, of Regent Street, London

Mr. Maxim led the way to the workshop in the grounds -a large and substantial bird cage, sixty feet wide and fifty high, in which the mechanical bird had been constructed, and stood perched for one of its daily flights. A railway track, nine feet wide, ran outward from the closed doors, and stretched indefinitely, in a straight line, across the green level of the park to the line of a belt of woods two thousand feet distant. The front of the shop consisted of four large doors, " the largest in the world," their owner remarked; and when these were rolled back by a dozen workmen the air ship came into view. It was so novel, so unexpected, and so apparently complex at first sight, that it held the eye for a long, silent period; the beholder's sensation being one of wonder, if not awe, coupled with an indescribable mechanical confusion of ideas.
It took many minutes to grasp it; to form an intelli gent idea of it. Then, as the sense of relation between the differentparts developed, it became a framework of black steel rods of varying sizes, with a square fram of white cloth, fifty feet by fifty, at the top, and an in clined wooden platform, eight feet wide by forty long resting on wheels upon the track below. On the plat-
and post was attached behind to measure the forward mpulse, or "push," of the screw. Mr. Maxim turned on the steam and the screw on the port side began to re volve. It is seventeen feet eleven inches in length, five feet wide at the ends, and twenty-two inches at the waist. It is made of the lightest American yellow pine, and painted a pale blue, the paint having been sandpapered to perfect smoothness, reducing the skin riction to a point at which it became negligible. It revolved faster and faster as the steam power was in reased, until it was whirling on its seemingly frai framework at a dizzying speed. Then steam was shu off ; it came quickly to a standstill, and its fellow on the other side was tried. All working smoothly, both screws began to turn faster and faster and faster, uniti the eyebegan to lose the blades and retain only the sense of two whirling disks. The action of the screw at high speed caused remarkably little shaking of the whole machine. This is one of the surprises of the invention, the tremendous force exerted as compared with the lightness, steadiness, and compactness of the whole.
Behind the screws, forty feet away, two men were
squatting over the dynamometer, and indicating the degree of "push" on a large index board for the engineer to read. The index marked four hundred, five hundred, six hundred, seven hundred, and, finaliy, twelve hundred pounds of "push." The pressure was then diminished below five hundred, and the commander yelled: "Let go." A rope was pulled, the machine shot forward like a railway train, and, with the big wheels whirling, the steam hissing, and the waste pipes puffing and gurgling, flew over the eigh teen hundred feet of track in much less time than it takes to tellit. It was stopped by a couple of ropes stretched across the track, working on capstans fitted with revolving fans. The stoppage was gentle, and the passenger breathed freely again, looking now upon the machine with more friendly and less fearful eye, as if it were a dangerous bulldog with which ami cable relations had been established and fear of injury was over. The machine was then pushed back ove the track, it not being built, any more than a bird, to fly backward. In a quarter of an hour it is again at its starting place, and ready for another flight. Hav ing seen it in action and had evidence of its power the details were more than ever interesting, and were furnished by the inventor in succinct and prac tical terms.
The first question was its supporting power in the air. He said
"The area of the main aeroplane is two thousand eight hundred and ninety-four square feet; of the small one, one hundred and twenty six ; and of the bottom of the car, one hundred and forty. With the rudders and wings added, the total area is about six thousand square feet. The wings are ten in number and superposed, five on each side, and are each five feet wide and from twenty-five to thirty-five feet in length, according to their positions. The forward rudder, projecting in front from the main aeroplane, is eighteen feet wide and thirty feet long, and the aft one, eighteen by twenty-three. Rudders and wings like all the other aeroplanes, are made of a specially woven cotton cloth, so fine that you cannot blow through it, and mounted on a framework of hollow steel tubes. All these aeroplanes are inclined at a small angle to the air, the angle which gives the most support combined with the least resistance to its for ward motion."
"What speed is necessary to support the machine in air?"
"A minimum, under present conditions, of twentyfive miles an hour. At that speed with wings and rudders adjusted, it will leave the track. It lifted in one of the earlier trials, and caused us some trouble, as we were not ready."
"What will happen in the air if anything goes wrong, and the engine stops?"
"The machine will settle to the earth, and land with the same velocity as if it had fallen a distance of three feet."
"Only three feet?"
"Yes. When the propulsion ceases, the machine will fall three feet. At this point the resistance to the atmosphere afforded by the aeroplanes will become nearly equal to the force of gravity, and it will settle without any increase of velocity."
"How about its steadiness in the air? You know a kite sometimes indulges in extraordinary rolling, to say nothing of darts and dives."
The explanation of this point was given ocularly, and much more clearly than words would have made it. Mr. Maxim tore a sheet of paper from his note book, held it up, and let it fall to the ground. It
trouble keeping her on an even keel," he added with a smile.
"But can't it tip over in a wind ?"
"No. It is quite possible to make a plane remain right side up in the air, even if the center of gravity is considerably above the center of lifting effort. Stability in the air depends very largely upon the shape of the aeroplane, but nevertheless with this machine the center of gravity is very much below the center of lift ;

Mr. Maxim Mlustrating the Principle of the Wings of the Air Ship.
and this, together with the form of the aeroplane makesit quite impossible that the machine should tip over in the air. The center of gravity in this machine is here," and he held up his hand at an imaginary point about five feet back of the boiler and seven feet above the center of the platform. It may be here mentioned that the main aeroplane is twenty-five feet above the platform. The total height of the machine to the tops of the rods above the aeroplane is thirty five feet, and its greatest length seventy feet.
"Are the cotton aeroplanes strong enough to bear the weight in falling, without fracture ?"

They are twenty-five times stronger than is neces sary. The greatest weight which can bearon them is a little over a pound to the square foot, and they are tested for twenty-five pounds. The pressure on the cloth is practically the same at all speeds, whether the machine is falling to the earth or sailing through the air; the cloth in any case has to sustain the weight of the machine."
"How is it steered?"
"For steering to the right or left

thirty-five miles per hour. The next one, which will be smaller, and will be worked with a hundred horse power, will give me, I expect, from fifty to sixty miles per hour. The highest speed I look for, as the art is perfected, is ninety miles per hour. I believe that any speed which is attained by a railway train can be reached by a machine moving through the air."
"How about the duration of the flight?"
"That is merely a matter of water and naphtha. The margin of weight carrying is so large that, once the machine is successful, any amount of time and distance within reason can be looked for."
As far as support and action in the air were concerned, there seemed nothing more to be said, and yet it was difficult to realize that the facts as stated were simply and undeniably true; to realize that the navigation of the air is the traversing of an entirely new medium, whose conditions are so foreign to those of water, for instance, that they are difficult to quickly conceive.
The next question was that of weight, and here came some object lessons in the weight of metal that were astonishing. "Lift that tube," said Mr. Maxim. The tube was of copper, four feet long, and elliptical in shape, its greatest diameter being one and a half inches. It looked heavy. Lifted up, its lightness was surprising. It weighed no more than thin paper, and actually seemed, for the moment, like paper colored in imitation of copper. "That is one of the condensing tubes," said Mr. Maxim. "There are five hundred of them up there." and he pointed to a section of what had appeared to be thin laths running across the entire front of the main aeroplane. "Of course," said he, "we can't waste any water up in the air, because we have no means of replenishing. The used steam runs up by those large pipes. and the water runs back through those small ones to the tank in the center of the platform. The framework is constructed." he continued, "not of rods, but tubes, and tubes of the least possible weight. They are all of steel, a steel with considerable carbon in it and not tempered, and they vary from one inch to three inches in diameter. I tried aluminum, but found that steel was stronger, weight for weight. In addition to this, steel tubes can be united with great facility, and the coefficient of the joint is fully ninety-five. There is no convenient way of uniting aluminum tubes, however, and if they were united the coefficient of the joint would be very low. The heaviest tubes in the machine are the shaf tsof the screws, which are five inches in diameter, five feet long, and an eighth of an inch thick. The next size, used in the car, are three inches in diameter, and one-twelfth of an inch thick. I have a few more, one-fourteenth of an inch thick, of the same size. I need not say that at every point I have used the lightest tube possible for the strain which comes upon it, perfect safety being at all times considered, as I purpose to take my first machine up into the air myself, and I don't intend to run any risks. The bulk of the machine is constructed of hard steel tubes one twenty-fifth of an inch in thickness. The total weight of the machine, with its full complement of water, naphtha, and three men, is something over seven thousand one hundred pounds Without the wings it is six thousand eighthundred and eighty. The boiier complete weighs one thousand pounds. This small weight, considering it gives me a

HIRAM MAXIM'S AIR SHIP.
darted, dived, and fell in irregular lines, shooting out behind him. He then took the same sheet of paper, tore a square out of each corner, and bent back the four sides from the corners of the squares at an angle of forty-five degrees. He then held this up and let it fall. It sank to the earth gently, without a tremor, its surface remaining perfectly even throughout. "That," said he, "is the principle of the wings. They are so adjusted that as any side is depressed it presents a greater lifting surface to the air below. There's no

I expect to use the screws. If I have any difficulty I can easily use rudders. For steering up ward or downward the fore and aft rudders will be used. The aft one is pivoted on the extension of the two center poles and the forward one hung on their ends. Both will be worked from the center of the platform, and will at first require a man to each, though I shall greatly simplify the working of them later on."
"What is your estimate of the speed ?"
"I don't expect, with this machine, to get over
force of three hundred horse power, is perhaps the most valuable portion of the work, since it has always been known that we could fly if we could get a motive power of adequate strength with sufficient lightness. 1 use a compound engine, the high pressure cylinders being five inches in diameter, with a twelve inch stroke, and the low pressure eight inches in diameter, with a twelve inch stroke. The piston speed is eight hundred feet per minute. Nearly everything connected with the machinery had to be newly designed, with a
special view to lightness, none of the known appliances being of use in this case. It was necessary, in the first place, to develop a system of making a very larg quantity of carbureted air from naphtha, with very little weight." Pointing out a large hole where th air was drawn in, he said that, as the velocity with which the combined air and gases entered was at the rate of two miles a minute, he found it very difficult to deal with these gases at this high velocity, and had spent a great deal of time in devising a system by which the gas was equally spread out over the whole fur nace, and not influenced by the inductive action of the incoming gas at this very high velocity. "I had," he resumed, "to devise a system for regulating the product of the gas; for pumping the liquid into the ga generator; a new kind of boiler and feed water heaters a system for burning a very large quantity of carbur eted air in a small space, without smoking or blowing out; a system for regulating the steam, and pumps for flling the boiler and regulating the supply. None of the existing types of engines seemed well fitted to the purpose. I had to design one expressly with a view to great lightness, and notwithstanding there were some hundreds of types of connecting rods already in exist ence, I found it necessary to design an absolutely new orm of connecting rods. I had to invent a new dyna mometer to mect the necessities, and new dynagraphs for measuring the lift of the machine atdifferent speeds as well as another to measure its rate of speed through the air." He paused, looking over at the machine which represented so many hours of concentrated brain work in a puzzled, absorbed way. "And there is more to do yet," he added impressively. "I don't call this an air ship or a flying machine or anything else. To me it is merely a machine for making experiments in aerial navigation. In my next one, I shall make a number of hanges which it is not worth while to make in this. It is slow work, but there is no doubt of the result. Propulsion and lifting are solved problems, and it is merely a matter of time."
"How much time?"
"Well, if I had nothing else to occupy me, unlimited money, and plenty of space for experimenting, I should expect to be up in the air within eighteen months. I am very busy, however, have a very limited space here, and am proceeding as economically as possible. In my opinion, however, under the most unfavorable conditions, aerial navigation will be an accomplished fact inside of ten years."
This was a digression. We now came back to the most remarkable boiler that ever was seen. It was inclosed in a house eight feet long, five feet wide at the base, and about six feet high. The sides of the house were of thick cloth, woven from pure asbestos, and the frame and top of the thinnest iron. Within, viewed through a peephole, the entire floor was a mass of small flames from seven thousand six hundred gas burners. The boiler has about six hundred tubes which are eight feet long, and about one hundred which are four feet ten inches long. These tubes are about half an inch external diameter, and half a millimeter or one-fiftieth of an inch, in thickness. They are curved and joined into a steam drum, ten inches in diameter and eight feet long, where the water and steam are separated, the water again passing through the boiler, and the steam passing to the engine. There are also some three or four hundred much smaller tubes, which are used for heating the water by the products of combustion before it enters the main boiler at all. In order to prevent the tubes from being injured by the great heat of the fire, a forced circulation of the water is employed. It is therefore possible to use a very small and thin tube and a very hot fire without any danger. A single spare boiler tube in the shop served to exhibit the peculiar lightness of the boiler, which is perhaps the most ingenious as well as the most important part of the machine. The tube, like the condensing tube before mentioned, was as light as so much paper. It was made of pure copper, any impurities, in view of the thinness of the tubes causing them to become "hot short" and break "With only a moderate fire," said Mr. Maxim, "I have been able to get a horse power out of four of these tubes; with a hotter fire I have got a horse power out of three of them. Their bursting pressure under steam is sixteen hundred and fif ty poundsto the square inch. The boiler itself has been fired to give a steam pressure of four hundred and ten pounds to the square inch, but I have never run the engine above three hundred pounds, thereby developing three hundred brake horse power, which is all that I need for this weight, and which leaves a very wide margin of safety. To run the boiler the machine carries six hundred pounds of water, and two hundred pounds of seventy degree Baume naphtha. The consumption of naphtha is about one pound per horse power per hous:'
Last of all, in the way of general description, came the questions of propulsion and lifting power. To
give all the details under this heading, into which the inventor entered, would alone make an article quit as long as this, if not a small volume. Concerning specific results, however, he said :
"The lifting of an aeroplane by a screw or screws has been the subject of many series of experiments by myself and others. The number of pounds lifted by one pound of 'push' in the screw varies greatly with conditions. In my early experiments with a merry-go-round, or whirling table, I succeeded in lift ing fourteen times the 'push' of the screw, or four teen pounds of weight for every pound of 'push' for ward. In this large machine, however, with a large number of wires and a good deal of framework, wher the aeroplane is so large, where it is difficult to make it remain uniform or rigid when there is a pressure on it, and where I have an engine, boiler, platform men, tanks, wires and tubes to force through the air I have not been able to lift more than six pounds for each pound of 'push.' This, however, is much more than is absolutely necessary. The engine is able to give, and has often given, a 'push' of nineteen hun ared and sixty pounds, which would mean a lifting power of nearly twelve thousand pounds. With a 'push' of one thousand pounds from"the screws, using one hundred and twenty horse power, the lift, as hown by the dynagraphs, was over six thousand pounds. This left only a weight of one thousand pounds on the track, and this was not sufficient to keep us there. The speed along the track with this push' was twenty-seven miles per hour.
"When do you expect to take your first flight?"

a two seated tricycle.
"I have not set any time, and shall not. Haste i n enterprise of this kind is the worst possible policy At every trial of a machine which is mechanically new in so many particulars, weak points develop and re quire attention, while new improvements constantly suggest themselves. To-day it is a leaking valve, to morrow something else. Rising into the air with new machine, when all the experiments in the way of maneuvering, which can only take place in the air, are yet untried, would be unwise until everything which can be completely tested on the track has been so tested. The possibilities of accident must be as nearly as possible exhausted beforehand. More than this, have not at Baldwyn's Park the necessary room and privileges. It may be that I shall not attempt to rise until I have more room, and I am now looking for a suitable location-something difficult to find in Eng land. In fact," he added, with one of his ready New England comparisons, "I am like a boy with a pair of skates which he has never tried, and only a little piece of ice to try them on."
Tho foregoing was the substance of the "few saf particulars" which Mr. Maxim was willing to give. The improvements upon his first machine, which will appear in his second, and the eventualities and pos sibilities of aerial navigation, were subjects upon which he was not inclined to talk very much. He confessed however, that an air voyage of three or four thousand miles seemed to him eventually probable. "I don't want to speak of things before I am ready to do them. I don't imagine that flying machines will be used very soon to carry bricks from Haverstraw to New York, or coals from Newcastle. The first machines are certain
r whatever the expense of running them, and the nation which first employs them will have every other at its mercy. I shall be quite content with my results when I can go a distance of twenty miles and back. That will suffice for all present purposes."

Great Coal Vein in Tonquin

The French are actively working a coal mine in Tonquin which promises to produce excellent coal in large quantities. The mine is situated about eight miles from Port Hongay, in the Bay d'Along, and a railway has been laid down for the whole of that distance. The offices and huts of the miners are all situated at Hongay, and the workpeople are conveyed to the mine every day by train. The mine itself is called Hatou. The length of the seam is given as 16 miles, and it is, according to the Times, nearly 200 feet thick. The supply is, therefore, practically inexhaustible. At present about 500 tons a day are extracted by the simple process of quarrying, the mass of coal having only a very thin layer of soil on the top. The miners are exclusively Annamites, of whom about 200 are employed, but the higher officials are all Frenchmen, although the capital of the company, strange as it may seem, is chiefly held by English merchants at Hong Kong.

A TWO SEATED TRICYCLE.
The tricycle which we illustrate is built to accommodate two riders side by side. The ordinary tandem bicycle is open to the objection that the rider appears to be accompanied by a groom. In the present machine, which is of French origin, each rider actuates a pair of pedals which are connected with the wheels as in bicycles, so that each of the rear wheels is driven independently. Each rider helps to steer with one hand, while the other rests oa a special support attached to the head of the tricycle. This tricycle is 5 feet 10 inches long, 25 inches wide at the level of the axles of the rear wheels, and weighs 55 pounds.
The advantages claimed by M. Matière, the inventor, and M. Laverne, the builder, of 177 Rue des Boulets, Paris, are ease of management, especially as regards turning, speed and great stability, which is insured by the position of the riders. For our illustration we are indebted to the Revue Universelle.

Brown-Sequard.

Dr. Charles Edouard Brown-Séquard, the eminent physiologist and physician, died in Paris, April 2, of congestion of the brain. He was born at Port Louis, in the island of Mauritius, April 7, 1817. His father was a native of Philadelphia and his mother was born in France. Dr. Brown-Séquard began his study of medicine in America. In 1838 he removed to Paris, where he graduated as M.D. in 1840. His researches on the vital properties and functions of the spinal cord were of the tmost value. He was made professor of experimental and comparative pathology in the Ecole de Médecine of Paris in 1869. At different times Dr. Brown-Sequard visited the United States, delivering lectures and practicing his profession. By a desire to investigate the contents of his own stomach, he was led to try experiments on himself, which at last brought on a most rare and peculiar affection known as merycism or rumination, which required him to masticate his food for a second time during the remainder of his life. The brilliancy of his discoveries obtained for him a world-wide reputation, so that scientists were greatly shocked when he formally announced in 1890 the dis covery of a fortifying fluid, which immediatelv became famous under the title, "Elixir of Life." For this discovery Dr. Brown-Sequard was pilloried in the eyes of the world as a charlatan. The subcutaneous njections of the secretions of certain glands of dogs and other animals proved efficacious in a number of cases, and this aiscovery was of equal value with those of his early life. It is perhaps unfortunate that the great physiologist should have discovered the "Elixir of Life" at the advanced age of seventy two, when he could not spend the requisite amount of time and en ergy to perfect his discovery ; but it is very safe to say that half the stories relating to the new remedy are untrue, and that Dr. Brown-Séquard never claimed half as much for it as his enemies, who took malicious delight in likening the aged doctor to Ponce de Leor and others of the same class.

Gas from wood.

A western genius has invented a machine for making gas for illuminating purposes out of wood, instead of coal. The machinery is very simple, consisting merely of a retort and purifying chamber, with a tank for holding the gas. He claims that the machine can be used for domestic purposes, and that by attaching it to an ordinary cooking stove enough gas to last a day can be made by the fire necessary to do the cooking.

recently patented inventions.

Engineering.

Traction Engine Driving Gear.Thonas C. Robineon, Jr., Ipava, II. This gear is strongly made and simple in arrangement, to facilitate
ronnuing the engine with more power and lees speed over rough roads and ap hills, and with increased speed ove mooth and easy rode. Combined with gulaways on is an dijuastable ellide between the gears, on which ar journaled a aingle gear wheel and a double gear wheel to be readily engaged with or diengzaged from the fixe
geara. The cog wheels are deaigned to be so propor ioned as to give any desired fast and slow speed.
Turn Table.-Gabriel Robrbach, Del Rio, Texas. In turn tables for tarning locomotives, this
invention provides a simple lever attachment by which one man may easily turn the table and its load, the lever and not being likely to get oat of order. Upon a revola ble bed carryinga circular track is mounted a bracket in which a vertical oscillating ahaft is torned by a lever, engage the rail, and there being a crank connection be ween the catch plate and the shaftand a lever mechan imm for shifting the angle of the catch plate.

Mechanical.

Drilling Machine.-Louis Reichert, nd sliding spindles carrying drills adapted to slide and and sliding spindles carrying drills adapted to slide and the oater ends of the spindles, the leaves being reinforced one by another to gradually increase the pressare on the
drill. The machine is designed chiefly for boring eye glaseses, and provides for but a slight pressare on th spindles at the beginning of the boring, to a void chipping the glass, the pressure being afterward graduated as de
sired.
Felly Planer.-William R. Dunn Alton, Ind. In a suitable frame are slides adapted to hafts in the upper and lower ends of the slides, eac the felly to move it in contact with a revoloble cotter head journaled in atationary bearings, friction roller preseing the fellies in place on the holders doring the time the cutter heads are catting. The planer is of sim ple and durable constraction and designed to correctly and uniformly plane the inner and outer faces of the felly to the desired diameter.
Crdshing and Grinding Asphalt . In this machin the material fed into one end of the drum being heated grinding rolls with different contact faces of different di ameters, differentially spaced a part and journaled to ro tate at different speeds, whereby the continuonaly fed material is successively- crushed into small particles.
steam and hot water are mized with the material as it is being croshed to prevent clogging or adhering to the rolls.

Railway Appliances.

Nut Lock for Rails.-Jefferson D. Tynes, Fort Smith, Ark. This improvement comprises a base plate having apertured washer-like ends adapted
to fit over the bolts, a spring metal key bar being fixedly held at its center on the base plate, with its opposite end held for a free twist movement and projected beyond th face of the washer portions of the base plate. The de-
vice is a doable lock nat, especially designed to lock nats against the fish plates of rail joints.

Miscellaneous.

Process of Mandfacturing Gas.GustafM. Westman, Hackettstown, N. J. A furnace of rying into effect this process, which consists in passing mixture of gases through iron oxide in a reducing fur nace to produce iron sponge, the mixtore consisting part ly of new formed gases and partly of gases previously passed throngh the iron oxide and afterward heated and carbureted, then passing steam through the iron sponge
to reconvert it into iron oxide and produce hydrogen, and passing the latter through glowing coke to take up and

Store Service Carrier.-James R. Pollock, Mansfield, Ohlo. Thisinvention provides a sim ple, economical and easily operated apparatus, so ar-
ranged as to conveniently brake the car on its return to the stations, to avoid unnecessary noise. The apparatue apon depending hangers, and combined with the track and a propelling line for moving the car is a cylinder in which is fitted an air-tight plunger, there being connecby the planger will retard or brake the return of the car and, by the vacuum produced beneath $i t$, aid in actuatin the propelling line to drive the carriuge.
Adjusting Device for Bicycles. John H. Prince, Carroll, Montana. This device is spindle of the driven wheel always in parallel position, relative to the pedal or crank shaft, so as to cause the wheel to run trae. It consisto of a frame having in its forked ends racks meshing with gear wheels secared on
a spindle turning on bushings sliding in the forked ends of the frame, a screw screwing in the frame engagingon of the bashings, and there being nats screwing on the ends of the spindle and apatting on flanges formed on the
beehings.

- Chrce Book.-Isaac B. Alter, Rossville, Kannas. This invention consisto of a casing having
a pocket and a check tab adapted to be fastened to the Ingide of the pocket, the arrangement being such as to
permit of conveniently removing the checekg and of? re
placing the check tab when used up withoat requiringan entirely new book. The check tab carrier is connected to the casing within the pocket, to slide in and out, and
is formed of a plate having a slide and points or hooks or engagement with the tab.
Fire Escape. - C. P. Elieson, New York City, and Francis A. Pellas, Greytown, N. Y. Ac cording to this improvement swinging ladders are adapted to be dropped from varions balconies to form a passageway from the windows of a bailding to the ground, means being provided for automatically opening the bal-
cony doors by the movement of the ladders, the doors cony doors by the movement of the ladders, the doors and ladders being so geared that one acts as a counter
balance for the other. A whole vertical series of ladders nay be quickly released and dropped together. A build ing provided with this improvement will ordinarily ap
Fire Escape or Lifter. - William Wellens, Oldham, England. This is a simple and inex pensive apparatus by which weights or loads may be afording ered from and ary ladder, to facilitate the painting and repair of bnild ggs. As a fire escope, it has apper and lower shatts joarualed in brackets to support drame carrying an endless belt ladder in front of a building opposite the win-
dows, the ladder moving, under control of a brake, to dows, the ladder moving, ander control of a brake, to convey to the ground persons stepping on it. When used
to support workmen theladder is locked in if ed position, and one form of the apparatus provides for its use on a ortable frame adapted for lifting
Awning.-Catherine Leclerca, Lima, Pera. This awning is constracted on the principle of Venetian blinds, and is adapted to be folded in a box Pastened over the door or window on which the awning to be applied. The invention consists of a head
mounted to turn and connected by tapes with the slats apporting rods connecting with either side of the outer most slat so as to hold the slats in a ventilating, shelter ing position, or in a closed position during raing

Metallic Shelf.-Charles W. Maraardt, Detroit, Mich. This shelf consists of tabula rackets engaged by tubular braces, connecting platea ecured to the brackets and resting on the braces, the en asedembled, and designed to be very omamental in ap. asembled, and designed to be very omamental in appearance, for
table top, etc.
Packing Case. - David F. Griffiths, New York City. After the parts of this case have been nailed or screwed togetherthey cannot be separated with
out showing that the parts have been tampered with, but the nails or screws are entirely concealed by parte which act as braces or ties. The case has a continuons ovetail or under-cat groove surrounding at ach eng wich a tie or strap is afterward passed and its ende sealed. When the straps have been carefully removed
in opening the case, the case may be again. used for in openin
Hanging or Swinging Chair.-Samael F. Porington, Branswick, Me. This chatr has forked lower extremities removably connected with a platform
apport, and the arms are removably connected with winging supports and with the back of the chair, the arme having a pivotally connected link at one end and an
angle iron at the opposite end, the link and angle iron aving slots receiving studs on the swingingsupports and on the chair body. These chairs may be quickly and asily connected with their supports, and disconnected be folded compactly for shipment.
Fastening Slip Covers on Furni-URe.-Henry Seher, New York City. This inventor moothly held on the furnitire, especially on the seat, reventing an ontidy appearance. The improvemen devices being located along the edge of the seat, back, meet the spring fasteners are adapted to be forced, with he slip cover, into the crease between the cushions.
Combination Folding Bed.-Edward E. Marphy, Madison, Wis. The legs of this bed are
automatically unfolded when the bed is lowered and locked when the bed is down. The casingis finished of in the atyle of a wardrobe, with cabinets on each side of ther fitted ap as a writingdesk or secretary. Means ane provided for tightening the mattress spring and for hold ing the bed clothes when the bed is folded ap. The invention affords a cheap, simple, and safe folding bed,
with few operating parts, and one in which the balancing weights aredispensed with.
Umbrella Cane.-Rufus Waples, Jr., New York City. This is an improvement on a forme bracing the inner ends of each of the ribs against the opposite rib or ribs by a pivotal attachment which will permit of freely closing and opening. A metal strap plate, ring or flange, may also be durably attached to
the ends of the ribstogreatly increase the strength without adding sensibly to the bolk, making possible also much more rapid manufacture. When the cane is use as a walking stick its canopy is entirely concealed.
Hair Curler.-Sylvester K. Mathews Albany, N. Y. This is a device designed to be manipalated with one hand, and cause the hair into which it in (ion is manipulated, the hair so encircling the carling section that the section may be withdrawn from th tion consists of a cage in which are longturdinal parill spaced rods.
Notr.-Copies of any of the above patents will be
arnished by Munn \& Co., for 25 cents each. Pleas ond name of the patentee, title of invention, and date of this paper,

HEW BOORS AND PUBLICATIONS.

 Modern American Pistols and RE-volvers. By A. C. Gould. ("Ralph Greennood.") Boston: Bradlee Whid
den. 1894. Pp. iv, 222. Illustrated den. ${ }^{18994}$ Price.

Tils moes interesing book treats of modern pistols the single shot type, such as the Stevens rifle, the Rem cally or practically, of revolvers of the most mod histor of target and pocket revolvers, of the most modern type points of construction, bat treats in considerable detail or relative accoracy of different weapons In addition illustrations of thepame and of, targetsproduced by them, them in shooting attitade, are interspersed through th volame.
Elementary Lessons in Steam Ma ENGINE By Staff Enginer Engine. By Staff Engineer J
Langmaid and Engineer H. Gais
ford. London and New York: Mac ford. London and Jew York : Mac-
millan \& Co. 1893. Pp. xv, 267. Price \$2.
Thie work is prepared for naval cadets on the Englis based on the plan of the London University. The work is very attractive and general in the treatment of its sab study and is really a work rather for reading than for hand cats, Fig. 84 , which represents the fond in one of the inder and \mathbf{D} valve, the valve and piston both being mov

DYNAMO AND MOTOR BUILDING FOR Amatedrs, With Working Draw
ings. By C. D. Parkhurst. New York: The W. J. Johnston Company
Lieat. Parkhorat hasa name familliar toour readers from his articles on electrical apparatus which have been pablished in our Sopphement. This book will, we doab
not, be welcomed by many constructing amatears, who are interested in motors and dynamos.

SCIENTIFIC AMERICAN

BUILDING EDITION APRIL, 1894.-(No. 102.)
table of contents.
Elegant plate in colors showing a handsome colonial residence just completed at Ashborrne, Pa, for
Charles Salmon, Eeq. Two perspective views and floor plans. Cost complete $\$ 11,500$. Frank R. Watson, Esg., Philadelphia, Pa, architect. A
elegant design. Plegana
Plate in colors of a Chicago dwelling designed for an architect's home, and recently completed at Morgan
Park, Chicago, ni . Two perspective views and floor plans. Cost $\$ 4,200$ complete. Mr. H. H. Waterman, architect, Chicago, ill.
8. Two perspectlve views, interior view and floor plans of the elegant reaidence of Judge Horace Russel
recently completed at Southampton, Long Island recently completed at Sorthampton, Long Island
Mr. Bruce Price, New York City, architect. An ad mirable design in the colonial style of architectur An English cottage at Buena Park, Chicago, II. Two
perspective views and floor plans. Mr. Jame design in the Gothic style of architectore.
A residence at Soathport, Conn. Two perspective
views and floor plans. A picturesque design in views and floor plans. A picturesque design in W. Kent, New York City, architect.
cottage at Freeport, Long Island, erected at a cost of $\$ 2,600$ complete. Perspective view and floor
plan. A anique design. Mr. W. Raynor, Free port, L. I., architect.
A residence at Rogers Park, Ill. Two perspective views and floor plans. Cost $\$ 8,948$ complete. An
attractivedesign. Mr. C. W. Melin, Chicago, Il ., architect.
wo perspective views and floor plans of a dwelling rently erected at Rogers Park, III., at a cost of Ras, Jr., Chicago, Ill_{1}, architect.
a cottage at Morgan Park, 1 ll ., 'erected at a cost of \$2,988 complete. Two perspective views and floor
plans. An attractive design, treated in the English cottage style of architec
10. The new St. James M. E. Charch at Kingston, N. Y. Perspective and plans. Architects, Messir. Weary \& Kramer, of New York City and Akron, Ohio.
Estimated cost, $\$ 70,000$. Style of architecture, Estimated cost,
11. Miscellaneons Contents: Vibrations of tall baildinge -Artifcial stone.-A simple and efficient dumb machine, illustrated.-The New Era electrical gas burner, illastrated. -P. \& B. Raberoid roofing, sheathing papers, and paints.-Improved wood-
working machine, illustrated.-Foot power mortie-ated.-A large sheet metal ceil ing, illustrated.
The Scientific American Architecte and Builders
Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to abont
 cally, a large and splendid Matazine of Abchitrc-
tore, richly adorned with elegant plates in colors and roke, richly adorned with elegant plates in colors and
with fine engravings, illuatrating the most intereating examples of Modern Architectoral Construction and allied sabjects.
The Fallness, Richness, Cheapness, and Convenience of this work have won for it the Larergt Circulation
of any Architectural Pablication in the world. Sold by all newedealers. MONN \& CO., Publishers,

ХBusiness and \$personal.

The chargefor 1nsertion under this sead is One Dollar a line

 tivech nsention : about e ciont words to a line. Adver " $\mathrm{c} . \mathrm{s} . \overline{\text { " metal polish. Indianapolis. Samples free. }}$ For best hoisting engine. J. S. Mandy, Newart, N. J. Best Handle Mach's. Trevor Mfg. Co., Lockport, N.Y. Mycrobe Killer Water Filter, McConnell Filter Co.Bufalo, N. Buffalo, N. \mathbf{r}.
Pipe frame track baskets, steel and wooden tracks,
etc. L. M. Moore, Rochester, N. Y. See pare 157 Bookblnalng.-All classes of work. Marazines ., New York Nlckel-in-slot machines perfected and manafacture
Electrical sapplies, Waite Mfg. Co., Bridgeport, Conn. Steam Hammerg lmproved Hydravic Jacke andab Expanders. R. Dadgeon. 24 Columbia St., New York. Screw machines, milling machines, and drill presses he Garvlu Mach. Co., Laikht and Canal Sts., New York Centrifugal Pumps. Capacity, 100 to 40,000 gals. per
minate Allsizesin stock. Irvin Van Wie, Syracuse, N.Y. minute. Allsizesin stock. Irvin Van Wie, Syracuse, N.Y 65 ft steam yacht, 83,850 , also 25 ft lannch, $8650 . \mathrm{W}$.
G. Nourse, assignee for Chas. P. Willard \& Co., Chicago, Gulld \& Garrison, Brooklyn, N. Y., manufacture steam amps, vacnam pamps, vacnam at
Extensive stock of small engines and boilers (stationry and marine). Must be sold. W G. Nourse, assignee for Chas. P. Willard \& Co., Chicago. III.
The "Olin" Gas and Gasoline Engines, from 1 to 10 horse power, for all power purposes. The Olin Gas Ensine Con 22 Chicaso slrea, Bulalo, N. Y
The best book for electricians and beginners in elec-
ricity is " Experimental Science," by Geo. M. Hopking Bricity is "Experimental Science," by Geo. M. Hopkins.
By mail. \&4; Munn \& Co., pablishers, 361 Broad way, N. Y. For the original Bogardus Universal Eccentric Mil Foot and Power Presses, Drills, Shears, etc., addrese

J.S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Patent Electric Vise. What isclaimed, is time saving. No turning of handle to bring jaws to the work, simply | one |
| :--- |
| $\mathrm{N} . \mathrm{Y}$. |

Competent persons who desire akencles for a new apular book. of ready sale, with handsome proft, may
apply to Munn \& Co., Scientific American office. 36 Broadway, New York.
Wanted, Bridge Salesmen-one for each State in the
Union, competent to make sales of bridges and superUnion, competent to make sales of bridges and super intend erection when necessary. Address, stating age,
experience, salary expected, etc., L. B. 1100 , Chicago, ill CTSend for new and complete catalogne of Scientific and other Books for sale by Munn.
New York. Free on apolication.

HINTS TO CORRESPONDENTS.

 information and not for pablication.Rererences to former artices or answers or ounld
give date of paper and paye or number of question.
nquiviries not answered m reasonable time shonld
 or in this department. ceck must take his tum.
Buyors wishing to purchase any article not advertised
in our colomns wwill he fornished with addresees of
houses mananacturing or carming
 expected withoat remaneration.
cientific Amer can Supplements referred
to may be had at the oftice. Price 10 cents each.
Books referred to promptly supplied on receipt of Bo oks referred to promptiy supplied on receipt of
price.
merals sent for examination should be distinctly
marked or labeled.
(5939) J. M. H. asks: 1. How are car on plates made? A. See query 5942 . 2. Please tell me how many gravity cells it will take to charge a storage
ell about the size of a two quart jar, and how long will take? A. Allow three gravity celle, and one or two days
(5940) H. A. M. writes: 1. We have a maple sugar camp and use three old-fashioned pans, 26 incheswide and 12 feet long. Wonld they evaporate
more by having them partly covered ? A. The pans hould not be covered, bat will evaporate faster by con tirring implement. 2. Can I put under one of them coil of 114 inch gas pipe to heat the sap before it reache the pans? How many feet of pipe would be required to heat 1,500 gallons in aboat 15 hours, sap to be taken from A. We donot recommend the coil under the pan. It in terferes with the proper management of the heat of th pan and is not easily cleane. A supplementary pa pugar at the rear, a is preferred. It can be heated by extending the fue and chimney. 3. What is the beet way to cleans maple sirap? A. The white of egge frothed by beating with a little of sirap, stirring thoroughly in the suga pan, and skimming off the scum is the usual process for ing whitens the sagar. Fellows here have a two-story hall, and they cannot ren the ground floor on account of the plainness with whic they can hear below what is going on apstairs. Can it be deadened in any way? The building is a two-stor
frame, sealed with inch lomber, and the apper floor i doable, with a 2 inch strip between them. A. A thick paper felting, or strawboard, laid on the floor and another floor laid on the strawboard, or below celling Wetween; or, what would be better, furoff the ceiling, an lath and plaster; this will deaden the sound from above. (5941) C. N., Vienna, Austria, asks : 1 What should be the proper size and pitch of a propelle tted with a compound engine of 60 indicated hore power, making 300 revolations per minate? A. The siza
of propeller suitable for your engine and its proposed
speed shoald be about 6 feet, more or less, to suit the model and allowed dranghtof the vessel. The pitch should Anelined boat than for a boat of burden or a tugboat. A pitch of $1 \frac{130}{100}$ to $11 / 9$ times the diameter is about the range for differentmodels and ases of steam vessels. For the speed of engine as stated, probably a pitch of 8 feet or a 6 foot wheel in a boat built for speed can be recommended. See an excellentwork by K onharit on "Steam Yachts and Launches," $\S 3$ by mail. 2. Please give simplest method of determining and findingthe pitch of a pro-
peller wheel. A. Thereisno simplem ethodof determining the size or pitch of a screw propeller. The resistance of the vessel, depth of dranght, required speed, and power are all factors for size and pitch of screw propel lers. 3. Where can I get the patent Bartlett wheel in
Ameica 9 . We do not find that the Bartlett wheel is nade under that name by makers of propeller wheels in
(5942) E. P. says : Will you kindly tell me how the carbon for arc lights is made and what is
the material used \boldsymbol{q}. Clean pieces of coke are selected, p lverized, and passed through a fine sieve. It is then thoronghly mixed with from one sixth to oneeighth its b l_{k} of wheat floar, both being in a dry state. The mixtare is moistened with water containing a small percent-
age of molasses. It should be allowed to stand for two or three hoars in a closed veseel to prevent the evapora tion of the water. At the end of this time the mixtore may be pressed intomoulds of any desired form, then re moved from the monlds and dried, slowly at firt, after Wand rapidly, in an ordinary oven at a high temperature.
When the rode or plates thus formed are thoroughly When the rode or plates thus formed are thoroughly
dried they are packed in an iron box, or, if they are small, in a cracible and completely sarrounded by coke dust. The box or crucible mast be closed by a non-com heat for an hour or so, then allow the box to cool, remove the carbons, then boil for half hoar in thin sirap or molasses water, then bake in an ordinary oven and re
carbonize as already described.-From "Experimental carbonize as already described.-From "Exp
Science." This same applies to battery plates.
(5943) J. T. T. asks : 1. For formula for making sealing componnd suitablef or dry batteries. A.
Use resin 4 parta, gutts parcha 1 part, melted togethe Use resin 4 parta, gatha parcha 1 parth, meited together
with a little boiled oil. 2. For full directions for amal gamating zinc cap, such as used in dry batteries. A. Do not amalgamate it, as amalgamation rendens zinc very
brittle. If you must do so, wash the inner surface with brittle. If you must do so, wash the inner sarface with
a slightly acid solution of mercury nitrate. 3. In attempta slightly acid solution of mercury nitrate. 3. In attempt
ing to amalgamate a cap of zinc, sed dilatesulpharic acid applied few drops meccury on inside cop robbing it oue surface by means of brush, but bottoms of cans would unsolder and drop ont. On examintition of zinc found it likerotten, being easily pulled in pieces. What cansed this? A. You used too muchmercury, but itwill alway make zinc brittle. 4. Whatamount of No. 32 cotton-cor ered magnet wire is neceesary for making an elestromagnet, having core 9% by 2 inches, asing
A. Wind it to a total diameter of $3 / 4$ inch.
(5944) H. M. writes : In mounting condensers for magic lanterns, how close should they be plaoed together? A. Place them, if doable, with convex sides inward and generally not more than a quarter of
an inch apart. If there are three, you may determine the proper setting by trial.
(5945) J. C. M. asks for the best method of tempering thesteel for the magnets used in the Bell telephone. A. Heat toa cherry red the ends only of the steel bars, plange them in water to harden them, and
draw the temper to a dark straw color or bronze bordering on parple.
(5946) R. F. W. asks : 1. In making dynamo described in SUPplmargnt, No. 600, will no
brass do just as well as bronze for the yokes a A. Brase brass do just as well as bronze for the yokes? A. Brass
will answer the purpose, but not as well as bronze. 2 Copper as well for the commutator as bronze ? A. Yes, provided it is hard rolled. 3. If you have any paper giving fall working drawings and complete description of the construction of a folding canvas canoe, will you please give the number ? If you have no paper on a folding canoe, can yon give me one on an ordinary canvas canoe?
A. For an answer to this query we refer to SUPPLEM ENT, No. 181, which contains a full description of a folding canvas canoe.
(5947) G. W. asks : 1. Can I obtain a suffcient spark to ignite the gaseous misture in an oil engine by winding copper wire around a soft iron core?
$\begin{aligned} & \text { A. Yes }\end{aligned}$ 2. If so, what gize core and length of wire will A. Yes. 2. If so, what size core and length of wire will
be required i A. On a bundle of No. 18 soft iron wires 34 of an inch in diameter and 8 inches long, wind No. 20 wire to the depth of 134 inches.
(5948) S. L. P. asks how dents are taken out of cornets and other brass horns. A. If the dents are inaccessibie, so that trools cannot be appied to after a fashion by oldering to the deepest part of the dent a wire and drawing the metal oat, afterward unsoldering the wire and cleaning the surface of the brass. If the part of the horn containing the dents is of aniform diameter, you can draw throagh the horn a spherical mejob, it will be better for you to send the horn to an instrament maker.
(5949) J. asks whether fish oil is injurious to rabber goods. Also what effect it would have
when applied to rabber hose ? A. Fish oil has a dowhen applied to rabber hose ? A. Fish oil has a de
teriorating effect on rubber. It tends to soften hoee.
(5950) F. H. W. asks for a formula for a quick dry plate hardener, or something he can put on the
plate that will dry rapidly by heat (without cansing the plate that will dry rapidly by heat (withont cansing the
film to ron), in order to get a print shortly after development. A. The following is said to be a good gelatine hardener: The negative, after fixing and washing in the
usual manner, is treated with a hardening solution com posed of chloride of aluminum 5 to 12 grains, water 1 oance. Thestronger the aluminum solution, the greater the amount of heat the negative can stand withont boft ening. The plate is immersed in the solution, and allowed to remain therein for a short time, and after immension
can be dried in sunlight or by artifcial heat without dancan be dried in sualig
ger of deterioration.
(5951) W. C. S. writes: 1. In the ScienTrio AnsRrcas for Febraary 24,1894 , is given a dis nake a cheaper call \& A magneto bell is rather expenve. A. On page 162, carrent volume of Scrantific ambrican, under thehead of "Telephone Experiments," ou will find a description of a simple telephone call, which effective for q iet places. 2. Will yougive me a receipt or a stove polish A. Mix 5 parts, by weight, of black cad (plumbago), 5 parts of boneblack, 10 parts of iron sulphate. Mix thoroughly and make into a paste with
(5952) Nick wants to make a sign havng the letters smooth and clear, the balance of ground to
be chipped or torn off and left rongh. No particular patbe chipped or torn off and left rongh. No particular pat-
ern. A. Clean the glass thoro ghly, then apply a solution of good glue or of gelatine to the portions to be
chipped. Ondrying, the glue or gelatine will contract and chip the glase
(5953) Y. M. C. A. says : Would you indly inform me, throagh your answer department of cee page 188 of the issie of the Solimer a mirror i A or March 24,1894
(5954) J. R. S. asks: 1. What is the re ceipt for making lanndry starch and mode of ueing same as to prodace a gloss when applied with a hand iron, coning 9 used in families ane ang thear own washing and issolved in 10 ounces of water, 1 onnce each of white wax and spermaceti are melted, and while liq id are rabbed with the solation of borax and 10drops oil of cloves to make emalsion, mixing them thoroaghly. A teaspoon ful of this mixture in a pint of starch gives a fine polish. It may also be applied atter starching by rabbing over the starch with a cloth and then polishing with the iron. The starch mentioned above is the ondinary dry stanch or making black ink? A. Black Ink Gallanta coarsely powdered, 75 parta; sulphate of iron, $421 /$ parta; ver this pour 2,000 parts of cold water. Digest from wenty-four to forty eight hours. Strain throagh a cloth and add 24 parte gum arabic.
(5955) C. W. H. writes: I am going to ay 1,800 feet of piping to carry water from a pond to a foot head, one torn at right angles. What I want a now is this : Whichwould convey themostwaterunder above conditions-one pipe 4 inches in diameter the enire distance or begin with a 6 inch pipe 600 feet, then 4 nch pipe 600 feet, and then 3 inch pipe the remainder of he distance? Also, about how much water woald flow hrough each of the above systems in 24 hours \& A. 144,000 gallons per day of 24 hoars. With sections of 6 nch, 4 inch, and 3 inch pipe in equal parts, you will have a flow of 129,000 gallons per day. If 1,200 feet of 4 inch, with 600 feet of 6 inch pipe at the pond end, you will have a flow of 180,000 gallons per day.
(5956) P. W. C. says: What is the formulafor the combined toning and fxing solution for mixing for use, bat is always ready \& A.
No. 1.
Sodium hyposulphite........ $10 \quad$ ounces.
Alum potash................ $23 / 8$ ounces.
Potassium sulphate.......... 1 ounce.
Sodiam solphate........... 5 ounces.
Water (distilled)........... 80 fluid oun

Dissolve the hypo. and the atom in the water; then ad the sodium and potassiom sulphate; allow it to stand for wo or three hours.

	No. 2.
Gold chloride. 15 grains.
Lead acetate.	... 6 grains.
Water (distilled)	8 ounces.

Mix in the proportion of 8 ounces of No. 1 to 1 onnce of ready for use.
(5957) P. O. M. writes : I have a piece ame the outline of a person ls produced as thongh it wa drawn on with milk; but it evaporates with the dampness
dithe pron leaving the glass, and it is not visible again onless the glass is again moistened with the breath. A. The glase ow which you refer has been slightly etched with hydro serfectly dry, but moisture develops the image, which iisappears as soon as the glass becomes dry.

TO INVENTORS.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted

April 3, 1894
and EACH BEARING THAT DATE. [See note at end of list about coples of these patenta.]

 Hea

Trap, fearaoie trapi, sieam trap:

\qquad

Wringer. See Clothes wringer.

DESIGNS.

TRADE MARES.

A printed con of the speatication and adoming or

NSTHUCTION•NALL

 Meconatical Draming

ELECTRICITY.

4000STUDERITS

HYPNOTISM: An Useand Aquase Mhe get

Cabroruniduno

Fertilizers are Unprofitable

 GERMAN KALI WORKS, BENNETT BULLDING, NEW YORI CITY
 NICKEL electro plating

The distribution of your power is a important as its application. I know a good deal about the economical distribution of powPerhaps I could give you a few pointers Inquiries answered free catalogues sent free Catalogues: A, woodworking mach'; ; B mach'y for
brase, ivory, horn, etc.; ©, shaft, P. PRYIBIL, 488.500 W. $\mathbf{W} 1 \mathrm{stSt}$.. NEW YORK

NEPERA PAPER.
A New Printing-Out Ready Sensitized Paper
PERMANENT PR INTS, Better Results, Easier Obtained. No Ice, No Ho

MATCH MACHINERY

THE "CLIMAX"

Stereotyper and Moulding Press

combined, for making perfect Cellu-
lidid

THE J. F. W. Dorman co.
Manufactur rs of
Bre, Md
Stamps Rubber Stamps, , Vul canizers, Stereo
type Machinery and Supplies.

THE COPYING PAD.-HOW TO MAKE

BUY

TELEPHONES
That are god-not "cheap things;", The diferguarantee our customers against loss by patent suits.
Orguaraptee and Instruments are Bo TH GOOD. WESTERN TELEPHONE CONSTRUCTION CO., 40 Monadnock Block, Ceicago. If you want the best CHUCKS, buy Westeott's

OIL FUEL FOR BOILERS. - DE scription of the assemolage of the water tube, oil- flred

LTF ESTABLISHED 1845. Popular Scientific Paperin
 he Most Popular Scientific Paperin the World

 Only $\begin{gathered}\text { 83.00 a Year. Including Posta } \\ \text { Weelaly-52 Numbers a Year. }\end{gathered}$This widely cilcellated and spiendidy illustrated
aper is published weekly. Every number contains sixleen pages of useful information and a largenumber of original engravines of new Inventions and discoveries, ew Inventions, Novelties in Mechanice, Manufactory Chemistry. Eleácricity Telegraphy, Photograpby, Aicit:tecture, Agriculture, Horticulture, Natural History. Ter Complete hist of patents each weex. Teribs of Subscribition.-One copy of the Scien ostage prepaid, to any subscriber in the United States Canada, or Mexico, on receipt of tiree dollurs by the publisbers; six months, 81.50; three months, 81.00.
Clubs. - special rates for several names and to
Masters. Write for particulars.
The safest way to remit is oy Postal Order, Uraft, or Express Money Order. Money carefully placed inside of envelopes. securely sealed, and correctly addressed.
seldom goes astray, but is at the sender's risk. Address sill letters and make all orders. drafts, etc., payable to MUN N CO., $\mathbf{3 6 1}$ Broadvotis, New Yorks.
§ciemtitic 马americau \$upplement This is a separate and distinct publication from The
SCIENTIFIC AMERICAN, but is uniform therewith in size. every number containing sixteenlarge pages full of enkravings, many of which are taken from foreign papers SCIENTIFIC AM ERICAN SUPPLLEMENT is published week IF, and includesatery wide range of contents. It presents the most recent papers by eminent writers in all
the principal departments of Science and the Useful Arts, embracing Biology, Geology. Mineralogy. Natura tiy. Electricity, Llght, Heat, Mecbanical Engineering. Steam and Railway Engineering, Mining, Ship Building. Marine Engineerling, Photorraphy. Technology, isanuFacturing Industries, Sanitary Engineering, Agriculture, etc. A vast amount of fresh and valuable information The most important Engineering Works, Mecbanisms, and Mancfactures at home and a
Price for the SUPPLEMENT for the United States,
Caraan, and Mexico, 85.00 a year; or one copy of the Cientipic Amehican and one copy of the Supple MENT, both mailed for one year to one address for $\$ 7.00$. express money order, or check.
MUNN \& CO... 361 13roadivay, New York.

Building Edition.

Tge SCIENTIHIC AMERICAN ARCHITECT8' ANO
BOLDERS' EDITION is issued monthly. $\$ 8.50$ a year Single copies, 25 cents. Thirty-two large quarto pages, forming a large and splendid Macazine of A rchitecture othier fine engravings; lluustrating the most interesting examples of modern architectural construction and
A special feature is the presentation in eacb number of a variety of the latest and best plans for private residences. city and country including those of very moderate cost as well as the more expensive. Drawings in
perspective and in color are given, together with Plans, perspective and in color are given, together with Plans,
Descriptions, Locations, Estimated Cost. etc. The elegance and cheapness of this magnificent work
have won for it the Largest Circulation of any have won for it the Largest Circulation of any Architectural publication in the
dealers. $\$ 2.50 \mathrm{a}$ year. Remit to

MUNN \& CO., Publishere

 DEAFNESS
 ICE HOUSES. - DESCRIPTION OF

 훌

A New and Valuable Book.

12,500 Receipts. 708 Pages. Price Bound in Sheep, 86. Half-Morocco, \$6.50.

 Over Trvelve Thousand selected Receipts are
here collected; nearly every branch of the suefil arts being represented. v ver placed before the publit The work may be regarded as the product of the studborkers in all parts of the world; the infornation give Almost evers inquiry that can be thought of, relating to formulqus used in the various manufacturing indus-
tries, willhere be found answered. Ine arts are given. Those who are engaged in any branch of industry
probably will fird inthis bool many that is of practical
value in their respective callings. Those who are in search of independent business or
employment, relating to the home manufacture of sam ple articles,
suggestions fill find in it hundreds of most excellen

MUNN \& CO., Publishers
BCIENTIFIC AMERICAN OFFICE,

Eve

 S improved danish

VANDUZEN STEAM PUNTMP THE BEST MUT THE WORLD.
Pumps Anj Kind of Liquid.

 Cost 87 to 8750 ech. Address
THE VANDUZEN \& TFT CO,

VEGETABLE PARCHMENT.-A VAL uable paper on the properties, uses and manufacture o
this product. Contained in SciENTFIC AMERICAN
PIUP

MIXING MACFINERY

OITE FINGINTES.
The Shipman Automatic Steam Engine
7 Insur 8 and 8 HORSE POWER, SINGLE. 22 HORSE POWER, COMPOUND.
STATIONARY AND MARINE.
SHIPMAN ENGINE CO. 200 Summer St., Boston, Mass

SINTZ GAS ENGINE CO U. S. A.
Manufacture of the Sintz Na-
tionary and Mnrine

PRTENTED: : NONELTIES. CURRAN BROS, w3z Broadway. Now Yor

 TRANSMISSION OF POWER - BY

STEEL WIRE ANA STEEL SPRINGAS

1

 wid Workshop puep

 19 improvement of the danube

 nitted underwear is in vogue. The bes machinery for its manufacture, such as

 SHIRT MACHINES, SLEEVERS, BAR STITCH MACHINES, etc., e made by SCOTT \& WILILAAMS,ZO7y E. Cumberland Street. 2077 E. Cumberland Street, SCIENTIFIC Experiments- - De-

GATES ROCK \& ORE BREAKER
 Capasity ap to 200 toos per hoor.

 SCIENTIFIC AMERICAN SCPPLE

RNDETATO INVENTORS.

(5) For INCUBATORS and

 Moistrafank SICK ROOMS. GRAPMITE PAINT american grain elevators:-

The Scientific American PUBLICATIONS FOR 1894.
she pramon of the difirene pubhatitons in the United
 The Beientitic Amerilian supplement (weekly). one . 5.00
The Scientific American, Spanish Edition (month-
ly), one year,
The Scientiffe American Architects and Builders
Edition (monthly), one year. -
2.50
The Scientific American and Supplement
The Scientific American and Architects and Buid 87.00
ers Edition
e Scientiftc American, Supplement, and Archi- 5.0
tects and Builders Edition, Proportionate Rates for Six. Nonths.
This includespostage, which
Te pay. Remit by postal MUNN \& CO., 361 Broadway, New York.

㐘 BOSTON•NEW YORK 潵 PHILADELPHIA CHICAGO•DETROIT•DENVER粦 SAN＿FRANCISCO 背 cold forged product． Forged Wood Screw
 Patented May 10，July 19，1887；Oct．29，1889；
Aug．19，Oct．21，1890；April 7 May 12，1891；
July 19，1892． July 19， 1892.
1ts Advantages are：
2．Uniform and wide slot screw． 3．Requires the wide of but one bit in hard
wood． 4．Inserted easier． 5．Centralized point．
6．Superior holding power 7．The screw being Cold Forged．instead
of Cur，reaves on its entire surface a tz Send for
AMERICAN SGREW CO． PROVIDENCE，R．I．

LABORATORY OF Dr，L．K，BÖHM

 Recording Thermometer Standardized and Warranted．
 cold storage plant，hotels，etc．
Give a a corract and continuos record
in ink on a weekky chart．Price THE DRA PER MFG．CO． THE DRAPER MFG．CO．

The

American

Bell Telephone
Company，
125 Milk Street，
Boston，Mass．
This Company owns Letters－ Patent No．463，569，－granted to Emile Berliner Novem－ ber 17，1891，for a combined Telegraph and Telephone， and controls Letters－Patent No．474，231，granted to Thomas A．Edison May 3， 1892，for a Speaking Tele－ graph，which Patents cover fundamental inventions and embrace all forms of micro phone transmitters and of carbon telephones．
 LL DIAMOND CYCLE highest grade．fully warranted． For Men or Women Boys or Girls
JOHN P．LOVELL ARMS CO． Manufacturers， BOSTON，MASS． Catalogue Eree．Agents Wanted．

KODAKS ${ }^{\text {wim }}$
Eastman Kodak Company，
Send for

Old Riders who
KNOW BICYCles Are accustomed to ignore friendships，and measure wheels without
mercy．With them loud mercy．With them lo Shar assertions count （2）mounts must skilful construction and dealing．The best riders， fair dealing．The best riders，
the
telli－
gent wheelmen of the country know Columbias to be the standard of bicycle excellence for the world，and ride them in preference to any other wheels． POPE MFG．CO．，Boston，New Fork Chicago，Hartford

Does the Work of Siz
Costs 5 Cents a Day to Heat No Extra Fixtures Required． Finely Nickel Plated．
delivered free on receipt of price． THE BOLGIANO WATER MOTOR CO WHOLESALE AND RETAIL．
415 WATER ST．，BALTIMORE，MD．

SA WS Wantad gave samgers SAWS

THE ELECTRIC STORAGE BATTERY CO． \boldsymbol{n} The Ghloride Accumulator．

 DREXEL BUILDING．
T Traqtion
Cpecialty
Spen

CASH PAID for al kind of goon secoud－hand ALUMINUM goods made in quentity at low price
 1884 NEW MALL．

Highest Qadity and Handsomest Light Roadstor of t a Fear

 WM．READ \＆SONB， 10% Washington Street，Boston MANUFAC＇URE OF BICYCLESS－A
 gravings．Contained in SciENTIFIO AMERICAN BUP
PLEMKNN．No．80．
office and from all newsdealers． office and from all newsdealers．

Scientifici Book Catalogue RECENTLY IUUBLISHED．
Our new catalogue containing over 100 pages，includ． Ing rorks on more than fifty different subjecto．Will be MUNN \＆C（）．，Publishers Scientifc American，

3 3i1 Broadway，New York． KELLEY＇S IMPROVED BERRYMAN
 Made by B．F．KELLEY \＆SON， $1 \begin{array}{c}\text { Liberty Street，} \\ \text { New ork }\end{array}$ and $\left.\begin{array}{c}8 \text { Oliver Street，} \\ \text { Boston，Mase，}\end{array}\right)$

AMATEUR PHOTOGRAPHERS．

CLIMAX RATCHET STOCK．

WRLL DRILLING MSCHINERY

 manopactoakd br ITHACA BROTHE ITHACA，N．Y．Mounted and on Sills，for deep or shallow wells with steam or horse power． Send for address
hilliamis Brothers ithaca，N，Y．

ARTESIAN WELLS－BY PROF．E．
 sian wells．Some chemical features of artesian weil

Oil Well Supply Go．
91 \＆ 92 WITATER STREET， manufaRTESIAN WELLS ARTESIAN WELLS

PRINTINE INKE．

