a Weekly journal of practical information, art, science, mechanics, chemistry, and manufactures.

THE FIREWORKS AT THE COLUMBIAN EXPOSITION-HOW SOME STRIKING EFFECTS WERE OBTAINED.-[See page 359.]

Srimitit Amprian.

ESTABLISHED 1845.
MUNN \& CO.. Editors and Proprietors. PUBLISHED WEEKLY A'T
No. 361 BROADWAY, NEW YORK.
o. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

Building Edition.

MUNN $\& C O .$, Publishers,
The safest way to remit is by postal order express monew order,

NEW YORK, NATLRTAY, DECEMBER 2. 1893.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT NO. 935

REPORT OF THE COMMISSIONER OF PATENTS.
The Commissioner of Patents is required to make two annual reports of the condition of the Patent Office, one to Congress, at the beginning of each year, and one to the Secretary of the Interior in the middle of the year.
Commissioner John S. Seymour's report to the Sec retary, for the fiscal year ending June 30, 1893, has just appeared, which shows that 39,539 new applications for patents were made during the year preced ing, 23,471 patents were granted, 8,283 applications were waiting official action. and the remainder stood rejected or requiring amendment. The total receipts were $\$ 1,288,809$ and the expenses $\$ 1,111,442$.
The Commissioner strongly recommends a philosophical classification of the issued patents in order to facilitate the work of official examinations; also the establishment of a more comprehensive scientific library; also provisions for a systematic examination of existing industries in all parts of this country. All these are excellent suggestions, and if carried out would greatly add to the value of the official scrutiny of applications.

The Commissioner further recommends that the supply of free copies of the official Gazette to libraries may be increased, so that inventors may have a more ready access to the publication. The crowded condition of the Patent Office, the wrong thus done to the health of employes, and the great losses to the government from the same cause are strongly set forth and relief urgently asked.

The Commissioner's report has the merit of brevity ; while all his recommendations are practical, and their adoption would be of great advantage to the bureau as well as to the public.

THE REGISTRATION OF TRADE MARKS.

The scope of the rights conferred by the registration of a trade mark and the limits of the authority of the Commissioner of Patents in dealing with anapplicant for registration are the subjects of a very lengthy decision recently handed down by the Supreme Court of the District of Columbia. The State of South Carolina, under a special law, the so-called Dispensary Law of December 24, 1892, assumed control of the liquor traffic of the State. In virtue of this action it became the owner of a trade mark used in connection with such traffic, and it applied to the U. S. Patent Office for registration of the same.
The case first was passed upon by the Examiner of Trade Marks, who refused it registration on the ground that a State of the American Union is not a corporation as contemplated in the Trade Mark Act of March 3,1881. He virtually decided that if a State could register a trade mark, then the one in issue could be registered. On appeal the case went to the Commissioner of Patents. He abandoned the examiner's ground for rejection as untenable, and introduced a new and original one of his own. He refused registration on the ground that, even if the State could enter the field of commerce, it had not done so by the legislation (i. e., the Dispensary Act) before him. He says : "Notwithstanding the acts of its Governor and State Board of Control," the State of South Carolina "has no authorized trade in liquors outside its own limits." Therefore he denies the appeal.
The decision of the Supreme Court states what registration of a trade mark does. It gives no new property right, it grants no monopoly of use. The grant differs radically from that conferred by the regular letters patent. It simply confers upon the one registering it the right to sue a citizen of his own State in the federal courts, provided he proves that he uses the trade mark on goods intended for commerce with foreign nations or Indian tribes. There was no question that the State of South Carolina used the trade mark in issue in foreign commerce. The contention of 3 the Commissioner was that such engaging in foreign commerce was unlawful, or outside of the scope of the Dispensary Act, and therefore he refused the registration.
The decision of the Supreme Court says that it does not appear that Congress ever intended to impose upon the Commissioner of Patents the ascertainment and determination of the question whether "the applicant is lawfully engaging in foreign commerce." The Commissioner's duty is to ascertain prima facie "whether he (the applicant) is lawfully entitled to use the trade mark sought to be registered, and, in the next place, to ascertain from the showing that is made to him whether that trade mark so lawfully used by the applicant is used in foreign trade." But it will be observed that with the lawfulness of the trade itself the Commissioner has no concern.
The determination of the lawfulness of the commerce in which the trade mark is to be used, the Commissioner must deem imposed upon him by the following clause of the law : "No alleged trade mark shall be registered unless it appear to be lawfully used as such by the applicant in foreign commerce." The court, after quoting this clause to determine its meaning, says: "Clearly this word 'lawfully ' relates to the character of the right of the applicant,
and not to the character of the foreign commerce." A peremptory writ of mandamus requiring registration of he trade mark was accordingly issued.
The whole decision, which covers over five pages of the Patent Office Gazette, is worthy of the most care ful reading. It will be accepted as one of the leading rade mark decisions, and we trust will be of use in de termining a more liberal treatment by the Patent Office of applicants for registration of trade marks.

TERRIBLE EFFECTS OF DYNAMITE.

The seaport town of Santander, near Bilbao, on the north coast of Spain, was the scene of a terrible disas ter on Nov. 3, causing the loss of between two and three hundred lives, with serious injuries also to seve ral hundred other persons, and great destruction of property, including damage to many houses in the town. A Spanish coasting steamer, called the Machichago, with a cargo which consisted of barrels of spirits, petroleum and above fifty tons of dynamite. was unloading at the mole. Some portion of the in flammable cargo took fire. Efforts were made, under the direction of the town police, acting in the presence of the governor, to remove the dynamite and the pe troleum, while a steam tug was brought alongside the burning ship, to tow her away from the quay, which was crowded with people. At half past four in the afternoon, probably from the concussion produced by the sudden bursting of the steam boilers, the whole interior of the vessel was shattered, its contents were mingled together, and the dynamite was ignited; there was a series of tremendous shocks. The ship and the steam tug were blown to pieces, scattered over the harbor and the quay, and at least sixty houses, as well as several vessels lying near, and a train at the railway station, were set on fire by the blazing fragments. The governor of the town and several other official persons of rank were among those killed.
Dynamite, as most of our readers know, is a preparation of nitroglycerine, which latter is made by treat ing glycerine with a mixture of nitric and sulphuric acids. Nitroglycerine is an oil and possesses the remarkable quality of violent explosion when subjected to slight pressure. It is therefore very dangerous to handle. To diminish this danger, and also to present it in the form of a powder, an absorbent substance is mixed with it, which holds the liquid nitroglycerine within its pores and acts as a cushion that prevents the nitroglycerine from exploding under light pressures, such as ordinary handling.
Dynamite is the name given to nitroglycerine when hus protected by an absorbent. Porous microscopic shells, known as infusorial earths, form the best absorb ent, and this material is used in the manufacture of dynamite. When dynamite is subjected to sufficient pressure, by concussion, for example, when contained in a bowb which is allowed to fall upon the ground from a suitable height, it explodes with terrific force. The explosive power of dynamite is eight times greater than gunpowder, and in general, for ordinary use for blasting purposes, it is cheaper and safer than gun powder; but for some kinds of blasting, particularly in coal mining, specially prepared gunpowders are preferred
The most authentic history of gunpowder attributes its discovery to a German chemist named Berthold Schwart, some time during the century beginning with the year 1300 ; and this remained for more than five hundred years the explosive most commonly used, until the invention of gun cotton by Schonbein in 1846 and of nitroglycerine by a French chemist, A. Sobrero in 1847, in the laboratory of Pelouze, Paris.
The action of nitric acid to render cotton and other substances explosive was discovered by Pelouze in 1838.

NEW BRITISH TORPEDO BOATS OF EXTRAORDINARY SPEED
The Havock is the name of the first of two new gun boats lately completed by Messrs. Yarrow for Her Majesty' navy, which on a recent trial yielded remarkable speed results. On the three hours' run, in rough veather-the wind blowing 30 miles per hour -a speed of over 26 knots was reached. On the measured mile the mean of four runs was 26.78 knots. The fastest mile run was at the rate of $27 \cdot 565$ knots, and the mean of the best two runs was over 27 knots. This is be lieved to be the fastest craft afloat The indicated horse power was 3,400 , and the engine revolutions 362 per minute.
The boats have twin screws, and generally resemble the first class torpedo boats built by this firm. The length is 180 feet and the width 18 feet 6 inches. There is the usual hood or turtle-back forward, although some modifications have been introduced with a view to getting a drier deck when the vessel is steaming into a head sea. The propellers are three-bladed. The engines are of the usual tri-compound type adopted by the firm, having cylinders 18 inches, 26 inches, and $391 / 2$ inches in diameter by 18 inches stroke. The boilers, wo in number, as stated, are of the locomotive type, and have copper fireboxes with copper tubes. The total grate surface is about 100 square feet and the total
heating surface about 5,000 square feet. The deadweight load on board was 35 tons.
A further trial was subsequently had for eight hours at an economical speed, with a view to ascertain the distance the Havock would steam with the fuel supply she can carry on board, upon which depends her radius of action. It was found that at a speed of 11.2 knots
the consumption was under a quarter of a ton an hour, and at 10 knots $31 / 2$ hundredweight an hour; and as the bunkers have a capacity of 60 tons, it follows that the distance the Havock can steam without coaling is about 3,500 knots.

THE NEW BRAZILIAN NAVY

It has been interesting to note the mushroom growth, during the past few weeks, of Brazil's provisional navy, a navy built in a day designed to combat a navy which it has taken years to bring together.
In the early part of the present revolution, in Brazil, it became evident to the government party that the only way to dislodge the revolutionists from their stronghold, the ships, was to get and send other ships to meet them. The position, for some time past, in the game between the two parties might be likened to a stalemate in chess. Admiral Mello, the leader of the revolutionary movement, cannot move, and yet he cannot be mated by Peixoto, the President of Brazil.
In consequence of thisstate of affairs, Brazil, through her minister at Washington, has been purchasing ships and war material in the United States and France, the greater operations being in the United States. The Brazilians evidently recognize the superiority of American skill, and they thus complimented American shipbuilders and ordnance men.
The ships chosen are of a variety of sizes and shapes, and designs, and the armaments are novel.
We have had little or no experience in actual combat with modern war material, and the efficiency and even availabilty of many weapons of modern design are doubtful.
The Chilian civil war gave us a few lessons from act ual experience, especially in the use of auto-mobile torpedoes and the small caliber magazine rifles. The interesting feature about the mushroom fleet is that it is to try the dynamite gun, with which our authorities have been solong experimenting, the Howell torpedo, which is said to be equal, if not superior, to the far-famed Whitehead, and the submarine gun, first designed by Ericsson, but since much improved by others as a result of extensive experiments
The fleet thus largely depends for its offensive qualities on the aerial torpedo, the auto-mobile, aquatic tor pedo and the submarine gun. Each of these carries a large charge of high explosive, and, if a successful hit can be made, one of these charges would disable
heaviest and strongest war vessel now in existence.
The preparing, equipping and arıing of this fleet ha excited much interest, and especially among naval men. Modern naval warfare is at such a point that it is almost impossible to predict the result of any given conditions. Those who are in the position and possessed of the proper knowledge to give the best judgment on the subject are very doubtful of the success of this heterogeneous squadron operating against the fairly well equipped modern ships of Admira Mello.
President Peixoto must do something, and, as armorclads cannot be purchased in open market nor can they be built in a limited time, the present plan is the only one left to him.
What are the chances of this squadron? First, they must get to Rio de Janeiro. There is no question but that El Cid and the Britannia can get there. The Feiseen and the Yarrow boat will go safely on the decks of the larger steamers, but there is grave doubt about the Destroyer, which is too large to be taken on board of one of the steamers and perhaps too small to go by itself. None of the plans of towing it are satisfactory, and no one is confident of its ever getting as far as the West Indies.
Arriving at Rio de Janeiro, what is to become of this fleet as it approaches the rebel squadron? The long range high powered rifles of the rebels will open firelong before any of the offensive weapons of the attacking fleet can be brought to even a possible effective use. The gunnery practice of the Brazilians being notoriously bad, it is quite possible that the Feissen and the Yarrow torpedo boat, being very fast and presenting small targets, may get near enough to use their automobile torpedoes with effect.
El Cid and Britannia are large targets, and vulnerable to rapid fire guns as well as those of larger caliber, and will find it difficult to get within fighting range. There is no question about the efficiency of their four and seven-tenths inch rapid fire guns, when they arrive within their fighting range, but the dynamite gun cannot be counted on with any degree of confidence at present.
The experiments with the Vesuvius showed how particularly sensitive this gun was to the trouble caused by the unstable platform offered by a ship.
The Destroyer is very slow and cannot be called a
efficient boat, and the submarine gun, with which it
is armed, though having met with some success lately, is still in the experimental stage.
Though the thorough vulnerability of this fleet must be acknowledged, yet we must not forget that it carries weapons the successful use of which will cause frightful destruction.
It seems to us that President Peixoto must lean heavily for success on the armorclads, Benjamin Constant and Tiradentes, the former of which is an able, well-armed, protected cruiser.
No fleet ever sailed with more chances for and against its success than this provisional squadron, and their great pluck deserves good luck.
THE NEW YORK CONTINGENT OF THE BRAZILIAN NAVY.
El Cid, or the Nictheroy, as it has been re-christened, is a new and fast vessel, built to run between New Orleans and New York. She is of 4,500 tons register; length, 380 feet; beam, 48 feet; depth from keel to upper deck, 33 feet; length over all, 406 feet. The Nictheroy is provided with a 43 ton dynamite gun which can throw a 500 pound projectile. She is also armed with several small guns and torpedoes.

The Destroyer is the result of twenty years of Mr. Ericsson's experience in war vessels. She is 130 feet long, 12 feet beam, and has a draught of 10 feet. Her! main feature is a 16 inch submarine gun mounted in her bow 8 feet below the water line. The gun fires a projectile weighing 1,525 pounds, being 27 feet 4 inches long, 16 inches in diameter and containing a 300 pound charge of high explosive. A feature of the projectile
is a pilot shell, which is detachable, and the object of which is to open a breach of sufficient size through a torpedo net to allow the projectile to pass through.

The Britannia, now known as the Brazilian America, was originally owned by the North Atlantic Steamship Company, of Boston, and made trips between Boston and Halifax. The Britannia was built at BerBoston and Halifax. The Britannia was borway, in 1890 . She is of steel, and is 270 feet long, 34 feet 6 inches beam, and the hold is 23 feet deep. She is well armed. These vessels have lately sailed from New York for Brazil, and their careers in the war will be watched with interest.

The Flying Focks of Nonnt st. Helens.

A recent issue of the New York Sun contains an account of the ascent of St. Helens, by Mr. Fred. G. Plummer, from which we take the following:
The State of Washington is traversed from north to south by the mountains called the Cascade range. They are the mountains which the early navigators of the North Pacific called the Snowy range, and which were delineated upon our early geographies as the Presidents' range. At that time it was proposed to name the great peaks after the Presidents of the name the great peaks after the Presidents of the
United States, but this revision of nomenclature was a failure.
The Cascade range forms a portion of the longest range of mountains upon the earth. From Cape Horn they run along the west coast of South and North America, along the Aleutian Islands, Kamchatka. Kurile Islands, up the east coast of Asia, through Siam and Sumatra, and thence into the Indian Ocean, where they still make their location known by the volcanic islands Kerguelen, St. Paul, and Amsterdam. Indeed, this great range completely belts the planet on a great circle, and doubtless marks, as has been suggested, the former equator of the earth, for it is conceded that the poles of the earth have changed, that it might be explained how tropical plants onceflourished at the poles while glaciers covered Europe. The mass of these mountains came from enormous fissures in the earth's crust, excepting the great true volcanoes which are so numerous along this line.
Within 150 miles of Tacoma are no less than twentythree of these large volcanoes and h undreds of smaller vents. Mount Tacoma, 44 miles southeast from the city, is 15,000 feet high, and is already famed for its great glacier system.
St. Helens has shown the greatest activity in recent times. In August, 1831, there was an uncommonly dark day, which was thought to have been caused by an eruption of a volcano. The whole day was nearly as dark as night, except for a slight red, lurid appearance, which was perceptible until near night. Lighted candles were necessary during the day. The atmoshere was filled with very light ashes, like the white ashes of wood. The day was perfectly calm. There were no earthquakes or rumblings. After the ash clouds had cleared a way it was seen that the pure white snow ipon $S t$. Helens was browned by the fall of ashes. It also said that lava flows took place at that time.
In October, 1842, St. Helens was discovered
In October, 1842, St. Helens was discovered all at once to be covered with a dense cloud of smoke, which continued to enlarge and move off in dense masses to the east, filling the heavens in that direction. When the first volume of smoke had cleared away it could be seen distinctly from various parts of the country that an eruption had taken place on the north side of St Helens, a little below the summit, and from the smok
that contiriued to rise from this crater it was pro
nounced a volcano in active operation. When the explosion took place the wind was northwest, and on the same day, extending from thirty to fifty miles to the southeast, there fell showers of ashes or dust, which covered the ground in some places so as to admit of its being gathered in quantities.
On November 23, 1843, St. Helens scattered ashes ver the Dalles of the Columbia River, fifty miles a way and burned continuously until February 16, 1844 Dense masses of smoke rose from the craters in immense columns, and in the evenings the fires "lit up the mountain side with a flood of softyet brilliant radiance."
I determined to investigate the most active volcano in Washington.
We left Tacoma by the midnight train on August 10, 1893, with packs containing the necessaries for the trip and the instruments for observing and recording all we were to see.
When we reached the mountain, with the aid of a glass I was able to map out a route to the larger of the craters, which would not cross any of the great crevasses in the ice slopes. Our ascent began immediately, and in less than an hour became very steep and in places dangerous.
Our progress was checked by an enormous cañon, several hundred feet deep, which appeared a counterpart of the grand cañon of the Yellowstone. Its formation showed several old lava flows, which, being firmer than the cinders and broken rock, in most places overhung the walls of the cañon and made descent out of the question. The great glacier at its head was fully 00 feet deep at the foot, and was plowing its way into a huge terminal moraine of small rocks. We could plainly hear the rocks grinding together as the great body of ice slowly forced them down the cañon. This great glacier headed in the ice cap at the summit of the mountain, and, although it looked steep and slippery, we decided to try this route. It was then 10 o'clock in the morning-a bad time to climb ice slopes and snow fields-but we had been gone from Tacoma nearly a week and had only provisions for two more days.
We had proceeded but a short distance cutting steps in the steep ice slope, when a bombardment of rocks warned us that our route was to be a dangerous one. The surface of the glacier seemed a sheet of ice clear to the summit, and down its slippery surface came rocks large and small as fast as the noonday sun melted the ice and snow which held them near the top.
Imagine a toboggan slide about three miles long, tarting nearly 10,000 feet above the sea with an initial grade of forty-five degrees. The speed of the rocks as they passed us was terrific. They whirled at such a rate that they seemed spherical in form, and as they flew down the slope seemed only to touch the high places in the slightly wavy surface of the glacier, making a metallic sound as they chipped the ice into a cloud which trailed them like a somet's tail. Here and cloud which trailed them like a comet's tail. Here and
there great rocks lay upon the surface of the glacier, probably having been held by a fall of new snow, and now and then one of these flying rocks would strike those which were held by the ice, and, amid a shower of sparks and chips, would bound into the air fifty feet or more, still whirling like a buzz saw and giving out a sound which I cannot describe. All this would have been very entertaining if so many of the flying rocks had not passed near us.
We were exposed to this danger for over an hour while climbing a quarter of a mile, and to say that we were all thoroughly frightened would not do the rocks justice. When at last we reached a place of comparative safety, we were too much awed to speak.

A New Deep Water Port.

The commercial interests of east Texas will be advanced by the new deep water port at Sabine Pass, Texas. The bar has been dredged so that vessels drawing 18 feet of water can pass the bar and reach the natural and spacious harbor every twelve hours. Jetties have been constructed on either side measuring 17,100 feet and 14,750 feet, with the walls above high tide. The new harbor will be especially valuable to the lumber and cotton trade. Instead of expensive transfers, cotton can now be shipped to Manchester or London direct. There are extensive deposits of coal in this part of Texas which, it is thought, will now be developed. A deep water celebration washeld October 24 in honor of the event.

Curiosities of Science.

The weight of a molecule of hydrogen, as given by an eminent authority, says the Chemist and Druggist, is approximately $0 \cdot 000,000,000,000,000,000,000,04$ of' a gramme; multiplying this inconceivably small number by 55 , the a tomic weight of iron, the weight of a molecule of iron is ascertained- $0.000,000,000,000,000,000,002,2$ gramme. In the sulphocyanide test we are able to detect the presence of thirty-three ten-millionths of a gramme of iron: dividing this number by the weight of one molecule of iron, we find that this apparently delicate test is unable to indicate to our senses a less number of molecules than $1,500,000,000,000,000$.
a burner for cooking or heating stoves.
The illustration represents a burner designed for convenient insertion and use in ordinary stoves for cooking and heating purposes. The improvement has been patented by Mr. Theodore A. Williamson, of No. 234 Juniata Street, Allegheny City, Pa. In the fire box of the stove is placed a box with perforated side and bottom plates, sufficient room being left at the back, front. and sides of the box to permit the free access of air for the promotion of combustion, and in the bottom plate of the box is formed a coil connected with a supply pipe leading from an oil reservoir, conveniently located at a safe distance, but so as to afford a ready flow. The coil, instead of being cast in the bottom plate, may be formed thereon by piping or other means, but the inner end of the coil terminates in a verticalchannel in the back plate, this channel

leading to branch channels connected with burners, as shown in dotted lines. When the burner is in operation, the heat from it converts the oil passing along the coil and branch channels into gas, and the burners are so placed that the heat therefrom will pass readily to the channels of the stove in the usual way. A transverse, vertically adjustable plate is arranged at the back of the box, to increase or diminish the space between its upper edge and the top plate of the stove, thus regulating the amount of heat passing rearwardly. The improvement is also readily applicable to the ordinary forms of stoves for heating purposes.

EXHIBIT OF JARECKI MANUFACTURING COMPANY.

Jarecki Manufacturing Company, Limited, of Erie, Pa., had an exhibit of pipe-threading tools, malleable iron fittings, cast iron fittings, iron body globe, angle and gate valves, steam brass work, etc.
Their exhibit was very tastefully arranged, the large pipe threading and cutting machines being placed along the sides of the space, while in the rear a pyramid had been built to hold malleable fittings. A unique arch constructed of cast iron pipe fittings was pipe fittings was
built across the rear, built across the rear,
towering above the pyramid.
The machines shown are designed to cut and thread pipe from $1 / 8$ to 16 inches in diameter. They were operated in a variety of ways. in a variety of ways.
Some were driven by Some were driven by
hand, others by electric motors, some by belt from the Exposition power plants, and others had engines attached to furnish the power furnish the power. They were shown in actual use, and received much commendation from pipe fitters for their ease of adjustment, convenient arrangement, and good ment, and good work. The dies are quick opening and adjustable, each set of four pieces cuttingtwo sizes of pipe. A large assortment of Jarecki screw plates and pipe cutters was also shown.
One of the features

WORLD' coldebbian exposition-exhibit of jareczi manufacturing company.
tent naval judges. The contrivance consists of a sort of collapsible spheroid, capable of being opened and shut like an umbrella, visible at sea for a far greater distance than flags, by which Morse code signals can be made without difficulty. If Admiral Fairfax and the signaling department report favorably, it will probably be adopted, to the satisfaction of the inventor, who is said to have been helped by Captain Percy Scott, now employed on signal books at the Admiralty.

The Ark Beats All.

Speaking of ancient ships and shipbuilding, Prcf. J. Harvey Biles said that, though Great Britain and America had made such great strides in shipbuilding, none of their wooden ships approached the dimensions of the Ark, which was 450 feet long, 75 feet broad, and 45 feet deep. He calculated that this was the size of this vessel from the Bible measurements, taking the cubit to be 18 inches. This, he thought, was the correct measurement. The largest wooden ship afloat now did not nearly approach the size of the Ark; the vessel was the Shenandoah, and her dimensions were 299 feet -

MEYERHOFF'S THILL. SUPPORT.

 mile in Florida than in any other country in the world. There are ants that will measure more than half an inch in length, and then there are ants so small that they can scarcely be seen to move with the unaided eye. There are red|by 49 feet broad and 29 feet deep. Eventhe Campania ants and black ants and troublesome ants. But as bad as they are, I have never heard of them eating out the seat of a man's trousers, as a missionary, the Rev. Mr. Wilson, once told the writer he saw the army ants do in India while the man was sitting on the earth for a few minutes beside him.
But the Florida ants will take out the lettuce and other minute seeds from the soil in which they are planted and actually destroy the beds. They will suck the life out of acres of young cucumbers and melon plants, uproot strawberry plants or cover the buds with earth to such an extent as to kill them. They will get into pie, pickle, sauce, sirup, sugar; on meat, in hash; will riddle a cake or fill a loaf of baker's bread till it is worthless. All remedies failing, I took to baiting them near their nests with slices of meat, bones, apple and pear parings, and when I had from 50,000 to 100,000 out I would turn a kettle of boiling water on them. I have killed a during week over a million in the space of a quarter acre lot, and I have almost wiped them out. I had to do this to secure any lettuce plants, and many unobservant farmers complain of seedsmen when they should attribute their troubles to insects.-Savannah News.

A Royal Inventor.
According to the New York Tribune, Prince Louis of Battenberg has invented a signaling apparatus, which is now on trial in the Royal Sovereign, and has received notices of approbation from various compe-
was much smaller than the Ark, except in length, and the dimensions of the Ark had only been exceeded in the case of the Great Eastern. In 1856 a prize was offered for the best model of a ship made by any one in the United Kingdom, and the models were on view at the Royal Institution. The prize was awarded to a model six times the beam to the length, and ten times the depth to the length, these being the same proportions as those of the Ark.

The Waterbury Watch Company.
Those who remember the description of the wonderfully curious and ingenious century clock shown in the Waterbury pavilion, as described in the Scientific American of July 1, will be interested to know that the Waterbury Watch Company received a medal at the Columbian Exposition for their exhibit. The clock not only represented, through finely carved miniature figures, all the details of watchmaking, but it showed miners at work digging rock, illustrated the development of the sewing machine, the telegraph, the telephone, the dynamo, the preparation of cotton and flax, and numerous other highly interesting mechanical and historical subjects. The company's exhibit also included about five thousand watches, all of the quick-winding model, the old long-wind watch having been discontinued five or six years ago. As the rules governing awards declare that there will be but one class of medals, this award is equivalent to the highest class medal of other exhibitions. A diploma was also awarded the com pany for artistic display, for general ex hibit, and for the remarkable and now famous century clock.

How to Obscure
 the Taste.

It is said that the active principle of Gymnema sylvestris, gymnemic acid $\mathrm{C}_{32} \mathrm{H}_{55} \mathrm{O}_{12}$, is very efficient, and it is suggested that before administering bitter remedies, the mouth be rinsed with a 12 per cent solution of this acid is alcohol and water. Gymnemic acid is a gray-ish-white powder, of sharp acid taste, very soluble in alcohol, but only slightly so in water and ether, and when the tongue is touched with it, the taste is completely lost for sweet and bitter, though acids, salty, astringent, or spicy substances are readily recognized.

BOILER-END TURNING, BORING, AND DRILLING

MACHINE.

The illustration represents a special tool constructed by Rushworth \& Company, Sowerby Bridge, England, for turning, boring, and drilling. The machine will admit a job 8 feet 2 inches in height, while the height from the top of chuck to the under side of the spindles when the cross slide is in the top position is 6 feet 4 inches. The main bed and the two uprights or standards are very strong and massive, being of box section, with box bars, etc. The cross slide is arranged to rise and fall by worm gearing worked from belt-driven pulleys at the top of the right hand standard in the illustration. On this cross slide are two heads for drilling, arranged to rise and fall by power by worm gear, as shown on the illustration, to move by rack and pinion and by hand wheel, etc. The spindles are of steel, 3 inches diameter and 10 inches range, and are perfectly balanced, so that when the nuts, which are of gun metal, in two parts, are released by the lever in front, the spindles return quickly. The minimum distance from center to center of holes which can be bored is $101 / 2$ inches. The drills can be run separately or together, a steel clutch being arranged on each head carrying the drills, and worked by levers, as shown. On the same cross slide is arranged a tool box or turning rest for turning the edge of the flanged tlue or the top. There is also at turning rest at the bottom, so that the top and bottom can be turned at the same time. The chuck which grips the flues is 5 feet in diameter, with five jaws, all connected with steel bevel wheels, so that the flue ring always remains concentric. The largest diameter the jaws will grip is 4 feet 9 inches, the smallest 2 feet. On the under side of this chuck is a worm wheel for driving the chuck for turning, and for dividing or pitching out the holes from 20 to 140 by the dividing arrangement shown on the side. The dividing handle, the handle for moving the chuck longitudinally, and the handle for the turning rest are close together, so that the workman has not to move. The strong slide which carries the chuck is arranged to move through the uprights by a screw having a range of 6 feet, 3 feet on each side of drills, so that tube holes in the portable boiler fire boxes can be bored in any part
The miter and bevel gear are all of steel. The driving mechanism is all at the back on the righthand side of the machine, out of the way of the working. The weight is 17 tons. For the above and for our engraving we are indebted to Engi neering.

Surgery in China.

In the China Medical Missionary Journal, published in Shanghai, Dr. J. C. Thomson has a veryinteresting article on surgery in China. Referring to the great fortitude of the Chinaman under surgical operations, Dr. Thomson says that even now it is frequently put to the test in circumstances where surgeons in isolated situations are compelled to undertake operations unaided. or where otherwise the employment of chloroform is contraindicated, and in the minor operations of surgery. When so tested the Chinaman will endure without flinching a degree of pain that to the more highlydeveloped nervous system of the westerner would be well-nigh impossible. His experience also goes to confirm the general testimony regarding the remarkable recuperative power of the Chinese after surgical injuries. The reasons he suggests are the simpler feeding habit of the Chinese, the rare occurrence of albuninuria or glycosuria, and their equable mental constitution. With reference to the Chinese surgeons who have already been trained by the medical missionaries, Dr. Thomson says his observation of these men leads him to the conviction that the Chinese are fitted to take at least a respectable place as surgeons, and that a
time is coming when Chinese surgery will give favorable results.

Erratic Blocks.

In a recent number of the Fortnightly, Dr. Alfred R. Wallace, writing on the ice age and its works, says "The enormous block near St. Petersburg, and the mass of Swedish red granite found at Furstenwalde southeast of Berlin, are given as instances of erratic blocks. The erratic blocks from the higher Alps, which are found on the flanks of the Jura Mountains, are also shown to point conclusively to the former existence of glaciers stretching down the Rhone Val ley as far as the Jura. The distribution of erratics in North America is next considered, and the crowning example of bowlder transportation is said to be af forded by 'the blocks of light gray gneiss discovere by Prof. Hitchcock on the summit of Mount Wash ington, over 6,000 feet above sea level, and identified with Bethlehem gneiss, whoso nearest outcrop is at Jefferson, several miles to the north west, and 3,000 or

IMPROVED MACHINE FOR BORING, TURNING, AND DRILLING.

American Pineapples.
According to a recent article in the Fouth's Compan ion, a group of five small keys lying off the extreme southern point of Florida is now the principal pineapple producing district of the world. Less than seven hundred acres altogether are here devoted to the cultivation of this fruit, but from this area $4,500,000$ pineapples have been shipped to New York in a single year. The plant is propagated from suckers or slips, and 10,000 may be planted to the acre, two-thirds of which will bear fruit, so that if a dollar a dozen could be realized, the crop would be a lucrative one. The most common variety is the Scarlet or Spanish, the one ordinarily seen in the North, on account of its good shipping qualities. Next in abundance is the Sugar oaf, a sweeter fruit, but more delicate, and, therefore, more difficult to handle. Egyptian Queen, a large juicy fruit, is harder still to transport, and best of all is the Puerto Rico, a fruit weighing ten pounds, but so mellow that it is rarely seen more than two hundred miles from the place where it is grown. A field of pinepples, raised from slips, will bear for five years, though yield steadily decreases. A field planted with suckers only yields for two years. After this the land seems exhausted, and its strength must be renew with fertilizers, and by growing other crops, while plantations of pineapples are made in another field The fruit which is allowed o ripen in the field is alto ether superior in melting quality, rich flavor and wholesomeness to the hard, sour and indigestible pecimens which must be picked while they are solid and green, so that they can endure a journey to Northern cities.

An Electrical Fog Signal.

An electrical method of og signaling has been invented by an electrician in the employ of the Great Northern Railway Company. A wire is laid by means of a pipe from the signal box to the various signals, at which points brushes composed of copper wire project some four or five inches above the side of the rail nearest the signal. To the foot plate of the engine a similar brush is fixed, connecting with an indicator and bell on the engine. If the signal be at danger, the two brushes coming in contact has the effect of ringing the bell, and indicating to the driver by means of a miniature signal fixed on his engine that the line is not clear. The arrange ment can be switched off in fine weather. The process, which is in working order at Wood Green, has
bowlders carried above their source, Dr. Wallace says "We thus find clear and absolute demonstration of glacier ice moving up hill and dragging with it rocks from lower levels to elevations varying from 200 to 2,700 feet above their origin. In Switzerland we have proof of the same general fact in the terminal moraine f the northern branch of the Rhone glacier being about 200 feet higher than the Lake of Geneva, with very much higher intervening ground. As it is universally admitted that the glacier of the Rhone did extend to beyond Soleure, all the a priori objections to the various cases of rocks carried much higher than their origin, in America. the British Isles, and Scandinavia, fall to the ground. We must either deny he existence of the ice sheet in the great Swiss valey, and find some other means of accounting for the traveled blocks on the Jura between Geneva and Soleure, or admit that the lower strata of a great glacier can travel up hill and over hill and valley, and that the ice sheets of the British Isles. of Scandinavia and of North America merely exhibit the very same characteristics as those of Switzerland, but some times on a larger scale. We may not yet be able to explain fully how it thus moves, or what slope of the upper surface is required in order that the bottom of the ice may move up a given ascent, but the fact o such motion cannot any longer be denied."
proved so satisfactory that the company have decide to fit up the suburban lines, and eventually the whole of their system.

The Largest Bange Light in the World

The Lighthouse Board will shortly begin the construction of the largest range light in the world on the present site of the Waackaack Beacon, just east of Sandy Hook. The lens, which was on exhibition at the Columbian Exposition. is six feethigh and three feet in diameter. The lens cost $\$ 12,000$, and is of the best French make. When placed on exhibition a small light was put behind it, but the rays were so powerful that it had to be removed and shown without a light. The light from the new beacon will be equal to that of a search light. The light is a very important one, as it is used by mariners entering the main ship channel after rounding Sandy Hook bound in.

Chloralamid.

In an address by Prof. Penzoldt, of Erlangen, delivered before the German Scientists' Congress at Nuremberg recently, on "The Influence of Drugs on Digestion," the speaker stated that "chloralamid was one of the few narcotic drugs which accelerated digestion, and in a pronounced degree."

Professor Lanier's Process of Photographing upon the wood Block
This excellent process was described in its earlier form in Photographic Work for June 17 of 1892, but since then Professor Lanier has considerably improved the method, and he has instructed many operators, so that the method is in use by several of the large wood engraving establishments of the Continent. He publishes details in the Correspondenz, and says that instead of the zinc white previously recommended, he has made experiments with white lead and barytes white (sulphate of barium), but for most uses he still prefers the zinc white, especially if the firm and solid kind can be obtained. It must be admitted that white lead is better than zinc white in the matter of covering power, but such emulsions as are prepared to contain it are less sensitive than those made with the zinc, this being, perhaps, an indication that the white lead reacts with the nitrate of silver. Barytes white, on the other hand, though of less covering po wer than the lead compound, has no reaction with the silver compounds. Excellent results are obtained with the following formula:

(Citric acid solution, 1 to $2 \ldots \ldots \ldots3$ cubic cents.	
	Nitrate of silver solu

The two solutions are mixed in a small mortar, B bring added drop by drop. Another preparation containing albumen and zinc white, and one which adheres well to the block, is made up as follows
Four stock solutions are made thus :

A.-Gelatine, 1 gramme in warm water........ 30 cubic cents B.-Chloride of ammonium, 10 grammes in water.... 100 c. с. C.-Nitrate of silver, 10 grammes in water. 50 grammes.

The following are ground together in a mortar :

We now mix in a test tube :
C.. 8 cubic cents.
D

This argentic solution is added drop by drop to the contents of the mortar, the whole being well mixed during each addition. The wood block is now coated with a thin rubber solution made by dissolving :

India rubber.

3 grammes.
100 cubic cents.
This requires dilution with several times its volume of benzole before use. The rubber film being dry, and the edges of the block rubbed with fat to prevent the absorption of water, all is ready for the application of the sensitive coating, which operation must be done in a dully lighted place. A hog hair brush is used to apply the emulsion in the first place, when it is spread with a flat camel's hair brush (or the cheap substitute commonly sold), after which the coating-which should be but thin-is smoothed with a badger softening brush. The coating soon dries, and the blocks may be kept for several days. The printing may occupy from seven to thirty minutes. After exposure, a solution of chloride of sodium is flowed over the film to convert the silver nitrate into chloride. To fix, the exposed surface is turned downward in a flat dish containing a little hyposulphite of soda, the block being rested on small pieces of glass-about five minutes being required. In the same way (by turning down) it is immersed in a saturated solution of chrome alum, and then washed in several waters. When dry, it may once more be flowed with the dilute rubber solution. For line subjects an emulsion less rich in silver is to be preferred.

Macassar Oil.
 y bobert aleve

The true macassar oil, prepared from the seets of Schleichera Trijuga, Willd., one of the East Indian Sapindaceæ, has a great reputation in its native country as a stimulating application to promote the growth of the hair and
ecially eczema
It is obtained either by expression or by boiling the bruised seeds in water and skimming off the oil which ises to the surface.
It has in former years been imported into this country ; latterly, however, a product under the name of macassar oil, but which in reality was mainly composed Canaga odorata, or of the false Ylang Ylang, Michelia champaca, N. O. Magnoliaceæ, have been digested, began to make its appearance on the market and took the place of the former. Now, mostly domestic oils under the same name, suitably perfumed and frequent-
ly colored red with alkanet, have entirely replaced the ly colored red with alkanet, have entirely replaced the natural product.
The writer recently received a small sample of the true macassar oil from Mirzapoor, Hindostan. At the ordinary temperature it is semi-solid, of a yellowish-
white appearance, and has a weak odor of bitter
almonds. It is said to contain hydrocyanic acid, and it is not unlikely that in the stimulating properties of this constituent the cause of the ascribed beneficial ac tion of the oil may reside.
It has a mildly acrid taste, probably due to partial rancidity, and an acid reaction to litmus paper. It is completely liquefied at 82° F. (28^{\prime} C.) and congeals near $50^{\circ} \mathrm{F}$. $\left(10^{\circ} \mathrm{C}\right.$.). The oil is readily saponified by sodium hydrate even at a low temperature, the soap being white and hard. With nitrous acid it assumes an orange-red color and becomes viscid, butdoes not seem to solidify. On adding 5 drops of the oil to 20 drops of concentrated sulphuric acid, it acquires a reddishbrown color. The oil is freely soluble in chloroform, ether, bisulphide of carbon, benzol, benzine, and the fixed and volatile oils, but only slightly soluble in alcohol. It has a specific gravity of $0 \cdot 942$.

An excellent formula for preparing a so-called macassar oil for the hair, and which has given great satisfaction to those who have used it, is the following

Castor oil..
Oil of nutmeg.
Oil of rosemary.
Oil of sweet m
Oil of neroli..
Oilof rose.......
Tincture of musk... 1 m .3

- Amer. Jour. of Pharmacy.

Petroleum as Fuel.

On the Great Eastern Railway this fuel has been used in many of the engines for a considerable time, and the present extraordinary high price of coal is, we understand, leading to a considerable extension of the systom. We note also that experiments in this direction are being made in some of the Lancashire cotton mills, on account of the difficulty of securing solid fuel, and hence a few words on the subject at the present juncture may not be out of place.
The question as to whether it is more economical to burn petroleum than coal turns entirely on the relative cost of the two fuels, coupled with the comparison of cost of the two fuels, coupled with the comparison of
their respective evaporative values. For the purpose of firing steam boilers the use of the higher qualities of petroleum, such as that used for illuminating purposes, is altogether out of the question on the score of price, as the process of rectification to which the crude petroleum is subject very much enhances the cost. It should, therefore, be understood that in speaking of petroleum as a fuel it is really the residual or waste products from the mineral oil industry, as well as liquid hydrocarbons recovered from coal-fed blast furnaces, coke ovens, and gas producers. known as blast furnace oil, creosote, and common tar oils, that are re-
ferred to. One of the simplest methods of burning hese refuse oils in steam boilers is that adopted by Messrs. Nobel at their well known oil works at Baku. It consists of a series of shallow trough burners, arranged in a series one above the other, thus exposing a large surface. As the oil trickles down it flows from one stage to the other, and is thus vaporized and completely consumed by the time it reaches the lower tier of troughs. With this system of trough burners, it is stated, a practical evaporation of $141 / 2$ pounds of water per pound of petroleum refuse has been obtained, as compared with an evaporation of 7 to 8 pounds of water per pound of coal under similar conditions. The more common and practical method of burning these oils, however, is to spray them into the furnace tube or combustion chamber with a jet of superheated steam by an injector, which draws in the air supply at the same time.* Theoil is thus heated and broken up into fine spray and thoroughly vaporized in the furnace, where it is also mixed with the air which supplies the oxygen for combustion. It is essential for the complete combustion of this class of fuel that the furnace tabe should be lined, to some extent, with fire clay or brickwork, to act as an accumulator of heat and maintain a constantly higher temperature, and to this end the fire bars are usually covered with a layer of fire brick and fuel kept in a state of incandescence. In connection with the spraying of petroleum it may be stated that experience has shown superheated steam to be much more efficient than wet steam. The point is one which is sometimes overlooked. The most extensive adoption of the use of petroleum in this country has been on the Great Eastern Railway, where, as we have already stated, it has been in operation for some considerable time. The fuel generally used in these locomotive boilers consists of a mixture of two parts of coal tar with one of green oil, just to thin it down. The cost of this mixture twelve months ago was given as about 25 s . $(\$ 5.50)$ per ton ; what the precise price is at this moment we cannot say, as quotations have been somewhat disturbed by the present state of the coal market. If we credit the evaporative duty of the liquid fuel referred to as being equivalent to double that of coalwhich, we may remark, is an outside estimate-then a steam user cannot afford to use it so long as the price of coal is less than half that of the liquid fuel. This is *For illustrations of petroleum spray injectors as us
Expoartion, see Screntric Americas of July $8,1833$.
basis of comparison that is invariable, and which any steam user can apply for himself, to meet the circumstances of his own particular case.-The Practical Engineer.

Action of Light upon Dyed colors.
The committee of the British Association of which Professor Hummel is secretary has undertaken a very aborious and tedious task, to determine by experiment the relative fastness to light of patterns of silk cotton, and wool, dyed with 2 per cent of the artificial commercial coloring matters, and to the same depth with natural coloring matters. They were exposed in the country at Adel, five miles north of Leeds, in Mr James A. Hirst's garden, the patterns being pinned on deal boards, covered with white calico, and fixed vertically in glazed wooden cases, the air, after being filtered through cotton wool, circulating freely. Every pattern was divided into six pieces. One of these was protected, the others exposed for different periods The shortest "fading" period was about three weeks, May and June, 1892 ; at the end of the first period the standards were removed and new standards again exposed with the piece until fading to the same extent had resulted. The fourth and fifth series were exposed for a length of two or three fading periods, so that the fifth set might have an exposure of one year. This method was adopted in order to be able to expose in different years, as it is impossible to deal with a whole set simultaneously. The eosins and allied colors are the most fugitive; the methoxy group increases the fastness of the paler tint surviving after a few weeks. All basic reds, including magentas, are fugitive; the azo reds, and, more still, the secondary diazo compounds, are fast. Madder, cochineal, kermes, alizarin, and some chromotropes, 2 R and 2 B , belong to the exceedingly limited number of very fast reds; the Conge reds have not been tried yet.

stereoscopic Photographs.

There is no limit to the vertical dimensions to which stereoscopic pair of prints may be trimmed, should the subject demand it, such subject being a tall building, ravine, or other object of like nature. But, as regards lateral dimensions, the case is altogether different, and it is in this respect where so many blunders are made.
We take it for granted that every photographer at least desires that his friends shall be able to see and examine his binocular efforts without trouble or pain -nay, more, that they shall do so with such readiness as to be insensible of putting forth any effort in doing so; and the object of this brief article is to urge in bringing about such a state of matters, more especially as this is so easy of attainment.

The condition requisite for the average human eyps seeing the stereoscopic effect of a picture, and without any straining of the muscles of the eyes, is merely to see that the distance of an object in the foreground of one picture from the same object in the duplicate does not exceed three inches. It would still be better were this distance an eighth to a quarter of an inch less.
To those who possess slides of valuable or interesting subjects, whether portraits or landscapes, which resist their efforts in bringing them into coalescence, we would say steep them in tepid water, so as to loosen them from their mounts, and retrim them to the extent of taking \dot{a} quarter of an inch, or thereabout, from the sides, finally remounting them.-Br. Jour.

Soluble Gold.
In the Naturforscherversummlung at Nuremberg, Dr. Schottlander described a curious colloidal form of gold, which was completely soluble in water with basic acetate of cerium. The solutions are a strong violet-red color, but when diluted, carmine-red. The intensity of the color is so great that a solution containing $1-500,600$ th of gold is still distinctly rose-red. Such solutions are obtained by precipitation of a dilute solution of a cerous salt mixed with gold by means of potash or soda lye and solution of the black precipitate formed in hot dilute acetic acid, or by boiling mixed solutions of cerous acetate, gold chloride, sodium hydrate in the proper proportions. From the red solution sodium acetate precipitates a violet-red precipitate which contains all the gold and some of the basic cerous acetate. On drying the precipitate, an amorphous, bronze-colored, glittering mass is obtained, which is soluble in water. This is somewhat akin to Carey Lea's soluble silver.-Photo. Mittheil.; Am. Photographer.

A flat car costs about $\$ 380$, a flat bottom coal car $\$ 475$, a gondola drop bottom $\$ 500$, a double hopper bottom coal car $\$ 525$, a double hopper bottom coke car $\$ 540$, a box car $\$ 600$, a stock car $\$ 550$, a fruit car (ventilated) $\$ 700$, and a refrigerator car $\$ 800$. A four-wheeled caboose costs $\$ 550$ and an eight-wheeled one $\$ 700$. The prices given on the above cars include power brakes and vertical plane couplers. A 50 foot mail and baggage car costs $\$ 3,500$, a second class coach $\$ 4,800$, a first class coach $\$ 5,500$, while a first class Pullman car costs $\$ 15,000$.

DISPLAY OF FIREWORKS AT THE COLUMBIAN EXPOSITION.,

Soon after the World's Columbian Exposition opened the management discussed waysand means forattracting the largest number of visitors, and among other attractions provided were electric illuminations and fireworks on specified evenings. The fireworks were regarded as an uncertain experiment, but they proved to be very popular from the outset and soon became profitable attractions, and were accordingly given greater prominence. The first displays were held around the basin, but later a platform was constructed out in the lake east of the Manufactures and Liberal Arts building, and from about the first of July until the close of the Fair the fireworks were given on the lake shore.
Who will not recall vividly just such a scene on one of the special evenings as is depicted in the center of our first page illustration? Stretching along the halfmile expanse of the lake shore between the war vessel State of Illinois and Music Hall was a great open area which was densely packed with people almost every evening. From the roof of the Manufactures and Liberal Arts buildingpowerfulelectricsearchlights flashed their great beams of light across the heavens. One of the most memorable of these occasions was on the evening of the Fourth of July. The hour for the display to begin had passed when the two hundred thousand or more people who were anxiously waiting heard a shout at the north end of the Manufactures and Liberal Arts
building. There was a buzz of excitement as a powerbuilding. There was a buzz of excitement as a powerful search light revealed a balloon sailing out over the lake with what appeared to be a lantern suspended from it. Just as the balloon reached a height immediately over the heads of the crowd there was a flash of light, a shower of sparks and the American flag was revealed in brilliant flame suspended in midair.
The balloon which supported the flag was sixty feet high and nearly thirty feet across, made entirely of cloth. It was inflated with hot air, several hours being required to complete the operation. The flag was composed of a multiplication of strings or chains which were carefully rolled up on a framework and which were caref free by a slow-burning match. Each chain was one hundred yards long and the flag or multiplication of chains was sixty yards wide-a size far beyond what it was popularly supposed to be. The hanging chains and festoons at the left of the illustr The question, What makes the chains remain. pended in the air and why do they float away so gracefully ? might have remained unanswered had not the search lights revealed to close observers a parachute
from which each chain was suspended, while the fesfrom which each chain was suspended, while the fes-
toons had a parachute at each end. These chains were produced by what looked like ordinary rockets. The longest chains were one hundred and fifty yards long.
Fig. 4 shows a sectional view of an ordinary rocket. There is a vast difference in the size of these rockets, the smallest being of one ounce size, while the largest is six pounds. This large size requires a stick six feet six inches long and one, inch square to guide it in its flight. In ordinary rockets the stars are independent of each other, and when the cylinder bursts during the downward flight they fly in every direction. In the hanging chain and festoon rockets the stars are attached to a string, but in such a way as to be at right angles to it, so that it is quite out of the question for the string to be burned before the stars have become dim, if not entirely extinguished. The parachutes to these rockets are sometimes made of silk, but usually of Japanese paper designed especially for the purpose. When the rocket explodes, the chain, which has been carefully rolled up so as not to become entangled, unrolls, and by its fall automatically opens the pararolls,
Bombs or shells are probably the most popular and at the same time most expensive of fireworks usually used. Fig. 9 shows a series of small mortars and one of the largest size that was used at the Exposition to fire bombs. These bombs vary in size from a few inches to twenty inches in diameter, the largest ones costing $\$ 150$ each. The cases are made of papier-mache in two parts, which fit zo perfectly as to be gas proof. They are then covered with canvas, bound with heavy cords, then strengthened by another cover of canvas. They are filled with stars and a slow match placed at the top of each bomb. Underneath, and lightly attached to it, is a cone, which contains the powder to fire the bomb. Two fuses join at the top of the globe. as shown, to furnish the train with which to touch it off. This train is of considerable length, and is lighted by a match attached to the end of a long pole, in order that the attendant in charge may stand asfar away as possible. Were these precautions not taken, he might be made deaf by the detonation of the explosion. By the use of the two fuses, the ignition of the powder becomes practically an absolute certainty. In the largest size of bombs there are from six to seven pounds of powder in the cone, and when it ignites, the bomb is projected into the air to a great height and at an enormous rate of speed, leaving the cone in and at an en

The feature of these bombs is the shower of stars they scatter as they burst, and the beauty of the effect depends upon the success of the color effects produced. The mechanical part of making the stars is simple. In Fig. 8 a full size star is shown. This is what is called the "pill box" star, and is the one most used. The cone is a section of a pasteboard tube filled with the desired compound to produce a given color, and a piece of fuse is drawn through it, leaving
both ends exposed, so that the probability of its igniting is doubled. The largest size of bomb, already described, will hold eighty pounds of these stars, somewhere between ten thousand and fifteen thousand in number, according to color and size, and, upon exploding, spread them out sufficiently to cover an area of about three acres. All the pyrotechnics at the Exposition were provided by Pain's Fireworis Company, 102 William Street, New York, and the brightness of the colors and the combinations of effects that were produced showed that this company excels in the quality of its work.
In the manufacture of fireworks extra-hazardous compounds are avoided as much as possible, for, at the best, the risk is great. Among the materials most used in producing colors are Paris green, when an rsenical compound is wanted; sodas of various kinds, charcoal, magnesium, strontia, baryta, calomel, salt peter, chlorate of potash, antimony, steel and iron filings, and preparations of zinc.
Probably the most eccentric of all fireworks is the "water devil," shown in Fig. 10. Each piece consists of two distinct parts, the propelling power, which is represented by the cylinder, which is the foot, and the effect, which is the head. These two parts are set at an angle to each other,
the piece in a zigzag path.

the piece in a zigzag path.

The tourbillion is another interesting piece. (See figure.) It hisses like a rocket, and sends out showers of stars which assume the form of an umbrella. In the large size the stars fill an area from twenty to thirty feet in diameter. Fig. 11 shows floating jerbs. These comprise simple floating receptacles from which Roman candles, golden fountains, fiery geysers which Roman candles, golden fountains, fiery geysers of their shooting out of the water.
No great display of fireworks is complete without its "set piece," or, as it is technically termed, "lance work." Portraits, mottoes, pictures of buildings, in fact, almost anything that can be drawn on paper, can be reproduced in this way with surprisingly vivid effect, even to every desired color. An amount of preliminary work is required which seems all out of proportion to the time that the picture actually lasts, but the impression left in the mind is lasting.
The picture to be reproduced is sketched by an artist, on paper laid off in squares, corresponding with squares on the framework upon which the lance work is to be done. Let us take our front page. which shows a portrait of Director-General Davis. which shows a portrait of Director-General Davis.
This framework was thirty-five feet high and thirty feet wide, and comprised twenty-one blocks, each ten feet long and five feet wide, laid off into squares one foot each way. The artist, with a piece of chalk fas. tened to the end of a long stick, sketched the outline of his picture on the framework corresponding to the : sketch in his hand. An attendant followed behind him, nailing strips of bamboo over the chalk lines. The twenty-one individual frames were then sawed apart where these strips joined them together. A boy following the second man put wire nails at intervals
of four inches in the framework, and another attendof four inches in the framework, and another attend-
ant placed the "lances" in place. When the lances were all set and glued in place, a quick match was pinned over the upper ends of the lances, connecting them all together as shown in Figs. 1 and 2. This pin penetrated a priming on the head of each lance, which ignites the instant fire is present. After all the lances are in position and the fuse is applied, the whole
frame is elevated into its position. When the display frame is elevated into its position. When the display
took place the picture was touched off at three different points, giving an effect of every lance being lighted at the same instant. How nearly this was so can be judged from the fact that, were a man to take one hundred feet of quick match used for this purpose, hold both ends in his hands and light one end, the fire
drop it.
Gunpowder enters largely into the manufacture of fireworks to serve for ignition, but not for color effect. Several grades and qualities are used. One kind, called " meal powder," being manufactured especially for the purpose.

Probably no city in this country ever had such elaborate pyrotechnicdisplays as Chicago had in connection with the Exposition. At the dedicatory exercises October 20, 1892, displays were held in three parks which cost $\$ 25,000$, and on several occasions dur-
ing the time the Exposition was open displays were ing the time the Exposition was open displays were
held which cost $\$ 10,000$ each, such an evening being represented in our illustration.

The first lighthouse in the United States was built
The first lighthouse in the United St
on Little Brewster Island, Boston, 1715.

©orrespondence.

How to Acquire Languages Rapidly.

To the Editor of the Scientific American:
I note article in issue of this date in regard to "How mail clerks assist the memory." I have to state that when quite a lad I had occasion to learn the "U. S. ignal code,' 'which is familiarly known as "wig-wag," and they first used cards with the numbers on one side and letter, or phrase, equivalent on the other. Finding it of great convenience, I used the principle in the study of French and Spanish, putting on one side English and on the other the equivalent in French and Spanish, by that means enabling me to keep the languages separate, though studying them at the same time. I would sincerely advise any one who has a limited time at his disposal for acquiring a language to adopt this method. I was enabled to acquire such fluency that I had no more difficulty in thinking in the language I was speaking than in English (my mother tongue) in less than a year, and having only odd moments for study.

Fred. Moree Taylor, M.D.
Sault Ste. Marie, Mich., November 11, 1893.

How to Become an Electical Engineer. the Editor of the Scientific American:

Your note in the Scientific American for October 28 on "How to Become an Electrical Engineer" accords so completely with my own views upon the subject that, with your permission, I cannot refrain from xpressing some of the ideas in mind.
An electrical engineer should, above all things, be thoroughly practical. There is no use for a man in this profession, whether he be superintendent or the one in charge of electrical machinery, who cannot tell how a thing should be done, and do it himself, if necessary, from having learned to do it with his own hands. We learn to do by doing; and a course of study for engineers that does not take account of this fact lacks the very vital element, so it seems to me. The student must have daily practice in the electrical laboratory, in the draughting room, in the shop, in the boiler and engine and dynamo rooms, if he expects to meet the difficulties of after experience triumphantly. This provision made, it becomes, of course, necessary that he pursue mathematics and the theory of electricity and of machines.
More clearly to illustrate the point in hand, permit me to draw from the actual work of the institution whose electrical department I happen to represent. The course in electrical engineering covers two years, and aims to include as much of the purely theoretical as every practical engineer should know. The student spends from four to six hours a week in the shop during the whole course. Here he learns skillfully to make parts of machinery and complete apparatus of various kinds, also small dynamos and motors. Mechanical kinds, also small dynamos and motors. Mechanical
drawing is continued through the course also. This irawing is continued through the course also. This the purely mechanical student. Practical laboratory work is carried out in exact measurements in electricity and magnetism, including primary battery testing. with such authors as Kempe, Stewart and Gee, Ayrton, and Gray as guides. Regular practice is given in the care and operation of steam boilers and engines, dynamos and motors ; both are and incandescent systems of lighting and of machinery are studied by practical experience in the use of them for two years. In this work each man on duty at boilers weighs his coal and measures the water evaporated during the night's run. This, with the indicated horse power of the engines as calculated by the man on duty there, enables him to estimate the water evaporated per pound of coal, and the amount of coal used per indicated horse power per hour. He further determines the cost in fuel and water of each lamp maintained during the run. The man at the dynamos and motors tests them for characteristics, efficiency and regulation. The lamps are also tested from time to time as it is found necesclently and economically, which, after all, is the great end in running machinery.
Besides the practical work, the course includes the theory usually taught in electrical courses, with some work required outside the electrical course proper. These required branches are mathematics to trigonometry, with calculus and mechanics elective, physics and chemistry; these last are the regular junior courses in these subjects. It will not be necessary to outline the theoretical portion of the work, for it is not essentially different from the usual courses in engineering. But what we do lay stress upon is the practical portion. And in this regard we think we are carrying out the true theory.
A. A. Atkinson.

Athens, O., November 11, 1893.

Solution Against Insect Bites.

The following formula is published by the Jour. de Pharm. et de Chim.: Ammonia water, 3 gm .; collodion, 1 gm ; and salicylic acid, 10 cgm . One drop to be ap-
plied to each mpot affected.

MANOFACTURE OF STEA RIN CANDLES.
Candles are cylindrical rods of solid fatty or waxy matter inclosing a central fibrous wick, and designed for giving light. The raw materials mostly used for candles are tallow and palm oil. Ordinars tallow candles are made from the fat of sheep and oxen. It is taken as soon as possible from the carcass of the animal, sorted, cut to pieces and melted. Tallow consists of palmitic, stearic and oleic acids, with glycerine, a substance which is uninflammable. The melted tallow is run into large barrels or casks holding about 1,300 pounds and taken to the candle manufacturers, where they are rolled on a trough about 25 feet in length, 2 feet in width, and about 6 inches in depth. The cask is placed on the trough with the bung hole underneath. A steam pipe is then inserted into the hole, the steam turned on, causing the tallow to melt and run down into the trough, thence through the flooring to a large tub below. This tub is con nected by means of a inch pipe to what is called the "blow-up," which is 14 feet in length and 5 feet in diameter. The melted fat, to the amount of $7,0 \% 0$ pounds, is drawn from the tub and run into this apparatus. About 35 pounds of lime is then dissolved and added to the mass, which is then heated by steam until thoroughly mixed, forming a soapy mixture which separates the acids and the glycerine. It is then blown out by steam into a decomposer. This apparatus is made of copper, 32 feet in height and 4 feet in diameter. Steam at 100 pounds is then turned on and the acids allowed to boil. The water, which is always at the bottom of the mass of fat, is constantly drawn up by remelted and ready to be formed into candles. Each the aid of a steam pipe passing down through the cen- moulding machine contains about 96 moulds. ter of the cylinder. The water, when it reaches the top, falls down on and through a perforated diaphragm containing about 300 small holes to the inch, where it immediately passes to the bottom. The heat and pumping operation continues for about 10 hours, which separates the
then tested. If the material when cooled becomes crystallized, it is ready for the next operation.
The dissolved glycerine and water is drawn off and the acids pass to another tub, where, by the means of sulphuric acid, the fatty acids re set free from the lime. Boiling water is then used to free the fatty acids from the sulphuric acid. The liquid then passes into large circular tubs called chargers. From the chargers the acids pass into a still, circular in shape and made of copper. It is 6 feet in height, about 7 feet in diameter, and holds about 5,000 pounds, under which a fire is kept constantly burning and a temperature of $50^{\circ}{ }^{\circ}$ given to the still. From the still it is then condensed and run down into pans to solidify. The cakes, which are about 12×20 inches

THE COLUMBIAN EXPOSITION-A "MOONSHINER'S" PLANT.
etween each rod, which pushes them ahead, causing them to revolve. They are then drawn unler the brushes, which gives them a polished appearance. They are then packinto boxes for shipping.
Candles in large quantities are shipped to South Amerca and Mexico. They are also used by grocers, plumbers, and miners; 39 hands, with 40 moulding machines, can turn out about 8,000 candles per day. They run in size from about 5 inches to 24 inches in lengith. Our sketches were taken from the manfactory of A. Gross \& Co., N. Y.

THE COLUMBIAN EX POSITION-A "MOON

 SHINER'S" PLANT.In a corner of the grounds of the Columbian Exposition, in the part called the "back yard," stood one of the mostcu-
rious exhibits at the Fair-the plant of an illicit distillery. We illustrate the battered still and worm which was exhibited by the Old Times Distillery Company, and which is claimed to be the only distilling plant brought a way from the mountains. The plant of an illicit distiller, or in cant phrase "moonshiner," is very seldom preserved when captured. Either the still is destroyed before the seizure or it is destroyed by the revenue officers, as in many cases the distillery is located on the top of rugged mountains, which makes the transportation of the seized articles difficult.
There is very little of the romance of crime left in America. The gentle art
shot in the back. As soon as a moonshine still is broken up in one place, another is started a few miles away. The border of North Carolina and Georgia is a very bad spot for illicit stills, the people traveling from one State to the other when necessary.
The still is in form nearly always of the crudest shape, like the one illustrated, which is really a very good example of a better class still. Some of the makeshifts resorted to by these curious people are really amusing, and many of the stills are made of common wash boilers. The grain is, of course, hand-mashed. The market is generally local, seldom being outside
of holding up a coach is now practically a thing of the past. So that there is the past. So that there is
little left in the way of little left in the way of
exciting adventures exexciting adventures, ex-
cept the too frequent train robberies and the occasional disturbance of the halfnomadic people of Kentucky, Tennessee and some other States, who gain a precarious livelihood by the illegal distillation of ardent spirts. Though the literature in regard to moonshiners is very limited, two or three novelists have used the stills in the mountain fastnesses as a foundation around which foundation around whic
to weave their plots.
There appear to be three distinct classes of people who engage in illicit distilling; first, the common criminals; second, old confederate soldiers; and third, the descendants of the men who engaged in the men who engaged in insurrection, men who regard revenue laws as unjust and oppressive. Rye
is one of the principal
cereal crops in many of the States in which illicit distilling is carried on. Rye is bulky, cheap, and therefore not convenient or profitable to transport over the wretched roads But once converted into whisky, it can easily be transported on horseback, and the commodity can be readily disposed of near home.
To men coming of a whisky-making, whisky-loving people, the laws of the federal government enforced by the Treasury Department seem tyranny. It is stated that whisky can be made where rye is cheap for twenty cents a gallon. The internal revenue tax is now ninety cents a gallon. So that it will be readily seen ninety cents a gallon. So that it will be readily seen
that large profits may be made if the whisky can be that large profits may be made if the whisky can be
sold without having to pay the tax. When attacked, the moonshiners defend themselves, and as they are expert marksmen, the pursuit of the moonshiners is extremely hazardous; but they are not as bloodthirsty as they are usually painted, and it is a significant fact that most of the revenue officers who are murdered are

of the State. The moonshiner is a curious vutgrowth of the revenue laws, and his history forms a very curious picture of the primitive condition of border life.

a whale stranded at villerville.

A whale that had strayed into the mouth of the Seine went ashore Saturday, October 21, upon the coast of Calvados, under the herbage of Criquebœuf, near Villerville, between Honfleur and Trouville. It was perceived at about six o'clock in the morning by some fishermen, who at first took it for a capsized boat, but were undeceived when they saw it spout water to a height of eight or ten feet. Having adventured too near the coast at a moment when the tide was falling very rapidly, it was caught on the beach, and, despite its efforts, was unable to regain the open sea. It struggled for seven hours, giving formidable blows with its tail from time to time. It ceased to live at one o'clock in the afternoon.

a STRANDED WHALE.

 that most of the revenue officers who are murdered are at one oclock in the afternoen.It was 10.5 meters in length. Its vertical diameter was 1.3 meter and its horizontal diameter was 175 . Its length and the fin on the back 0.75 meter. The width of the tail was $1: 3$ meters.-L'Illustration.

OUR PHOTOGRAPH OF THE COLUMBIA

We give this week an engraving of the new war ship Columbia, taken when the ship was running at highest speed on her recent official trial. It will be noticed there is an absence of undue wave. The three propellers at the stern throw up the water considerably, and form a rather wide cataract ten feet high, which subsides gradually, and no heavy waves are formed. The bow waves are comparatively light, and in this respect are in strong con. trast to some other war ships. The Columbia is one of those poetic vessels that seem to "walk the water like a thing of life." The Columbia is 412 feet long on the load water line, 58 feet extreme beam, 22 feet $61 / 2$ inches normal draught, and displaces 7,350 tons. Her power consists of three three-cylinder vertical inverted triple expansion engines, having about 22,000 collective indicated horse power and driving three screws, one on the middle line, as in single screw ships, and the other two under the counters, as in twin screw vessels. This power is calculated to produce a speed of 21 knots an hour, which the contract for the vessel calls for, the builders to receive a bonus of $\$ 50,000$ for every quarter knot the vessel makes over the required twenty-one knots. On the official trial she made a mean speed of $22: 81$ knots, thus netting for the tortunate builders, Messrs. Cramp \& Company, the handsome bonus of $\$ 350,000$ above the contract price. Notwithstanding the above successes, it cannot be said the speed of the Columbia is commensurate with her great power. We believe she is the highest engined boat of any ship afloat of her size, but not the fleetest. Her displacement is 7,350 tons, with 22,000 horse power, or 3 horse power per ton of displacement. The two new Cunard ships, built to serve as war cruisers, are of 12,500 tons displacement, 30,000 horse power, twin screws, showing $2 \frac{2}{5}$ horse power per ton of displacement. These boats have made the Atlantic voyage of nearly 3,000 miles at an average of 213 knots per hour. It would doubtless be impossible for the Columbia to make such a voyage at that rate. Smaller ships, with higher engine power in proportion to dis-

placement than the Columbia, have been built. For example, the Japanese cruiser Yoshino has a displacement of 4,000 tons, horse power 15,000 , or 3.75 horse power per ton. Her mean speed on the official trial was 23.031 knots.
The Columbia is, however, a splendid ship, highly creditable to the country, and unsurpassed by any other vessel of her size. Our navy department having done so well in the production of this vessel, we hope will continue its good works until we can really boast the possessionof a vessel that can run as far and as fast, or faster, than any of our Atlantic liners. Not till then can we really claim to own a "commerce catcher and destroyer."

Railway Accidents.

According to the Fifth Statistical Report of the Inter State Commerce Commission, the number of railway employes killed :during the year ending June 30, 1892, was 2,554 , the number of employes injured being 28,267 . The number of passengers killed was 376 in 1892, as against 293 in 1891; while the number of passengers injure was 3,227 in 1892, as against 2,972 in 1891. An assignment of casualties to the opportunity offered for accidents in 1892 shows 1 employe to have been killed for every 322 employes, and 1 employe to have been injured for each 29 men in the employ of the railways. A similar comparison shows 1 passenger killed for each $1,491,910$ passengers carried or for each $35,542,282$ passenger miles, and 1 passenger injured for each 173,833 passengers carried or each $4,140,966$ passenger miles. The largest number of casualties to employes resulted from coupling and uncoupling cars, 378 employes having been killed and 10,319 injured while rendering this service. Of the total number killed in coupling and uncoupling cars, 253, and of the total number injured, 7,766 were trainmen. The accidents classed as "falling from cars" were in this year, as in previous years, responsible for the largest number of deaths among employes, the number killed in this manner being 611 . Of this number 485 were trainmen Collisions and derailments were responsible for the death of 431 employes. Of this number 336 were trainmen. This class of accidents is responsible also for the largest number of casualties to passengers. Thus 177 passengers were killed and 1,539 were injured by col lisions and derailments during the year. Collisions lisions and derailments during the year. Collisions
alone were responsible for the death of 286 employes alone were respons
and 136 passengers.

The True Physician.

The money-making idea is one that is dominant in the majority of humanity, and every occupation is looked upon as a trade. Philanthropic motives, pure and simple, are either sneered at as visionary, unchari tably branded as a trick of trade, or considered as a mere advertising dodge. True medicine, however, proclaims that the true physician is most happy when the patients are most healthy; this idea the common mind rejects as an absurd and impracticable doctrine There is a belief very generally spread that the physician has no interest in the preservation of health, but rather rejoices when there is the most sickness. This may be true in rare cases, but as a rule it is untrue The physician who practices his profession for mere mercenary motives has certainly a very low character and a decidedly sordid spirit. Some one has most truthfully said that the sanitary engineering and preventive skill which make our homes sweet and com fortabie tend to check disease and impoverish those who dare to bring down medical art to the level of a trade. No tradesman would get up in the middle of a cold winter's night, and ride ten miles without the prospect of pay, and yet the physician does this often. The true physician, therefore, becomes a teacher of benevolence.-Med. Summary.

Carbonic oxide is one of the most dangerous gases it is disengaged especially by the combustion of coal. Leblanc found that the difficulty of breathing air impregnated with coal gas is due especially to the car bonic oxide thus generated, and not to carbonic acid, which is not generated in sufficient quantity to account for the poisonous quality of the air A kilogramme of glowing coal will suffice to make the air in a space of 25 cubic meters unbreathable. An equally poisonous gas is sulphureted hydrogen. In the experiments of Dupuytren and Thenard $\frac{1}{1500}$ of this gas in the atmosphere proved fatal to a greenfinch, ${ }_{8} \frac{1}{80}$ to a dog, and $\frac{1}{250}$ to a horse. Chauffier observed that
both this gas and ammonia vapor proved fatal to ani both this gas and ammonia vapor proved fatal to ani-
mals in a few seconds. Chlorine gas cannot be inhaled, as the epiglottis closes spasmodically; even the smallest quantity mixed with the air provokes violent coughing. It kills animals quickly. Many poisons inhaled in gaseous form are equally as dangerous as if introduced into the blood in other ways. The noxiousness of the vapor of quicksilver is well known. Arsenious gas is one of the most dangerous poisons; and nu merous deaths have occurred from the inhalation of cyanogen gas.-Der Stein der Weisen.

Parming Pay

Nine-tenths of our farms are mortgaged for all they "re worth." This statement has been made so often that the general impression among all classes of people is that it represents the facts. Nothing could be further from the real truth. But not until the census of farms, homes and mortgages was taken in 1890 was it possible to get at the truth on this subject. These returns are now sufficiently compiled to warrant the following startling statements.
Three-quarters of all the farms in the United States are owned free of incumbrance. Only one-fourth of the total number of farms in the United States are mortgagerd. Or, to express it more specifically, out of every hundred American farms, more than 70 are fully paid for and less than 30 are mortgaged.
The average mortgage represents only one-third the value of the farm upon which it is secured.
The total amount of farm mortgages in the whole country is hardly one-tenth the total value of all our farms.
In 1880, nearly one-fifth of the mortgage indebtedness rested on farms; but in 1890 farm mortgages represented only one-seventh of the country's total indebtedness on real estate
Out of every hundred families on American farms in 1890, 47 owned their farms free of mortgage, 20 owned but with incumbrance and 32 hired the farms they lived on and worked.
Of those who cultivated their own farms, 70 per cent owned without incumbrance and only 30 per cent had mortgages. Of the farms occupied by tenants, less than 10 per cent were incumbered.
Four-fifths of the amount of debt on farmsand homes was incurred for the commendable purpose of buying and improving the property, and a like proportion of the numbers of farms and homes were mortgaged for the same purpose.
The total real estate mortgage debt that existed in the United States in 1880 is estimated at $21 / 2$ billions of dollars, equally divided between lots and acre tracts. In 1890 the total amount of such incumbrance had more than doubled, but only 34 per cent of it was on acres and 66 per cent on urban property.
The total mortgages on actual farms were about 525 millions of dollars in 1880, and ten years later were about 875 millions, an increase of 350 millions of dollars in the decade.
During these ten years no less than $\mathbf{6 0 0 , 0 0 0}$ new farms were created at the West and South. If only one-half of them carried the average-size mortgage, this would readily account for the increase in the total debt on farms.
Mortgages on other acre tracts than farms proper of 438 millions during the decade.
The mortgages on lots, that is, on city and town property, amounted to 1,250 millions of dollars at the pening of the ninth decade, but in 1890 were estimated at nearly 4,000 millions, or an increase of over 2,700 millions during the ten years.
The total mortgage indebtedness in June, 1890, is estimated to have been some 6,000 millions of dollars, as against 2,500 millions in 1880, an increase of 3,500 millions.
These figures look large, but show that the total indebtedness on all real estate in the United States is only about $\$ 92$ per capita. Add to this the per capita amount represented by the public debts of the United States ($\$ 14.63$), of States and Territories ($\$ 3.56$), and of counties ($\$ 2.27$), a total of $\$ 20.40$, and it afpears that the total public debt and all real estate mortgages in the United States amount to only $\$ 112$ per capita.
In other words, in June, 1890, the sum of $\$ 112$ from each man, woman and child in the United States would have paid all the mortgages in the country and also all the national, State and county debts. In France, the national debt alone exceeds $\$ 116$ per capita, England's national debt is nearly $\$ 90$ a head, while the public debts in the older Australian colonies are $\$ 300$ for each inhabitant. There are good reasons for believing also that mortgages in England, France,
Germany and Australia vastly exceed the American Germany and Australia
The official figures for 33 States, upon which the foregoing statements are based, were prepared for the American Agriculturist by George K. Holmes, special agent in charge of division of farms, homes and mortpages of the eleventh census, and are given in full in the December issue of that magazine, in connection with Mr. Myrick's article. Another interesting fact is that he number of families is practically one to a farm in most States, but for 22 States these farm families comprise 35 per cent of the total number of families. In this group of States only one-fourth of the farms were occupied by tenants in 1880, whereas now nearly one-third of the farm familiesare tenants-a gain in the wrong direction. The article concludes with the following statement:

Certain it is that enough has been set forth herein -most of it for the first time-to demonstrate that the facts about farm mortgages have been grossly distorted
final figures will show that over two-thirds of our four and a half millions of farms are owned free of debt, and that all the mortgages on actual farms in the whole United States to-day do not exceed the value of one ear's hay crop.
"The whole truth will be known when the census is ompleted, but enough is now done to indicate that the final result will differ from the above conclusions in amount rather than in proportion. A revulsion in public sentiment favorible to agriculture should follow a widespread discussion of these facts."-American Agriculturist.

How to Light Machine Shops.

At a recent meeting of the Institution of Mechanical Engineers, London, Mr. B. A. Dobsongave an interest ing description of his experiences in shop lighting :
In endeavoring to improve the lighting of h is shops at Bolton, Mr. Dobson naturally turned to electricity. In candescent lamps were tried, but these were not a very great improvement in illuminating power over gas while with the arc lamp the shadows were so hard and strongly defined that the workmen preferred a very much weaker illumination, if more diffused. When traveling on the Continent, Mr. Dobson visited some cotton mills, and here he found what seemed a very perfect system of illumination. Arc lamps were used, but they were placed in an inverted position to that which is usual, the negative carbon being above and the positive carbon below. This, of course, threw the greater part of the lightrays upward, as most of the illuminating power proceeds from the crater of the positive carbon. The ceiling is kept well whitewashed, so that the light thrown up is again reflected downward. The sides of the room are also whitewashed, in order that a reflection may come from them. The result is that, without any definite source of illumination being observable, the whole room is flooded with a

well-diffused light.

Mr. Dobson had very kindly arranged to have one of these lamps in the large visitors' room of the Institution of Civil Engineers, so that members were able to judge of its efficiency for themselves. The result was very perfect in regard to absence of shadows. One could stand in any part of the room, facing any way, and read a book or paper without any very perceptible shadow being thrown; indeed, the diffusion of light appeared to us as good as in the open air. Such a result is of the greatest importance, and it is to be hoped that libraries and reading rooms especially will in future that libraries and reading rooms especially will in future be introduced to the exclusion of the direct are lighting, like that adopted with such unpleasant results in the reading room of the British Museum. In regard to cost, Mr. Dobson cannot speak positively on the subject, not yet having sufficient data to go upon; but he anticipates that it will be higher than gas at 2 s . 8 d . per thousand, which is the price in Bolton. There will, however, be a much larger volume of light than when the gas was used, and the advantages of the system, in his opinion, altogether outweigh any possible additional cost.

In the discussion which followed, Mr. A. P. Trotter gave a good popular explanation of the advantages of a dead white surface for reflecting light, as compared to that of a looking glass or bright surface. Good white blotting paper, he said, reflects back 82 per cent of the light cast upon it. Many persons are under the impression that looking glass must be a better reflector than paper or a whitewashed surface, because, with looking glass, a strong shadow can be cast, while from a dead surface no heavy shadow is obtained. The reason, of course, is not so much that the reflected light is less from the dead surface, but that the reflection is concentrated in the case of the looking glass. With paper or whitewash it proceeds from a vast number of points.

A modification of this system of reflected light, which of interest, has been adopted by Mr. Aspinall, the chief engineer of the Lancashire and Yorkshire Railway. at the Horwich shops, where the rolling stock for the line is produced. In these shops the roof is not adapted for putting in larged whitewashed reflectors above the lamps, the jibs of traveling cranes, belting, shafting, etc., being in the way; but Mr. Aspinall, having seen the very perfect illumination obtained by Mr. Dobson at Bolton, determined to see if he could not obtain a modified result. He therefore inverted his arc lamps so as to get the positive carbon below, as in the case of the Bolton installation, and the major part of the light would be thrown toward the ceiling. Above the lamp, and therefore not shielding it from view, was a whitewashed screen of boards, acting as a reflector.
The effect was far superior to that of the ordinary method of arc lighting, where the dazzling stream of light pours upon the spectator, to the derangement of his eyesight, and at the same time casting heavy and impenetrable shadows. This arrangement, however, is inferior to the complete system, as described by Mr. Dobson, but may be taken as a very good substitute where, from local causes, the entirely raleented principla cagnot be adopted.

The Decimal Pointer.

In both France and Germany one-fourth how his record compares with others of like age. Direc In both France and Germany one-fourth reduced to tum has started five times against the watch and five a decimal is written as 0,25 ; in England it is written times against competitors. He has proved himself a 0.25 (always with the period at the top of the line), and in the United States in this way, 0.25. France and Germany always use the comma, England and the United States the period, the only difference being the manner in which it is placed upon the line. Sir Isaac Newton is given the credit of originating the present English method of using the decimal point, his reason being that by placing it at the top of the line it could be distinguished at a glance from the "fullstop" punctuation mark. All English mathematicians use the mark in the way proposed by Newton, and the period as a sign of multiplication.

THE COLUMBIAN EXPOSITION-STATUE OF "THE NORTH."

The main basin, which occupies the center of the Court of Honor at the Columbian Exposition, is decorated by several groups and pieces of statuary which
race horse and not one of the dress parade kind. The slowest mile that he has trotted in public this year is the $2: 141 / 2$ in his opening performance to the old style sulky at Cleveland the latter part of July. He has lost but three heats, two to Walter E. and one to Pixley, and his fifteen winning heats in his five races were in the average time of 2:09.9. That is, all of Directum's miles are at a faster average than any one either in a race or against time by any 4 -year-old up to the beginning of the present season. His fifteen winning heats average nearly a second faster than any other stallion of any age has ever trotted in a race. His twenty heats, in races and against time, are in the average time of $2: 091 / 2$, which is faster than any 3 -year-old trotter or pacer has gone up the present year.

Directum has trotted 10 miles this season at an average a trifle lower than $2: 071 / 2$, which is faster than any other stallion has ever trotted a single mile under any
ed, where all winds, except the west and northwest bring the surcharged atmosphere from other manufacturing districts, producing at any season of the year, if the wind happens to be slight, a sky ranging from dull lead to dark brown. For four years in succession it has occurred at the writer's works that on June 21 , the ongest day, the gas in every room, amounting to nearly \%,500 jets, has had to be lighted by eleven o'clock in the morning, and remained lighted until work ceased; and this has occurred also in other towns, in weather that ought to have secured abundant sunshine. Te such an extent does gloom prevail, that in clear weather the effect of bright sunlight becomes even distressing to the eyesight, simply from the rarity of the contrast.

One Million Pounds of Sugar in One Week.
Mr. L. Godchaux's Elm Hall refinery barreled up $1,000,000$ pounds of sugar recently, the production of seven days' grinding. About 900 tons of cane per day passes through the rollers, 40,000 pounds of grami-

THE COLUMBIAN EXPOSITION-STATUE OF "THE NORTH."
possess real merit, as the sculptors have taken subjects \mid condition. And so his superlative qualities could be lated sugar falls from the vacuum panseverysix hours,
which find their motives in American life. The statue enumerated almost without limit.-lnter-Ocean. of "The North," which is in front of the Manufactures building and near Mr. French's effective statue of the Republic, is a good example of one of these groups. The farm hand holds the powerful horse by the bit with one hand, while with the other he holds a spade. The man and the horse are of heroic size, and the group, when viewed either from the land or the basin, is very effective. At the extreme right one of the six rostral columns will be noticed. These columns are emblematic of victory, the projections in the sides representing the prows of captured triremes. The col umns are surmounted by statues of Neptune.
Directum, 2:051/4.

In a general way it is understood that Directum is the greatest 4 -year-old, the fastest stallion and the best race horse the trotting turf has ever seen. But how completely he surpassed all previous trotters of his age can only be appreciated by a careful review of all of his performances during the presentseason. Such a review will not be attempted at this time, further than to out line what the California colt has accomplished, and

Lancashire Snioke.

Although Lancashire coal has a number of excellent qualities, yet it is one that makes the most smoke of any. A large portion of the Lancashire manufacturing industries, great and small, date from a number of years back, when smoke-consuming and smoke-preventing apparatus had not yet been devised; and many of the factories are working at the present day under pretty much the same conditions as when they started. Hence the atmosphere in all manufacturing towns in Lancashire is heavily charged with unconsumed carbon, producing an excess of cloud and fog, which, while inducing an excess of rain, acts also as a screen against the rays of the sun, and thus does a double injury to the neighboring agriculturist, the producer of the country's native wealth. A circle of thirty miles radius around Manchester is said to include a larger population than an equal circle around any other place in the world ; and within this circle, about twelve miles northwest of Manchester, lies Bol-
ther from chaux there is no letup in this vast aggregation of machinery, not for a minute; with 500 men under his machinery, not for a minute; with 500 men under his
supervision, not one hesitates, but all!know their duty supervision, not one hesitates, but all!know th
and do it by some kind of instinct, as it were.
During the day a hundred wagons feed the maw of this monster mill with cane, and at night 500 cars are pulled in with a thousand tons of cane to appease the ever-crying call for more cane. About eight miles of railway are required to handle this vastcrop. A Baldwin locomotive, with Mr. Clarke at the throttle, will take the place of mule propulsion in a few days; yet with all this immense acreage and all this cane to handle the indomitable enterprise of the manager has led to the incorporation of about, 300 acres more of new land, and even now can be heard the terrible blasts of dynamite operating with fatal effects on the stumps that block the progress of the plow. If any one were to mention the fact that this country was now in the throes of a greatfinancial panic (that is, in this section), he would be sent to an asylum for safe keeping. Times were never better, and altogether prosperity is on top, and everybody is happy.-N. O. Times-Democrat.

recently patented inventions.

 Engineering.Hydraulic Dredging Machine. John W. Sackett, St. Augustine, Fla. This invention to plow in the bed of aiwatercourse a furrow, to be deepened by excavator teeth and hydraulic jets, removin the excavated material with a modicum of water through an adjustable condunt that is the feeder of a pump on a
float, the raised material being discharged at a preferred point. The invention also provides novel and simple means for the support and adjustment of the excavating ing apparatus to regulate its degree of advance in locat ing the plowing and elevating devices.
Structural Hollow Shaft.-Samuel H. Johnson, Pittsburg, Pa., and Harold C. Stowe, New producing a composite hollow shaft for steamboats an other purposes, which shall be of equal density through
outt, adapted to resist transverse and torsional strains and one which will be cheap to manufacture, light an easy to handle, and may be easily repaired. The im provement consists in forming a comparatively large
shaft from a number of formed plates secured together shaft from a number of formed plates secured togethe
to break joints laterally and longitudinally re-enforcin to break joints laterally and longitudinally, re-enforcin
the plates by internal junction sleeves, and stiffening the the plates by internal junction sleeves, and stiffening the
structure by the introduction and fixture of transvers structure by the introduction and fixture of transverse
diaphragm walls. The shaft also has solid cylindric journal stub ends, and any desired numb
diate solid cylindrical bearing supports.

Railway Appliances.

Car and Air Brake Coupling.-Ga briel Rohrbach, Del Rio, Texas. This is a combinatio device adapted to antomatically couple cars, which may be uncoupled from the top or sides, and also to antomati
cally couple the air pipes as the cars come together. The car coupling is similar to a former patented improve nent of the same inventor, and the drawhead has a rocking jaw, behind which is a socket with which an air
brake pipe is connected, a link having a longitudinal ore and a head to engage the rockng aw and enter the socket, a lever mechanism releasing the jaw.

Electrical.

Trolley Line Construction.--Geo. Q. Seaman, Brooklyn, N. Y. Supporting devices having provided with contact and insulated faces, and a switch bar or circuit closer on each support is held normally in electrical contact with the supporting devices, the
sivitch bars having independent connection with the feed bar of the line. The trolley wires are connected with opposing supporting devices to form a series of sections,
the wire of each section while under tension normally the wire of each section while under tension normally
maintaining its supporting devices in engagement with porting devices will turn and present their ineulated porting devices will turn and present their insulated
faces to the switches, the broken section thus becoming immediately insulated, preventing the wire from doing harm. The cutting out of the broken wire can also be
effected without disturbing the circuit at either side of he section.
Magnetic Permeameter.-Edgar D. Knap, Schenectady, N. Y., and Severn D. Sprong, East Greenbush, N. Y. This is an instrument to test
iron used in the field magnets of dynamos and motors, iron used in the field magnets of dynamos and motors,
to determine its magnetic permeability. Combined with a field magnet havingoblique pole pieces is a soft iron armature turning between them and having obique wings or arms, the pole pieces being arranged diagonally
opposite each other, and the wings of the armature being pposite each other, and the wings of the armature being
also diagonal, to avoid short circuiting. Polar extensions are formed on or attached to the poles of the field magnet to form contact with the iron to be tested.

[^0]springs bearing against one end of the shafts and cams contacting with their other ends. The machine is adapted to quickly saw marble and other blocks of st
slabs of any desired thickness or to cut profiles.
Printing Machine.-William M. D. Turton, Philadelphia, Pa. This is a machine designed for printing any desired pattern on textile fabrics, oil carrying the fabric to be printed, series of pattern cylin ders, fountain rollers and inking rollers, the latter supported by rigid pivoted arms, motion being transmitted to the feed belt, cylinders and rollers by worm cog gear-
ing, pulleys and belts. At the end of the pattern cylining, pulleys and belts. At the end of the pattern cylin-
ders is a sprinkling device for dusting the printed mate ders is
rial.
PL_{1}

Plumber's Tack.-William H. Evory, Brooklyn, N. Y. This is a tack adapted to be quickly and firmly clamped around pipes of different sizes to hold the pipes securely on the side of a wall. It comprises
two separable leaves, a catch holding the leaves connected and bands attached to one of the leaves and to a rota table shaft journaled in the other leaf.
Iron or Steel Pile. - Alexander Hooven, Norristown, Pa. An improvement in the piling iron and steel may be brought into proper convenient form to be placed in the furnace and heated before being subjected to the rolls. The improved pile consists of a number of tubular sections telescoped loosely together, keys
being driven into spaces between the sections to lock the being driven into
sections together.

Agricultural

Sulky Plow.-Stephen E. Calif, Wilon, Mo. This is an improvement in plows, having
wheels mounted on crank axles adapted to swing in a wheels mounted on crank axles adapted to swing in a
horizontal plane, the axles being connected by rods so horizontal plane, the axles being connected by rods so
that they swing in unison to facilitate the turning of angles. The implement has three supporting wheels of different sizes, and an adjusting lever is connected with the plow shank, whereby it is raised and lowered, while the plow shank, whereby it is rased and lowered, while share to remain in the ground and yet permit the plow to be turned to the right or left.
Cotton Scraper.-William Lum, Carthage, Miss. An implement adapted for attachment to a plow having a removable point has been designed by this
inventor, the scraper being also adjustable upon itself as weli as upon the plow, so that it may be used to scrape a field without necessarily cultivating the crop by disturbing the ground. The scraper has a straight upper and in-
clined lower edge, a curved fender being adjustably seclined lower edge, a curved fender being adjustably se-
cured to its upper forward corner. The inner edge of the upper edge ins with the landside of the plow, and its upper edge in rear of the
edge of the mould board.

Miscellaneous.

Coin Controlled Apparatus.Richard M. Shaffer, Baltimore, Md. By the insertion of rating rod is thrown into operative connection with a hammer, and means are provided for dividing the coins. The coin chute leads down to a switch, which operates
automatically to deliver the coins alternately into differautomatically to deliver the coins alternately into differ-
ent receptacles, the coins in one receptacle being the coment receptacles, the coins in one receptacle being the crm
pensation of the owner of the machine, and those in the pensation of the owner of the machine, and those in the
other receptacle going to form a "pot" or pocket, the wnership of which is decided by the automatic opening
Stovepipe Fastener. - Adam P. Fedewa, Belding, Mich. A pipe connection for fastening stovepipes in chimney holes has been patented by this
inventor, one end of the connection being inserted in the chimney hole and the stovepipe inserted in the other end of the connection tube. The latter is longitudinally divided, and an expanding and contracting device of piv-
oted levers connected with it at its opposite ends and on pposite sides of its division, the device being adapted, n turning a screw shaft, to spread he other end of the connection.
Earth Carrier.-James J. Wishard, Went upon a ditching machine, formerly patented by the same inventor, and provides a novel form of earth eleator for conveying the earth from the plow to the body the ditcher and a novelform of belt for delivering the arth to one side of the road, the belt being so made lighter frame employed to support the belt.
Harness.-Harvey Stout, Fairmount, Ky. This inventor has provided a simple, cheap and light harness, which may be easily put on, and is so
made that the horse may be instantly hitched to the made that the horse may be instantly hitched to the
shafts; the drawing strap and traces exert no friction on the breast of the horse, and means are provided for in-
stantly unhitching the horse from the vehicle to obviate tantly unhitching the horse from the vel
Window Shade Hanger.-John A. Thompson, Howard, Kansas. This device comprises ciales to be secured to the window frame, a shade roller provided with spring loops to receive and hold the ends of the bar. With this improvement a window shade and its bracket may be raised or lowered quickly and conveniently, so as to leave any portion of the upper or lower
half fof a window uncovered, and, no matter in what half hof a window uncovered, and, no matter in what readily as when hung in the usual manner.
Meat Cooking Device.-Adam Reubold, New York City. A vessel partly cylindrical and
partly coniform has a fiange around its upper edge to partly coniform has a fiange around its upper edge to
which may be attached a hollow cup piece in such a way as to make an air-tight joint, the general form of the vessel being such as to accommodate a ham or shoulder of pork or other article, and hold the meat from becoming loose in cooking, which is effected by placing the closed
vessel with its contents in boiling water. In cooking by means of this :mprovement, the juices are not diluted, nd all the aroma and distinctive flavors of the meats are shrinking in bulk.

Pulley Line Hanger.-Herman Reichwein, New York City. This hanger, when not in
use, may be readily removed from the window frame and use, may be really removed
stored in small space, and when attached to the window frame it may be carried directly into the room, connected with the pulley line, and held in the room until all the clothes have been pinned on the line, when it may be carried out of the window and locked in position to stand a a right angle to the frame, the slack of the line at the ame time being taken up.
Piano Action. - James F. Conover, New York City. In thisaction a rocker is adapted to be the rocker is designed to engage the pivot end of th hammer, a fixed rod held on the key engaging the arn.
With this improvement the hammer can be forcibly propelled to the string from,intermediate pointe of its travel for readily executing reiterating tone passages without
the actionresuming its normal position after each percussion, thus forming a double repeating or grand action and insuring greater speed and force of the hammer. An and insuring greater speed and force of the hammer. A
instantaneous automatic adjustment is effected by re
peated strokes of the key
Heating Apparatus. - Beniah M. Dunson, Kenton, Ohio. A simple funnel and drum a this inventor, the pipe having a pipe extending trans versely across it, and a hot air pipe within the stovepipe extending outward through the transverse pipe, while a
perforated drum surrounds the stovepipe. The attach perforated drum surrounds the stovepipe. The attach-
ment heating capacity of the stove, but is adapted to collect the heat radiated by the pipe and conduct it to a room
above.
Roofing.-Charles E. Pope, Millville, Ark. A roofing board forming an improved article of manufacture is, according to this invention, formed with a groove in one edge, and an opposite tongue of greater
width on the upper than on the lower side, the upper face of the tongue being provided with a groove, and
the top face of the board having side channels, and center channel. A simple and efticient roof may thus be made at a low cost, requiring but a single layer of
boards, or it may be covered with other roofing material.
Sheet Metal Can.-Frank H. Palmer, Brooklyn, N. Y. An annular cone shaped flange is spun
or struck up from a single piece of sheet metal, according to this invention, and fastened to the open end of the can body, the flange forming a seat for the cover and having its upper and lower ends doubled for connection
with the can body, the lower doubled end forming a sea with the can body, the lower doubled end forming a seat
for the lugs of the bail, to permit the latter to draw the cover onto the flange and lock the cover in place. can body so formed is strengthened at its upper end
and the separate soldering of the overlapping sides of the fiange to form a joint is avoided.
Handle Clamp for Brooms.-Pat rick H. Lynch, New York City. This is a device espe-
cially adapted foruse with street and stable brooms, for cially adapted foruse with street and stable brooms, for
readily connecting and disconnecting the handle and the head, reversing the broom when desired to insure even and regular wear. The back of the clamp has depending lugs or fianges at its front and rear edges, those at one edge being provided with clamping screws, and on the clined split clamping sleeve and screw, a scraping prong
or finger for loosening any object projecting upwardly or finger for loosening any object projecting upwardly forwardy from the socket.
Vehicle Brake.-Stephen E. Odell, Grayling, Michigan. This device is especially adapted for use with bicycles, causing no sliding friction on the
tire, but being designed to keep the latter in its natural shape, even when the strongest pressure is applied. On the head a brake staff is held for vertical movement, an phery of the tire of the wheel with which it turn brake shoe immediately afterward being brought into frictional contact with the roller, the interposed whe thus sustaining all the sliding friction.
Cooking Apparatus.-George H Nicholls, Galveston, Texas. Within an ordinary sauce pan is placed a vessel having perforate and a fibrous envelope of muslin or other material is hel of a skeleton frame. The apparatus is especially de signed to facilitate the cooking of cereals, etc., that are boiled or steamed, enabling them to be cooked without
danger of their burning in the absenceof an attendant to danger of ? their burni
stir them constantly.
Tea or Coffee Pot.-Frederick Mann, London, England. Centrally in this potis ar anged a vertical grooved frame, in which slides a second notal, wire gauze, muslin, or other mimilar perforated frame being reversible and the strainer easily cleaned. A strainer thus arranged does not interfere with the free pouring of the infusion from the pot, and on account of its large surface the straine
ont liability of choking up.
Buckle.-Louis B. Prahar, Brooklyn, Y. The back plate of this buckle has a central stud with enlarged head, and hinged to the back plate is a
cover or latch plate adapted to snap over and frictionall engage the stud. The construction is simple, and the
buckle may be highly ornamented to serve as a decoration of a belt, while being very quickly manipulated
a lock or unlock the two ends of a belt.
Doll Making.-Frank M. Scott, and have provided an improved method by which nice dolls have provided an improved metho by which nice dolls
may be quickly and cheaply made. The busts are
moulded in sections between convave and convex dies, moulded in sections between convave and convex dies,
their meeting edges formed with curved or interlocking portions, the sections being thus fastened togethe without overlapping engagement. Celluloid or any other
pliable material may be used which is capable of being moulded and retaining its shape.
Note.-Copies of any of the above patents will be furnished by Munn \& Co., for 25 cents each. Please of this paper.

NEW BOOKS AND PUBLICATIONS.
Foundations of the Atomic Theory : Comprising Papers and Extracts by ton, and Thomas Thomson. Edinburgh: William F. Clay London: Simpkin, Marshall, Hamilton, Kent \&
Co., Limited. 1893. Pp. 48. No contents, no index.
This little contribution to the history of chemistry, re erring to the period of 1802-1808, and covering papers by Dalton, Wollaston and Thomson, will be read with much
interest by those really interested in the science. It gures as the second of the Alembic Club reprints, and cannot but be believed that its usefulness and interest would be greatly heightened by a contents and an index, ould be greatly
The Engineer's Directory. Compiled by Marlboro Stationary Engineers' Association. Marlboro, Mass. 18
18 m 0 . Pp. 200 . Price 50 cents. This work is almost entirely devoted to advertisements, the useful information occupies a secondary place SEcond R
Econd Report of the Bureau of Mines. 1892. Toronto, Canada:
Office of the Bureau of Mines. 1893.
8ve. Pp. 264.
A report containing an account of the progress made n mining and metallurgy for the year 1892. A descripion of the minerals exhibited at the World's Fair is the
subject of an interesting paper. The peat industry also subject of an interesting paper. The peat industry also

Masses and Classes. A Study of Industrial Conditions in England. Cranston \& Curts. New York: Hunt cents. No index
This little work is devoted to the English bread winners, the toilers by the Thames, the street drivers, clerks, shop ays that these English bread wianers are our owit kindred, and argues that we should be informed of their we are rapidly approaching a time when we may find our wn cities in the same condition of overcrowding and extended pauperism. A very full table of contents exuses to some extentthe want of an index.

SCIENTIFIC AMERICAN

bUILDING EDITION.

NOVEMBER, 1893.-(No. 97.)

TABLE OF CONTENTS.
Elegant plate in colors showing a residence atBridge port, Conn., recently erected for Mr. Thos. C.
Woodin, at a cost of $\$ 4,600$ complete. Floor plans and two perspective elevations. An excelBridgeport, Conn.
Plate in colors showing the residence of Clarence M. Burch, Esq., at Philadelphia, Pa. Two per-
spective views and fioor plans. A very attractive design. Messrs. Moses \& King, architects, Philadelphia.
. A dwelling erected at Joliet, ill. Perspective views and floor plans. An excellent design. Cost $\$ 6,000$
complete. Mr. J. C. Weece, architect. Joliet, Ill. suburban cottage erected at Glenbrook, Conn., at a cost of $\$ 3,500$ complete. Floor plans, perspective view, etc. Mr. E. H. Waterbury, Stamford,
Conn., architect. An excellent design.
Engravings and fioor plans of a suburban residence
erected for Mr. George H. Barton, at Hartford, Conn. Messrs. Hapgood \& Hapgood, architects, Hartford, Conn. A very attractive design. Very excellent design for a two-family house,
erected at Bridgeport, Conn., at a cost of $\$ 4,500$. erecte at Bridgeport, Conn,, at a cost of $\$ 4,500$.
Floor plans and perspective elevation. Mr. A. H. Floor plans and perspective elevation
Beers, architect, Bridgeport, Conn.
St. Peter's Chapel at Springfield, Mass. Perspective and ground plan. Cost $\$ 77,100$ complete. Mr. W.
P. Wentworth, architect, Boston, Mass. Engraving showing some city dwellings of modern design at Washington Heights, New York City.
Plans and perspective views. Mr. W. E. Mowbray, Plans and perspective
architect, New York.
9. Residence of Mr. C. T. Hemstead at Glenbrook, Conn. Plans and perspective. An excellent design. Moving of the Normandy apartment building at
Chicago. Supposed to be the largest building ever moved and turned around on rollers. Numerous
illustrations. illustrations.
11. The World's Columbian Exposition. A general
2. Sketches at the World's Columbian Exposition. Miscellaneous Contents : Causes of fire in dwellings. -An improved brace, illustrated.-Steel ceilings, of constructing foundations.-Sheathing quilt, il-
lustrated.-A cap for the obelisk.-Interior woodwork for buildings, illustrated.-Electrical injuries to gas and water pipes.-An improved scraper, illustrated.-Linseed oil for paint and polish.-
Improved circular sawing machine, illustrated. Improved circular sawing machine, illustrated.
Scientific American Architects and Bailders dition is issued monthly. $\$ 2.50$ a year. Single copies, cents. Forty large quarto pages, equal to about
two hundrea ordinary book pages; forming, practically, a large and splendid Magazine of ArchitecTURE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting examples of
allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largest Circulation of any Architectural Publication in the world. Sold by all newsdealers. MUNN \& CO., PUBLISHERs,
361 Broadway, New York,

Business and $\mathfrak{W e r s o n a l}^{\text {Pa }}$

The charge for Insertion under this head is one Dollar a line
for each insertion : about eight woras to a line. Adver tisements must be received at muiblication office as eariy as

Pattern letters and figures may be ordered from th largest variety, of Knight \& Son, Seneca Falls, N. Y. Best Handle Mach'y. Trevor Mfg. Co., Lockport, N. The exbibit of Wm. Jessop $\boldsymbol{\&}$ Sons has received the highest award at Chicago Exbibition.
The Improved Hydraulte Jacks, Punches, and Tube
Expanders. R. Dudgeon, 24 Columbia St., New York. Thill Support, pern, 24 Cold ble terms.
Screw machines, milling machines, and drill presses
The Garvin Mach. Co., laieht and Canal Sts., New York Metal spinning, nickel plating, brass castings, experi Wanted to manufacture. new machinery of real merit. Centrifugal Pumps for paper andpulp mills. Irrigating
and sand pumping plants. Irvin Van Wie, Syracuse, N. Y. Wanted-Novelty manufacturing companies to sen heir address to Fred. Beaumont, 130% Franklin Street Kansas City, Mo.
Emerson, Smith \& Co., Ltd., Beaver Falk, Pa.., will
send Sawyer's Hand Book on Circulars and Band Saws free to any address.
Model dynamo motor. Ingenious machine for studElbridge, New York.
Split rulleys at Low prices, and of same strength and
appearance as Whole Pulleys. Yocom appearance as Whole Pulleys. Yocom \& Son's Shafting The "Olin" Gas and Gasoline Engines, from 1 to 10
horse power, for all power purposes. The Olin Gas Enhorse power, for all power purposes. The
gine Co., 222 Ch' eago Street, Buffalo, N. Y.
Perforated Metals of all kinds and for all purposes
general or special. Address, stating requirements, Th Harrington \& King Perforating Co., Chicago.
The best book for electricians and beginners in elec-
tricity is "Experimental Science," by Geo. M. Hopkins. tricity is "Experimental Science," by Geo. M. Hopkins
By mail. qi $_{4}$; Munn \& Co., publishers. 361 Broadway, N. Competent persons who desire agencies for a new popular took. Mn ready
apply to
Broadway, New York.

MWuct Mannins

HINTS TO CORRESPONDEN'S
Names and Address must accompany all letters or no attention will be paid thereto. This is for our
information aud not or pubication.
References to former articles or answers should References to former articles or answers should
give date of paper and prict or number of question.
In quitites not iusis.ripg in reasonable time should
1, repeated ; correspondents will bear in mind that
some answers require not a little research, and, some ansers require not a little research, and
though we endeavor to reply to tall either by lette
or in this department. each must take his turn.
uy ers wishing to purchase any article not advertise Buyers wishing to purchase any article not advertise
in our columns will be furnished with addidesses on
houses manufacturing or carrying the same. houses manufacturing or carrying the same.
special Vritten Informanion on matters of
personal rather than general interest cannot be expected without remuneration.
Scienti itic American Aupplents referre
to mad enad at the office. Price 10 cents each.
Books referred to promptly supplied on receipt
Books referred to promptly supplied on receipt of
price.
Minerals sent for examination should be distinctly
marked or labeled.
(5531) C. D. A. desires te knew what chemicals and what proportion of each are used in a pre
paration called chemical ink eraser. A. Take ch dride of lime 1 pound, thoroughly pulverized, and 4 quarts soft water. The above must be thoroughly shaken when firs put together. It is required to stand twenty-four hours,
to dissolve the chloride of lime; then strain through a cotton cloth, after which add a teaspoonful of acetic aci (No. 8 commercial) to every ounce of the chloride of lime
water. The eraser is usel by reversing the penholder in water. The eraser is used by reversing the penholder in
the hand dipping the end of the penholder in the fiuld, the hand, dipping the end of the penholder in the fiuld,
and applying it, without rubbing, to the word, figure, or and applying it, without rubbing, to the word, figure, or
blot required to be erased. When the ink has disap-
(5532) M S.
(5532) M. S. Y. asks: 1. Is that end of the magnetic needle which points toward the north pole
of the earth the north pole of the needle? A. It is generally so termed, but the earth's N. magnetism is the opposite of that of the \mathbf{N}. end of the needle, otherwise there would be repulsion instead of attraction. 2. What is the object in having the zinc in the gravity battery shaped like a crowfoot? Would not a square or circu-
lar plate give as great E. M. F.? A. The E. M. F. lar plate give as great E. M. F.? A. The E. M. F
has nothing to do with shape. The crowfoot shape facilitates cleaning. 3. Is the gravity battery suitab for an open circuit? How many cells would be
required to ring a small door bell? A. No. Three
cells are ample as long as in bichromate four-cell battery, which gives a powerful current for about an hour, then stops action. After
cleaning elements and amalgamating zincs it works as well as before. What is the matter, and is there any way of preventing the sediment accumulating on the ele-
ments? A. Your battery should not accumulatesuch a ments? A. Your battery should not accumulatesuch a
sediment. Perhaps your solution is wrongly made. The battery probably becomes exhausted. This is of conre inevitable. Larger jars will, by holding more solution,
give the battery more urability. 5. How to clean rust give the battery more durability. 5. How to clean rust
from nickel plating? A. Use electro-silicon or putz pomade. You will wear the nickel, but that is unavoid-
(5533) S. C. H. writes: 1. Can you tell tube of pneumatic bicycle tires? Have some trouble to make ordinary "tire tape" adhere to the tube, and rub ber dissolved in benzine, while it forms a film, does not unite with the tube fabric. A. Rub the inner tube with
emery cloth or sandpaper at the place to be patched. Put on some good rubber solution. Prepare your patch in
like manner with rubber solution. It is well after the
solution is dry, in fifteen minutes or more, to repeat the
application, not nsing the emery cloth, however. application, not nsing the emery cloth, however. Then,
after the solution has dried completely, put the patch on and rub it well down. Dust on some talc, or
chalk it well, before replacing. For an emergency use one application only. The great point is to have the surface dry before putting on the patch. Use only the best rubber cement or solution. Do not try to make it yourself. It is well also to apply benzine before putting on the solution. 2. Is there any good work on the
care, filing, and scientifically practical use of ssws? A. care, filing, and scientifically practical use of saws? A.
We can supply, by mail, Worssam's "Mechanical Saws, We can supply, by mail, Worssam's "Mechanical Saws,",
$\$ 2.50$; Holley's "Saw Filing," 75 cents; Grimshaw's "Saw Filing," $\$ 1$; Oldham's "Why Band Sawe Break," \$1. 3. Can I arrange an electric call bell to operate in connection with and over same wire with an acoustic telephone wire, all out of doors and about 300 feet long?
A. If you see that the wire is properly insulated at the (50\% suport, you can use it as described.
(5534) R. C. B. asks: Will you be kind enough to let me know if any railroad train or engine has
ever covered ninety miles in one hour ? I don't mean run at the rate of ninety miles an hour, but has gone from one given point to another which were ninety miles apart time nearly as great as you state for a distance of ninety miles.
(5535) G. D. C., Conn., says : I mail you a twig cut from a tulip tree in my yard. In the early and later by this-whatever it is. Will you kindly give me the name of the insect and a remedy for it. The tree is quite a large one and I do not like to lose it. Some of the branches are now devoid of leaves and seem to be ying. Reply by Professor Riley.-The tulip twig sent Lecanium tulipiferae, Cook. This tulipsecte sie insects, ccanium tulipiferae, Cook. This insect, like others of over the surface of the body, which in this species is brown and very conves above, and has on the underside a cotton-like secretion common to all members of the enus, which serves to inclose and protect the eggs. In eneral form this scale is not unlike a turtle in appearance when mature. The numerous small yellow eggs are deposited beneath the scale, and, after hatching, es cape and disperse to all parts of the tree, fixing themselves and ultimately developing protecting scales of their own, beneath which they extract the juices of the
plant by means of a long proboscis. An interesting fact plant by means of a long proboscis. An interesting fact
in connection with this scale insect is the secretion by it of a quantity of sweet liquid, the "honey dew" of the Aphides, which, in the case of acale insects, is rarely proever, it is so abundant that they are frequented by honey bees in large numbers and a great deal of inferior honey honey, like the honey produced from Aphides, in addition o its very inferior quality, is objectionable in that it candies almost immediately after being stored up by the
bees in their cells. The remedy for this scale insect eonists in the use of kerosene emulsion at the time of the hatching of the young, as hitherto recommended for similar cases in these columns. It is doubtful whether the
trees will die, however, even without treatment, as the parasites of the coccid prevent its continuance in destruc
(5536) T. H. C. says: There is a methed of making a light glow light by means of phosphorus nd sweet oil, sufficient to make out the hands of a watch
night. A. Phosphureted oil is the best at night. A. Phosphureted oil is the best means of ex
hibiting the luminoas properties of phosphorus. A mall piece of dry phosphorus, about the size of a pea, is placed in a test tube with a little pure olive oil. The test tube is held in the water bath until the oil becomes heated and the phosphorus liquefies. It is then shaken allowing the oil to become clear, it is pourca off into a small glass vial provided with a glass stopper. Only a
small quantity of this oil in the bottom of the vial is ne cessary. When it is shaken about so as to coat the sides ir get in, the oil-coated sides of the glassbecomeat once luminous, and continueso as long as the stopper remains resbly Chacters written on paper with oil thus prepared reshly) appear in the dark very brightly. Phosphurete days in a tightly stoppered bottle. A piece of sugar dipped into this ethereal solution and then thrown into water
makes the surface of the latter appear quite luminous in thedark. Young experimenters must remember that phosphorus is very dangerous to handle when out of water, the air. 2. Also the formula for soldering fluid, made mis muriatic acid and zinc with muriate of ammonia? A pared by cutting zinc into small pieces, dissolving in hy about $\$ 4$ part of the solution of ammonia, which neutral izes the acid. Dilute the whole quantity of liquid with an equal quantity of water. The information give Receipts, Notes and Queries."
(5537) S. J. S. asks : 1. In either a gen tle breeze or a violent storm, where is the power that pro-
pels the air-in front or in the rear? A. The gentle breeze is the natural drift of the air, either toward a re nlation of the atmosphere due to equatorial heat lifting he air to fiow off toward the poles. In the firstcase the
cause of motion is in front, while in the second case it is in the rear of the course of the wind. Storm windsare largely local, sometimes blowing toward a center of heat rarefaction, which carries the central portion up what gives to a cyclone its whirling motion, ard whe is the power that propels it-in front or in the rear? A storms of antiring characiar, as some of the grea are generally started by an upward central fiow due to excessive heat, which draws the air violently towar
central region and sets the wind into a whirl-the ection of the whirl being controlled by the resultant of the motion of the earth's surface in its revolution and th The propelling power that moves the cyclone along ite
antitrade wind. The power that produces the whirl i probably central and in front. 3. What causes clouds to
move in any given direction? Is the power that moves them in front of them or behind them? A. The clouds movement is with the wind in which they are suspended and thes have the same cause of motion as the wind. Se most interesting
on, $\$ 1.25$ by mail.
(5538) F. J. M. asks : 1. What is the best way to nickel plate zinc? A. For the nickelbath for nickel and ammonium r add 2 pounds double sulphate dissolve by boilmg. Cool and test for acid with blue litmus paper; if found, neutralize with hydrochlorate of ammonia. 2. What is the best way to silver plate steel
knives ? A. For the silver bath for cutlery, for 1 gallon water dissolve $51 / 4$ ounces nitrate of silver; add graduall give me the best method for tin plating or tin dippirg or knives and forks? What I mean is dipping in molten tin and have them come out smooth, or if anything can be put in the tin to make it come out smooth. Also will tion, also a brass solution. A. For the tinning poludip the clean dry quickly, and dip in the melted tin bath all the rious processesand receipts for nickel siiver, and tin plat and dipping methods, are detaile" in the "Scientific American Cyclopedia of Receipts," $\$ 5$ by mail.
(5539) .J. R. R. asks (1) how the proper tions of large induction coils are calculated. A. The genof secondary and primary proportional to the increase of voltage desired. To increase from the voltage, in the primary to one thousand times as great voltage, one
thousand times as many turnsare given the secondary a are in the primary. This rule is, however fecondary as fect. 2 Must the secondary wire be silk wound ? No. Bare wire is often used, wound carefully, so that successive layers will not touch. 3. What is the capacity of
condensers to be used for them? A. Do but follow proportions of some successful coil. See our Supplement, Nos. 160, 569, 229. 166, also Scientific American, No. 14, vol. 66, for coils and apparatus cont-
nected therewith. The whole subject is usually treated nected therewith.
rather empirically.
(5540) W. J. L. asks: 1. Can a motor be run by gravity battery? If so, how many cells would it take to run motor described in Scientific Ambrican Supplement, No. 641? A. A gravity battery is wot sluited for the purpose, on account of its high resistance,
try plunge battery described in Supplement No. 792. try plunge battery described in Supplement No. 792 .
2. Does increasing length of wire in armature coils intent? A. It increases it if the field is kept excited to the same extent as before. Yet it is possibie that increase of length of armat ire wire may reduce the current so as to interfere with the excitement of the field and so cut down the lines of force sufficiently to reduce the voltage
(5541) J. G. Von H. writes : 1. It is said hat there are only two kinds of electricity-static and
ynamic. Is the induce electricity from an induction coil static? If not, what is the difference between static and induced electricity? A. There is really only one kind. Static electricity is used to express electricity at rest, dynamic electricity to express electricity in motion,
or re-establishing equili brium of potential. In the popular or re-establishing equilibrium of potential. In the popular conception very high tension phenomena are generally
referred to static electricity. 2. What is the most inamperes? A. The discharge last named is practically an impossibility. High and rapidly changingvoltage is the most injurious type
(5542) F. J. S. says: I have a double cylinders, 3 inches diameter, two low pressure cylinders, steam, what size and pitch of propeller should I have A. The double compound engine at the pressure stated
will run a propeller wheel 36 inches diameter, 48 inch witch.

TO INVENTORS

An experience of forty-tour years, and the preparation
of more than one bundred thousand applicationn for po- pa-
tents at home and abroad, enable us to understand the laws and practice on both continents, and to possess un-
equalod facilities for procuring patents everywhere. A
synopsis ofthe patent laws of the United states and all
foregn countries mat be bad onaplication, ind personn

INDEX OF INVENTIONS

which Lettern Patent of th United Staten were Granted

November 21, 1893,
ARD EACH BEARING THAT DATE.

 509,09150931
509,273
 Hat blocking macicine, W. Be. Bisorie.
Hat retainim device.
Heat reaunatng device for stoves or
H. Fisher

	${ }^{\text {sporam }}$
	daruete
	Hemmamimem
	Tummatia
	did
	fime
	Huxam we
	?
	\%
	uide
	\%
	Wmami foimi
	trade mar
	Rocramacamonter. H .
	Cemm weit surer
	thentanh treat, and
	发
	Lawememmatme,
	Nemememicicicio
	Heme
	Meime
	边
	cos
	destans.

 Foreitid Aen

MAKEYYOR- MECHANICAL ENGINEER OR DRAUGHTSMAN;

TO BUSINESS MEN
 WORLD'S FAIR HIGHEST AWARDS

 The value of the SCIENTIFIC AMERICAN as an advertisiug medium cannot be overestimated. Itt circulation
is many times greater than that of any similar journa
now publisbed. It goes into all the States and Territo ries, and is read in all the principa libraries and readin rooms of tbe world. A business man wants something
more than to see his advertisement in a printed news-
paper. He wants circulation. paper. He wants circulation. This he has when he ad
vertises in the ScIENTIFIC AmERICAN. And do not le the advertising apent influence you to substitute som
otber paper for tbe SCIENTIFIC AMERICAN when se lecting a list of publications in which you decide it is for
your interest to advertise. This is frequently done fo the reason that the agent gets a arger commission fro the Scientific American.
For rates see top of first column of this page or ad 361 Broadway, New York.

WATER-TIGHT MASONRY DAM

 ELECTRO MOTOR. SIMPLE. HOW TO motor devised and constructer with a view to assistring
amateurs to make a motor wioch might be driven with
advaniage by a current derived from a battery, and

Patent Electric VISE.

a

BIT

1999 Ruby Street, Rockford, III.
Rubber Rolls and Wheels.

FREEGM'ERIODICALS
gates rock \& ore breaker
 TOE-HOUSE ND COLD ROUM-BY

DEAFNESS

 They are safe, comfortable, and invisibief.
have now wiret or string at tachmenth brite.
for pamphet.
WILSN

W. L. DOUGLAS \$3 SHOE aconomon.

leave the Douglory, name and and price is stamped on the the botton before they

 the price on unstanpred shoes to aguin thengelves, charge from $\$ 4$ to $\$ 5$ forhoes of the samequality as \mathbf{W}.L. Douglas $\$ 3.00$ Shoe. It you wish shoes of the sanequality as W. L. Douglas \$3.00 Shoe. If you wish
to get the best shoes in quality for your noney it will pay you to txamine
\mathbf{W}. L. Douglas Shoes when next in need. Sent by minil Postase W. L. Douglas Shoes when next in need. Sent by mail, Postage Full iostructions how to order by mail. Box 551, Brockton, Ma 88 .
W. L. DOUGLAS, THE MODERN MARINE BOILEER
 shells and present a lighter substitute that will fley
form the uties of botb envelope and beating surfries

CIGAR CUTTERS.

STERLING SILVER.

 $3=2=$
Enis ficiandson \& Co. If you hane any smal antilles in Brass or Iron that you want manufactured tric Co., 28-30-32 West Court St., Cin'ti, O.

GARBUTT'S ${ }^{3}$ ORY PLATES

"GELLULOD" FLMS.

\qquad Descriptive Price List mailod free For saR bEalidea Manufacturea by JO HN CARBUTTT,
Rejstone DryPlate and Film Works, Wayne Jonc. Philadelphia "PARAGON" PROJECTION LANTERN.
 QUEEN E CO.. Inc... Pherinintivelphina, Par., U.S. A.

RECEIVER'S SALE,

PARSONS HOROLOGICAL INSTITUTE
EARN the WATGH TRADE Engraving and Jewelery Work. PARSONS, IDE \& CO., 302 Bradley Ave., PEORIA, ILL
CTircular free.

Chaili for belting of Various Styles, ELEVATORS, CONVEYORS,

Th elefr M MA

LIGHTNING CONDUCTORS. -
 STEEL TYPE FOR TYPEWRITERS

[^1] Rue's Little Giant Injector. Screw Jacks, Portable Forges \& Blowers.

john S. URQuhart. 46 Cortindt St.. N. \mathbf{y}. INVENTORS $-\begin{gathered}- \text { Beedore securing patents } \\ \text { will save money by send- }\end{gathered}$

GIC LANTERTMS Oii lamps have no equal VEWS orall Subjects Huthe mism

SINTZ GAS ENGINE CO. GRAND RAPIDS, MICB.,

VOLSEY W. Mason \& Co.

VANDUZEN STEM P PUMP

WATER MITIOR
 GAS ENGINES \& VENTILATING FANS 1
 THE TELECTROSCOPE-BY LE REON

NOVV FRIADY!
Fourteenth Edition of
Experimental Science

REvised and enlarged.
120 Pages and 110 Superb Cuts added.
The unprecedented sale of this work shows conclu-
sively that it is the book of the age for teachers, stu-
sively that it is the book of the age for teachers, stu-
dents experimenters, and an others who esire a general
knowledge of Physics or Nat ural Philosophy.
In the new matter contained in the laste dition will be

 8itpages. $\mathrm{tr2}$ fine cuts, substantially and beautifully
pound. Price incloth,by mail, \$4. Halit moreco,

MUNN \& CQ., Publishers Office of the SCIENTIFIC AMERICAN

HARRISON CONVEYOR!

\qquad * THE "MUNSON" TYPEWRITER, 粦

 ${ }_{*}^{*}$ THE

DUovertisements.

ordinary Rates niside Page, each insertion. - 75 cents a line back Page, each insertion. Hipl For some classes of Alivertisements, Special and Hiulher rates are reguired. The above are charges per agate line-about eight words per iine. This notice shows the width of the line ond is set in agate type Engry

AMERICAN SCREW CO.

KODAKS$\$ 6.00$
$\$ 100.00$
Eastman Kodak Company,

"OTTO"

ENCINES
 countryindepe
of of gas wor
gas machines.
Boiler,
No Danger,
oiler,
30,000 soLD.
OTTO GAS ENGINE WORKS, PHILADELPHIA.
Ta matan Ban Raman hamy
125 MILK ST., BOSTON, MASS.

[^2]

ASTRONOMY PATENT FOR SALE

HW.JOHIS ASESTGIS STEAM PACKING Building Feli, Liquid Paints, Etc.

 Scienticic Book Catalogue

The Aeberly Cattle Stall Device for the enhancement
of comfort and cleanliness of milk cattle. Is simple
durable, and can easily be adjusted to almost any crib. The U. S. Great Britain and Canada letters patent for
sale. M. SCHEMBRI, 396 Van Buren St., St. Paul, Minn.
 BAR STITCH MACHINES, etc.

Iare made by SCOTT \& WILLIAM
2077 E. Cumberland Street.

THE END OF OUR WORLD.-BY

ATENTS WANIED TOAFINETOOLS WEVRY SHOD.

Galloupe's
 General Engineering Index

francis E. Galloupe. 30 Kibv Street, Boston
 and Animals-A Paper ry Prof J. M. Dogiel, discussing
the powerfulinfluence of music on man a nd animais

The Smith Premier Typewriter

ELECTRIC \% STREET 洸 RAILWAYS knilwar suphle of All Kinder

Hinat troationicieit

11 butan ine on outial
 Buectrid Hace Awratht the World,

Waidititicic
 INVENTORS! Dand juta Eavar geta
 STEVENS PATEAT

S̈cientific exprriments- - De

Model \& Experimental Work, Abocoutd

Tife

 The Most Popular Scientific Paper in the World W3.00 a Year. Including Post Weekty-je Nunhers a Vear

This widely circulated and spiendidy illustrated paper is published weekly. Every number contains sixoriginal engravinss of new inventions and discoveries epresenting Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Flectricity Telegraphy, Photography, Archi-
tecture, Agriculture, Horticulture, Natural History, tecture, Agriculture, Horticulture, Nat
etc. Complete list of patents each week.
etc.
Termis of Sin bscribl inn. -One copy of the ScIEN-
Tiric ADiERICAN will be sent for one vear- 52 numbersTHFC ADERICAN will be sent Canada, or Mexico, on receipt of ihyee dollars by the Clubs.-Special rates for several names, and to Masters Write for particulars.
The safest way to remit is Dy Postal Order, Draft, or Express Money Order. Money carefully placed inside
of envelopes, securely sealed, and correctly addressed seldom goes astray, but is at the sender's risk. Address all letters and make all orders.drafts, etc., payable to THE
Scientific Antericat \$upplement This is a separate and distinct publication from 'THE
SCIENTIFIC AMERICAN, but is uniform therewith in size gravings, many of which are taken from foreign paper and accompanied with translated descriptions. 'The
SCIENTIFIC AM ERICAN SUPPLEMENT is published weekly, and includes a very wide range of contents. It pre-
sents the most recent papers by eminent writers in all the principal departments of Science and the Usefu
Arts, embracing Biology, Geology, Mineralogy, Natura History, Georraphy, Archæology, Astronomy Chemis
tiy, Electricity, Light, Heat, Mechanical Engineering,
Steam and Railway Fingineering, Mining, Ship Bu: Marine Engineering, Pbot ography, Technology, Manu-
facturing Industries. Sanitary Engineering, Agriculuare facturing Industries. Sanitary Engineering, Agriculuure
Horticulture, Domestic Economy, Biography, Medıcine etc. A vast amount of freshand
obtainable in no other publication.
the most mmontant and Mancfactures at home and abroad are illustrated
and described in the STPPLEMENT. and describe
Price for the Supplement for the United States Car.ada, and Mexico, $\$ 5.00$ a year; or one copy of the SCIENTIFIC AM हhicAn and one copy or the SUPPLE-
MENT, bolh mailed for one year to one address for $\$ 7.00$ Single copies, 10 cents. Address and remit by postal order express money order, or check.

Puilding Editim.
TEK SCIENTIFIC AMERICAN ARCHITECTS' AN: Single copies. 25 cents. Thirty-two large quarto pages, forming a large and splendid Magazine of Architecture,
richly adorned with eiegant piates in coinrs, and with other fine engravings; illustrating the most interesting
examples of modern architectural construction and examples of modern architectural construction and
allied subjects. of a rariety of the latest and best plans or private resi-
dences, city and country including those of very moderate cost as well as the more expensive. Drawings in
perspective and in color are given, together with Plans The elegance and cheapness of this magniffcent work have won for it the Largest Circulation of any
Architectural publication in the world. Sold by all newsdealers. \$2.50 a vear. Remit to
MUNN \& CO. . Publishers.

PRINTING INKS:

[^0]: Mechanical.
 Machine Die.-Aimé Vuillier, Millis, Mass. This is an improvement applicable to punching machines or drop presses, for setting rivets, and particu-
 larly for riveting ears upon pails or similar articles, af ording means for securing a pail ear in place on th mody by one stroke of the machine, in a neat and rapid composite lower die, with upright anvil bocks spring clasping device, adjustable gauge plate, etc. The
 cylindrical anvil blocks in recesses in the lower die block are preferably permanently magnetized, to adapt
 them to hold rivets on their upper faces secure from ac-
 cidental displacemen
 Boring Tool.-Josiah W. Batcbeller St. Joseph, Mo. This is a tool for enlarging and smooth-
 ing bores already made, as the bores of gun barrels, turning out a shaving instead of eimply scraping the walls of the bore. It may also be used for choking the barrel and operated by a machine or an ordinary hand brace. It
 has an elongated stock with an open recess at one side ble blades being pivoted in one of the slots and adapted to swing into the other, a screw threaded in the stock being adapted to enter between and separate the blades. A`turning roo with flattened end is loosely secured in
 the slotted end of the stock.
 Nut Lock. - Joseph Harmon and George W. Faber, Duluth, Minn. The bolt, accordin
 to this improvement, has cupped indentations in the bot tom of and between the threads, and on the nut is a
 spring limbwhose free end successively enters the indenspring limbwhose free end successively enters the inden
 tations when the nut is screwed on the bolt thread. On the nut is a post and a key adapted to engage it, and by
 prtial rotation lift the spring limb and release the nut. The improvement is especially applicable in securing fish lates upon rails and o
 Stone Sawing Machine. - Antoine Jeansaume, Paris, France. Drums mounted on a travel-
 ing frame carry flat-lying saws, and shafts arranged on ing frame carry flat-lying saws, and shafts arranged on
 the frame transversely to the saw blades carry grooved the frame transversely to the saw blades carry grooved
 rollers adapted to bring the blades into workdng position,

[^1]: RAILWAY \& STEAM FITTERS SUPPLIES

[^2]: This Company owns the Letters Patent Bell, January 30, 18\%\%, the scope of which has beendefined by the Supreme Court of the United States in the following terms:

 The patent itself is for the mechanical structure of an electric telephone to be used to produce the electrical action
 on which the first patent rests. The third claim is for the use in such instruments of a diaphragm, made of a plate of iron or steel, or other material capable of inductive action; the fifth, of a permanent magnet constructed as described, with a coil upon the end or ends nearest the plate: the sixth. of a sounding box as dehearing tube as described for conveying the sounds; and the eighth, of a permanent magnet and plate combined. The claim is not for these several things in and of themselves. but for an electric telephone in the construction of which these things or any of them are used.
 This Company alse owns Letters Pa tent No. 463,569, granted to Emile Ber-
 liner, November 17, 1891, for a Combined Telegraph and Telephone; and controls Letters Patent No. 474,231, granted to Thomas A. Edison, May 3, 1892, for a Speaking Telegraph, which cover fundamental inventions and embrace all forms of microphone transmitters and of carbon telephones.

