a weekly journal of practical information, art, science, mechanics, chemistry, and manufaetures.

NEW YORK, NOVEMBER 25. 1893.

ELECTRIC LAUNCHES AT THE COLUMBIAN EXPOSITION.

No electrical feature at the World's Columbian Exposition was entered upon with more uncertainty than the introduction of electric launches on the lagoons, as up to this time such launches had not been made use of in this country except in an experimental way. In spite of these uncertainties, however, the launches were among the first electrical features that were ready and they have firlfilled their requirements during the entire period that the Exposition has been open, with gratifying results, carrying over one million passengers and earning $\$ 314,000$.

There are fifty of these launches that did service for the public, all of the type shown in our first page illustration. Each boat is 35 feet 10 inches over all in length and 31 feet 6 inches on the water line. The beam is 6 feet $21 / 2$ inches and the draught 27 inches. The lines are as near perfection as they well can be. At whatever rate the launch runs there is practically no wake, so that the wash on the shore, even in such narrow waterways as the lagoons, is of no consequence. The hulls of these boats were constructed of white oak frames, with white cedar planking. The inner paneling, decks and other parts are of mahogany. All the woodwork is finished in its natural color, thus giving a very rich appearance. Cut No. 4 shows the launch complete, with the pilot in the forward end controlling the supply of electricity and steering. The passengers are scattered about, the full seating capacity being 30 people. Cut No. 5 gives an idea of how the launches looked when laid up. Their berths were at the southeastern corner of the Agricultural building, in the South Pond, 30 boats being on the left in the picture and 20 on the right. When the boats were
to be charged they were laid up here, and whenever probably no lake, river, or harbor in the country with a boat needed repairs it was hauled up in its berth. The charging was all done at night, so as not to inter fere with regular trips during the day.
Cut No. 1 gives a sectional view of a launch. It will be noticed that the motor is placed low down and in the center of the boat. This motor was designed and made especially for this use by the General Electric Company for the Electric Launch and Navigation Company, whose offices are at 44 Broad Street, New York City, which holds and owns the patent rights for the launches.
The motor is protected by a box which rises flush with the main deck of the boat, and is so set that all working and wearing parts can be readily reached. The storage batteries are placed around the sides of the boat, under the seats and entirely out of sight. The motor is nominally of four horse power, and is coupled direct to the propeller shaft. The type of this motor is shown in cut No. 3, while cut No. 2 illustrates the thrust ball bearing in which the shaft runs. By this combination of direct coupling and thrust bearing, all gearing and loss of power, as well as unnecessary hoise and jar, are done away with.
The batteries used are of the Consolidated Electric Storage Company's type, of 150 ampere hours' capacity. Each boat has 66 cells, and these cells can be arranged in three groups of 22 cells in series or in two groups of 33 cells in series. Several improved devices have been brought out to adapt these cells to this use, so that there shall be no danger of the liquid spilling or of the efficiency of the cells being unnecessarily impaired The cells are readily charged. The manner in which this is done is shown in the illustration. A charging station can be fitted up at little expense, and there is
probably no lake, river, or harbor in the country with
sufficient water to float a launch where such a station could not be readily had. A current of 18 amperes per group is the one generally used to charge after a run of fifty or sixty miles at nominal speed, and from to seven hours time is required. In case of necessity, however, a current of 30 amperes can be used, when the batteries can be charged in four or five hours. The plant which provided the current at the Exposition comprised a direct current shunt-wound Edisongene rator, giving a current of 110 volts. Any form of elec tric energy, however, arc or incandescent, can be used. Even when only an alternating current is to be had, a charging station can be arranged with not very great expense. When the station is once completed, all that is necessary is to connect the charging wires to a set of binding posts on the boat, as shown in the illustration, and turn on the current.
The operation of one of these boats is exceedingly simple, as shown by the experience of the Electric Launch and Navigation Company at the Exposition. Not one of the pilots or guards that managed the fleet had ever before handled an electric launch, yet they experienced no trouble whatever from the first. The control is by means of a small lever switch at one side of the steering wheel, which is located in the forward part of the boat. This lever allows of four speeds forward and two backward. The nominal speed at which the boats are run is from six to seven miles an hour, but they have a reserve speed of from eight to ten miles. At the ordinary speed the launches at the Exposition have been in constant use from twelve to fourteen hours a day on one charging, and the cost of this charging has never exceeded sixty cents per day per (Continued on page 343.)

ELECTRIC LAUNCHES AT THE COLUMBIAN EXPOSITION.

Srifutitir Ammerian.

ES'IABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.

$$
\begin{array}{ll}
\text { o. D. MUNN. } & \text { A. E. BEACH. }
\end{array}
$$

TERMS FOR THE SCIENTIFIC AMERICAN.

uilding Edition
The Architects and Builders edition of the scientific AmeriCAN is a large and splendid illustrated periodital, iscued monthly eron
taining floor plans, perseetive views, and sheets of oonstructive details.
pertaining to modern architecture. Each number is illustrated with

LA AMERICA CIENTIFICA E INDUSTRIAL (Spanish trade edition of the SCIENTIFC AMERICAN) is published monthly, uniform in size and typo-

The safest way to remit is by postal order, expresway, New York. 36 Bey order.
cat or bank check. Make all remittances payable to order of MUNN
CO Readers are specially reguested to notify the
ailure delay, or irregularity in receipt of papers.

NEW YORK, SATURDAY, NOVEMBER 25, 1893.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT No. 934.

For the Week Ending November 25, 1893.

1. Blogra Mary--Marechal de MacMabon.-The famouss French

 III. COLUMBIAN EXPOSTTION.A Few Curiosities.

 eating
eat ME
Ni. Me

III. MISCELLANEOUS.- In the Bank of England.-Interesting

MORE ENGINEERS NEEDED FOR THE NAVY
The annual report of Geo. W. Melville, Engineer-inChief, Chief of Bureau of Steam Engineering, shows that the repairs of machinery and steam vessels during the past year have cost something over $\$ 600,000$. The lack of competent engineers to man the rapidly increasing number of war vessels has become a serious matter. On the active list there are only 180 commissioned officers in the engineer corps, vamely, 70 chief engineers, 66 passed assistants, and 44 assistants.
The chief says: "Unless something is soon done, our navy, now practically an engineering one, will be crippled for want of engineers.
"This question of the sufficiency of engineers in the service is one of paramount importance, and no other, if left in abeyance, will so vitally affect the efficiency of the navy as a fighting organization. It must be remembered that the efficiency of the modern war ship, either as a fighting machine or as a commerce destroyer, depends wholly and absolutely upon her machinery, and the efficiency of this machinery upon the skill of her engineers, and upon the diligence exercised by them in its care and management. Be her armor and armament the most powerful and her commander the most capable and intrepid, if her machinery fails, she is helpless, and no amount of seamanship and gunnery will avail against the enemy.

Were the navy a mercantile concern, the present state of affairs would not last beyond the time necessary to change it, for men with capital invested in machinery see to it that there is a force sufficient to keep it in proper maintenance; and surely if business peoplegind such a course economical, the government cannot do better than follow their example. The value of the naval machinery now owned by the government and in process of construction is about
$\$ 24,000,000$, and it has now come to the point where Congress must decide whether it is more economical to properly care for this machinery and keep it always in an efficient condition or to let it run as long as it will and then replace it, taking meanwhile the risk of having it fail when most needed. As an illustration of the increased work thrown on the members of the engineer corps by the acquisition of the new navy, I can state that the New York has added 17 per cent to the horse power of the machinery of vessels in cominission; the Columbia will add $17 \cdot 3$ per cent more ; and when the ships now authorized and building are finished, the horse power of the propelling machinery of the navy will have increased to nearly two and a half times its present amount-and yet we are asked to run it with the same number of engineer officers that we now have.
"The officers of the engineer corps at sea on the new vessels have altogether too much work to do now, and it is merely a question of time before the strain will tell. The result of this hard work is being seriously felt; retirements are increasing, and the government thus subjected to an expense greater than would be involved in now granting a fair increase of numbers, while some of those who manage to complete a cruise in one of the high-powered ships only await a favorable opportunity to resign. Many of our young officers who have resigned to accept lucrative and responsible positions would have preferred to remain in the service if they could have seen any chance of advancement in it."

THE COLUMBIA, THE NEW COMMERCE DESTROYER The new American navy has become a popular snbject with the people at large. The records of the trial trips are given place in the papers, and much congratulation is expressed over the results obtained. Yet the fact is apt to be forgotten that a few hours' run of a new ship under the most favorable auspices does not tell what she will do in the service. To-day no satisfactory method of keeping an iron ship's bottom free from barnacles and seaweed is known, and the slightest deposit reduces speed. The duration of the engines and boilers under service conditions is problematical. The warship certainly seems to deteriorate or to develop weakness in her boilers or machinery in very short periods.
From the old sailing vessel, through auxiliary steam ships, the development has at last brought us to triple screw ships without sail power enough to be of more than the slightest service. It is perhaps true, as exSecretary Tracy says, that we have in the Columbia, New York and Olympia three ships unapproachable in good qualities. But admitting this, the question has to be answered of how long these ships will retain their qualities. Will they hold their present efficiency for years, or even months? Time and repeated speed trials can alone show this.

An attempt was made on Thursday, November 16, to subject the new cruiser Columbia to an official trial over a 44 knot course. Buoys were placed along the course, vessels were anchored near each buoy, and the ship started on her trial run. On the trip from Philadelphia to Boston, she had already shown very high speed. On attempting the trial, however, the sea was
ant vessels could not lie at anchor, so the trial was abandoned. Sufficient, however, was done to show that the vessel does possess very high powers, reaching a rate of speed, for a short run, from 28 to 29 statute miles an hour. This speed of course she could not long maintain, but for a ship of her size to reach it was very extraordinary. Not only was her rate of travel very high, but the Columbia is designed to have a very long radius of action, being able to steam around the world without recoaling.
While the above sounds very satisfactory, and the ship is apparently a triumph of American construction, experience has shown that it is not safe to judge a war vessel from these trials. A vessel designed for use as a warship, when put in charge of the navy and kept in such service, never is able to hold her original record. The English government has all its ships of war rated, each one at its specific speed, but it has time and again been shown that the rating is far too high, and the ships, owing to deterioration of the propelling apparatus or to marine growth on their bottoms, always show a greatly reduced speed.
The Columbia is built for a commerce destroyer. She may be able to run away from any heavy fighting ship. In war her competitors would be the fastest ships of the British navy. Among these, at present, are the reserve ships Campania and Lucania, of the Cunard line, ships which day in and day out maintain speed approximating to the highest obtainable by the Columbia on her trial trip, ships which from the conditions of their service are always kept in the best possible condition for instant service. Each regular trip consists of a run of some 3,000 miles, in which runs a gain of five or ten minutes over the record is eagerly striven for. It is not improbable that the Columbia, driven under forced draught, straining every fiber under the action of the machinery, stripped and in the most perfect condition for a few hours' run with selected coal, will earn for her builders a premium of $\$ 400,000$. After all this she will not have been properly tried. She should be manned with a crew from the American navy, she should be coaled under ordinary conditions of quality of fuel, and her trial course should be the same as that of the Cunard ships or of the German or American line vessels-the course of about 3,000 nautical miles across the ocean. Then we could establish her true rating, and the trial would show whether she could compete in war with the Lucania and Campania, with the Furst Bismarck or the Paris. In the present system of trial trips everything is subordinated to making the highest possible speed over the short course of forty to fifty miles.
While her trial has been in progress or preparation, Mr. Charles H. Cramp, of Philadelphia, who represents the firm which built her, presented before the Society of Naval Architects and Marine Engineers of this city a paper on the "Evolution of the Atlantic Greyhound." In about a year the two ships of the American line built at the Cramp yard will be in commission. In them he proposes to go back to the old American idea of high initial stability and make ships which will stand on their own bottoms without the use of 1,000 tons of ballast. These ships will be in continual service and will be driven at fullspeed under the regular conditions of their work. In such vessels as these enrolled as a naval reserve would seem to be the greatest hope of our navy for the really efficient commerce destroyer.

A Singular Balloon Accident.

A Rome correspondent of the London Daily Graphic says: Captain Charbonnet and his wife recently met with an extraordinary balloon accident in the Alps. Captain Charbonnet was a well known Italian aeronaut. He was recently married in Turin, and, in accordance with a previous decision, the couple set out immediately in a newly constructed balloon-the wedding present of the bridegroom to his bride. Their intention was to spend their honeymoon in making a series of aerial trips across the Alps. They were accompanied by a male friend named Giuseppe Ponta. The first day's trip proved successful. On the following day, however, when near the Cairainella Peaks, the balloon was caught in a hurricane, dashed violently against a glacier, and broken up. Strangely enough, the occupants escaped this mishap with trifling injuries. The balloon, of course, was useless. The unfortunate trio remained on the snow and ice until the following morning, when a descent of the mountain was attempted. It was during this descent that Charbonnet lost his life, disappearing suddenly in a crevasse. His unfortunate wife and Signor Ponta, who were forced to spend the rest of the day and the following night on the mountain, suffered terribly from the cold. Signor Ponta fell and sustained serious injuries, Signora Charbonnet having thus to make her way alone. She managed at length to reach a mountaineer's hut. Here, acting upon her instructions, a party of mèn discovered Ponta and brought him safely back. The remains of Captain Charbonnet were recovered on the following day. Two days later Signora Charbonnet and Signor Ponta were sufficientlyrecovered to be removed to Turin.

Discovery of an Egg of the EXpyornis.-A large specimen of the egg of the fabled "roc" of the "Arabian Nights," or EEpyornis, as the extinct gigantic bird of Madagascar is called, has recently been secured by Mr. J. Proctor, of Tamatave and London. It was discovered by some natives about twenty miles to the southward of St. Augustine's Bay, on the southwest coast of Madagascar. It was floating on the calm sea, within twenty yards of the beach, and is supposed to have been washed away with the foreshore, which consists of sandhills, after a hurricane in the early part of the
year. The child-like longshoremen of the antipodes, year. The child-like longshoremen of the antipodes, unusual piece of flotsam about, with a view to the sale of it, and it thus came into the hands of Mr. Proctor, who has brought the curiosity to London. The egg, which is whity-brown in color and unbroken, is a fine specimen, $331 / 2$ inches by 28 inches, and an even higher value is placed upon it than upon the egg of the great auk, which lived within the memory of man. The Brobdignagian proportions of the egg are better demonstrated by comparison with the eggs of the ostrich and crocodile. An ostrich's egg is about 17 inches by 15 inches, and the contents of six such are only equal to one egg of the EDpyornis. The measurements of the egg of the crocodile are normally 9 inches by $61 / 2$ inches. It would require the contents of $161 / 2$ emu's eggs to equal the contents of this great egg, or 148 eggs of the homely fowl, or 30,000 of the humming bird. The last egg of the kind disposed of in London sold for $£ 100$, though cracked.
A Plant with Anomalous Position of Flowers.-In the Journal de Botanique for July 1 and 16, Mr. Hua describes, as a new genus, a plant from west tropical A frica, in which the flowers are borne along the midrib on the back of the leaf. This anomalous position of the flowers is only of rare occurrence, appearing in a few almost or quite monotypic genera, such as the Japanese Helwingia of the Araliacx, the saxi fragaceous Phyllonoma of the New World, and Polycardia (Celastrinex) from Madagascar. The common lime recalls, in a small degree, the same phenomenon, the stalk of the inflorescence adhering to the lower part of the bract and appearing to spring from the middle of that organ. Tropical West Africa boasted already two genera with epiphyllous flowers, both belonging to the family Bixineæ, and Mocquerysia, the new one established by M. Hua (named after its disnew one established by M. Hua (named after its dis-
coverer, M. Mocquerys) resembles these in some points, coverer, M. Mocquerys) resembles these in some points,
and is placed by its author in the same natural order.
Fishes at High Temperatures.-Dr. Lawrence Hamilton has recently forwarded to Natural Science some interesting statistics that he has collected in reference
to the existence of fishes in water of a high temperato the existence of fishes in water of a high temperature. Some of the cases are very striking. Spallanza-
ni, it appears, observed river carp living at a tempera ni, it appears, observed river carp living at a tempera
ture of 106° F., and exhibiting no signs of uneasiness, though at 109° they began to struggle, and died at 116° F. Dr. John Davy (1835) showed that the bonito had a temperature of 99°, while the water of the Mediterranean, in which it was, had only a temperature of 80°. Saussure stated that he found eels in the hot springs of Aise, in Savoy, at a temperature of $113^{\circ} \mathrm{F}$. trout by convulsions. A trout and a minnow were put trout hy convulsions. A trout and a minnow were put
in water at 70° at night, which by the next morning in water at 70° at night, which by the next morning
had sunk to 67°, when the trout was dead, though the minnow had not suffered. A salmon parr at 80° became convulsed and torpid, dying at 84°. Several fishes were deposited in water at $53^{\circ} \mathrm{F}$.; the temperature of the water was gradually raised, and none rose to 82°, when the perch became prostrated, roach succumbed at 8212°, salmon at 83°, minnow at 85°, gudgeon at 851_{2}°, dace at 86°, tench at 88°, and carp at 91°. Brandy restored all the fishes except the dace, which died.
In India fishes at noon day in their natural water remain in health at 92°; at $4 \mathrm{P} . \mathrm{M}$., 86°; and at 6 P . M., springs even at a temperature of $91^{\circ} \mathrm{F}$.
Sir Emerson Tennent collected the following obser vations, which seem to require further proof or verification:
In the hot springs of Ceylon, living carp, Nuria thermoicus, at $114^{\circ} \mathrm{F}$.; members of the perch family, the Apogon thermalis, and the Ambassis thermalis, in water at 115° F.; a roach, Leuciscus thermalis, at $112^{\circ} \mathrm{F}$.
In a hot spring at Pooree (in the province of Bengal), with the thermometer in the water standing at 112° F., carnivorous fishes have been discovered, which would indicate that these must have found and fed on living prey at the same high temperature. Further accounts, moreover, declare that in hot springs in
Barbary, in North Africa, living fishes have been taken Barbary, in North Africa, living fishes have been taken in water at 172°, while in Manila (one of the Philippine Islands) in water marking 187° F. While traveling South America, Humboldt and Koupland stated that
they saw fishes thrown up alive from a volcano in they saw fishes thrown up alive from a volcano in
water at 210° F., but this is, of course, an absurdity water at 210° F.. but this is, of course, an absurdity
which nowadays, it is to be hoped, no one will believe.

Rudiments of a Pouch in Placentals.-If ordinary placental mammals have evolved from pouched ani mals like the modern marsupials. rudiments of the pouch ought certainly to be recognizable in some of them. Dr. H. Klaatsch has just made the interesting announcement that such rudiments can actually be observed in most placentals. Something of the kind has already been found in the lemurs, and one author has supposed that rudiments of the pouch can also be detected in the sheep. The detailed account of Dr. Klaatsch's extension of the evidence will be awaited with interest.
Color Assimilation among Fishes. - We already know a good deal about this, says Mr. James Hornell, in Natural Science, especially among the flat fishes; so the following instances but go to swell an already long list. Still, these are so striking as to be worthy of permanent record.
Two tanks were used for experiment, one with dark
background and bottom, well shadowed; the other background and bottom, well shadowed; the other bright, with a white mottled sand bottom. Several of the marine stickleback (Gasterosteus spinachia) were placed in each. To sum up the result briefly, those in the dark shadowed tank remained practically unchanged in color, but those in the light colored tank had in greater or less degree lost their brightness and intensity of coloring. The beautiful gold bronze luster so characteristic of these sticklebacks was lost, and the backs were mottled black and white, contrasting strangely with the nearly unbroken yellowish black of the dorsal surface of their friends in the dark tank.
In the dark tank had also been placed a number of wrasses (Labridæ), and these showed fading all round, most marked in the bright greens and scarlets. As these colors are usually in combination with brownish marking, the fading of the bright hues meant a close approximation to the brown appearance of the bare conglomerate forming the rockwork of the tank. One fish especially beautiful at first (of a most brilliant scarlet and brown) faded to a dirty combination of pale olive and brown) faded to a airty combination of pale olive green and brown, scarcely recognizable had the fish ning of the experiment. The whole of these color changes were effected within the remarkably short period of a week.
It may be that these instances of color assimilation carry the key to the problem of color variation or rather mimicry in the prawn Hippolyte (Virbius) varians.
Plaice (Pleuronectes platessa) have also shown rapidity of color change much more marked than I was prepared for. Some that were placed in a large shallow tidal pond where the color of the bottom varies considerably and where a portion is often in deep shadow, show change from a uniform gray to a well marked and intensely dark blotched appearance within a few seconds. Indeed, it is quite chameleon-like, so quickly is the transformation effected. In ordinary tanks, where the light and color of the sand are stable, the plaice soon take the exact coloring requisite, and re-tain it without alteration so long as they remain in the particular tank.
The Sense of Smell in Fishes.-It is well known that the sense of smell in fishes is very keen, and that all use it more or less in feeding, whether or not sight aids them in the process. Some further experiments on the subject have been made by Mr. Gregg Wilson in the Plymouth Marine Biological Association, and the following observations from his recent report to the British Association will be read with interest:

So far as I could determine, fish that are not very hungry habitually smell food before taking it. The pollack seems usually to be ready for a meal, and on almost all occasions when anything eatable is thrown into the tank in which it is swimming it rushes toward it and bolts it. It does not hesitate to take stale food or food that has been steeped in strong smelling fluids; and time after time I have been amused to see its too-late repentance, after it had swallowed clams that had been saturated with alcohol, chloroform, turpentine, disgusted with what is nauseous that it takes the pre caution to smell before eating. On the other hand, various fish that are equally keen-sighted, and habitually recognize their food by the use of their eyes, are more prudent. The whiting (Gadus merlangus), for instance, appears to pay much more attention to smell, and, as a rule, turns about and withdraws on approaching within a few inches of high-smelling objects that the pollack would take without hesitation. Even whiting, however, cease to be delicate if they are very hungry, and if ocher fish are present to compete for the
food that is thrown to them. In such circumstances bait that is very distasteful may be taken by even the most cautious of sight feeders; and likewise, in such circumstances, a quite smell-less artificial bait may be successfully employed. Where large shoals of fish are, there are likely to be many that are very hungry, and the consequent keen competition will lead to hasty feeding by sight alone; and hence it is probably that ead baits are successfully employed in cod fishing in
they are of no avail among the scanty fish further south.
It may be said that in these cases the fish actually search for their food by sight alone, and merely test the quality of what they have found by smelling it; and Bateson quite recognized this. But more is possible, habitual sight-feeders can be induced to hunt by mell alone. Th ϵ pollack, which is such a pronounced sight-feeder that it will take a hook baited with a white feather or a little bit of flannel and trolled along the surface, is yet able, when blinded, to get his food with great ease. Several blind specimens in the Plymouth tanks were carefully watched by me; and I had no difficulty in deciding that it was by smell alone that they found their food. Their conduct was exactly such as was seen in the smell-feeders, to which I shall presently refer.

Again, the cod (Gadus morrhua), which Bateson puts among the sight feeders, is generally believedand with good reason, I think-to feed more by night than by day; which suggests that it, too, not only tests its food, but actually hunts by smell.
"Lastly, in this connection, I would state the results of my experiments. I worked with a number of fish, and always with the same success, but I shall here refer only to one case-that of the dabs (Pleuronectes limanda). That they were sight-feeders was evidenced by their behavior when I lowered a closed tube full of water, and with a worm in the middle of it, into the tank; time after time they bumped their noses against the glass at the very spot where the worm was situated. That they could also recognize whe smell of food, apart from seeing it, was demonthe smell of food, apart
strated in various ways.

First, if instead of a closed tube, as in the last mentioned experiment, one open at the bottom was used, after a short interval the nosing at the part where the worm was seen ceased, and the lower end of the tube, from which, doubtless, worm juice was diffusing, was vigorously nosed. If, again, instead of putting worms into a tube, I placed a number of them in a closed wooden box with minute apertures to let water pass in and out, there was a similar excitement produced, and the dabs hunted eagerly in every direction. When water in which many worms had lain for some time was simply poured into the tank through a tube that had been in position for several days, and by a person who was out of sight of the dabs, the results were most marked. In a few seconds, hunting began, and in their excitement the dabs frequently leaped out of the water, apparently at air bubbles, and, on one occasion, one even cleared the side of the tank, which was about two inches above the water, and fell on to the floor of the aquarium. Yet there was nothing visible to stimulate this quest."

Peroxide of Hydrogen as a Disinfectant.

The disinfecting properties of peroxide of hydrogen have long been known; but considerable additions have recently been made to our more exact information as to its bactericidal action. Its hygienic importance, especially in regard to its action upon bacteria in water, has been shown by the interesting experiments of Van Tromp and Altehoefer, to which reference was made in a recent number of Nature. According to the former, an addition of peroxide of hydrogen in the proportion of 1 part in 10,000 parts of the water, when shaken up and allowed to stand for 24 hours, is usually sufficient to sterilize a water. Altehoefer, however, found that, to insure sterility, it was advisable to use larger quantities-viz., 1 part in 1,000 parts of the water. Experiments made with waters purposely infected with cholera and typhoid bacilli, respectively, showed that in both cases these organisms were destroyed after 24 hours by this proportion of peroxide of hydrogen. Altehoefer, moreover, specially mentions that he found this addition in no way interfered with the dietetic value of the water; and he recommends its application for household purposes as a protective measure during any epidemics of typhoid fever and cholera. Traugott also testifies to the innocuous character of this material, even when swallowed in large doses. Care must, however, be taken that it is as pure as possible ; moreover, it is important that the sample should be freshly prepared, as its strength and consequently bactericidal action is reduced when preserved for some time.

How Many Bees Make a Pound?

This question is answered in a recent number of the American Apiculturist. Careful weighing shows that an ordinary bee, not loaded, weighs the one fivethousandth part of a pound; so that it takes fivethousand bees, not loaded, to make a pound. But the oaded bee, when he comes in fresh from the fields and flowers loaded with honey or bee bread, weighs nearly three times more, that is to say, he carries nearly twice his own weight. Of loaded bees there are only about 1,800 in the pound.
An ordinary hive of bees contains from four to five pounds of bees, or between twenty thousand and twenty-five thousand individuals; but some swarms twenty-five thousand individuals; but some
have double this weight and number of bees.

AN IMPROVED ROTARY ENGINE.

This engine, recently patented by Mr. O. E. Morse, of Dillon, Montana, is designed to utilize the steam to the fullest advantage, and the engine is readily reversed by simply shifting the lever to change the position of the slide valve. Fig. 1 is a view in perspective and Fig. 2 a side sectional view. On the driving shaft, within the cylinder, is secured the hub of a wheel containing a series of four pistons fitted to slide in the rim of the wheel, the opposite pistons being connected in pairs at their inner ends by a slotted frame through which the shaft passes, so that the pistons have free radial movement, one moving inward as the other moves outward, and vice versa. The outer ends of the pistons engage the inner surface of part of the cylinder and part of an abutment in the cylinder, an inverted plan view of which is shown in Fig. 3. The abutment is preferably made in two parts, bolted at their outer ends to the cylinder, and connected with each other at their inner ends by bolts and intervening packing strip, and the abutment serves to press an outermost piston inward, so that its opposite mate slides outward into contact with the peripheral inner surface of the cylinder. In the abutperipheral inner surface of the cylinder. In the abut-
inent are two openings into which lead four ports opening into a steam chest containing a slide valve having a single port adapted to connect with the two inner ports, the side ports connecting with compartments from which lead the exhaust pipes. The valve stem of the slide valve is pivotally connected with a lever adapted to be locked in any desired position on a segmental arm. As shown in Fig. 2, the slide valve a segmental arm. As shown in Fig. 2, the slide valve
port admits steam through only one of the live steam ports of the cylinder, and the exhaust takes place through the exhaust port at the right, but when the engine is reversed, by swinging the lever outward, the slide valve is shifted to close one of the live steam

morse's rotary engine.

ports and open the other, and the exhaust then takes p^{\prime} ace through the exhaust port at the left.

IMPROVED CROSS-CUTTING SAW.

The cross-cutting sawing machine which we illustrate on this page, from Engineering, has been constructed by Messrs. F. W. Reynolds \& Co., Southwark, London, S. E. As will be seen, it is belt-driven, and can accordingly be worked by any portable engine, thus allowing trees to be cut to length in the forest in which they are felled. The saw is fixed at one end of a crosshead working in guides. This cross-head is driven by a connecting rod which couples it to a disk crank as shown. The saw is long, and when driven at the rate shown. The saw is long, and when driven at the rate
of 150 double strokes per second, will cut through a log 4 ft . in diameter in from 7 to 8 minutes. It cuts on the return stroke only, and the feed is given by the worm and sector shown behind it in our engraving. The timber while it is being cut is steadied by a dog, coupjing it to the framework of the machine.

A READILY ADJUSTABLE CAMERA STAND. The illustration represents a metal telescopic stand, which can be readily knocked down to be shipped, and the only tool needed in setting it up is a hand wrench. It has been patented by Mr. John H. Green, of No. 604 Pine Street, Ishpeming, Mich. The trian-

GREEN'S CAMERA STAND.
gular base piece has three permanent legs, two of them having casters to facilitate moving the stand while a socket is provided in which may be inserted nother leg having a caster, as shown in dotted lines in Fig. 1. Tubular standards near each corner of the base piece are adapted to receive depending guide rods whose upper ends are affixed to a carrier plate, a bottom plan view of which is shown in Fig. 2. Centrally in the base piece is vertically supported a coarse screw cut rod adapted to be rotated by a crank and bevel gear and pinion, the screw engaging a nut in a guide tube centrally dependent from the carrier plate, whereby, on turning the crank, the carrier will be raised and lowered, a pivoted locking arm being swung into engagement with the bevel gear when the carrier has been raised to the required height, and is to be locked in fixed position. A leaf with ledges or flanges on three sides, and adapted to support the camera case, is hinged on the upper surface of the carrier plate, the leaf being raised as desired, at the edge opposite the hinges, by means of an adjusting screw having a crank handle. As will be seen, with this improvement, the camera may be quickly raised or lowered, as necessary to suit the height of the person or object to be photographed, and the case or lens readily adjusted to any desired degree of inclination. Frame pieces on the base piece are adapted to support a plate-containing box, as indicated in dotted lines in Fig. 1, while the operator is adjusting the camera.

Photographing the Vibrations of Tall Buildings. Professor Steiner, of Prague, has perfected a method of accurately measuring bridge and floor vibrations by the aid of photography. His process is a delicate one, and is an application of the chrono-photographic process of M. E. J. Marey, of the Institute of France. He uses little glass balls, and these are strongly illuminated, either by a solar ray, or by an electric arc light, or a magnesium light.
These balls give upon a photographic negative a clear and well-defined point. To register vibrations one of these glass balls is fixed at the poiut to be examined, and the photographic apparatus is then so set up that the image of the ball falls on the right edge of the plate. The plate is exposed at the moment the movement commences, and at the same time the camera

is turned from right to left on a pivot. The negative then shows an undulating line which is the vibrations of the oall point in amplitude and duration.
To obtain a scale with which to read this undulating line, a second ball is suspended to a fixed point, to which is given a known rate of oscillation. The position of these two balls is such that their images coincide in a state of rest, and a comparison of the trace of the second ball as printed upon the line of the first on a negative gives the number of vibrations of the latter in a given time.
It is possible then to place near the first ball a fixed scale brilliantly illuminated like the ball itself, and as this scale appears on the negative the amplitude of the oscillations can be measured at a glance. The measurements may be made either directly upon the print or from an enlargement made in the usual manner. To avoid the practical difficulty of making the images of the two balls coincide at the beginning of the operation, Professor Steiner says a pendulum may be made to oscillate before the source of illumination of the ball.

The ball of this pendulum will pass before the light at regular and determined intervals and the undulating line on the negative will be broken at distances corresponding to the duration of an oscillation of the pendulum. It is not important that the camera turns upon its axis with a uniform motion, and the speed of turning is likewise of little importance. The relations of the curves traced by the two balls will always remain the same. It is suggested that an apparatus of this kind would be useful in studying the vibrations of the floors of buildings resting for some years on iron beams, especially when these floors are submitted to the rhythmic shock of dancing.-Le Genie Civil.

AN EXTENSIBLE ELECTRIC LIGHT SUPPORT

This improvement, patented by Mr. Alvin Rivenburgh, of Greenfield, Iowa, consists of a tube containing strips of conductive metal connected with the wires of the house circuit, a tube of insulating material sliding therein, and having contact springs contacting with conductors leading to the lamps through the sliding tube. Fig. 1 shows the electrolier complete, Fig. 2 being a transverse section, and Fig. 3 the top portion of the sliding tube. The hole in the main tube is preferably rectangular, and the metallic strips in its opposite sides are flat. The springs contacting with the

strips, on the upper end of the sliding tube, are insulated from each other and connected with the wires extending down the inner tube and leading to the lamps. Additional strips of insulation are inserted in the walls of the main tube to prevent the springing of the metallic strips, and, to hold the sliding tube in any desired positions a spring and a set screw which may be made to bear upon it are arranged in the side of the main tube.

Artificial Diamonds.

At the Academy of Sciences, M. Moissan announced recently that, in continuing his researches on the synthesis of the diamond by means of the electric furnace, he has just obtained two compounds well worthy of attention. These bodies are silicide of carbon and boride of carbon. They are of excessive hardness, and cut rubies, steel or diamonds. M. Berthelot asked M. Moissan if in the researches made previous to his own on the subject of artificial diamonds, chemists had not sometimes mistaken for diamonds very dense compounds similar to those to which reference had just been made. M. Moissan replied that he believed errors of the kind might easily occur when analysts are not exactly acquainted with all the characteristics of diamonds. By only bearing in mind their density and property of cutting all other gems, errors may frequently have been made. But, being at present a ware of the characteristic of diamonds to burn in oxygen, and to produce four times their weight of carbonic acid, it is now difficult to confound them with any other body.

A COIN HOLDING AND DELIVERING DEVICE.
A convenient means for carrying assorted pieces of money, and delivering the coins one by one as required, is shown in the picture, the device being adapted for suspension upon the person by means of a strap, or to be fixed in position for store use. The improvement has been patented by Mr. Ernest Berrini, of Seattle, Wash. The case has a forwardly inclined, hopper-like bottom, with an outwardly swinging door, an upwardly extending key or lever, by which the

BERRINI'S COIN HOLDER AND CHANGE MAKER.

Noor may be opened, terminating in a finger piece, the key being normally pressed outward by a spring, which also holds the door closed. In the removable cover of the case are slots, through which coins may be passed to the coin tubes, which are removable, and any desired number of tubes may be used. Each tube has a vertical slot on one side, through which the coin may be seen when the tube is removed, and at the side of the slot is a graduated scale, by means of which the amount of money in the tube may be determined without counting. Beneath each tube is a slide moving horizontally between two base plates, each slide having a hole of the same diameter as the bore of the tube, so that the bottom one of the coins placed in the tube will drop into and occupy the hole in the slide and lie flatwise on the lower base plate. Each slide is normally pressed back beneath the tube by a spring, but when a slide is moved forward by pressing upon the key coning upon the key con-
nected with it, it carries nected with it, it carries
with it a coin, which is with it a coin, which is
dropped into the hopper, from which it may be re moved by pressing upon the lower finger piece. Upon a plate at one side of the tubes are fulcrumed tilting keys connected with the slides, and whose upper ends are bent outward through a slot in the case where they terminate in finger pieces, which should be appropriately marked to indicate the denomination of the coin in the tube tion of the coin in the tube
with which they are rewith which they are re-
spectively connected. When the device is arranged for use in a store, a bell crank adapted to sound a gong is connected with the key by which the door in the hopper is opened, thus giving notice when the door is opened or any money is with drawn.

Ebonite Packing Rings. The pistons of the high pressure air compressors of the pneumatic tramway of Bern are packed with ebonite rings, which, like cast ron rings, fit in grooves, and are pressed against the cylinder sides by a double brass spring. Pistons thus packed are said to be tight. to last from three to four to last from three to four. and there is no wear of the cylinder sides.

Fig. 1.-NEW fire alarm.

Fig. 3.-receiving apparatus in an engine house.
alarm whence the signal came in order to ask exactly where the fire was, and they did not know its nature. So, while installing the Petit apparatus, the fire department, and particularly its eminent engineers, Commandant Krebs and Captain Cordier, set about to find something better. The ideal was to be able to permit the public to telephone to the engine houses all the details of the location, extent and nature of the fire. Unfortunately, the practice of telephony is still unfamiliar to many persons, and consequently what was necessary was an absolutely automatic apparatus that would attract the attention of the station by a bell, making known to the person calling that theindications given were understood. A very ingenious apparatus, due to Mr. Digeon, has been under trial for some time,

denham's chicken beheader.

and, having proved successful, has been rapidly put in service in a large number of quarters.
As to external aspect, this new apparatus differs but little from the Petit system. Like it, it comprises a square box painted red, mounted upon a column in the shape of a lamp post. The alarm and telephone, inclosed in the box, communicate, through wires run ning to the interior of the column, with two cables coming from the central station through the sewers. Let us walk around the apparatus: Here is the door, into which is set a small glass. At the top of the door we read: "In case of fire, break the glass and then cry out distinctly in the mouthpiece of the telephone the nature of the fire, the street, and the number" (Figs. 1 and 2). The normal type of alarm is provided with : small hammer like a door knocker, which permits of effecting the breakage of the glass, but this has been removed, since it gives rise to mistakes. Let us strike hard, as another inscription tells us to, and, ac cording also to these same instructions, the door will open and reveal the mouth piece of the telephone placed in the interior. This opening, in fact, re veals itself to us at the bottom of the box, surrounded by the inscription in exergue: "Mouthpiece of the telephone." The directions are intelligently multiplied throughout the apparatus, and the most excited person cannot fail to see them. When the door opens, a ringing oce curs that attracts the at tention of passers-by and points out jokers. If we take a look at the enameled iron plate at the bot tom of the box, we see that, as soon as the ring ing ceases, we must shout in the telephone the fire that it is necessary to fight, and repeat this information until a roaring sound is heard, and which signifies that the firemen have started. After following these instructions to the letter, we can leave the apparatus, whose door remains persistently open. There is nothing more simple than all this, even for a child.
When a person breaks the glass he bears at the same time upon a metallic plate that swings upon a horizontal hinge above, and this motion disengages the bolt of the door, which opens through the pressure of three springs. A very simple play of levers frees the alarm bell, which is analogous to that of the old apparatus; but, at the same instant, this opening of the door sets in motion
the automatic transmitter of the indications of the letter of the alarm and of the name by which it is recognized．This transmitter，which is not very complicated，comprises，in the first place，a cam wheel carrying three times upon its circumference， in Morse characters，the indicating letter，and sec－ ondly，a motive weight whose card is wound around the axis of the wheel，and causes it to make an entire revolution when the door opens．The play of a lever is controlled by the cams．At rest this lever communi－ cates with the ground through a movable arm and a special spring．Every passage of a cam lifts a tappet and brings the lever in contact with a special screw for a greater or less length of time，according as it is a question of a dot or a dash．The circuit is completed by the earth，and a Morse receiver located at the en－ gine house inscribes a dot or a dash，and finally the letter（or rather the letter three times）characteristic of the alarm．
At the engine house，at the moment at which the first emission of the current occurs，as a consequence of the opening of the door of the box，a bell is heard to ring to call the foreman．At the same time，through an original mechanism that we cannot describe，the Morse receiver is freed automatically，and inscribes the indicative of the calling alarm．After the triple in－ scription of the letter A $(--)$ ，if it is a question of the apparatus of Chateau－des－Rentiers Street，the fireman unhooks his telephone，and this movement interrupts the bell of the alarm．The person who is calling knows then that he can signal the fire in the telephone． At this moment a pin fixed upon the cam wheel has lifted the movable arm，made it tiit，and put the tele－ phone in circuit．The fireman inscribes the indica－ tions given，and when they are very clear he depresses a special lever，introduces the current of the battery upon the line，and，thanks to an interrupter，the tele－ phone of the alarm renders a sound announcing to the person interested that the firemen are apprised（Fig．3）．

All the maneuvers are，therefore，very simple．Bat the Digeon apparatus has other advantages．It per－ mits notably of keeping the men who have started for the fire in communication with the house，in order to ask for re－enforcement，for example．In fact，every alarm is provided at the side with a door that is opened with a special key and exposes a jaw into which are introduced the wires of a movable telephone and a Morse key to effect calls．We must not omit to men－ tion particularly the movable telephone that is em－ ployed in this case．It is due to Commandant Krebs， like the one that is arranged in the alarm．It is a question in both cases of a remarkable magnetic trans－ mitter．The vibrating plate is 98 millimeters in diame－ ter in the stationary apparatus and 77 in the movable． For the latter，it is coupled with the Ader receiver mounted through a slide upon the junction rod．
Let us say further that Mr．Digeon has devised a low priced alarm designed for private houses．It is of wood， is fixed against a wall and is wound up through the opening of the door．Besides，the telephone is accom－ panied with two receivers that permit of communicat－ ing with the engine house．These apparatus can be connected gratuitously with the municipal system．
It is opportune at the moment in which Paris is thus improving its fire service，to remark that Brussels，our closeby neighbor，possesses a very remarkable in－ stallation of electric alarms．Forty bureaux of com－ munal administration are subscribers to the tele－ phone system．There are fifty automatic electric fire alarms connected with twelve receiving stations． Twenty－one telegraphic stations connect the police offices and stations with the central office，and at the latter there end eighteen telegraph lines com－ ing from the police stations of the seven fau－ bourgs．It is necessary to add to this thirty－seven microphone and eighteen telephone stations putting the services of the external administration in commu－ nication with the City Hall．It will be understood that these are so many stations capable of serving to send out alarms of fire－－La Nature．

Determining the Densities of Gases

A recent number of Nature contained the following notice of a convenient modification of the hydrometer method of determining the densities of gases，devised by M．Meslans，whose apparatus is described and illus－ trated in the Comptes Rendus．It consists of two hollow spheres hung to the arms of a balance．Each sphere，which is made of glass，aluminum，or gilt cop－ per，hangs in a separate compartment，the suspending thread being introduced through a hole in the lid． The compartments are inclosed in a box，and sur－ rounded by water in order to keep them at equal tem－ peratures．They are at first filled with air to deter－ mine the position of equilibrium．The gas of which the density is to be determined is then introduced through a long tube immersed in the water，and enters one of the compartments，having previously been dried．It is passed through in a slow and continuous stream；and if its density differs from that of air，the equilibrium of the balance is disturbed．The weight necessary to re－establish equilibrium is noted，and the density calculated according to a simple formula．Thus
the density of a particular gas is found by a single weighing；and by keeping the current continuous variation in its density is easily observed．A fairly high accuracy is attainable，depending upon the sen－ sitiveness of the balance and upon the perfection of the apprates spheres important applensity and composition of the products of combustion in furnaces． The scale of the balance is graduated so as to show at a glance the percentage of carbonic acid，and hence the degree of efficiency of the furnace in question． This percentage，which is about 21 theoretically，never exceeds 18 in practice，except in gas generators．In a great number of works it varies between 6 and 8 ．The apparatus is being applied to the study of the various methods of heating．A nother application is that by which the presence and percentage of marsh gas is indi－ cated．With spheres of 1 liter capacity and a balance sensitive down to 0.5 milligramme，it was found pos sible to detect 0.1 per cent of methane in the air of a mine．

a metallic bookcase．

The illustration shows a simple form of bookcase or stand adapted to rest upon a bureau，desk or table，and contain a set of works or books of reference in frequent use，the number of volumes being regulated by the length of the stand．The improvement has been pat－ ented by Dr．James Stimson，of Watsonville，Cal．In its simplest form the base may be formed of a single piece of metal and struck up with a die，a single piece of metal also forming each of the end pieces．Near each end of the base is a transverse slot，along the outer edge of which the metal is sunk or clepressed to form a step or recess，as shown in the small view．The clamping arms forming the end pieces are essentially L－shaped，but with a stepped angular portion connect ing the horizontal and vertical portions，the arms

STIMSON＇S BOOKCASE．

when not in use folding down upon the base and upon each other，enabling the stand to be compactly folded and stored away．In use，the upper members of the arms are brought to a vertical position，as shown in the large view，the inner members then engaging the under face of the base．

Fire－Resisting Glass．

An interesting test of fire－resisting materials and construction was recently carried out in Berlin，under the auspices of the fire brigade and the insurance
companies of the city．The idea of the tests was mooted as far back as 1889；but there was considerable difficulty in arranging for a series of＂fires，＂which were intended to be as＂natural＂as possible，and yet should not be dangerous．Finally，the municipality gave the experimenters the use of an old warehouse for their purpose ；and this building，having been fit－ ted up to represent various types of fire－resisting struct－
ures，was duly set on fire．Care was taken to subject ures，was duly set on fire．Care was taken to subject ing，sudden shocks by falling weights or jets of water， etc．，which generally occur at conflagrations；and it was found possible to take fairly exact observations． Among the most satisfactory results obtained were with the fire－resisting glass made by Messrs．Siemens， of Dresden．The assessors declare it to be most suit－ able for any skylight or window necessary in a division between separate risks，as it will resist a temperature of $1,300^{\circ} \mathrm{C}$ ．for？half an hour and more；bearing all man－ ner of shocks and strains without suffering appreciable damage．Care is required in fixing this glass，however， as the iron frames generally used for the purpose buckle under heat，and show，between the glass and iron， openings t＇1rough which flame can pass．Some of the so－called fireproof floors made of iron girders and con－ crete came to speedy grief in these tests；while iron and brick floors stood very well，as did the＂Monier＂ construction（as to which reference has been already made in the Journal）．As regards fire－proof doors， nothing stood better than double oak covered with thin sheet iron，between which and the wood there should be a layer of asbestos cloth．Seeing how many
warehouse fires are propagated through windows，the assessors attach great importance to their demonstra－ tion of the capability of Siemens glass for withstanding flame．

No oxygen in the Sun．

At the recent annual meeting of the five academies in Paris，M．Janssen read a paper on his observations at Mont Blanc Observatory on September 14 and 15， as to the absence of oxygen in the solar atmosphere． This discovery，he said，revealed a fresh harmony in the constitution of the universe．
＂We already knew the chief features of the constitu－ tion of the sun and the admirable conditions realized for insuring both the abundance and the durability of the radiation diffused by it over the planets surround－ ing it．We knew that this incandescent surface of such a slight thickness which surrounds the sun and in which resides this virtue of radiation renews itself by reserves of heat drawn by it from the central mass． We also knew that this radiating surface is protected from contact with the icy celestial space by several gaseous envelopes．Among these envelopes or atmo－ spheres the uppermost and doubtless mosteffective as to protection is the so－called corona，which in total eclipses produces the splendid phenomenon of the＇glories＇and of the crown．This atmosphere is mainly composed of hydrogen，the lightest and most transparent of known gases．The chief function of radiation，the very pur pose of the central orb，is thus insured by this trans parent and protecting atmosphere．But we now see that by a not less admirable arrangement the body which might some day jeopardize this function has been carefully excluded．Thus science as it advances constantly reveals to us new laws and harmonies in the constitution of the universe．＂

Prizes for Electrical Inventors．

It can hardly be doubted，says the Electrical Review， that there will be a good number of American competi－ tors for some of the following named prizes which are offered by the French Society．A prize of $\$ 2,280$ will be made in 1898 for the discovery that is most useful to French industry．A prize of the same amount is given every three years by the society（the next award will be made in 1895）to the person making the most useful industrial discovery．The Henry Giffard prize of $\$ 1,140$ is awarded every six years（the next award will be in 1896）for services of signal value to French industry． The Metzen＇s prize of $\$ 95$ is awarded every three years （the next award will be in 1896）to the discoverer of a valuable chemical or physical application in elec－ tricity，ballistics or hygiene．The special prizes for 1894 are：$\$ 380$ for a motor whose weight is not less than 50 kilogrammes per horse power；a prize of $\$ 570$ for an apparatus that shall decrease materially the smoke of furnaces，especially those under boilers；a prize of $\$ 190$ for a heavy oil engine ；a prize of $\$ 570$ for a steam engine consuming at the maximum speed，under average load，seven kilogrammes of steam per horse power per hour；a prize of $\$ 570$ for the discovery of a substance that can be substituted completely for gutta－ percha in at least one of its applications，or for work that will continue to develop the production or improve the cultivation of the gum．The following prizes are to be awarded in 1895：A prize of $\$ 380$ for a small motor designed for use in a shop located in a house；a prize of $\$ 380$ for the preparation industrially of ozone and means for its application；a prize of $\$ 380$ for an apparatus or a process which shall make it possible to measure or determine the insulation of the different parts of an electric installation while the current is on； a prize of $\$ 570$ for investigations which shadl contribute to the discovery and application of the best means in domestic and general product for the purification of drinking water．Competitors must submit their proofs by the 31st of the December preceding the year on which the prize will be awarded．

Hydrogen．

An interesting example of the capacity of some of the oldest and most hackneyed chemical reactions for improvement is supplied by a communication of Mr． John Ball，of the Royal College of Science，South Kensington，to the Chemical News，upon the prepara tion of hydrogen by the ordinary zinc and acid labor－ atory apparatus．Mr．Ball states that he has recently observed that，by the addition of a few drops of a solution of nitrate of cobalt to the acid and zinc，the rate of evolution of hydrogen is enormously accelerated， especially at the beginning of the reaction．The effect is the same with either hydrochloric or sulphuric acid； and a couple of drops of solution of nitrate of cobalt will suffice for a large quantity of acid．The action does not seem to have been noticed before；and it should be useful in the rapid preparation of hydrogen in the laboratory．Most，if not all，of the cobalt salt is quite unaltered．There appears to be a very thin film of cobalt deposited on the zinc，which probably acts with the zinc as a voltaic couple；but the amount of cobalt deposited appears to be too small to weigh． There is no particular virtue in the cobalt in this regard ；a solution of a nickel salt exerts a similar action．

ELECTRIC LAUNCHES AT THE COLUMBIAN
 (Continued from first page.)

boat. Allthe electrical parts except theswitch are protected, so that there is no possible danger of shock, and there is no report at the Exposition of any mishap of this kind. The boats are operated by a heavy current at low pressure, so that there could be no harm even were it possible for a full charge to be received. No boat could be much more easily managed and be more free from possibilities of mishaps, such as explosion or escape of steam or oil. In addition, the launches are clean and free from all noise, smoke, ashes, and other disagreeable features.
The greatest test the launches had during the period of the Exposition was on Chicago day, when 623 trips, each trip of three miles, were made by the fifty boats. Six of these boats averaged fifty miles each, while twenty of them averaged over forty miles, carrying on each trip about forty people. These long runs did not by any means consume the stored energy, as an experimental test made some time ago on one boat at a speed of a little over five miles an hour demonstrated that it had a storage capacity of making ninety miles at that speed on one charging. Very few accidents have occurred to any of the launches, and nine out of, ten have been caused by the propeller becoming entangled in wires or other debris in the bottom of the lagoons, and thus springing the shaft or bending the propeller blades. One bunch of wire is shown in the office of the company that was gathered up by a propeller that would require nearly a bushel basket to contain it. The batteries have proved highly efficient. No embarrassing or costly breakdowns have occurred, and during the entire period of the Exposition there have been only about 14 per cent of renewals in spite of the steady and uninterrupted work that the launches have been called upon to perform.

An economic feature of the electric launch that has been demonstrated at the Exposition is the fact that the instant the motor stops the expenditure of energy ceases, and after a boat has lain idle for many days its maximum power is to be had upon a moment's notice and without any waiting to fire up and get up steam. By placing the motor and storage batteries low down, they aid to properly ballast the boat, and at the same time they provide nearly 50 per cent more space to accommodate passengers than is to be had on the ordinary steam or naphtha launch of equal size.
The question of a proper kind of signal came up for consideration before the Exposition opened. At first an electric whistle was used which was a French invention. This was a device in which a diaphragm was caused to vibrate by electric energy, but it was more expensive and did not give as much volume of sound as the simple air whistle operated by a hand pump, which has been used on each one of the boats of the fleet during the Exposition.
The Electric Launch and Navigation Company is to be congratulated upon the success these launches have attained. They have been one of the most attractive features at the Exposition, and they have more than fulfilled the expectations of them. The contrast between these launches and the gondolas, which have also plied on the lagoons, was so marked that a syndicate of Italians purchased a launch in September and forwàrded it to Venice with a view to introducing these boats in the "City of the Doges." Such an innovation is startling, and yet this syndicate is so certain of its proving a success that it has taken an option of twenty-five launches of the World's Fair fleet, with the privilege of purchasing more if it wishes.

Under ordinary circumstances, boats finished as beautifully and equipped as completely as these Exposition boats sell for $\$ 2,700$, without extras, but most of this fleet has been disposed of at $\$ 2,000$ apiece.
The following extract from the report of the engineer in charge shows that the cost of maintaining an electric launch of average size is less than six cents a mile. The report does not include the month of October. If it did, it would be still more favorable.
Believing that a concise statement of the actual work and operating cost of these launches will be of deep interest to the electrical fraternity, since the launches are operated under novel and severe conditions, the writer presents the following data, which are computed from records carefully kept from the beginning of this unique business enterprise:

April 13 to October 1, 1893.

Mileage and Passenger Traffic.

When it is understood that already the launches have un on an average four times the number of miles a aunch owned by a private individual would ordinarily cover during a regular season, and that, as all who have been connected with this glorious Fair will vouch for, the operating expenses are decidedly heavier than under ordinary circumstances, it will be acknowledged that the cost per launch mile is exceedingly low. Judging from the experience of six months with the fifty-four launches, the writer believes the expense can and will be, in the near future, brought down to as low a figure as three cents per electric launch mile where at least thirty launches are operated under like condi ions-less World's Fair extra expenses. Though the electric launches have carried over 801,000 passengers, not a single accident has occurred, and it was exceed ingly rare that a boat had to be towed in, excep through injury to the propeller or shaft by the floatin and sunken debris in the lagoons of the World's Fair.

Fluorine.

The "Demonstration of the Preparation and Pro perties of Fluorine by Moissan's Method," by Mr. Moissan's assistant, Dr. Meslans, was the popula event of the proceedings in the chemical section of the recent meeting of the British Association, and is de scribed by Engineering as follows: Some years ago Mr. Moissan isolated fluorine, which so far had baffled all attempts at separation, and in a measure remained a hypothetical element. Dr. Thorpe, of South Kensington, failed in the repetition of these experiments which were doubted by some chemists. At the request of Professor Emerson Reynolds, Mr. Moissan, regretting his inability to come himself, sent over his assistant with the full plant, which was exhibited. Mr. Meslans contented himself with demonstrating, making brief remarks in French, and converted all doubters, if any were present, into enthusiastic believers. Fluorspar is decomposed in a platinum retort by means of sulphuric acid, and the anhydrous hydrofluoric acid, dried and purified, brought into a U-tube for electrolytical decomposition. The vessels and tubes
are of platinum; the stoppers of fluorspar. The hyare of platinum; the stoppers of fluorspar. The hydrofluoric acid is an insulator, and resisted all electroa fifth of fluoride of potassium. The U-tube stood in a cooling vessel of about a quart capacity, containing condensed methyl chloride, which reduces the temperature to -23° Cent. As soon as the current of 70 volts and 25 amperes was turned on, minor explosions were heard, and fumes began to issue from the fine platinum tube through which the fluorine was to escape into the air. It did so ; and, although it did not appear so vicious as it has been described, soon set the crowded audience coughing and longing for fresh air. Nobody was any the worse for it, however. As the fluorine at once decomposes, with the moisture in the air, into hydrofluoric acid and ozone, these two substances were practically what was smelt and felt ; ammonia was passed round instead of eau de Cologne. The experiment had to be temporarily interrupted after some minutes, as the stock of methyl chloride gave out; Mr. Meslans had been experimenting the day previous. The low temperature is necessary on account of the high volatility of the hydrofluoric acid. As, however, some of the potassium salt, carried over by the violence of the reaction, stops up the discharge tube, which is the size of a clay pipe stem, Dr. Meslans Iodine at plosion; sulphur burned with its well known blue flame; phosphorus as in oxygen; silicon and boron glowed like burning coal; carbon itself would not catch fire. It does so under proper conditions. On the motion of Sir Henry Roscoe, the thanks of the association were conveyed to Mr. Moissan by wire.
Dr. Thorpe said that Mr. Moissan had been kind enough to examine his apparatus, which he had sent over to Paris; but that he, however, had not been able yet to repeat the experiment. On the request of the president, he gave a summary of the properties of the now fairly settled refractory element. It attacks
to its appearance, even Moissan can hardly speak, as it cannot be brought into transparent vessels, and fumes so badly. It seems to be a greenish-yellowish gas, like chlorine. Its atomic weight Moissan has determined by filling two exactly equal platinum jars with nitrogen, and replacing in the one the nitrogen by fluorine; since the atomic weights of nitrogen (14) by fluorine; since the atomic weights of nitrogen (14)
and fluorine (19) do not differ much, however, this deand fluorine (19) do not differ much, however, this de-
termination is not very reliable. Mr. Meslans also exhibited one of Moissan's latest products, uranium carbide obtained in his electrical furnace. This is a dull blackish mass, which, when shaken in the stoppered bottle, sparks most energetically; the carbide, or its combustion product, has a peculiar smell.

Freezing Fish.

Science has conquered nature and has demonstrated hat to preserve fish it is not necessary to salt them. Freezing is the thing in the future, and Sandusky, Ohio, is the place where the first attempt has been made to carry on the business in a general way. Frozen fish are taking an important place in commerce and in the cuisine, and as the industry becomes more general the demand for salt fish will probably drop off to a great extent.
About three years ago A. J. Stoll, a fish commission dealer in Sandusky, began to experiment with freezing fish, and soon found that the invention of the icemaking machine would be his salvation. Last year he completed his scheme and now he has a plant in full operation, employing twenty-five men and a capacity of freezing and preserving twenty tons of fresh fish each year. In a year Mr. Stoll expects to double the capacity of the plant.
The method used is very simple, yet interesting. The fish are unloaded from the schooners and placed in the dressing vats, where the refuse matter is removed and the fish sorted and graded according to the species. This is only done with the larger fish, but the small ones are not mutilated. The fish are placed in pans made of metal that will not rust, being placed in layers and the pans carried to the cooler. This cooler is a sort of a vault filled with pipes arranged in tiers and compartments like the shelves of a pantry, and made to fit so perfectly that no space is wasted. These pipes are filled with freezing fluid and the temperature is kept at zero. From here, after freezing twenty-four hours, the pans are removed to the preserving vaults, where they are placed on pipes arranged as in the first mentioned vaults.
Just step in once, after standing around in the hot un of a July day. Of course overcoats are neglected in the summer, but in two minutes you discover your self in the atmosphere of the Arctic regions, and, glanc ing at a thermometer, you will see the mercury regis tered at eighteen below zero. A massive door is opened and before your eyes is a big stack of block wood-no hings are what they seem, for you find the wood very cold. It is the fish that will be distributed to your market man, perhaps many years hence, and the meat is so frozen that when emptied from the pans the fish appear like chunks of wood, and are so solid that they must be thawed several hours before the fish can be parated.
It has been demonstrated already that flesh kept rozen at such a low degree of temperature will remain perfect for a period of years, and it is believed that the fish may be preserved ten years, and then be turned over to the fish dealer fresh as the day they were caught.
Brine is circulated by the pumps through every foot of the pipes, and returns to the tank for cooling for redistribution in the space of one minute. The Sandusky plant cost $\$ 25,000$. -Detroit Journal.

Interesting Rail Tests.

In tests conducted at the Watertown arsenal it has been found that old steel rails when submitted to a bending test in which the head of the rail is put in tension and the base in compression, will invariably fracture, making a clean break across the rail, while if the same rail is turned over and the head put in compression it will bend without fracture. Again, if before conducting a test, about 1-16 in. of metal is planed off the head of the rail, there will be no fracture, no matter which part of the rail is in tension. But if, in planing this head, care is not taken to remove 1-16 in of metal from the corners as well as the top of the head, the rail will fracture as before. The explanation of the matter is that a thin layer of metal on the head of the rail has been greatly hardened by the contact and pressure from the wheels passing over it, and fractures when put in tension. When once started, the fracture, of course, extends entirely across the rail. If this hard material is removed, the fracture cannot make a start, and the head of the rail is as good as the base.
WE are indebted to Mr. J. N. Knowlton, manager of the Steam Whaling Company, San Francisco, for the information that the reported sailing of one of the company's vessels to a point further north than Greely's expedition reached is incorrect. The furthest north the company's ship made was between 72° and north
73°.

improvements in shapers.

Among notable exhibits at the World's Columbian Exposition at Chicago there was an improved shaper, which attracted attention in consequence of the enormous chips of metal which it cut from iron and steel. To the casual observer the machine does not appear to be different from the ordinary shaper, but to the mechanic who is used to tools of this kind it is a matter of surprise to see a shaper remove from a solid block of iron such chips as are shown in Fig. 1. This engraving is a truthful representation of the machine doing actual work; and Figs. 2 and 3 show respectively a very wide but comparatively thin chip and a narrower and much thicker chip, the first being one-sixteenth of an inch thick and one and three-fourths inch wide, the other being oneeighth of an inch thick and one inch wide.
The explanation lies in the fact that the tool does its work with a drawing cut. This insures great steadiness in the moving bar of the cutter, and as the tool holder is arranged, it also secures great rigidity and firmness in the holding of the tool without the necessity of heavy clamping devices, as the tool practically clamps itself as it is drawn forward. The up and down and cross feeds are not materially different from those of other shapers, and the cutting bar is moved by reversible gearing, with a quick outward movement and a slow return. By making use of the drawing cut instead of pushing the tool, less pressure is required in clamping the work and all chatter of the tool
is avoided.
This machine is made by the Morton Manufacturing Company, of Muskegon Heights, Michigan, who also make other machines on the same principle.

The Loss of H. M. S. Victoria
The vessels upon which we now rely for bearing the brunt of the fighting in a future naval war, which are styled by the imposing title of battleships, may, it appears-at least some of them-be sunk almost in a moment by a blow which is much less heavy than an enemy might be expected to give in action. Enormous sums are spent in providing armor to protect them against gun-fire, but the structure upon which this costly armor is placed is apparently so frail that a mere touch suffices to send the whole mass to the bottom.

We have always understood that the division of a warship into separate watertight compartments was so minute and complete that she would be safe against sinking, even if many of these were damaged. The Victoria could, however, hardly have been sunk quicker if there had been no division at all into what are called watertight compartments. Sir E. J. Reed, whose knowledge and capability of judging cannot be seriously questioned, named twelve other battleships in the House of Commons that he asserted House of Commons that he asserted
would have the same fate under similar circumstances. We know of nothing which gives reasonable ground for supposing that Sir Edward Reed is wrong; but, whether he be right or wrong, it is not only the duty, but the interest, of the Admiralty to have this grave question inquired into by an independent and impartial committee of qualified judges. partial committee of qualified judges.
We would like to know why the numerWe would like to know why the numer-
ous watertight compartments of the Victoria failed so completely to serve the purpose for which they were devised, i. e., to keep the ship from sinking when injured below water. Was it because, as has been often stated, her stability is so small that the filling of one or two of these compartments is sufficient to overcome the floating power of the remainder? Or was it a question of watertight doors being left open, or not acting when attempts weremade to close them? Captain Bourke's evidence before the court-martial shows that all was tight in the engine room and boiler rooms, and the water was all confined to the fore side of the boiler room bulkhead. It appears, therefore, that the watertight doors were very soon closed, although they may have been open before the fatal blow was given.

Lord Armstrong stated in his recent speech at Elswick that the loss of such a ship " calls for very grave reflection as to the policy of devoting so large a proportion of our naval expenditure to the construction of those mighty vessels called battleships." We agree with Lord Armstrong upon this point, if it be the fact that our battleships are in reality so frail and unreliable as the sinking of the Victoria would indicate. It would be absurd to glory in their "might" if it rested upon such an insecure basis as that. There is little,
of $2,099 \mathrm{ft}$. It is estimated that the projectile reached an altitude of $21,456 \mathrm{ft}$., and its flight occupied $70 \cdot 2$ seconds. The Krupps have had a drawing made showing the flight of the projectile relatively to Mont Blanc, from which it is evident that it would be possible for the gun to fire over the mountain from Pre St.-Didier.

Tuberculosis and its Prevention.

Dr. Anderson, the medical officer of health of Dundee, delivered an interesting address recently, so says the Lancet, with the view of quickening public interest on this important topic. After referring to the history of our knowledge of the specific germ and of the manner of its propagation, he mentioned the fact that tuberculosis had been calculated to cause one-seventh of the total mortality of the human race. It was remarkable that, notwithstanding this important fact, little practical interest had been taken in the matter by the state, local authorities, or individuals. An assumed theory of its unavoidable nature seemed to lie at the root of this baneful fatalism. Dr. Anderson maintained that all tubercle bacilli were derived from predecessors of the same character, and pointed out the facility with which this bacillus adhered to moist surfaces and propagated itself under insanitary condi tions such as prevailed in the overcrowded houses of the poor. He also mentioned the opinion, held by bacteriologists, that the expired breath of those suffering from the disease was comparatively innocuous, while their sputum swarmed with bacilli, and on evaporation and desiccation was apt to become a fruitful source of infection. Hence the paramount necessity for a syste opinion upon the question, and no sign of the neces- matic destruction of the sputum, disinfection of apartsary information being furnished. We desire to know ments occupied by those suffering from tuberculosis whether it be not practicable to build a battleship in and disinfection or destruction of articles of clothing watertight compartments so that no single blow would likely to retain the germ. Referring to the large morsend her to the bottom; whether the Victoria was not tality from tuberculous disease, Dr. Anderson menbelieved to be so constructed, and whether she was so tioned, as an instance of public apathy in the matter constructed in fact; whether other of our principal of its prevention, the fact that very few people applied battleships are in the same case with the Victoria; for disinfection of material after deathfrom this cause, whether the watertight doors were thoroughly efficient, in comparison with the numbers of those who took and were capable of being readily closed from a safe such precautions in the case of the various fevers position above water; and what is the best to be done in Passing to the subject of the disease in cattle, he pointed out the large mortality among these animals from this cause and also the relation of milk supply to infant mortality from tuberculosis. The proportion of deaths from this cause in children under five years of age in Dundee was found to be 1 in 11. All these facts pointed to the necessity for the householder to safeguard his own interests. Dr. Anderson concluded his instructive address by mentioning in detail the preventive and disinfectant measures necessary to secure the highest possible immunity from the scourge.

Our Birds are Leaving Us.
In Harper's Susan Fenimore Cooper sings a gentle dirge over the departure of the birds from our forests and hedgerows. Selecting a typical region in the Northern Alleghanies, she shows how the birds have gradually become silent, first the great white pelican on the mountain lake then the beautiful wild swan, and finally even the myriads of wild pigeons. This last bird is one of the most curious examples of the sudden destructive blows to whole species that man's presence can give. Seemingly one of the most numerous and prolific of birds-flocks estimated to be 240 miles long have been seen in this century-it is now practically a thing of the past.
And as for the songsters, and the smaller feathered tribe :
THE MORTON DRAWING CUT SHAPER.
rder to make existing ships satisfactory in these respects, if they be not satisfactory now, and would be in danger of meeting the fate of the Victoria under like circumstances.-Engineering.

A coast gun built by Krupp, when being tested at the Meppen proving grounds recently, threw the projectile $65,616 \mathrm{ft}$., or ne:rly 13 miles, the gun having an elevation of 44 deg . The projectile weighed 474 lb. ; the charge of powder 253 lb . ; giving an initial velocity
"The friendly red-breasted robins, the beautiful blue birds, the gay, musical goldfinches, those charming song birds the wrens, the gorgeous orioles, the purple finches, the dainty greenlets, the pretty cedar birds, the merry gold crests, and their cousins the rubycrowns, those dainty sprites the humming birdsthese and other bird families never failed in past years to bring joy with them to our lawns and meadows. Many of them are now rare visitors. The sturdy robins are much less numerous than they were formerly."

FOUR HUNDRED HORSE POWER MILL ENGINE.
The engines which we illustrate below are of the inverted marine type, and are designed for driving cement and other mills, shop machinery, and for general land purposes. The chief advantages claimed for this type of engine over the ordinary horizontal land engine are economy in floor space occupied and greater balance of working parts. In the engine illustrated, this latter point has been especially studied, the cranks being \{placed opposite to each other, instead of at right angles, as usual. The engines are designed to develop four hundred horse power, the cylinders being wheel is 16 ft . in diameter, and weighs 12 tons. The
use. The throwing of the images on the screen side by side necessitated great straining of the eyes in looking at them for any length of time ; but the worst disadvantage is the loss of light through the colored glasses. In Anderton's lantern the two images, which may be made from any stereoscopic negatives, are thrown upon the same part of the screen, so that there is no trouble in seeing them. Looked at in the ordinary way with the naked eyes, they appear as a blurred,'out-of-focus picture, in whicn the subject may be but barely distinguishable, for they are thrown to polarize the light, and as the slides are the two halves of a stereoscopic picture the slides are the two
perfectly startling. The glass used by Mr. Anderton for viewing the images is like a very short opera glass on a handle, and with two small prisms suitable for his purpose cannot be a very expensive instrument.Practical Photographer.

Reduction in the Price of Aluminum.
The Aluminum-Industrie-Actien-Gesellschaft, of Neuhausen, in Switzerland, owing to the increase of its dynamo capacity to 4,000 horse power, and some improvements in the processes employed, enabling it to increase largely the production of aluminum, announces that the price from January next will be 45 cents per pound. It must be remembered that, owing

FOUR HUNDRED HORSE POWER COMPOUND MILL ENGINE.
makers are Messrs. Ross \& Duncan, Whitefield Works, to coincide, even if it were desirable. The prism used to the low specific gravity of aluminum, if equal bulks,

Govan, Glasgow. We are indebted to Engineering for our illustration and the foregoing particulars.

Anderton's stereoscopic lantern, recently shown at the Pall Mall Exhibition, and demonstrated at one of the technical meetings of the P. S. G. B., is the most notable novelty that the lantern world has seen for many years. It has long been possible, in an experimental way, to show lantern pictures in stereoscopic relief by throwing the images from two lanterns through red and blue glasses respectively, and viewing them through opera glasses or spectacles in which the glasses are red and blue. This system has one or
two disadvantages that have prevented its practical
to polarize the light is placed horizontally in one lantern and vertically in the other. Practically either image is only visible when viewed by the naked eyes, or through a prism held parallel to the original prism through which it is thrown. Thus, when one looks at the blurred image on the screen through a prism held horizontally or vertically, one image is plainly seen and the other is practically invisible, and when a glass is used containing a horizontal prism for one eye and a vertical prism for the other, each eye sees one image nly, and the stereoscopic effect is given by the blending of the two. The illumination is very good, the mage from the two lanterns seeming about as well lighted as the ordinary projection from either one of
not weights, of the different metals are taken, this price is really lower than that of copper as recently as 1890, and is less than that of tin at the present time. At present, 75 cents a pound is the ruling price for aluminum.

IT is now pretty well understood that the contemplated race between the champion English and American locomotives, that were exhibited at Chicago, will not take place. Our British cousins decline to join in a contest in which they know, beforehand, they would com out would come out second best. No. 999 , of the \mathbf{N}. Y.
Central, is said to have made the rate of $1121 / 2$ miles per hour, and no locomotive as yet produced in Eng-

The La Grange Dam.
Stanislaus County, Cal., will soon have the highest verflow dam in the world.
It is called the La Grange dam, and is being constructed for the Modesto and Turlock Irrigation Districts. Its location is in the canyon of the Tuolumne River, three miles from the town of La Grange. Work on the project was commenced in June, 1891, and has been prosecuted continuously ever since. A force of 200 men has been employed on the work, the total cost of which will be $\$ 600,000$.
The annals of engineering have hitherto recorded as the highest the Vyrnwy dam. which retains the water supply for the city of Liverpool, England. Its height, from base to summit, is 127 feet, but the La Grange will be two feet higher. Other celebrated dams, such as the Bear Valley, in San Bernardino County, and the Sweetwater, near San Diego, are properly known as reservoirs, and the protection of their basins as retaining walls.
The La Grange is being built by R. W. Gorrill, and will be 360 feet long on top, the plan being curved on a radius of 320 feet. Its maximum height above the foundation will be 127 feet 9 inches. The front face of the wall is made to conform to the curve described by the water in overflowing, and to deflect it into the basin in front of the dam.
The dam is built of "cyclopean rubble," and is a model of solidity. Huge rocks, weighing from six to ten tons, were first laid on the bottom. All their projecting pieces were cut off, and a flat but rough surface was prepared for the lower bed. Before being placed in the bottom, all stones, whatever their size, were scrubbed, and subjected to the action of numer ous jets of water under pressure of seventy-five feet.

The process of construction was as follows:
"A level bed was first. prepared in the rock and covered with a two-inch layer of cement mortar, which was beaten to free it of air. A large stone was then lowered into position by a steam crane, and was beaten down into the mortar by blows from heavy handmauls. Other large stones were similarly placed, but so as not to touch each other. The spaces left between them were filled with concrete, which was thrust into the narrow spaces with tampers.

The work within the reach of each crane was brought up from six to eight feet before the crane was mover. In each course the immense stones were laid so as to bind with those in the course below. No horizontal joints passed through the wall, as the top of each course was left with projecting stones and hollows, which permit it to be well bound with the next course. To make the back face thoroughly water tight, the vertical joints were filled with mortar alone, and into this broken stone was forced."
The La Grange dam will distribute water over a territory embracing 276,000 acres. The Turlock district comprises about 198,000, and the Modesto district 78,000 acres. The water will flow over the dam into two ditches. One will be 30 miles long and 100 feet wide, the other 28 miles long and 80 feet wide. The waters of the Tuolumne River will be banked up by the dam in the rocky canyon. A lake will thus be formed four miles long and a half mile wide. An idea of the solidity of the dam may be gathered from the fact that at its base it is 117 feet 9 inches thick, and that of solid stone, forming an indestructible bar rier to the lake of water behind.-Pacific Lumber man.

Rapid Building.

Chicago has made a new record for rapid building operations by the manner in which work has been pushed on the New York Life Insurance Company's building, now in course of erection at La Salle and Monroe Streets. This building is of the so-called Chicago construction. On July 19 excavation was commenced, and as there had been nocellar under the structure which had previously occupied the site and been torn down, the work was from the sur face. In nine days the curb wall was completed. On August 17 the entire foundation had been laid, and on the day following the first iron column was set in the basement. Thirty-six working days thereafter-September 28-a flag waved from the top, announcing the entire completion of the iron framework, and five of the days had been lost in waiting for delayed iron. On October 5, besides the skeleton framework, two storie of granite and three of terra cotta exterior walls had been laid, four floor arches of fireproofing had been set in place, the entire system of steam mains throughout the building set, and the basement floor laid in concrete. Ten days were consumed waiting for cut stone. Thus in ten weeks and one day-sixty-one working days-the entire framework for a building twelve stories in height and covering an area of 80 by 140 feet had been set, and a week later five stories of outer wall, composed of granite and terra cotta, had been laid. For four weeks double relays of men were employed, sixteen hours being counted a day; for the remainder of the time eight hours constituted a day's work. Taking this into account, the work occupied work. Taking this into account, the work occupied
ninety-five working days from the day on which the
first dirt was removed from the site. It is expected to have the structure ready for occupancy by February 1, 1894.

A SIMPLE GAS METER CONNECTION.

To save time in setting meters, and afford an efficient and inexpensive connection with the street service pipe and also with the distributing gas pipes in a house, is the design of this improvement, which has been patented by Mir. Albert H. Gindele, of No. 228 Second Street, Jersey City, N. J. On the end of the lead pipe to be connected to a meter is placed an exteriorly threaded sleeve, and the end of the pipe is then upset to form a flange against which the sleeve abuts. A cylindrical junction nut, preferably of brass, screws upon the threaded sleeve, and has a hub-like extension which bears against the flange and also screws upon a thimble screwing into the bore of the lead pipe, the

GINDELE'S GAS METER CONNECTION

thread of the thimble producing a mating thread in the soft metal of the pipe. The thimble also has an external flange which is engaged by and has gas-tight contact with an inwardly radial flange on a union nut of the usual form, the nut screwing upon the end portion of the hollow meter post. The improvement is designed to afford a simple and reliable connection and dispense with solder joints.

SECURING PROPELLER BLADES TO THE HUB.

The illustration represents an improved means of securing propeller blades to the hub, recently patented by Mr. Martin Davies, Jersey City, N. J.

According to this improvement, screw belts are inserted through the hub from the inner side, and then through the bases of the propeller blades, when nuts are applied to their projecting outer ends. Fig. 1 is a view in perspective; Fig. 2 a horizontal section at one side of the hub ; and Fig. 3 is a section through the hub and opposing blades, the heads of the bolts being countersunk in the interior of the radially bored hub and arranged to form part of a smooth hub bearing for the propeller shaft. The hub has four faces, each adapted to receive a propeller blade, and having a circular recess in one wall of which is a feather, the base of each blade having a boss entering the recess, and

DAVIES' PROPELLER

the boss having a recess to receive the feather. In securing the blade to the hub, the nut is turned down with great force, whereby the blade is securely clamped and fastened in place, but so that it may be removed with convenience and dispatch. This invention has been practically tested in actual use, and its value has thus been demonstrated.

There is a bill pending in Congress providing for the issuing of postal fractional currency, in denominations of $5,10,25$ and 50 cents. This is intended to furnish the public with a convenient form of money for transmission through the mails. It is to displace the postal notes, which are to be withdrawn from sale on January 1, 1894. This fractional postal currency would be furnished at its face value and without the formality now necessary to get a postal note. There are branchof business involving small transactions which would letters.-Philadelphia Ledger.
C. L. Simonds, of Lynn, Mass., has made a steam carriage for his own use that will make ten miles an hour. The carriage weighs only 400 pounds and can carry two persons at a time. It has the appearance of an ordinary carriage in front, except there are no provisions made for a horse. The wheels are of cycle make and are four in number. The hind wheels are 43 inches and the front wheels are 36 inches, with rub ber tires. The boiler and engine set just in the rear of the seat and give the carriage the appearance of a fire engine. The steam generates in what is called a porcupine boiler, which weighs 100 pounds. The steam is made by naphtha flames from three jets. The naphtha is kept in a cylinder, enough to last for seven hours, and there is a water tank that will hold 10 gal ons. There is a pump that is automatic in action directly connected with the engine. Thesteering part consists of a crank wheel on the footboard, so that the engineer can steer and attend to the engine at the same time. The body of the carriage rests on a cradle and three springs. It is easy riding, and allowance has been made for every movement. The shafts are of steel, and can stand all of 1,000 pounds Mr. Simonds has given the steam carriage a trial already, and it has proved a success. It started off at a ten-mile gait; there was no noise, smoke or trouble whatever.-Springfield Republican.

Photographic Notes.

Photographing upon Fabrics.-Mr. August Villain, a dyer of Aubervilliers, recently communicated to the Societe d'Encouragement the processes that he employs for obtaining photographic prints upon fabrics. He recalled the researches of Messrs. Kopp, Willis, Green, Cross, and Bewan, and the application made by these chemists of alkaline bichromates, chromates of copper and aniline, solution of aniline in benzine, and denitrated primuline. In order to obtain the negatives, the process that has given Mr. Villain the best results consists in sensitizing the fabric with the following mixture :

The fabrics impregnated with this solution are dried in the dark at a low temperature, and exposed to the light under a negative. They are afterward thoroughly washed. In this state they have fixed enough mordant to dye the print in baths prepared with the most varied artificial colors.-Annales Industrielles.
Photographing upon Marble.-In order to photograph upon marble there is applied to an unpolished slab of the latter a solution composed of :

Spirits of \qquad
Asphalt.... $\begin{array}{rc}500 \\ 500 & \text { part } \\ 50 & " \\ 5 & "\end{array}$

After the solution is dry an exposure to the sun is made under a negative. The developing is effected with turpentine or benzine. The slab is then thoroughly washed, and those parts of it that are to remain white are covered with an alcoholic solution of gum lac. The slab is then immersed in a tincture of a coloring substance soluble in water.
After a short time the coloring material will have penetrated the pores of the stone, which is then removed from the bath and polished. The effects thus obtained are, it is said, very beautiful.-Annales \ln dustrielles.

The Snow Sheds of the Union Pacific

A correspondent of the N. Y. Observer says: "With two and sometimes three engines, our heavy train, now divided into two sections, climbed up the giant wall of the Sierra Nevada. We passed through the magnificent scenery of Shady Run, Blue Canyon and Giant and Emigrant Gaps. In running one hundred and seven miles we had climbed nearly seven thousand feet, sometimes over very steep grades. Before we reached the summit, snow sheds began to appear, and soon became practically continuous. It was the month of May, and the mountains were still covered deep with snow. We rode through forty miles of these wooden tunnels, from whose windows we could now and then catch glances of wild wastes of snow-covered mountains, and at other times of forests of pine and fir trees. Without these sheds it would be impossible to operate the road in winter. They are built in the most thorough manner, often upon solid foundations of masonry, and are separated by iron plates into sections, to guard against the spread of fire. There are automatic electric fire alarms in one of the longest sheds, and an engine with a tank close at hand is kept ready to flood any section that should catch on fire. The sheds are patrolled and guarded in a careful manner. Such attention is due not only to the passenger and freight traffic which the road conducts, but to the value of the sheds, which average from eight to twelve thousand dollars per mile. Several miles, where bridges and precipices made the construction difficult, cost as much as thirty thousand dollars per mile."

THE TRIPLE-SCREW WAR SHIP COLUMBIA.

The official speed trial of this our most recently built war vessel took place November 18, a previously attempted trial on November 16 having been given up on account of bad weather, although the engines were said to have worked smoothly, developing more than the power called for by the contract. The course was almost directly north from a point off Cape Ann, Mass., a distance of 43.96 nautical miles, the vessel crossing the line at full speed, making a long turn, and taking another run over the course in the opposite direction. According to the arrangements made, the times of passage over the course alone were to be taken, the time of turning being eliminated, but during the turn no change in engines or boilers was to be permitted, and not a valve or link was to be touched.

The starting line was crossed at 9:54:40, and at 11:49:48 the ship dashed across the finish line, completing the first half of the trial, the average speed having been 22.92 knots. During this run the steam pressure had risen to 158 pounds, and revolutions 136 each on the twin screws and 131 on the midship screw, and the last seven miles were said to have been made at the rate of 25.3 knots an hour. After turning in a circle of about four miles diameter, the ing in a circle of about four miles diameter, the
run back was commenced, the line being crossed at
tation and correction of the resulting speed, there were yet a host of subjects concerning which the government officers were deputed to gather numerous and thorough data. Indicator diagrams were taken at close intervals from every engine on board, and from these will be determined pressures, horse power, and other information of great value to the navy department, not only for use in relation to the Columbia herself, but as a guide and assistance in future engine designing. Temperatures of fire rooms, fuel, water, etc., were also carefully noted.
The Columbia is 412 feet long on the load water line, 58 feet extreme beam, 22 feet $61 / 2$ inches normal draught, and displaces 7,350 tons. Her power consists of three three-cylinder vertical inver ted triple expansion engines, having about 22,000 collective indicated horse power and driving three screws, one on the middle line, as in single screw ships, and the other two under the counters, as in twin screw vessels. This power is calculated to produce a speed of 21 knots an hour, which the contract for the vessel calls for, but the builders will receive a bonus of $\$ 50,000$ for every quarter knot the vessel makes over the required twentyone knots. Our engraving is from Once a Week.
The engines are in three separate water-tight com-
The engines are in three separate water-tight com-
partments, the two driving the counter screws be-
engines would not do, because of their size and the fact that they would be very extravagant in the use of steam at the ordinary cruising speed. Besides this the space that could be given up to machinery was restricted, and would not be satisfactory for twin screw engines. Mr. Melville then decided that triple screw engines were the only ones that would do, and at once set about the preliminary design. Through the course of her construction he has watched the machinery carefully, and the success which she has achieved marks a new era in marine propulsion.

Potassium Permanganate as an Antidote.
Schlagdenhauffen and Reeb refer to the fact that J. Antal has found permanganate of potassium act as an antidote to phosphorus, muscarine, strychnine, colchicine, oil of savin, and oxalic acid, when administered to frogs, rabbits, and dogs, with or directly after the poisons, and then proceed to describe the result of experiments conducted by themselves to ascertain the effect of the permanganate upon coronillin, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5}$, a poisonous bitter principle isolated by them some years ago from the leaves of Coronilla scorpioides. They find that when the salt is placed in direct contact with the glucoside the latter is decomposed, being entirely oxidized, and physiological tests, in which frogs,

THE NEW UNITED STATES WAR SHIP COLUMBIA.

12:14:58, with a steam pressure of 160 pounds, the twin ing placed abreast the same as in twin screw ships, screws making 136 revolutions each, and the midship screw 130.
During the backward run there was some priming of the boilers at one time, and the speed between two of the stations on the course dropped to the rate of $21 \cdot 11$ knots, but the total backward run was made at the average rate of 22.71 knots. The mean of the two runs was therefore figured as 22.81 , and the builders have earned a premium of $\$ 350,000$ for attaining a speed of seven quarter knots over that called for by their contract. The naval officers aboard are said to have expressed the highest satisfaction with the performance of the vessel throughout.
The board conducting the trial consisted of Rear Admiral George E. Belknap, Commodore J. G. Walker, Capt. Edmund W. Matthews, Chief Engineer Edward Farmer, Commodore Philip H. Cooper, Commander F. A. Cook, Lieut.Commander Joseph N. Hemphill, and Naval Constructor Joseph F'easter, with Lieut. L. L. Reamy as recorder. These officers had also numerous assistants, the total government inspection force numbering no less than 36 officers- 13 of the line, 20 of the engineer corps, and 3 of the construction corps of the navy. While the determination of the speed alone required nothing save the accurate marking of time at the passage of certain ranges, and the careful compu-
and the one driving the center shaft just abaft them and lapping each for one-half its width. Steam is supplied by eight four-furnace double-ended boilers. The weight of all propelling machinery, including water in the boilers, is 1,950 tons. The coal supply on her normal displacement is 1,200 tons, but her maximum bunker capacity is 2,200 tons, which will give her at the most economical cruising speed a radius of action of about 16,000 knots.
The application of power through triple screws in large ships is an innovation, and its results in the Columbia are watched with intense interest by the entire civilized world. Essentially and avowedly a commerce destroyer, and not a fighting ship, the armament of the Columbia will be comparatively light.
The Columbia has been in a special degree the work of Engineer-in-Chief G. W. Melville, U. S. N., of the Bureau of Steam Engineering, under whose direction the designing of her machinery was done. When the estimates were made for this ship, the speed fixed was twenty knots, but after the naval appropriation bill was passed, it was found that in conference the speed had been raised to twenty-one knots, and Mr. Melville decided that the ship should have from 20,000 to 21,000 horse power, and at once began to lay out the engines and boilers. It soon became apparent that twin screw
pigeons, and guinea pigs were used, seemed to prove that the permanganate is a true antidote to the poison when administered within a sufficiently brief time after the latter.-Journ. der Pharm. von Elsass-Loth.

Seeing the world's Fair at Home.

Many as were the visitors to the great Columbian Exposition just closed, they included. in fact, but a small percentage of those who would like to have gone but were unable to do so. To the most of the stay-athomes, however, there will now be offered, for many months to come, opportunities of acquiring a very near and pleasurable acquaintance with the best features of the memorable show, through the means of the excellent magic lantern and stereopticon views taken. T. H. McAllister, of New York, who received an award on his exhibit of magic lanterns and stereopticons, and who has long made a specialty of lantern slide views, has a wonderfully complete and varied collection of such views of the Exposition itself, by means of which one can obtain a most vivid portrayal, not only of the buildings, but a large proportion of the exhibits. One set of these lantern slide views is also accompanied by an original descriptive lecture thereon, in pamphlet form, whereby entertainment and instruction may be given to an audience by one who never visited the Fair.

RECENTLY PATENTED INVENTIONS. Engineering.

Furnace.-Wardell Guthrie, Chicago, Ill. Air pipes arranged alongside the furnace, according above the fire surface, and the furnace is fed by a screw conveyor in a trough lengthwise and centrally of the bottom, the fuel being fed back and upward as a projecting crank on the end of the screw is turned. The air is fed by force directly on the surface of the fire, as the fuel is fed up from the bottom. A dump or grate, for removing cinders or
Drag for Steering Vessels.-Louis Boucher, West Superior, Wis. This is a device designed for use only when a ship's rudder becomes disabled, and it is so made that it may be conveniently stowed away is an air-tight cylinder with pointed forward end, in which is a ring, there being annular flanges or fins on the cylinder. Attached to the ring is a chain which connects with two chains, one leading to each side of the vessel near the stern, where the chains are passed around pulleys in the outer ends of projecting beams, and thence
over pulley blocks and a central capstan, whereby the drag may be easily moved to one side or the other in the Irag may be easily
rear of the vessel.
Propelifer.-Frank J. Leisen, Wood hridge, N. J. This propeller has cylindrical, spirall formed and diagonally opposing exterior surfaces, an hollow interior formed with two pockets, one pocket visi
he from each side, and both pockets uniting to form circular opening at the outer end. There are spiral exte rior blades or ribs, each rib above a pocket. This im provement has been practically' tested in a 16 inch pro-
peller, demonstrating its superiority to an 18 inch fluke peller, demonstrating its superiority to an 18 inch fluke
wheel, and a 36 inch pattern has been furnished the ownpropeller is to be made and given a public trial on tha famous yacht.

Hailway Appliances.

Car Coupling.-Edward N. and Jacol. .I. Byers, Cameron, Mo. This invention provides
wafety attachment for couplers of the Janney type, where viy, should the drawbar be drawn from its proper seat, the device acts automatically to uncouple the loosened draw device acts automatically to uncouple the loosened drawnected with the drawbar has one end located beneath the
coupling pin, and a guide is so connected with a fixed coupling pin, and a guide is so connected with a fixed
support thatthe lever will be elevated beneath the pin as support that the lever will be elevated beneath the pm as
the drawbar or drawhead is carried outward from the proper position.

Pneumatic Signal.-George V. Steeb, Brooklyn, N. Y. The utilizing of air pressure to ope rate signals
ment, which provides for bringing the air pressure int action by the passing of a train over the track. The air under pressure is supplied by a pipe from any suitably located compressing source to a cylinder located in a
suitable chamber beneath or adjacent to the track, this suitable chamber beneath or adjacent to the track, this
cylinder being connected with another cylinder in which cylinder being connected with another cylinder in which
is a piston, the movement of which operates the semaphore rod, the action being controled by a valve in a third cylinder, actuated as the wheels of the car pass over
inclined planes at the side of the track. The apparatus may also
gates, etc.

Electrical.

Carbon Holder.-Clark C. Hill, Newport, R. I. This holder is formed of a cylindrical, longi near one end a circumferential groove to which is fitted a circular spring. With this improvementthe upper and lower carbons of electric lamps may be held in the position of use without the employment of screw clamps or
aljusting screws. The sections of the socket formed by slotting may also be made to clamp the carbons sufficently without emploving the circular spring.
Electric Regulator and Switch. Walter N. Jones, J.., Petersburg, Va. This is an im-
provement for use on electric cars, in which the same adprovement for use on electric cars, in which the same ad-
justing devices serve to regulate the current to both the justing devices serve to regulate the current to both the
motor and the brake magnets, without allowing the current to be on the motor and the brake magnet at the motor man. Combined with two concentric rheostats, mud two concentric series of segmental plates leading
and
thereto, is:a central shaft with insulated metal tubes bearthereto, is:a central shaft with insulated metal tubes bear-
ing separate.contact arms playing respectively upon the ing separate.contact arms playing respectively upon the
series of plates, the central shaft and metal tube forming series of plates, the central shaft and metal tube forming
two independent paths for the current centrally through the rheostats. The power increases in the motor by the movement of the crank in one direction, and in-
creases in the brake by the mere reversal of the move ment of the crank.

Mechanical.

Hoop Sawing and Shaping Machine. -Ephraim O. Hall, Marshfield, Oregon. This machine the log is fed to the machine, the hoops being perfectly formed, their upper sides planed, the edges scarfed, and the under side, in the direction of the heart of the log, left rough, the machine requiring but a single attendant. A diagonal saw at the rear of a vertical saw produces a
kerf meeting that formed by the vertical saw, a planer being operated in conjunction with the latter saw, while an adjustable planer and an adjustable saw are also diagonally located, the latter saw being held
the surface planed smooth by the planer.
Hoop Cutting Machine.
Hoop Cutting Machine.--Alban H Adams, Fort Meade, Fla. According to this invention
a roller cutter is applied to an ordinary rotary veneer cutting machine, to score the log or make longitudinal incisions in it, making also perforations between the incisions, so that when the veneer is turned from the
log it will fall apart at the places of the incisions, forming a series of hoops, the grain of which runs lengthwise,
and which are already perforated to receive the nails. The hoops thus made are especially allapted for use on
orange boxes and similar packages.

Printer's Furniture.-Jacob C Wolfe, New York City. The design in this furniture is
o present the maximum of bearing surface with the east weight, while it may be quickly and conveniently cast, and will afford a facing of uniform thickness. It onsists of a hollow block with top and bottom recessed cining a from the side ribs to the center of the block, while it has also a longitudinal central wall and transerse particions forming pockets in each side
Wire Bending Machine.-Cyrus M. Suter, Ashton, Ill. This is a machine for making stays especially adapted for placing the strands of wire fences and holding them the desired distance apart. The construction of the machine is such that the operation of
forming a stay is entirely automatic, the stays being orming a stay is entirely automatic, the sta
made successively from a length or coil of wire.

Agricultural.

Cultivator.-August Leineweber, De Witt, Neb. This invention provides an improvemen in cultivators of the disk type, and the cultivator shank is carried by and has vertical adjustment in a slide having
movement upon the beam, there being a gear connection between the slide and the shank whereby the latter is revolved. Any desired number of cultivators may be placed upon a beam, and the cultivator disks are of pecu rendered concave upon its inner face and convexed upon its outer face.

Miscellaneous.

Apparatus for Lighting Buildings. John W. Davis, New York City. The lighting of inte
ior rooms, basements and lofts, not readily lighted by windows, is the design of this improvement, the apparatus first condensing the beams of light, then carrying them to the desired locality and diffusing them, by a peculiar arrangement of mirrors operated i by clockwork A concave paraboloidal mirror is supported and adapted o travel above a light conduit, a convex paraboloida mirror being held at the focus of the concave mirror and the latter, a plane deflecting mirror being held to re ceive the beams of light and throw them into the con-
Vehicle Brake.-Eugene W. Cleve
and, Rounthwaite, Canada. This is a strong and simple device, more especially designed for use on portable en which is a windlass, chains attached to and wound upon the windlass being extended in opposite directions and
Glass Structure.--Edgar W. Cun ningham, Jersey City, N. J. This improvement pertain
to an improved construction of skylights and the roof 10 an improved construction of skylights and the roof
and sides of greenhouses or conservatories, combining with aligned paneis a joining piece of two metal binding trips having straight abutting sides which are soldered cosely embrace the adjacent pposite ends of the panels the lower flanges being extended and curved to form

Spirit Level and Inclinometer.James P. Famous, Norristown, Pa. This device comprises an adjustable level tube in an elongated level stock,
there being a grade indicating slide block at each end and a fixed transverse level tube on the top of the stock, in combination with a swiveling sight tube on the stock The implement is auapted to determine whether objects are level, plumb, or inclined, and exactly determine the being adapted for use in building and engineering work of all kinds.
Rock Drill. - William O. Higgins, Kingwood, Ind. This is an implement which may be conveniently worked by hand and easily handled by one man to place it in the desired position. In a suitable
upright frame are mounted a vertically movable dril shaft and a driving shaft, an a vertically movabe drin rated by a pivoted lever, there being a sliding ratche wheel on the drill shaft and a pawl pivoted to a centrall pivoted lever, and a link connecting the two levers
The drill is steadily fed downward, to be able at every The drill is steadily fed downward
stroke to deliver an effective blow.
Writing Tablet and Manuscript Holder. - Barton W. Scott, San Jose, Cal. This im stenographers, peblic speakers, type setters, and others
to permit of readily writing matter on a continuous sheet, and conveniently displaying the written matter The invention comprises a casing having two winding rums for the paper, a main shaft being journaled in the casing and actuating two gear wheels, which are adapted Coal ScRfen
Coal Screen. -Frank L. Sackett, Fredonia, N. Y. To facilitate the screening of broken coal device provided therefor is simple and inexpensive It device provided therefor is simple and inexpensive.
consists of an oblong frame, across which the screen proper is stretched, and having an end wall and discharge opening, and whose bottom slides on side bars of the
screen, the hopper being adjustable and removable. The device may be attached to the side of a cart or in BICYGined an upright support
Bicycle Whistle.-John F. Hylan and Robert L. Sinley, Brooklyn, N. Y. This is a simple safety bicycle, and comprises an air pump, to be actuate by the rotary motion of the front wheel, to afford
copious supply of air, and, on the movement of a lever copious supply of air, and, on the movement of a lever,
blow a loud blast on a whistle connected to the pump. The lever is projected below the handle bar, and the blast may be prolonged for as long a time as the lever held gripped with the handle bar.
Thill Support.-Adolph Meyerhoff New York City. A pair of keepers on the thill or pole is provided for by this improvement, and a slide bolt in
the forward keeper has a head engaging the keeper while a chain secured to the rear end of the bolt runs through the rear keeper, and a hook on the running gear engages the chain. The device is very simple and inex-
pensive, and may be attached to the thills or pole of any
vehicle to hold them at the necessary height for converom the horse's back.
Folding Bed.-Hugh Stevenson, New York City. This is an improvement upon a formerly patented invention, according to which, when the beds matress, to permit a free circulation jof air between the covers, that they may be thoroughly ventilated. The
present patent provides an improved construction, whereby, when the bed is folded, the covers may be separated and held perfectly straight. the covers and mattres
being also so held that the bed may be very easily up when necessary.
Shoe. - William T. Loyd, Hiawatha, Kan. The sole of this shoe is formed of a single sheet Kan. The sole of this shoe is formed of a single sheet
of metal, with a metallic counter, and :a flange around of metal, with a metallic counter, and a flange around
the toe and ball, a flexible top toe prece being fastened to the front flange and a flexible lining at the heel. Be-
neath the ball and heel are also attached plates having neath the ball and heel are also attached plates have a
serrated flanges, adapting the shoe especially for use a an ice creeper. The shoe is held on the foot by a strap

Box Fastener. - Thomas Cole, St. ple fastener, which will pe mit crates on which it is used to be packed on top of each other and slid about without disturbing the fastening, has been provided by this inventor. The fastening
hasps are secured to staples made with spring coils, and hasps are secured to staples made with spring coils, an
the free ends of the hasps engage pins in recesses of the free ends of the hasps engage pins in recesses of
the upper face of the lid, the spring tension holding the the upper face of the lia, the spring tension
fastening firm, while the pressing up of the staple loosens the hold of the hasp on the pin.,

Design.

Sweaters.-William T. Pitchers, God Iming, England. Five design patents have been awarded his inventor on this article of apparel. In the first the
sleeves and body are ornamented with panels having adacent angular figures alternately embossed and in intag lio, and in the second are decorative panels of diamond shape, with sunken body and embossed margin. In the third are intersecting figures of serpentine character, with interposed series of ribs; in the fourth, rectangular figures inclose grouped circular figures, and in the fifth the body and sleeves have a surface finish of embossed
ribs arranged spirally or diagonally. ibs arranged spirally or diagonally.
Note.-Copies of any of the above patents will be arnished by Munn \& Co., for 25 cents each. Please of this paper.

SCIENTIFIC AMERICAN

buildina edition

NOVENBER, 1893.-(No. 9\%)

TABLE OF CONTENTS.
. Elegant plate in colorsshowing a residence at Bridge port, Conn., recently erected for Mr. Thos. C.
Woodin, at a cost of $\$ 4,600$ complete. Floor plans and two perspective elevations. An excellent design. Mr.
Bridgeport, Conn.
2. Plate in colors showing the residence of Clarence M. Burch, Esq., at Philadelphia, Pa. Two perdesign. Messrs. Moses \& King, architects, Philadelphia.
A dwelling erected at Joliet, Ill. Perspective view complete. Mr. J. C. Weece, architect, Joliet, III suburban cottage erected at Glenbrot Conn a cost of $\$ 3,500$ complete. Floor plans, perspec ive view, etc. Mr. E. H. Waterbury
Conn., architect. An excellent design.
. Engravings and floor plans of a suburban residence erected for Mr. George H. Barton, at Hartford, Conn. Messrs. Hapgood \& Hapgood, architecta Hartford, Conn. A very attractive design.
Very excellent design for a two-family house,
erected at Bridgeport, Conn., at a cost of $\$ 4,500$, erected at Bridgeport, Conn., at a cost of $\$ 4,500$. Beers, architect, Bridgeport, Conn.
and ground plan. Cost $\$ 7,100$ complete. Mr. W. P. Wentworth, architect, Boston, Mass.
. Engraving showing some city dwellings of modern design at Washington Heights, New York City. Plans and perspectiv
architect, New York.
9. Residence of Mr. C. T. Hemsteadat Glenbrook, Conn. Plans and perspective. An excellent design. Moving of the Normandy apartment building at Chicago. Supposed to be the largest building ever
moved and turned around on rollers. Numerous moved and t
2. Sketches at the World's Columbian Exposition -An improved brace, illustrated.-Steel ceiling. ilustrated.-A large day's sawing.-The new mode of constructing foundations.-Sheathing quilt, il-lustrated.-A cap for the obelisk.-Interior woodwork for buildings, illustrated.-Electrical injuries to gas and water pipes.-An improved scraper,
illustrated.-Linseed oil for paint and polish.-illustrated.-Linseed oil for paint and polish.-
Improved circular sawing machine, illustrated. Improved circular sawing machine, illustrated.
Scientific American Architects and Builders The Scientific American Architects and Builders
Edition is issued monthly. $\$ 2.50$ a year. Single copies, Edition is issued monthly. $\$ 2.50$ a year. Single copies, cally, a large and splendid Magazine of ArchitecTIRE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting xamples of Modern Architectural Construction and illied subjects.
The Fullness, Richness, Cheapness, and Convenience this work have won for it the Largest Circulation
of any Architectural Publication in the world. Sold by any architectural Publication in the world. Sold
11 newsdealers. MUNN \& CO., Publishers,

Business and æersonal.
The charge for Inest toon under this head is one Dolar a line

For mining engines. J. S. Mundy, Newark, N. J. "L. S." metal polish. Indianapoiis Samples free. The new material, "linenoid." Westfield, Mass. Cata The new
ogue free. Microbe K
Buffalo, $\mathrm{N} . \mathrm{Y}$. Patent for Sale-Big savings. Ca
No. 2123 Eastern Ave., Baltimore, Md.
Steam Hammers, 1 mproved Hydraulic Jacks, and Tube ks, and Tube Will purchase patent ot meritorious small article.
Give particulars. Manufacturer, box 2238 , New York. Estimates furnished for moving, raising, or shoring Screw machines, milling machines, and drill presses. Centrifugal Pumps. Capacity, 100 to 40,000 gals. per Wanted to manufacture. now machinery of real merit. Wanted-Novelty manufacturing companies to sen Wanted-Novelty manufacturing companies to send
heir address to Fred. Beaumont, 1307 Franklin Street, their address to
Kansas City, Mo.
Model dynamo motor. Ingenious machine for stud Elbridge, New York.
Guild \& Garrison, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vacuum apparatus, air pumps For the original Bogardus Universal Eccentric Mill, Foot and Power Presses, Drills, Shears, etc.,., address
J.S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. y The best book for electricians and beginuers in elec ricity is "Experimental Science," by Geo. M. Hopkins Readers of the Scientific American can obtain, fre Readers of the Scientiffe American can obtain, fre
of charge, a copy of the American Shipbuilder by
addressing Bradley \& Howell, 7 Coenties Slip, New York.
Competent persons who desire agencies for a new
popular book. of ready sale, with handsome profit, may apply to Munn \& Co., Scientifle American office. $3 ; 1$ R "Send for new and complete catalogue of Scientitic and other Books for sale by Mun.
New York. Free on application.
nimaturis
HINTS TO CORRESPONDENIS.

(5502) H. E. W. asks how to run a 70 volt motor of $\%$ horse power on a 110 volt circuit. A.
Connect your motor across a pair of 12 light leads arger, and place in serie with For the latter use No. 15 wire, or if you have them, motor.
(5503) J. R. N. says : Suppose a tank a an elevation of 250 feet in height, 10 feet in width, and 35 feet inches in diameter, 250 for in Suppose said tank to be filled with water. How man gallons of water will flow through said pipe per minut and what horse power would be required to keep this tank full of water, there being a constant discharge 3
inches in diameter? A. The pipe will discharge 1,275 gallons per minute and will require 80 horatge 1,2 keep the tank full.
(8504) E. A. S. says : Kindly inform me through the columns of your paper of a process forcurin small skins, such as squirrel, etc. A. Mix bran and sof
water sufficient to cover the skins. Immerse the latte and keep them covered for twenty-four hours, then re move, wash clean, and carefully scrape off all flesh. T 1 gallon of water (hot) add 1 pound of alum and $1 / 4$ pound of salt. When dissolved and cool enough to admit en trance of the hand, immerse the skins for twenty-four hours, dry in the shade and rub. Stir the liquor again, mmerse the skins for twenty-four hours, dry and rub as before; immerse for twenty-four hours in oat meal and warm water, partially dry in the shade, and
finally rub until entirely dry. This leaves the skin like nhite rub until entirer, and fit for imme This lea
(5505) L. M. asks: What is the best nethod to preserve pneumatic tires for bicycles from and keep them soft? A. Wash the rubber tires perfectly clean and dry. Warm them by a stove and rub melted paraffine over the surface with a warm cloth. A very thin coat answers the purpose. If rubber cement can
be obtained, such as sold by the rubber trade, a thin wipe of it with a woolen rag over the surface of the tires will d
(5506) S. B. W. asks: What the

power. A. With a horse power equal to 33,000 foot	pounds\% Oil can be obtained for 5 cents per gallon or	
pounds per minute, the power of an average strong		less, delivered in the tank. Would not two barrels of oil

man working to the best practical advantage for 10 hours is 4,200 foot pounds per minute. On short spurts can accomplish from two to three times as much, or half a accomplish fr
horse power.
(5507) G. W. T. says: In this valley the coal is let down from the openings on the hills by wire iron bands or brakes applied to the outside of the drums. Why is it that the bands or brakes wear faster than the iron plating on the drums? They are all the same kind of iron, and the band reaches nearly around the drum, but the plating on the drums will outwear three bands
of the same thickness. A. Brake bands are generally of the same thickness. A. Brake bands are generally
much thinner and have less wearing surface than the Irum band; besides the motion of the drum band tends
to keep it cool, while the friction on the thin brake band o keep it cool, while the friction on the thin brake band
(5508) G. E. P. writes: Can the simple electric motor described in Supplement, 641, be run an charged the rest of the twenty-four hours by six cells of ravity battery? A. Yes; but you will need eight cells or more of gravity batteries for charging.
(5509) W. A. P. asks: How to hard solder one of those aluminum World's Fair sonvenirs and for aluminum, use an alloy of 6 parts aluminum, 4 parts copper, 90 parts zinc. Use Canada balsam forflux. For soft solder, an alloy of 95 parts of tin, 5 parts bismuth,
or 5 parts cadmium, 2 parts zinc, 3 parts tin, using paraffine or vaseline for flux.
(5510) M. W. S. asks: In what propor tion should air and ordinaryilluminating gas be used in a gas engine to produce the best results? A. Tomewhat in
ents of ordinary illuminating gas vary somewhat different cities and require a variable amount of air for perfect combustion; 8 to 12 volumes of air to 1 volume
of a good quality of gas will produce the best result.
(5511) A. C. McG. says : Will you please inform me what chemicals are used to perform
the trick of smoking from two clay pipes, by holding the the trick of smoking from two clay pipes, by holding the
bowl of one over the other? A. Hydrochloric acid and bowl of one over the other? A.
(5512) W. W. Brown, Culbertston, Neb., writes: Under Notes and Queries (No. 5356) B. C. W.
asks if there is any kind of a flux that can be used asks if there is any kind of a flux that can be used
better than borax. I have a patent on a flux that will do better than borax. I have a patent on a flux that will do
the work he desires and will be pleased to be placed in
(5513) R. E. B. asks : How is the power determined to drive a boat of a given size at a certain
speed? This is for small boats of from 18 feet to 40 feet speed? This is for small boats of from 18 feet to 40 feet
long. A. So much depends upon the lines and build of oats, together with the varying weightor the power, tha comes somewhat complicated. The approximate formula is $\frac{\mathrm{V}^{3} \mathrm{D}^{\frac{2}{3}}}{\mathrm{C}}$

C
quired velocity in knots per hour, $\mathrm{D}^{\frac{2}{3}}$ is the cube root of thesquare of the displacement in tons, C is a coefficient for the water lines of the boat, which for launches and smal
steam yachts may vary from 500 for medium lines to 530 for sharp lines. The displacement should be computed for the total load, boat, machinery, water, fuel and (5514) E. S. McI. says: It is stated by the highest engineering authorities that the passage of
mpure water through sufficient gravel or sand will remove the impurities and make even sewage water whole some and well tasting. Can you inform me what value as a filterer have the cinders from anthracite coal taken from under a boiler? A. The statement of engineers may be true in regard to the insoluble elements of sew age, but the solublesalts, urates, etc., have been traced a long way through the waterways of the ground, les limited extent through the coarser aravels forming the mited extent through the coarser gravels forming the
principal underground waterways. When sewage is fil tered through thick beds of material, so as to maintain the nitrifying organisms, which are supposed to be supported by a proper supply of sewage, there ar
possibilities of potable water being a product of such possibilities of potable water being a product of such
tiltration. Gravel bed surface filtration has been found ery efficacious in purifying sewage. Drinking the efluent is hardly to be recommended. Clean ashes in a filter after the soluble salts of the coal and wood are removed. The ash stratum should be protected by sand.
(5515) J. B. says: I am at present ex perimenting with a toy balloon. For a certain purpose would like to have this balloon carry a weight from
to 4 ounces. The common toy balloon filled with coal gas has no lifting capacity. What I wish to know is whether this same balloon could be filled with some other kind of a gas, to give satisfaction. If this is possible, please let me know. A. If hydrogen gas were used, it would lift more than the coal gas. But it would re quire a balloon of say 6 cubic feet capacity filled with hydrogen to lift 4 ounces weight.
(5516) B. S. says : Will cedar or cypress tanks (or leach tubs) for tan liquors last the longest with out rotting and how long will they last if well taken care
of? A. There is very little difference in the lasting yualities of cedar and cyp
(5517) C. R. - Clean celluloid collars and cuffs with saleratus and water, using an old nail
brush if desired.
(5518) F. De T says: Kindly give rule How heavy should the joist be under a tank holdin 18,000 gallons water, 40 feet from the ground, and are 12×12 heavy enough for uprights and plates, if pro-
perly braced? A If your tank is circular, 15 feet diameter by 15 feet high, the joists should be $4 \times 12,2$ feet apart. prights and plates 12×12 inches.
(5519) F. M. says: Will you please state the difference of cost (used for cooking and furnace
heating) against anthracite coal at $\$ 4.75$ per ton of 2,000
contain as much fuel as one tou of not two barrels of tion and advantage in controlling the use in consideration A. Thecost of petroleum at prices named is more than twice as much as coal for a given number of heat units for a constant fire. The only advantage in favor of petroleum at the price named is for the intermittent use of heat, such as for cooking in summer and the generation
(5520) J. E. L. Co. asks : In a cylinder 20 inches long by 6 inches diameter, with a piston at on end, we find if subjected to 300 degrees, the volume of air will increase about $1 / 3$. I would like to know the expanding force of the air thus heated, or how much will t move the piston and resist one pound pressure to the
square inch? A. By heating the air from 60° to 300° it ex pands approximately 50 per cent, or 1 volume becos nearly $11 / 6$ volumes, and if confined to the origina volume it will have a pressure of 6 pounds per square inch, and will push a piston in a continuous cylinder from 20 inches, as above stated, to $271 / 2$ inches under 1 pound pressure per square inch.
(5521) W. A. W.-To make heel ball Hard suet and beeswax, of each 4 ounces, powdere gum, sugar candy, and Venice turpentine, of each 1
ounce, ivory black and lamp black, of each 2 ounces ounce, ivory black and lamp black, of each 2 ounces.
The coloring matter and sugar must be in fine powder The coloring matter and sugar must be in fine powder.
Dissolve the candy in as little water as possible. Melt the suet and the beeswax and add the sirup andthe col (5522) , stir thoroughly, then pour (5522) K. S. asks: Is there any differ ence between an injector and an inspirator? A. Ther
is no difference in principle between an injector andan inspirator. See an interesting illustrated article on in (5523) J. M. says : I have a cistern that was sunk in heavy clay, then boarded up with inch lum-
ber, leaving a space of 3 inches behind the boards; into ber, leaving a space of 3 inches behind the boards; int as I boarded it up. I thought this would hold water and make an inexpensive cistern. I find that it will not hold water. Is there any way in which I can plaster it up
with water lime over the boards to make it hold ? Or is there anything you could suggest whereby I can fix it to hold in without going to much expense? The cistern is 5×5 and 6 feet deep. To settle a dispute, will you please ye how mand 24×24 inches at other end and 40 feet long and givefigures showing how to obtain the proper answer? A. You cannot do better than to take out the wood and cldy tamping of your cistern and make the bottom and sides of Portland cement concrete, 1 part of cement a parts clean sharp sand, then plaster the entire inside surface with pure Portland cement. Your cistern must e circular. For the taper timber. Rule: To the sum of the areas of the twoends add four times the area of the center and multiply this sum by one-sixth of the
length. The piece of timber as stated contained 93.26

```
cubic feet.
```

(5524) D. F. V. asks: What would be the temperature at points 10,20 and 40 feet below surface
of ground in ordinary soil and doesit vary much winter or summer? Also what force per square inch will air confined at ordinary temperature exert if heated from 300° Fah. to 600° Fah.? If compressed to 15 pounds per square inch before heating, would pressure be doubled when heated? A. The temperature of the earth at from 10 to 20 feet below the surface is nearly the same as the mean annual temperature on the surface. In mid-latitudes from 50° soil. The increase of temperature don of the also variable, due to the nature and structure of the soil and rocks, the rate varying from 50 to 65 feet in depth for each degree of rise in the thermometer
(5525) P. J. L. says : I wish to experiwish to know what kind of the following metals will and off the most heat, cast iron, steel, or copper, with hot water at 212°. Also, what amount of radiator surface is needed for a room $12 \times 12 \times 9$, both for water and steam, and what quantity of water would radiator hold? What degree of heat would be shown on surface of radiator ? Would it be possible to heat a radiator of the required A. A copper radiator will be the or with a gas burner? A. A copper radiator will be the most efficient in heating
surface. Your room will require 12 square feet of heating surface for either hot water or low pressure steam. The capacity depends upon the plan of construction. The outside surface should be from 210° to 211° Fah. A large lamp or gas stove will heat the radiator.
(5526) C. P. asks: 1. How can a magor doing same, and where A. A strong horseshoe magnet is required for demagnetizing watches. See an article on this subject in Sci-
nTIFIC American Supplement, No. 668. 2. What entific American Supplement, No. 668. 2. What
would be the size of the smallest boiler to generate nough steam for working the steam turbine described in o. 17 of this journal, at the rate of 30,000 revolutions? . A 25 horse power boile
volutions you mention.
(5527) E. E. asks if it would be possible oread messages that were being transmitted through an cean cable by inductive means, after grappling the
cable and lifting it to the deck of a vessel. A. We think this would be impossible, on account of the use of a very weak current in the cable for transmitting messages and the ability of the metallic protecting covering of the (5528) P G (os28) P. G. asks : 1. What would be SUPPLEMENT, No. 161, if changed into a motor? A.
About one man power, if supplied with sufficient watts. What different connect amo into a motor? A. No changes are requisite. The ize of wire for winding depends on the potential that is vailable. 3. Would current enough to run a 6 candle the motor was well constructed, but with very ittte ower
(5529) A. B. C. says: I have a motor

MENT, No. 759, with the exception that the field magnet
is of the horseshoe style instead of is of the horseshoe style instead of the consequent pole
type, as shown in that paper. It runs finely with six
cells of plunge battery. I would like to rewind it on a 220 volt motor circuit. Should it be wound serie or shunt? What size of wire and how many layers
should I use on the magnet and armature? If it could not be wound for that high voltage, could I wind it for 110 volts and run in series witha 110 volt16 candle power lamp? A. Wind your motor in series, with enough wire
to give a safe current at 220 volts. We cannot do the calculation without knowing the size of your motor. If oo be used with the lamp, it may be wound with enough
No. 26 wire in field and No. 29 in armature to give 110 ohms resistance. In the calculation take the armature as wound in parallel, giving one-quarter the resistance of its winding.
(5530) W. A. M.-Forinformation in re gard to sterilizing milk, see
PLEMENT, Nos. 811 and 872.

TO INVENTORS.

INDEX OF INVENTIONS
 United States were Granted

November 14, 1893,
AND EACH BEARING THAT DATE.
[See note at end of list about copies of these patents.]

cut

TNGINE GASTINGS

Scientific Book Catalogue Our new catalogue containinc over rive pages, includ-
ing works on more than tifty difterent subjects. Will be mailed tree to any address on application.
MUNN $\&$ CO.. Publishers Scientittc A merican.
$\mathbf{3 6 i 1}$ Brondway, New York.

Shingle, Heading, and Stave Mill Machinery
 and Veneer Cutting.
Send for Cat. A.
Handle Machinery Handle Machinery
for Turning Handles
for $\begin{aligned} & \text { Brooms, Ades, } \\ & \text { etc. Send for }\end{aligned}$. Cat. B.
 Trevor Mifg. Cockport, \mathbf{N}.
Lo.
Y. INVENTORS, ATTENTION!
 WATER-TIGHT MASONRY DAM.

The Remington' Typewriter.

As Perfect in Design and Construction as Original Ingenuity, Long
Experience, and Constant Improvement can make a Writing Machine. It is Simple, Well Ilade, Practical, Durable, Easy to Learnand to Operate.

Wyckoff, Seamans \& Benedict, ${ }^{327}$ New Yoadway,

IF YOU HAVE ANY SMALL ARTICLES in Brass or Iron that you want manufactured in quantities, write to THE JoNEs Bros. ELEC tric Co.. 28-30-32 West Court St., Cin'ti, O.	(A) MOD DEL ENNGINES
NICKEL	

Apparatus and Material.
THE
Hanson V VanWinkle Co.

 Parsons Horological Institute. earn the Watch Trade Engraving and Jewelry Work. 302 Bradley Ave., PEORIA, ILL.

GAS AND GASOLINE ENGINES,

 from 1 to 10 Horse power, for all power purposes
THE OLIN GAS ENGINE CO.,

 222 CHICAGO STREET, BUFFALO, NEW YORK.PERFORATORS OF ALL METALS

 dro Mur new and Revised Catalogue of Practical and

其7) New Friction Disk Drill. Fin
these
Great
Gut moant

 INOTPICF. The Ryptian Goveroment puts op toadidationtion Oith Eause from Mansourah to Menzalen mad Matariel

 excead fortryars.

WANTED

ALUMINUM 曾 SKATES

Moosher's Aluminum Racer. Patent applied for. Run
ner of the best tool steel 1-16 inch thick, ITs inches long Aluminum top is polished. Will int rust, warp or spilit
Is lighter
 6 per pair. Address

STEEL TYPE FOR TYPEWRITERS

CR MOR

"PR NOMESTION "PARABON" Projectio
 for Descriptive Circula

W. L. DOUGLAS S3 SHOE
 Best Calf Shoe in the World for the Price.

 Very Stylish. Yolicemen's, Farmers' and Letter Carriers' \$3.50 $\mathbf{\$ 2 . 5 0}$ and $\mathbf{\$ 2 . 0 0}$ Shoes for General Wear. Extraoys and Youths wear the $\$ 2.00$ and $\$ 1.75$ School Shoe. W. I. Dourgas Shoes made of the best material in all the latest styles, and sold by shoe dealers everywhere Do Tou WVOar Them?

$$
\begin{aligned}
& \text { W. L. Douglas' name and price is stamped on the bottom before they leave the factory, to } \\
& \hline
\end{aligned}
$$ rotect yout against high prices. Doing the lar gest advertised shoe business in the

vorld we are contented with a small proft, knowing that the extra value putin W. L. Douglas Shoes will give a continuous increase to our business. The dealer who sells you unstamped hoes of the same quality as W. L. Douglas $\$ 3$ Shoe. The stamped name and price paid, and saves thousands of dollars annually to those who weear W. L. Dour glas Shoce money If you wish to economize in your footwcar it will pay you to examine W. L. Douglas Shoes
when next in need. Sent by Mail, Postage Free, when dealers cannot supply you. Take no substitute. Send for Catalogue with full instructions how to order by mail. Address W. L. DOUGLAS, Box 551, Brockton, Mass.

ICE-HOUSE AND COLD ROOM.-BY

The distribution of your power is important as its application. I know a good deal about the economical distribution of pow er. Perhaps I could give you a few pointers Inquiries answered free, catalogues sent free
 P. PRYIBIL, 488-500 W.41st St., NEW YORK. SIR RICHARD OWEN.-A SKETCH

 OIT FINGINNFES The Shipman Automatic Steam Engine STATIONARY AND MARINE. SHIPMAN ENGINE CO. 200 Summer St., Boston, Mass.

Make jequr- MECHANICAL ENGINEER OR DRAUGHTSMAN or pualify to take charge of or to superintend the manuatacture of machinery by de
votung
pot

The Orcuit Comp' $y^{\text {Leading }}$ cithorangers

A N IDEAL STUB PEN-Esterbrook's Jackson Stub, No. 442 A A specially EASY WRITER, a GOOD INK HOLDER and a DELIGHT to \$1.00 per gross. THE ESTERBROOK STEEL PEN CO., 26 John St., New York.

\section*{| Σ |
| :--- |
| |
| |
| |} The Griffin Mililt

A perfect pulverizer of all refractory substances by either the wet or dry process. It works better and at less expense than any other Mill, and is conceded to be the only perfect pulverizing Mill manufactured.
bradley fertilizer co., 92 State st, boston.
2. STM SHON CON NENSER PR IN VO AHPUMP.

Rubber Rolls and Wheels. Power Wringing Machines, Drying and Ventiating
Fans. All styles of Trucks made to order. Catalogues
free.

THE MODERN MARINE BOILER. By A. B. Willits, U.S.N. Description of the principal
eatures of the boilers of the United States man off-war New York, with a plear or o ine inventive mindes for the tho
uction of a type of boiler which shall do away with duction or a type of boiner which shall do away with the
neessity of the present enormouss) large and heave
shell and present a lighter substitute that will per
corm the duties of both envelope and heating surface

ECONOMY IS WEALTH." proved Hant Thyewriter-
The only standard machine made
for ares or a reasonable price. Prints all
anguages. Interchangeabltype.
aty

NOWV IREADY:

Fourteenth Edition of
Experimental Science

REvised and enlarged.
120 Pages and 110 Superb Cuts acded.
The unprecedented sale of this work shicwi conclu-
sively that it is the book of the age for teachers, stu-
dents expriment nowiedge of Physics or Natural Philosophy.
In hene new mater contanedin in the lastedition will be
found the Scientific Use of the Phono ound the Scientific Use of the A northoscope, togethe With other new and interesting Optical Illusions, the
Optical Proiection of opaque objects. new experiment
in Proiecticn Iridescent Glass, some point in Photo
 er, Electrical Rocker, Electric Chimes, How to Color
Latierngiides Study of the Stars, and a great deal of
other new matter which wil prove of interest to scientifc readers, 82 fine cuts, substantially and beautifully
800 pages, 782, ind
bound. Price in cloth, by mail. $\$ 4$. Half morocco, $\$ 5$.

MUNN \& CO., Publishers Office of the SCIENTIFIC AMERICAN,
P＇dvertisements
ORDivay bites．

 COLD FORGED PRODUCT．
Fluted Tire Bolt

foir SALE＝＝
 ＝Flectric Iaunches

Used at the World＇s Fair，can be had at

～A BARGAIN

As good as new when delivered to purchaser．Their Design and Finish can＝ not be improved upon．Apply without delay to

ELECTRIC LAUNCH \＆NAVIGATION CO．
44 BROAD STREET，NEW YORK．

COL̇D MACHIN rim and tire．
MADE －Stove batr FORGED $\left\{\begin{array}{l}\text { LOCK GAP SCREW } \\ \text { STDE } \\ \text { THREADED } \\ \text { WIEFES }\end{array}\right.$ AMERICAN SCREW COMPANY， PROVIDENCE，\cdot R．I．
WATER MOTOR，\＄5

SEWING RUM XOHN

 THE BOLGIANO WATER MOTOR CO．
414 Water Street， Baltimore，

KODAKS$\$ 6.00$ $\$ 100.00$
Eastman Kodak Company，

125 MILK ST．，BOSTON，MASS．

This Company owns the Letters Patent

 No．186，787，granted to Alexander Graham Bell，January 30．1877，the scope of which the United States in the following terms： ＂The patent itself is for the mechan－ ical structure of an electric telephone to be used to produce the electrical action on which the first patent rests．The third claim is for the use in such instruments of a diaphragm，made of a plate of iron or steel，or other material capable of in－ ductive action；the tifth，of a permanent magnet constructed as described，with a coil upon the end or ends nearest the plate；the sixth，of a sounding box as de－ scribed；the seventh，of a speaking orhearing tube as described for conveying hearing tube as described for conveying the sounds：and the eighth，of a perma－
nent magnet and plate combined．The nent magnet and plate combined．The claim is not for these several things in
and of themselves，but for an electric tel－ and one in the construction of which these things or any of them are used．＂
This Company also owns Letters Pa－
ent No． 463,569 ，granted to Emile Ber－ tent No．463，569，granted to Emile Ber－ liner，November 17．1891，for a Combined
Telegraph and Telephone：and controls ＇Telegraph and Telephone；and controls Letters Patent No．474，231，granted to Thomas A．Edison，May 3，1892，for a Speaking Telegraph，which cover funda－ mental in ventions and embrace all forms of microphone transmitters and of car－ bon telephones．

$A^{\text {cad }}$
 ${ }^{\text {col }}$

，
J＇he Gomptometer
Save time，avoid mistakes and do not ruin their nerves It is operated by keys，like a typewriter，and performs addi－ First Nat＇i Bank，Brownsville，Texas，writes：＂The Comptometer pur－
chased of you has taken the place of one clerk in this office．＂ Brotherhood Wine Co．，New York City，writes：＂We would not be with McEIveen Furniture Co．，Ltd．，Pittsburgh，Pa．，writes：＂In a，
years in which we have used it we have never known it to fail．＂ Brainard Co＝Operative Building \＆Loan Association，Brainard，Minn．， writes：＂It is of more importance in a business offlce thana ty pewriter．＂
Supt．St．Lawrence State Hopital，Ogdensburg，New York，writes：＂We
could not get along without it except with the aid of an additional clerk．＂

WE MAKE A SPECIALITY OF IMSTALLING ISOLATED ELECTRICLIGHIIMG PLANTS
FROM 10 TO 1000 LAMPS．GOLUEEESIAN MEG．CO．BINGHAMTON N．Y．
WORLD＇S COLUMBIAN EXPOSI tion．A very valuable and comprenensive paper on the
subject，giving full descritions and illustrations of the
 With 32 illustrations．Contained in SCIFNTIFIC．AMER－
ICAN SUPPL．EIINT．No．910．Price 10 cents．To be
had at this office and tron all newsealers．

The Smith Premier Typewriter

 ntial Features Greatly Perfected．Perfect and Pernanent Alignment．
All type cleaned in Ten Seconds $\begin{gathered}\text { Easiest Running，and Nearly Sllent } \\ \text { without Soiling the Hands．}\end{gathered}$ The Smith Premier Typewriter Co．，Syracuse，N．Y．，U．S．A． We have 20 branch offices in the principal cities tbroughout the United States．

 GINTMER Motors received the Highest Awards at the World＇s Fair．Write for our illustrated4 Brod Street．．．．．．．．．．．．．
773 and 175 Alams
rith and Race Streets．

Fifth and Race Str
$\begin{aligned} & \text { quitable Building } \\ & 15 \text { First } \$ \text { treet．．．．}\end{aligned}$

PATENT FOR SALE．
The Aeberly Cattle Stall Device for the enhancement
of comfort and cleanliness of milk cattle．Is simple， durable，and can easily be adjusted to almost any crib， sale．M．SCHEMBRI， 396 Van Buren St．，St．Paul，Minn．

SCIENTIFIC EXPERIMENTS．－DE scription of some simple and easily performed scientific
experiments．
Foucault＇s pendulum，exchange of water

 AWINTSWANTED forfineTOOLS in everyshop． amask

エエエコ

Saring Mence

The Most Popular Scientific Paper in the World Only \＄3．00 a Year．Including Postage． Weeldy－52 Numbers a Year．
This widely circulated and spiendidy illustrated paper is published weekly．Every number contains six－ teen pages of useful information and a large number of
original engravings of new inventions and discoveries， origina engravings Engineering Works，Steam Machinery，
representing
New Inventions，Novelties in Mechanics，Manufactures， Chemistry，Flectricity Telegraphy，Photography，Archi－ tecture，Agriculture，Horticure，
etc．Complete list of patents week． Terms of subsci iphion．－One copy of the Sclen－
TIf＇C AMERICAN will be sent for mie year－-52 numbers－ postage prepaid，to any subscriber in the United States， publishers；six months， 81.50 ；three months， 81.00 ． Clubs．－Special rates for several names，and to Pos Masters．Write for particulars．
The safest way to remit is oy Postal Order，Draft，or
Express Money Order．Money carefully placed inside of envelopes，securely sealed，and correctly addressed seldom goes astray，but is at the sender＇s risk．Address all letters and make all orders．drafts，etc．，payable to
MUNN ©（O．． 361 13roadway，New York．
scientific gmeriuar supplement This is a separate and distinct publication from＇THE SCIENTIFIC AMERICAN，but is uniform therewith in size
every number cont gravings，many of which are taken from foreign papers and accompanied with translated descriptions．THE SCTENTIFIC AMERICAN SUPPLEMENT is published week sents the most reecent papers by erinent writers in all
the principal departments of Science and the Useful the principal departments of Science and the Useful
Arts，embracing Biology，Geology，Mineralogy，Natural History，Geography，Archæology，Astronomy Chemis Steam and Railway Fngineering，Mining，Ship Building， Marine Engineering，Photography，Technology，Manu facturing Industries．Sanitary Engineering，Agricunure Hort．A vast amount of fresh and valuable information obtainable in no other publication．
The most muportant Enginueving Works，Mechanisms， and Manufactures at home and abroad are instrate and described in the．SUPPILEMENT
Price for the SUPPLEMENT for the United States，
Canaua，and Mexico．$\$ 5.00$ a year；or one copy of the SCIENTIFIC AMERICAN and one copy ot the SUPPIE－ MENT，boh mailed for one year to one address for 77.00 ． Single copies， 10 cents．Address and remit by postal order
express money order，or check． Guilding Exition．
The Scientific American Architects ant
Builders＇EDition is issued monthly．$\$ 2.50$ a year． Single copies． 25 cents．Thirty－two large quarto pages． forming a large and splendid Magazine of Architecture， richly adorned with elegant piates in coiors，and with other fine engravings；illustrating the most interestin
examples of modern architectural construction aud allied subjects．
A special feature is the presentation in each number of a variety of the latest and best plans for private resi dences，city and country including those of very mod perspective and in color are given，together with Plans． Descriptions，Locations，Estimated Cost，etc． The elegance and cheapness of this magnificent work
have won for it the Largest Circulation of any Architectural publication inthe world．Sold by all news Architectural pu MUNS Remit to

PRINTING INKE：

