
a Weekly journal of practical information, art, Sclence, mechanics, chemistry, and manufactures.

A STORAGE BATTERY FOR CENTRAL STATION SERVICE. Since the invention of the accumulator by Gaston Plante, in 1860, many modifications of the original storage battery have been devised and put into use, most of them being more or less marked departures from the Plante form. Some years since, Mr. Howell, of the Crompton-Howell Electrical Storage Company, Limited, of London, England, made an important improvement on the invention of Plante, by producing lead plates having enormously extended surfaces, the lead being made in a form of sponge, the pores being of such a character as to permit the electrolyte to readily penetrate the interior of the plate. These plates were formed according to the invention of Mr. Plante, and the result was a storage bat tery of enormous capacity and great durability. This battery, which has been in successful continued use in England for five years, has proved of great utility in central station lighting.
Recently, this system was

THE SWITCHBOARD GALLERY, FIFTY-THIRD STREET STATION.

introduced into this country by the Edison Illuminating Company, at the 53d Street central station, where they are daily used to help out the dynamos when the demand for current is very great. They are also used for supplying current when the on gines and dynamos are at rest. The charging is done when the dynamos would otherwise be running with a light load. This station is provided with two batteries, each consisting of a series of 70 cells of 61 plates each. One series is connected with the positive and neutral conduct ors of the three-wire system, the other series being connected with the negative conductor and the neutral conductor of the system. Each cell has a capacity of 1,000 ampere hours. These cells are each supported upon a board resting on glass insulators and their terminals are connected with heavy main conductors which are also supported on insulators. The containing cells are made of lead and all of the connections are massive. 'The cells are supported upon racks so as to be accessi-

STORAGE BATTERY PLANT OF THE EDISON ILLUMINATING COMPANY, NEW YORK.
ble. The porous plates are made by maintaining melted lead almost at the point of crystallization and then casting from the semi-crystalline mass blocks forming what may be called "lead sponge." This lead sponge, when sawed into plates of suitable size, forms the most reliable material that has been used in the manufacture of accumulator plates. The plates thus made and prepared are free from most of the defects which are inherent in most paste plates. The lead salts forming the active material, instead of being artificially made and mechanically applied to the plates in the form of paste, are formed chemically as a firmly adherent deposit on the greatly extended surface of the lead crystals and are therefore dispersed throughout the spongy material. When thus formed, it is impossible for the active material to become detached or fall off to any serious degree.
It has been found from actual practice that these plates are not injured by long use, that they have a great capacity of high or low discharge rates, and that they are entirely free from buckling.
The plates now in use at the Edison station have been doing continuous service for more than eight months, having been started in the middle of January. During this time only 21 out of 7,000 plates have had to be replaced.

The watt efficiency of these accumulators is over 86 per cent and their ampere efficiency 95 to 96 per cent. These efficiencies are accurately calculated at the terminals of the battery connections on the switch board.
These cells are the largest in use in this country. We understand that the Crompton-Howell Company make a still larger cell, comprising 154 plates and having a cavacity of 3,000 ampere hours.
The battery room at the 53d Street station is located on the top floor, the electrical communications are made through the switch board at the gallery, and the attendant having charge of the gallery manipulates the switches for charging and discharging the accumulators. The switch board is provided with an automatic accumulator switch, which is used with the dynamo charging the accumulators. It is arranged to break the circuit so as to prevent reversal of the current, if from any cause the E.M.F. of the dynamo falls below the prescribed limit
Besides being provided with the usual well known indicating and recording instruments the switch board is provided with an instrument called the electric clock, the index of which turns in one direction while the accumulator is being charged and in the opposite direction while it is being discharged, thus always indicating the amount of the charge.
We are indebted to Mr. William L. Pakenham, the representative of the Crompton-Howell Company in this country, for information in regard to this new installation.

Te Physical strain Involved in High speed The exaction that modern railroad speed makes on the physical stamina of railroad men is demonstrated in the fact that seven engineers are required to take the Chicago flier out and seven back, says the Boston Transcript. The running time between New York and Chicago is twenty hours and the average speed is forty-eight miles an hour. Each engineer and engine runs three hours. Machine and man return with a slow train to their starting point to relieve the strain on both. Then the engineer is given forty hours' rest before he goes on the flier again. This rest is absolute, no work of any kind being required of the engineer. Though the average speed is forty-eight miles an hour, the locomotive must at some points be driven at sixty or more. The physical strain on the men in the cab at those bursts of speed is something terrible. The engineer has fifty things to look out for, and is being shaken and swayed all the time. The fireman is constantly feeding the insatiate furnace. On the run of the Empire State express three tons of coal are shoveled from the tender into the furnace between New York and Albany It is not wonderful that the engineers of this train are given alternate days for rest and recuperation. Fast travel not only wears out rails and machines, but human creatures' lives.

A Museum of Natural History for Chicago. The Art Palace of the Columbian Exposition will be retained as a Museum of Natural History. A proces has recently been discovered by means of which the staff covering may be made permanent by the appli cation of a soluble glass paint. The proposed Colum bian Museum was made possible by a gift of one mil lion dollars made by Marshall Field, the millionaire merchant. There is material enough in the Fair grounds to start one of the most complete museums ever organized. The ethnological department under Prof. Putnam obtained $\$ 200,000$ worth of specimens gathered in all parts of the world. This magnificent collection will be presented to the museum and will form the nucleus around which the later additions will be placed. Most of the rare woods in the Forestry building will also be presented to the museum. The new museum will be within easy walking distance of the University of Chicago.

zuxutifir Amorian.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN.
A. e. beach.

TERME FOR THE SCIENTIFIC AMERICAN.

The Fientific American supplemen

NEW York, saturday, november 18. 1893.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT NO. 933.

death by gas asphyxiation and poisoning We recently had a case of death from gas asphyxiation brought to our attention by a letter describing the occurrence. The writer first tells of the features of the occurrence. In Corning, Kansas, a well was being bored. The depth was about seventy feet. A rock in the bottom interfered with the operation of the tools. A man undertook to descend the rope. When about fifteen feet from the surface, he dropped from the rope His companion workman at once started to rescue him and descended the well, naturally supposing that his companion's grasp had failed him. When the second workman reached about the same point, he also fell. Both were ultimately removed dead. A lantern wa lowered into the well and was extinguished, also at the fifteen-foot level. The people of the vicinity attributed the accident to fire damp. The real cause was choke damp or carbonic acid gas. Under the circumstances it could not have been the other gas. Our correspond ent writes, "Will the Scientific American explain what the so-called fire damp is and what causes it ?"
As we just stated, it was not fire damp. The cause of the presence of carbonic acid gas in the well cannot be stated with certainty. We know that many mineral waters are highly charged with it, so that it may be looked for in any deep excavation. It may have been liberated from some subterranean source of min eral water.
The gas in question is nearly twice as heavy as air. It can be poured from one vessel into another almost like water. Being a gas, it must constantly diffuse through air and air through it when they come together, yet it will lie in an open receptacle for a long time before entirely leaving it. An animal immersed in it dies of suffocation, with possibly a superadded toxic or poisoning action upon the system. A lighted lamp or candle lowered into it is extinguished as if dropped into water. The gas is without odor, so that one may be overcome without the least forewarning. On November 3, 1886, a remarkable accident in a tunnel at Perkasie, Pa., occurred which illustrates the fearful suddenness of the attack. Some fifty men were working in the interior of a railroad tunnel. A freight engine had become "stalled" near them. A fan blower was set to work to bring up the pressure. The engine then started, and it is supposed acted like a piston, forcing the gas before it, and as the gas was driven on, it reached the place where the men were working; they at once became immersed in the deadly atmosphere. They fell as if dead, some forty of them becoming totally insensible. One man, only partially overcome, succeeded in making his way to the mouth of the tunnel and reported the occurrence. A flat car was at once run in, and was loaded with the bodies, as if with so many logs. All were supposed to be dead, but with the exception of one who had fallen into a pool of water, they eventually recovered. As a curiosity and as illustrating the suddenness of the insensibility, the fact that one man was found hanging head downward to a ladder may be cited.
Carbonic acid gas is to looked for in corfined places, and in beer vats, wells, and similar impervious receptacles. Before entering a suspected locality, a test should be applied by lowering a candle or lamp into the place. If this reaches the bottom unextinguished and burns with undiminished intensity, the vessel or well can be entered without apprehension. A diminished intensity of light indicates danger; total extinction proves that the atmosphere is fatal. To remove the gas strong ventilation may be adopted, but as this is not always practicable, the chemical method may be often used. Λ quantity of lime is slaked, and then is stirred with water so as to produce milk of lime. This is poured down the sides of the place, is thrown in fine spray down it, and is in any way distributed as thoroughly as possible, so as to act upon the gas. The process is continued until the lamp or candle test shows pure air. If all the lime were effec tive, one pound would combine with and remove about five cubic feet of carbonic acid gas. The capacity of the space to be freed of gas may be calculated and some basis reached as to the quantity of lime required. Owing to waste, several times the calculated quantity will be generally needed. It is essential that the lime should be freshly slaked.
The action of the lime upon the gas is one of combi nation. The carbonic acid gas enters into chemical combination with the lime, producing calcium carbonate or chalk. Thus the poison is effectually removed. Air acts by simply washing it out mechanically. The action of lime is altogether chemical.
The operation of air in displacing the gas is available in resuscitating men asphyxiated as spoken of above. In a recent number of this journal a pump for producing artificial respiration and injecting fresh air into the lungs was described. In gas poisoning or asphysiation such an appliance may be the means of bringing about a speedy return to consciousness and life. The great object is to wash out the gas from the lungs, and this can be thoroughly effected by artificial respiration.
Too great care cannot be exercised in these cases.
in succession, one or more going into the well or vat to rescue a companion whose sudden fall may not have been attributed to carbonic acid gas. It is also a mistake to suppose that the gas can be endured by one anticipating its occurrence, or that escape is certain for such a one. The loss of consciousness comes on so suddenly as to make useless any
forewarning of the presence of the gas.

The Exposition Medals and Awards.
The design for the medal has been submitted to the Secretary of the Treasury by Aug. St. Gaudens. The medal will be of bronze, three and one-half inches in diameter. On the obverse is a relief figure of Columbus and on the reverse the figure representing Youth. Director Preston, of the mint, thinks it will take three months to finish the work. This will disappoint many firms, who want a copy of it to ornament calendars for 1894.

John Boyd Thacher says the diplomas will be ready to issue in six months; the medals at the same time. The wording of the judge will only be changed as required by the rules of grammar and punctuation and for brevity. The matter to be placed on each diploma is not to exceed 300 words. Mr. Thacher says: "I will publish the names of award winners by classes as soon as possible, probably beginning within two months. The exhibitors whose names are thus published can obtain by letter or otherwise from this department the wording of their a wards, although they will not be apt to receive their diplomas until several months later. The wording will be sent by mail to exhibitors or given to some person duly authorized by the exhibitors to apply in person."

Merits of Steam Boilers Used at the Exposition.
The Babcock \& Wilcox Boiler Company have published a statement in which they say: "We were informed that it was the purpose of the jury at the Fair to make awards on boilers based entirely upon the written statements of the exhibitors of boilers, without tests or any personal knowledge in the possession of said jury concerning the comparative construction, operation, economy or durability of said boilers. We were asked to make such a statement, and were informed that all other exhibitors of boilers had been requested to make a like statement of their claims for the consideration of the jury of awards. Believing that an a ward based on such insufficient knowledge on the part of said jury could be of no practical value, and notwithstanding the expense incurred by this company in making an exhibit, we respectfully declined to make any such written statement for the purpose of receiving an award upon our boilers."

Dutch Belted Cattle for Mexico.

Mr. H. B. Richards, who received the first premium for Dutch belted cattle at the Chicago Exposition, informs us that the animal which was illustrated in the Scientific American a fortnight ago was, with twelve others of the samie breed, sold to Senor Jos. De Teresa, a son-in-law of President Diaz, and were shipped to the city of Mexico direct from Chicago. A few days ago the same gentleman visited Mr. Richards' farm, at Easton, Pa., and selected fourteen others out of his herd, making a total of twenty-seven head of Dutch belted stock shipped to Mexico as the result of Dutch belted stock ship
exhibiting at the Fair.

Things to Hit with a Hoe.

We credited, in our issue of October 14, the unique World's Fair Exhibit of weeds, growing over an old rail fence and labeled, "Things to hit with a hoe," to prepared and entered by the Orange Judd Farmer prepared and entered by the Orange Judd Farmer
Company, of Chicago, whospared no expense or trouble to make it a success. The exhibit has received a prize, which was certainly merited by the oddity of the design.
The Bridgeport Wood Finishing Company has been a warded a medal and four diplomas at the Exposition for their Wheeler Patent Wood Filler and Breinig's Lithogen Silicate Paint. The Connecticut building was painted entirely on the outside with Breinig's Lithogen Silicate Paint. The interior woodwork of the West Virginia and Missouri State buildings was entirely filled with Wheeler's Patent Wood Filler, as were other fine displays of interior woodwork, and all this was in pleasing contrast with the many fine displays of hard woods finished, and on which the varnish has shrunk and pitted. The woods in the For estry department which attracted so much attention were also filled with Wheeler's Patent Wood Filler.

The Ingersoll-Sergeant Drill Company has received from the World's Fair judges notice of award of first prize for compound duplex Corliss air compressors, straight line air compressors, Ingersoll-Sergeant rock drills, coal cutter, stone channeling machine, bar channeler, electric battery, and other devices and improvements in machinery for mining, tunneling and
quarrying.

Dr. S. L. Baldwin, in a recent number of the Inde pendent, makes the following cogent and sensible re marks :
The bill originally brought in by Mr. Geary from the Committee on Foreign Affairs, February 18, 1892, was properly entitled "A bill to absolutely prohibit the coming of Chinese persons into the United States." It is well known that he grafted as many of the features contained in his original bill as he could upon the bill which was finally passed, and the object of which, whatever professions are made, is to exclude as far as possible Chinese laborers from the United States. That the registration feature of the bill was intended to be oppressive to the Chinese, and was an insult to the Chinese nation in its very terms, was sufficiently manifested at the time of the passage of the bill in a speech by the Hon. R. R. Hitt, who said :

It compels every man in this country who is a Chinese laborer to go to the Collector of Internal Revenue, prove his title to remain in the country, and apply for a certificate, a pass, a sort of ticket of leave. To obtain it he must himself prove his whole case. He is assumed to be not entitled to it. The burden of proof is all upon him. The rule of all free countries and all civil laws is reversed. He must prove residence here through a long series of years, back to the date of enactment of the whole series of stringent laws, since the treaty of 1880. He must find the witnesses in different places where he may have worked or resided, and one witness must be a white man.
" Every one can understand how difficult, how almost impossible, it is to make out such a long and costly line of proof, especially to a laboring man. This he must prove affirmatively, or he cannot get a certificate. If he is not granted a certificate--and we can readily see how officers on the Pacific coast would be glad to refuse it-he is arrested, imprisoned six months or less, and then expelled from the country. If he obtain it, he must carry it around with him, or be liable, instantly and always, to arrest, imprisonment and deportation, like a convict. It is proposed to have a hundred thousand, or some gentlemen assert two hundred thousand, men in our country, ticketed, tagged, almost branded-the old slavery days re turned. Never before in a free country was there such a system of tagging a man like a dog, to be caught by the police, and examined, and if his tag or collar is not all right, taken to the pound or drowned or shot. Never before was it applied by a free people to a human being, with the exception (which we can never refer to with pride) of the sad days of slavery, and the ticket of leave given to convicts allowed to go out a while from the penitentiary, and the convicts at Botany Bay, who had a ticket of leave. But here are more than a hundred thousand men, innocent of offense, who must obtain this certificate, this ticket of leave, and carry it around with them in a free country."

The plea made on behalf of this legislation is that it is necessary in order to prevent the illegal incoming of large numbers of Chinese; but the absurdity of this plea has been demonstrated every time a census has been taken. Every census of the United States shows that there has been no such increase in the number of Chinese in this country as there must have been if these pleas had any truth in them whatever. The fact is that the number of Chinese smuggled into the United States is so small as to be of no account in a great country like this. Besides. back of all this is the fact that there never has been any sufficientreason
whatever for this legislation from the beginning until whatever for this legislation from the beginning until
now. We have heard, over and over again, of the millions of Chinese laborers that would be pouring in upon us, of the great damage to the laboring interests of the country, especially on the Pacific coast, and much other talk of the sort. The statistics, however, show that there have never been more than one hundred and twenty thousand Chinese in the country. When the first restrictive act was passed, there had been an increase of only about ten thousand in the ten years preceding, and nearly as many were returning to China as were arriving by the steamers at that time. During the whole period there never has been any such thing as cheap labor on the Pacific coast ; and during the whole time higher rates of labor have been paid on the Pacific coast than elsewhere in the country. It is pitiful to see a great nation like the United States scared over a hundred thousand Chinese, while it takes no alarm over the many hundreds of thousands of law-defying immigrants from Europe. It is time that a little common sense statemanship should be used in regard to this whole matter of immigration. It would be perfectly feasible to dismiss the Chinese question altogether by passing a just and uniform law, applicable to all people. There are various measures striction of immigration. 1 will suggest some of these :
First, let the number of immigrants which any vessel may bring to this country be strictly limited-say to one hundred, or even to fifty-for a time, if this be deemed advisable
Second, require of every intending immigrant that
he shall go to the American consul of the port from which he proposes to take his departure, and produce evidence of his good moral character, and his purpose to become a law-abiding resident of the United States, and let no immigrant be admitted from any country without a certificate of these facts from the United States consul of the port from which he sails.
Third, if it be deemed necessary, let a head tax be mposed upon every immigrant, and let it be of a sufficient amount to give some surety that the person shall be a self-supporting inhabitant of this country.
If along all these lines a general law of immigration were adopted, every special enactment with regard to the Chinese might at once be blotted from the statutes, and further disgrace and perfidy in the violation of treaties be prevented. The Chinese would not complain of any law which was thus universally applicable. They have a just right to complain of all laws that single them out for special oppressive legislation which is not applied to the people of any other country. There certainly ought to be in both Houses of Congress some leaders who will bring the nation to a decision in this matter which common sense and humanity can indorse.

Combined Toning and Fixing Bath.

Gaedicke states that a carefully washed collodio chloride print was dusted in one place with pure silver sulphide and in another place with precipitated sul phur, and the whole exposed to the action of air and light. The silver sulphide had no action on the image, while the sulphur ate the image right away. The two ingredients of the combined bath which are hurtful are citric acid and alum; sulphocyanides are not so easily decomposed as hypo., and as they form permanent gold salts they may be used. Lead in a combined bath has merely a physical and not a chemical action causing rapid precipitation of the chloride of silver, they improve the tones without entering into the mage. Gaedicke strongly recommends boric acid and the following particular formula:

Distilled water

Sodium hyp Boric acid..
 Boric acid.. Lead nitrate

Ammonium sulphocyanide
Sol. chloride of gold (1 per cent)
Black sulphide of lead is precipitated in twenty-four hours, and the bath is then ready for use. The clear solution is absolutely without smell, and by continued use only innocuous silver sulphide is depusited. When fresh, it tones very quickly, and it is advisable to use some of the bath up and add fresh water to it. It is important that the paper, which is always acid, should be well washed and neutralized; the prints should be freed from soluble silver salts, then placed in 1 per cent solution of ammonia. Care must be taken in washing several prints that the whole of the ammonia is not neutralized; there should always be a faint smell. Sodium carbonate may be used in moderation for the same purpose; the prints can then be washed twice in water and then toned. The prints should be taken out of the bath while still rather redder than desirable, because they turn color in drying. -Photo-Wochenbl.

A Great French Telescope.

A great refractor is just finished and placed in position for Dr. Janssen at Meudon. It is a combined photographic and visual telescope. The two lenses were made by the celebrated Henry Brothers, of the Paris Observatory. The mounting is by Gauthier, of Paris. Both lenses will be mounted in the same tube, which is square and of steel. The visual objective is 82 cm . (32.3 English inches) in diameter, while the photographic objective is 63 cm . ($24 \cdot 8$ English inches) diameter. Both lenses are of the same focal fength, 17 meters (669 English inches). The large objective will be the guiding part of the instrument when used for photography. This great telescope is housed in the ruins of the old royal palace, a part of the ruins serving as the tower for the great dome, which dome is 20 meters (66 English feet) in diameter and weighs some 60 or 80 tons. The dome is to be moved by a gas engine of 12 horse power. The observing chair is attached to the dome and moves with it. All the fine circles are to be read from the eye end by means of electric lights, the electricity for which is generated by an 8 horse power engine half a mile distant, in what was formerly the royal stables.

New Process for Enameling.

Fletcher, Russell \& Co., London, have introduced a new process to supersede the use of Berlin black and black lead for protecting cast iron. The casting is coated with a film of enamel, which is so thin that even the finest details on the metal are preserved. This enamel is said to be absolutely proof against rust, and preserves its qualities at any temperature up to a bright red heat. All colors are obtainable, including gold and silver, bright or dull, and as many as are wished can be produced on one casting. The process is said to offer great facilities for decorative work of all

THE "PARAGON" PROJECTION LANTERN. It is usually claimed for most projecting lanterns that they are suitable for educational purposes, and so far as the ordi.ary projection of diagrams and pictures are concerned, this may be the case to some extent.
That is, however, only a small part of the work that is expected to be performed with the educational projector; for the illustration of physical laws, for the performance of chemical experiments and for the projection of microscopic specimens; special facilities must be offered for each of these branches, the projector must be furnished with accessories and adjustments which shail enable an experienced lecturer to obtain the most complete results in all cases. The projector itself should be simple in construction, but admit of all the various optical combinations, arrangements, and attachments being made without delay and in a satisfactory manner. With this object in view it was necessary to adopt the new type as here illustrated. This apparatus, which is manufactured by Queen \& Co. (Incorporated), of

THE "PARAGON" PROJECTION LANTERN.
two parts: the lamp and stand for the electric light, and an optical bench with sliding bases and standards which support the optical and other apparatus. So simple is this plan in its operation that the accessories can be exchanged in a few minutes, as, for instance, the vertical prism can be located on the base or taken off for the microscope to take its place, and so forth, with the absolute certainty that all parts required in the exhibition are perfectly in the optical center. A few of the more important accessories will here be described :

The vertical attachment is constructed with a plane reflector, condensing lens, upright stem with arm to carry the objective and right-angled prism. This apparatus is indispensable for the display of many physical and chemical experiments.
The microscope requires certain arrangements to bring a full course of light with as little heat as possible to the object to be exhibited. The distinguishing feature of this projection microscope is found in the polarization.
analyzer; or a bundle of glass plates for a polarize and a Nicol prism for an analyzer.
The reflecting polariscope is, however, more effective. It has two reflecting surfaces for the polarizer and a Nicol prism for the analyzer. The performance is perfect. All three of the above polariscopes are direct acting. The stage, or object holder, is furnished with a rotating plate in front and a separate slip holder back to facilitate the performance of plane and circular

The arc lamp employed is a very fine illustration of accurate workmanship, neat in appearance and perfect in its performance. Not only does it maintain a steady silvery white light, but it also automatically holds its position in the exact optical center until the carbons are finished.

AN IMPROVED ROTARY ENGINE

In this engine, which has been patented by Mr. O. O. Gould, of Copemish, Manistee County, Mich., the cylinder is preferably made in two parts bolted together and rigidly supported on a frame attached to a suitable foundation. Fig. 1 is a side view of the engine, Fig. 2 being an interior view of one-half of the cylinder. In the central bore of the cylinder are heads in which is journaled the main driving shaft, on which is a central disk supporting a piston, as shown in Fig. 2, the piston having suitable overlapping and spring-pressed packing plates engaging the sides and inner cylindrical surface of the rim of the cylinder. In suitable guideways arranged in the sides of the cylinder two opposite gates or abutments are mounted to slide radially, the outer ends of the gates having slotted heads engaging the continuous rim of a cam secured on the main driving shaft, so that the revolution of the latter causes the inward and outward sliding of the gates. The guideways in which the guides of the gates slide form part of the main frame, and the cam is so arranged that during one-half of the revolution one gate remains stationary in an innermost position, while the other gate is moved outward and back again. The two steam chests on the front of the cylinder, connected by pipes with a suitable source of steam supply and pipes to carry off the exhaust, are provided with slide valves, each having on its under side two cavities. These valves operate over the four elongated ports of the interior of the cylinder, as shown in Fig. 2, two of the ports being arranged diametrically opposite two other ports, and on opposite sides of a sliding gate. The valves also operate over exhaust ports midway between the live steam ports. The stems of the valves are connected by links at their right-hand ends with a lever centrally fulcrumed on a slide, and at their other ends with another similarly fulcrumed lever, which is also a hand lever. On the latter lever is a segment with segmental slot engaged by a bolt on the slide, so that when the nut of the bolt is loosened the lever may be moved to change the position of the valves and reverse the engine. A cam held loosely on the driving shaft, and carried around by a pin in a segmental slot of the cam, engages oppositely located arms on the slide to give to the latter a sliding movement, the arrangement permitting of changing the position of the slide when reversing the engine without disturbing other parts. Part of the peripheral edge of the cam is concentric, so that the valves are held stationary during part of a revolution of the shaft, and when in their outermost position in the steam chests, but each full revolution of the shaft imparts a full stroke to the right and to the left to each of the valves.

A MOVABLE ELEVATOR FOR USE ON

 STORE FLOORS.This elevator, adapted for use on one floor only of a building, and which may be readily moved to various positions, enabling articles at different eleapplication of an achromatic negative lens to convert \mid vations to be reached, has been patented by Mr. Robert the converging rays coming through the condensing \mathbf{W}. Parmenter, of Yutan, Neb. The small figures lens into a cylinder passing to the secondary condenser; these are provided with rack and pinion, so that the illumination of the object can be adjusted with great nicety. Not only is the silvery whiteness of the arc light a great advantage, but as the radiant is comparatively a point, the definition given by a good objective is superb. Abundant light is at hand for obtaining a power of 1,000 to 3,000 diameters with perfect definition ; a flea may be enlarged to fifteen feet in length.
The polariscope can be constructed in several ways, The refracting polariscope is composed of two Nicol prisius, one being used as a polarizer, the other as an
represent sectional side and plan views of the improvement, 'the operation of which is shown in the arge view. The upright posts of the frame are hollow, one side covered by screening, and adapted to carry a counterbalance. Rubber-lined, grooved wheels, journaled at the top and bottom of the frame, run upon parallel tracks on the floor and ceiling, the floor track being mounted on screws projecting through floor plates, whereby the height of the lower track may be regulated to cause the wheels to fit snugly at the top and bottom. The elevator car is suspended by bails to which is attached the hoisting cable, extending over a drum carried by a shaft jour-
naled in the upper portion of the frame, there being on one end of the shaft a pulley to which is secured a cable by which a counterbalance weight is suspended to move up and down in one of the posts whereby the car is balanced. The shaft at the top has a gear wheel engaged by a pinion on a lower shaft carrying at one end a pulley, over which, and over pulleys at the bottom of the frame, passes an endless rope, by pulling on which the occupant may raise and lower the car. The lower pulleys are journaled in vertically adjustable supports, whereby the tension of the rope may be regulated. On the shaft with one of the driving wheels at the bottom of the frame is also a sprocket wheel, in line with a similar wheel in a vertically adjustable hanger at the top of the frame, and the sprocket chain by which these wheels are connected engages also a sprocket wheel on a crank shaft journaled in the car. The crank is connected by a pitman with a treadle, the working of which operates the sprocket chain and revolves one of the driving wheels at the bottom to propel the entire structure along the track. By a lever carrying a clutch, and journaled in the floor of the car, the upper end of the lever swinging opposite a notched quadrant and having a retaining latch, the sprocket chain may be held in such engagement with the sprocket wheel that the elevator will be locked in a stationary position, or so that the

PARMENTER'S ELEVATOR.

chain may be operated by the treadle to propel the elevator. The mechanism is such that the elevator may be easily propelled and perfectly controlled.

AN IMPROVED PROPELLER SLEIGH,

A sleigh designed to be readily propelled and steered over ice and snow, either by the occupant or by a suitable notor, is shown in the illustration, and forms the subject of two patents recently issued to Mr. Friederich A. Schaefer, of Truckee, Cal. On bearings which permit of vertical adjustment at each side of the sleigh are journaled short shafts carrying paddle wheels of novel construction, adapted to engage the snow or ice to propel the sleigh forward or to steer it. The shafts may have suitable crank arms, for propelling the sleigh by hand, or they may be connected by pitmen with a motor, and the paddle wheels have spokes, each having its outer end forked, as shown in Fig. 2, the transversely extending paddles being made of sheet

SCHAEFER'S IMPROVED PROPELLER SLEIGH.
metal, with their outer edges serrated. Near the for- large amount of heat, which by expanding the air con ward end of the sleigh, on each opposite side, is a curved sumes a portion of the power which is subsequently rudder held normally out of the snow by a spring, but by lost, in consequence of the air becoming cooled before pulling on a rearwardly extending cord a downward use. The purpose of the compound system is to diswinging motion is given to one of the rudders to minish this loss by taking the air from the first cylinmove its rear curved end into contact with the snow or ice, to steer the sleigh to the right or left as desired. To conveniently pass the sleigh over ground a pair of front wheels is provided, their axles journaled in pivoted side arms and locked in place by a pin, the arms being swung downward when it is desired to wheel the sleigh over the ground, the paddle wheels being at the same time locked in their lowermost position, whereby the sleiph is lifted entirely off the ground. When the snow or ice is again reached, the arms carrying the front wheels are swung into their upper position and the paddle wheels are raised to the height best adapted to effectively engage the surface of the ice and snow. The invention also provides for the convenient and ready attachment to the main runners of different forms of auxiliary runners specially adapted for running over ice or hard frozen ground or loose or wet snow.

THE RAND DRILL COMPANY'S COMPOUND. DUPLEX AIR COMPRESSOR AND ROCK DRILLS AT THE COLUMBIAN EXPOSITION.
Formerly, when the applications of compressed air were more or less tentative, and the whole system was little more than experimental, engines of a comparatively cheap type were naturally employed for driving the compressors, at the expense of course of economy of fuel. With the rapid development of recent years in the various uses of compressed air, the point was reached where users began to inquire carefully into the cost of production and a demand arose for compressors embodying the highest and most advanced construction, both as regards the compressors themselves and the engines for driving them.
The \mathbf{R} and Drill Company, of 23 Park Place, New York City, have been pioneers in meeting this demand for machinery of the most advanced type. An example of their latest construction was shown in their conspicuous exhibit in Machinery Hall at the Columbian Exposition. This machine, which is here illustrated, is the inustrated, is the largest and most
highly organized of highly organized of
any exhibited at the Fair. It has, in consequence, attracted a great deal of attention. It was driven by a Corliss engine of the cross compound condensing type. The air cylinders are compounded, in order to make the compression in two stages, and between the two cylinders is an intercoolerthrough
which the air must pass in its progress from the low pressure to the high pressure cylinder. This inter cooler has a function analogous to the intermediate receiver of compound steam engines, but in addition to that, it has a more important function, which is the chief reason for the compound system as a whole, viz. the cooling of the air at the middle of its compression As is well known, the compression of air develops a

THE RAND COMPOUND DUPLEX AIR COMPRESSOR AT THE COLUMBIAN EXPOSITION.
as is well known, have a chattering action due to the constant conflict between the air which is trying to open them and the springs which try to close them The action of the mechanical gear is to retract the pressure of the springs from the valves, during the period when the valves are required to be open, thus
\qquad
 leaving the valves under the influence of the air only and doing a way with the chattering The final result, how ever, is much more far reaching than this de scription would at first indicate. The chatter ing of the valves neces sitates a small lift, in order to limit the violence of the action, and this, by reason of the ac companying small open ing, necessitates a large number of valves to 9 ive the required total opening. With large com pressors this multiplicity of valves becomes formidable and complicated. The action of the mechanical gear stops the chattering, as before mentioned, and the necessity for a small lift no longer remains. Consequently, the valves are given a high lift, so as to give a free and unobstructed opening, and the total num ber of valves is, conse quently, very largely re-
moderate degree only, and cooling the same down to duced. The machine is also fitted with the Rand Drill its original temperature by means of a water jacket, Company's differential pressure regulator, the operaafter which it is discharged into the second cylinder tion of which attracts the attention of the mechanical and the compression completed. There are thus two eye. This regulator operates upon the knock-off stages of compression, the second of which is begun blocks of the Corliss gear, much after the manner of with cold air, whereas in the usual single cylinder sys- the usual ball governor, with which the compressor tem the compression is continuous, the latter half being is also supplied, and it is the combination of these done on air already heated during the first half.
If the indicator cards from the two cylinders be combined in the manner common with compound steam engines, the result would be to show a break in the compression line, that portion which represents the completion of the compression being set back nearer the end of the card, the results indicating a considerable saving in power. two governors acting upon the same set of knock-off blocks which forms the interesting feature referred to when the machine is started without pressure in the air pipes, the throttle valve is thrown wide open, and the machine runs up to the highest limit of its speed until checked and controlled by the ball governor, after the manner of ordinary Corliss en gines for motive power. As the pressure rises, it
The air end of this machine is fitted with the Rand soon reaches a point to which the plunger of the regDrill Company's well known mechanicaliy moved air ulator is loaded; this plunger then rising shortens the cut-off and slackens the speed, when the ball governor drops, and the compressor remains under the control of the pressure reculator, which shortens or lengthens the cutoff as may be necessary to give the speed which shall maintain the air pressure, any drop of pressure being accompanied by an increase of speed and any rise of pressure with a diminution of speed. Should, however the demand for air exceed the capacity of the machine, the pressure will drop below that to which the regulator is set, when it will go out of action, and the speed will increase until the ball governor acts as at the start. At times, when the demand for air approximates the capacity of the machine, this interchange of action be-
valves, which constitute a marked advance on the regulation spring valves heretofore almost exclusively used. The mechanical attachment to these valves operates upon the springs with which the valves are fitted. The ordinary style of compressor vaive is in principle the same as the valves of pumps, being opened by the pressure of the air and closed by springs which conpressure of the air and closed by springs which con-
stantly press upon their backs. In use, such valves,
tween the two regulators is constantly taking place.
The diameters of the air cylinders of this machine are 22 inches and 34 inches, and the diameters of the steam cylinders 22 and 40 inches, while the stroke of 48 inches is common to all
The Rand rock drills formed a noticeable feature at the Exhibition. There were shown drills for every variety of work, including mining, quarrying, sub-
marine work. A long experience has enabled the Rand Drill Company to bring these drills to such a state of perfection as to perfectly adapt them to the wide range of uses to which they areapplied and to give them the qualities of durability and efficiency which are so essential to machines subjected to rough usage and trying conditions.

Enlarged Stereoscopic Pictures.

The following description of Mr. John Anderton's system for obtaining stereoscopic effect on the lantern screen is given in the British Journal of Photography:
"In adapting the stereoscope to the optical lantern, the problem to be solved is, to place upon the screen a pair of ordinary stereoscopic pictures in such a manner that, while the right eye can only see the right hand picture and the left eye the left hand picture, yet the two are combined and conveyed to the brain as one.
"In the invention this problem is solved in an exceedingly simple manner. The pictures on the screen are in full perspective, the various objects forming them standing out as if possessed of three dimensions, and appearing in their correct relative planes. A pair of ordinary stereoscopic transparencies are superposed on the screen as nearly as possible; the pictures not being identical, a perfect registration cannot be obtained. The light from each picture is polarized, one vertically, the other horizontally, and the combined picture is viewed through an analyzer similar to a small operaglass. This analyzer is so constructed that, while the right eye can only see the image portrayed in horizontally polarized light, the left eye can only see that in vertically polarized light. An important part of the invention is the screen. It is a well known fact that polarized light is apt to be broken up on reflection. The screen employed is faced with dull or matt silver, a long series of experiments having proved this to be the best material."
To this descriptive outline, which is in the nature of a "popular" one, it is only necessary to add that the superposition of the stereoscopic picture is effected by halving the transparency and projecting thehalves by means of an ordinary biunial lantern. The polarizers are placed before each objective.
We may at once say that for our own part we consider stereoscopic projection, as worked out by Mr. Anderton, and shown recently, as perfectly successful. Indeed, our expectations never wen
ance of what we then realized.
The two pictures, when superposed, show a duplication of outline, due, of course, to the fact that absolute registration of the two dissimilar halves cannot be got. When looked at through the analyzer, however, the blur disappears, the image coalesces in the brain just as when a binocular slide is examined in the stereoscope, and the screen picture becomes at once well defined and truly stereoscopic, objects standing out in apparent relief ard soidity with all the charm of reality.
It should be said that, while all the pictures shown yielded stereoscopic effect when viewed through the analyzer, some were less successful than others. Interiors, flowers, landscapes, animals, were shown, perhaps the most realistic being the picture of a tiger in a cage, the paws of the animal reaching, as it were, out of the picture, the bars of the it were, out of the picture, the bars of the
cage separating from the animal beyond them, and the whole effect being remarkably good.
It is claimed that any subject taken with a binocular camera would be suitable for stereoscopic projection, but we are disposed to think that successful effects, not only to a popular audience, but to those not unfamiliar with stereoscopic photography, would be best obtainable by suiting the treatment of the subject to the conditions of the case Thus, it appeared to us that the most suc cessful pictures shown were those which had been taken with short focus lenses separated rather above the distance which strict theory demands, so as to obtain some little exaggeration of relief. This, however, is only a reflection in passing.
On the whole, Mr. Anderton is to be congratulated upon the undoubted success of his adaptation of certain optical principles to stereoscopic projection. The lantern stereoscope should be widely popular.

The Cost of Carelessness.

Familiarity with danger seems to breed, if not a contempt for it, an utter carelessness. We have seen, says the Chattanooga Tradesman, the "Mohawk Dutchman," the celebrated expert with a band scroll saw, rub the ball of his thumb in dirty grease and then cut the grease off with the rapidly running saw as clean as could be done with soap and water. We have seen a man put his finger under a powerful trip hammer in motion just to show how well he could manage the machine. Many other foolish things are done just to "show off." Butmost of the accidentshappen through
carelessness resulting from familiarity. As long a an operator is afraid of his machine, he is not apt to get hurt. Many human minds are so constituted that they cannot bear a sustained effort in one direction; that is, cannot be always equally on the alert in regard to a certain contingency. A train dispatcher or switch tender may hold a place for years without ever making a mistake, and at last make a terrible one, from some cause he could not explain. The only way to lessen the number of casualties-they cannot be avoided entirely-is to take all precautions. This is required of the owners if they wish to escape costly damage suits, but when all possible precautions have been taken, one can then only trust to luck.

the scientific american match safe.

The readers of the Scientific American will be interested in the accompanying cut, which represents,

the scientific american match safe.

not a copy of the paper, but a silver match safe, which is manufactured in facsimile of the Scientific AmeriCAN, and represents it as folded in a wrapper and as having passed through the mail. The familiar blue one cent stamp is in one corner and canceled by the New York postmark. The name of the owner may be enameled upon the wrapper and the autograph accurately reproduced. The manufacturers, Messrs. Enos Richardson \& Co., of 23 Maiden Lane, New York, have paid us the compliment of selecting the Scientific american as the most representative and available paper for this purpose, and we take pleasure in acknowledging their courtesy and discrimination.

MAGNETIC JACK STRAWS.

The illustration below shows one of the most ingenious devices for the amusement of children to be found this season among the various toy stores and elsewhere.
It is a game that will not only amuse children, but affords an endless source of amusement to adults as well, and can be played by any number of persons.
The game is put up in a neat little box, and contains a large number of metal straws of various colors, crooked, and angled, and crimped, and some of them having little heads of colored wood in various forms, together with two magnets.
The object of the game is to withdraw a single straw

ate for the engineers to profit fully by them. The verage rate of advance during the thirteen years' work was 2.57 lineal yards per working day of 10 hours, each lineal yard costing £226. In boring the St. Gothard unnel the engineers could profit by past experience, it was commenced in 1872, and, though two miles longer than the Mont Cenis tunnel, was finished in 1881. Turbines of 2,000 horse power compressed the air for working the Ferroux drills, and the rate of advance was $6 \cdot 61$ lineal yards per day, at a cost of $£ 143$ per yard. Further advance was made in the boring of the Arlberg tunnel, which is $6 \frac{1}{5}$ miles in length, and took only three years to construct. In this case the average rate of advance was 9.07 yards per day, at a cost of only $£ 108$ per yard. We have no doubt that a further advance will be made in the boring of the fourth of the Alpine tunnels, and we hope that this advance will be due to electrical methods. We have now at our command most efficient electrical drills and can work these drills by electromotors. Motive power in mountainous regions can easily be derived from some of the numer ous waterfalls to be met with in these regions, and the locality of the central stations, thanks to the progress of electrical power transmission, can, within the pre vailing limits, be pretty nearly chosen at will. We feel sure that the enormous advantages of an electric installation will not be overlooked by the contractors, and in this case the stipulated time for the completion of the work of $51 / 2$ years will prove more than ample. It is contemplated to construct at first only a single line of rails; a gallery, however, will be made at the same time, and will afterward [be widened to enable a second line of rails to be constructed after four more years. The cost is estimated for the first enterprise at fifty-four and a half million francs ($£ 2,180,000$), and for the addition, fifteen million francs extra.-Electricity.

The Year's Progress in N

The annual report of the Chief of the Navy Bureau of Ordnance gives a good summary of the year's work in the bureau, as well as an estimate for the next fiscal year, which is $\$ 7,145,801$, of which $\$ 6,500,000$ is for arming vessels already authorized. Of 453 guns of calibers from four to thirteen inches which have been ordered, 298 are completed, including twenty-five 10 inch, eight 12 inch and five 13 inch; 188 are afloat; and forgings for 368 guns have been delivered. The 13 inch guns have not been tested as yet, owing to delays in mounting. Progress is being made on 8 inch nickel-steel guns and on the Hurst 8 inch guns. Cartridges will hereafter be supplied for the 6 inch guns. Of the small guns for the secondary batteries, 480 Hotchkiss and Driggs guns, 360 are finished. Two hundred and thirty-seven gun mounts have also been completed.
Smokeless powder is not yet suitable for regular use, but large quantities of brown powder are supplied by the California Powder Company, of Santa Cruz, and by Du Pont \& Co., who have also supplied 50,000 pounds of gun cotton. The treatment of small caliber projectiles by the Harvey process has proved very satisfactory. Experiments are being conducted in firing shells from high-power guns charged with gun cotton and fulminate.
Contracts for 6,489 tons of armor have been made during the year and the plants have been enlarged to admit of delivering the armor more rapidly. By the new arrangements armor can be supplied as fast as needed to the vessels in the shipyards. The armor, both the nickel-steel and the Harveyized, continues excellent in quality. A number of new Howell and Whitehead torpedoes have been received. The difficulty with the main valve of the pneumatic guns of the Vesuvius has not been overcome and Commodore Sampson recommends that the $\$ 450,000$ appropriated for a similar vessel be used to build four torpedo boats instead. The report shows that the Bureau of Ordnance is making substantial progress.

Edison on Flying Machines.

touching or disturbing the other straws. The game is manufactured by E. I. Horsman, of 341 Broad way, N. Y

The Simplon Tunnel.

It is announced from Berne that the contract for boring a tunnel through the Simplon has just been signed and has been given by the Jura-Simplon Railway Company to Messrs. Brand, Brandau \& Co.. of Hamburg, and Locher \& Co., of Zurich. Both these firms have some experience in mountain railway work, the former having joined in the boring of the Arlberg tunnel and the latter having constructed the line up the Pilatus. The Mont Cenis tunnel, the first of the Alpine tunnels constructed, took 13 years in its completion; the first blast (at that time the only method known for boring tunnels) was made with gunpowder in 1857, and it was not till four years later that machine drilling was introduced, while the subsequent machine driling was introduced, while the subsequent

Once I placed an aerial motor on a pair of Fairbanks scales and set it going, says Thomas A. Edison. It lightened the scales, but it didn't fly. Another time I rigged up an umbrella-like disk of shutters and connected it with a rapid piston in a perpendicular cylinder. These shutters would open and shut. If I could have got sufficient speed, say a mile a second, the inertia or resistance of the air would have been as great as steel, and the quick operation of these shutters would have driven the machine, but I couldn't get the speed. I believe that before the air ship men succeed they will have to do away with the buoyancy chamber.

A Rochester man has devised a plan by which a trolley street car can be stopped almost instantaneously, or within a space of three feet, while the car is going at full speed. As he omits, however, adds the Railway Review, to provide for stopping the passengers, it is only fair to presume they will object.

The Launch of the Battle Ship oregon.
The battle ship Oregon was launched at the Union Iron Works, San Francisco, October 26. Technically the Oregon is known as an armored coast-line battle ship of the first class and is one of three the bids of which were opened October 1, 1890. The sister ships are the Massachusetts and Indiana, both built by the Cramps in Philadelphia. Congress. appropriated the sum of $\$ 12000,000$ for the three ships and provided that one should be built on the Pacific coast
The length of the Oregon is 348 feet, beam $691 / 4$ feet, draught 24 feet, displacement 10,200 tons, maximum speed 16.2 knots, sustained sea speed 15 knots. The coal capacity is 1,800 tons, making the radius of action at full speed 5,000 miles, or at a speed of ten knots per hour, 16,000 miles. It is protected by a belt of armor seven and one-half feet wide-three feet above and four feet below the water line-and eighteen inches thick. Over the belt is a steel protective deck $23 / 4$ to 3 inches thick. Rising from the armor belt at each end are redoubts 17 inches thick, giving an armored freeboard of 15 feet 2 inches. In these redoubts revolve the great turrets, which are 17 inches thick on the incline and 20 on the horizontal. Forward and aft of the belt are heavy protective decks and the coal is stowed to give additional protection. The steel conning tower is 10 inches thick and will be provided with signals, speaking tubes, etc. One military mast is provided carrying two tops for rapid fire and machine guns, the ammunition being sent up through the mast. The engines are of the t win screw, vertical triple expansion, direct acting, inverted cylinder type, stroke 42 inches, diameters of cylinders $341 / 2,48$, and 75 inches respectively. .There are four double-ended and two single-ended auxiliary steel boilers of the horizontal return fire tube type. The centrifugal circulating pumps are driven independently.
The battery is composed of four 13 inch breechloading rifles, eight 8 inch breechloading rifles, four 6 inch rifles, twenty 6 pounder rapid-fire guns, two Gatlings and 6 torpedo tubes. The secondary battery is very heavy and would annihilate any small vessel which came within range. The 13 inch guns are 18 feet above the water and sweep through a training are of 270 degrees. The ammunition will be hoisted through armored tubes. The magazines are specially well protected. Altogether the Oregon is a model battle ship.

The Planets for December.

Mercury will be morning planet during December and will be visible to the unaided eye during the mid dle of the month. One must look toward the southeast about an hour before sunrise in order to see it Mercury will be at greatest elongation, west from the sun 21°. 23^{\prime}. Dec. 14, at noon.
Venus will be evening planet during December, setting in the southwest between seven and eight P. M. Although so brilliant to the eye it will not; on account of its low altitude, be in good position for telescopic observatiom in northern latitudes. Venus will be at greatest elongation, east from the sun $47^{\circ} 29^{\prime}$, Dec. 6 , at $3 \mathrm{~h} .36 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. In the southern hemisphere this will be a very farorable opportunity to study the sur face markings of Venus, and it is to be hoped that Prof. W. H. Pickering and his assistants at Arequipa will be able to add much to our knowledge of this subject and of the rotation of the planet.
Mars will be morning planet, but is getting farther south all the time, so that its position will be unfavor able for northern observers. In the southern hemi sphere the conditions will be much better. There will be quite a close conjunction of Mars and Uranus December 6 at 4 h .9 m . central time, when the former will be only 8^{\prime} north of the latter. Observers in Australia and Japan should be able to see the two planets in the same field of view of the telescope. The ruddy color of Mars and the green hue of Uranus will present a striking contrast. Elghteen hours later Mars will pass close to the wide double star α Libræ, the components of which Webb puts as third magnitude, pale yellow, and sixth magnitude, light gray. Mars will pass 11' north of the brighter star.
Jupiter, having but just passed opposition, will be in excellent position for observation during December. We have had a few good views of the planet this year, when much of fine detail was seen upon the surface, notably a large number of very small dark red spots. We have not happened to look at the time when the "great red spot" was visible and cannot say what its appearance this year is. The apparent diameter of Jupiter during December diminishes from 46 to $44^{\prime \prime}$. His brilliancy will be greater than that of any other object in the evening sky, excepting the moon, so that none can mistake him. His course is slowly westward in Taurus.
Saturn will be visible in the morning, but at a low altitude, so that for northern observers there will be no satisfactory observations. Saturn is in the constellation Virgo, just a little north and east of the star Spica. The planet is the brighter of the two. The rings of Saturn are pretty well opener! now, the angle of their plane to the line of sight being now about of their plane to the line of sight being now about
12°, and increasing to 14° at the end of December.

Saturn and the moon will be in conjunction December 3 at 3 h .20 m . P. M., and December 31 at 1 h .41 m . A. M. Saturn will be about 3° north of the moon in both instances.
Uranus is in Libra, very close to the star α, referred to above in the note on Mars. At 5 h .32 m . on the morning of December 16 Uranus will be in conjunction with the star, only 3^{\prime} north. The conjunction with Mars has already been mentioned.

Neptune will be at opposition December 3, and therefore in best position for observation during December. Its motion during the month will be 53 , west and 6 south. The position December 1 will be onethird of the distance on a straight line from τ to ε Tauri. A photograph taken at Goodsell Observatory, October 18, shows no star as bright as Neptune within 1° of this position.-Astronomy and Astro-Physics.

BROOKS' COMET OF 1893.

The announcement of the discovery of this comet on the morning of October 17 has already appeared in the Scientific American, with the promise of further particulars when sufficient observations had been secured.
The comet was observed on four succeeding morn ings, before clouds and the full moon interfered, and these observations showed that the comet was moving in a northeasterly direction, with a rate of threequarters of a degree daily.
The comet passed perihelion about September 20, so that theoretically its brightness should be decreasing, but it is holding its light well, and on the morning of October 22 it appeared brighter than at any previous observation. The tail then had a slight curve near the head and a faint auxiliary tail was seen branching from the main tail at an angle of thirty degrees.

the brooks comet of 1893.

The accompanying drawing shows the normal appearance of the comet when the tail was straight and s viewed with a power of forty diameters in the telescope. The tail could be traced to a length of three degrees.
As the comet may be followed for some time with moderate sized telescopes, I send herewith a few positions, from which the course of the comet can be plotted to the end of the month or longer.

	R. A.		Decl. North.	
	hour.	m .	deg.	m.
Oct. 19..	.. 13	24	40	20
Oct. 23.	13	35	44	40
Oct. 27.		50	49	12
Dec. 1.		05	53	33

From the above it will be seen that toward the end of November the comet becomes circumpolar. and hence observable all night, and on November 27 it is just at the end of the tail of the Great Bear.

William R. Brooks
Smith Observatory, Geneva, N. Y., Nov. 8, 1893

Remedy Against Epilepsy.

S. A. Siminoff (Med. Obozr., xxxix., 1893, No. 4, pp 391-2) details three cases of epilepsy cured by him by the administration of an infusion of common tansy. He has also used this decoction with good effect in cases of neurasthenia, where valerian had ceased to be effective. A glassful of the infusion of the herb (either fresh or dried) is given to the patient at night and in the morning.

Sorrespondence.

A Family Dough Kneader.

To the Editor of the Scientific American:
Would you kindly draw attention of those of inventive ability to the great need of a machine for knead ing dough for family use ?
Such an article that would be self cleaning, and not too expensive, would secure a fortune for the inventor. Every one in the country likes good bread, and the principal cause of failure comes from not being properly kneaded, which a good machine would remedy.

Jas. A. McCaffrey.

How to Make an Egg Stand on End.

To the Editor of the Scientific American:
My method of standing an egg on end is not by cracking it, but by taking the egg in one hand and striking it in the other three or four strong licks, which readily breaks the thin membrane separating the air from the end of the egg; it also breaks up the yelk of the egg; the parts of the contents of the egg being thus free to move among themselves, the heavier ones settle at the bottom, the lighter ones above, and the air at the top. This is done by placing the egg on end a few seconds and holding it perpendicularly. The center of gravity is thus easily brought within the base and the egg stands readily on either end. I find that this is a fact that is known by but few. It is sometimes used by jugglers who pretend to conjure by incantations. would like to know if this is generally known
W. M. Graybill.
[Ans.-A common mode of detecting the condition of eggs is to try to stand them on end. If good, it cannot usually be done. If bad, it can easily be done.Ed. S. A.]

Welsh Anthracite Coal.

The price of the screened Welsh anthracite, free on board at Cardiff or other shipping port, as named in a recently proposed contract, is 3 s .6 d ., or say 85 cents per ton of 2,240 pounds, while it is counted that the cost in New York harbor will not exceed $\$ 2$ per ton. There is no import duty on anthracite. The contract calls for deliveries of 500,000 tons a year and as much more as is wanted is to be supplied, subject to the usual reservations in case of strikes, etc. The Welsh anthracite has, when dry, an average composition of 87 to 92 per cent fixed carbon, about 5 per cent of volatile matter, and 3 to 6 per cent of ash. It is an excellent steam coal, and no doubt would, at the prices mentioned, make serious inroads into the market for anthracite and even bituminous coal used in steam making. It would not, however, become as popular a domestic fuel as our sized and clean anthracite, though a marked difference in price would open many doors to it.
the presence of this fuel in our market will cause the managers of our coal roads to consider more favorably the demands of the anthracite miners for lower tolls to tidewater. and the low prices at which it can be sold will be of interest to the holders of the coal road stocks.
It is rather curious that while we are arranging for the importation of Welsh anthracite at such extremely low prices as will make it a formidable rival to our own coal, we could ship our Virginia, Maryland, and Pennsylvania bituminous coals to London at a large profit, owing to the high price ($\$ 11$ to $\$ 12$ a gross ton) which coal now commands there on account of the coal miners' strikes in the north of England.-Boston Journal of Commerce.

Round Shoulders Cured

A woman physician has recommended to the Boston Herald the following simple exercises, requiring little time and no apparatus, for the cure of all except very severe cases of round shoulders, when braces are also sometimes a necessity: " 1 . Raise arms before your shoulder high, extend arms sidewise, throw head back, straighten head, move arms forward, lower arms, repeat ten times. 2. Stand erect, raise arms before you, rise on tip toes, then throw arms as far backward as possible, sink again on heels and drop arms to side, repeat ten times. 3. Raise arms with elbow bent shoulder high, bringing palms together in front of face, then with elbows still bent swing both arms vigororously backward as far as possible even with the shoulders, palms looking forward. This should be repeated several times, but as the position is somewhat fatiguing, rest or change of exercise may be made between the movements."
Another simple movement designed to bring about a correct position of the shoulder blades consists of holding a cane or wand in both hands, throwing the head back and carrying the stick from "above the head back and down the hips."

As the clothing, if too tight or unyielding about or over the shoulders, may help to produce round shoulders, both the under and outside waist should be comfortable and bands over the shoulder of garments made of elastic.

MOVABLE NIGHT LAMP FOR STAIRWAYS.
Many persons, either through habit or by reason of their occupation, enter the house at night after the gas has been put out. Now, there is nothing so disagreeable, and often even so dangerous, as to go up or down stairs in the dark. And yet it is indispensable for the sake of economy, and especially for safety, to shut off the gas at the meter for the night in every house. The movable night lamp, which operates at an expense of but one cent a night, presents the advantage of accompanying those who go up or down stairs after the gas has been put out. The operation of it is simple : It suffices, in order to light one's way in going up stairs, to grasp at the bottom of the staircase a light counterpoise fixed to the lamp by a cord, and the lamp then ascends with the person and affords him light progressively (Fig. 1).
When the story at which one is to stop is reached, the lamp, upon the weight being released, descends of itself to the bottom of the stairway and remains at the disposal of new comers. In order to descend with a light, from no matter what story, it suffices to raise the lamp through the chain that supports it (an operation that requires three seconds) and to grasp the counterpoise. The lamp then follows the person to the bottom of the staircase.
Mr. Armand Murat, the inventor of this apparatus, has here solved a problem which has certainly been studied by numerous investigators, but who, instead of solving the question in situ, have devoted their efforts to the creation of various models of small pocket lamps, which, despite their ingenuity, have never answered the practical side expected by the public. Fig. 2 gives the details of the mechanism of the ingenious apparatus. A ring, A, is fixed to the center of the ceiling of the stairway, and supports a pulley, C. Two cables, kept parallel, run from the top to the bottom, and are fixed to the point, \mathbf{B}, and are rendered taut by stretchers, B^{\prime}. The pulley, C , has a corresponding one, C^{\prime}, below. A chain, D , passes in the groove of these two pulleys, and carries a counterpoise. P. The cheeks of the bottom pulley support a weight, P , through a rod that passes freely through the bar, R, fixed to the wall or staircase. This weight, P, thus draws upon the chain and keeps it always equally taut. A plate, H , is traversed by two tubes, K , to which it is soldered. These two tubes are connected by a straight bar at S and S^{\prime}. The are connected by a straight bar at S and S^{\prime}. The
chain and its counterpoise, F, traverse the plate at chain and its counterpoise, F, traverse the plate at
V. The cables pass into the two tubes, K, and serve as a guide to the lamp that is screwed to the center of the plate. The two extremities of the chain are attached to the center of
plate, terminating in the flate, of a reversed T ports upon this T a rollports upon this T a ron-
er formed of two perer formed of two per-
forated balls connected forated balls connected
with each other by an open ring, L , forming the two axles of the balls. This roller is thus capable of revolving around the plate without touching either the chain or the either
tubes.
To the ring, L, is attached a cord that terminates in a tassel, M, that conceals a weight. A regu lator placed in the shell of the upper pulley regulates the motion of the apparatus during the descent.
The apparatus operates as follows: The counterpoise, \mathbf{F}, is heavier than the lamp, L, and its support, but not so heavy as they are when the weight, M, is added to them. The result is that, if a person ascends the stairs in holding the weight, M, in his hand, the counterpoise, \mathbf{F}, descends, and the lamp precedes and affords him a light.
Upon reaching the story at which one wishes to stop, the counterpoise, \mathbf{F}, upon the weight, M, being freed, rises and the lamp descends alone to the bottom. In order to bring the lamp from any story whatever, to utilize

THE NEW DUDLEY OBSERVATORY, ALBANY, N. Y.
added ; and the city of Albany gave a lot and $\$ 15,000$ in exchange for the old property. The endowment fund stood at $\$ 84,000$ before these gifts. It has been almost doubled. But the efficiency of the observatory has been more than doubled by the new buildings and by a new telescope with a lens of 12_{10}^{2} inches in diameter.
The site of the new buildings, about one mile from the capitol, is excellently adapted to the purpose. The the capitol, is excellently adapted to the purpose. The
instruments will all be at least 300 feet from the nearest road, and more than a mile from the nearest railroad. The horizon is unobstructed in all directions and there is no danger of future damaging encroachments

Fig. 2.
lanatory diagram. by buildings. The new buildings consist of the main observatory structure, 70 by 35 feet, with a fireproof tower on the south west corner, which supports a revolving dome 21 feet in diameter under which the new telescope is to be placed on a pier resting upon a deep foundation and throughout its length isolated from contact with the building or its floors. The lower floor contains a library and lecture room 30 by 20 feet, also two computing rooms, a clock room, and other small rooms. The second floor serves for laboratories and a dormitory for assistant observers. Connected with the main building by a corridor 20 feet long is the dwelling for the astronomer, which is 34 by 50 feet.
The new telescope which is added to the five instruments which were in the old building is the Pruyn equatorial, the gift of Robert C. and Charles L. Pruyn. The telescope, although not comparable in size with some of the giant telescopes of modern times, is large enough for the use of the practical astronomer in the great majority of cases in which he requires an instrument of precision. The size is better adapted to exact measurements than is that of larger telescopes. The objective glasses of the telescope, slightly more than 12 inches in diameter, were polished by Branhear, of Allegheny, Pa. The length of this telescope is 15 feet when arranged for the customary use, but in New York City and Albany. The staff of the institution has included some of the best known astronomers and scientists in the country, among them Dr. Benjamin A. Gould, Dr. C. H. F. Peters, Dr. Francis A. Brunnow, Professor O. M. Mitchell, and Professor George W. Hough. The present director of the observatory, Professor Lewis Boss, appointed in 1876, is a graduate of Dartmouth College.
fithin less when arranged for the customary use, but within less than twenty minutes at any time this tele-
scope, by exchange of objective glasses and by other adaptations, can be converted into a powerful telescope for celestial photography, as perfect in all respects as if the instrument had been designed for that purpose alone. Attached to the main tube is a third telescope 12 feet in length, which has various uses, and The original location of Dudley Observatory has is the guide telescope in photographic work. The "finder" is a fine three-inch telescope.
The buildings are solidly and piainly constructed after designs furnished by architects Fuller \& Wheeler, of Albany. The entire cost of the two buildings complete is somewhat less than $\$ 30,000$. In the rear of the buildings, and at a distance of about 100 feet from theu, is a small structure with iron framework covered with galvanized iron. Outside of this is a covering of proved unfortunate, because it was close to the tracks of one of the largest railroads in the country. New buildings on a new site became, therefore, a necessity, if the institution were to continue to perform valuable work, and for this object Miss Catharine Wolfe Bruce gave $\$ 2.5000$, afterward increasing the amount by $\$ 10,000$. Private subscriptions of over $\$ 20,000$ were

ouver work, affording free circulation of air be tween the outer and inner coverings. This building contains the meridian circle, the chief instrument to be used at present in the work of the observa tory. The roof is built in sections, each section arranged to roll back upon rails when desired, in a manner such as to leave an opening six feet wide from north to south through the center of the building. Through this opening the observations are to be made. In connection with the meridian circle is provided a tubeless horizontal telescope 300 feet long, the glass objec tive and the focal mark being supported on mas sive piers covered with small iron sheds to protect them from the elements.
The reopening of the Dudley Observatory took place on the 8th of November. The National Academy of Sciences met in Albany on that occasion and the address was de livered by Professor Simon Newcomb, superintendent of the Nautical Almana office in Washington.

The expansion of water in congelation is such that eleven feet of water make twelve feet of ice,

which aredescribed as the small hard worms. On page 218 of volume iv., Insect Life, I have figured and described a species of Cordyceps which grows from an underground larva in China and which is used in that country as a medicine, having the same effect as ginseng."

Safety Devices tor Street Cars.

The frequent accidents due to the increased speeds of the street cars, when the cable or electricity is used in place of horses, have created a demand for an effective device to save the lives of persons who fall in front of such cars.
The form of fender now in use on a line between Lynn and Boston is a frame of S-shaped steel wire, the lower bar of which is covered with rubber. It may be un close to the track or lifted high above it, the height being controlled by a releasing device operated by the knee of the motorman. Repeated experiments on dummies placed on the track have demonstrated that this fender will pick up man, woman or child and

THE WORLD'S COLUMBIAN EXPOSITION-THE INDIAN SCOUT.
almost see the flesh quiver, so naturally is it modeled. Beyond the group will be noticed the rear end of the Mines building and the huge dome of the Administ:ation building.

The Volcano of Kilauea, Sandwich Islands.
Dr. S. E. Bishop, writing to the Independent, says : A macadamized road of the best quality is now nearly completed from the seaport of Hila, thirty-one miles, to the volcano, which will make a delightful drive of five hours up and three back, through exquisite tropical forests. This road has opened up the center of a hitherto inaccessible tract of superb coffee lands, one hundred thousand acres in extent, which are being taken up faster than surveyors can cut their way to them. The region is cool, moist, and free from miasm, well fit ted for white settlers. Hila itself is a gem of beauty. It will soon have opened up in several directions the finest back country of any part of the group.
The volcano itself is in primeorder for tourist inspection. The red crust of the lake is seamed with long zigzag crevices of bright fire creeping across its breadth. Here and there in the center, or around the rim, foun-
it buries itself in the earth and begins to vegetate. By the beginning of J une a sprout has issued from the creature's back, and made its appearance above the surface of the ground. By the end of July the tiny tree (known on the island as the fly tree) has attained its full size, being then about three inches high, but a perfect tree in every particular, much resembling a delicate coral branch. Pods appear on its branches as soon as it arrives at its full growth; these ripen and drop off in August. Instead of containing seeds, as one would naturally suppose, these pods have from three to six small, hard worms upon the interior."
Professor Riley says: "The above item has been going the rounds of the newspapers for at least four or five years. I received it two and a half years ago from a correspondent and commented upon it in Insect Life, volume iii., page 399. It is a romance with a grain of truth. The probabilities are that the story had its origin in the growth of a fungus of the genus Cordyceps from the back of a subterranean insect. This fungus as it appears above ground is probably attacked by a fungus gnat of the family Mycetophilidae or by some fungus-eating beetle, and it is the larva of the latter
carry them along without harm in a large proportion of cases.
Another device consists of a framework of light steel, which projects four feet in front of the car. A strip of flat rubber four inches wide extends along the tip, forming a cushion and scoop. The body of the fender is of wire netting and canvas.
The inventor claims that if a person be struck by the fender the rubber tip will pick him up, and he will fall into the canvas net without injury.
There is still plenty of room for first-class inventions in this line.

Extracting Gold from its Ores.

In this process molten lead is used for extracting gold from its ores instead of mercury. The lead is melted on a shallow hearth and the powdered ore is fed in at one end and carried forward as a film over the surface of the lead by means of an agitator moving over that surface. It is thus brought to theother end, where it escapes through a hopper. In order to prevent oxidation of the lead, the chamber is kept filled vent oxidation of the lead, the chamber
with carbonic oxide from a gas producer.

Gas Motors for street cars
The American Manufacturer says that in several reports made by various authorities recently is given considerable information relative to the progress which has been made in Continental Europe in bringing gas motors into use for driving street cars; one a report by Herr Stucker, read before the lastmeeting of the Swiss Gas and Water Association, on the gas-driven tram line between Neuchatel and St. Blaise. In that report Herr Stucker says that Neuchatel has extended considerably along the shores of the lake and tramways have become a necessity. In planning the new line from Neuchatel to St. Blaise, the question of the choice of power came up for serious consideration. Horse power, electricity, and compressed air all had their advocates; but all were too dear, and the decision arrived at was one in favor of the use of coal gas.
Compressed air has the advantages of having no noise, no smoke, easy starting and stopping. It gives great satisfaction in Berne, on account of its quietness; but it costs there about 15 cents per car mile, although inexpensive hydraulic machines are used for compression. The line is also too expensive for any suburban district. Steam is somewhat less in its first cost than compressed air, but a locomotive has to be moved about as well as a car, and two persons are required for each machine, while the engines make much noise and smoke. From Wiesbaden to Biebrich there run locomotives which are said to be free from these faults, but they cost $\$ 5.950$ each. Steam roads pay when there are many passengers; not unless. Horse roads are cheap in first cost, but the current cost is high. None of these is particularly well adapted for a line on which the traffic is expected to be very small, say seven passengers per run.
In the present case, the best means is the use of gas motors, using cylinders of gas compressed to 10 atmospheres, and containing enough gas to do the run out and home. The firm of Gillieron \& Amrein, Vevay, undertook to supply the gas motors. They are strong, simple, practical, and safe, and free from simple, practical, and safe, and free from
noise and smoke; they only require a noise and smoke; they only require a
weekly cleaning. The starting and stopping are instant and free from shock. The weight of the car, with 20 passengers, 1 driv er, and 1 conductor, is about 6 tons. The distance is $31 / 8$ miles, and the highest ground is half way, 40 feet higher than Neuchatel; $7 \cdot 9$ horse power are necessary to get up a speed of $11 \frac{1}{4}$ miles an hour. If another car speed of $11 / 4$ miles an hour. If another car
were hitched on, also fully loaded, the jourwere hitched on, also fully loaded, the jour-
ney would take 27.4 minutes. The cost of gas, with one car, would be at $\$ 1.12$ per 1,000 cubic feet, $1 / 2$ cent per passenger and per journey, and with two cars it would be 22 cents.
A report to the municipality of Nordhausen upon the gas-driven street cars in use in Dresden states that the gas is let in at six atmospheres pressure to permanent at six atmospheres pressure to permanent
holders under the car. The gas is always holders under the car. The gas is always
admitted to the motor at the same pressure. The cooling water is in a tank at the top of the car, and it circulates naturally down to the cylinder when cool and up to the roof when warmed. Herr Luhrig, the inventor of the car, finds this simple device very satisfactory as means of cooling the cylinder. Starting and stopping, even on heavy inclines, arequite easy and trustworthy. The report is decidedly in favor of the adoption of the new system by the town of Nordhausen, and points out that the durability of this system, as compared with that of an electric railway, is far greater. There are no wires to lay out upon a compression station. On the other hand, a gas car costs more than an electric one; say $\$ 5,000$ each, while the Swiss ones, previously referred to, cost $\$ 3,000$ each. An electric line pays when there is a big traffic. Gas can run a small traffic. A gas car can go anywhere, and there may be few or many in use. Electric cars are a good deal dependent upon one another, and upon the arrangement of the track for them.
Another report to the Nordhausen authorities gives the following as the advantages of gas cars over electric cars : Much less first cost, since the gas company will undertake the supply of gas in a compressed state, and there is nothing farther necessary except a car shed; less current cost, since there are no central stations or conductors to keep up, and the outlay, apart from gas, which costs only three cents per mile, is limited to lubrication and cleaning material, repairs, upkeep of rails, wages and renewals, independent action of the cars, so that there cannot be a general breakdown; ease of making a small beginning, and extending as occasion offers; no consumption of gas when not.running, while an electric station must keep going; ease of putting an abnormal number of cars to run on the
same line when there is an extra demand; ease of resame line when there is an extra demand; ease of replacing the gas motors by electric motors, if at any
time thought advisable, while the inverse change cannot be made in an electric car.
The Dessau German Continental Gas Company in a
netre
recent report stated that the application of gas for years later there were also found in older cultures of driving street cars recently introduced in Dresden may tuberculosis and diphtheria bacilli certain poisonous stand in importance next to the introduction of the albumens, and immediately upon the disclosure of this Welsbach lamp, and that the absence of overhead or fact many investigators, adhering to the opinion that underground wires and big central stations makes it disease and death from all contagious maladies are possible to work such a system with small capital while the known cheapness of working of gas motors is by this means taken advantage of.

NORIEGA'S TELEPHONE.

For some years past Mr. Eloy Noriega, a Spanish
rentleman, residing in the city of Mexico, Mexico, ha been devoting a great deal of attention to electrical in ventions, especially to the microphone and telephone. An interesting collection of these instruments was shown at the World's Columbian Exposition, Chicago, where they attracted much attention. From these we bave selected for illustration one of the simpler forms, which is a practical and useful telephone.
Fig. 1 of the engraving shows the instrument com pleted, a arranged for practical use; Fig. 2 is a per sective view of the receiver magnet detached from the telephone; Fig. 3 is a perspective view of one of the receiver coils; and Fig. 4 is a section of the transmitter.
In the box containing the magneto call is placed the induction coil, the telephone switch, and the transmitter and receiver are connected up in the usual way A flexible cord carries wires for both receiver and transmitter. As will be noticed by reference to the engraving, the receiver and transmitter are both secured to an adjustable handle, so that while the receiver is at the ear, the transmitter will be in convenient position for receiving speech. The peculiarity of ient position for receiving speech. The peculiarity of
the transmitter is the device by which the necessary (similar the presence of these albuminous poisons much time in endeavoring to discover them in cultures of all kinds. The two physicians above named, instead of being influenced by these prevailing opinions, expressed the belief that the nitrous acid generated by the cholera bacilli is to be regarded as the true cause of all the symptoms and of death by cholera. O . Low had already shown that nitrous acid is a powerful toxic. The authors first proved by experiments on guinea pigs, rabbits, and dogs that poisoning by nitrous acid caused precisely the same symptoms in guinea pigs as those induced by inoculation of cholera. They further showed that the type of disease induced by nitrous acid poisoning in man corresponds exactly with all the symptoms of Asiatic cholera. Poisoning by nitrous acid can be proved by examination of the blood by spectral analysis, and it is an interesting fact that the blood of guinea pigs having died of induced cholera presents exactly the same appearance in the spectrum as that of animals poisoned by nitrous acid.

Simulation in the insane

Dr. Larrousinie, These de Paris, 1893 (abstr. in Jour. de Med. de Paris, No. 26), shows very justly how it is for the interest of society as well as for that of the patient that the alienist physician should recognize that simulation is very common among the insane, and that it may lead to serious results if not detected. He shows that this fact, though known back to Pinel, has only

NORIEGA'S NEW TELEPHONE.
that friends, magistrates frequently, jour nalists invariably, and sometimes even physicians who are not specialists, should be the dupes of the insane, by which fact much of the outcries against asylums and the disastrous disagreements and divisions that are often seen, are caused.
Dr. Larrousinie studies successively the simulation in the non-dangerous and the dangerous lunatics, and gives a special chapter to the pyromaniacs, in whom it is the rule. It may be met with in all forms of derangements, but the impulsive forms, excepting pyromania, are most free from it. It is especially common in systematized de lusional insanity, a fact of importance, as this is one of the most dangerous forms. It may present itself as partial or total and in an infinite number of degrees. In general, self-interest is the motive. One tries to deceive to facilitate his escape, another has the notion of revenge. Sometimes shame is the cause, as frequently happens in females with sexual hallucinations. It is of import ance, therefore, for the physician to see through the deception; he should be easily suspicious of it, and should study his patients with the greatest care in view of the possibility of simulation. The author ends variable contact is secured. Behind the diaphragm is \mid his thesis with the recommendation that a medical placed a layer of carbon filaments, similar to those used in incandescent lamps. This layer of filaments is backed up by an adjustable carbon plate. The diaphragm forms a part of the circuit, and when sounds are uttered in the vicinity of the diaphragm, the vibrations of the diaphragm alternately compress and release the carbon filaments, thus changing the conduc tivity of the transmitter and producing the variations in the primary circuit necessary to the transmission of speech.
The recei ver is provided with a U magnet, with pole pieces extending from its sides, the pole pieces being formed of series of studs of different diameter. Upon each pole piece is placed a coil, the two coils being connected up in the line circuit in the usual way.
In this instrument all the conditions forconvenience in use and for high efficiency are to be found. Mr. Noriega has thus in one invention materially imform.

Cholera Caused by Nitrous Acid.

The Universal Medical Journal calls attention to the fact that animals poisoned by nitrous acid present all the symptoms of choleraic patients. lt is well known that Professor Emmerich, of Munich, and Professor Ziro Tsuboi, of Tokio, conclude from numerous experiments that Asiatic cholera is a toxæmia by nitrous acid generated by the comma bacillus of Koch. Notwithstanding the fact that more than ten years have elapsed since the comma bacillus was discovered, no great progress has been made as regards the actual cause of cholera. At the beginning of the last decade, ptomaines were shown to exist in the cultures of bacteria, and it was assumed that in all infectious diseases the symptoms of the malady, as well as death therefrom, were caused by these organisms. A few
expert should sit with the judge in cases where the question of the retaining or discharge of a patient in an asylum is involved. In case of a disagreement a second expert should be called in to decide the case.Amer. Jour. of Insanity.

Remedial Use of Apples.

Chemically the apple is composed of vegetable fiber, albumen, sugar, gum chlorophyl, malic acid, gallic acid, lime, and much water. Furthermore, the Ger man analysts say that the apple contains a larger percentage of phosphorus than any other fruit or veg etable. The phosphorus is admirably adapted for re newing the essential nervous matter-lecithin-of the brain and spinal cord. It is, perhaps, for the same reason, rudely understood, that old Scandinavian tra ditions represent the apple as the food of the gods, who, when they felt themselves to be growing feeble and infirm, resorted to this fruit, renewing their powers of mind and body. Also, the acids of the apple are of singular use for men of sedentary hibits, whose livers are sluggish in action, those acids serving to eliminate from the body noxious matters, which, if retained, would make the brain heavy and dull, or bring about jaundice or skin eruptions and other allied troubles. Some such experience must have led to the custom of taking apple sauce with roast pork, rich goose, and like dishes. The malic acid of ripe apples, either raw or cooked, will neutralize any excess of chalky matter engendered by eating too much meat. It is also the fact that such ripe fruits as the apple, the pear, and the plum, when taken ripe and without sugar, diminish acidity in the stomach, rather than provoke it. Their vegetable sauces and juices are converted into alkaline carbonates, which tend to counter act acidity.-North American Practitioner.

Torpedo Net Tests.

The question of the protection of our vessels from torpedoes is as important as that of furnishing them with torpedoes, or even more so. An interesting series of experiments on torpedo nets is now being conducted at Newport ; in all probability the tests will extend well into the winter, as only one or at most two shots can be fired a day while the present routine of duty and instruction is maintained at the station. The weapon used was the submarine gun of the Destroyer and the projectile weighed 1,600 pounds. The Midgley net was tried first. The net was fifteen feet wide and twenty feet deep and was placed 200 feet in front of the Destroyer, attached to a heavy spar. The net was easily pierced, the projectile remaining uninjured. Another piano wire net twice as strong was used at the same range and was pierced as easily, one of the heavy vertical strands being cut through. The heaviest of the American nets will be moved a way until the projectile fails to pass through, then the English (Bullivant) net will be tried. The comparative strength will then be easily determined.
The American net can be more easily handled than the English, as it only weighs 400 pounds, while the English weighs 660 and is so designed that it cannot be rolled up. The effect of the ordinary wash of the sea upon the hang of the net when the vessel is under headway will also be determined. The success or failure of a net depends upon its ability to stop the torpedo or so interfere with or delay it as to cause the explosion to take place before the side of the war vessel is reached. The tests are being well conducted and the results will be looked for with interest.

SHEFFIELD STEEL AT THE EXPOSITION.
In the British section of the Mining building. an exhibit of singular interest was that of William Jessop \& Sons, Ltd., of Sheffield, England, manufacturers of the celebrated Jessop steel, known all over the world for its special adaptability for cutting tools, dies, punches, drills, cutlery, needles, etc., also sheet steel for saws, pens and springs, and crucible steel castings of all kinds and weights. The factory at Sheffield is known as the Brightside Steel Works, covering an area of thirty acres, and including extensive converting and melting furnaces, forges, rolling mills, wire mills, steel foundry, machine shops, etc. Many of the large ocean steamships are now fitted with heavy castings for stern frames, rudder posts, and bed plates from their foundry. The business was established just one hundred years ago, and for sixty years the house has been permanently represented in the United States, its chief American office being at No. 91 John Street, New York City ; Mr. W. F. Wag ner being the general mana ger, with Mr. Jas. Jessop as associate.
The large glass case con taining the main portion of the exhibit, as shown in the illustration, is filled with samples of the many finished and unfinished forms into which the Jessop steel has been made. The brilliant and artistic setting of these castings has been greatly admired. There are small and large gear wheels, cams, cross heads, cylinder and cylinder cover, spanners and coal mine car wheels. Some of the castings have been broken or ings have been cold, and drawn out into instruments with a cutting edge, such as razor, carving knife and chisel, in order to show the malleability and quality of the steel. There is an extensive collection of fractures of various qualities of tool steel, hardened and unhardened, arranged in the show case in pleasing geo metrical designs, to the num ber of nearly twelve hundred, and a display of large and small circular saw plates, so neatly adjusted that they seemingly rest lightly in po sition, whereas the largest of these massive steel disks weighs over five hundred pounds. There are also finished bars of steel; a 12inch wide band saw fifty-four feet long; and, to crown all, there is an American flag, made up of alternate stripes of polished and black steel, with steel stars, nickel-plated, which makes a very pleasing effect.

The firm was awarded the medal for highest excel lence on their goods shown at the Exposition, but such award was, in their case, notable only as being a continuation of the highly favorable recognition the firm
had previously received in two exhibitions at Paris, and at London, Melivourne, Antwerp, Liverpool, and other places. It is the intention of the firm, we understand, to don ste the exhibit to the Columbian Museum to be founded in Chicago, and for which many prominent exhibits have already been secured.

THE FLYING PROPELLER.

This is the name given by the manufacturer to a new form of an old toy which has always been inter-

esting and popular in whatever form presented. This one is the simplest, cheapest and it seems to be the best. The wheel is punched out of a single piece of tin. It has three arms or vanes, which near the rim are in the form of disks inclined at an angle of about thirty-five degrees to the plane of the wheel rim. At the center of the wheel there is a square hole in which is loosely fitted a twisted square rod, and upon this rod, below the wheel, is placed a wooden sleeve, the bore of which is large enough to allow the rod to be readily drawn through it.
The wheel having been placed upon the rod-as

Prof. Galileo Ferraris, the genial Italian scientist, whose name is known to all electricians, was recently asked by a young lady what electricity was, but, unlike most others when asked that question, he ventured to answer it, and according to Cosmos, wrote in French in her autograph book the following, of which we venture to give a translation, even though the English language hardly does justice to theoriginal in French : "Maxwell has demonstrated that luminous vibrations can be nothing else than periodic variations of electromagnetic forces. Hertz, in proving by experiments that electro-magnetic oscillations are propagated like light, has given an experimental basis to the theory of Maxwell. This gave birth to the idea that the luminiferous ether and the seat of electric and magnetic forces are one and the same thing.
'This being established, I can now, my dear young lady, reply to the question that you put to me: What is electricity?

It is not only the formidable agent which now and then shatters and tears the atmosphere, terrifying you with the crash of its thunder, but it is also the life-giving agent which sends from heaven to earth, with the light and the heat, the magic of colors and the breath of life. It is that which makes your heart beat to the palpitations of the outside world, it is that which has the power to transmit to your soul the enchantment of a look and the grace of a smile."

The Third and Fourth Generations.

M. G. Lagneau communicated to the Academie de Medecine, recently, the concluding part of an interesting statistical paper on the population of Paris, in which he proved that the extinction of families of Parisians proceeds with extraordinary rapidity. A little over 60,000 children are born annually in Paris, and the expectation of life at birth is 28.05 years. The population of Paris at the last census was $2,424,703$, and M. Lagneau calculates that, if not recruited from the country, the population, at the end of one generation, would be reduced to $1,698,679$, a diminution of more than a third; at the end of a second it would have fallen to $1,180,100$, at the end of the third to 833,720 , and so on, until at the end of the eighth generation la ville leumire would contain only 140,700 . Probably the real figures would be even less favorable. for, as a matter of fact, it is almost impossible to find a Parisian whose ancestors for three generationshave been Parisians. The same, or very much the same, holds good in London. Some ten years ago Mr. James Cantlie, in a lecture which he gave for the National Health Society, challenged any one to produce a Londoner of the fourth generation, a challenge which was not, we believe, taken up. The causes of this dying out of town populations are, no doubt, complex; but M. Lagneau points out two which, in Paris at least, are the most important-the enormous mortality during the first year of life and the very high death rate from tuberculous diseases. This death rate appears to be twice as great in Paris as in London, and M. Lagneau appears to attribute a part of this difference at least to the less density of population on the surface in London. The Londoner has 84 square meters, whereas the Parisian has only 39.British Meải:al Journal.

The scientific American.
This paper has stood for the last forty years at the head of its class of publications. It has no supericr. As a scientific and mechanical journal it cannot be excel ed. The patent agency of Munn \& Co., connected with it, is one of the few strictly re liable agencies in the United States. Those of our readers who desire to obtain a patent, and wish to have their in terests well attended to, canshown in the engraving-the wooden sleeve is grasped \mid not do better than to address Munn \& Co., Solicitors between the thumb and finger of one hand, the eye at of Patents, No. 361 Broadway, New York, for their the lower end of the rod is grasped by the other hand pamphlet containing full information about patents, and the rod is drawn quickly downward, thus impart- caveats, etc.
ing to the wheel a very rapid rotary motion which [To the Sewing Machine Times we are indebted for causes it to rise to a great height in the air. Sold by the Magic Introduction Co., 321 Broadway, N. Y.

In Dakota, with a four-horse gang plow, from six to In Dakota, with a four-horse gang plow
seven acres a day is commonly plowed.
the above kindly notice, a favor unsolicited and hence the more appreciated.-EDs.]

The cost of the Union Pacific was reported as $\$ 112$, 259,360 , an average of $\$ 108,778$ a mile.

RECENTLY patented inventions.

Hailway Appliances.

Electric Car Brake. - Joseph H. McEvoy, Waterbury, Conn. In this brake the power is supplied by the momentum of the car, but the brakes are
set into action electrically, although they may be operated bet into action electrically, although they may be operated connecting mechanism is interposed between the car and its axle to operate a shaft with a drum on which is
chain connected with the brake shoes, the worm gea chaing made separable and a magnet operating to connect its parts. The brakes may be set into action automati (ar
Car Coupling.-Samuel G. Wilber, Lake Hill, N. Y. In this coupling a spring-pressed fol drawhead, in which is journaled a spring-pressed rock shaft, having a latch to swing in the recess of the fol-
lower block, a pin sliding vertically in the drawhead, and lower block, a pin sliding vertically in the drawhead, and
there being a crank and lever connection between the there being a crank and lever connection between the
rock shaft and the pin. The invention is an improveventor, the construction being rendered more compa and certain in operation, the follower block being made sure to trip at the right time for automatic coupling and
to hold the link at any necessary inclination to readily to hold the link at any necessary inc
enter couplings of dissimilar heights.
Switch Stand.-Morris G. Prutzman, Lehigh Gap, Pa. This is an improvement in spindle switch stands, in which the actuating rods are connected with a crank shaft or spindle in the switch stand and
adapted to operate in connection with antomatic split switches pressed one way or the other by a flange of the ment is designed to prevent the switch from standing in ment 18 designed to prevent ne s.
an intermediate poitrom standing in an intermeiate position, providing also means for rais-
ing the standard so as to prevent any lost motion and
providing providing convenient means for locking the spindle e and
the spindle colum and limiting its rotary movement.
Cable Grip.-John C. Dean, Millsborough, Pa. Pivoted cross levers bave their shorter ends pivotally connected with oppositely arrangee grooved longer ends of the levers, forming an extremely simple
and inexpensive grip, easily applied to a car and a cable and inexpensive grip, easily applied to a car and a cable
to grip the latter so that it cannot accidentally become to grip the latter so that it cannot accidentally become
loose, the pressure increasing with the increased weight of the car. The device is especially adapted for use with coal cars.

Agricultural.

Plow.-Herman Symmank and Ernst Matthijez, Giddings, Texas. This is a sweepstock with
forwardly and downwardly projecting curved heel carry ing a sweep holder, on which is pivoted a shoe, with the neg a sweep holder, on which is pivoted a shoe, with ther
rear end of which is pivotally connected a link arm, there being means for adjustably connecting the npper end of
the link with the heel portion of the beam. A strong, the link with the heel portion of the beam. A strong,
durable and adjustable implement is thus provided for holding sweeps, half shovels, bull tongues eetc, and the
Reaper or Mower.-Alexander Chambers, Tarrytown, N. Y. The main feature of this inven-
tion consists in the application to this class of machines tion consists in the application to this class of machines
of an endless knife and mechanism for driving it, the knife being provided with any approved form of guard,
whereby the upper stretch will be a cutting surface and the lower stretch will be prevented from having a cutting action. The finger bar and pulleys thereon have a diagonal position, the pulleys carrying an endless band or
knife set at an angle horizontally and returning belowits cutting edge and at a distance in the rear, the lowe stretch of knife being protected by a guard.

Miscellaneous.

Ship's Brake. - Ferdinand Tobias, Munich, Germany. To steer or retard the motion of
navizable vessels according to this invention, an apparnavi igable vessels, according to this invention, an appar-
at is comprising wings or fins is hinged to the vessel and connected to a toothed quadrant adapted to be operated
by a spur wheel driven from the main shaft of the ship by a spur wheel driven from the main shaft of the
engine through intermediate mechanical gearing.
Typewriting Machine. - John a. Toomes, Toledo, Ohio.
ments in the cheaper ments in the cheaper class of typewriters, affording a
simple machine to be operated by both hands simple machine to be operated by both hands and having
a spacing mechanism which automatically makes the rea spacing mechanism which attomatically makes the re-
quired spaces between the letters and words. The maquired spaces between the letters and words. The ma-
chine has parallel titting levers on one end of which the
characters are eepresented whle on the opposite ends are pivoted oscillating type plates, there being finger pieces
and belts for moving the type plates into printing posiand belts for moving the type plates into printing posi
too and a movable platen arranged above the plates.
Clamp for Elevator Ropes.-Constant K. Decherd, Meriden, Conn. Attached to a post
secured to the elevator carriage is a fixed jaw having flanges carrying plates and forming guideways in which slides a movable jaw, a am lever mounted to turn in the
plates being adapted to engage the movable jaw to force plates being adapted to engage the movale e jaw wo foree
it against and clamp the rope. The device is of very simple construction and is designed to positively prevent
another person from starting the elevator while the operator is in charge of the car.
Purifying Asphalt. - Augustus S . Cooper, Santa Barbara, Cal. To quickly and effectivel.
separate the impurities from bitumen, this invention pro separate the impurities frot bitumen, this invention pro
vides an apparatus consisting principally of an elongated kettle having a feed hopper and a discharge spout, while
 end opposite the feed hopper. The other end of the revolving screen discharges the sand and other impuritie
into an enlarged pit formed in that end of the kettle.
Aluminum Solder. - Marguerite H. Livegn, Bienne, Switzerland. This is a soldering used as easily as any other known solder and designed to sup-
port both drawing and rolling, being applied to pure trade aluminum, or to that which has 98 parts or less of aluminum out of 100 , the solder having different propor-
tions, according to whether wire, plates or pieces are options, according to whether wire, plates or pieces are op-
crated upon. It is made by meltingaluminum and subject
$\left\lvert\, \begin{aligned} & \text { ing it to the action of phosphoric acid or its equivalent, } \\ & \text { adding copperand tin, with sometimes antimony, bismuth }\end{aligned}\right.$ and zinc, and stirring the mas
Thermometer. - Francis S. Tomey, 32 Park Road, Aston, Birmingham, England. This is a thermometer for chemical, clinical, or other purposes,
made in the ordinary manner, except that the white namel stripe usually drawn out and incorporated with the stem of the instrument is omitted, but the rear side
of the stem is graduated and covered or backed by a prothe etem is graduated and covered or backed by a pred on, forming a covering which resists acids and facilitates the reading of the scale.
Hose Pliers. - Peter W. Allen, Pueblo, Col. In this implement the jaws are arranged
o separate as the handes are forced together to separate as the handles are forced together, one of the hose band and the other being furnished with a clamp for engaging the free end of the hose band. A simple and efficient tool is thus provided for applying lose to conding and connection
Hop Carriage.-Isaac W. Cahill and Laban A. Dickinson, Salem, Oregon. This is a vehicle formed of a two-part frame, the sections hinged together and trucks journaled beneath, one truck jonrnaled
t the join of the two parts, while a slatted floor is se. cured to the frame. This car or carriage is for nse to ransfer hops from the drying kiln to the warehouse, and may be used temporarily as part of the floor of the kiln, permitung of he reaay
transfer without injury.
Packing Case. - David F. Griffiths, New York City. This is a box preferably made of ingle side and bottom panels, each panel consisting of a
narginal skeleton frame and a single sheet of veneer secured to the top and bottom rails of the frame by tacks, the veneer being also strengthened and secured to the
ide rails by wires interlace through apertures. The ox combines lightness with strength and durability and ay be economically manufactured.
Dresser for Boots or Shoes. tephen A. Richarde, Fresno, Cal. \cdot This is a self-ad justing device to be placed in boots or shoes to be displayed in show windows, giving the goods the appear-
ance they would have when on the feet. It is made ance they would have when on the feet. It is made
with a base having a shape similarto that of the bottom with a base having a shape similar to that of the bottom of a last, on which are mounted and held in position by
springs, vamp and heel formers made of plates of vary ing shape, the compression of the springs permitting the ready insertion of the device in a boot or shoe
Folding Umbrella. - Frank. G. Grove and Don. P. Lillard, Luray, Va. The stick of ribless cover being secured at one end of the stick and a runner held to slide thereon, while folding braces are pivoted to the runner and secured to the outer edge of
the cover. This umbrella is very inexpensive, may b he cover. This umbrella is very inexpensive, may be
folded into very small compass, or may be nsed as
Piano or Organ Attachment.James w . Carter, Cisco, Texas. This is a guard device mounted to slide in a plate having guide ways, the plate beng gaapted for atachment to the under side of the
key board, where it may be locked in either a folded or extended position. The plate has handle extensions, and by its nse the instrument may be conveniently moved about without danger of defacing it, or the doors, rails, etc., of the building.
Poó Table Rack, etc. - George F. Goss, Wallaceton. Pa. Chutes lead from the pockets to a rack for the balls near the floor, and separate groups of pull rods or cords run to each side of the table, the rods
or cords being connected to a rocking frame under the center of the table, the arrangement being such that each player may automatically transfer his ball when pock-
eted to its proper place in the rack without leaving the eted to its proper place in the rack wathout leaving the
table or tonching the ball, and so that each player may pee that the balls are proped placing of the ball in the rack and the end of the game, without an attendant.
Clothes Pin.-George W. Jones, Richardson, Tex. This pin is preferably formed of
spriug wire, and has a straight member panalle with the line, while the two ends are bent to form loops, terminating in portions carried above and over the straight
member and then downward in close contact therevith nember and then downward in close contact therewith. The device adapts itself to lines of different thicknesses,
and will hold equally well a bit of lace or a heavy and will hold equally well a bit of lace or a heavy Clothes Line Attachment. - Leo Oppenheimer, Cliege Point, N. Y. This device comof a snaphook, with the upper end of its ispring in torm or tongue overlapping the lower end of its hooked portion, a pulley being jonrnaled in the upper hooked member. The device is more especially designed, where
lines are parallel, to prevent the lower strand carrying he clothes fro
Menthol Cone. - Thomas D. Vint, Hustings, England. This invention provides for strengthening a menthol cone or stick by means of filaments made 10 ramify throngh the mass, the filaments, such as feather tips, hair, wool, etc., being first tightly wedged then dipped into a mould holding the melted menthol. The cone or stick is th
iable to break off in us
Cannula for Tracheotomy.-Ernst Hartstein, Goppingen, Germany. This is an improve nent in tubes whereby air is admitted to the hinge when the cannnla comprising two tubes fitting one within the other. the outer one being capable of an outward move-
ment independently of the inner tube, with means at the onter ends of the tubes whereby either the inner or the pendently of the other pendently of the other.

Copyright

Daily RECORD."-Mrs. D. W. Sutter,
ferably emplosed by Mrs. Sutter in making the " Daily
Record " book, bnt in place of an index letter on a pro Record " book, bnt in place of an index letter on a pro-
jecting portion of the onter edge of each leaf, according to the usual manner of making indexes of a book, such place is occupied by the maktito of each month. In open-
ing the book one can thus readily turn to the eear, where it will be found that the days of the week are each given separate pages, i.e., all the Montinct pages, all the Tuesdays on other pages, etc. There
are also additional leaves for memoranda, addresses, ett.

Design.

Fur Trimming. - James Jacobson, New York City. This design consists of a ruffled strip edges, the returned edges following the lines of the loops, and preventing undulating furry figures.
Nore.-Copies of any of the above patents will be
furnished by Munn \& Co., for 25 cents each. Please send name of the patentee, title of invention, and date of this paper.

NEW BOOKS AND PUBLICATIONS

The Complete Sportsman

 of scientific and practical knowledge.Designed for the instruction and in formation of all votaries of the gin By Howland Gasper. New York Forest and Stream Publishing Co 1893; 17 illustrations. Price $\$ 2$.
By a careful reading of the chapters of this excellen work the sportsman may appropriately equip himself for
hunting, attain proficiency in the art of shooting, and enter the fields informed of the habits of the game and most approved methods of hunting. There are already
a number of books on hunting adapted for the use of a number of books on hunting adapted for the use of pecially to the amatenr or beginner. The chapter on the selection of firearms for hunting, their use and preser
vation, is very valuable, and a careful perusal of this vation, is very valuable, and a careful perusal of this sec
tion of the work may prevent costly mistakes in the pur tion of the work may prevent costly mistakes in the pu
chase of guns ill adapted to the needs of the sportsman This book is not padded out with tales of hunting ex ploits and experiences, but every page bristles with practical information of positive value to whoever de sires success in hunting. The chapter on outfit, guns,
boats, dogs, etc., is particularly instructive and interesting. The proper appliances and best methods for pur suit of various kinds of game are well set forth, including duck shooting, goose, snipe, quail, rail, grouse, wood book is handsomely illustrated and the typography ad mirable.
Subject Matter Index of Technical AND SCIENTIFIC PERIODICALS FOR Berlin: Carl Heymanns. New York This valuable annual is compiled by the order of the imperial German Patent Office. All of the papers whic guage in which they were originally published, provide of course that they come within the scope of the work, which is limited to scientific and technical articles. The work is of the greatest value and circulates through the
entire scientific world, to which it has become a necesentire
sity.
american Big Game Hunting. The
BoOk OF The Boone and Crockett
Club. Edited by Theodore RooseClub. Edited by Theodore Roose-
velt and George Bird Grinnell. New velt and George Bird Grinnell. New
York : The Forest and Stream Pub lishing Co.
345 , plates.
Price
$\$ 2.503$
2
This work is made up of contributions by members of the Boone and Crockett Club, a well-known association
of sportsmen, and is edited by two well-known hunters o big game. In the present volume, which is got up fine style, the reader may enjoy a rare feast of stories of adventure, the events chronicled having occurred in ou own country. Many of the papers are written in excellent style, and we regret that space forbids the publica-
tion of the names of the contributors. In the back of the tion of the names of the contributors. In the back of the
volume will be found the rules of the club, list of mem volume will be found the rules of the club, list of mem
bers, etc. The volume is a handsome specimen of Ameri can book making.
A Manual of Telephony. By W. H. Preece and A. J. Stubbs. London
Whittaker \& Co. New York: Mac $\begin{array}{llll}\text { millan \& Co. } & \text { 1893. 12mo, } & \text { cloth. } \\ \text { Pp. } 508, & 333 & \text { illustrations. } & \text { Price } \\ \$ 4.50 .\end{array}$
The rapid strides made in the science of telephony since 1888 have necessitated not the reissue of Preece and Maier's book, "The Telephone," but the publication of
an entirely new work, which will undoubtedly receive the gratifying reception with which the former treatise wa distinguished. The subject of telephone exchanges is very well treated, the diagrams of connections being es
pecially clear. There has been a want felt for a long pecially clear. There has been a want felt for a long and the description in the manual will prove of great value. A chapter is also devoted to cables and one to the limiting distance of speech transmission.
Arithmetic of Magnetism and Elec Tricity. By John T. Morrow and Bubier Publi Price $\$ 1$.
The scope of this little work may be judged from the preface, in which it states that in it there has been no at-
tempt at explanation of the phenomena involved, and no deduction of the rules is given. The object. it states, is o enumerate those rules of electricity and magnetism which are directly connected with their commercial applications. It may be noted that some of the rules do not bear very arithmetical appearances. We would cite,
as an example of such, the sixth rule. The phraseology in places is not very exact, as where the author speaks
voted to alternating current apparatus will be fonnd a
valuable feature. A few tables and a reasonably full inex conclude the work
Analysis of Mils And Milk Mro
Ducts.
By Henry Leffmann,
M.D. and William Beam. Philadelphia:
P. Blakiston, Son \& Co. 1893. Pp. P. Blakiston,
92.
Price $\$ 1$.

This excellent mannal, adequately illustrated and with all the requisites of tables and satisfactory index, must be
considered a valuable contribution to the growing science onsidered a valuable contribution to the growing science of commercial analysis. The sections touch upon the
ature and composition of milk, analytical processes of examination, a very suggestive chapter on data for milk nspection, covering variations in composition, such as deficient solids and abnormal milks. Another chapter is devoted to milk products. This gives the general
scope of the work. The authors will be recollected as scope of the work. The authors will be recollected as
associated in the production of a similar manual on the ssociated in the prod
AnNuAl REGister of the University OF
8vo.
Pp. 244.
This register contains a full statement of the organizaion of the University, the faculties and the courses
offered during the year, lists of students, requirements or admission, regulations governing the various schents and colleges of the University, a historical notice concerning the University, University clubs and organiza-

Fabrikation, Berechnung und VisiREN Von FaEssern Boettiche und ANDERER Gefaesse. By Otto Voigt.
Vienna: A. Hartleben. 1893.104 illustrations. tables and ${ }_{317}^{183 .}$ pages text. Thispublication forms the 201st volume of the chemico-
technical library published by A. Hartleben. This hand-
book will prove to be a valuable assistant for coopers and book will prove to be a valuable assistant for coopers and
others engaged in the manufacture of barrels, kegs, tubs, and other vessels, and treats on the tools necessary in the trade, the wood to be selected, the manufacture of the vessels by hand and machinery, the calcnlation and drawing of various forms of heads and other
measuring of the contents of the vessels.
Any of the above books may be parchased through this office. Send for new book catalogue just pnb

SCIENTIFIC AMERICAN
BUILDING EDITION.
NOVEMBER, 1893.-(No. 97.)
table of contents.

1. Elegant plate in colorsshowing a residence at Bridgeport, Conn., recently erected for Mr. Thos. C. port, Cin, at a cost of $\$ 4,600$ complete. Floor
Woodin,
plans and two perspective elevations. An excelplans and two perspective elevations. An excelBridgeport, Conn
2. Plate in colors showing the residence of Clarence M. Burch, Esq., at Philadelphia, Pa. Two per spective views and floor plans. A very attractive
design. Messrs. Moses \& King, architects, Philadelphia.
3. A dwelling erected at Joliet, Ill. Perspective views complete. Mr. J. C. Weece, architect, Joliet, III suburban cottage erected at Glenbrook, Conn., at a cost of $\$ 3,500$ complete. Floo plans, perspective view, etc. Mr. E. H. Waterbury,
Conn., architect. An excellent design.
Engravings and floor plans of a subnrban residence erected for Mr. George H. Barton, at Hartford,
Conn. Messrs. Hapgood \& Hapgood, architects, Conn. Messrs. Hapgood \& Hapgood, arc
Hartford, Conn. A very attractive design.
Very excellent design for a two-family house,
erected at Bridgeport, Conn., at a cost of $\$ 4,500$. erected at Bridgeport, Conn., at a cost of $\$ 4,500$.
Floor plans and perspective elevation. Mr. A. H. Floor plans and perspective elevati
Beers, architect, Bridgeport, Conn.
St. Peter`s Chapel at Springfield, Mass. Perspective
and ground plan. Cost $\$ 7,100$ complete. Mr. W. and ground plan. Cost $\$ 7,100$ complete
P. Wentworth, architect, Boston, Mass.
4. Engraving showing some city dwellings of modern design at Washington Heights, New York City.
Plans and perspective views. Mr. W. E. Mowbray, Plans and perspectiv
architect, New York.
5. Residence of Mr. С. T. Hemsteadat Glenbrook, Conn Plans and perspective. An excellent design
6. Moving of the Normandy apartment bnilding at Chicago. Supposed to be the largest bnilding ever
moved and turned around on rollers. Numerous illustrations.
7. The World's Columbian Exposition. A general
8. Sketches at the World'sColumbian Exposition.
9. Miscellaneous Contents : Canses of fire in dwellings. illustrated.-A large day's sawing- The new mod of constructing foundations.-Sheathing quilt, il Instrated.-A cap for the obelisk.-Interior woodo gas and water pipes.-An improved scraper illustrated.-Linseed oil for paint and polish.-
Improved circular sawing machine, illustrated. Improved circular sawing machine, illustrated.
Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies 25 cents. Forty large quarto pages, equal to abou ally, a large and splendid pages, forming, practi cally, a large and splendid Magazine of Architecwith fine engravings, illustrating the most interesting xamples of Modern Architectural Construction and The Fullness, Richness, Cheapness, and Convenience this work have won for it the Largest Circulation
any Architectural Publication in the world. Sold by ill newsdealers. \quad MUNN \& CO., Puburisiers,

Business and $\mathfrak{Q e r s o n a l}^{2}$.

The charge for Insertion under this head is ome Dollar a line for eaci insertion : aisut eight words to a line. Adver-

Stow flexible shaft. Invented and manufactured by
Stow Mfg. Coo., Binghamton. N. Y. See adv., page 2z2. "U. S." metal polish. Indianapolis Samples free. The exnibit of Wm. Jessop \& Sons
highest award at Chicago Exhibition.
The Improved Hydraulte Jacks, Punches, and Tube
Expanders. R. Dudgeon, 24 Columbia St, New York.
Estimates furnished for moving, raising, or shoring
buildings. W. K. Clynes, Jersey City, N. J. Estab. 1883.
Screw machines, milling machines, and drill presses,
The Garvin Mach. Co.. Laight and Canal Sts, New York. Centrifual Pumps.. Laizbt and Canal Sts, New York Centrifupal Pumps for paper and pulp mills. Irrigating
and sand pumping plants. Irvin Van Wie, Syracuse, N. Y. Emerson, smith \& Co.. Ltt., Beaver Farlus, Pa., wivl
send Sawyer's Hand Book on Circulars and Band Saws sene to anyer's idrans.
fres.
Split Pulleys at Low prices, and of same strength and appearance es whole Pulless. Yocom \& son's Shafting
Works, Drinker St. Pbilidelphia, Pa.
Perforated Metals of all kinds and for all purposes,
general or special. Adress, stating requirements, The general or special. Address, stating requirem
Harrington \& King Perrorating Co., Chicago.
'The best book for electricians and beginners in elec-
tricity is "Experimental Science,"
 Patent Electric Vise. What is claimed, is time saving.
No turning of hande to to ring jaws to the work, simply one sliding movement. Capital Mach. Tool Co., Auburn,
N. Y.
 Broadway, New York.
Send for new and complete catalogue of Scientific
and other Books for sale by Munn $\&$ Co., 361 Broadway,

Mivertanuis

HINTS To CORRESPONDENTS

(5477) C. A. D. writes : 1. I want to
make a shocking coil strong enough to hold down three or four men. How much wire, what size, and how is it
wound Where can I get full description and mode of wound ? Where can I get full description and mode of
construction of such a machine? A. For powerful in
duction coils we refer you to our SUPPLEMENT, Nos. 160 , duction coils we refer you to our SUPPLERMNT, Nos. 160 ,
2ag and 569 , which
2ive full descriptions and illustrations. 2. nave 569 , which give bitery fuld descriptions and illustrations.
anth a porous cup; the cup
is filled is filled up with a black material, a carbon is in the cen-
ter, there are two little holes in the surface of the black, ter, there are two iittle holes in the surface of the black,
pitch-like covering. How is said battery charged ? Can I convert it into a Bunsen battery? A. The battery is a
Leclanche cell. To charge use a saturated solution of sal ammoniac. It would answer as a Bunsen if the porous cup was cleaned out and a larger amalgamated zinc sub-
stituted for the rod. . I I have an English regegimental flute stituted for the rod. 3. I have an English regimental flute
with in iory head, the ivory is cracked. Do you know
on make it look all right? A. We quote following from the
"Scientific American Cyclopedia of teceips: " Dissolve 1 part of isinglass and 2 parts of white glee in 30 parts of water, strain and evaporate to 6 parts. Add one.thirtieth
part of gum mastic dissolved in $1 / 2$ part of alcohol ; add part of gum mastic cissolved in 12 part of alcohol ; add
1 part of zinc wwite. When rexuired for use warm and
1 shake up. B. Moisten thoroughly a small quantity of
very finely powdered quicklime with white of egg to very finely powdered quicklime with white of egg to
form a paste. Use at once, clamp parts firmly together and leave for 24 hours. Use as little cement as possibe
4. What is the difference between electricity generated in a. Wattery and that generated by friction? A. The fric-
tional discharge is of enormously high potential and of low quantity, the battery current is the reverse.
(5478) A. H. B. asks: 1. Is one-half ampere of current forced through the body sufficient to
canse death? A . The fatal effects of electricity on the canse death? A. The fatal effects of electricity on the
human system depend on the nature of the discharge.
An alternating or pulsatory current from a dynamo or An alternating or pulsatory current from a dynamo or
passed through a coil is particularly fatal, unless the frequency of the alternations is very high. Thus half an ampere may not be injurious, if from a storage battery
or if of great steadiness. 2. How high does the voltage have to be to force that amoent lirough the body? If
the quantity of current is kept low enough, will a very the quantity of current is kept low enough, wira very
high voltage passed through a person do ony harm A.
A high voltage with a very small quantity will kill. A high voltage with a very small quantity will kill.
One-half ampere would require about 500 volts to pass the body, but this may vary greatly. 3. IIs electricity
magnetism in motion? A. No. Magnetism is theoretimagnetism in motion? A. No. Magnetism is theoreti-
cally due to circular currents of electricity, the planes of the circles at right angles to the axis of magnetization.
4. Has the electric pressure on the earth ever been esti4. Has the electric pressure on the earth ever been esti-
mated, or in other words, how high is its voltage above
the the zero point? A. The earth's potential is arbitrarily
taken as zero. We have no reliable figure as to its absolate potential. W. Does gravity act as a conducting
medium for the transmission of heat from the sun to the medium for the transmission of heat from the sun to the
earth ? A. . Gravity does not act as deseribed. 6. Does
the heat we receive from the sun have any return circuit? the heat we receive from the sun have any return circuit?
If so, does it return in the form of heat ? A. No return
circuit for heat can be deduced. An equalization of tem-
perature of all objects is the tendency of the universe.
(5479) E. H. H. asks for;the method and guantity of foreign material employed in the burning of copperas for making red oxide. Also the kind of reto
to be used and the manner of constructing the same. The following are two methods : 1. Green sulphate of
The ron is calcined until the water of crystallization is ex vapors escape. It is cooled, washed with water until the latter has no acid reaction, and is dried. 2. To 25 parts of green sulphate of iron 11, parts common salt are added.
The mass is mixed, calcined and treated as above. For The mass is mixed, calcined and treated as above. For
the finest product a second calcination is given. Somethe fin est product a second calcination is given. Some
times a small quantity, 2 or 3 per cent only, of salt is added -sometimes a little sulphur. For the calcining, if the acid is to be saved, cast iron stills are sometimes used with
condensers. The usual plan is to do the calcining in Several muffles may be built into one arch or chamber ike coal gas retort furnaces.
(5480) L. A. writes: I have now been a and supplimment, for over 15 years, and I read in them casionally of a new formula for platinotype printing able yet to find an eassy way of producing potassium
chloro-platinite. A. Platinous chloride is first made by chloro-platinite. A. Platinous chloride is first made by
heating platinic chloride to about $200^{\circ} \mathrm{C}$. (392 y passing sulphurous acid gasthrough a solution of planic chloride. Platinous chloride is insoluble in water atter acid is added potassium chloride in solution. For 196.7 parts of metallic platinum or for 3387 parts of pla tinic chloride $149 \cdot 2$ parts at least of potassium chloride are needed. On mixture, the double salt potassium
chloro-platinite is deposited. See Fownes' "Chemistry," p. 466,467 .
(5481) F. P. R. writes: I have a store window about 11 feet high and 6 feet wide, which during the winter is covered with frost. I want an ap-
plication which will keep my window clear. A. The plication which will keep my window clear. A. The
cause of frost on windows should be removed, either by keeping the air in the store so dry that its moisture will not condense upon the cold glass or entirely inclose
the window from the inside air and give the inclosed the window from the inside air and give the inclosed
space a free ventilation from the outside by means of two or more pipes at bottom and top so arranged with
hoods as to keep out rain and dust. In freezing weather hoods as to keep out rain and dust. In freezing weather
the ventilation will allow the dry outside air, to circulate behind the glass, and thus prevent the precipitation of moisture by contact with a colder surface. In moderate
weather the ventilators may be closed to keep out dust.
(5482) L. H. asks the process of making the ware called copper oxide. What I mean by copper
oxide (I am not positive if that is the right name) is a kind of deep colored red or polish which is put on copper copper coloring is termed royal copper from its intense copper coloring is termed royal copper from its intense
red color. It is produced by dipping in a solution of 2 of water. or by boiling the copper articles for 15 minutes in a strong solution of tartar and water.
(5483) L. E. L. writes : If a 1 horse battery, will a 3 horse power motor require three times
as many cells, or will the zincs and carbons in the fifty ells have to be enlarged, or both? A. The battery mus be enlarged as suggested, and the result can be reached in
ither way spoken of, according to the winding of the either way spoken of, according to the winding of the
motors. But if the plates are much enlarged, the cells hould be also, as more liquid will be required to main-
(5484) A. F. H. informs us that the article on the German search light which appeared in No.
10 of the current volume of the ScIENTIFIC AmERICAN is error in stating that the current was not furnished to all of the lights. He states that all four of the lights were
in operation most of the time, and that two more were added, which were also supplied with a current when (5485) T. C. K. asks : 1. How many ascend in the air to the height of about 800 feet with 250 pounds weight? For the balloon there is no gas used,
buthot air. How much heat is necessary? What is the buthot air. How much heat is necessary? What is the
best fuel ? A. Balloon should contain 12,000 cubic feet, in which the air should average 250° Fah. with the at nosphere at no. Alcoho is makesno smoke. See also Scientipic American
(5486) P. H. W., Sandy Hill, writes Please tell me whether it is safe to tirn slops and waste
water from kitchen sinks into wells near residences. Water from kitchen sinks into wells near residences. families with water, but we have water brought into the village of good quality, and many parties have discarded
the use of their wells and have the village water brought into their houses, and turned the waste from their sink into the wells. These wells are covered up. Will the
natural currents through these wells carry off or purify natural currents through these wells carry off or purify
these slops, or will the water in them be contaminated and send up through the waste pipes a bad stench, sub-
jecting the family to diphtheria and other diseases not jecting the family to contemplate? In my case the well is covered down some 8 feet below the surface. We find living wa 14 feet, soil is sandy and porous, water usually very
good, but our hydrant water is cheap and of first quality, o we are making the change in general. Now, can I turn waste from my sink into the well with impunity? Object is to get rid of frost. The land is so level is the
difficult to get rid of the waste. Water stands on the op of the ground in low places in wet seasons for week at a time. Usually when digging to set fence posts in
early spring we find living water. A. The discharge of house waste or sewage into the wells of a town is a mos
dangerous expedient in the change of the method of water supply. What would be a convenience to one
household might be poison to a neighbor, or a scourge of typhoid fever or diphtheria. The well water belongs to a constant movement toward a lower level or toward the
carried along with the subterranean current crossing the
wells of neighbors and contaminating their water. Thi wells of neighbors and contaminating their water. This
effect would be strongly developed in the sandy subsoil of your town, and has been proved by analysis to infect large districts on the drainage side of towns. The increased use of water induced by a water works largely
increases the sewage, and a town soil where no provision is made for sewersj soon becomes saturated with sewage
and its malarial miasma. 'This is no fancy idea, but a and its malarial miasma. This is no fancy idea, but a
stern reality in many towns and cities that, after epistern reality in many towns and cities that, after epi-
demics have afflicted them, have reluctantly adopted sewerage system. We advise you to keep your sewage
in shallow cesspools until all have discarded the use of wells, then if necessary use the wells until a sewerage can be made.
(5487) G. M. B. asks a method of find ing the circumference of an ellipse, given the major and
minor axes, also to find the major and minor axes, give minor axes, also to find the major and minor axes, give
the circumference and the ratio of the two axes. A. Fo the circumference of an ellipse, multiply the square root of half the sum of the squares of two diameters by $3 \cdot 1416$.
For example an ellipse of diameters 4 inches and 2 inches, then $\frac{4^{2}+2^{2}}{2}=10$, and $\sqrt{ } 10=3 \cdot 16+, \quad$ and $\quad 3 \cdot 16+\times 3 \cdot 14=$
$9 \cdot 9224^{\prime \prime}+$. By reversing the process as above for ob
taining the diameters with a fixed ratio, the formula wil be illustrated as follows:
${ }^{9.9224}=$
$3 \cdot 14-16+$, and $3 \cdot 16^{2}+=10 \times 2=20$, which is th sum of the squares of the two diameters. The ratio of which is one of the dameters. Then $20-16=4$, th square root of whichis 2 , the other diameter. In the same may be assigned between the limit of a circle and a (5488) J. McB., Pa., asks : Please describe this bug, found in our bed. It stung both my wif and me. There has not been a bed bug in this house
for ten years. A. Reply by Professor C. V. Riley. - The insect sentis one of the tortoise beetles commonly known as the mottled tortoise beetle (Coptocycla guttata). This upon the morning ylory and other allied plants. Its larva is a peculiar oval, flattened, spiny creature, pos-
sessing, in common with those of other members of the family Cassidae, two long spines which are recurved ove the back and carry the excrement, disguising it so that it would hardly be taken for an insect. In common with many other small beetles, this little fellow can pinch the
skin of human beings with its jaws, and will do so under exceptional circumstances, but it possesses no poison It is probable that morning glory vines grow in the im mediate neighborhood and that this little beetle sough the house for warm and comfortable hibernating quarters. The tortoise beetles are characterized not only
by their having the general form of a tortoise, but by the by their having the general form of a tortoise, but by the
brilliant golden and metallic coloring which they often brilliant golden and metallic coloring which they often
present.
(5489) C. S. E. writes : 1. I wish to light a room about three nights in a week and about three
hours each night, with a four candle power ruby colored hours each night, will you please tell me through
your valuable paper which would be the cheap-
est. To run it with gravity batteries (if so, how many cells? or to run it with a storage battery how many cells of storage battery would it require each cell having but two plates eight inches by twelve,
and the number of cells of gravity per cell of storage A. If you use a battery, a storage battery is the only suit
able one. Four cells would answer of size stated. Fo charging use at least ten gravity cells in series. If these were paralleled by one or two more sets of ten, the charg-
ing would be much quicker. 2 . Also where above lam can be obtained? A. Address the Edison Lamp Com pany, Harrison, N. J. 3. Can the amperage of a battery
be found by measuring the amount of water it will electrolyze in a given time? A. Yes. 4. Is the amount electro lyzed affected by the conductivity of the water? A. The
amount for given E. M. F. is so affected because increase of conductivity increases the amperage
quantity per ampere is always electrolyzed.
(5490) J. H. T. asks : 1. Can water con fined in a glass vessel be charged with electricity? A only. The water may be charged as regards its surface both next to glass and the upper air-water surface. 2 If so, how much electricity will one gallon of water re
ceive and how long retain it ceive and how long retain it? A. This depends on shap
of containing vessel and on specific inductive capacity of the dielectric, on its thickness, and on the relation of the charged surface to the oppositely charged. How can
I do it? If with galvanic battery, of what size? A. Paste a strip of tin foil around the outside of the vessel
Connect one wire to this, the other to the water. The charge will be exceedingly slight; with a galvanic batter charge will be exceedingly slight; with a galvanic battery
it will be hardly recognizable. 4. What are the best publications on electric therapeutics and electric baths?
A. We recommend and can supply you with the following books relating to the subject you refer to: Morgan"
"Electro-Therapeutics and Physiology," price $\$ 6,50$; "Electro-Therapeutics and Physiology," p
Hayes' "Electro-Thermal Baths," price $\$ 1.5$
"Electro-Therapeutics," price $\$ 2.50$ mailed.
(5491) M. W. H. says: Will you be so ind as to tell me the origin of the idea that a dog tro ng over a bridge will do it (the bridge) more harm tha
regiment of soldiers marching over it? Is there an foundation for that idea? If so, why? I see no reason why it should be the case, but have heard public speakers use it to point a moral. A. The idea of the dog trot in sympathy with the vibration of bridges is very old, and
came from the observed fact that a dog trotting on an unbraced or light bridge sets the whole bridge to vibrating, which is a source of danger. A body of soldiers does
the same when marching to time, but the military rule is the same when marching to time, but the military rule to break step when crossing a briage; then there is no
synchronal relation between the irregular steps and the rhythm of the bridge. The moral is very slen
only points to greateffects from small causes.
(5492) I. V. R. writes: In October 14 issue you say in reply to question 5424 that 6 storage cells
will run a $1 / 2$ horse power motor 6 hours per day. 1.

What are the dimensions, weight, and the cost of one
of those cells ? A. The general dimensions of a single of those cells? A. The general dimensions of a single ell of such batteries as we referred to are: Floor space $1 / 2 \times 11$ inches, height $161 / 2$ inches, weight 125 pounds
You can use perhaps a slightly smaller cell. For coet and fuller particulars address the Brush Electric Com pany, Cleveland, Ohio. 2. Could the motor be used in pany, cleveland, ohio. 2 . Could the motor be used in
any way to recharge the storage cell? If so, what time any way to recharge the storage cell ? If so, what time
would be required to charge the 6 cells with $1 / 2$ horse power motor for a 6 hours' run ? A. If the motor has
cast iron fields, or if the fields retain enough residual magnetism to charge themselves, you may run the moor as a dynamo and recharge the cells in about six ours. If the motor run as a dynamo does not give
(5493) A. R. S. writes : If a boat 16 feet ong, 54 inches beam, weighing 400 pounds, carrying six ersons, makes 7 miles an hour, using a a asoline engine,
what is the highest speed that a boat 16 feet long, 40 nches beam, weighing 250 pounds, carrying 3 feet long, 40 using the same engine but increasing the pitch of screw to absorb the full power? How much increase in pitch of the screw would the difference in the boats allow? If \mathbf{I} start with the light boat from Omaha, Neb., down the
Missouri river and Mississippi, up the Ohio, through the Missouri river and Mississippi, up the Ohio, through the
canal, down the Maumee, through Lake Erie, down iagara River to the St. Lawrence, how many locks would I pass and do they charge to go through them?
If so, how much? Would they object to my carrying If so, how much? Would thev object to my carrying
the boat around the locks? Would I receive a license make the trip? The company says no licenses
re required with their engine. A. By increasing the pitch of the screw about 25 per cent in the lighter boat, you may possibly make between 8 and 9 miles per hour.
You require no license. We do not know the number of locks or toll.
(5494) H. A. W. says : I wish to make a mixture for inhaling for catarrh and bronchial trouble, to contain oil of tar, camphor, etc. Can you give me the
proper proportions, and if there is some other ingredient that will be good? A. Mix together $1 / /$ fluid ounce ncture of cubebs and 20 drops liquid cabolic acid. Add he mixture to $1 / 2$ pint of hot water in an inhaier. Or
eat tar with a litcle carbonate of potash over a spirit amp.
(5495) H. E. M. says : I have frequently oriced a fine thread similar to a cobweb attached to in the morning proximity. They are more noticeable hem along the rails of the railroad fastened to the upper nd lower flanges. They appear to be the work of an hreads flying through the air more during the fall of the year. Can you please exrlain? A. The floating fibers in the air and the fibers on fences, rails, and bushes are the product of spiders, made more apparent by the falling
dew attaching to and enlarging the appearance of the (5496) W. E. S. writes : I have a well 22 feet deep and 100 feet from my barn. I have a 1 inch pipe laid from well to barn connected with a single action
force pump, but I fail to get water. Will you please tell me what the trouble is? A. Your suction pipe should e perfectly air tight; have a foot valve and strainer on charged with water at the highest point or through the pump, which if a good one with moderately tight piston and valves should pull the water easily, supposing that
the pipe is laid straight or without undulation that would the pipe is laid straight or without undulation that would draw on an elastic air cushion instead of solid water
(5497) M. S. E. writes: Is there any cheap method of bronzing or otherwise preventing steel oools, such as gauges, straightedges, etc.., from rusting in his moist climate? A. Bronzing tools in a manner to prevent rust is not practicable with the users of tools. A il free from moisture and varnish with boiled il and thoroughly dry in the sun or an oven not hot
nough to draw the temper. The varnish will only wear off in spotswhere the tools are handled. Another way, if desirable to keep the tools bright, is to wipe them ften with vaseline.
(5498) E. P. G. says : The bright star Capella in Auriga appeared to change from a bright yellow
or bronze to a violet. One could see the change in the light. The star would look half bright yellow and the
other violet. Colors seemed to pass off on the side next ther violet. Colors seemed to pass off on the side next to the pole. It was the plainest from the horizon to
about one-fifth of the way to the zenith. Is there any about one-fifth of the way to the zenith. Is there any
regularity in the change of color? A. The changeable colors of the stars as you st
(5499) H. R. E. asks : What degree of heat will be required to melt pure aluminum? What dechemically combined as follows : Hygroscopic water 0.74 ; combined water, $16 \cdot 42$; silica, $40 \cdot 80$; alumina, $35 \cdot 37$; ferrous ovide, $3 \cdot 07$; lime, $0 \cdot 30$; magnesia, trace; potash, $0 \cdot 56$;
soda, $0 \cdot 46$. A. Pure aluminum melts at 600° according to Pictet and at 850° according to Van der Weyde, auhorities not agreeing upon the exact melting point. The
(5500) Amateur writes: I wish to silver plate with a battery, and from motives of economy could
use some silver solder cuttings 80 to 90 per cent pure to make the cyanide, only I fear the result would not be positive pole, only pure silver will be eliminated and deposited at the negative. Failing this being the case, how can I purify the silver quickest, and wet or dry? A. Disolve in nitric acid. Add just enough sulphuric acid
o precipitate the lead as sulphate. Filter or decant (5501) Library Harvard College : Can you tell us the composition and method of employment
of a cement for joining glass, that is not affected by acids alcohon? Such a cement is used in Germany in making boxes of plate glass. A. Use Canada balsam; heat he glass slightly before applying. If the balsam is thick, thin with benzole. wie the pieces together apply clamps so

 contenplating the securing of patents, either at home or
bhoan, are invite to write to this, office for prices
whicl are 10 in in accordance with the times and our ex-

INDEX OF INVENTIONS

For which Letters Patent of the

November 7, 1893, AND EACH BEARING THAT DATE

 Axle I lubricating device, car wheel, $\dddot{\text { Ba }}$. Pailfrey
Back band, J L. L Campbell
 Battery systems, polarity switch for secondary,
Beads in mhoulds, device for forming, i. F. Har Beam or girder support, F. Cavailaro

 mpand, (r) automatic, recording, J. J. To

Cultivator
Curbing
at

Cuter Dite ead and bit, rotary, A. A. Priode Dite Potato digger.

Ele Ele Ele Ele Ele

Elevator. See Grain elevator. Hy Haulic ele: 50

 Fuel burner, fluid, F. W. Flanner................
Furnaee. See Kinfurnace. Smeiting furnace. Gaa

步男

 Knitting machines, automatic controiling mee
Knob ansmact or circular, Reeid \& stevenson (r).....

\qquad

Matrix lines, justifyin. Matrix making machine, . Sears.. Mechanical movemont, We. Wars.

 Canadian wute its may now be obatiad of the in-

Phovertisements. Inside paze. enchantinerviontes.

 Patent Foot Power Machinery

WATER-TIGHT MASONRY D AM,

PRESS, S3
Mane sexspaper press, s, sak

Delaney's Metallic Gaskets

PHONOGRAPHS for sale.

North American Phonograph C_{0} 30 Park Place, $\begin{gathered}\text { New Yorks. }\end{gathered}$ Masonic Temple Bldg.,
SCIENTIFIC AMERICAN SUPPLE-

HYPNOTISM．its Uses and Abuses．The nei
GATES ROCK \＆ORE BREAKER

WANTED

 Before Fon Order and Subcribe to Your

 The McCONNELL Llemf Pmof Fillars REMOVE MICROBES
All Kinds of Disease Germs．
Is a Fiter and Cooler Combined． No other gravity filter does this The Mccoundell Filter Co． THE MODERN MARINE BOILER． By A．B．Willits．U．S．N．Description of the principal
features or the boilors of the United States man－of－war
New York witl a plea toinventive inds for the pro－
ductiont witl a duction of a type of boiler which shall do away with the
necessity of the present enormoust large and heavy
shells and preser alighter substituterat will per－
form the dutie sof both envelope and heatin surface

FREE

and in fold pley

W．L．DOUGLAS \＄3 SHOE contioron． Best Calf Shoe in the World for the Price

 W．I．Douglas＇name and price is stamped on the bottom before theyleave the factory to protect you against high prices．Dealers who make
 shoes of the same quality as \mathbf{W} ．L．Douglas $\$ 3.0$ ．So Shoe．If you wish
to get the best shoes in quality for your money it will pay you to examine
W．D．Douglas Shoes when next in need． Sent by mail，Postage
W．Whe Free，when shoe dealers cannot supply you．Send for catalogue with
full instructions how to order by mail．
W．L．DOUGLAS，Box 551，Brockton，Mass．

 HARRISON CONVEYOR！

Study Electricity at Home

Rubber Rolls and Wheels．

＂THE DENSMORE＂

After thorough trial in competition，was awarded the con－ tract to supply machines to the U．S．WAR DEPARTMENT and its bureaus for the ensuing year，making another notable victory for the＂W orld＇s Greatest Typewriter．＂
Densmore Typewriter Co．， 202 Broadway，New York

 MAGEYQUR－MECHANICAL ENGINEER OR DRAUGHTSMAN；

$\left\{\begin{array}{l}\text { AYE ENTS } \\ \text { SAAEATSTRADEMARKS }\end{array}\right.$

CONTRACTS

Model \＆Experimental Work．

VOLNET w．MASON \＆co． PRICTION PDLLLETS，CLDTCCHES，and LLEVATORS

米 THE＂MUNSON＂TYPEWRITER．米

 Easily operated，with Universal key Board．
INTERCHANGEABLE STEEL TYPE WHEEL，

Ilew＊B0oks

Bookkeeping．Expert bookkeeping and＂100 Help－

 Locomotive Catchiviv．Containing nearly 1,300

 Dyeing，A manual of dyeing；for the ne of practi－

 Mine Foreman＇s Handbook or Practical and

 Ore Deposits or the United States．ByJ．F．
Kemp．8vo，cloth．
Illustrated．
1893． Oruament．A Handbook of Ornament．Systematio－
all arranged for the use of architects．deocratss．hant
han

戸卫戸コ

Publishers of the＂Scientific American，＂

COTD FORGED PRODUCT． Forged Wood Screw

american screw co． provionser，r．i．
HERCULES rfibe wall plaster．

 （10）सlol
 WORLD tion，A very valuable and comprehensive paper on the
subject，giving full descriptions and illuutrations of the
various exhibition buildings and portraits of the officials

WATER MOTOR $\$ 5$ WILL RUN YOUR
EWING MACHINE SEWING MACHINE
other Light Machiner
week＇s work done in a day
 For Printing Presses，Lathes
Grindstones，Coffee Mills，Ice
cream freezers，Churns，Chist－ Patented Aprite，sream freezers，churns，christ
mas Gardens，Washing Machines，ete．No．2，pricesio
THE BOLCIANO WATER MOTOR CO．
NITTING MACHINERY s－ Knitted underwear is in vogue．The best
machinery for its manufacture，such as SHIRT MACHINES，SLEEVERS， BAR STITCH MACHINES，etc． made by SCOTT \＆WILLIAMS，
2077 E．Cumberland Street，
tablished 1865 ．Philadelphia，Pa．，U．s．
Scientific Pook Catalogue Our new catalonue containing ver lio pages，includ－
ink work on more than tfy difirent subjects．Will be mUNN © CO．，Publishers Scientitic American．

CIGAR CUTTERS．
sterlimg slver．

IParsons Horological Institute． earn the Watch Trade PARSONS，IDE \＆CO．Circular free． 302 Bradley Ave．，PEORIA，ILL． RULES FOR $\underset{\text { Adopted by the National Electric }}{\text { SAF I R I R I N G．－－}}$ Adopted by the National Electric Light Association at
its fourteenth convention held at Montreal，Sept． 7 －10，
ing1．

KODAKS

Eastman Kodak Company，

PATENT FOR SALE
of comfort and cleanliness of milk cattle．Is simple，
durable，and can easily be adjusted to almost any crib． The U．S．．Great Britain and Canada letmors patent crib
The
sale．M．SCHEMB RI， 396 Van Buren St．，St．Paul，Minn

ASTRONOMY

Poole Bros．Celestial Planisphere
Celestial Handbook just published．
Fordescriptive circular address ＂OLD RELLABLe incubator

The Smith Premier Typewriter

 Preme tear pertea Perfect and Permanent Alignment．Easiest Running，and Nearly Silent． The Smith Premier Typewriter Co．，Syracuse，N．Y．，U．S．A．

H．W．JOHNS M＇F＇G CO． ASECSTES
ROOFING，LIQUID PAINTS，ASBESTOS MANUFACTURES， NON＝CONDUCTING AND INSULATING MATERIALS，

INTERNATIONAL CONFERENCE ON Aerial Navigation．By O．Chanute A brief sur rey or

SINTZ GAS ENGINE CO． GRAND RAPIDS，MICH．，

LIGHTNING CONDUCTORS．－A

E

 NGINE CASTINGS
OIL WELL SUPPLYGO．

ARC＊\＆＊INGANDESGENT＊LIGNTING
 44 Broad Street．．．．．．
773 and 175 Alams
Fitth and Race
$\mathfrak{W z t z}$

The Amarican Bell Taldahame Companiy

125 MILK ST．，BOSTON，MASS．
This Company owns the Letters Patent No．186， 787 ，granted to Alexander Graham Bell，January 30．1877，the scope of which
has been defined by the Supreme Court of the United States in the following terms ＂The patent itself is for the mechan－ ical structure of an electric telephone to be used to produce the electrical action
on which the first patent rests．The third claimi the first patent of a diaphragm，made of a plate of iron or steel，or other material capable of in－ ductive action；the fifth，of a permanent magnet constructed as described，with a coil upon the end or ends nearest the plate；the sixth，of a sounding box as de－ scribed；the seventh，of a speaking or hearing tube as described for conveying the sounds；and the eighth，of a perma－ nent magnet and plate combined．The claim is not for these several things in
and of themselves，but for an electric tel－ and of themselves，but for an electric tel－
ephone in the construction of which these ephone in the construction of which these things or any of them are used．
This Company also owns Letters Pa－ tent No．463，569，granted to Emile Ber－ liner，November 17，1891，for a Combined Telegraph and Telephone；and controls Letters Patent No．474，231，granted to Thomas A．Edison，May 3，1892，for Speaking Telegraph，which cover funda－
mental inventions and embrace all forms mental inventions and embrace all orms
of microphone transmitters and of car－ of microphone
bon telephones．

エエエコ

ESTABBIISHED 1845
The Most Popular Scientific Paper in the World W3．00 a Year，Including lost
Weekty－52 Numbers a Year．
This widely circulated and splendidy illustrate paper is published weekly．Every number contains six－
teen pages of useful information and a large number of teen pages of useful information and a large number of
original engravinss of new inventions and discoveries． representing Engineering Works，Steam Machinery New Inventions，Novelties in Mechanics，Manufactures
Chemistry，Electricity Telegraphy，Photography，Archi themistry，Electricity Helegraphy，Photography，Arch
tecture，Agriculture，Horticulture，Natural History
etc．Complete list of patents each wee etc．Complete list of patents each week．
Termis of Subscription．－One copy of the Scien TIFlC AMERICAN will be sent for one yeat－52 numbers－ postage prepaid，to any subscriber in the United States．
Canada，or Mexico，on receipt of three dollars by the Canada，or Mexico，on receipt of three dollars by the
publishers；six months，$\$ 1.50$ ；three months，$\$ 1.00$ ． publishers；six months，$\$ 1.50$ ；three months，$\$ 1.00$ ．
Clin bs．－Special rates for several names，and to Pos Masters．Write for particulars．
The safest way to remit is oy Postal Order，Draft．or Express Money Order．Money carefully placed inside of envelopes，securely sealed，and correctly addressed
seldom all letters and make all orders．drafts，etc．，payable to
MUN \mathbb{E} CO．， $\mathbf{3 6 1}$ Broadway，New Yoric．

Scientifix Smeriawt Sujplement This is a separate and distinct publication from＇The
SCIENTIFIC AMERICAN，but is uniform therewith in size and accompanied with translated descriptions．＇TH SCIENTIFIC AMERICAN SUPPLEMENT is published week sents the most recent papers by eminent writers in all
the principal departments of science and the Useful the principal departments of Science and the Useful
Arts，embracing Biology，Geology，Mineralogy，Natura History，Geography，Archæology，Astronomy Chemis Steam and Railway Engineering，Mining，Ship Building， Marine Engineeiring，Photography，Technology，Manu－
facturing Industries，Sanitary Ingineering，Agriculture Horticulture，Domestic Economy，Biography，Medicine etc．A vast amount of fresh and vainable and Manufactures at home and abroad are illustrate and described in the SIPPLEMENT．
Price for the SUPPLEMENT for Price Cana，and Mexico，$\$ 500$ a year the United States， SCIENTIFIC AMERICAN and one copy of the SUPPLE－
MENT，boih mailed for one year to one address for $\$$ \％i． Single copies， 10 cents address express money order，or check．

> Building Ellition.

The Scientific American Architects＇an
RULIDERS＇Edtion is issued monthly．$\$ 2.50$ a year Single copies． 25 cents．Thirty－two large quarto pages，
forming a large and splendid Mazazine of Architecture richly adorned with elegant piates in colors，and with
other fine engravings；illustrating the most interesting examples of modern architesul allied subjects．
A special feature is the presentation in each numbe of a variety of the latest and best plans for private resi－
dences，city and country including those of very mod erate cost as well as the more expensive．Drawings in Descriptions，Locations，Estimated Cost，etc．
The elegance and cheapness of this magnificent wor have won for it the Largest Circulation of any
Architectural publication in the world．Sold by all news－
dealers $\$ 250$ a vear． 2．50 a year．Remit to
MUN
COO．．Pu

PRINTING INKS．

