
a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

THE OTIS ELEVATORS AT THE COLUMBIAN EXPOSITION.
The display of elevators at the World's Columbian Exposition is very large and includes practically every type of elevator that is used. Probably a dozen different manufacturers make exhibits. The largest and most noticeable display is made by Otis Brothers \& Company, of New York, who not only have a large and fine exhibit in the Transpor tation building, but also have many elevators in actual use throughout the Exposition. Three elevators are conspicuous features in the space occupied by the exhibit of this company, and these are in constant use, carrying passengers to the gallery and return. In the central tower of the Transporta installed. These were designed primarily to carry people to the roof promenade and restaurant, but after the burning of the cold storage plant the Exposition management closed the roof to the public, and since then only two elevators have been used, and these simply to carry people to the gallery. In the Administration building there are eight Otis electric passenger elevator engines. In the Manufactures and Liberal Arts building there are four electric elevators which carry people to the roof promenade, while in the Casino building there are two hydraulic passenger elevators, one hydraulic freight elevator, and two hydraulic direct-acting dumb elevators.
No elevators at the Exposition have attracted so much attention as those in the Manufactures and Liberal Arts building. These have the highest rise of any electric elevators in the world-a distance of 185 feet. The distance, however, seems much in excess of this because the tower in which they run is in the center of the north end of the main aisle of the building, and is open on all sides, as may be seen by examining the illustration on this page.

These elevators are operated by electricity, and represent the latest achievements in the manufacture and operation of elevators, both from a commercial point of view and from considerations of safety. There are four cars in this shaft, but they are run in pairs, so that in reality there are only two plants, which are attached to opposite sides of the drum, and which have no independent counterbalances, as the cars balance each other. Each car has a carrying capacity of fourteen people, and there is an attendant in each car, although the operating is done in one car for each set; that is, the wheel-operating device in one car controls not only the operation of that car, but also the one which counterbalances it. The cars are run at stated intervals and are started at a signal, at which the doors at the top and bottom are closed. The electric motor which operates each machine is of 15 horse power capacity and derives its current from the 500 volt Expopower capacity and derives its current from the 500 volt Expo-
sition power circuit. The speed of the elevators is 200 feet per
minute. The machinery is installed in the basement of the building, immediately under the elevator shaft. The arma ture shaft of the motor is coupled direct to a worm shaft by insulating coupling. This shaft engages two gear wheels, which in turn engage each other. The worm shaft is double being both right hand and left hand, so that there is no end being both right hand and left hand, so that there is no end
thrust, this being taken up between the two wheels. The electric controlling device is a solenoid coil, which is in the main armature circuit, and which acts on a core rigidly attached to the rheostat brush, thus automatically controlling the amount of resistance in the armature circuit. The motor is of the Eickemeyer type. The armature makes 800 revolutions per minute and the speed is readily reduced by means of the worm shaft. The motor is compound wound and so arranged that when the operator throws on the current it uses both the shunt and series fields; but when the load is started the series field is automatically cut out, leaving the shunt field to control the speed. The brake device is of the iron strap pattern, faced with leather, applied automatithe iro
cally.
A great many electric elevators constructed on this same general plan, except so far as the counterbalance is concerned, have been installed by the Otis Company. The general plan have been installed by the Otis Company. The general plan
for counterbalancing is that the weight of the car is almost counterbalanced by a weight attached directly to the car while one-half the maximum load is counterbalanced by another weight attached to the opposite drum from the main hoisting cable ; the result being that the motor is not called upon to work except to one-half of the rated capacity of the levator These elevators are provided with an automati evar. These an automati of electricity to elevator use has been very successful, as is shown by the efficiency of these elevators at the Exposition, and it has been in use long enough and has been tested thoroughly enough to prove its special advantages. It has advantages over steam on account of its economy under eneral conditions, smoothness of operation, and freedom from dust, noise and heat. Neither does it require the attention an engineer or other skilled attendant As compared to ydraulic elevators, the electric elevator does not opa much, space, is cheaper in first cost, and in ordinary use is probably cheaper of operation, as it calls for only as much energy as is required to manage the load, while the hydraulic elevator uses so much water regardless of the weight of the load, and works to its fullest efficiency only when every load is a maximum one.
There are conditions, however, to which steam and hydrauic elevators are especially suited, and the latest achievements n the construction of these elevators can be seen in the exhibit of the Otis Company. The elevators in the tower of

the great otis elevators in the LIBERAL ARTS BUILDING
the Transportation building have two compound Worthington pumps, which pump water into 20,000 gallon pressure tanks. A hydraulic pressure of 90 pounds is used. The cars are snpplied with all safety devices and with an automatic stop, so that they stop at the top and at the bottom independently of the operator without shock or jar. This is accomplished by means of a sleeve, which gradually closes the port as the main piston approaches the end of the cylinder, thus controlling the egress of water and bringing the car to rest gradually. Many of the cars exhibited have inclosing doors which are operated automatically by compressed air.
Steam elevators are used largely in factories and elsewhere where steam is to be had readily. The latest improvement in the construction of steam elevators, and which is shown in this exhibit, is the compound. This has great economy in operation, and the lowering of heavy loads is controlled without the use of the brake. These elevators, like all other Otis elevators, are supplied with safety devices, which stop the car and lock it firmly to the guides should any undue speed be attained from any cause whatsoever in descending. The elevator shown in the foreground of the picture of the exhibit is one of these compounds. The two shown in the rear of the space are electric, so that these in the exhibit space and those in the tower illustrate the three types of elevators manufactured by this company.
tured by this company.
This company has installed several elevators which are of more than passing interest, as they show what a degree of perfection has been attained in this direction. The elevators in the Eiffel tower at Paris are of this company's make. At Weehawken, New Jersey, are three hydraulic elevators, each car having a capacity of 135 people or 20,000 pounds, and yet make a speed of 200 feet per minute. This is probably the largest elevator plant ever installed. The company is now installing a large plant in the tunnel under the harbor at Glasgow, Scotland, which has six lifting and six lowering elevators, each of a capacity of 12,000 pounds. This plant will work at a pressure of 800 pounds. Each of these elevators will be equipped with the so-called Thorpe valve. By use of this device a certain quantity of water is called for when the load is under 6,000 pounds, and a double quantity when the load exceeds 6,000 pounds. Another plant that the Otis Company has installed and which embodies many principles of the elevator is the inclined railway in the Catskill Mountains, which is 7,000 feet long, has a rise of 1,600 feet and carries 100 passengers with their baggage the entire distance in eight minutes.

Cooking by Gas.

Briefly enumerated, its advantages are :
It is always available at a fixed price; avoiding the necessity for the troublesome and tedious distribution of wood and coal, and saving the rent of a cellar and loss of money from market fluctuations.
Storage of fuel in the immediate neighborhood of the kitchen fire being unnecessary, the use of gas diminishes t'je risk of fire in a house.
The full heating power is developed from the moment of lighting a gas fire; thereby saving the time and labor spent on fire lighting, which in the case of liquid fuel is accompanied by danger, and accomplishing the work in the shortest possible time.
Increase or decrease of gas consumption according to the requirements of the moment; taking the place of the inevitable stirring of the fire, or removal of vessels from it.

The consumption can be controlled by the meter, so as not to exceed a certain limit ascertained to suffice for requirements.
It can be used with advantage in small as well as large apparatus; the consumption being exactly proportioned to the work to be done.
Scorching of food during cooking is completely provided against, since each burner can be turned down at any time, and the heat regulated to a nicety.

The radiant heat from a gas fire can be taken advantage of in winter for warming the kitchen, but in summer nearly wholly suppressed.

The retention of the full flavor of food is promoted by gas cooking, through the complete control of the application of heat.

No smoke is evolved from a gas fire, and damage to property, cost of cleaning, and all the inconveniences associated with the smoke nuisance, are avoided.

Perhaps the meanest of all swindlers are those who prey on poor inventors. They look over the Gazette, issued by the Patent Office, every week, and get the names of those to whom patents have been newly granted. Then they write to each one, saying, "We see that you have got a good thing. We know certain parties who will put it on the market, supplying the necessary capital. Send $\$ 20$ to cover the cost of negotiations." The inventor perhaps borrows the money and fowards it by mail. Subsequently he is informed that $\$ 15$ more will be required, and in this way he is worked until nothing more can be got out of him.-The Engineer.

Soxientifir Ammican.

IES'IABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
NO. 361 BROADWAY, NEW YORK.
O. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

 The Scientific American supplement

dif The safest way to remit is by postal order express money yorder
draft or bank check. Make all remittances payable to order of MUNN
co. Readers are specially requested to notify the publishers in case of
any failure delay, or irreaularity in receipt of papers.
NEW YORK, SATURDAY, OCTOBER 28, 1893.

TABLE OF CONTENTS OF

SCIENTIFIC AMERICAN SUPPLEMENT NO. 930.

For the Week Ending October 28, 1893.

II. BIOGRAPB Y.- Brindley, the Famous Engineer.-Notes on the III. CHEMISTR Y.-Flame.-A recent lectue before the British As-
sociation- By Prof SMITHELS, of Leeds. An admirably inter-
esting presentation of the subject....as.
 Thests
of this
 exhibits. -1 illustration.

 X. NAVAL ENGINEEERING.-An Improved Method for Electro-
plating the Bottoms of Vesels.-Protecting a vesels bottom by
tratying a coating of cooper electrolytically deposited. -1 illus-

HOW TO BECOME AN ELECTRICAL ENGINEER.
The Scientific American from time to time is asked by its correspondents for information on the subject of technical education. At the present time especially tre question is asked with reference to electricity and electrical engineering. So much is being done in this field of work, and the importance of the subject is becoming so great, that young men are inevitably attracted toward it. The information sought from us frequently is the address of a school where electric engineering is taught, or what are the best steps for a young man to take to become an best steps for a
electrical engineer.
Sir William Thomson has stated that an educated mechanical engineer requires but a few months study to make of him an electrical engineer. It is fair to assume that the average young man contemplating electricity as a profession, if doing so with any justification whatever, from the force of circumstances nust be a mechanic. If so he has taken the first step in the right direction.
The electrical station of the present day is based or its successful operation largely on economy in the generation and utilization of steam. The finest examples of the steam engineering in this country are supplied by them. The general engineering knowledge must not, therefore, stop with simple mechanics. The student must make up his mind to acquire the fullest possible knowledge of steam engineering and practice. It is not enough to know how to run an engine and boiler, he must understand the theory and construction of prime motors. When he feels that he is a thorough mechanic and thorough steam engineer, it will be time for him to think of completing his education by special attention to the electrical branches. While the theory of the science leads him to the higher mathematics, yet for practical work little more than elementary algebra is required. Our student must study the theory and mathematics of the subject from books. While doing this his practical studies should not be neglected. With his knowledge of mechanics he can construct dynamos, motors, and other objects in the engineering field, as well as galvanometers and instruments of precision. His last and graduating course will be an experience in the actual labors of an electrical station.

Reported Open Water Near the North Pole.
A vessel recently returned to San Francisco from carrying supplies to the whaling fleet in the Arctic Ocean, north of Alaska, reports that one whaler found open water at the mouth of the Mackenzie River, and had followed it in a northerly direction until he reached a point a little above eighty-four degrees, or farther north than the Greely expedition reached. It will be interesting to know whether this report can be verified when the master himself returns to San Francisco.
Four years out of five the ice packs in so heavily between Point Barrow and the mouth of the Mackenzie that it is impossible for vessels to penetrate it, but more frequently there is an open sea off into the northeast from Point Barrow. This direction, however, is regarded as a death trap by the whalers, and is religiously avoided. It is such a trap as De Long deliberately went into after being cautioned in the strongest terms by whaling masters not to be enticed into it. There have been seasons during the past twenty years when this northeastern ice entirely disappeared, and about ten years ago, one whaling master, who was determined to find whales, if any were to be found, took the risk and went in this direction some two or three hundred miles, as he estimated. Even then he did not reach any barrier The water was free from ice, and from whales, too hence he returned rather than risk going farther and stand the chance of the ree closing in on him from behind. But he reported finding considerable driftwood and seeing land birds. This led him to believe that land yet unknown and unexplored was not very far away. Since that time no whaler has explored in that direction until this one reported in the press dispatches. Hence it will be of importance to the scientific world to hear the full report of this voyage.

Scientific Training.

Professor Von Helmholtz, in a recent address to the students of Columbia College in this city, said that the recognized method of scientific work now was collection of knowledge, retention of that knowledge and its communication to mankind. There has been more accomplished by science during the last two centuries than during 2,000 years previously.
Careful observation makes the artist and makes the brilliant scientist. Trace the connection between events and the laws that govern that connection until doing so becomes intuitional. Train the mind so that the strongest impressions will be made by the most im portantevents until this also becomes intuitional. Fol low the advice of scientists of the last two centuries and go on by careful, accurate, complete observation to great discoveries and great successes.

Many fine specimens of ivory tusks are to be found in the exhibit of the Brunswick-Balke-Collender Company. Some of these are quite straight while others are spiral and twisted. A pair from Zanzibar measure 8 feet 4 inches and 8 feet 5 inches respectively in length, and they are remarkably fine mates.

Grand Rapids, Mich., prides itself upon being a furniture center of the earth. There are at present sixtytwo furniture factories in that city, and seventeen of them combined and made up a novel. exhibit in the Manufactures and Liberal Arts building. This exhibit has been of great service to the American public, but more especially so to the foreigners at the Exposition, both because of the fine quality of the workmanship and the reasonable prices.

One of the most attractive sections of the space occupied by this exhibit is a corner fitted up as a sleeping room with fire pieces, each made of bird's eye maple. The set is valued at $\$ 1,000$, and is made up of contributions from four manufacturers. There is a good deal of hand carving on this and most of the other furniture, which attracted the admiration of the French workmen. The many pieces of furniture made of mahogany show that this wood retains its popularity. There are several elaborate folding beds of old San Domingo mahogany. One of these is elaborately trimmed with gold-plated brass ornaments, and comprises, besides a folding bed, a wardrobe, writing desk, chest of drawers, etc. It is valued at $\$ 2,500$. One room fitted up as a dining room is furnished with a dining table and chairs to match, sideboard and side table of rich mahogany, all in coionial style. Another room is fitted up as a sleeping apartment with four elaborately carved mahogany pieces, which are valued at $\$ 1,400$. Most of the furniture is designed on French lines, but is Americanized, as it has strength and solidity added to it, and there is a great variety of designs, as these factories change their styles twice every year -January and July. The furniture shown in this exhibit was taken from the stock manufactured during hibit was taken from the stock manufactured during
the period between January and July last. It is now, however, out of date, new patterns having superseded them.
The only comparatively cheap furniture is the furnishing of a sleeping apartment with a set of three pieces of curly birch. This wood is becoming very popular.

Guatemala gives an excellent idea in its building of the type of houses occupied by the wealthier classes in this and other republics at the South. In the interior court of the building is a fountain and a large display of orchids and other tropical plants. The exhibit is surprisingly large and varied, and is classified in different rooms under the heads of agricultural and natural products, geology, fauna, flora, liberal arts and manufactures. The display of birds and animals is excellent, and in the department of natural products coffee and cabinet woods are the most attractive features. Coffee is sold in a little pavilion adjoining this building, in order to make it popular in this country.
Colombia exhibits more aboriginal antiquities of both pottery and metal work than the other southern republic. There is also shown in the building of this government a collection of insects and brightly colored butterflies. The handiwork of the native Indians is well shown by many specimens of carved wood, wax figures, etc., illustrating traits in every-day life among these natives.
The exhibit made in the department of manufactures in the British section of the Palace of Manufactures and Liberal Arts is interesting. Nearly all the well known manufacturers of high grade china make displays that are not excelled, if equaled, by anything in their line at the Exposition. The display of Royal Worcester ware is very complete and comprises many beautiful vases, dining sets, lamps, etc. The largest piece of this ware ever made is a vase very graceful in design and richly ornamented, and valued at $\$ 6,000$. The display of Cauldon china has attracted particular interest, particularly the set of a dozen plates called the "Evangeline" set, each plate having painted in its center a picture executed by having painted in its center a picture executed by Boullemier, representing an incident told in this poem
of Longfellow's, so that the set practically recites the poem. The price of this set is $\$ 2,000$. These plates have probably been sought out more than any other special work in the exhibit of china. The Shakespeare vase is another popular piece. It stands three feet high, and on the base are four figures
"Poetry." The vase is elaborately ornamented. There are eight panels, a Shakesperean heroine being painted on each panel. This painting is also the work of Boullemier. Still another work by the same artist is the Columbus vase. Doulton, Coalport, Minton, Wedgwood and other well known wares are also represented. A Lambeth vase most elaborately designed, six feet three inches high, is one of the striking pieces. This piece was purchased by the Gaekwar of Baroda. In the Wedgwood exhibit are many beautiful specimens of pate surpate ware and reproductions of the famous Jubilee vase presented to Queen Victoria in 1887.
There is a notable display of reproductions of Irish antique art metal work. Many of these pieces date back from a thousand to fifteen hundred years, and would be considered not only fine but decidedly artistic in the present day, with all the advantages that the progress of the intervening centuries have brought. Among the most interesting things of this display is the collection of gelts, which are the oldest weapons known in history next to stone weapons.
These are made of an alloy of bronze. 'There is also a remarkable well made iron bell called the Bell of St. Patrick, which is believed to be the oldest relic of Christian iron workers.
In the division of household decorations the display of embossed and tapestry wall paper and other draperies is excellent, and as a combination of the various exhibits in this division, there is shown a re-
production of the Hatfield banqueting hall. This room is exceedingly rich in antique and carved oak, tapestries, and other old reproductions. In the section of floor coverings, several rugs are shown which tepresent an amount of handwork which is quite beyond the comprehension of an American. The choicest of these is a small rug which occupies a glass case by itself. This rug is made of silk and each square inch contains over two hundred stitches, each stitch being tied separately by hand. The entire rug represents 400,000 such stitches. It required twenty-eight miles of the finest silk thread to complete this work. Another fabric equally as incomprehensible in the amount of handwork it represents is the finest piece of linen ever made. It is most delicate fabric and contains six thousand threads in the width of thirty-six inches. But in the display of Irish lace is a piece of handwork much more delicate in appearance and which apparently required more skill in making than either this linen or the rug. This lace is made of the finest thread of two-ply Shetland wool. It is two yards and a half square, weighs two ounces and a quarter and contains about eleven thousand yards of the two-ply hread or twelve miles of single yarn.
The display of fine arms made by British manufacturers is a very popular resort to men and es-
pecially to Westerners. Well known makes of shot guns and rifles are exhibited, and there are models large and small showing the action of several makes of guns, also illustrating the working of some of the new hammerless guns, shell extractors, etc. In the Greener exhibit are the latest Martini-Henry rifles, also other rifles, including double barreled elephant rifles and the new regulation 0.303 repeating rifle. The size of the elephant rifles and the fact that they have
such large bores and that they shoot shells is an endsuch large bores and that they shoot shells is an endthis section is the Greener whaling gun. It has been used for many years in the British whaling service for shooting whales. Its limit of range is about six hundred yards.
A fish hook manufacturer displays in an adjoining exhibit a lot of hooks so fine in size and light in weight that 500,000 of them weigh only 22.77 ounces avoirdupois. In this exhibit there are also fish hooks of all this section wire is made into fish hooks and needles. The full operation of making the needle from the coil of wire to the finished article is shown, and is extremely interesting.
In a modest display of druggist supplies is shown the medicine chest that Stanley took with him on his last trip through Africa. It comprises a solidly built wooden box incased in an outer box of tin. There are forty bottles in the box, each bottle in the box being labeled. The various tabloids remain now just as they were when the case was brought home by the explorer, except that pieces of cotton are stuffed
in each bottle to prevent the tabloids from being broken by any jar. Accompanying this box is a little covered pamphlet bearing the words "Traveler's
Medical Guide, H. M. Stanley." On the inside to the cover of the box is a little case containing a full outfit of surgical instruments.

Of the exhibits made by the colonies of Great Britain in the Manufactures and Arts building, the most attractive and interesting is that of India. The gem of the exhibit is an India room constructed almost entirely of teak wood, elaborately carved. The interior is finished with the same completeness that the exterior is, so far as the carving is concerned, and the ceiling is laid off with panels, while the cornice is very heavy
of oriental manufacture. Considerable teak carving is also shown in the other spaces occupied by India. The larger part of the exhibits however are of Benares ware carved ivory and sandal wood, cutchwork in solid silver, Bombay Delhi, and Jaypore pottery.
ln the Ceylon exhibit is a pagoda of octagonal design after the manner of Cingalese ecclesiastical architec ture. The posts of this pagoda are of ebony, satin wood and jak wood, elaborately carved in oriental style. There is also an exhibit of native cutlery, metal work, basket work, etc.
The exhibit of cooking stoves in the German exhibit would bear close study and observation by American stove manufacturers, so far as appearance is concerned. Some of the American made stoves are very elaborate in the ornamenting in the iron casting and in nickel plated trimmings, but the German stoves are finer in effect, more artistic and more attractive by the use of tiles in place of iron.
The second week in October brought a most re markable attendance at the Exposition. During seven days there were $2,121,794$ paid admissions. This falls but a little short of the entire attendance of either the months of June or July, and is nearly one million more than the attendance during May.
The banquet tendered the representatives of all the foreign nations and scates represented at the Exposition was held in Music Hall, October 11, and was the greatest social event since the Exposition opened Covers were laid for 450 and the hall was profusely decorated with flags of all nations, while all national airs and other distinctive music was provided throughout the evening. The galleries of the hall were occupied by ladies. Thousands of palms, roses, and other decorative plants and flowers transformed the hall into bower of verdure and color. This banquet was purely unofficial, although it was tendered the repre entatives by those who have been active in creating and managing the Exposition.

Homes and Remains of the Cliff Dwellers. by $\mathbf{H .}$ c. hovey.
A rugged mass of staff, building paper, and sheet ron stands near the Anthropological building at the World's Fair, painted in imitation of red sandstone, and with beetling ledges and strange surroundings. A sign tells us that this is the Cliff Dwellers' exhibit and we learn, on inquiry, that it stands where it does with the approval of Prof. F. W. Putnam, chief the Department of Ethnology. The stucture is designed to represent a Colorado land-mark, known as "Battle Rock," but called "Spirit Rock" by the Utes and Navajoes. Here dwelt cliff men, whose singular habi tations are found by thousands, though long tenant less. not only in Colorado, but also in Utah, Arizona, and New Mexico. According to Schwatka, similar abodes are still occupied in Mexico; but the more re cent researches of Lommholtz show them to have belonged to a different and later style of architecture. Attempts have been made, with good success, to reproduce the cliff dwellings on a small scale, by Messrs. Jackson \& Holmes, and casts are for sale by Mr. Ward, of Rochester.
It was reserved for Mr. H. Jay Smith, of Minneapolis, aided by the liberality of Mr. C. D. Hazard, of the same city, to develop the idea on a surprising scale and with much accuracy. On meeting Mr. Frank Cushing, the white Zuni chief, I asked his opinion of their cliff dwellers' exhibit. His emphatic reply was: "It is magnificent, both in conception and development; and its museum is unquestionably genuine and very epresentative." Probably there is no better judge of such matters than he. More than one hundred thou sand persons have visited this quaint exhibit; some of them men of science, but mostly people from the common walks of life, who probably took their first lessons n anthropology and archæology from the intelligent and obliging guides.
The structure now described is 200 feet long and 65 feet high. In inclosures around it are kept domesticated wahpiti, deer, mountain sheep, and other animals peculiar to the region. Precipitous trails wind over the hill, and at all hours of the day may be seen people climbing afoot or riding on the sure-footed burros kept for service. In the crevices of the quasi rocks cacti, sage brush and yucca plants maintain a struggle for existence. On each sideof the entrance are ruins of estufas, through one of which we are admitted on paying the small sum requisite for maintaining the exhibit What an abrupt transition-from the brilliant displays of modern art and manufacture to these ancient forms of human life.
At the head of the canyon stands the Cliff Palace, reproduced on a scale of one-tenth the actual size. The model is 43 feet long; hence we infer the original to be 430 feet in length. The village (for such it is, ather than a palace) contains on the ground floor 127 rooms; but it is thought that there must have once been as many as 600 in all the stories. Some of these are round and others square, and they are of various sizes. Some were doubtless temples, others watch towers and others granaries. But most of them were
(Continued on page 279.)

THE TEACHING OF SWIMMING.

All those who occupy themselves with natation know how difficult it is, at least for certain persons, to learn how to swim. This may appear somewhat strange when we know that the human body is sustained naturally in water. It is the slightly too elevated position of the center of gravity that obliges man to make certain motions in order to keep his head in the air and also in order to move forward in the liquid element. At all events, the exertion to be made must be very feeble, and the motions to be effected are very simple. They must especially be regular and be executed without precipitation. They can therefore be learned by every one without distinction. But many people cannot succeed in ridding themselves of a sort of instinctive fear, which, as soon as they are in the water, makes them lose their heads, so to speak, and causes them to make irregular and precipitate motions. They immediately get fatigued and cannot succeed in keeping their heads above water. Struck by this fact, teachers of swimming have endeavored to make the pupil repeat in the air the motions that he must effect in water, thinking that such exercises might prove of some utility. Formerly, for example, the pupils were made to execute, standing, the motions of natation, in moving the left limbs and then the right ones simultaneously. Later, the idea occurred to teachers to make the limbs effect the general motions in a horizontal position, always with the idea of more closely approaching the conditions of natation in water. There was then used a bench or wooden horse, upon which lay the pupil, who did his best to simulate the motions of extension and flexion that he would have to make in water. But the position upon the apparatus is very fatiguing. The chest is oppressed, respiration is interfered with and the exercises cannot last beyond two minutes. The elbows and knees touch the horse and the simulated motions are necessarily incomplete. Moreover, there is nothing to guide the pupil in the execution of the motions, unlesshe applies close attention and much willingness thereto.

All such inconveniences would be of slight importance were the practice of these theoretical exer cises to lead the pupil to sustain himself easily upon
in the water. The apparatus consists of two parts. One is fixed and serves to sustain the head and chest. The other is movable and serves to guide the limbs in the accomplishment of their motions. The fixed part is formed of a chest support, \mathbf{A}, inclined toward the rear and provided with three legs. This support presents an appendix which carries a chin support B, upon which the chin of the pupil rests. The body of the pupil upon the apparatus is in the very position that the body of a swimmer occupies naturally in water. The movable part is the really interesting feature of the apparatus. The direction of the motion of the arms is effected through the aid of two rubber straps fixed at one end to the chin support and terminating in wooden knobs serving as a support for the hands. The direction of the motion of the legs is obtained by the aid of rubber cords. To this effect, the hind legs of the fixed part are provided with horizontal crosspieces, CC, movable around a joint. The crosspieces carry uprights, DD, terminating at the upper part in two forks that carry a piece, E, movable around a horizontal axis, and which is designed to receive the thigh, whose movements it is capable of following. The uprights, moreover, are movable upon the crosspieces, where they may be fixed by pressure. The apparatus

tions are easy. His respiration is always free, and he can easily remain upon the apparatus for fifteen minutes. He can, therefore, repeat the motions a great number of times and become accustomed to them. As well known, when we become accustomed to repeat a motion, always accomplished under the same conditions, we do so in spite of ourselves. It becomes natural and fatigueless through practice.
The child, therefore, gets into the habit of making the same regular motions upon the apparatus that he has to make in water, owing to the rubber straps that serve him as guides and that have at the same time the happy effect of making him find the same resistance and the same bearing points as in water. The length of these straps is so calculated as to oblige the most awkward person to make, after a manner, perfect motions automatically, without his having to attend to anything else than the giving of the initial propulsion. The rubber rods force, conduct, and direct the motions begun in an exact and sure manner. The pupils learn the elements of swimming in a very short time, despite themselves, without attention and without effort. This is the great merit of the invention; so we cannot praise the inventor too much for the admirable patience that he has shown in perfecting, piece by piece, all the different parts of his apparatus, which, at present, may be considered as nearly perfect. It realizes a great progress in the teaching of natation that it would be unjust not to recognize. When the instruction of the pupil upon the apparatus is complete it is finished. Despite the paradoxical appearance of the fact, the pupil knows how to swim. When he enters the water he is no longer bewildered. He instinctively makes the same motions to which he is habituated. He at once feels himself sustained in the water, gains confidence, and has no longer anything
to do but perfect himself progressively by practice. The result is certain and very rapidly obtained.
The preceding considerations are not solely theoretic conditions. They are supported by experience, and it is thence that they take all their value. The apparatus is in use among the pupils of the Michelet Lyceum who have been the first to benefit by the invention of their master, Mr. Devot, who has received the unani mous felicitations of all those who have been witnesses of the great advantage that his new apparatus presents and of the facility with which his pupils learn the principles of natation, formerly so difficult-for certain persons at least. Thanks to it, now, there will be no more deception. All persons using the apparatus will quickly learn how to swim.-La Nature.

a lathe slide rest attachment.

The illustration represents a recently patented imrovement of Count Strickland, of Villa Bologna, in

Strickland's lathe slide rest.
the island of Malta. It consists of a simply con structed attachment to the slide rest of an ordinary lathe, whereby the work may be moved vertically as well as longitudinally and horizontally in front of the milling tools or cutters held on the spindle of the lathe. On the ordinary slide rest, horizontal and longitudinal slides are usually secured, and the attachment is bolted on the front end of the upper one of these slides by a bracket in which is held a vertical slide. Projecting from the latter are work clamping dogs, on the vertical slide or on a horizonta shelf, on which dogs are vises or division plates for gear cutting, to which the work may be conveniently secured, so that it can be moved to or from the cutter in a vertical plane, its longitudinal and transverse movement being effected by the other slides. The de vice is of very simple and inexpensive construction.

Electro-chemical Effects on Magnetizing Iron.
In the proceedings of the Royal Society, Mr. T. Andrews calls attention to the electro-chemical effects on magnetizing iron. From a long finely polished rod two steel bars were cut adjacently, so that they were practically alike in general composition and structure. These bars were both weighed, and then immersed in equal quantities of cupric chloride solution, one of them having previously been magnetized. After a certain time (6 to 24 hours) they were taken out of the solution, freed from deposited copper and carbonaceous matter, then dried, and again weighed. It was found in every case that the magnetized bar had lost more in weight than the unmagnetized bar. For instance, an average of 29 experiments showed an increase of corrosion in the steel due to magnetic influence of about 3 per cent un der the conditions of experiment. It may be mentioned that the bars were not highly magnetized.

Fig. 1.-APPARATUS FOR TEACHING SWIMMING.

SUCKOW'S MACHINE FOR SQUEEZING PUDDLERS' BALLS AND THE MANNESMANN SEAMLESS TUBE machine.
To the Editor of the Scientific American:
Strange it is but nevertheless true that humble origi nal inventors in about one instance out of a hundred re ceive any credit or just compensation for years of their unproductive toil while alive, although they may witness in their declining years, with reduced strength and infirmities, the very invention at first sneered at brought forward and imitated successfully by

suckow's metal squeezing machine.

other parties, of course under another name or names, without any redress, further than possible eulogy after their death. Numerous instances have appeared in your publications and elsewhere from time to time verifying this assertion, among them J. Crompton, the Englishman, originator of the spinning jenny; B. Thimonnier, the Frenchman, originator of the sewing machine; J. Ressel, originator of the screw propeller etc., all of whom died poor and neglected. I inclose a photograph of the original working model of a machine of my invention, and one of which was pur loined from me in 1882 on pretense of introduction after explaining further scope of the invention. I called it a "squeezer." and the invention with process you published with drawings and specifications complete, excepting the eleven claims, in the Scientific American Supplement, June 30, 1877. In your issue of September 27,1890 , you also published and illus trated the so-called Mannesmann process for making seamless tubes from solid blocks of metal, with the portraits of the so-called inventors, as copied from Uber Land und Meer. Please compare my specification with the Mannesmann process. As an American I feel anxious to know if this technical wonder, as some papers call it, and which now plays such an important part in the iron and stoel industries, is in practical operation here, and if not. why not? And why do the Mannesmanns entirely ignore a civil communication in their own native language, forwarded to them a year ago? Further comment I don't deem necessary.

Ed. Suckow
Jamestown, N. Y., October 10, 1893.
[A comparison of the Suckow with the Mannesmann machine certainly seems to indicate that the earlier American in ventor came very near to the result by which fame and fortune were subsequently realized by the German inventors. Although the earlier patent was primarily for different purposes, and the machine was incapable without change of making the Mannesmann products, the earlier Suckow machine so strongly suggests the principal idea of the Mannesmann as in itself to afford a most probable answer to the question of our cor respondent. Inventors who have become practically and financially successful do not look around for others who possibly anticipated them in their ideas but ne glected or failed to improve their oppor tunities.-Ed.]

For sticking glass labels on drawers the best cement to use is a thick solution of shellac in benzole, in which gutta percha in the proportion of 1 in 12 has been dissolved.

TEE WORLD'S COLUMBIAN EXPOSITION-EXHIBIT OF THE MASON \& HAMLIN COMPANY.

A DURABLE AND EFFICIENT PUMP.

The pump shown in the illustration is of comparatively inexpensive construction, and is designed to pump rapidly and work easily. It has been patented by Mr. Luigi Nasi, of No. 317 Bush Street, San Francisco, Cal. Fig. 1 represents a perspective view and Fig. 2 a vertical section, Fig. 3 a plan of the pump valve, and Fig. 4 one of the packing slides in the piston and valve. The inlet is at the side and the outlet at the top of the casing, and the driving shaft extends centrally through the lower of its two cylindrical chambers, the shaft having a hand driving crank, or a pulley for connection with other source of power. The piston is preferably ellipsoidal, as shown, although other forms may be employed, and at its ends are longitudinal slots which receive the packing slides. Centrally in the upper chamber is a shaft carrying a valve which extends forward toward the inlet, a curved wing of the valve, with thickened lower end, riding upon the piston. The main end portion of the valve is slotted and bored in the same way as the piston ends, to carry a similar packing slide. On the outer end of the shaft carrying the valve a crank with a handle may be used to start the pump when the water is first introduced; or the shaft may have at one end a crank carrying at its free end an inwardly extending stud to engage flanges on opposite sides and ends of

an ellipsoidal cam, shaped like the piston, and rigidly secured upon the piston shaft. In the latter case, when the piston strikes the valve wing and raises the valve, the flanges of the cam engage the stud of the crank and continue the movement of the valve. After the pump is started the crank may be removed and reliance placed on the back water pressure to hold the valve down in close contact with the piston, as after the pump is once filled it will work continuously without the valve-actuating mechanism.

Whistling Fireworks

One of the features at the Crystal Palace (London) fireworks display recently was whistling pieces, which in burning give a wild, screaming noise. There is some mystery about how this noise is produced. Messrs. Brock themselves are unable to say, and do not know anybody who can tell them. The firework consists of a stout paper tube $21 / 2$ inches in length, and with a bore of about $3 / 8$ inch. About 2 inches of this little tube are stuffed with picrate of potash, leaving $1 / 2$ inch or so empty. When lighted by means of a fuse it does not explode, but burns away with great violence, and with the uncanny shriek which gives the thing its iaterest. Pyrotechnists have tried many other compositions and many other kinds and forms of tubes, but picrate of potash is the only thing that will give anything but the faintest trace of a whistle.

Pure Iron.

Professor Arnold, of the Sheffield Technical School, recently produced, with the aid of aluminum, a sound ingot and bar containing 99.81 per cent of pure iron. So far, no absolutely carbonless iron has been obtained commercially. An analysis of Professor Arnold's bar by Mr. R. A. Hadfield showed the following composition: Carbon, 0.07 per cent; silicon, 0.04 per cent; sulphur, 0.03 per cent; phosphorus, 0.015 per cent ; iron, 99.81 per cent ; total, $100 \cdot 035$ per cent. Its specific gravity was 7.863 ; limit of elasticity, 18 tons per square inch; breaking load, 23 tons per square inch; elongation, measured on 2 inches, $49 \cdot 25$ per cent; reduction of area, $69 \cdot 60$ per cent; fracture, silky

Cold Forged Screws at the worlds Fair. The American Screw Company, of Providence, R. I., has three interesting exh Machinery Hall annex, in Manufactures building, and
in the Government building. The exhibit in Machinery Hall illustrates the new cold forging process employed in the manufacture of wood screws, drive screws, tire bolts, and any other kind of circular screw. This process was described and partially illustrated in the ScIentific American, September 17. 1892. Two machines are shown in operation in this exhibit, the threeblow header and the threader, these being the only machines needed in this process. The wire used by this company is drawn with unusual accuracy, to the thousandth of an inch, even for large sized screws. The cold forged screw wastes no metal, except a very small quantity which is cut off the point of the screw blank. Wire is used three sizes smaller than the gauge of the finished screw. The three-blow header tapers the shank, forms the head, forges the slot in the head, points the blank. and cuts it off. The blanks are then taken to the threader, poured in the hopper, where, by an ingenious arrangement, they are placed in a row heads up, in an inclined runway leading between two
dies, which shape the threads. These dies move horidies, which shape the threads. These dies move horizontally in reverse action to each other and form the
screw, raising the thread higher than the shank. One forward motion of the dies completes the screw, and forward motion of the dies completes the screw, and
the dies return idle. The screw is not cut at any stage and is much stronger than the ordinary cut screw, while by this process they are made much more rapidly. In a show case are exhibited four large screws, showing the form of the product at different stages of the development of the screw industry during the past fifty years, the cold forged screw easily carrying off the honors in the comparison by reason of its fine and very symmetrical appearance.
The exhibit in the Government building consists of nineteen models of screw machinery, from the oldest to the newest designs, covering cutting, heading, slotting, threading and cold forging. These models were loaned to the government by the American Screw Company. The history of the machines of which these models are shown is very interesting. The first inventor of prominence in the production of automatic screw machinery was Gen. Thomas W. Harvey, who devised a machine for shaping the heads of screw blanks. Gen. Harvey was followed by Cullen Whipple, Thomas J. Sloan, Charles D. Rogers, and others, and examples of their inventions may be found in this exhibit, also the machinery invented by the last named for cold forging. The screw machinery used in Enrope has been mainly of the Harvey and Sloan cutting type, cold forging machinery not being extensively employed there. The American Screw Company was formed by the union of the Eagle Screw Company and the New England Screw Company, both of Providence, R. I., in 1860, the Eagle Company having commenced operations in 1838, under the management of the late William G. Angell. In this country, at the present time, fifteen concerns manufacture wood screws and nearly one hundred different firms have undertaken this business since 1810 .
The exhibit in the Manufactures building consists of two large upright cases, one of which contains a specimen of every kind of screw made by the company's cutting process and the other specimens of the cold
forged product. Among the cold forged screws are the company's new fluted tire bolt and Rogers drive screws. The tire bolt has flutings on the shank, which hold it in place in the wood, and thus prevent it from slipping or working round and becoming loose. The flutings being straight, the bolt is easily driven out. The head of the bolt is materially strengthened by having the fluting terminate some distance from the head, leaving a plain shank. The Rogers drive screw has a thread with wide spirals, so that it can be easily driven with a hammer all the way, and the slot in the head does not extend entirely across the head, but has a shoulder on each side, so that it is not weakened by the hammer, while the slot is left perfect for the use of a screwdriver in withdrawing the screw.
Samples of these and other cold forged products are distributed by the company, as well as an illustrated circular, showing the different productions of the company. These samples will be forwarded on application, and all interested should address the company at Providence, R. I.

The New India Rubber Tree in Madagascar.
The Journal des Mines states that the trade of the island of Madagascar in 1892 received a decided stimp lus by the discovery of a new India rubber tree. The principal centers where this new product is treated are Farafangana, Vaugaindrano, Manaimbondro, Fort Dauphin, Andrahomby, and Cape St. Mary.
At first the new product realized from 3 to 6 piastres per 100 lb .; aided by competition, the purchase price very soon amounted to 10 and then to 15 piastres.
More than 20 piastres per 100 lb . is now paid at Fort Dauphin.
The discovery of the new India rubber tree has come very fortunately to relieve the Madagascar market,
which was at such a low ebb that the Tamatave houses
were closing their agencies on the northeast coast an the Americans suppressed their Majunga houses. This discovery is of very great importance; it almost constitutes a commercial revolution. The trade formerly carried on between Farafangana and Fort Dauphin was confined to a few products which were obtained only in small quantities. Merchants were almost completely disheartened and had abandoned the market to small traders.
Several of the latter possessed but a few hundred piastres at the end of from 15 to 20 years of hard work. At the present day they are all relatively rich, and it has only taken them a year to gain their thousands of piastres. At the time of the India rubber fever new houses were immediately established at Farafangana, Yangaindra, Manaimbondro, Andrahomby, Fort Dauphin, and also at Cape St. Mary, bringing goods and money.
The natives, receiving large sums in return for their products, took upon themselves to purchase imported goods to a very large extent. As long as the working
of the new rubber tree lasts, this state of things will continue. The probable duration of this working is estimated at two years only.

An English View of United States warships and

An interesting article is given in a recent number of the Engineer, London, from which we make abstracts as follows:
After the close of the American war a long period might be expected to elapse before money would be voted freely for any purpose of war. Hence it followed that for about a quarter of a century the United States very properly rested, to an extent that would have been dangerous for any other nation, except, perhaps, Russia. At length came the time of awakening, which resulted in the masterly steps that have been taken during the last few years, both in the matter of ships and ordnance.
To begin with ships. Accepting the conclusions that had been arrived at by those powers who had been forced to push on continually, the United States authorities at once adopted types possessing the general features of such vessels as were most approved; for example, our Roval Sovereign class-that is, the 1889 design. Profiting by drawings giving all the necessary details, and even employing men who had been engaged in England in working out the designs, it was found feasible to spring, without a single false step or disappointment, to the very front, and to work forward so as to rival those who had offices and dockyards full We say it was feasible, but we do not say that it was by any means easy to command success in the striking way in which it has been achieved. The United States authorities are, then, to be congratulated-first, on the judgment that chose the line to be taken; and next, on the constructive ability and energy that was displayed exactly in the most profitable way. It naturally follows from what we have said, that any one would search in vain in the American fleet for such types as were developed in the twenty years following the close of the war in 1865. No mastless Thunderer or 1)readnought, no Inflexible or Italia, no masted Monarch or Duperre is to be found in the United States navy. In one tremendous stride, the United States constructors pass with hardly an intermediate step from the small coast defense Manhattan, with her 2,100 tons displacement and 19 ton smooth bore guns, to the modern ship with the powerful quick-fire armament and steel armor.
Any
Any one taking up, say "Brassey's Annual" or "Lloyd's Register," will be struck, perhaps even considerably perplexed, by the fact that for a given displacement, America appears to have secured startling advantages compared with the European navies.

We will give a comparison between two cruisers. The English Blake of 9,000 tons was launched in 1890, and | may be compared with the United States New York of |
| :--- |
| 8,150 tons, launched in 1891, apparently to the great | disadvantage of the former. The Blake has no side armor, being only "protected;" the New York has a 4 inch steel belt and 10 inches of armor on her turrets. The Blake carries two 22 ton $9 \cdot 2$ inch guns and ten 5 ton 6 inch guns; the New York, six 8 inch guns. The Blake has sixteen 3 pounder quick-fire guns, as compared with twelve 4 inch, eight 6 pounder, and four 1 pounder quick-fire guns as the secondary armament of the New York. Here, then, the superiority in the

primary armament of the Blake is more than overbalanced by the New York's tremendous power quick-flre, as compared with the 3 pounder quick-fire guns of the Blake. Then, the Blake's speed is only given as $19 \cdot 12$ knots, while that of the New York is 20 knots. The Blake, it is true, is shown as having greater coal ca-
pacity, enabling her to steam at 10 knots for 15,000 miles, against the 13,500 shown for the New York. Nevertheless, to all appearances the American ship beats the English one hollow.
The character of the American warships may be briefly described as follows: They bave been based on
skillfully adapted to possess enormous powers of both attack and defense.
To the subjects of armor and guns, we find the same principles applied and with the same ability. The policy recommended by the board of officers who visited Europe in order to arrive at the system best suited to the conditions of the United States has been consistently carried out. That is to say, the manufacture of all war materiel has been taken in hand in the States on those European patterns and methods that appeared to be best. Solid steel armor was copied from Schneider, and in the case in which most notable success has been achieved, it has been made on his plan of hammering in preference to rolling. Gun steel was made in hollow cylinders on Whitworth's system of fluid compression, but while the aid of the European establishments referred to was invoked and fully acknowledged in starting, such progress has been made that it may be seriously questioned if Schneider could successfully compete with Bethlehem at the present moment. Certainly we know of no plate that has re sisted successfully an attack equal to that defeated by the Bethlehem-Harveyed plate exhibited at Chicago although Krupp exhibits a plate that has defeated a single blow of greater severity than those which fell on the Betnlehem plate. In our own country, Messrs. Vickers have, no doubt, produed plates which appear to be of the same excellence as those of Bethlehem. This, however, in no way invalidates our statement as to the lead taken by Bethlehem, for the remarkable success referred to was first achieved with the Harvey process at Bethlehem, and Europe has followed suit. To Schneider belongs the credit of introducing nickel into steel, but so well has this been carried out in the United States that at the present time it may be questioned if their examples of successful nickel-steel plates do not fully rival those of Europe. The most advanced and powerful plant for manufacture of steel forgings and armor, including the heaviest hammer existing, is to be found at Bethlehem, while rolling mills and still more extensive, though in some respect less powerful means of manufacture exist at Carnegie's woiks, near Pittsburg. The ability to which we refer has not been imited to success in processes of manufacture; it is seen in the system of control established by the government. It was decided from the first that private firms should be encouraged to develop resources on which the country could depend for the supply of elements or component parts of guns, while the government establishments should confine themselves strictly to the work of a gun factory-that is, to finishing and building up the elements supplied into finished guns. This has been successfully done so far as we are aware. We have heard of no accidents, no disappointments.
The 12 inch gun, shown as estimated for in the "Annual" of 1887 , has a muzzle velocity of 2,100 feet per second, and an energy of 25,984 foot tons. The actual 12 inch gun given in the "Annual" for 1893 has the same, except that incidentally one foot ton more energy is shown. For armor a system of examination and testing has been organized, which we believe to be more thorough than any carried out elsewhere. As yet, probably all nations stand in somewhat the same position. Supplies of thin plates have been well tested, while thicker ones have been found more difficult to deal with. In the United States the delivery of
plates of 17 inches is only commencing, but it is commencing under a very searching and complete system of examination and tests. There may, doubtless, be faults and weak points in connection with the supply of guns and armor, but we have not discovered them. There certainly is much to commend; nor is it to be wondered at. The conditions are singularly favoraible. The United States is a great power, with unlimited re-
sources. She is free from the pressure of the haste which is engendered by the danger of delay. She has men of notable inventive powers, coupled with the discernment to seize and apply anything good that already exists, with access to the results of experience acquired by other nations, and she has as much money as may be wished for. It is difficult to conceive circumstances more promising. Surely, if success does not follow, it could only be owing to gross corruption, or flagrant neglect. or perversity. Corruption has, we know, been often found in America, as elsewhere; but we think that our readers will bear us out in the statement that the history of the United States national expenditure for defense has been remarkably free from ecords of its influence.

Horse Power of a whale.

An interesting study of the horse power of the whale has been made by the eminent anatomist, Sir William Turner, of the University of Edinburgh, Scotland, in conjunction with Mr. John Henderson, the equally eminent Glasgow shipbuilder. The size and dimensions of a great whale stranded several years ago on the shore at Longriddy furnished the necessary data for a computation of the power necessary to propel it at the rate of 12 miles an hour. This whale measured 80 feet in length, 20 feet across the flanges of the tail, and weighed 74 tons. It was calculated that 145 horse and weighed 74 tons. It was calculated that 145 hor
power was necessary to attain the speed mentioned.

Notes from the World's Columbian Exposition (Continued from page 275.)
plainly habitations for separate families thus grouped into a community numbering perhaps 1,200 souls. One cannot help wondering what chance the boys and girls of such a cliff city would have for playing around its formidable ramparts, or what opportunity loversmight have for moonlight strolls. The theory is that the walls were built up solid from the floor of the shallow cave to the overhanging ledge. The masonry, though rude, is excellent. No tools of iron were used, and the mortar was laid on by hand, yet those walls have stood for centuries.
As we advance we pass on our right the Square rom seven to, four stories high, though originally tures, many hundred feet above the foot of the cliff and there its people lived as a peaceful community ages before French flats or Chicago tenement houses were thought of. The Balcony House opposite shows how the stories were separated by cedar beams, whose projecting ends were used to support porches over hanging the tremendous gorge below. The houses had doors and windows, and did not seem to have adopted, generally at least, the pueblo style of mounting by outside ladders. We saw ladders, however, in the collection. The stone doors were also shown, and the lection. The stone doors were also shown, and the
wooden loops and staples by which they were hinged. There are models of the High House and other fortifications. These names, it should be observed, were not used by the occupants, but were given by the roving cowboys or wandering tourists. The necessities of the exhibit bring the dwellings into proximity to each other, though the guides are careful to say that in fact they stand many miles apart. Some were found in the they stand many miles apart. Some were found in the
Mancos canyon, others in the McElme canyon, others Mancos canyon, others in the McElme canyon, others
again scattered over the Mesa Verde, or up and down the Montezuma valley. The cliff dwellings that I visited in Arizona were altogether of limestone; but those of this region were of red sandstone. Almost my only criticism on this exhibit is that while the cliffs are made to represent red sandstone the dwellings appear to be of limestone. On inquiring of Mr. H. L. Paquin, the artist who did the modeling, I was told that he the artist who did the modeling, I was told that he
had intended to be as exact as possible, but it seemed desirable for artistic effect to show a contrast in color. Usually the guides explain this fact.
Entering a grotto on our right, we find that it is merely to display in a novel and striking way numerous fine, large paintings by Mr. Alexis Fournier. These pictures are fitted into alcoves and lighted from above by electric lamps. Mirrors in the opposite wall multiply the seeming number of the views, and also give them the appearance of standing forth from the actual
canyons amid the singularly soft, pure atmosphere of canyons amid the singularly soft, pure atmosphere of
Colorado. Besides reproducing thus the dwellings already seen in model, the artist shows the Spruce Tree House, through whose ruins grew a tree with 167 rings; the Ruined Castle; the Long House, extend ing for 625 feet; and the She House (so named by a lady who had read Rider Haggard's novels), where was found a mummy in a remarkable state of preserva tion, and which is among the curiosities shown in another room.
Returning to the main canyon, we next inspect excellent reproductions of estufas of nearly the actual size of the originals. These sacred edifices were for tribal and ceremonial uses, sheltered the sacred fires, but men were admitted. The largest shown had six recesses, The arrangements for heat and ventilation were on most approved scientific principles. A cold air duct let in the pure outside air. The fire was kindled nearly in the middle of the room. A stone screen was so adjusted as to compel the flame and smoke to curl over its top in order to escape through the flues in the wall behind it.
Full-sized models of the rock tombs were next shown, where the mummies were found among weapons, trinkets, and garments, under thick layers of dust, which, as it was said, was so poisonous as to make it necessary for the diggers to protect their nostrils with sponges while excavating. The extraordinary preservation of these remains and other contents both of the graves and estufas is due to their sheltered location, where, for centuries, they were never wet by rain, touched by frost, nor scorched by the sun. The paths by which the old inhabitants approached their dwellings, perched from 500 to 900 feet above the valley below, must always have been steep and difficult, and they are now worn away by the action of the elements.
The pioneers of the work of exploration, so far as this region is concerned, were Mr. B. K. Wetherell, his four sons, and his son-in-law, Mr. Mason. These, four sons, and his son-in-law, Mr. Mason. These,
though ranchmen, were persons of a good education; and when they discovered the Cliff Palace while hunting stray cattle, they knew the value of the find. For the last five years these hardy men have devoted their whole time to explorations in Colorado, at first independently and more recently under the direction of the State.
The original collection made by the Wetherells, and
and added to the results of the H. Jay Smith exploring party. All these are shown in a long hall entered from the canyon already described and lighted by electricity. cliff dwellings.
And here particular mention should be made of the splendid display of similar objects from the same region, in the Colorado exhibit, in the adjoining Anthropological building, mostly gathered by the Wetherells and Messrs. McLoyd and Graham, and under the personal care of Mr. A. F. Wilmarth, who represents the interests of the State, and to whom the writer is indebted for valuable assistance in the line of reliable information. In company with Prof. F. W. Putnam, Mr. Frank Cushing, and other scientific gentlemen, we spent many hours in examining the contents of both museums, and were satisfied of their unquestionable genuineness and inestimable value. As I am writing for the general public and not to support any individual interests, I feel constrained to say that the entire collection, including more than 4,000 specimens, and the finest of its kind in the world, should, on some fair plan, be secured by the State of Colorado, which should also control future similar collections.
In referring, as I shall do now, to the contents of these two museums, no attempt will be made to indicate in which of the two the specimens mentioned were seen, for they serve to illustrate the same region precisely and ought finally to be united under one management. It will, furthermore, be out of the question for me to do more than to designate a few of the more important objects seen, without trying to exhaust the entire catalogue of curiosities, every one of which has its history and its lesson to teach.
Of course there were metates and rollers for grinding corn, and mortars and pestles for pounding acorns and grain. There were axes with and without handles, war clubs, hammers and mauls. The arrow tips, spear heads and knives were made of a great variety of materials, e. g., flint, chert, quartz, jasper, slate, diorite, and petrified wood. Wooden arrow heads were also noticed, some of which were tipped with flint. Some celts were rude and others polished, some sharp and slender, and others blunt and clumsy. There were whetstones for sharpening dull tools. There were bone knives, marrow scoops, daggers, pickers, needles, and awls. I saw a large ceremonial dagger that must have come from California. There
were chalcedony scrapers for dressing hides, and flint were chalcedony scrapers for dressing hides, and flint
knives with wooden handles. Numerous farming plements were shown, and also curious turkey crooks for catching the turkeys which they had domesticated for catching the turkeys which they had domesticated charms and toys were to be seen, also elaborate ceremonial headdresses, necklaces of perforated snail shells, bone beads, etc. I noticed shuttle cocks, buzz wheels, and other means of amusement. Mr. Cushing read to our satisfaction several hieroglyphic tablets found among the relics, all being prayers for rain.
Hundreds of sandals were displayed, and the slate forms or lasts on which they were shaped-although it is a query if these slates were not really tools for moulding pottery. One sandal was of raw hide ; others of yucca leaves, whole or split; and others again of fine cloth. Some sandals were titted with loops and cords for lacing. Delicate patterns were wrought on others, either in colors or in raised figure of exquisite workmanship. There were sand shoes to be worn in deep shifting sand, after the fashion of snow shoes. We saw baby-boards for carrying papooses; fire sticks for kindling fire by friction,
and bags of tinder for making the task more easy; and bags of tinder for making the task more easy;
wicker cylinders full of rock salt; purses of cloth and of buckskin; knitted bags, socks and needle-cases. It has sometimes been doubted if these ancient people had textile fabrics except those made from the yucca flax. But I saw the cotton seeds, the carded cotton, cotton on the spindle, in the ball and skein, cotton wicks in the lamps, and as many as a hundred pieces of cotton cloth, some plain and others figured. Parts of looms were shown. Wonderful fabics of feather cloth were numerous, made by first weaving a coarse
foundation of yucca cord, and then intertwining artistically the feathers of turkeys and other birds. Fur cloth was also made in the same way
And then the pottery! Hundreds of ollas, bowls, mugs, pitchers, ladles, kettles with lids, vases of every pattern, lamps single and double, large and small, coarse and fine, plain and decorated after classic and oriental style. made one wonder if he were inspecting
American relics or those from India, Greece, or Egypt. American relics or those from India, Greece, or Egypt. I saw one lovely vase inlaid with squares of mother of pearl. Others were painted red.' There were paint pots and glue pots and vessels filled with pitch. Most of the pottery showed signs of use; but occasionally vessels were found as fresh and bright as if made yes-
terday. Some of the embellishments were of terday. Some of the embellishments were of rare
beauty. And it is essential for us to remember that these people had no knowledge of the potter's wheel. These articles were all shaped by hand or by slate tools. There was much coil pottery, some specimens being great jars holding from five to ten gallons.
and coiled one upon another. Many other vases were slip-enameled" both within and without
In some of the ollas, and also in leather pouches and cloth sacks, were found quantities of corn, six different kinds being noted; also beans, pumpkin seeds, grassseed, and seed of the portulacca. Experiments made by Mr. Wilmarth and others failed to make these grow. But Mr. Cushing told me that he succeeded in sprouting corn from more southern cliff dwellings. I was also informed that Baron Nordenskiold, of Norway, took specimens home with him and succeeded in effecting their germination by the aid of electricity. The failure in other cases may have been due to the fact that the germs had been destroyed by heat, cold, alkali, or by the attacks of insects.
But who were the people that cultivated these grains, ground the corn and made it into bread? Who wove and wore these ancient garments, admired these trinkets, handled these tools, fought with these weapons and worshiped in these estufas? Hundreds of mummies made silent but impressive answer. These were the cliff dwellers themselves. And they were a noble race! The skulls set in long rows behind the glass door were uniformly well shaped, except for the slight flattening by the baby-board, which was applied to the back of the head instead of the forehead. The care with which the living were attended was proved by our finding several padded crutches and surgical instruments in the museums; and the veneration for the dead was shown by the pains with which they were dressed for their long repose. Each body was placed with its arms crossed on the breast, and the knees drawn up to the chest, then wrapped in a large winding sheet of cotton cloth, next in a costly robe of feather cloth, and finally in matting of grass, reeds or feather cloth, and finally in matting of grass, reeds or
willow twigs. The burial was in a tomb, along with willow twigs. The burial was in a tomb, along with
the treasures that had been most prized in life. How strange it seems that tall warriors, matrons, graceful youth, and even tiny infants, after having been peacefully interred for ages, should now have been exhumed, freed from their cerements, and shelved for inspection at Chicago!
The framework of these people was usually perfect. The flesh was dried, like that of the Egyptian mummies they resemble, only being due to desiccation instead of embalming. I noticed that the teeth were remarkably sound, not more than five or six in the entire collection showing any sign of decay. The hair was soft and abundant, varying in color from a light brown to jet black, and occasionally to gray. Possibly these lighter hues were due to bleaching by ammonia or alkali.
We noticed among these withered human remains one most pathetic sight-a woman with her babe in her arms. Around the infant's neck was a tightly drawn rope, evidently made of the mother's own hair. The story thus suggested was that the woman having died a natural death, her child was ceremonially strangled to save it from starvation, or else in order that the mother and child might pass on to the spiritland in company. Those ancient people had their tragedies and their festivals, their joys and sorrows, much as we do now; but for them life's banquet ended long ago !
How long ago? Who can tell? When we ask after their age, we at once embark on a sea of speculation. They do not seem to have had any knowledge of the metals, except as they used the ores for pigments; and this may be regarded as an indication of high antiquity. The stories told me as to the finding of bronze bells among their ruins are traceable to discoveries in Casa Grande and Los Muertes. Yet for my part I cannot regard all cliff dwellers as contemporaries. They were men of enterprise and commerce, as we have tried to show from the remarkable variety we have seen in their relics. Mr. Cushing told me that he had found living Zunis whose great-grand-parents were born and lived in cliff houses. Hence, doubtless, there were cliff men who witnessed the Spanish conquest, and who may even have been disciples of the apostolic Franciscans that bore the cross wherever their military comrades carried the sword. The cross appears in the ancient symbolism of the cliffs, not only in the form of the mysterious suastica, but in the form of the Grecian and the Maltese cross. Yet this fact should not be pressed too far, for there are other ways to account for the presence of the sacred emblen, which it is well known antedated the Christian era.
Many points of resemblance are to be seen between the cliff dwellers and the modern Pueblo Indians, and the evidence is strong that the latter are the direct, though remote, descendants of the former. 'The best authorities fix one thousand years as the minimum and three thousand years as the maximum period that has elapsed since the cliff dwellers played their part as a distinct race; although their descendants have, from time to time, under stress of danger or for other reasons, reverted for a season to the old habitations. Y $\in t$ we cannot deny that it is surprising-even astounding -that such relics as have been now described should have been kept intact so long, and in such an admirable state of preservation. Regarded from any point of view, the exhibit and accompanying museums of the cliff dwellers, at the World's Fair, are wonderful.

NEW APPARATUS FOR ARTIFICIAL RESPIRATION. In cases of apparent death from drowning, asphyxation, or from certain kinds of poisoning, it is often question whether animation is only suspended, or whether life is really extinct. The preservation of life is the strongest motive for action in all animate beings, and the restoration to consciousness and a normal condition of the apparently dead is always regarded of paramount importance in human affairs. Where there is life, or even the faintest suspicion that death has not really taken place, every effort is made, regardless of labor or expense, to save life; but it not infrequently happens that the means used are insufficient, or there is a lack of knowledge of what to do and how to do it.
Mr. William F. Desant, of this city, has invented an instrument for producing artificial respiration, which consists of two cylinders, a handle connected with two plungers, two inlet and two outlet valves, and rubber tubes and mouthpiece or tracheal tube, which may be regulated to suit the requirements of any case, both in the number of respirations per minute and the volume of air injected into and removed from the lungs. The
lungs and pure oxygen substituted until the lungs are able to act unaided. The apparatus has the indorsement of physicians and surgeons.
The address of the inventor is the Equitable building, New York City.

Infectious Pneumonia.

Dr. Orranos, of San Luis Potosi, Mexico, read an interesting paper before the recent Pan-American Congress, Washington. His subject was "Pneumonia: its Dangers as an Infectious Disease." He referred to the ihree climates of Mexico-Tierra Fria, Templado, Caliente-or its cold, temperate, and coast or tropical climate. He dwelt on the distribution of pneumonia from Zacatecas in its highlands to Campeachy on the Gulf of Mexico. March and April, at the close of the Mexican winter, gave the heaviest death rate. In some places it was more fatal than others. He cited much of general interest regarding infected houses, citing case after case in the same house, visitors to pneumonics having contracted the disease and taken it to others. In other words, its propagation by indi-

22,079 craft conducting transportation on what may be called "domestic waters." Of these 2,282 were steamers and 6,837 were sailing vessels engaged in carrying freight and passengers, their united tonnage being 2,912,693 tons; 455 were ferry steamers, with a tonnage of 146,099 tons; 1,944 were steamboats engaged in towing freight-laden barges, with a tonnage of 145,805 tons, while the barges so towed numbered 10,561 , with a tonnage of $4,008,847$ tons. The total tonnage of this traffic fleet of 22,079 craft was $7,213,434$ tons and its value $\$ 184,-$ 126,053.
As may be imagined, this great fleet did a business proportionate to its extent. According to the report of operations made to the authorities, 168,078,320 tons of freight weremoved in a year, while the passenger list numbered $199,079,577$. It may surprise the reader who does not realize the extent of navigable waters within the bounds of this country to know that in the pursuit of business these busy craft traveled $107,456,164$ miles. Besides possessing the largest lake system in the world, Uncle Sam has a glorious waterway of 23,505 miles of navigable rivers-which only lacks a little, as Mr. Vivna igable rivers-which only lacks a little, as Mr. Viv-
ian says, of being long enough to belt the globe. Under

THE DESANT RESUSCITATOR.
cylinders have a capacity of 20 to 30 cubic inches, frequently observed in Mexico. He deems the disease which is about the range of the capacity of human highly infectious. He cited a case of a man who died lungs. This being the maximum, the amount of air of pneumonia. A month later his clothing was sent is reduced more or less, according to the requirements, to a family. Soon after two children in that house by simply reducing the stroke of the pistons. The in- were ill with the disease. Another illustration was strument is constructed so that it can be easily and that of a woman who nursed a pneumonic-sleepquickly taken apart after use, and disinfected by im- ing in the same room; she likewise contracted the mersion in a solution of carbolic acid or chloride of disease.
mercury. The respirator not only forces air into the An examination of records of cases of pneumonia in lungs, but also draws it out without volition on the part given localities had proved very instructive. In two of the patient. For this reason it is especially useful years thirty-one cases had been traced to infected in advanced stages of phthisis, where the effort of houses, case after case in the same house. The germ breathing is exhausting to the patient. In cases of of the disease, the pneumococcus, he deemed almost anæsthesia resulting from the use of ether, morphine, -indestractible'in Mexico.
cocaine, or other drugs, also in asphyxiation from illuminating gas, poisoning, or electric shock, this respirator is effectual in restoring the patient by maintaining respiration after the lungs are incapable of performing their proper office.
In cases of still birth, where all other methods have failed, it is said to give excellent results. In case of diseased lungs, the device is used for applying medicated air, ozone, or other remedial agents. It is also used to give relief in cases of emphysema and asthma. In cases of drowning, the water is drawn from the

Dur Domestic Water Commerce.

A man must travel up and down the Great Lakes and navigable rivers of this country to gain even a faint idea of the extent of America's domestic water commerce. Some very interesting facts and flgures, however, bearing on this matter were cited by Mr. Thomas J. Vivian, of the Census Bureau, in his recent address before the World's Water Commerce Congress at Chicago. According to the traffic records compiled by the census there were in 1890 no less than
these circumstances it isn't strange that our domestic water commerce has boomed in the past, and is destined still to boom.-Boston Globe.

A 1,200 H. P. Turbine for Niagara.
Another immense water wheel has just been shipped to Niagara Falls by James Leffel \& Co., of Springfield, 0 . It is a duplicate and of nearly the same power as one which was shipped some six months ago to the Cliff Paper Company, and is intended for the same parties.
The wheel is of the new type on horizontal shaft, and is known as the James Leffel double discharge turbine, the entire weight being thirty tons. The water will be conducted to the wheel from a canal near the top of the cliff by an eight-foot pipe, extending downward until it reaches the mill, located near the foot of the cliff. The water will enter the cylinder casing of the wheel from below, passing upward a few feet, filling the case, and thus obtaining the head pressure.

The head will be about 130 feet; the wheel being some 67 inches in diameter, a speed of 225 revolutions will be obtained, and almost or quite $1,200 \mathrm{~h}$. p. developed.

PRIZE CATTLE AT THE WORLDS COLUMBIAN

 EXPOSITIONLive stock forms an important display at the Fair and is interesting not only to the stock raiser but to the gentleman farmer as well. The huge live stock pavilion is crowded during the judging. Stock breeders from the various parts of the country went to Chicago when the Exposition authorities announced that there would be an exhibit of registered stock only. There were two thousand entries in some of the classes and it is safe to say that the exhibition contains representative stock from nearly all parts of the civilized world. The greatest part of the stock exhibited is of domestic origin, and is furnished both by stock breeders and the owners of fine cattle who are in many cases members of cattle associations. Probably the most interesting cattle on exhibition are the Holsteins and the Dutch belted cattle. The Dutch belted cattle are of medium size, fine boned, compact and well built. In color they are black, with a continuous white belt around the body, the white being pure white, the black jet making a beautiful contrast. This type and color were es tablished by scientific breeding. They are controlled by the nobility in their native country, and present a novel feature in the landscape, grazing in the lowlands of Holland. In weight the cows vary from eight to twelve hundeed pounds and the bulls reach sixteen to twenty hundred. The calves pro- upon the surface and a primitive atmosphere of nitroduce are usually of large size. The Dutch belted cat-' gen surrounded the globe. Into this atmosphere large the should not be confounded with the Holsteins, which ' quantities of carbonic acid and water were evolved by belong to a distinct family. The Dutch Belted Cattle volcanic action, but there was no free oxygen. Plants Association will give a medal to all winners of prizes, then made their appearance, and, in vegetating, at the Columbian Exposition for standard bred Dutch 'evolved oxygen copiously, deriving this element from belted cattle. We illustrate two of the prize winners, a Holstein and a fine example of Dutch belted bull.

Thiocamf.

time the proportion of carbonic acid became less, the Duffer (Dublin Journal of Medical Science, May, 1893) carbon being stored up as coal, peat, lignite, etc. As has been led to use thiocamf as an intestinal antiseptic, these processes proceeded animal life of higher order a surgical application, and an antiparasitic in cutaneous appeared, the development of the nervous system coina surgical application, and an antiparasitic in cutaneous appeared, the development of the nervous system coin-
affections. His communication has already been brief- ciding with the increase of oxygen in the air. As aviaffections. His communication
by alluded to in this journal. Thiocamf is described by Pro fessor Emerson Reynolds, its discoverer, as a "liquid which results when sulphur dioxide gas is brought in with camphor" In this are dissolved sub tances destructive of bacteria among them benzoic acid and phellandrene. Thiocamf can be preserved without pressure in bottles at ordinary temperatures, but on its ex posure in thin layers a steady evolution of large volumes of sulphur dioxide gas, charged with the vapors of other disinfectants, takes place. From this action it has been much used for atmospheric disinfection, and, for the same reason, Duffer has applied it to the uses noted. For internat administration it was combined with pure butter fat in the proportion of ten per cent of thiocamf. Of this, ten grains were given in capsale every two or three hours for four doses. The capsules were sometimes coated with keratin, that they might pass through the stomach and be dissolved in the inter tines.
The drug was thus used in a case of typhoid fever, in a case of phthisis in which the patient was suffering from pyrosis, in a case of dilatation of the stomach, and in a case of alcoholic peripheral neuritis in which the patient had fetid alvine evacuations. In all of these the signs of fermentation became less marked and the character of the movements improved. In two cases of scabies a four per cent solution in olive oil effected rapid cures. In bedsores and unhealthy ulcerations it was used in oily solution (four to six per cent) with the effect of quickly removing fetor,

PRIZE HOLSTEIN COW AT THE WORLDS COLUMBIAN EXPOSITION.
dence that the composition of the atmosphere is still slowly changing, it is stated that the latestand most careful determinations of carbonic acid in the air have shown a decided decrease (0.05 to 0.03) in the last fifty years.

The Production of Prussic Acid from Sugar. The conversion of an absolutely innocuous substance into one of a powerfully toxic nature by means of a series of simple chemical operations, though not a rare phenomenon, is well-illustrated in a reaction recently observed by three chemists--Messrs. Burls, Evans and Desch-in which prussic acid proved to be one of the
diminishing the discharge, and promoting healing No ill effect was noted in any case.-Medical Record.

Chemical History of the Atmosphere.
In the Chemical News Dr. Phipson gives the cherical history of the atmosphere from its origin to the present day, in accordance with the results of his observations and experiments, particulars of which we have published from time to time. Premising that the matter composing the earth was originally in a gaseous condition at such a temperature that no compounds could exist, he assumes that, when a solid crust later
products of the action of nitric acid upon sugar. It is well known that by acting upon sugar, sawdust or cellulose with nitric acid, oxalic acid in tolerable quantity is produced. In the course of such an experiment the chemists above named noticed the smell of prussic acid just after the first violence of the re action had ceased and the evolution of nitrous fumes had diminished. Subsequent examination proved beyond doubt that prussic acid in considerable quan tity was present in the liquid, and on submitting the liquid to distillation, prussic and densed products. A larger yield of the acid was ob tained when the nitric acid was allowed to drop slowly

ned when the ac

PRIZE DUTCH BELTED BULL AT THE WORLDS COLUMBIAN EXPOSITION. into the sugar solution from a tap funnel. Caramel was acted upon sinelarly, although the quantity of prussic acid produce was less than before The production of hydrocyanic acid would appear to be due to the reduction of the nitricacid to nitrous acid and to the action of this acid upon the carbon ensuing on the decomposition of the sugar. Finely divided carbon itself was found to give prussic acid on distillation after treatmend with nitric acid, and the same result was obtrained when cane sugar was acted upon by nitrous acid by submitting the sugar first to the action of nitrite of potassium and then acidulating with sur phuric acid. On this bypothesis the reaction may be thus represented: $2 \mathrm{HNO}_{3}+\mathrm{C}=2 \mathrm{HNO}_{2}+$ CO_{2} and $\mathrm{HNO}_{2}+2 \mathrm{C}=$ $\mathrm{HCN}+\mathrm{CO}_{2}$. This action is evidently of interest from theoretical point of view, and only shows how we may be led astray in being content with the simplest explanation of certain phenomena. The text books give oxalic acid as the product of the action of nitric acid upon sugar, but now must be added the observation that hydrocyanic acid is a compound simultanequsly produced. -The Lancet.

Mr. Gilbert's address ass retiring president of the Washington Philosophical Society is an ingenious array of arguments in favor of the impact theory to account
hypothesis is, that material constituting the moon once surrounded the earth in the form of a Saturnian ring; that the small bodies of this ring coalesced, first gathering around a large number of nuclei, and finally all uniting in a single sphere, the moon; that the lunar craters are the scars resulting from the colision of the moonless.
This hypothesis reconciles the impact theory with the circular outline of the lunar craters and explains the abundance of colliding bodies of large magnitude. The author discusses the probabilities of the formation, according to his theory, of lunar wreaths, central hills, arched inner plains, level inner plains, and the association of inner plains with central hills. He finds his theory adequate to explain all these phenomena, as well as the peculiarities known as furrows, sculptore, rills and rill pits. In regard to the "white streaks" Mr. Gilbert quotes, as in accordance with his own idea,
an unpublished suggestion made by Mr. William Wurdeman, that "a meteorite (moonlet) striking the moon with great force spattered whitish matter in various directions."
During the growth of the moon, many of the moonlets must have collided with the earth and formed inpact craters which have been obliterated by erosion and sedimentation. It is possible, the writer suggests, that these collisions imitated not only the differentiation of continental and oceanic plateaus, but the series of geographic transformations of which geologic structure is the record. (Phil. Soc. Washington, Bull. vol. xii., 1893.)-American Naturalist.
©arrespondence.

Prof. Brooks Discovers a Now Comet.

To the Editor of the Scientific American:
Early this morning it was my good fortune to discover a fine new telescopic comet, while searching the eastern heavens, which were beautifully clear. The position was R. A. 12 hours 21 minutes, declination north $12^{\circ} 55^{\prime}$, with a slow motion in a northeasterly course. The comet is bright telescopic, with a short tail.

Further particulars will be communicated to your readers as soon as the observations are secured.

William R. Brooks.
Smith Observatory, Geneva, N. Y., Oct. 17, 1893.

How to Preserve the Egyptian Obelisk.

 To the Editor of the Scientific American:I see from a Philadelphia paper that some one in New York proposes that the obelisk in Central Park should be gilded to preserve it from further decay. Gilding will not do any good. Why not cupper-plate it with a moderately thick coat of copper? A coating of 6 to 8 ounces of copper per square foot, applied by the electrolytic method, would not obliterate any of the carvings on its face and would preserve it for all time. If the color of the copper should be objectionable, a coat of aluminum could be applied over the copper, which, after some months' exposure, would give it the appearance of stone. There would be no difficulty in applying the copper. The obelisk is already soaked with paraffine, and it only needs to be plumbagoed to be in a condition to receive a deposit, which could be applied in the way that it is intended to electroplate ships' bottoms with copper, viz., by plating it in sections which overlap. The cost would not be high, and it would not require much time to do it.
J. D. Darling.

Frankford, Philadelphia, September 25, 1893.
Nataral History Notem.
The Parasol Ant.-The action taken by the legislature in regard to the destruction of the parasol or leafcutting ant in Trinidad has drawn fresh attention to the habits of this insect, and very interesting information has been published respecting it. The most accessible account bitherto existing is that given by Belt in "The Naturalist in Nicaragua." The results of recent investigations have confirmed this author in the supposition that the ants cut up the leaves of plants and bring the pieces into their nest to serve as a pabulum on which to grow a fungus. In fact, these pieces are used to form an underground mushroom bed, and the ants use the conidial stage of the fungus for purposes of food for themselves and their larvæ. The Hon. J. E. Tucker, Director of Public Works, Trinidad, gave some interesting particulars of the habits of the parasol ant in the Journal of the Trinidad Field Naturalists' Club for August, 1892. He had two nests on a table in his house. In one nest with a queen the ants readily supplied themselves with pieces of leaves from plants placed near their feeding ground. Each forager dropped his portion of leaf in the nest and it was taken up by a small worker and carried to a clear space to be cleaned. It was then taken in hand by the large workers, which, after licking it with their tongues, reduced it to a small black ball of pulp. These balls were built on the edge of the already formed fungus bed and slightly smoothed down. The new surface was then planted with portions of the fungus brought from the older parts of the nest. "Each piece is planted sepärately, and the ants know exactly how far apart the plants should be. It sometimes looks as if the bits of fungus had been put in too scantily in places, yet in about forty hours (if the humidity has been properly regulated) it is all evenly covered with a mantle as if of very fine snow."
In an exhaustive memoir on the "Mushroom Gardens of Some South American Ants," recently published by Alfred Moller, who studied the subject on'the spot, the statement made by Belt respecting the cutting up of leaves by ants for the formation of a pabulum on which a fungus is grown that serves as food has been corroborated. The method of leaf cutting, the various species of plants used, and the formation of the "mushroom gardens" are given in detail; but the most interesting and hitherto unknown portion is that relating to the fungus cultivated by the ants in their "mushroom gardens." A series of cultures has proved this to be the mycelium and conidial stage of a fine agaric, which, according to the Friesian system, would belong to the sub-genus Pholiota of Agaricus, but which has been called by Moller Rozites gongylophora. The agaric grows in dense tufts, and has a purplish, scaly pileus, $10-16 \mathrm{~cm}$. across. The highest form of the fungus does not occur normally in the "mushroom gardens," but only the mycelium and conidial forms, and it is the last named conditions that are eaten by the ants.
Observations were made by Moller on the " mushroom gardens" of ants belonging to the following genera: Atta (Acromyrmex) Mayr. (A. discigera, Mayr.;
A. hystrix, Latr.; and A. coronata, Fabr.); Apterostigma, Mayr.; and Cyphomyrmex, Mayr.
Although Moller did not directly study the fungus cultivated by the Trinidad species (EEcodoma cephalotes) there is now little doubt that it is identical with that described by him as Rozites gongylophora.
The Sense of Vision in Ants and Bees.-It is generally assumed not only that the world really exists as we see it, but that it appears to other animals pretty nearly the same as we see it. A little consideration, however, is sufficient to show that this is very far from being certain, or even probable. In the case of insects, moreover, the mode of vision is still an enigma. They have (at least many of them have) a large compound eye on each side, and ocelli, generally three in number situated on the summit of the head. The compound eyes consist of a number of facets, each situated at the summit of a tube, to the base of which runs a fiber of the optic nerve. The structure of the ocellus and that of the compound eye are different, and it does notseem possible that the ocellus should be derived from the compound eye, or vice versa. On the contrary, both seem to point back to a less developed ancestry. Starting from such an origin, an increase of the separate elements and an improvement of the lens would lead to the oculus, while an increase to the number of eyes would bring us to the compound eye. On the other hand, there are reasons for believing the different kinds of eyes to be of distinct origin.
It seems clear that the picture produced by the ocelli must be altogether different from the picture given by the compound eye, and we may reasonably conclude thiat the two organs have distinct functions. It used
formerly to be supposed that the compound eye was formerly to be supposed that the compound eye was Claparoedr, however, maintains the opposite theory, while Mr. Lowne regards the ocelli as incapable of producing anything worthy of the name of an image, and suspects that their function is the intensity in the direction of light, rather than vision. The ocelli, or simple eye, sees in the same way as ours do, that is to say, the
lens throws an image on the back of the eye, which we call the retina. In that case they would see everything really reversed as we do, though long experience has given us the right impression. The simple eye of insects thus resembles ours in this respect. As regards the mode of vision of the compound eyes, there are two
distinct theories.
According to one, that is the mosaic theory of Muller, each facet takes in only a small portion of the field, while, according to the other theory, each facet acts as a separate eye. This latter view has been maintained by many high authorities, but it is difficult to understand how so many images could be combined into one picture. Some insects have more than twenty thousand facets on each side of their head. No ants, indeed, have so many; but some there are that have not less than one thousand eye facets. The theory, moreover, presents some anatomical difficulties. Thus in certain cases there in no lens, and consequently there can be no image. In some it would seem that the image would be formed completely behind the eye, while in others, again, it would be in front of the receptive surface. Another difficulty is that any true projection of an image would in certain species be precluded by the presence of impenetrable pigment, which only leaves a minute central image passage for the light rays. Again, it is urged that even the sharpest image would be useless, from the absence of a suitable receptive surface, since the structure of the receptive surface, belonging to each facet, seems to preclude it from receiving more than a single impression. The prevailing opinion among entomologists now is that each facet receives the impression of one pencil of rays, so that in fact the image formed in a compound eye is a kind of mosaic. On the other hand, this theory itself presents many difficulties. Those ants which have few facets must have an externally imperfect vision. Again, while the image produced in the retina of the ocellus while the image produced in the retina of the ocellus
must, of course, be reversed, as in human eyes, in the compound eye, on the contrary, the vision on this theory would be direct. That the same animal should see some things directly and others reversed, and yet obtain definite conceptions of the outer world, would be very remarkable. But while it is difficult to perceive how ants see, yet they do see.-Science Gossip.
A Fighting Stratagem of the Crawfish.-The common crawfish (Palinurus vulgaris) has many points of interest, and not the least curious is his plan of combat when matched wth a powerful antagonist. Without chelate limbs, he seems weak and defenseless. One is at first inclined to commiserate this apparent want of means alike of offense or defense, especially in comparison with his kindred, the lobsters, armed so well with powerful seizing chelæ. That he had means of defense seemed probable; but it is only within the last few days that this was satisfactorily demonstrated. Without any particular intention in view, we had dropped a medium sized lobster into the tank containing two large Palinurus. At first no sign was given, but in a little while we were attracted by a loud noise as of a skirmish, and had an inimitable object lesson
apparently resented the intrusion of the lobster, and was determined upon ejection. There was a good deal of preliminary sparring, but the fight, which promised to be protracted, ended suddenly in a most unexpected manner. Making a sudden twist, the crawfish got above the lobster crosswise, and suddenly snapping his powerful tail, jammed the body of his antagonist in the fold, thus impaling him on the sharp downward spikes of the pleura that are so conspicuous objects in a side view of Palinurus. The lobster was put quite hors de combat, for his body was terribly mutilated by the sharp spines, which had pierced his armor as though it were tissue paper. Besides this instance, cases are known where persons incautiously handling the crawfish have received wounds on the arm inflicted by a similar sudden flap of the tail.-Jas. Hornell, in Natural Science.
Habits of the Secretary Bird.-As soon as the secretary bird, or snake eater (Gypogeranus serpentarius), of South Africa, discovers a snake, it advances toward it, without hurry and without hesitation, and when withing striking distance it immediately elevates its crest and the feathers of the neck, and, without losing any time, delivers a blow with its foot. If the snake has avoided the blow and attempts to strike in return, the bird interposes a wing, thus receiving the deadly fangs harmlessly upon the long feathers, and immeditely strikes again.
The fight is then virtually over, for if the secretary gets in a single blow the snake's back is broken, and the bird, like lightning, plants its foot firmly on the reptile's neck and head, pressing thent into the ground, while it delivers the coup de grace with its beak, and then deliberately swallows the snake whole, beginning at the tail, and, just before the head disappears, giving it a parting rap on the ground.
But there is nothing refined about the secretary bird's appetite, for one writer says he found inside one three serpents "as long as his arm," eleven lizards seven inches long, twenty-one tortoises about two inches in diameter, "besides a large quantity of grasshoppers and other insects;" or, in other words, seven and a half feet of snake, six and a half of lizard, three and a hal of tortoise, and, say, a yard of miscellaneous trifles !
The secretary bird is protected by the Cape authorities for the immense public benefit it confers in eating poisonous snakes, and a penalty is attached by law to its destruction. And, if it were necessary, hundreds of eyewitnesses could be called to prove its right to the itle of "Serpentarius." Curiously enough, too, this bird can be trained, and is trained, to protect poultry yards, not only from snakes, which are all too fond of eggs, but from other birds of prey.-St. James Budget.
The Perfume of Flowers.-The following conclusions are the result of the researches of Mr. E. Mesnard upon the mode of production of the perfume in flowers:

1. The essential oil is generally found localized in the epidermic cells of the upper surface of the petals or sepals. It may exist upon both surfaces, especially if the floral parts are completely concealed in the bud. The lower surface generally contains tannin or pig ments derived therefrom.
2. The chlorophyl seems in all cases to give rise to the essential oil.
3. The disengagement of the perfume of the flower makes itself perceptible only when the essential oil is sufficiently disengaged from the intermediate products that have given rise to it, and is found, in a manner, in a ratio inverse to the production of tannin and pigments in the flower.
This, says Mr. Mesnard, will explain (a) why flowers with green petals have no odor, (b) why white or rosecolored flowers are most often odoriferous, (c) why the compositæ, which are rich in tannin, have the disagreeable odor that they are known to possess, and (d)
why the white lilac and forced roses take on a finer why the white lilac and forced roses take on a finer perfume.
A Carnivorous Caterpillar.-Prof. Perrier, of the Paris Museum, recently stated to the Academy of Sciences that Mr. Rouzand, maitre de conferences at the Faculty of Sciences of Montpellier, has studied the habits and metamorphoses of a remarkable butterfly whose caterpillar lives upon the olive tree. This lepidopter was briefly described by Rambour sixty years ago, under the name of Erastria scicula.
Unlike its fellows, the caterpillar of the Erastria does not eat the leaves of the tree upon which it lives, but, on the contrary, despoils the latter of its parasites. It is not herbivorous, but carnivorous, and feeds upon the coccinellidæ that abound upon the olive tree and often cause the death of it.
In addition to this peculiarity, this singular animal presents others of great interest. In its adult state it is so colored as to exactly simulate the excrement of the sparrow. While very young it hides itself under the carapace of the coccinellidæ that it devours. When a little older it spins a ring of silk around such carapace, and thus enlarges its dwelling in sucha way that it shall always be adapted to its own size. Let us add that it conceals this addition under the debris of cocrinellidæ and the spores of Fumago, a fungus para-

BEVELING AND SILVERING MIRRORS.

The making of glass mirrors for commercial purposes was probably first developed in Venice. Looking glasses in large sheets were exported from Venice in the last part of the 17 th century. Mirrors became articles of household furniture in the early part of the 16th century. Previous to that time small pocket mirrors were carried at the girdles of ladies. They had no covers, but were furnished with a short handle. The old process of amalgamation is about done away with. The process of silvering was first introduced in 1840, through a discovery made by Baron Liebig. A horizontal double-bottomed metallic table is used, which is heated with steam to from 35° to $40^{\circ} \mathrm{C}$.
The glass to be silvered is cleaned thoroughly with wet whiting, then washed with distilled water and prepared for the silver with a sensitizing solution of tin, which is well rinsed off immediately before its removal to the silvering table. The table being raised to the proper temperature, the glass is laid and the silvering solution at once poured over it before the heat of the table has time to dry any part of the surface of the glass. The solution used is prepared as follows : In $1 / 2$ liter of distilled water 100 grammes of nitrate of silver is dissolved, to this add liquid ammonia (sp. gr. 0.880) 62 grammes. The mixture is filtered

Castle stone wheel about 30 inches in diameter and about 3 inches in thickness. This wheel smooths the surface of the beveled edges and is ready for the first polishing wheel. The polishing wheels are 34 inches in diameter, 3 inches thick and made of poplar wood. It revolves in a perpendicular position, the attendant pressing the beveled edge against the face of the wheel, adding now and then a quantity of water and powdered pumice stone. This wheel leaves the edges a little cloudy from the pumice stone. To make the edges transparent they are run over another similar shaped felt-covered wheel, the surface of which is covered with rouge
A number of sheets of glass can be polished at the same time, by laying a number of the sheets on a long cloth-covered table over which, connected to a square horizontal shaft, are a number of iron frames. Inside of these frames polishing blocks are placed, the bottoms of which are covered with felt and rest on the surface of the glass. These blocks are made of wood and filled with lead and weigh about 20 pounds each.
The shaft which moves the blocks over the surface of the glass is set in motion by means of a crank attached to a wheel on the main shafting. After polishing the glass is taken to the silvering
oom and washed and silvered as stated above. Some
cucumbers, cauliflowers, and cabbages, while on spinach leaves kept in a damp atmosphere they were still present after twelve days. A three per cent infusion of black Chinese tea destroyed them within twenty four hours, and in a four per cent infusion no trace could be found at the end of sixty minutes. In the case of coffee a two hours' immersion in a six per cent infusion sufficed for the destruction of the organisms. Beer of various kinds was equally fatal, one to three hours being the limit; but wines acted best of all, vitality being extinguished within twenty minutes by red wine and within five minutes by white.

The New Rifle for the Navy.
The navy has made a new and radical departure in the manufacture of small bore arms. The recommendation of the Chief of the Ordnance Bureau, founded on the report of the Newport Board, has been approved by Secretary Herbert. The new caliber is 0.234 of an inch. This is the smallest caliber regularly adopted by any government. The caliber of the French Lebel rifle is 0.315 ; the German Mannlicher is 0.311 ; theDanish Krag-Jorgensen is 0.315 ; the English Lee-Speed 0.303 ; the Swiss Schmidt 0.295 , and our new army model $0 \cdot 30$. The board recommends the 0.234 caliber, as they consider that it will give higher veloc-

BEVELING AND SILVERING MIRRORS.
and made up to 8 liters with distilled water, and $7 \cdot 5$ grammes of tartaric acid dissolved in 30 grammes water are mixed with the solution. About 2.5 liters are poured over the glass meter to be silvered. The metal immediately begins to deposit on the glass, which is maintained at about $40^{\circ} \mathrm{C}$. (104° Fah.), and in a little more than a half hour a continuous coating of silver is formed.
The silvered surface is then cleaned by very cautiously wiping with a very soft chamois rubber and treated a second time with a solution like the first, but containing a double quantity of tartaric acid. This solution is applied in two portions, and thereafter the glass is once more carefully cleared of all unattached silver and refuse and removed to a side room for backing up. The plate glass before silvering is first beveled on the roughing machine. To bevel the edges the sheet of glass is held up slightly on the edge by the attendant on to a horizontal revolving iron wheel. This wheel is about 30 inches in diameter and about $11 / 2$ inches in thickness and is slightly curved on top. Water and white Rockaway sand is added from a large wooden cone-shaped hopper, which causes the wheel to grind down the edges of the glass.
The wheel is capable of beveling one foot in about twenty minutes. From the rough beveling machine the glass is run over a 30 inch emery wheel. This cleans and takes out the sand from the pores of the glass.
vering tables are made of hard wood, being about $1 / 2$ feet in depth, with a metal top. The interior con tains about six inches of water, heated by coils of pipe aid across the bottom. The tables are about 12 feet in length and 7 feet in width. lron slabs are laid over the top of table and covered with Canton flannel, on which the glass is placed to be silvered. It takes about $21 / 2$ hours to dry and then the backs are painted. Some silverers use hartshorn and Rochelle salts in their solutions. The sketches were taken from the plant of A. Vogeley, New York City.

Distribution of Cholera.

Though there is little reason to doubt that the distribution of cholera is mainly due to the use of impure water, in certain cases its communication has been raced to various articles of food, and Mrs. G. C. Frankland, in Nature, give a summary of recent researches on the subject by Friedrich. More than fifty different articles were specially studied, including fruits, vegetables, milk, tea, coffee, cocoa, beer, wine, caviar, biscuits, bonbons, tobacco, and snuff. In the case of solid substances the cholera bacilli were both rubbed on the outer surface and inoculated on to slices. Under the former condition the vitality of the microbes depended chiefly on the degree of moisture present in their environment, but the acid in the juices of fruit caused their destruction on the slices in from one to
ity, greater range, greater penetration and greater accuracy than the $0 \cdot 30$, with the added advantage of allowing the men to carry a greater supply of ammunition. The disadrantage is the lack of interchangeability of ammunition between the two services. The figures given above for the guns adopted by the foreign nations are the latest. In'the last few years the reduction in caliber has been phenomenal. The English Martini and the old Springfield rifles were 0.45 , the famous Chassepot of France 0.433 , the Russian Berdan 0.42 . The number of rifles needed by our navy is small, but the department will, if necessary, furnish the barrels for the manufacturers to apply the breech mechanism.

The nickel alloy has become famous in the manufacture of our armor plate, so that it is, therefore, not surprising to learn that the 0.234 barrels to be furnished to the competing inventors of magazine guns will be made of nickel steel alloy. We shall look for the competitive tests with great interest.

High Speed on the Pennsylvania Railroad.
Engine No. 225 of the Pennsylvania's new class P, with 78 inch wheels, did some fine running a few days ago, having reached the speed of 90 miles per hour, and averaged over 87 miles per hour for several miles. It also ran 65% miles (including six slow-ups) in 62.75 minutes, and from a standstill at Bay View it ran to Chases, $11 \cdot 4$ miles, in 9 minutes and 39 seconds.

RECENTLY PATENTED INVENTIONS. Engineering.
Elevator and Conveyer.-Lewis A. Park, Townsbury, N. J. A centrally pivoted track is
adapted to move horizontally on an upright portable open adapted to move horizontally on an upright portable open
frame, a carriage running on the track past its pivot and through the frame, there being a gear and chain mechanism for moving the carriage and detachable braces right angles to the frame. The invention affords a simple and strong machine for lifting and placing building materials or other heavy articles, the braces strengthening the extended portions, and the machine being in ery compact
Elevated Railway.-John N. Valley, Jersey City, N. J. An improved traveling carriage or hanger has been designed by this inventor, suitable for suspending any desired form of car, and positively
to prevent its derailment. The carriage has four standto prevent its derailment. The carriage has four stand-
ards, constituting with a bottom band and uniting bars a ands, constituting with a bottom band and uniting bars a
frame in which are journaled suspension wheels and frame in which are journaled suspension wheels and
safety wheels, the treads of the latter being spaced sufficiently below the running wheels to receive the rails between them, he flanges of bo h wheels being on the inside of the track rails. The invention also provides
an improved track and support therefor, whereby the an improved track and suppor
strain on the railsis distributed.
Centrifugal Shaft Governor.George S. Neeley, Pacific, Mo. This invention consis's principally of a pivoted eccentric disk adapted to
move across the driving shaft of the engine, and con ected with a central gear yieldingly connected with the hub of the governor wheel secured to the driving shaft, weighted and spring-pressed segmental gear wheels being mounted to turn on the governor wheel
and in mesh at opposite sides with the central gearwheel. The device is of very simple and durable construction, govern the motion of the valve and insure uniform running of the engine.

Mechanical.

Saw Cotton Gin.-Nathan Whalley, Fort Payne, Ala. In this machine a revoluble chute, and fingered or toothed huller bars near the saws and the back portion of tike chute, a pair of carding rolls
being arranged parallel above the saws, while there is a being arranged parallel above the saws, while there is a thind carding roll between the pair of rolls and the saws,
to clean the larger rolls. Ordinary gin saws are used, and the feed and speed generally be perfectly controlled, bu the cotton may be cleaned of foreign matter before it is riction and damage to the saws. The saws are no friction and damage to the saws. The saws are not
necessarily forced deeply into the roll of seed cotton, necessa
thus pr
lint.

Centrifugal Machine.-Leon F. r curb from which a discharge spout a stationary shel is curb from which a discharge spout delivers to chutes and permitting the free circulation of steam, air, or gas,
between the basket and curb. Secured to the bottom of between the basket and curb. Secured to the bottom of
the basket is a fan comprising a plate turning above the the basket is a fan comprising a plate torning above the
annular channel in the curb bottom, and a number of urved blades secured to the under side of the plate, the an blowing lightly to the inner periphery of the curb where it would come in contact with the dry sugar dis harging from the basket. The machine is especially designed to facilitate the separation of liquids from solids in the sugar manufacture.
Wire Shears.-Louis Townsend, Evansville, Ind. This is a tool for the use of firemen
and others who may have to cut electric wires. It ha two heads, each having cutting jaws, and pivoted to-
gether centrally so that they coincide when in normal position, he shanks and attached handles being curved laterally from each other, so that when the handles are drawn apart the cutters meet. The handles are insu-
lated, and the cutters are so arranged that they may be either pushed or pulled against the wires to be sev ered.
Nut Lock. -John D. Fich tner, Union town, Pa. The bolt, according to this improvement, is provided with two sets of threads cut in opposite direc
tions, with nuts fitting the threads, the main nut being provided with a chamber and a spring pawl, and the locking nut being fitted to the reverse thread and pro vided with a ratchet.
Lubricator. - Nathaniel J. H. Dun can, Parkville, Md. A divided grease reservoir adapted
to be secured to the connecting rod has tubes leading to be secured to the connecting rod has tubes leading
from its compartments into the box of the crank, reciprocating plungers sliding in the tubes resting upon the crank. The device is of very simple construction and is designed to automatically deliver just the right quantity of oil to the crank, without regard to
engine or the temperature of the oil.
Loom.-William Britain, Jr., London, England. This invention relates to looms for producing coir yarn mats and similar fabrics, and provides pile yarn carriers passing between the reed platesof the batten and extending nearly to the fell of the cloth, together with means for causing each carrier to pass alternately on op-
posite sides of the ground warp which passes between posite sides of the ground warp which passes betwee
the same reed plates. The loom is designed to produce a high grade fabric in which the tufts of the pile are looped around the ground warps instead of being caugh by the weft, as in ordinary pile fabrics.

Agricultural.

Corn Harvester.- James E. Perkins, Brownwood, Texas. This is a machine capable of
being attached to any farm wagon, so that when the wagon is drawn over the fleld it will cut the ears from two rows of corn simultaneously and deposit the corn in a receiver at the rear of the catters. Power is afforded ciprocste knives with which the ears are brought in en
ears dropping into chutes from which they pass to the
receiving receptacle, to be removed from thence to the oddo of the wagon.
Fertilizer Distributor. - Thomas W. Sample, New Washington, Ind. This is an improve ment in devices to be attached to planting machines, to
distribute the fertilizer at distribute the fertilizer at he time the seed is planted
It is adapted to evenly distribute the fertilizer in front o and behind each hill of corn or sow it in drills if desire By means of a valve of novel construction the feed of the fertilizer is perfectly controlled, and means are als it drop fast or slow.

Miscellaneous.

Gas Meter Connection.-Albert H Gindele, Jersey City, N.J. This is an improvement in tended for use as a substitute for the solder joints usually produced between the thimble of a union nut and
the end of the lead pipe, and also between a common nipple that is used to join the lead pipe connection to a iron pipe. The lead pipe is radially flanged at the end, an on it is an externally threaded sleeve, while a threade threaded in two diameters engages the sleeve and thim ble, a
post.
Phosphate Separator and Disin tegrator.-George Guild, Knoxville, Tenn. This inend steam pipes, and in which the phosphatic earth mas be agitated and simultaneously subjected to blasts of steam, the filtrate being then strained away from the nodules or pebbles. The apparatus is comp

Steaming Apparatus.-Henty G Hall, Blacksburg, S. C. A kettle with its base on a fur-
nace, and circulating pipes extending under the base nale, and circulating pipes extending under the base
plate, whereby the water may be readily heated to a temperature of about $275^{\circ} \mathrm{F}$., is arranged to accommodate a series of circularly traveling baskets containing fill
cans or other articles to be steamed. Each of the baskete is engaged by an arm connected with a flange on a sleeve turning on the upper part of a central flue, and the wheels of the basket carriages travel in the bottom of
the kettle, the wheeled baskets being conveniently lifted in or out of the kettle for filling or emptying or moving

Method of Preserving Wood.rancis Hall, Tacoma, Washington. This invention re lates more particularly to the treatment of wood for protecting it from the ravages of the teredo, as well as other forms of animal life, also rendering the wood less inflammable. It comprises subjecting the wood to the
action of a solution of alkaline hydrates in connection withon of a solution of alkaline hydrates in connection ing salts: Alkaline aluminates alkaline silicates, alkoline chromates, alkaline arsenates or arsenites, alkaline sulph des or alkaline sulphide solution of metallic sulphides the processes
which treated.
Construction of Buildings. - William M. Myers, Hannibal, Mo. The wall, according to this improvement, is composed of brick laid longitudinally, wooden strips disposed between each course of
brick and mortar courses between the faces of the strip and the brick, the outer edges of the wood sections being hich the cement filling is placed the to form grooves in hich the cement filling is placed. The main purpose o ing the quantity of brick and labor by about one-half compared with ordinary building.
Store Service Apparatus.-James R. Pollock, Mansfield, Ohio. This improvement relates particularly to the means of propelling the basket or car, he fixed truck, at the other end of the propelling line eing a ball or block and a fixed guide to be engaged hereby to take up slack. To send he basket, it is only necessary to pull upon a hand line and lift the ball to he top of the guide, he operating line not only serving to ropel the basket, but also as a brake therefo
Camp Stove.-George W. Mings, New Castle, Col. This is a stove which may be so clomely olded up as to be carried in a saddle bag, and yet may be
uickly set up for effective service. It has rectangular quickly set up for effective service. It has rectangular ody sections hinged together at their ends and a series
of triangular sections hinged at their bases to the upper edges of the body sections and provided with separable onnections. The stove, as set up, is
Overalls.-Philip J. Lonergan, De er, Col. This is a garment in which the outer sides of dge legs are open from top to bottom, having along thei the front section of the waist portion are extended pull pieces, thus forming a garment which may be put on or taken off with great facility.
-Refrigerator. - Lansing Bonnell, New York City. The upper ice chamber and lower proachable flues, the parts being so arranged as to promote a constant circulation of air and an even distribution of the cold air which passes downward from the ice chamr. The ice chamber is covered by a swinging lid which as in the center a depressed condenser. Every flue and air discharge, as well as the trap, may be easily removed or thrown open for inspection and cleaning
Saw Frame. - George M. Harriman, South Thomaston, Me. This is a frame in which the with the curved end piece of the nuter end of the frame allowing the end piece to tilt freely in straining the saw without weakening the frame.
Half Tone Negative for Photo. Processes.-Frederick J. M. Gerland, Bayonne, N. J. A sensitive plate is, according to this process, subjected a for the remainder of the time of full exposure with a
negative is made which has a oniform tone in the high
lights, producing a clear or non-printing space in the positive print on he stone, zinc or copper plate, so that ights corresponding to the high lights on the object pho ographed. This work has formerly been done bv the

Ledger Index.-Franklin A. Ransom, farley, Ia. This is a device of simple form, constituting no part of the ledger itself, but arranged for readily post
ing he desired names and conveniently finding the desired page of any account, and also indicating he prope side and arms and adapted to hold index leaves, transverse shafts in the casing having arms pivoted to the arms of the
frames and with handles at their outer ends for torning hem.
Sleigh. - Friederich A. Schaefer, Truckee, Cal. This sleigh has drive wheels held vertisleigh may be conveniently propelled and steered ove the ice and snow without danger of sinking the wheel co deep into the snow. Besides the main runners, this
leigh has anxiliary runners adapted to be fastened a sleigh has anxiliary runners adapted to be fastened at
their ends to the main runners, and near its forward end are fulcrumed rudders connected by a cord with handle naled in the front, the front end of the sleigh may be aised off the snow or ice, the wheels being normally olded back out of contact with the snow or ice
Sled Propeller. - A further improve readily propelled and steered overice orsnow, either by be occupant or by a suitable motor within he sleigh body On each side of the sleigh box is a shaft carrying a pad dle wheel operated by a crank arm by a person in the
sleigh, the paddles engaging the snow or ice to propel d steer the sleigh.
Bicycle.-Samuel A. Donnelly, Chicao, III. This wheel has a diamond-shaped frame forme of four metal rods bent to form a double diamond frame
and having heir rear ends arranged approximately parand having heir rear ends arranged approximstely par dvance of their rear extremities. The vehicle is ver ight and strong, while the frame is peculiarly adapte get loose in bicycles, which are stronger, owing to fewe
onnections.
Chair.-Thomas S. King, Cincinnati The combined folding and swinging chair designed ion, quickly and easily set up and taken down, an when not in use it can be folded and packed in ver small space. It has two upright side standards, and th hair frame as weH as he uprights are madeof flat metal the frame comprising a seat frame, a back frame and a drup frame pivoted to the apposite ends of the seat
frame. The back, seat and drop frames are covered by rame. The back, seat and drop frames are covered by a single piece of cloth stretched over the sections and
wound at opposite ends upon top and bottom crossbare the cloth being so retained that it is impossible for it to sag in the back or seat.
Washing Machine.-Mary A. Marks, Toledo, \mathbf{O}. This machine is designed to facilitate the ore or after the washing and in such avoid all possible injury to the garments. With this im provement the clothes are not rubbed, but receive first saturating, then a pressing and then a rinsing to remove the dirt. A lever is pivoted on a standard in the middle
of the suds box lid, plungers extending from the leve hrough apertures in the lid, there being clothing carrier on the lower ends of the plungers, consi
Bridge Gate.-William J. Brown and Bohn K. Walker, Coal City, Ill. Combined with two gates and mechanism for moving them is a swinging
brace on the outer end of one gate, while a rack and pinion mechanism is carried by the abutting ends of the out gates for automatically swinging the brace into and ward and from each other. The improvement is adapte to automatically close and open the approaches to draw bridges with the swinging of the bridge, and is a simple, strong and positively working apparatus to
fence or gates by the movement of the bridge.
Hernial Instrument. - Alexande Dallas, New York City. This is a very simple imple ment for use in inguinal and femoral hernix, consisting of a head and handle, the head flattened and its poin
smooth and blunted, while its anterior and posterior sur smooth and blunted, while its anterior and posterior sur
faces and outer edge are covered wi h fine, needle-point faces and outer edge are covered wi h inne, needie-point ed serrations, the inner edge being smooth and having
deep groove. The handle part has a movable cover whiced.
Earthenware Sewer Pipe Joint. Robert Ewing, 16 Shaftesbury|Avenue, London, England This is an mprovement, especialy in that class of join
with ordinary faucet, and with external shoulder o Hange on the plain or opposite end of the pipe, made o the same material as and integral with the body of the
pipe. The joint has ample internal space for the luting pipe. The joint has ample internal space for the luting plain end of the pipe a double bearing to the spggot lar rib at the lip of he socket. The joint is closely an evenly fitting, especially at the invert or floor of the
Bugay Top Folding Device.-Lacrota L. Short, Russellville, Mo. Journaled in the vehicle
box is a shaft with upwardly extending arms having a loose connection with the buggy top frame, and down wurdly extending arms connected whin foot lever The arrangement is such that one sitting on he bugg seat can by pressure of the foot readily open or close th buggy top at any time while the vehicle is in motion.
The improvement is readily applicable to all ordinary bugey tope.
Design for Fabric. - William S.
design consists of the representation of a fox skin in an
outstretched position. The mat effect is produced by shadowy lines at the marginal portions of the skin, thus producing a relief effect.
Note.-Copies of any of the above patents will be
fornished by Munn \& Co., for 25 cents each. Please fornished by Munn \& Co., for 25 cents each. Please
send name of the patentee, title of invention, and date of this paper.

NEW BOOKS AND PUBLICATIONS.

The Transition Curve, by Offsets

 AND BY DEFLECTION ANGLES. ByC. L. Crandal, C.E. First edition.
New York: John Wiley \& Sons. 1893. New York: John Wile
Pp. v, 64.
This little handbook is designed for use by the civil engineer in laying out railroads. It refers more particularly to the change from the level straight track to the inclined easy one in order to prevent disturbances to rolling stock and twisting of the trucks. The point is to make the inclination of the roadbed proportional to the centrifugal force at every point. This statement from the opening paragraph of the book is the keynote to the work, which, with its detailed description of methods and full table

A Popular History of Astronomy

 During the Nineteenth Century. By Agnes M. Clerke. Third edition.London: Adam \& Charles Black. 1893. Pp. xv, 573. Price $\$ 4$.

We have recently had occasion to review Professor Mach's work upon the history of physics. Miss Clerke's Mach's has done for the kindred sciences. To the present ork nothing but praise can be aw brought down to recent day, and the chapters on spectroscopy and recent rethods of investigation and on the attack of celes-
mesh
tial problems are of the greatest interest. The book is tial problems are of the greatest interest. The book is
very beautifully illustrated and forms an admirable comvery beautifully illustrated and forms an admirable com-
pendium of the work done in our century by astronomers.

SCIENTIFIC AMERICAN

BUILDING EDITION. OCTOBER, 1893.-(No. 96.)

TABLE OF CONTENTS.
Elegant plate in colors showing a residence at Bridgeport, Conn., erected for Mr. F. W. Smith. Floor lent design. Mr. W. S. Briggs, architect, Bridgeport, Coun.
. Plate in colors showing Queen Anne cottage of Mr. George W. Childs, at Wayne, Pa., erected at a cost of $\$ 6,700$ complete. Perspective view and
floor plans. An attractive design. Messers. F. L. floor plans. An. attract've design. M
$\& W$. L. Price, architects, Philadelphia.
3. A dwelling erected at Holyoke, Mass. Perspective
view and fioor plans. A model design. Cost $\$ 6,900$ complete. Mr. B. P. Alderman, architect, Holyoke, Mass.
. A suburban cottage erected at New Haven, Conn., at a cost of $\$ 2,854$ complete. Floor plans, perspec-
tive view, etc. Messrs. Wilson \& Brown, architive view, etc. Messrs. Wilson \varnothing Brown, arch
tects, New Haven, Conn. An excellent design.
Engraving and floor plans of an elegant residence erected for W. R. Mygatt, Esq., at Denver, Col.,
at a cost of $\$ 28,000$. Messrs. Lang \& Pugh, architects, Denver, Col.
6. The beautiful residence of Mr. Walter Dunning, at plans and perspective elevation. Messrs. Lang \& plans and perspective elevation.
Pugh, architects, Denver, Col.
. A cottage at Hartford, Conn. Floor plans and perspectiv.
sign.
A residence at Carthage, Ill., erected at a total cost of $\$ 4,500$. Perspective view and floor
G. W. Payne, architect, Carthage, Ill.
9. Residence of Mr. E. W. Smith, at Brazil, Ind., erected at a
tive.
A residence at Bridgeport, Conn., erected at a cost of
$\$ 5,000$ complete. Four elevations and fioor plans. Messrs. Longstaff \& Hurd, architects, Bridgeport, Conn. View of the building of the French government at
the Worlds' Columbian Exposition. the World's Columbian Exposition.
. Buildings of Sweden and India at the World's Columbian Exposition.
3. The New York State Workingman's Home at the
World's Fair. Perspective view and floor plans. An Italian country house or villa. Plans and per-
15. Miscellaneous Contents: Imitation walnut.-Anti-nonnin.-Protection of adjoining walls.-The
Draper recording thermometer, illustrated.-ImDraper recording thermometer, illustrated.-Imchine, illustrated.-House heating boilers, illuster, illustrated.-The Willer Mfg. Co.'s exhibit at the World's Fair, illustrated_Cedar and cypress tank, etc.-A patry-line quarrel.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies
25 cents. Forty large quarto pages, equal to about wo handred ordinary quook pages; forming, practically, a large and splendid Magazine of Architeg-
ture, richly adorned with elegant plates in colors and rTRE, richly adorned with elegant plates in colors and
with fine engravings, illustrating the most interesting with fine engravings, illustrating the most interesting
examples of Modern Architectural Construction and examples of
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Laraest Circulation
of any Architectural Publication in the world. Sold by af any Architectural Publication in the world. Sold by
all newsdealers. MUNN \& CO., Publishers, all newsdealers. \quad MUNN \& CO., Publishers,
361 Broadway, New York.

$\mathcal{P B u s i n e s s}$ and $2 P$ ersonal

The charge for Insertion inder this head is one Doluar a line

Order pattern letters \& figures from the largest varie-
y. $\mathbf{H} . \mathrm{W}$. Knight $\&$ Son. Seneca Falls. N. Y . dra werll15.
 Stow flexible shaft. Invented and manufactured by
Stow M Mg. Coo., Binghamton, N. Y. See adv., page 22. For pumping engines. J. s. Mundy, Newark, N. J. "U. S." metal polish. Indianapolis. Samples free.
Improved iron planers. W.A. Wilson, Rochester, N.Y. Hande turning machinery. Trevor Mfg. Co., Lock,
Miicrobe Killer Water Filter, McConnell Filter Co.
Buffalo, N. \mathbf{Y}. suffalo, N .
Steam Hammers, 1mproved Hydraulic Jacks, and Tub
Expanders. R. Dudgeon. 24 Columbia St., New York. expanders. R. Dudgeon. 24 Columbia St., New York. Screw machines, milling machines, and drill presses, Centrifugal Pumps. Capacity, 100 to 40,000 gals. per
minute. All sizes in stock. Irvin Van Wie, Syracuse, N.Y. Wanted-a few good articles in the Hardware or Ma-
chine line to manufacture. Address Box 7 , Troy, N. Y . Guild \& Garrison, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vaccuum ap
acid blowers, fllter press pumps, etc.
The best book for electricians and beginners in elec-
tricity is "Experimental Science," by Geo. M. Hopkins By mail, $\$ 4$; Munn \& Co., publishers, 361 Broadway, N. Y
For the original Bogardus Universal Eccentric Mill,
Foot and Power Presses, Drills, Shears, etc., address S. \& G. F. Simpson, 36 to 36 Rodney St., Brooklyn, N. \mathbf{y} Patent Electric Vise. What is claimed, is timesaving.
No turning cf handle to bring jaws to the work, simply one sliding movement. Capital Mach. Tool Co., Auburn

Competent persons who desire asencies for a new apply to Munn \& Co., Scientific American office. 361
Broadway, New York. Broadway, New York.
at Send for new and complete catalogue of Scientifle
and other Books for sale by Munn \& Co., 301 Broadway
New York. Freo on appication.

4huct (0)uries

HINTS TO CORRESPONDENTS.

 Names and AdAress must accompany all letters,or on antention will be paid thereto.
informatis in in information and not for publication

 Minerals sent for examination should be distinctly
marked or labeled.
(5438) W. M. McV. says: On page 339 Solientific American Cyclopedia of Receipts, it says t
 is it injurious to the health? If not, is it beneefciail to the
health? A. Two-thirds of drachm of boracie acid to one gallon of milk. If boracic acid is not obtainable, then one and on--sidth drachms of borax to one gallon of milk.
Adding one drachm of salt per gallon with the aboveimAdding one drachm of salt per gallon with the a boverim
proves the keeping of milk. This treatment of the milk proves the keeping of milk. This treatment of the mile
required to be kept for a few days is not injurious. W do not know that it is beneficial to health.
(5439) J. M. S. and others write: I wish to make a medical induction coil. Will you tell me how
to make one? A. The annexed engraving shows the es-

wrapped with two or three thicknesses of writing paper,
and of 10 or 12 layers of No. 36 sill-covered magnet wire. Before beginning the winding of the secondary wire a piece of fexible conducting cord should be inserted in the head of the spool, and the inner end of the fine wire
should be attached to it. The outer terminal of the secondary coil should also terminate in a piece of flexible cord. These fexible cords may be connected with bind-
ing posts or attached directly to the electrode, m. In the ing posts or attached directly to the electrode, m. In the
coil is inserted a bundle, n, of soft iron wires (Nos. 20 to 24). These wires may be fastened together by a wrapping of firm, stout thread, varnished, or it may consist of tinned iron wires, which may be soldered together. A bras-headed nail may be inserted in the bundle in lieu of a part of the central wire, to form a finish for the end of the bundie. Two cells of Lecianche or dry battery in bichromate battery may be used. This coil may be mounted as elaboratela as the maker may desire, or it
may be made posan, as shown in the engraving. If it is may be made plain, as shown in the engraving. If it is
desired to make use of the extra current of the primary coil, flexible cords with handles may be connected at moving the core, n, in or out. As the action of this coil is like most of those now in use, it is unneceseary to describe it.
(5440) B. V. C. says : I am building a wateot launch, 万 foot 6 inch beam, r raws about 21 inches with 200 pounds steam would be suitable for boat to make at least 10 miles per hour, and would a compound
engine be best and what size 3 -bladed wheel should engine be best, and what size 3-bladed wheel should 1
use ? A. Engine eylinder should be $4 \nless /$ inches diameter use $?$ A. Engine eylinder should be 4XX inches diameter,
5 inches stroke, making 550 revolutions per minute. The inches stroke, making 350 revolutions per minute. The 3-blade wheel, $31 / \mathrm{f}$ feet pitch. We do not recommend a compound engine for your boat. Complication and out fuel and sizz of boiler.
(5441) P. P. K. asks : 1. Of what is Portland cement made, and how is it made ? A. We
refer you to our SUPPLEMENT, Nos 231, 386, 623, and
 Daniell battery that works well, but the zinc is eating
away too fast. I use common salt in the clay cup. What shall I do to remedy it? The battery is worked on an shall
open circuit. A. . Parafin the lowery half or the cup. It
mont be perfectly dry, and the paraffin must be melted in by heat. The battery is not suited to open circuit
(5442) A. W. says: I have a steamboat 22 feet long on water line, 4 feet 8 inches beam, 16 inches
in water, including 4 inches keel, and of pood model, pro in water, including 4 inches keel, and of good model, pro-
pelled by a 1 horse power Shipman engine, 400 revolu tions at 100 pounds steam. Please inform me in Notes and Queries what size and pitch of screw I should use to get the bees speed? A. A 14 inch wheel is the proper
size for your boat, pitch 28 inches. The one horse power Shipman engine is rather small for the boat and its proper size wheel. You will probably obtain no more than 300 re
hour.
(5443) C. A. B., of Virginia, asks: What When I spend my summer in the country, I cannot takea walk withont returning almost covered with these little pests. Is there anything than can be applied to the
clothing which will make it offensive to them clothing which will make it offensive to them? A.
Reply by Professor Riley.-It is doubtful whether our Reply by Professor Riley.-It is doubtful whether our
correspondent really means ticks or mites. The true correspondent really means ticks or mites The true
ticks are of a considerable size and do very little harm to ticks are of a considerable ize ann do vers" "or "jiggers," eality the larral forms of the true harrest mites. The ralse genus Leptus was formerly based upon these larral mites and I have described two species, Leptus irritans
and L. Americams, roth found in the Southern States. and L. Americamus, hoth found in the Southern States. red bugs," which are very abundant in the South upon the grasees and low-growing vegetation in the country
and the cause of great annoyance during the summer nd the cause of great annoyance during the summer may be applied to the skin or to the clothing which will and deterrent to the mites and which the human olfactory organs. Oil of tar,
for instance, a not very sweet-smelling for instance, a not very sweet-smeliling
material, if applied here and there to the clothing or rubbed on the skin, will keep off the mites. It is very heating to the skin, however, and is disagreeable on
that account. In localities where these insects are particularly abundant we have
anointed the skin with kerosene, which also acts as a deterrent, but this is not dily understood, and, therefore, cannot be recommended as a satisfactory prac-
tice, so that, after all, the best thing tice, so that, after all, the best thing
which can be done is to change one's clothing after coming in from a walk and perhaps jump into the bath.
(5444) C. F. K. asks : How much air is needed to burn one pound of coal in one second? A.
One hundred and fifty cubic feet of air, varying slightly with the carbon and hydrogen element in the coal, for the combustion of 1 pound of coal, without reference to time 2. How would you calculate the size and weight of a fy
wheel on a certain horse power engine? A. The size and weight of fly wheels varies very mach with the kind of engine and work to be done. The diameter varies in practice from three to flve times the stroke of engine. A single engine requires a larger and heavier fly whoel than a double engine. Approximately for engines of the Cor
liss type 80 pounds to the indicated horse power, for 100 horse power and under, dropping to 60 and 50 pounds per
(5445) A. W. G. writes : 1. In making the pipe coil boiler mentioned in SUPPLEREENT, No. 702, could I not connect the valve C with a tank placed at a evel with valve, and in that way receive a steady feed ? A. A tank may be used in place of open feed cannot be used in this way
blow.back and with no pressure the boiler would fill solid. prevent filling too full. With the arrangement as illus rated in No. 702, the filling should be done under super vision and stopped at the proper height of the water in the boiler. 2. Instead of the armature core, for the mo or described in Supplement, No. 641, being made of wire,could I not use sheet iron blanks, 3 inches diameter ing, using 2 inces in a a ng, using 3 pon se as as also how, many storage bat tery cells would it take to run above motor? A. Two to four storage battery cells will run the motor, accord ing to the power to be developed.
(5446) A. J. H. asks: 1. I have an 8 ight 16 candle power dynamo, I built from drawings of
SuPPLEMENT, No. 600 , and is shunt wound, and flnd it works very well, and lights the 8 lamps. Now I have a foot lathe and desire to run the same by a motor, and wish to know if I can change the above machine so that it will work with such a battery as described in "Experi
mental Science," page 401, figure 394,8 cell plunge, as mental Science," page 401, figure 394, 8 cell plunge, as
recommended for running motor. such as described in the bove work. I wish if possible to get power enough out my dynamo to run the lathe, as I have no use for it a parallel so as to get low resistance. Keep it shunt wound The battery will not run it very long. 2. It says that the above named battery has the disadvantage of running
down or becoming exhausted in a few hours. - I should eel obliged if you would tell me what gives out about it if it is the zinc or carbon, or does the bichromate solu tion become exhausted? A. The solution becomes exhausted. 3. Could you inform me where I could obtain the carbon and zinc plates for such a battery, and about how long they would last by using the battery one or two hours a day? A. Address some of our advertisers who deal in electrical goods. The zincs will last a good while the carbons indefinitely. It will not be cheap power . Will the dynamo I have, by cutting out half the wire
oner it would take if all the wire was in connection? A. No. 5. Could you tell me where I could get castings or if I might be successful in making one myself, being a mechanic and having worked on steam engelf, being time? What I would like to learn is, how does the oilgo ntothe cylinder, and what would be the proportion of oil and air for a single charge for a 1 horse power
engine? I have thought of constructing one if I cannot get the necessary power from my dynamo. A. For gas Engine we refer you to Robine $\$ 5.50$ by mail. Engines," $\$ 5.50$ by mail.
(5447) S. G. M. writes : There is in the head of my bedstead one of those bugs that keeps up ing. I have tried to locate him and then to destroy him but never succeeded as to the former. Could you tel how to ind out in the wod a C. V. Riley.-The insect complained of by your correis either one of the Ptinid beetles (the so-called "death watch") or, what is more probable, the larva or
longicorn beetle. Such insects are known to live for years in the dry wood of furniture before they emerge or die. It is of course a very difficult matter to locate exactly the insect working in the wood. In some in stances the presence of little piles of sawdust lying be neath the place where the insect works will help to locat
the enemy. If the latter does not eject any sawdust, it he enemy. If the latter does not eject any sometimes been located by moving a lighted candle along and close to the suspected parts of the wood. The proximity of the light will cause the larva to "knock " and it can then be cut out with a knife. If the burrows of the insect are close to the surface of the wood, they can be detected by taking soundings with a stout steel needle,
and if the burrows are found, the killing of the larva is and if the burrows are found, the killing of the larva is
easily accomplished by boring a small hole in the gallery easily accomplished by boring a small hole in the gallery
and injecting therein a sufficient amount of bisulphide of and injecting therein a sufficient am

To INVENTORS.

INDEX OF INVENTIONS

Por which Letters Patent of the
United States were Granted October 17, 1893,
AND EACH BEARING THAT DATE.
[See note at end of list about copies of these patents.]

And

Anind

O I

 Stone, manuuacture of artiticiai, A. H. Frear.....
Stove,
Strainer fur orace. Wrate
 Syringe coupling, C. E. Longe.
 Tag
Tann
Tap
Tele

 from running, Purdon \& Wait
Water closet cistern, White
Water heating and cooking appar

 Windmill, ,. Wallace. Jay.
Window screen, F. May
Wire, barbed, B. Mouck.

DESIGNS.

Bottle, E. M. Cone.
Carpe, . A. Kaeslin.
Sewing machine fram

... 506,667
$\begin{aligned} & \ldots 507,027 \\ & \cdots 506,910 \end{aligned}$
.. 5068089
$\mathrm{i}^{507,034}$
. 506,678

minhow LATHES somens

HTPPNOTISM ; its uses and abuses.

 The Remington' Typewriter:

As Perfect in Design and Construction as Original Ingenuity, Long Experience, and Constant Improvement can make a Writing Machine.
It is Simple, Well Made, Practical, Durable, Easy to Learnand to Operate
Wyckoff, Seamans \& Benedict, ${ }^{327}$ Mew Yoadway,

makely your- mechanical Engineer or draughtsman;

The Griffin Milis

A perfect pulverizer of all refractory substances by either
the wet or dry process. It works better and at less expense than any other Mill, and is conceded to be the only perfect. pulverizing Mill manufactured.

For FiREE Illustrated Pamphlet address
BRADLEY FERTILIZER CO., 92 STATE ST, BOSTON.

HENRY CAREYBAIRD \＆CO

 Indastrial Pablishers，Booksellers，and Import$\mathbf{Z 1 0}$ Walnur St．．Philadelphia． $\mathbf{8 1 0}$ Walnut St．．Philadelphia．Pa．．U．S．A． C＊R Our new and Revised Catalogue of Practical an
Bcientifc Books． 88 pages．8vo，and our other Catalogue
 ence appli
to any
address．

ITOTITOT．

 permanent way and rolling stock，ard the term for
which they require the concession．This term may not
exceed forty years． The Fyrytian Government reserves to itself the right
of selecting and accepting whichever onter it prefers，or

LIFE SAVING DEVICES．－A COL－

2PATEN
SAFETYRAZOR
EVEAY MAN HISOUN BRRBER
 NO DANGER OFCUITING CATALOGUES RAZOR \＄2．00．STROPPIMG MACHINE \＆STROP $\$ 1.75$. E．LOTHAR SCHMITZ 92 \＆ 94 READE ST．NEW YORK． NOURISHMENT IN ACUTE DIS

INVENTORS，ATTENTION We want meritorious Household Utensils and patent
ed noelties
corroespondito ith introauce．Inventors are invited to
W．H．KERMAN \＆Co．，NAPOLEON，OHIO qf［Bay MASON \＆HAMLIN SGREW STRINGER
 SCREW STRINGER
One of the ereatest improvements in the
nistry of the Piano Forte．
Keeps the P inno in T Tune． Keeps the Piano in Tune．
Much Nope Durnble．
Quality of Tone Purer．
application．Illustrated Catalogue sent on

Before you Order and Subscribe to your
FOREIGN PERIODICALS

MALLEABLET

TO BUSINESS MEN
The value of the ScIENTIFIC AmERICAN as an adver－
uslog medium cannot be overestimated．Its circulation
is many times greater than that of any similar journal is many times greater than that of any similar journal
now published．Jt goes into all the States and Territo ries，and is read in all the principal libraries and reading more than to see his advertisement in a printed news－ paper．He wants circulation．This he has when he ad－ vertises in the Scientific American．And do not let the advertising agent influence you to substitute some lecting a list of publications in which you decide it is for your interest to advertise．This is frequently done for the papers having a small circulation than is allowed on the Scientific American．
For rates see top of first column of this page or ad 361 Broadway，New York．

W．L．DOUGLAS \＄3 SHOE
 FOR GENTLEMEN．

 $\underset{\text { Fing Calf }}{\text { Very Stylish．}}$Calf Shoe in the World for the Price， Shoes，83．50， 84.00 and 85.00 Policemen＇s，Frarmers＇and Letter Carriers＇ 83.50
\＄2．Three Soles，Extension Edge．
Value．
Boys and Fonths wear the 82.00 and 81.75 School Shoe．
For Ladies， $\mathbf{8 3 . 0 0 ,} \mathbf{8 2 . 5 0}$ and 82.00 Shoes．Beat Dongola W．L．Douglas Shoes are made of the best material，in all the latest styles，and sold by shoe dealers everywhere． Do TOU WOar Them？
W．L．Douglas＇name and price is stamped on the bottom bef ore they leave the factory，to
rotect you against high prices．Doing the lar gest advertised shoe business in the world we are contented with a small profit，knowing that the extra value put in W．W．Douglas Shoes will give a continuous increase to our business．The dealer who sells you unstamped
hoes makes the price to suit himself．He will charge you from $\$ 4$ to $\$ 5$ a pair for shoes makes the price to suit himself．He will charge you from $\$ 4$ to $\$ 5$ a pair for
shoes of the same quality as W． \boldsymbol{L} ．Douglas $\$ 3$ Shoe．The stamped name and price hoes of the same quality as \boldsymbol{W} ．L．Douglas $\$ 3$ Shoe．The stamped name and price
system is the best for you，because it guaranteesf full value by the manufacturer，for the money aid，and saves thousands of dollars annually to those who wear W．L．Douglas Shoes． If you wish to economize in your footwasr it will pay you to examine W ．L．Douglas Shos
when next in need．Sent by Mail，Postage Free，when dealers cannot supply you．Take Hh you wish to economize in your rootwcar it will pay you to examine W．L．Do
when next in need．Sent by Mail，Postage Free，when dealers cannot supply
no substitute．Send for Catalogue with full instructions how to order by mail．

PANENTS

Abstract

Mesers．Munn $\&$ Co．，Sollcitors of Patents，have had nearly Hify years continuous experience and the most remart of the best patente have been secured through their Scientict American Fatent Agency，which， for relisblity ， their Scientitc A merican Fatent Agency，which， for reliability，prompteses，careful work，and moderate term，enoys a Any

THE＂OIIN＂

GAS AND GASOLINE ENGINES，

 from 1 TO 10 HORSE POWER，FOR ALL POWER PURPOSES．THE OLIN GAS ENGINE CO．， 222 OHICAGO STREET，BUFFALO，NEW YORK．

STEEL，IRON，COPPER，ZINC，BRASS，TIN， nd all other Metals Perforated as Required for Grain Cleaning And Min
no Machinery，Woolen Cotton，Paper and Pulp Mills，Rice，Flour and Oil Mills，Suga
and Malt Houses，Distilleries，Ryler
 THE HARRINGTON \＆KING PERFORATING CO．，Chicago，

APPLICATION OF AIR IN MOTION to Chemical Industry．－By Henry G．Water，B．Sc．A
paper of grat interest trenting of the value of air in
motion． ．For the remoral of heat

 ECONOMY IS WEALTH．

DECORATION－A LECTURE DELIV

 STEEL TYPE FOR TYPEWRITERS

NICKEL ELECTRO－PLATING Apparatus and Material． Hanson \＆Van Winkle C_{0}
Newark，

N IDEAL STUB PEN－Esterbrook＇s Jackson Stub，Na， 442 A specially EASY WRITER，a GOOD INK HOLDER and a DELIOHT to $\$ 1.00$ per gross．THE ESTERBROOK STEEL PEN CO．， 26 John St．，New York．

NO SKITMTD FNGINWFR． THE SHIPMAN AUTOMATIC STEAM ENGINE．
KEROSENE OIL FUEL．$\quad 1,2,4,6$ and 8 HORSE POWER
SHIPMANENGINECOMPANY，

lew＊B00ks

 Locomotive Catec hism．Containing nearly 1，s．s0
questions rand answers
concerning designing and con－

 Bulbs

 An new dictionary of terms in elecerricial scieionee and

 Dynamo．Practical dy namo building，with detail
rawings and instructions for wnaing，${ }^{\text {iving }}$ correct

 ．83．00

 Mine Foreman＇s Handbook of Practical and
Theoretical lnformation on the openink，Ventilating．

 Modern French Artillery．The St．Chamond
De Bange．Canet，and Hothkiss ssstems，with illustra：

 Srartsmen anda all ciasses of ourt．stadents．By Fi

 Star Mapsand Liuminus stars．A methon tor

 The Thery and Practice of Modern Framed

戸ロ戸ワ

 MUNN \＆CO．，
Publishers of the＂Scientific American，＂

2fivertisements.

ordinary rates.
The abore are ohatree per agate inio- abott athe
COLD FORGED PROD
d
:---
July 19,

ts Advantages ar

1. Stronger than a common screw. wood.
2. Inserted easier.
3. Centralized point.
4. Superior holding pow
5. The screw being power.
or Forged. instead
of Cut leaves on its entire surface a skin. Send for samples to
american screw co. PROVIDENCE, R. I.
SCIENTLFIC AMERICAN SUPPLE

Eastman Kodak Company, $\left\{\begin{array}{c}\text { Snad forv } \\ \text { Catalogexu. }\end{array}\right\}$

Rochester, N. \mathbf{Y}

ELECTRO MOTOR. SIMPLE. HOW TO make By G. M. Hopptns.-Desecription of amall electro

The AUTOGRAPHIC REGISTER.En Enforcing Honesty 150 E. Monroe Street,

Rubber Rolls and Wheels.

8

FRAME.

as shat them orir with the power of the
No stoping
HoDGEINS

Micrometer Holder

Special Machinery for special purposes needs the brain of the expert and the hand of
the master workman. This in my shop I take especial pains to supply. I have the bes equipped machine shop in the East. The peo ple who have bought my machinery will tell
you the rest. Send for a catalogue.
 Pr. PRYIBIL, $488-500$ W. A1st St., NEW YORK

STEEL WRIE AND STEEL SPRINGS

敬
SPECIALTY
TY

ST. BR
 WILLIAMS BROTHERS, ITHACA, N. Y. Mounted and on Sills, for deep or shallow wells, with steam or horse

INVENTORS AND MANUFACTURERS
Experimental Work, Castings, Fite and Intricate

Parsons Horological Institute. earn the Watch Trade

 Engraving and Jewelry Work. ARSONS, IDE \& CO, Circular302 Bradiey Ave., PEORIA, ILL.

The Smith Premier Typewriter

 dinl Features Greatiy Perfected.Perrect and
All type cleaned in Ten Seconds $\begin{gathered}\text { Easiest Running, and Nearly Silent. } \\ \text { without Soiling the Hands. }\end{gathered}$ The Smith Premier Typewriter Co., Syracuse, N. Y., U. S. A. have 20 branch offices in the princl al cities throughont theUnited States.

Flectric 米 Railvaays

 GENEMAN ELIEOMEIO OOMNAANY

New York
Hncarazoill
inimnati,
O.
Fifth and Race stre
Equitable Building.

 Maman Matumbumy 125 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent No. 186, 787 , granted to Alexander Graham Bell, January 30, 1877, the scope of which has been defined by the Supreme Court of "The United States in the following terms : "The patent itself is for the mechanical structure of an electric telephone to be used to produce the electrical action on which the first patent rests. The third
claim is for the use in such instruments claim is for the use in such instruments of a diaphragm, made of a plate of iron or steel, or other material capable of inductive action; the fifth, of a permanent moil upon the end or ends nearest the plate; the sixth, of a sounding box as decribed; the seventh, of a speaking or hearing tube as described for conveying the sounds: and the eighth, of a perma-
nent magnet and plate combined. The nent magnet and plate combined. The
claim is not for these several things in ephone in the construction of which these things or any of them are used."
This Company also owns Letters Pa This Company also owns Letters Pa-
tent No. 463,569 , granted to Emile Berliner, November 17, 1891, for a Combined Telegraph and Telephone; and controls Telegraph and Telephone; and controls Letters Patent No. 474,231, granted to Thomas A. Edison, May 3, 1892, for a meaking Telegraph, which cover fundamental inventions and embrace all forms of microphone
bon telephones.

(o)

The Most Popular Scientific Paper in the World Only \$3.00 n Year, Including Postage
This widely circulated paper ts published weekly. Every number contains sixteen pages of useful information and a large number of original en ravinks of new inventions and discoveries,
representing Fngineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity Telegraphy, Photo raphy, Archiecture, Agriculture, Horticulture, Natural History . Cor subscriptiou each week. TiFic ambilcan will be sent for one jear- 52 numberspostage prepaid, to any subscriber in the United States, Canada, or Mexico, on receipt of three dollars by the Clubs. - special rates for several names, and to Masters. Write for particulars.
Express Money Order. Money Parefully Order, Draft, or Express Money Order. Money carefully placed inside
of envelopes, securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Address all lett r and make all orders. drafts, ett., payable to
MUNN \& CO., 3 itil Broadway, Ne Vv York. THE
Scientific Simexicat Supplement This is a separate and distinct publication from T'Hi every number containing sixteen large pages full of engravings, many of which are taken from foreign papers
and accompanied with translated descriptions. THE and accompanied with translated descriptions. THE If, and includes a very wide range of contents. It pre sents the most recent papers by eminent writers in all the principal departments of Sclence and the Useful Arts, embracing Biology, Geology. Mineralogy. Natura tiry, Electricity, Light, Heat, Mechanical Eny ChemisSteam and Railway Enpineering, Mining, Ship Building, Marine Fingineering, Photography, Technology, Manufacturing Industries, Sanitary Engineering, Agriculture,
Horticulture, Domestic Economy, Biography, Medicine Horticulture, Domestic Economy, Biography, Medicine,
etc. A vast amount of fresh and valuable information obtainable in no other publication. Works, Mechanisms,
The most important Engineering Work, and Manufactures at home and abroad are ilustrated and described in the SUPPLEMENT
Prada, and Mexico, 85.00 a year the United States, SCIENTIFIC AMEHICAN and one copy of the SUPPLEMENT, both mailed for one year to one address for 87.00 .
Single copies, 10 cents. Address and remit by postal order Single copies, 10 cents. Address and remit by postal order
express money order, or check.
M UN N
guilding (fatioul.
The Scientific ambrican architects' and single copies, 25 cents. Thirty-two large quarto pages, iorming a large and splendid Makazine of Architecture, richly adorned with elegant piates in colors, and with
ocher fine engravings ; illustrating the most interesting other fine engravings; illustrating the most interesting allied subjects. A special feature is the presentation in each number of a variety of the latest and best plans for private resi-
dences, city and country including those of very moddences, city and country including tose oration
erate cost as well as the more expensive. Drawings in Derspective and in color are given, together
Desciptions, Locations, Estimated Cost. etc. The elegance and cheapness of this magnifcent work
have won for it the Largest Circulation of any have won for it the Largest Circulation of any
Architectural publication in the world. Sold by all newsdealers. $\$ 2.50$ a year. Remit to

MUNN $\&$ CO.. Publishers,
PRINTHING INKE,

