a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW YORK, SEPTEMBER 16, 1893.	

THE McCONNELL GERM-PROOF FILTERS.

Any exhibit designed to illustrate the facility with which water may be freed from possible disease germs, with tolerable certainty and at a moderate cost, was certain to command its full share of attention at the World's Columbian Exposition, where not a few of the visitors, at the beginning of the season, had most exaggerated fears of the quality of the water supplied. In the display of the McConnell Filter Co., of Buffalo, N. Y., are filters of simple construction designed to show a high degree of perfection in operation, adapted for attachment to the water pipe, and so made that it will be but little trouble to keep the filtering medium entirely clean and pure. There are also other styles, made as gravity filters, and as filter and cooler combined, the latter being so arranged that the melted ice does not contaminate the filtered water. The filtering material consists of a porous wall, made of a composition of the finest mineral Hour, whose nature is not to paste or flint, but to remain sufficiently porous to allow only pure water and air to pass through it. The impurities are collected on the outer side, from which they are easily washed. These filters are made in all sizes, from those suitable for use in small families up to those of a capacity adapted for restaurant and hotel use.

WINE MARING REPRESENTED AT THE FAIR.
The very fine showing presented at the Columbian Exposition by American wine makers has not been surprising to those who are familiar with the growth of this branch of business as an American industry within a few years past, however it may have been to those who have heretofore sup-

THE WORLD'S COLUMBIAN EXPOSITION-EXHIBIT OF MeCONNELL FILTERS.
posed all our best wines were imported. The great variety and the number of high quality wines here exhibited, as well as the numerous large establishments represented, afford the best answer to such erroneous assumptions. Among the notable exhibits in this line is that of the Urbana Wine Company, of Urbana, N. Y., shown herewith, in connection with which we give also views of the "finishing room," and one of the champagne vaults at the works, as well as of the main buildings, as they were established in 1865, although they have since been greatly enlarged. It will thus be seen that in all wines whieh require "aging" to bring out their finer qualitiee this es tablishment has had the advantage of more than a quarter of a century's existence, during which period it has had a continuously large and pros perous business, its wines steadily growing in popularity in comparison with the most favorite brands of imported wines.
As the first requisite in the making of a superior wine is to have the best quality and fine varieties of rich, ripe grapes, it was the obvious advantages presented in these particulars that originally led to the location of the works on the shores of Lake Keuka, or Crooked Lake, Steuben County, New York State. Here, besides the vineyards owned by the company, is a large grape producing country, which has been famousin this respect for many years. The soil is a gravel on calcareous rock, the ground is undulating and sometimes precipitous, but with a general southeast exposure toward the lake, and the location has been styled the Rheims of America. The principal varieties of grapes cultivated are the Catawba, Isabella, Delaware, Iona, Concord, and

Exabbit at the Fair.

Elviras, and several others, and it is the proper selecting and combining of the fermented juices of these grapes, under carefully regulated conditions, that gives the high quality to the various still and sparkling wines made. The "Gold Seal" brand of champagne, prominently displayed in the company's exhibit, has been for many years a leading article of their production, and stands deservedly high in the wine trade and among connoisseurs throughout the country.
The still wines of this company are deserving of especial attention, all being made from the most careful selection of grapes, and they are vouched for as "pure," which makes them particularly desirable with those who want pure goods, and desire to avoid adulterations. All stock is well aged, and sold at a low price, considering the quality.

The Late Hayward A. Harvey.

Hayward A. Harvey, the inventor of the Harveyized steel armor plate process, passed away August 29, at his home in Orange, N. J. Mr. Harvey was born in Jamestown, N. Y., January 17, 1824. His father was General Harvey, the inventor of the gimlet-pointed screw, the cam motion, and the toggle joint. Young Harvey entered the office of the New York Screw Company as draughtsman in 1844, he took charge of a wire mill at Somerville, N. J., in 1850, and in 1852 he became connected with the Harvey Steel and Iron Company, of which his father was president. In 1865 Mr . Harvey founded the Continental Screw Company, of Jersey City. The inventions of Mr. Harvey, up to this time, had nearly all been in the direction of automatic machinery; but he afterward devoted his energies to metallurgical processes, and in 1888 he took out his first patent on a process for treating steel. This invention has now made bis name familiar all over the civilized world, and has added another word to our language.
The new process is, briefly, a method of hardening steel on the surface, or carbonizing it, and raising steel of a low grade to a higher one. The first armor plate treated by the Harvey process was made in 1890. The Harvey Steel Company was organized in 1889, and works were established at Brill's Station, near Newark, on the Pennsylvania Railroad. Various improvements were introduced in the manufacture of armor plates, and to-day Harveyized steel armor plate stands without a rival. The tests made at the Indian Head Proving Grounds, a few weeks ago, proved conclusively that Harveyized steel plates are the best in the world. In a comparative test with English compound armor plate, Creusot all steel plate, and the regular United States nickel-steel plate, the Harveyized plate proved to be better than any of the others. The construction of battleships has been modified by the introduction of Harveyized armor, and the new process is being adopted by the principal manufacturers of Europe. Mr. Harvey, in the course of a long and eventful life, had 125 patents granted to him.

The Lantern in Scientific Stage Effects.
Some new scientific stage effects were introduced into a recent performance of Wagner's Die Walkure, at the Grand Opera House, Paris. The scene where the sons of Wotan, mounted on steeds and brandishing their lances, are seen in the clouds, is described as very realistic. The foreground is wild and rocky, and the clouds are seen to scud across the sky. This effect is produced by projecting the image of a cloudy sky by an electric lantern on a curtain of translucent blue cloth. The continuous movement of the clouds for half an hour is produced by painting them on the edge of the disk of glass twelve inches in diameter, and rotating the edge past the lens of the lantern. Three lanterns are employed to blend the clouds. The wild cavalcade of Wotan's heroes is produced by a line of mechanical horses, full sized, and carrying real performers. They are supported on a scaffolding, and drawn by means of a cable across the scene at a suitable elevation. The mounted men are strongly illuminated by the electric light, and thus rendered visible through the translucent curtain representing the heavens. The scene terminates by a conflagration, in which great flames run along the rocks, while thick fumes, reddened by Bengal fire, spread through the atmosphere. The flames are due to fulminating cotton, placed in advance on the rocks, and lit by the machinists. Lycopodium powder is also blown through holes in the stage. Weird cloud effects are produced by steam.

The latest use for aluminum is for street car tickets, and it must be conceded that the metal is singularly adapted for the purpose. A Michigan street railway has just made its first issue of these light and ornainental tokens, which are about the size of a silver quarter dollar. One is round for the ordinary fare, the other octagonal for children. The adult's ticket is sold by the railroad company to the public at the rate of six for a quarter and the child's ticket at the rate of ten for a quarter. The company does not allow its employes, either conductors or motormen, to sell the tickets to the public, but disposes of them in $\$ 10$ lots to the several storekeepers who handle them exclusively.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors PUBLISHED WEEKLY AT
No. 361 BROADWAY, NEW YORK.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT NO. 924.

A CHANCE FOR AMERICAN CONTRACTORS.

In another column will be found the advertisement of the Public Works Department of Cairo, Egypt, in which bids are called for relating to the construction of certain street railways in that city and vicinity. Here would seem to be an opportunity for some of our enterprising contractors.
The administration of the Egyptian government under the English advisory auspices has been attended with great success. The financial condition of the country is stable and reliable. In all departments of the government valuable reforms have been made and nearly everything is now conducted on modern methods. The Public Works Department of Egypt is especially noteworthy for its successful efforts in introducing new improvements. Splendid engineer ing works relating to the Nile irrigation have been constructed at vast cost, whereby the productive area of highly fertile lands has been greatly extended Railways have been introduced, telephone and telegraph lines made universal, postal facilities in creased and improvements of all kinds along the lines of modern progress brought in. The present proposals for tramway lines doubtless will be found worth looking into.

SAFETY ON RAILROADS.

Within a very recent period several fatal railroad accidents have been chronicled which were of a nature as to point to one conclusion-the futility of trusting to direct human agency for protection. A railroad is assumed to be of the highest standard when equipped with a block system. But as usually interpreted, the block system is far from affording absolate protection. It displays a danger signal and perhaps also a caution signal when a train is within a certain distance of the signal station last passed by it. A following train on the same track is supposed to be arrested by these sig nals, and the train in advance is thus protected. The signals may be entirely visual. Semaphores by day and colored lanterns by night may be employed. A bell may also be used, which will ring as long as the block in advance is occupied, this constituting an aural signal, or one addressed to the ear. Torpedoes may also be used.
Such is the block system, by which all first-class railroads are guarded. In some cases it is applied by operatives stationed in watch towers along the line of the road. In other cases the manipulation is entirely automatic, electricity, pneumatic and hydraulic power being employed to work the signals. The locomotive itself effects the changes of signals as it leaves one block and enters another. In any case its operation consists in working a signal system for the guidance of the engineer of the locomotive. If it is the watch tower system which is employed, the vigilance of the signalmen as well as of the engineer is an absolutely necessary factor for its working. If the automatic system is employed, then the engineer is the only one who is depended on. There seems to be less chance of error in the latter case.
The block system is designed to prevent collisions. Its defect is at once apparent. It relies absolutely on human agency to prevent accident. Its functions end with the display of a warning signal. It has been proposed to add to it an apparatus which would strike a lever or valve handle on the engine, thereby throwing the brakes into action or shutting off steam if the engine passed a danger signal. This appliance has not been adopted to any extent. Even the best block and signal system has proved so ineffective that when a train stops unexpectedly from any cause, an apprehension of rear end collision may always be felt. This has gone so far that it seems as if the passengers for their own safety should be directed to leave the cars in such contingencies.
In 1853, on the New Haven road, a very bad accident, resulting in the loss of 46 lives, occurred at South Norwalk. A drawbridge was open and the danger signal, announcing this fact, was properly shown. Yet the engineer of an express train ran by the signal and the train plunged into the gap. It was a fearful illustration of the point we have been mak-ing-the inefficiency of the human element in signaling operations. The accident resulted in the passage of a law requiring every train to come to a full stop before crossing a drawbridge. This was certainly a confession of weakness. The law was next satisfied by the use of derailing switches at drawbridges. A derailing switch is one which, when opened, causes a train to leave the track and run along the surface until it stops. Such a switch connected with a drawbridge mechanism so as to be thrown into the derailing position when the bridge is open, will prevent the train from plunging through it. It eliminates com pletely the personal element and takes care of a dange point automatically. It represents the automatic stop page of a train as contrasted with a simple danger signal designed to warn the engineer.
Throughout the whole system of railroad signaling runs the element of uncertainty. A train is brought to a stop between stations, owing to some accident to a stop between stations, owing to some accident.
A signalman with a lantern by night or flag by day
walks back to warn any approaching train. It is quite problematical how far back he may go. He may seek the shelter of a station en route, thinking all is safe. He way be but a few car lengths back when an approaching train appears, in a few seconds colliding with the other one. An engineer may follow up a long line of hundreds of block signals, and when weary with their endless recurrence, may pass the critical one. Signal tower operatives may fail in giving the proper signal.
It certainly seems as if there was room for invention in the elimination of the personal element from railroad signaling. It should be possible to devise some rational system by which a danger signal would absolutely stop a train, should the engine runner fail to do so. The electric current which is employed in the automatic block system might be made to do this, thus avoiding the clumsier mechanical methods.
If a train is unexpectedly forced to stop, some efficient system of warning another train approaching from the rear should be practicable. It has been proposed to provide a little car to run upon a single rail, which car is to be driven by a rocket attached to it. It would carry a torpedo. On the stoppage of a train for an accident it would be dispatched from the rear. In a few seconds it would be a thousand feet or more away. An approaching train would run over it and explode the torpedo, thus warning the engineer. But to-day the slow-moving brakeman is the usual agent. Before he would reach a point even a thousand feet distant, an express would run several miles.
One recent invention accepts the liability to collision, and constructs cars on a principle specially designed to withstand a shock, and not to telescope. Our inventors and engineers should go a step further, and make accidents all but impossible. To-day a rear-end collision should be an impossibility. But sad experience, involving many deaths and injuries, continually shows that it is a constantly menacing danger. The double-track road with fast and heavy traffic is now as dangerous as was the old-time single track with its limited number of slow trains.

The Olympia.

The Olympia, one of the finest protected cruisers ever constructed, is rapidly approaching completion at the Union Iron Works, San Francisco. The Olympia is the largest unarmored cruiser built for the navy, except the Columbia and the Minneapolis. She has a displacement of about 5,600 tons and a coal capacity of 1,300 tons, which gives her a radius, at 10 knots, of 13,000 miles. The guaranteed speed of the Olympia is 20 knots. She has already sustained a sea speed of 19 knots, which is far ahead of what is generally found in vessels of her class. The Olympia is 340 feet long, beam 53 feet, and $21 \frac{1}{2}$ feet draught. She has three complete decks and a large superstructure amidships. The vessel is provided with two masts with fighting tops and an electric light on each. She has a complete protective deck of $43 / 4$ inches of steel on forward slope and 2 inches on the flat throughout. All around the ship is a belt of water-excluding substance. Coal is so stowed that the machinery will be protected as much as possible. The machinery consists of twin screw, vertical inverted, direct-acting, triple expansion, three cylinder engines, in two watertight compartments. The cylinder diameters are 42,59 , and 92 inches respectively, with a 42 inch stroke. The air and circulating pump engines are driven independently. The total horse power of the propelling and pump engines is expected to be 13,500 at 129 revolutions per minute of the screw engines.
The main battery consists of four 8 inch and ten rapid-fire 5 inch guns, as well as a secondary battery of fourteen 6 pounder rapid-fire guns, six 1 pounders, and four Gatlings. There is a fixed torpedo tube in bow and stern, as well as two training tubes in each side. The Olympia is a fine vessel of the commerce destroyer type, and her high sea speed and her prolonged radius of action make her a valuable ship for use in the Pacific Ocean.

A Large Day's Sawing

At the sawmill of M. T. Jones \& Co., of Lake Charles, La., recently, 191,323 feet of lumber were cut in eleven hours. This is said to be the largest amount of lumber ever turned out of a single circular sawmill in that number of hours. The saw was driven by a Corliss engine, having a cylinder 22 inches in diameter by a 40 inch stroke, the drive wheel being 20 feet in diameter with a 30 inch face, the engine making 65 revolutions per minute, with an average steam pressure of 100 pounds. The mill was provided with a steam log turner and a twin feed engine, 14×24, and steam log trip pers. The saw mandrel was 4 inches in diameter, with water-cooled journal boxes. The saw was 54 inches in diameter, No. 6 gauge, with 80 teeth. The steam was generated by sawdust taken direct from the saw.
The credit of this feat is largely due to Mr. W. N. Elliott, saw filer, and Mr. Ed. Bullock, sawyer.

We are indebted for these facts to Mr. W. S. Whitman, chief engineer of the mill.

the marvelous cavern of the black hills.
The glazed dome of the Horticultural building is one of the most imposing of the numerous elegant structures to be seen at the World's Fair. It is 180 feet in diameter and 144 feet high and is approached through pavilions, halls and galleries adorned by countless exotics. Directly under this huge dome arises a miniature mountain that artistically conceals
the heating apparatus. Along its flanks and crest grow the largest palms, tree ferns, bananas and bamboos that will bear transplanting. Amid this tropical greenery bloom hundreds of gay flowers and twine a myriad clinging vines.
Underneath this floral wealth extends a marvelous eproduction of one of our most recently discovered and brilliantly decorated American caverns. Perhaps without sufficient reflection the owners have styled it "The Mammoth Crystal Cave," which really trenches on the name for generations appropriated to the great cavern of Kentucky. But as no map or guide book has yet been published, and all the names of the new cave may be regarded as tentative, the ingenuity may wisely be taxed for wholly novel and suitable names. Even "Columbus Cavern," or "Colossal Cavern," would be an improvement on the present plagiaristic title, which for want of any other will have to be used in this article.
The idea of rock work under the dome originated with the directors, but the cave proprietors hit on the bold and original conception of substituting for mere rock work a reproduction of their subterranean marvel. These gentlemen, Messrs. Keith and Allabough, who are also on the grounds to look after their interests, assured me that they began preparation two years ago by setting some seventy men at work in unfrequented parts of the cavern, collecting materials in such a manner as should not mar or rob the cave of its embellishments. The conditions forbade blasting. The crystals had to be patiently cut from the rock by pick and chisel. Thus 300,000 pounds were obtained of stalactites, stalagmites, onyx, geodic crystals, dogtooth spar and sparkling botryoidal masses; of cave pearls, flos ferri, aragonite and dripstone stained by oxidation in as many colors as the rainbow. Having gathered these materials, it was a question what to do with them. At first the directors of the Fair were inclined to regard the exhibit as a show and to relegate it to the Midway Plaisance. But this was firmly withstood by the proprietors, who finally, after a delay of five months, obtained, through the intervention of parties interested in growing plant life by electric light, the concession of the present admirable loca-

W.

When the grotto was first opened, admission was free and continued to be so for a month. But such crowds flocked to see it as to make it actually necessary to restrain them by fixing the nominal fee of five cents for admission; and even this small sum is refunded in case the visitor buys specimens. Although the exhibit was not intended to be remunerative, the fees and purchases made by a million visitors have already reimbursed the proprietors for their original outlay of nearly $\$ 50,000$ and met running expenses. As many as 20,000 persons explore the grotto daily, and the general expression is that of wonder and delight.
The grotto as constructed is in no sense a model of the original cavern, except as displaying specimens of its contents and some of the conditions under which approaches and tasteful alcoves and ample space, every square foot of which is embellished by the brilliant crystal masses already described, varying in size from mere marbles to blocks weighing 600 pounds. This unique assemblage was the result of repeated experiments, as no skilled labor in the line of cave making was to be had. Lighted as it constantly is by a profusion of electric lamps, the place is certainly an attractive and instructive feature of the Fair.
The Mammoth Crystal Cave itself was discovered in South Dakota many years ago by miners for the precious metals. But it has never till recently been entered for more than 1,700 feet. In 1889 explorers began to break into new chambers, one after another, the process going on gradually, until now 1,490 halls and rooms have been opened. Some of them are low and muddy, while others are spacious and dry. The largest room of all is estimated to be 600 feet long, 300 feet wide and 100 feet high. The walls and floors of all the rooms and passageways are composed of
crystals. What digging and blasting has been done only serves to bring more of this crystalline mass to view, or to break through into new apartments, or to open pockets like huge geodes.
The actual extent of the great cavern is unknown. Mr . Allabough assured me that about one-third of it had been accurately surveyed by chain, compass and level with reference to its being possibly lighted by electricity before long. This work was done by Mr. George S. Hopkins, United States mining engineer, of DeadS. Hopkins, United States mining engineer, of Dead-
wood, by whom a map was also prepared, which for prudential reasons has not been published, although I had the privilege of inspecting it. The total length of measured passageways approximates twenty miles. This seems to justify the statement that the whole caveway, as far as explored, is from forty to fifty miles long. There are eight different levels, or gal leries, in the cave. The upper ones are extremely dry, the lower ones damp, and the lowest of all are so very
wet at all seasons as to be styled "the rainy rooms." wet at all seasons as to be styled "the rainy rooms."
The owners are satisfied, however, that drainage level has not yet been reached. There are numerous pools, and three running streams, one of which has a waterfall sixty feet high-not a plunging fall, but a cascade flowing down a steep incline of travertine.
The formation in which this remarkable excavation is made is the corniferous limestone, judging from the fossils displayed. It is supposed to owe its origin to a small stream named Elk Creek, which sinks at a point seven miles above, and emerges again about four miles below, thus having eleven miles of subterranean flow. This theory gets confirmation from the fact that, in digging for the railroad along the banks of Elk Creek; crystal masses and pockets of dog-tooth spar were found like that to be seen in the cavern. Some of the specimens taken out were very fine, individual crystals of dog-tooth spar exceeding eigh inches in length and of remarkable purity of material. The station of the Chicago and Northwestern Railroad being vertically 413 feet below the cave entrance, the theory given above would indicate a corresponding depth of the cave. And this is not incredible, for at places the hills are known to rise as much as 1,800 feet above the galleries already explored.
.The surrounding region is densely wooded and highly picturesque. No interior vegetation of any kind has yet been noticed, nor any true cave fauna nor have any Indian relics been found. Heaps of minute bones abound here and there, seemingly the remains of rats, mice, bats and other intruders from without. The temperature is cool, being said to be as low as 45° Fahr., which is hardly credible, as that would be 10° lower than the ascertained temperature of other great American caverns.
By whatever name this new and splendid cavern is to be known, it certainly combines the grandeur of the Mammoth Cave with the loveliness of Luray, besides having peculiar features of its own. It is worthy to be counted among the wonders of the world.

The total number of paid admissions for August was $3,515,493$, and total number to date $10,000,906$.
The Fair is wonderful to the wisest, and when you see the farmer just come out of the woods, with his large lunch box, strapped up with a piece of a harness, examining a string of sleigh bells or a patent cow bell, you might hear him remark: "What the thunder is that thing for ?" for he was positive he knew something about cow bells. He cares nothing about style; he left his paper collar at home, and brought his long whiskers. He also wears the squeaky boots and carries the seven days' layers of dust on the uppers. Next you might see him standing in front of the Electrical Welding exhibit; then if you could see the astonished expression, as he knows he sees a man dip a cold piece of iron in a pail of water and it immediately turns red hot, while under water. It is comical to watch him; even his whiskers seem to absorb wonder, as you hear him say "Gosh!"
The Russian Government Pedagogic Museum displays scientific and other educational apparatus, together with cases of stuffed birds and animals; pictures of Russian life and specimens of mineral resources. The St. Petersburg School of Design contributes many tine specimens of lace and needle work done by girls, also samples of work done by boys in the Manual Training division. The Russian government displays in adjoining booths many sketches and diagrams of public engineering works. In the Imperial Post booth the various methods of carrying the mails is picturesquely shown. There is a model representing five men carrying the mails over the mountains through the snow in the Caucasus, where the footing has to be chopped out of the ice step by step. Another model represents three horses abreast in the usual Russian style attached to a two-wheeled mail cart. Near this three horses attached to a sleigh show this same route in winter. There is also a model of a mail cart drawn by two yokes of oxen ; a special mail boat used in the Archangel district, rowed by women; a camel that carries the mail on his back in the deserts of the southeast; a mail sled drawn by reindeer as in (Continued on page 182.)

A COUNTING ATTACHMENT FOR PRINTING PRESSES. This improved counter, which is adapted to automatically register each impression of the press, may be attached in such a way as to be easily thrown into operative position and easily tilted back out of the

CLAYTON'S PRINTING PRESS REGISTER.

way, operating only when the press is actually print ing, and not registering when the " throw-off" is used. The improvement has been patented by Mr. Herbert D. Clayton, of the Hill City Reveille, Hill City, Kansas. The counter is of the usual kind, with registering wheels and knobs for setting them, and it is oper-

drop forgings at the fair.

Aside from the general commercial interest which attaches to an international exhibit, the displays that are distinctive by virtue of their arrangement and class leave enduring impressions. A large wall space in Section C, of Boiler House extension, Machinery Hall, has made for J. H. Williams \& Co., Brooklyn, N. Y., an exceptional place for the display of drop forgings. Looking from the main floor through the forgings. Looking from the mays leading to the extension, this exhibit, mounted on a highly polished selected sycamore board, 16×22 feet, immediately arrests the attention of sightseers and invites a closer inspection. In a central position is a splendidly executed water color illustrating the interior of one of the best and most completely equipped forges in the country. Here, too, in this painting, is partially accomplished the illustration of methods scarcely known to the uninitiated. Drop of methods scarcely known to the uninitiated. Drop
forging has become the commercial definition of this forging has become the commercial definition of this
art; but if we said "blacksmithing by machinery," it would be a literal description of the product, and greatly aid an interested public in comprehending the advanced methods in this line of manufacture. In addition to the illustration of a forge equipment, J. H. Williams \& Co. have not, as far as it seemed practicable, overlooked the means necessary to further develop interest in an industry so important and still so young. To this end, and in addition to the wall exhibit, will be found dies, showing the impress of different articles and the forgings themselves in various stages of finish. A little study of the special forgings in any of the four artistically arranged panels devoted to this department of their wares suggests at once how it has been possible to manufacture the peerless and up-to-date American bicycle. Very much of the enviable reputation of this country for its unequaled sewing machines, guns and general small firearms, and, indeed, of all firstclass machinery, is largely attributable to uni-
formly excellent drop forgings of a class supplied by this firm. The display of Brock's chain wrenches, engineers, wrenches, lathe dogs, collars, machine handles, etc., their staple articles of manufacture, well illustrates the rapid advances made in this age of improved tools and machinery. The engineers of the Edw. P. Allis, Frazer \& ChalFrazer \& Chal-
are showing with
ated by a lever which hangs down at a slight inclination to the bottom of the case, the lever being bent upward and laterally at one end, and finally entering a slot in the case, where its inner end is pivọted. A front view of the counter with its attachments is shown in the figure at the top of the picture, a side view being shown in the figure at the left, and the position of its attachment to the press on the right. On the top or back of the case containing the counting mechanism is a plate with projecting lugs pivoted to the upper end of a standard secured to one side of the frame of the press, the standard extending upward to a point near the path of the platen, so that when the case is swung into position for registering, its lever, A, will extend into the path of a finger or pin on the platen, B, of the press. If the counter is not to be used, it may be readily tipped over to the back side of the standard, out of the path of the finger. When the throw-off is used, the platen does not quite touch the type, and the finger and lever are so adjusted as not to come into engagement with each other except when an impression is actually made, or when the throw-off handle moves at the side of the platen the finger may be attached to the handle. The device is very simple, compact and inexpensive, can be readily attached to any job press, and the figures are always in plain sight of the pressman, who can at any time tell at a glance of the pressman, who can at any time tell
just how many sheets have been printed.

A Bicycle Fire Engine.

Experiments with a bicycle fitted out with a small chemical tank and fire ax are being made by a South Boston fire company. The bicycle has cushion tires and, with its whole outfit, weighs about sixty pounds. The tank holds about two gallons of chemical, which amounts as an extinguisher to about twelve pails of water.

THE WORLD'S COLUMBIAN EXPOSITION-DROP FORGINGS EXHIBIT OF J. H. WILLIAMS \& CO. BROOKLYN, N. Y.

AN ELECTRICAL BINDING POST.
An improved binding post for insertion in gas fixtures, for making connections between the house wires and the burner wires, is shown in the engraving, and has been patented by Mr. Arnold Kohl, of Centralia, Ill. Fig. 1 shows the improvement applied to an electrical gas lighter, Figs. 2 and 3 being transverse sec tions of double and single binding posts, the former being used where the return current is conveyed by a wire instead of the fixture itself. The body of the post is of hard rubber or other insulating material, bored axially to receive the wires, the end to be inserted in the gas fixture having an external thread, while the other end has an internal thread to receive the contact screw. The latter is threaded, and upon it is placed a metallic nut, between which and the binding post body the house wire is clamped, the wire leading to the electrical gas lighter being similarly

KOHL'S BINDING POST FOR ELECTRICAL CONNECTIONS
clamped by the nut of the binding post adjoining the burner. In the side of the post is a binding screw, for clamping the wire, and the inner end of the contact screw has an axial bore in which is received the exposed end of the wire in the fixed end of the fixture. Two such binding posts are necessary for completing the circuit through a gas fixture.

A STEEL PEN EXHIBIT AT THE FAIR.
One can readily believe that even so small an article as an ordinary steel pen may be the basis of an industry of considerable importance on looking over the fine exhibit of the Esterbrook Steel Pen Company at the World's Columbian Exposition. The business was established in 1860, and the works of the company are at Camden, N. J., where over one hundred and fifty different styles of the Esterbrook pens are made, the pens finding a market in all parts of the world. The house is the oldest and largest manufacturer in the United States, and makes pens for every purpose, and to suit all writers. It is a business that cannot be successfully conducted in a small way, the process of manufacture being intricate and complicated, each pen being subjected to a high degree of heat four or five times, and going through from thirty to forty hands before it is completed. The quality of the Esterbrook pens is concededly of the highest class; hence their universal popularity. It is one of the wonders of our modern progress in

THE CAW'S PEN AND INK COMPANY EXHIBIT.
Among the exhibits in the great Manufactures and Liberal Arts building at the Fair, one very beautifully arranged showcase is devoted to the display of the well-known Caw's pens and inks. These articles have become so nopular from their large use by all who have any writing to do in every department of business and in all walks of life, as well as from the numberless unstinted indorse ments of men prominent in the leading professions, that any detailed description would be superfluous. Fountain pens, for many years used almost exclusively by reporters and traveling men, have within a comparatively short period become almost indispensable to the business man and to those whose avocations are of a literary character in any way. This is because these pens have of late been made so simple, clean, and thoroughly effective that one can now, with the least care, depend upon always having and conveniently carrying upon the person a pen in good working condition, without danger of soiling the clothes or fingers therewith, the ink carried in the holder, and readily replenished, being sufficient to do a large amount of work. In consequence, also, of this largely increased use, and of the improvements introduced in the manufacture, the prices of this class of pens have been very greatly reduced. In Caw's "Dashaway" fountain pen, a regular first quality gold pen of any standard shape or size may be used. In this respect it differs from all other fountain pens. Another difference is in its "double feed," one on each side of the gold pen, which insures a more uniform and reliable delivery of ink than can be obtained from a single feed. President Cleveland uses one of these pens, and has furnished the company with a handsome testimonial. In Caw's stylographic pens the inventor seems to have obtained the acme of perfection and simplicity. The writing is done with a circular point similar to a pencil, but being tipped with an alloy of iridium and platinum, making it almost as hard as diamond, it will last many years. The stylographic
nen carries ink in the holder the same as the fountain pen, and by many it is preferred to the o nary split pen. With both of these pens any good writing or copying ink may be used, but the ink manufactured by the Caw's Pen and Ink Company has as high reputation as the pens, and has had a very large sale in the stationery trade for many years. It is a good black when first used, and in its manufacture an especial point is made to produce an ink which will not fade or mould, and will not gum or corrode the pen. The company displays its medals from the New Orleans Exposition of 1884 and the Paris Exposition of 1889, and expect to be equally successful in competition in Chicago.

The New 13 Inch Guns.
Twelve of the new 13 inch guns are needed for vessels now under construction. Four will be furnished to each of the following vessels, Indiana, Massachusetts and Oregon. It is now decided by the British Admiralty that guns of smaller caliber are better than the huge 110 ton guns, which are liable to many mishaps in firing and are entirely dependent upon machinery which might be disabled at a critical moment. The disaster of the Victoria, in which the guns played an important part, strengthens this opinion. The 13 inch gun is nearly 40 feet long and has a diameter of 4 feet at the breech and 21 inches at the muzzle. It is constructed on the built-up principle, in which a central steel tube has bands or jackets shrunk on. The projectile will be fired with 550 pounds of

THE WORLD'S COLUMBIAN EXPOSITION-THE ESTERBROOK STEEL PEN EXHIBIT.

manufactures that the cost of making these now powder and will weigh 1,100 pounds. As soon as the indispensable articles has been reduced to so small a figure.

The coast survey of the United States was begun in 1817.
projectiles can be constructed and the guns mounted a series of tests will be made with Harveyized armor plates as targets. The Brown segmental gun has shown a remarkable ability to stand heavy charges producing a high velocity and to resist great pressures.

HE WORLD'S COLUMBIAN EXPOSITION-CAW'S PENS AND INKS,
are preferably built in pairs, and have a transverse gutter at the rear of the stall flooring. The feed cribs are of such height as to readily permit the cattle haltered thereto to feed over their top edges, and at each wall of a crib are vertical stanchions, from the base of which a short vertical partition wall is extended rearwardly. The crib covers are hinged on pendent gates, whereby the cribs are not only closed at their tops, but the space above each crib is shut off from the stall. The

AEBERLY'S CATTLE STALL.

gates, to the lower edge of each of which is hinged a crib cover, are secured upon a rotatable transverse shaft, on the outer end of which is a transverse handle bar. A cord extending upward from the outer edge of each crib cover connects with a transverse cord passing over a grooved pulley at the side, the covers being raised and folded against the gates by pulling upon the cord, when both the covers and the gates may be raised, as indicated in dotted lines in the outline figure, by rotating the handle bar, thus affording a clear opening from each stall into the crib opposite it. A latch piece is adapted to be swung across the path of the handle bar to hold the gate locked in elevated position.
Further information relative to this improvement may be obtained of the patentee or of Mrs. M. Schembri, No. 396 Van Buren Street, St. Paul, Minn.

Sir Benjamin Ward Richardson, M.D.

The honors of knighthood have been conferred upon Dr. Benjamin Ward Richardson, of London, in recognition of his valuable discoveries in medicine and his great abilities as an instructor and writer.

Notes from the World's Columbian Exposition. (Continued from page 179.)
the extreme north; and a mail sled drawn by a dog team, as in Siberia. The rest of this exhibit comprises a full set of government postage stamps and post office supplies.
Several special days have been observed recently, but none have been more full of novelty or more picturesque than was the celebration by the Turks. A large number of representatives of this nation were present, and the procession from the Turkish village in the Midway Plaisance to the Ottoman building in the Exposition grounds was gorgeous and unique. It was made up largely of Bedouins mounted on spirited horses bedecked in their brightest garments and carrying their long, villainous-looking weapons. There was also quite an escort mounted on camels and donkeys. Nearly every man in the procession wore a fez, and many officials were dressed in the bright-colored insignia of their offices. The das was the seventeenth anniversary of the accession of the present sultan to the throne.
In the Mines building the "Statue of Salt" commands a wondering throng. It is said not a few elderly ladies go away believing that they have actually seen a replica of Lot's wife.
The model of the United States Treasury in the Administration building is another object of unfading attraction. It is built of Columbian half dollars, and considerable ingenuity has been displayed in its construction. The coins for the model were minted under an act of Congress, August 5, 1892.
The model of a prairie farm commands admiration. It was designed and partly executed by an Illinois girl, seventeen years of age. The principal materials entering into its construction are grain and grasses, and these have been handled with no small deftness and effect.
In the Anthropological building are some of the most important prehistoric relics from Carson, Nevada, from a quarry in the north end of a low sandstone ridge, a short spur of the Pine Nut Mountains. They consist of casts and in most cases the originals of footprints discovered in 1882 . There are mammoth tracks, human tracks, horse tracks, and bird tracks. The quarry excavation is about 4,950 feet above the sea level. The formation is thus described : First, sandstone, forming the walls of the quarry and from 22 to 32 feet in height; second, the strata containing the prints; and third, the bed rock. There were also found mammoth teeth in good condition, and portions of the tooth and two jaw bones of a horse. The deposit where these remains were discovered is supposed to be Quaternary or Upper Pliocene, for in the opinion of Dr. Joseph Le Conte there are no indications of "the tall horse or elephant in the American Miocene."

The great liberty and peace bell for the Columbian Exposition, weighing 13.000 pounds, cast at Troy, N. Y., lately reached the Exposition.

It is one of the largest bells ever cast in this country, is seven feet in height, seven feet four inches in diameter at the mouth, and the tongue and bolt weigh 700 pounds. Every ounce of the metal of which the bell is made has a historic value as having been connected with the deeds of the Revolution and of other great struggles in the field of war in which the honor of the country was at stake. There are in it, among other things, bullets taken from the battlefield and from the bodies of men who were wounded; wedding rings, thimbles, spoons, the remains of swords, bayonets, cannon and rifles, jewelry, coin and plate, and the pennies of more than a quarter of a million of American boys and girls.
This bell is the outcome of an idea of the Sons and Daughters of the Revolution, and commemorates the celebration of this Columbian year. There are some inscriptions on the bell: "Proclaim liberty throughout all the land unto all the inhabitants thereof," "A new commandment I give unto you that ye love one another," and "Glory to God in the highest and on earth peace, goodwill toward men."
The Tiffany Chapel in the Manufactures building is a grand exhibit. The altar is made of white mosaic inlaid with mother-of-pearl and jewels. The columns and windows are all of mosaic glass, in the style of the thirteenth century. The cross on the altar is of gold set with jewels. The altar window has a setting of peacock feathers in gold and natural colors. There are 280,000 pieces in the altar, which glisten in the subdued light of the candles which are kept burning on the altar.

WASHINGTON'S RED CEDAR VASE.

In the Washington building at the World's Fair is exhibited the largest piece of wood turning in the world. It is the work of J. L. Nygren, of Tacoma, an employe of the Tacoma Lumber and Manufacturing Company. Mr. Nygren spent about three months of his time making a special lathe and turning from a single log of cedar a huge vase, six feet high and four feet across the top. The vase is highly polished, and
shows to splendid advantage the coloring and graining of the red cedar.

World's Fair Awards.

In the Department of Artistic Manufactures the judges have passed upon nearly all of the exhibits, and medals have been awarded to many foreign as well as home exhibitors. The list is so long we can only find pace for the American medalists as follows:
New York-Brown's Amber Manufacturing Company, Bell \& Barber, Leon Favre, M. J. Powers, Beyer \& Schultzer, Tiffany Glass and Decorating Company, Tiffany Glass and Decorating Company, S. Strauss \& Sons, Tiffany Glass and Decorating Company, Tiffany Glass and Decorating Company (5), S. Klober \& Co., Tiffany \& Co., Ed. Jansen, Sypher \& Co., B. \& W. B. Smith, Ed. Jansen, Hertz Bros.
Chicago-Columbus Manufacturing Company, Winslow Bros., Healy \& Millett, Wells Glass Company Miss M. Heinnermaux, L. M. Hamline \& Co., Mrs. W. M. Clarke, Mrs. B. B. Jinkins, F. Winter Co., Miss S. R Little, A. E. Richter, Gensch \& Hartman, E. B. Clarke Co., J. C. Wemple \& Co., Winslow Bro. Co., Ehman \& Simon Manufacturing Company, Bensinger Bros., Wind Folding Bed Co., Th. Kane \& Co., George E. Androvetti, Rawson \& Evans, McCully \& Miles, Flane gan \& Beidemorg, Horn Bros., Henry Dibblee Co. Dean \& Co., A. H. Andrews \& Co., American Bronze Company.
Providence, R. I.-F. F. Pearce \& Co., Gorham Manufacturing Company (several), O. C. Devereaux \& Co. R. L. Griffith \& Son, S. \& B. Lederer, Reynolds \& Co. J. H. Fanning \& Co., New England Manufacturing Company, Arnold \& Steere, Charles F. Prons, Payton

LARGEST TURNED VASE IN THE WORLD.

\& Kelley, W. E. Webster \& Co., Kent \& Stanley Com pany, Otsby \& Barton.
Philadelphia-William Reith, J. W. Boughton, Wiliam Galloway.
Toledo-Libby Glass Company, Gendron Iron Wheel Company.
Boston-H. R. Plimpton \& Co., Derby \& Kilnor Company.
Denver, Col.-Miss J. R. Pickney
Lyons, N. Y.-Manhattan Silver Plating Company, Manhattan Silver Plating Company.
Meriden, Conn.-Meriden Britannia Company, Merden Britannia Company.
Newark, N. J.-Whitehead \& Hoag, Stewart Hartshorn Company, Nymble.
Geneva, N. Y.-Miss F. Crittenden
Geneva, N. Y.-Miss F. Crittenden
Kansas City, Mo.-F. D. Koehler.
Kansas City, Mo.-F. D. Koehler.
East Liverponl, O.-Knowles, Ta
East Liverponl, O.-Knowles, Taylor \& Knowles, Knowles, Taylor \& Anderson.
Cincinnati, O. - Reuld Moulding Manufacturing Company, Andrew Messwell \& Co.
Phœnix, Ariz.-F. E. White Cactus Manufacturing Company, F. E. White Cactus Manufacturing Company.
St. Paul, Minn.-Drake Manufacturing Company.
Grand Rapids, Mich. -Gun Foldine Bed Company, New England Furniture Company, Sligh Furniture Company, Royal Furniture Company.
Milwaukee, Wis.-Miss A. S. Lodge.
Freeport, Ill.-G. Dickens Filigree Company.
Allegheny, Pa.-Conroy, Puigh \& Co.
Rockford, Ill.-Royal Mantel Company, Middlecomb Company, Rockford Standard Company.
Hartford, Conn.-Wm. Rogers Manufactoring Company (3).
Attleboro, Mass.-R. F. Simmons \& Company, W. \& . Blankington.
Bridgeport, Conn.-Holmes \& Edwards Silver Company.
New Bedford, Mass. - Pairpont Manufactoring Company.
Washington, D. C.-Mary and Emily Healy.
Detroit, Mich.-George Le Roff.
Columbus, O.-Kimmear \& Yager Company.
Pittsburg, Pa.-U. S. Glass Company.
Trenton, N. Y.-Burroughs \& Mountford Company.
Baltimore, Md.-Edwin Bennett Pottery Company:
Pawtucket, R. I.-G. H. Fuller \& Son.
Miscellaneous.-J. Hoare, William K. Potter, Aladdin Terra Cotta Company.

The Money of the World

Acting Director of the Mint Preston has prepared a table of the monetary systems of the world. The table shows that the aggregatestock of gold is $\$ 3,582, \times 05,000$; silver, $\$ 4,042,700,000$; uncovered paper, $\$ 2,635,873,000$. Stock of gold possessed by principal countries is as ollows: United States, $\$ 604,000,000$; Great Britain, $\$ 550,000,000$; France, $\$ 800,000,000$; Germany, $\$ 600,000$, 000 ; Russia, $\$ 250,000,000$. The stock of silver is as follows : United States, $\$ 615,000,000$; Great Britain, $\$ 100$,000,000 ; France, $\$ 700,000,000$; Germany, $\$ 211,000,000$; Russia, $\$ 60,000,000$.
The stock of silver is divided as follows: United States, $\$ 538,000,000$ full tender, and $\$ 77,000,000$ limited tender; Great Britain, no silver full tender, $\$ 100,000$, 000 limited tender ; France, $\$ 650,000,000$ full tender, $\$ 50,000,000$ limited tender : Germany, $\$ 103,000,000$ full tender and $\$ 108,000,000$ limited tender; Russia, $\$ 22,000,000$ full tender and $\$ 38,000,000$ limited tender. The ratio prevailing in nearly all principal countries between gold and legal tender silver is 1 to $151 / 2$. The ratio between gold and limited tender silver is, as a rule, 1 to 14.38 . The respective ratios in the United States are 1 to 15.98 and 1 to 14.95 .
The various monetary systems as divided among countries: Gold and silver-United States, France, Belgium, Italy, Switzerland, Greece, Spain, Netherlands, Turkey, and Japan. Gold-United Kingdom, Germany, Portugal, Austria, Scandinavian Union, Australia, Egypt, Canada, and Cuba. Silver-Russia, Mexico, Central and South America, and India. Of the uncovered money, South America has $\$ 600,000,000 ;$ Russia, $\$ 500,000,000$; United States, $\$ 412,000,000$; Austria, $\$ 260,000,000$; Italy, $\$ 163,000,000$; Germany, $\$ 107,-$ 000,000 ; France, $\$ 81,000,000$; and Great Britain, $\$ 60,-$ 000,000.
The per capita circulation of gold is: United States, $\$ 9.01$; United Kingdom, $\$ 14.47$; France, $\$ 20.52$; Germany, $\$ 12.12$; Russia, $\$ 2.21$. Per capita of all classes of money is: France, $\$ 40.56$; Cuba, $\$ 31.00$; Netherlands, $\$ 28.88$; Australia, $\$ 26.75$; Belgium, $\$ 25.53$; United States, $\$ 24.34$; United Kingdom, $\$ 13.42$; and Russia, \$7.16.

The Ruins of Ang-Kor.

Recent events have attracted attention to the great lake between Cambodia and Siam, Toule Sap, and to the two Siamese provinces of Ang-Kor and Baltambong which adjoin it. A few months ago the Progres de Saigon issued an account, illustrated by native wood engravings, of this great lake of the two provinces and of the famous ruins of Ang-Kor. The region is described as lying to the north of Cochin-China, between Siam, the ocean and the unknown Laos districts, and Siam, the ocean and the unknown Laos districts, and
although now but thinly populated, it was in former times the abode of a race which was great among the peoples of the East, and which for long centuries was governed by a famous line of sovereigns. The great lake is formed during the rainy season by one of the branches of the Mekong, and is then navigable by large steamers, which go to Siemreap, at the head of large steamers, which go to Siemreap, at the head of
the lake, and near the ruins of Ang-Kor, the greatest the lake, and near the ruins of Ang-Kor, the greatest
remains of Khmer civilization. These ruins were discovered by the Portuguese and Spaniards in 1564, and they were first described in a volume published in Barcelonain the following century. There are Chinese accounts of a much earlier period, and one of these, written in the thirteenth century by an ambassador sent to the Cambodian court, was made known to Europe by Abel Remusat. It includes descriptions of Europe by Abel Remusat. It includes descriptions of
the two famous temples of Ang-Kor Wat and Ang-Kor Thom, which correspond with the ruins of the present day. Since then they have been investigated by French savants, and quite a splendid work on the subject has been published by M. Fournereau. It is thirty hours' steam to Pnom-Penh, the capitol of Cambodia, and thirty more to Siamreap. Ang-Kor Wat, or Ang-Kor the Great, the royal pagoda, is the best preserved of all the Khmer remains. Mouhot, who visited it in 1862, says it is more majestic than any other monument of antiquity that we possess. It occupies a large rectangular park, $1,087 \mathrm{~m}$. long and 827 broad. The illustrations show numerous towers, vast terraces, several subsidiary temples, innumerable figures of fantastic mythological animals, galleries; colonnades, avenues, lakes, bridges, etc. The surface of the large stones employed in the buildings are covered with pictures and engravings. These huge blocks are believed to have been conveyed to the great heights at which some of them are found by means of inclined planes. Ang-Kor Thom, which is a few miles away, is still more ancient, and around it are the ruins of the old Khmer capital, Preathong, which have been invaded by the forest, giant banyans having their roots below the foundations and their branches among porticoes and pillars covered with bass-reliefs. These latter, whichare especially well preserved in the underground galleries, represent the national sports, sacred ceremonies and historical events of the Khmers. These are the two main Khmer monuments, but there are hundreds of others scattered over a large area of the country in the midst of what looks like a primeval forest. -The Architect.

Sorrespondence.

Plumbago as a Lubricant for Steam Cylinders.
To the Editor of the Scientific American:
The engine on which the experiments were carried on was a compound duplex, high pressure cylinders 14 $\times 12$ and low pressure cylinders 20×12, with a piston speed of 200 feet per minute.
To obtain the best results, the common oil cup was exchanged for a goblet-shaped tallow cup, with a lid; after which, the piston follower and springs were taken out and cleaned before starting the engine. One-third ounce of finely pulverized plumbago was placed in the cup. When fairly under way the valve of cup was opened half way, and a little later was opened to its full extent.
The piston rod became coated with plumbago soon after starting, and by noon the whole had passed from the cup into the cylinders.
On starting up, in the afternoon, one-third of an ounce more was placed in cup, and the engine run till five o'clock with like result. There was no noise in cylinders, either in starting, running, or stopping the engine, and after two months' use, with the above amount twice a day, no noise has been heard in cylinders. Soon after beginning its use, a small amount of plumbago was left in cup. To obviate this, one ounce plumbago was left in cup. To obviate this, one ounce
of water was poured in cup after the plumbago was of water was poured in cup after the plumbago was
put in, and a decided improvement was observed, in that it could be fed into the cylinders as readily as oil. After three weeks' use, the cylinder heads were taken off and the working parts were found coated with plumbago, so it could not be easily rubbed off with the finger.

Earl Gainer.
El Reno, O. T.
Cooling Air" by Means of Underground Pipe. To the Editor of the Scientific American:
Can you give us any information as to the construction of a cold storage apartment, which is built by means of sewer pipe being laid a certain depth below the ground, and for a certain length through! which the warm air passes, and by the time it reaches the apartment is sufficiently cooled, so as to dispense with the use of ice? The cool air is then carried away through a high chimney. We are informed that cold storage apartments are being built on this principle, and any information you may be able to give us as to their construction and practicability will be highly appreciated.

Zoar, O., July 29, 1893.

[The cooling of air, as indicated by our correspondent, has been proposed; but we do not call to mind any practical example now in operation. The principle seems correct, but the power of a natural circulation appears weak. The air, when it becomes cool in the subterranean pipes, is disposed to stay there, like the air in wells and cellars, and unless some positive means are employed to produce a fixed condition of circulation, the apparatus would be of little value. The natural draught of a chimney, without heat, is as liable to be downward as otherwise. Again, if artificial draught is produced, it should not be in excess, as a strong draught through the subterranean pipes would soon warm the passages and ground and destroy its cooling properties. Under any circumstances, the amount of cooling effect must be small, as the temperature of the ground in summer, at a depth of four feet, is seldom cooler than 55° Fah. In order to obtain a temperature of 60° in hot weather, the subterranean exposure should be very large; we should judge not less than one square foot for every cubic foot of space in the cool room, with a moist ground for the unglazed tile pipe. Then, if four inch tile pipe is used, it will require 1,000 feet for a cool room of 10 feet $\times 10$ feet \times 10 feet, which may be divided into two or more sections leading in different directions. In very dry ground, we should judge that fifty per cent more pipe should be used. For artificial draught, a small fan driven by electricity, a wheel train and weight, which may be wound up by a small windmill, will be the most available power; otherwise an up-draught ventilator may be made available when there is any wind. The use of fire for creating draught in the chimney will be troublesome and expensive, unless the cold room chimney could be warmed by a flue used for other purposes. The more porous the tile pipe can be made, the better results will ensue, as it must absorb the water of condensation from the cooling air and also be a partia feeder of air from the ground.-ED. S. A.]

Lemon Sirup.

Take 1 pint and a quart of juice, 2 pounds of sugar. Let the juice stand in a cool place to settle. When a thin film is formed on the top filter the juice, add the sugar, and finish in the bain-marie. If the flavor of the peel is desired with it, grate off the yellow rind of the lemons and mix with the juice to infuse, or rub it off on part of the sugar and add it to the remainder when you finish it. Orange sirup is made in precisely the same manner as lemon sirup.-Western Druggist.

THE RORDAME COMET.

The accompanying diagram will give the unscientific reader some idea of the relation between the paths of the comet and earth. Suppose the circle representing the earth's orbit to lie in the plane of the paper, then the comet's path lies in a plane inclined 20° to that of the paper and intersecting the latter in the line NN^{\prime}, which is called the line of nodes.
About June 26 the comet passed the point, \mathbf{N}, its ascending node, and since that time its path has been north of the ecliptic. On July 7, it reached its near-

dIAGRAM SHOWING RELATIVE POSITIONS OF COMET b 1893 AND THE EARTH.
est point to the sun, and at almost the same time its nearest point to the earth. It was discovered therefore at the time of its greatest brightness, when it was almost directly between the earth and the sun, but at some distance above the line joining the two. The tail of the comet was directed toward a point almost directly over the earth.
The apparent motion of the comet among the stars was very rapid, because of its nearness to the earth. This has been rapidly decreasing, as might be expected from the fact that the earth and comet are moving in opposite directions. Its course has been southeastward, passing by the feet of the Great Bear and between Leo and Coma Berenices. During August it moved very slowly southeast from a point 5° east of the star β Leonis toward the double star γ Virginis. -A. and Astro. Physics.

A MONSTER DIAMOND.

We have received from Birmingham the plaster of Paris model of the great South African diamond, recently found in the Orange Free State, and which is claimed to be the largest ever discovered. The model was sent to the editor of the Birmingham Daily Post by Mr . WalterLowe, a Birmingham man, now resident in South Africa. In a letter which he sent with the model, dated Jagersfontein, July 2, he says :
"You may have noticed by cable that the largest diamond the world has ever seen has been found here. This place is all excitement about it, and it may make

"The Largest Diamond in the World :" The " Jagersfontein Excelsio
recentiy discovered in the Orange Free State. (Exact Size.)
a stir in the financial world. I am sending by this post a perfect plaster of Paris model of the diamond, which was found on June 30, 1893. This model was taken by me personally this morning, and is the only one which has been taken except one which I have sent this after noon to the President of the Orange Free State, by special request. The diamond was found in the New Jagersfontein Company's mine. It is the most perfect large stone ever seen, its weight is 971 carats, its color is blue-white, and almost perfect. It has one black
will cut out. Its value, of course, cannot now be stated ; but I think if $£ 50,000$ were offered for it now, or even double that amount, it would not be accepted. Some even declare that it will be worth half a million. It was found by a Kaffir, who was working in the mine, shortly after blasting. The Kaffir, in this case, was talking to hisoverseer, when he saw something shine, and he put his foot over it until his 'boss' had gone away, when he picked up the immense diamond and put it in his pocket. Afterward, in the compound, he handed it over to the manager, for which he has been given £150, a horse, saddle, and bridle, and has gone home in, no doubt, perfect happiness. An extraordinary circumstance is that one gentleman, or some gentlemen, I don't know which, were under contract to buy all stones, good, bad, or indifferent, at so much per carat. This contract terminated on the 30th of June, and this stone was almost, if not quite, the last June, and this stone was
stone found on that day."
The model shows that the stone is in the form of a sloping cone flattened on two sides, and standing on an oval base, so flush as almost to appear to have been cut. Its height is about three inches, and its width about two, while the flat base measures nearly two inches by one and a quarter. The diamond itself, which has been named the "Jagersfontein Excelsior," is now in London.-London Daily Graphic.

Seaside Painting.

A paper was recently read on this subject by Paul F. Brazo before members of the Master Painters' Association of New Jersey. The author said :
I will relate what I have observed, experienced, and practiced for the past thirteen years on the ocean front at Long Branch.
In the first place we have to contend with a great amount of dampness and fogs, which always leave a residue of salt on the surface of the work to be painted or otherwise treated. So it follows that we must be on the alert to know that the work is perfectly dry; especially new work. It was only after I had several jobs badly blistered and spoiled that I concluded to seek a remedy, and my remedy was this : To leave all piazza ceilings, floors, and clapboards under piazzas and porches until ten o'clock, or later, in the day, if possible to do so. I have followed this rule, and have had no trouble in that direction since.
As to the salt on the surface of the work-where it was practicable, and the work was not to be hurried, I had it washed thoroughly a day or so before applying the priming coat. I then primed with pure lead, used thinnings composed of one-third turpentine and twothirds raw oil, with one-half pint of good japan to the gallon, in shade of color as near to the finishing color as possible. My object in keeping the priming the same shade as finishing is that it makes the work more solid, and as the priming coat has to stand at least three days or more before applying the finishing coat, and as it generally makes its own color, or, in other words, the priming darkens, it follows where we put on finishing there is just enough difference to be perceptible and comfortable to work over without showing brush marks, etc.
I have also observed that a combination of purelead and French zinc is the best, using good japan and raw oil only as a binder. For finishing coats, the zinc and lead should be in the proportion of 25 per cent and 75 per cent pure lead-no pulp lead-as we have all the moisture on the surface that is necessary. At all times I use the French zinc, for the reason that it does not contain sulphur to such an extent as our American zinc, consequently does not bleach my coloring matter so quickly.
I particularly avoid using ochers or other earth paints, except in priming coats, for I have observed that all buildings where ocher was used as a stainer, no matter what grade it was, or what lead was used in no matter what grade it was, or what lead was used in
combination with it on the sea coast, were in all cases attacked with the painters' worst enemy-mildew ; particularly when painters were foolish enough to use boiled oil as a means of conveyance. On the contrary, I have observed that lead, zinc, chrome yellow, and their kindred pigments, with raw oil and japan as a binder are not molested by mildew, and that they wear longer, hold their luster better, and instead of bleaching in spots and mildewing, will wear uniform; in fact, grow darker in course of time, and in all cases give your customers good satisfaction.
I have noticed that all, or nearly all, of those who come here from the cities or from towns away from the coast use boiled oil, and that all of their work goes wrong in the first six months, and makes a difficult job for the painter who follows them to do good work.
A word about shellac work in our damp air may do some fellow craftsman good. Do not do any shellacking in the early norning. If you must do it in damp weather, or in the early part of the day, have your men take a piece of cheese cloth, dampened with raw oil, and rub dry, and the work will not turn white, as I see some of the cottages at present which I have been called in to remedy; that is if you cannot varnish immediately after shellacking, or if a shellac finish only is required.

THE NORTHERN DIVER AT THE LEIPZIG ZOOLOGICAL GARDEN.
I was very much pleased at the beginning of June to see, for the first time, the northern diver (Colymbus arcticus), which had just arrived at the zoological garden of Leipzig. The bird has a very characteristic appearance, owing to its strong neck and head, and particularly the strange arrangement of black, white, and gray feathers, which is of a very striking beauty, and may be clearly seen in the principal figure of the cut, so that a further description is not necessary.
This extraordinary bird is very attractive, not only in appearance, but in its movements and habits. It is very interesting to see the bird, which but exceptionally leavés its natural element, the water, swimming and immersing its body more or less at will, which movement may be due to a particular action of the lungs. This ability of the bird can be observed in a very striking manner when the bird dives or swims below the surface. The bird rushes through the water at an appalling speed. It seems as if it could not swim slowly when fully immersed in water, and I could observe this very well, as Mr. Pinkert, the proprietor of the zoological garden, put the bird into a glass bowl, so that I was able to see it from the side, as shown in the small view, No. 3. It will be noticed that the ivird swims with extended neck, tightly closed wings, and widely spread legs, employing the latter to propel itself widely spread legs, employing the latter to propel itself
under water. It is very interesting to see that nature under water. It is very interesting to see that nature
achieves the same result in a quite different way in the lumme (shown in view No. 4), which swims under water with its head drawn back, the legs extended rearward and serving only as a rudder, while the wings are used after the fashion of fins. Both these aquatic birds follow their prey into the water, and their fishlike appearance is adapted to deceive the prey.

Though very agile in water, the northern diver is very clumsy on the land. The legs are so near the end of the body that the bird is unable to stand or walk. It can only crawl on the ground, and I have often seen it in the posture shown in view No. 2, sitting on the shore; but it never remained out of the water but for a very short time.
It is well known to ornithologists that the northern diver is a good flier, notwithstanding its comparatively small wings, and the bird I had the opportunity of seeing shows indications of this ability by agitating its wings, so as to almost rise out of the water (view No. 1), which probably is the manner it starts to fly from the water when it is in liberty.
The name of the bird already indicates that it is an inhabitant of the northern regions, and it only occasionally appears on the German shores; where it is but seldom caught-generally in the nets of fishermen. The bird is fully the size of a large domestic
duck, and the opportunity of studying its appearance and movements has been particularly valuable to me, as the ornithological reports on this bird are rather meager. Want of space has compelled me to give but a short description of this rare and beautiful animal $-H$. Leutemann, in Illustrirte Zeitung.

A TROLLEY WIRE FINDER FOR ELECTRIC RAILWAYS

A simple apparatus is provided by the improvemen shown in the illustration for use with the ordinary trolley and pole of electric railways, whereby, on the trolley leaving the wire, it will be automatically re-

turned to its proper position. The improvement has been patented by Mr. Henry C. Jones, of Montgomery, Ala. (box 285). On the trolley pole, beneath the wheel contacting with the line wire, are clamps having outwardly projecting studs, which support the crossbar or bracket of a guide, the bracket being held in a ver tical position by set screws projecting from the clamping pieces through a curved slot in a central depending portion of the bracket. At the outer ends of the bracket are sleeves, through which extend vertically movable posts affording bearings for a cross shaft, on each side of which are secured spools with spiral threads running toward the center, where they con nect with a loosely running guide pulley. Washers arranged between the spools and pulley, and normally projecting above their meeting edges, prevent the wire from sliding upon the pulley until the guide has been raised sufficiently to permit the transfer of the wire to the guide pulley and the main trolley wheel To effect this, the outer ends of the spools have bevel To effect this, the outer ends of the spools have bevel
gears meshing with gears on the ends of vertical screw
shafts turning in threaded bearings in the bracket, whereby the friction of the wire as it turns the spool raises the guide, the wire at the same time being carried inward by the groove of the spool. The washers between the spools and pulley have central openings permitting of the vertical movement of the washers, which are normally pressed upward by springs. The lower edges of the washers and the free ends of the springs are connected by short chains, also secured to the bracket, which limit the upward movement of the spools and posts when the guide has been raised to the proper height. The pitch of the screws of the vertical screw shafts is such that, when the wire has been transferred to the main trolley wheel, the weight of the spools and other mechanism will cause the screws to turn back, permitting the guide spools to drop to their normal lower position.

The valiant.

Mr. W. K. Vanderbilt's new yacht the Valiant is a veritable floating palace. The Valiant is of 2,400 tons measurement, 312 feet in length, 34 feet beam, and is propelled by twin screws, each driven by a 2,250 horse power engine. The yacht wasbuilt by Laird Brothers, of the Birkenhead Iron Works. The interior fittings of the beautiful vessel are not quite finished. Some of the doors, for instance, are merely primed and will remain so until the vessel reaches Nice, when she will main so until the vessel reaches Nice, when she will
be decorated. The metal work throughout the vessel be decorated. The metal work throughout the vessel
is a silver alloy called Wilson's white metal. This metal stays very brilliant with little care. The saloon and library are fitted up by Messrs. Cauel, of Paris, in the most expensive style. The saloon is 18 feet long and is 34 feet in width. The design is Louis Quatorze, worked out in white and gold ; the furniture is in the best Chippendale style, inlaid with brass, and is upholstered in crimson silk velvet. Each stateroom, and there are twenty, has a bathroom connected with it, and no two rooms are decorated alike. A hundred foot passageway, arched and beautifully decorated, connects the library with the saloon. The library is finished in dark unpolished walnut. Mr. Vanderbilt's stateroom is covered with special designs in Tynecastle tapestry. The wall spaces are paneled in light blue, with floral designs of rich blue silk.
The Valiant left Liverpool August 16 and reached New York August 25, with her sailing master, Captain Henry Morrison, and a crew of sixty-two men. The Valiant is the property of an English syndicate, and among the five or six stockholders are Mr. Vanderbilt's private secretary and the sailing master. Of course this English syndicate is entirely controlled by Mr . Vanderbilt, and it is shrewdly surmised that the company was formed only to avoid annoying custom regulations.

THE WORLD'S COLUMBIAN EXPOSITION-A VIEW. ON Canals are embellished by many fine pieces of sculp THE GRAND SOUTH CANAL.
We illustrate a view taken from the head of the Grand South Canal, looking north. It is a remarkable scene. Both the North and South Canals abound in picturesque architectural effects, but the view here given transcends them all. In front, at the right, rises a reproduction of the noble Egyptian monolith, Cleopatra's Needle, in Central Park, New York. Even the hieroglyphics are included, while the base of the obelisk is guarded by four spirited lions, the work of Mr. M. A. Waagen. Between the obelisk and the splendid Palace of Manufactures, on the right, will be seen one of the $\$ Roman rostral columns, decorated with the prows or beaks of galleys and surmounted by a statue of Neptune. The Palace of Manufactures, owing to its great size, could not be made so ornate as some of the smaller buildings; but the problem of erecting an immense exhibition structure without sacrificing all beauty of form and proportion has been

ture.

Increase of the French Navy.

The French naval estimates for the year 1894 con template, says Engineering, the laying down of no fewer than thirty-two new vessels of various types, viz.: Three first class battleships, five second class cruisers, one third class cruiser, one sea-going torpedo boat, five first class torpedo boats, four second class torpedo boats, nine torpedo launches, one second class dispatch boat, and three gunboats. The battleships, which will be built two in the dockyards and one by contract, will have a displacement of 11,000 tons and engines of 14,500 horse power, giving a speed of 18 knots. The armament of each will be four 11.8 inch, ten 5.5 inch, six 3.9 inch, sixteen 1.85 inch, ten 1.45 inch, and eight revolving guns. The second class cruisers, one of which will be built in a government yard and one of which will be built in a government yard and
four by contract, are of two types. The first type,
knots speed. The torpedo launches, which are intended to be carried on the deck of the new torpedo depot ship Foudre, will be 62 feet 4 inches long, displacement 14 tons, having engines of 210 horse power, and being capable of a speed of 16.3 knots. It is expected that they will be built at Creusot, where the plans have been prepared. The gunboats, of which particulars are not made public, are believed to be river gunboats for colonial service.

A Costly Fair Exhibit of Platinum, etc.
The exhibit at the World's Columbian Exposition of Messrs. Johnson, Matthey \& Co., of London, is valued at over $\$ 100,000$, and besides iridium, ruthenium, rhodium, osmium, palladium, pure and in various combinations, includes a remarkable and very valuable display of platinum, of exceptional purity. The international standard meter and kilo, as adopted after long experiment by the Paris International Commission, is from an alloy made by this firm of platinum 90 per cent, iridium 10

THE WORLD'S COLOMBIAN EXPOSITION-A VIEW ON THE GRAND SOUTH CANAL.

successfully solved by the architect, Mr. George B. \mid which is to include the vessels provisionally known as|per cent, and eminent experts reported the platinum Post. The roof of this gigantic building affords the best \mid E4, E5, and E6, will be of 3,990 tons displacement, 9,000 coign of vantage from which to view the manifold horse power, and 19 knots speed, carrying four 6.2 inch, beauties of the great White City. Access to the roof is had by means of the electric elevators. On fête days, when the building is decorated with flags and pennants, the contrast of the warm color of the bunting with the pure white of the exterior is superb. Beyond the bridges, which are beautifully proportioned, is the Wooded Island, above which rises the dome of the Illinois State building.
The Palace of Electricity will be noticed at the left, just beyond the second bridge. Messrs. Van Brunt \& Howe, of Kansas City, were the architects. The effect of the Corinthian pilasters and the campaniles is very fine, repetitions of the electro-magnet and lamp are freely used, as well as conventional ornament. The south front, facing the Court of Honor, is broken by a great hemicycle, in which stands Carl Rohl-Smith's statue of Franklin. At the extreme left is seen the central and cornerpavilion of the Palace of Machinery -a very successful composition in the best style of the Spanish Renaissance. Messrs. Peabody \& Stearns, of Boston, were the architects. The North and South
$\mathrm{E4}, \mathrm{E} 5$, and E6, will be of 3,990 tons displacement, 9,000
horse power, and 19 knots speed, carrying four 6.2 inch, ten 3.9 inch, fourteen 1.85 inch , and four 1.45 inch quick-firing guns. The second type, which is to include the vessels provisionally known as G3 and G4, will be of 3,800 tons displacement, 9,100 horse power, and 19.25 knots speed, carrying six 6.2 inch, four 3.9 inch, eight 1.85 inch, and twelve 1.45 inch quick-firing guns. These five vessels are improved ChasseloupLaubats. The third class cruiser, which is to be built in a government yard, will be a modified Galilee, of ,300 tons displacement, 6,600 horse power, and 20 knots speed, carrying four 5.5 inch, two 3.9 inch, eight 1.85 inch, four 1.45 inch quick-firing guns, and four revolving cannon.
The sea-going torpedo boat, which will probably be built by M. Normand, of Havre, will be a repetition of the Forban, which is now under construction, and will be of 3,260 horse power and 30 knots speed. She will measure 144 feet long. The first class torpedo boats will be of 80 tons displacement, 1,350 horse power, and 23.5 knots speed. The second class torpedo boats will be of 53 tons displacement, 700 horse power, and 20.5
f a degree of purity heretofore considered commercially impossible, being $999 \cdot 98773$ per 1,000. In making the standards, 8,000 ounces, troy, were employed. Various forms of platinum apparatus are also shown, that for the concentration of sulphuric acid being especially interesting.

Metric Equivalents.

The metric nomenclature is coming into such common use, especially in scientific articles, that the folowing formulas will be found valuable:

WEIGHT EQUIVALENTS.

o convert grains into grammes multiply by..
o convert grammes into grains multiply by. To convert drachms into grammes multiply by. To convert ounces (avoir.) into grammes multiply by.

To convert cubic centimeters into grains multiply by o convert cubic centimeters into grains multiply by.. $15 \cdot 5$
0.2 o convert cubic centimeters into drachms multiply by. 0.26
0.036 ond (avoir.) multiply by 0.0 To convert liters into ounces (avoir.) multiply by........... 35:3 To convert gallons into liters maltiply by... 35.3
3.8

Intelligence of Birds and Animals, Especially
those that are Susceptible to the Cholera and Contagions Diseases.
by nicolas pies.
The intelligence of animals now claims, more than ever, the attention of the naturalist. Many believe that most of them possess, to a certain degree, the faculties of man, and there is no doubt that there exists an intimate connection between the organization and the intellectual faculty. Dr. Lindsay, in an essay which he published, and which hasexcited some attention, takes the ground that the mind of the lower animals does not differ in kind from that of man, and that they possess the same affections, virtues, moral sense, and capacity for education, and are liable to the same kinds of mental disorders. If we should study them more closely than we do, the conclusion which many scientists like Lindsay have arrived at would enable us to fix in our minds these facts without a doubt. It is said that birds are very susceptible to the cholera, and oftentimes fly from this much dreaded disease. As the cholera has been much dreaded the past season, it would be well for the ornithologist and scientist to watch these birds and some of the lower orders of animals, and confirm what is accredited to them in relation to this disease.
In the year 1854, the cholera appeared at Mauritius, an island in the Indian Ocean. It was in a violent form, and the inhabitants became much alarmed, as the deaths ran up to the frightful figures of two hundred and fifty a day in the city of Port Louis, with a population of eighty thousand persons. During this pestilence there were many reports about the disease being conveyed to fisb, flesh, and fowl, which was doubted by many persons, and it was considered merely a whim of the large population of Indians, who are a whim of the large population of Indians, who are
very superstitious. But when accounts began to accumulate from men of veracity it became a fixed fact, and generally believed, that birds were leaving the city and suburbs, particularly one called the "mina," Paradiseus tristes (Cuvier). This bird was formerly introduced into the island from Pondicherry for the purpose of destroying an insect which was troublesome. It became numerous, more so than any other species. They assemble in vast numbers in undisspecies. They assemble in vast numbers in undis-
turbed woods and thickets, but show a decided fondness for the proximity of human habitation. They m be seen going out in the morning and returning
in the evening, like rooks, but do not fly in large numbers together.
Mr. George Clark, a government schoolmaster, residing at Mauritius, informed the writer of the result of his investigation, which can be relied upon, as he was an excellent naturalist, close observer, and a reliable man. In speaking of the "mina bird," he thought it a most remarkable fact that they should leave the city of Port Louis while the cholera was raging, both in 1854 and and 1856. Such was a fact, and he knew it to be true, and his statements were con firmed by many persons from different parts of the island. The keeper of the large cemetery near the city of Port Louis stated that the birds used to be very numerous before the out break of the cholera. Scon after the disease appeared in the city the birds commenced to leave, till not one could be found in the large grove of trees which surrounds the grounds. When the violence of the disease had much abated they began to return, but were not so numerous as usual, till it had entirely disappeared. Captain Rupel and a number of prominent gentlemen of veracity confirmed the statements. During my residence at Mauritius I conversed with many persons in relation to the above, and all testified to the fact that the statement was true, and that some of the fresh water fish were affected and died. This I do not state as having come under my own observation. We have well authenticated accounts that during the terrible epidemic of cholera which almost entirely destroyed the inhabitants of the town of Basse Terra, Gaudaloupe, some years ago, the cats and many birds left the place, for parts unknown, and did not return for some weeks, till the disease abated. Some of them remained away permanently. A similar case happened at Malme, in Sweden, on the approach of cholera in 1834.

The Boston Herald published a short account of a statement of Major C. C. Creagh, of H. B. M. Regiment "The Royal County Downs." He states that he was present during the unusually severe visitation of the cholera in the town of Kurrachee, in Sinde, in 1846. His regiment lost, in the space of ten days, about two hundred and forty men, and it was particularly remarked that the vultures and other birds of prey entirely disappeared almost simultaneously with the outbreak of the cholera, returning generally after the first few days, when the virulence of the disease began to abate. Major Creagh also mentioned a singular circumstance, from which it would seem that the inhabitants of the sea are by no means exempt from the mysterious disease. On the second or third day after the appearance of the cholera, the bay to the south of Kurrachee wasstrewed with myriads of dead fish, whrcn were left on the beach by the receding tide. At high were left on the beach by the receding tide. At high
water the shores of the bay presented a most singular
appearance. The waves for several yards from the
shore seemed to be composed of an almost solid mass shore seemed to be composed of an almost solid mass which, however, there were not wanting others of considerably larger size. This belief in the prescience of birds is almost universal in India, and it is imputed to their power of diving into the secrets of futurity. It is common to the kites and the li
We are aware that there are thousands of persons who watch the migration of birds and note their departure from our northern clime to that of the more genial south; also the hibernation of animals, the time of their entering the hibernaculem, as this denotes an early or late winter. The early flight of wild geese denotes a storm or an early spell of cold weather. The people of Africa, India, Japan, and China watch with interest the movement of birds. The natives of Ceylon, when about to make a journey of two or three days, are governed by a certain bird. They proceed to the woods and seek this bird. If there is to be a change in the course of twenty-four hours, the bird will be found perched on the topmost branch of the tree, pouring forth his melodious notes, which indicates rain, and, it is said, never fails to come. The natives of Ceylon have the most implicit confidence in this sign.
In the warm days of July the cat bird may be seen perched on the low branches of the dogwood tree, perched on the low branches of the dogwood tree, dications of a thunderstorm in the afternoon or evening. These notes are never heard except at this time. We were acquainted with a celebrated statesman who informed us he had never known this to fail, and had the most implicit confidence in this sign. Dr. Meyer says he has never seen birds oil their feathers from their oil glands in order to secure them from rain; but he has seen many do so when the weather was overcast, and when there were indications of rain. It is said that the English robin is termed the naturalist's barometer; for on a summer's day, though the weather may be rainy and unsettled, he sometimes takes his stand on the topmost twig that looks up to the sky, or on a housetop, singing cheerfully and sweetly. When this is observed it is an unerring promise of succeeding fine days. Sometimes, though the atmosphere be dry and warm, he may be seen, melancholy, chirping, and brooding, in a bush or low hedge.
Bears, wolves, and other animals scent the coming rain. The wolves set up a terrible howling, and, raising their heads, point their noses in the direction in which it is coming, oftentimes twelve hours or more before it falls.
The large Gallapagos tortoise always searches for a place under cover, into which he may go twenty-four hours or more before the rain falls. At one of the islands of the African coast which I visited there was a large tortoise farm, where they were breeding these animals for food. On a bright, clear morning not a cloud could be seen, everything indicated a bright, warm, clear day. Nearly all the tortoises in the inclosure were heading in one direction, toward some overhanging rocks, where there was a pen. The proprietor informed me that rain would certainly fall during the day, and, sure enough, it came down in torrents in the afternoon. These animals, and I believe all the family, have a great antipathy to rain drops falling upon their carapaces. The expression of animals which show a pre-sensation of rainy weather may be explained, partly from the increasing weight of the atmosphere, partly from their manner of living, and partly from the want of moisture, which is necessary to their existence.
Man, in a sound state of health, is subjected, on the approach of stormy weather, to heaviness of body and mind, a want of capacity to perform his usual occupations, a yawning and relaxation, which are highly disagreeable. These are accompanied also with a sensation of heat. The high flight of birds, which hasten to the upper regions of the atmosphere, is because they are freer from vapors and more suited to them, and because the lower regions, being more loaded with vapors, afford them less pleasure than those above, also the insects which they pursue for food take then, perhaps, a higher flight.

At a meeting of the members of the French Academy, held at Paris in July, 1850, evidence was showr that during the prevalence of the cholera in France, in the district of the city of Paris where the disease was most prevalent, it was noticed that the horses became uneasy and were affected with the disease in a like manner with man, and that often, in the case of other epidemics, a common liability of men and horseshad been noticed. Horses surely have a reasoning power. They become attached to each other, especially to their keepers, if kindly treated and petted.
Here is a remarkable instance which occurred but a few months ago, showing the intelligence of the horse. Lieut. Robertson, of the Royal Engineers, was attacked by the Ghazi of Gullston, India. It appears that the former was riding and was joined by the Ghazi, who was on horseback. Both entered into friendly conversation and shortly afterward put their horses to a trial of speed, in which Lieut. Robertson outstripped
his rival, when the Ghazi, being a short distance behind, suddenly drew his tulwar and inflicted a severe gash on Lieut. Robertson's neck, and otherwise wounded his hand, which he had raised to ward off the Ghazi's attack. Lieut. Robertson was brought into Quetta, and taken to the station hospital, where he is at present being treated. The young Ghazi was arrested and identified by Robertson, and his guilt proved, was tried, and sentenced to be hanged and his body afterward burned. The sentence was carried nto effect at once.
It is stated that when Lieut. Robertson fell from his horse and was lying on the ground bleeding profusely, the faithful animal protected his master from further injury by kicking at the Ghazi and attempting to bite him. But for this remarkable behavior on the part of Lieut. Robertson's horse, it is supposed that the Ghazi would have probably hacked Lieut. Robertson to death.
There are many instances of cats, that had been made pets of, deserting the house at the time of sickness and death. One case came under our own observation, that of a full-blooded Maltese cat, who was great favorite of the lady of the house, and was fond of lying on a cushioned chair when she was reading or sewing. The lady was taken suddenly ill, and was removed to her room. On the day this took place, the cat left the house, and remained away for ten days. No one knew where she was hiding. During this time the lady died, and was buried. It was some days before the cat became reconciled to the absence of its mistress.
The great intelligence of the archer fish, Chelmo rostratus, is really wonderful! It swims near the banks of streams in search of prey. As soon as an insect is seen on the overhanging branch, he at once fills his mouth with water, and throws it out in a small stream with such great precision that he seldom misses the object, and it falls into the water and is instantly de voured. The Chinese keep these fish in con finement and amuse their friends by placing live insects on a bough over the water so that they may see the great intelligence of the fish.
The gouramie builds a nest for its young and will defend them with its life; is a remarkably intelligent fish. I have had them in confinement, and would frequently call them from their hiding places among the rocks in a large basin, and they would come and feed from my hands.
The stickleback of our own country is an intelligent and wonderful fish in many respects. They build a nest for their ova, and will not allow any other fish to come near it.
There is a species of the belone or gar fish called aiguille that deposits its spawn in a way, so far as I know, that is very singular and unique. It selects some floating body, to which it attaches the end of the long membrane in which the ova are enveloped, and then it winds off just as a person winds cotton thread round a spool or any other substance. I have seen several bodies thus coated, some of which had a length of fifteen or sixteen feet, in which the eggs, many thousands in number, about the sixteenth of an inch in diameter, were interspersed. This depositing the ova is effected by the fish leaping over and diving under the body on which it deposits its spawn. I have seen a common wine bottle completely covered with spawn floating on the ocean.
From what is here shown of birds and animals evincing a fear of the terrible disease the cholera, may it not be caused by something in the atmosphere that affects them the same asit affects man, and may not the great intelligence given them by their Creator who governs everything cause them to flee from malarial districts, and other places, which are injurious to them. Intelligence in animals I think one of the most wonderful gifts of the Creator.
There are many instances which we could record of higher degrees of intelligence that would be impossible to deny, that animals arrive at a knowledge of cause and effect.

The great steamships plying between Australia and England are provided with freezing machinery, by which mutton, frozen, is preserved and delivered in London in fine condition. Australian flowers preserved in ice are also carried to London. Recently at a special meeting of the committees of the National Chrysanthemum Society held in London, some frozen blooms of chrysanthemums sent from Sydney, New South Wales, were exhibited. Four large incurved and other Japan ese blooms, inclosed in great blocks of ice, 18 inches square and 8 inches deep, had been sent by Mr. R. Forsyth, of Sydney, a well known grower, and were a portion of the group with which he gained the silver cup of the Sydney Horticultural Society in April last. These fine examples of the perfection to which the British gardeners in Australia have brought the Chinese and Japanese flora were shipped to England on the P. and O. steamer Ballarat, and, after being stored at Messrs. Sweeting's and the Cold Storage Depot at Blackfriars, were sent to the Aquarium and Depot at Blackfr
there unpacked.

HEAVY WAGONS SHOWN AT THE FAIR

In the display of wagons for heavy work at the Exposition, the exhibit of the Chatham Manufactur ing Co. (Limited), ofChatham, Ontario, Canada, occupies a prominent position, and has attracted much attention. These wagons, though not so tawdrily got up as some, are among the best and most mechancally constructed of apy wagons shown for the hard cally constructed of any wagons shown for the hard usage such wagons get in actual service. The exhibit
consists of one "Chautauqua Giant" farm wagon
ing in there being used on both the peculiar style of arms or thimble skeins patented by Mr. D. R. Van Allen, the president of the company. This thimble skein or arm strengthens the axle through what was formerly its weakest portion, and practically does away with the old time breaking point of axles, also dispensing with the use of truss rods. The arm admits of the sand board and front axle and bolster and hind axle being combined, forming a complete and solid truss, the one reacting upon the other in such a way as to strengthen all the parts. By means of this improvement the wagons of the company adapted to carry the heaviest loads are yet so light that the gearings weigh only one-eighth of their carrying capacity, and the three by ten inch cast thimble skeins or arms have carried five to five and a half tons without straining. Another noticeable feature of this display is the Simpson patent malleable adjustable stake, used on wagons or farm trucks not intended for logging. These stakes on narrow track wagons are adjustable from thirty-eight to forty inches merely by slackening two nuts to a stake, admitting of very much stronger wagon bolsters, because there is no big mortise through the ends, and the iron plating on top of the bolsters runs from end to end. The upper box and seat of the complete wagon is quarter-sawed sycamore, and the lower box is quarter-sawed white oak.
A. W. GRAY'S SONS EXHIBIT OF "HORSE POWERS." The exhibit made by A. W. Gray's Sons, of Middletown Springs, Vt., at the World's Columbian Exposition is an especially fine one in a line in which manufacturers in this country have always held a leading position. It comprises horse power, grain thrashing and wood sawing machines, the horse powers being used for running a wide variety of machinery in wagon shops, bakeries, dairies, for pumping, grinding apples for cider, cutting feed for stock, operating grist mills, etc. The planks of the platform on which the horse walks, in the horse powers, are fas tened together on the under side by a steel gear, connected by steel rods, which serve as axles for rollers, moving with the platform, the gear meshing with pinions on a shaft from which power is furnished to the various kinds of machinery. The speed of the band wheel with horses walking ordinarily fast is ninety revolutions per minute. These horse powers with grain thrashing outfits may be conveniently moved from place to place to do thrashing on different farms as desired. Drag saws and machines for sawing logs, and circular saw machines, adapted for most convenient and efficient operation by these horse powers, have also been for many years a leading specialty with the firm, which was established over fifty years ago, the present proprietors having been brought up as boys in the shop. Besides having a practical familiarity with every part of the work, they have invented and perfected many of the devices in use in the machines. The illus-
trated catalogue which they send on application gives full detailed information of the construction and oper ation of the machines.

The United States Leads.

The United States is now the leading manufacturing country in the world. We have far outstripped all other nations in the magnitude of our industrial operations. It is almost incomprehensible that in ten years the increase in capital invested in manufactures should exceed the total invested only twenty years ago. The value of our manufactured products increased about

保

60 per cent; add 60 per cent to the output of 1890 and we 60 per cent; add 60 per cent to the output of 1890 and we
would have $\$ 12,700,000,000$ in $1900-$ but that is too much to expect. The samerate of growth in mining interests in this decade as in the last would make our mineral output in 1900 nearly $\$ 1,200,000,000$, while a smaller percentage of gain, only equaling in volume the total increase in 1890 over 1880, would bring the figures to over $\$ 950,000,000$. If our coal miners add to the output of 1890 as many tons as they added to that of 1889 , ignor will be the production of 1900 . No other country in

THE WORLD'S COLUMBIAN EXPOSITION-EXHIBIT OF HEAVY WAGONS OF THE CHATHAM MANUFACTURING COMPANY.

In a paper on the
them the cost of production and living must steadily increase. In the United States we have scarcely laid the foundation for our future greatness. In natural resources we are richer than all of Europe; we are paying off our debts faster than they are due, we have barely scratched the ground in the development of our mineral wealth, and our agricultural growth can scarcely be limited.-Engineering Magazine.

Manila Sugar.

 McPherson, and published in . A. Sugar Cane, it published in The canes of that country are very rich, and that with better appliances the product, which is now very poor, might be made equal to any in the world. Agriculture is carried on almost entirely on the metaye or share system, the owner of the land providing the implements, animals, machinery and seed, and the produce is divided between the owner and the laborer, and it is said that the latter rarely gets a fair share. The laborer is generally in debt to the landlord for advances and there is usually a balance against him at the end of the year. The landlord, however, also suffers in the same way, he working on borrowed capital, advanced by local capitalists.The cultivation of sugar is practically confined to four islands, Luson, Panay, Negros and Cebu, the first supplying what is known as Manila sugar, the second and third Ilo Ilo and the last Cebu sugar the world ever advanced in population and wealth according to the ports from which it is shipped. None as the United States is doing. The progress of the past of the sugar is of very high grade, owing to the absence shows no signs of halting. In fact, the development of high class machinery. Each district produces what of our foreign and domestic trade and commerce and is called dry and wet sugar, the former being divided of our industrial interests is steadily broadening out. Contrast our position and condition with Europe with resources surpassing those of all Europe, with wealth-creating possibilities in soil, minerals, timber, and climate unequaled by Europe, and practically without limit to their profitable utilization, with a homogeneous population of $65,000,000$ people unvexed by the arbitrary regulations of half a dozen different governments, and free from the drain of standing armies, the United States justly commands the wonder and admiration of the world.
Great Britain is no longer the manufacturing cention in therld, for we have taken the foremost posiyearly increasing in cost of production, while ours is yearly increasing in cost of production, while ours is

THE WORLD'S COLUMBIAN EXPOSITION-"HORSE POWERS," THRASHING MACHINES, ETC., SHOWN BY A. W. GRAY'S SONS, OF MIDDLETOWN SPRINGS, VT. into various grades. The Manila sugar is what is called clayed, which means that after the juice is boiled in open pans the mass is poured into an earthenware receptacle like an inverted cone and a thin layer of liquid mud is then put on top, the moisture of which gradually percolates through the mass, washing the molasses from the crystals and carrying the bulk of it through an aperture at the bottom into earthern jars below. After standing for some weeks or months, the sugar is ready for further manipulation on the dry grounds, which are entirely in the hands of the Chinese, who purchase the raw material from the planters. When they are opened the sugar is almost white at the top and gradually becomes darker toward the bottom; the white and dark sugars are mixed together in certain proportions according to the grade which is to be produced. It is then spread on mats to dry in the sun, for which one day is sufficient in dry, hot weather. When dried, it is packed in mat bags and is ready for shipment.

The Brown Wire Gun.
First Lieutenant G. N. Whistler, U. S. A., gives some interesting details in regard to the Brown segmental wirewound gun, over the tests of which, on August 25, at Sandy Hook, he presided. The muzzle velocity was 2,875 foot seconds. The muzzle velocity of 2,875 feet per second, Lieutenant Whistler says, shows a muzzle energy of 3,557 foot tons, or 856 foot tons per ton of gun. This is the highest record, he declares, ever obtained with any gun. The muzzle energy per pound of powder is 169 foot tons, according to Lieutenant Whistler, and which, he says, has never been exceeded so far as he knows in a 45 caliber gun under similar conditions of loading. The gun which was tested fired a projecilte weighing 62 pounds. The gun is a 5 inch weapon, 45 calibers long. This is 5 calibers longer than the most highpowered ordnance rifle now in use in the navy. Long calibers are unhandy, particularly at sea; but the increased
decreasing. It cannot meet the world's growing demand for iron and steel, because it cannot increase its
production to any great extent. It produces less pig production to any great extent. It produces less pig it imports from distant countries. Its cotton is all imported. It spends about $\$ 750,000,000$ a year for foreign foodstuffs. On the Continent every nation is burdened with debt, and none of them can hope to pay off its obligations. Measured by their natural resources and advantages for continued growth against their debts, and the many disadvantages under which they labor, they are practically bankrupt. In all of
calibers length insures a longer and more thorough burning of the powder, so that the chances of unignited grains of powder being thrown out are reduced to a minimum. The record of the Brown wire gun, so far, shows that the projectile fired with Leonard smokeless powder would penetrate 16.08 inches of wrought less p
iron.

In New York all the bonded warehouses are at present packed solid with foreign goods, waiting the improvement of the times, there being now comparatively little demand for such merchandise.

Some Egg Hatchings.

by c. н. BenNett.

Some years since, by way of recreation, I became interested in microscopy, and, having secured a suitable outfit, I decided to turn my attention along the line of entomology and kindred subjects. Having a wide-range battery of objectives, including several high powers, I was prepared to observe the minutest forms of organic life, and had soon trespassed (my work was so unsystematic and unscientific that I can but call it trespassing) on the field of insect oology. My ambitious watchfulness soon made me quite expert in gathering and mounting a variety of eggs, ranging in size from silkworms' to mosquitoes'. Each new acquisition yielded a rich harvest of delight, for my microscope revealed a diversity in size, form, color, and markings fully equal to those larger varieties we are accustomed to find in the nests of birds.
I had frequently noticed on the flanks and legs of horses that were not thoroughly groomed a profusion of bot fly (Astrus equi) eggs, and, awaiting the proper time (August), I picked from the legs of a patient nag a number of hairs each ornamented at the end with one of these minute yellowish specks, with a view of submitting them to microscopic examination as a means of satisfying my curiosity. No sooner had I focused my instrument on these almost invisible objects than they instantly developed into forms of most marvelous beauty.
So entirely unique were they, differing from anything that had previously come under my observation in every detail, that I at once determined to mount them for preservation. I therefore carefully folded them in a bit of paper and placed them in my pocket, where they remained a month before I found leisure to mount them. On removing them from the wrapper I once more placed them under the microscope, that it
might assure me they were just as I left them a month might
Convinced that they were in their normal condition, I then proceeded to arrange them in an orderly position before sealing them in their crystal tomb, and, to make it less tiresome for my eyes, I condensed the light of the lamp on the objects with an ordinary light of the
reading glass.

While thus manipulating them I was annoyed by a slight motion among the hairs to which the eggs were attached, and turned my breath away, under the impression that it was the cause of the disturbance. This, however, seemed to make no difference in the embryonic commotion, and for a moment I was thoroughly mystified.
Without waiting for further developments of a spiritualistic nature, I again appealed to my microscope to satisfy my curiosity. Placing the whole collection under a two-thirds objective, I was inexpressibly delighted to see fully one-fourth of the larvo in the very act of opening their shells. It instantly occurred to me that in using the reading glass in arranging the eggs I had not only condensed the light, but also the heat of the lamp sufficiently to produce the wonderful heat ot the lamp sufficiently to produce the wonde
result which my faithful microscope had revealed.
result which my faithful microscope had revealed.
It is needless to add that I lost no time in hermetically sealing the objects of my delight in the glass cells prepared for their reception, where all signs of life soon ceased; and, as a result of this simple accident, I have a slide showing part of the eggs unopened just as they were gathered, while othirs show the grub with his head and half his body protruding from the shell.
It may also be interesting to the young student of nature to know that the egg of the bot fly is not broken at all in hatching. The grub simply pushes a cap or lid from one end of his little cell and crawls
out. Indeed, the shells are so strong that I have found it quite impossible to crush them between thumb and finger.-The Outlook.

Animal Vocabularies.

A good deal has been said about the probable existence of definite vocabularies in the language of the lower animals, and I believe one has gone to Africa to study simian speech. This is all well enough, but there is no need of going beyond the barn yard to hear a definite animal vocabulary of a considerable number of words. Hear the rooster's warning cry when he sees or hears indications of danger. It is a definite sound, and perfectly understood by every hen and chick. Drop food to the mother hen. She quickly inspects it, and if approved, tells the little ones to eat, by uttering her well known "Coot, coot, coot!" If she decides that it is not fit to eat, she as plainly tells them to let it alone. The other day a green worm fell from a tree near a brood of chickens. Every chick ran to seize the morsel. The mother gave one quick glance at the insect and said, "Skr-r-r-p!" Every chick stopped
instantly. But one willful child, loth to believe his instantly. But one willful child, loth to believe his
mother's assurance that it wasn't fit to eat, would make him sick, etc., started a second time, to pick up the worm. "Skr-r-r-p!" commanded the hen sharply. Even the willful child obeyed this time, and the whole brood walked off contentedly. Discuss as we will the particular reason for the hen's cackle before and after
laying, the fact remains that it is a definite utterance,
as plainly understood by both gallinæ and homines as any expression in human speech.
My horse has a low whinny which means "water," and a higher-keyed, more emphatic neigh means food. When I hear these sounds I know as definitely what she means as if she spoke in English. This morning, passing along the street, I heard that same low whinny and, looking up, saw a strange horse regarding me with a pleading look. I knew he was suffering from thirst, and no language could make it plainer.
The language of the lower animals is not all articulate. It is largely a sign language. The horse does a deal of talking by motions of the head and by his wonderfully expressive looks. He also, upon occasion, talks with the other extremity. A peculiar switch of the tail and a gesture, as if threatening to kick, are equine forms of speech. The darky was not far wrong who said the kicking mule, "It's just his way of talking!"
The dog can not only "look volumes," but can ex press whole sentences by wags of the tail more readily than can the waving flags of the signal corps. All that is necessary is to learn his code. We expect our domestic animals to learn our language, and punish them cruelly if they fail to both understand and obey our commands; yet, notwithstanding our higher intelligence, we fail to learn their language, by means of which we might better understand their wants and dispositions, and thus control them by kindness and sympathy, instead of by harsh and arbitrary treatment. I see horses passing along the street, which are saying by every look and motion that they are suffering acute torture from a too short check rein. Their drivers are often people who would be shocked if they could comprehend their own cruelty. But they do not understand horse language, and some of them do not seem to have horse sense.
The language of animals is a neglected subject. The facilities for its study are within the reach of all, and no previous preparation is required. The study can be pursued without interfering with other occupations,
and even a little systematic observation will bring large returns in both pleasure and profit.-Charles B. Palmer, in Science.

How to Preserve Cut Flowers

In the hot, dry days of summer one often finds the flowers in vases, although freshly gathered, in a droop ing condition, the result, it may be, of plucking them at the wrong hour, or of improper attention afterward. They who would keep their bouquets bright and vivid throughout the day should rise betimes, for there is no freshener like the dew of the morning, whether for blossom or complexion. Poppies, fleeting and frail, if plucked before the sun has dried the dewdrop at their hearts, and quickly placed in water, will last sometimes for two days without falling, and the same is true of other tender garden flowers. Should the basket of cut flowers show signs of drooping, dip the bunch head downward into the water and give it a gentle shake. This is very efficacious in reviving flowering shrubs brought from a distance, when they become wilted before reaching home.
The Japanese have made a special study of this branch of the art of flower arrangement, and have special rules for different plants. If the wistaria is to be used in decoration, its cut stem is burned and then immersed in spirits. The hydrangea and the lespedeza should also have the cut ends burnt to charcoal before immersing in water. All flowers which suck up water with difficulty are improved in vitality by treating the ends of their stems with fire or hot water. Land plants derive benefit from burning, but water plants require boiling water.
When the Japanese use the bamboo in decoration, which is their frequent custom, they cut it at a very early hour, four in the morning, and remove the bottom division or knot, leaving the upper division untouched. They then fill the tube with fifty-eight grains of cloves stewed in hot water and seal up the bottom. It is then laid horizontally until the liquor inclosed is cool, after which it is ready for use. When the colored maple is employed, the leaves are immersed in water for an hour before using. The very dark red ones are particularly hard to preserve, but the lighter ones are more enduring. The willow has its cut stems spliced off and then bound up with a drug they call senkin, the branch afterward being left in water overnight.
The morning glory, of which the Japanese make foat use, is carefully cut in the evening after the gently wrapped in soft paper by their dexterous fingers, and this is not removed until the following morning, when the arrangement is made. Begonia Evansiana should be cut in the early morning, the buds removed with a sharp knife, and the whole immersed in water before arranging. Monochoria vaginalis, when cut,
should have about one inch of the end immersed in should have about one inch of the end immersed in dipped deeply in cold water, after which it is ready. The same treatment is applied to Senecio Kaempferi
The prickly poppy (Argemone Mexicana) is treated
paper at a point five or six inches above the cut end. This end should then be burnt with a flame, after which the paper is removed, and the flower is ready to use. The yellow water lily (Nuphar Japonicum) should be selected from a shallow spot, and cut during the heat of the day. A liquid composed of cloves boiled in tea should then be blown into the cut stem, and thus the vitality of the flower is pralonged. Whether this treatment is also desirable for the white pond lily, Mr. Conder, who is my authority for Japanese practices, does not state, but it would be worth while to experiment, if thereby this lovely flower could be longer retained in perfection.
The great Japanese irises, if cut while in bud, will open freely in water, and last longer than if allowed to open out of doors, where the sun promptly wilts their beautiful blossoms and curls the tender petals almost before they have expanded. Nasturtiums, too, suffer from being gathered while the sunlight is hot upon them, but in the early morning, with the dew still damp upon their leaves, they can be found nestling in the shadow with half-open heads just in the right condition for our vases. The fragile heliotrope plucked at this hour will retain its freshness, whereas if culled when the sun lies fierce upon it, it will droop and turn black in the shadiest parlor.
Flowers and plants wilt because water is transpired by leaves and petals more rapidly than it is taken up through the stem. On a dry, hot day leaves and flowers often wilt on the plant. Even when not actually wilted they may contain barely moisture enough to hold them in shape, and when cut under these circumstances they wither at once unless they are put into water instantly, when they will often become more plump than they were before cutting. The stems of plants when cut begin immediately to change structure, and form a callus at the wound, which interferes with the absorption of flưids. It is advisable, therefore, to cut the stems off a second time while under water, so that all the channels through which water rises may be without any obstruction. As there aremany substances besides water in the juice of plants, some of these odd Japanese practices may have some value. At least, they are worth trying.-M. C. Robbins, value. At least, they are
in Garden and Forest.

Tempering Mainsprings.

For some time past an Illinois concern has been engaged in a series of experiments in tempering mainsprings with a view of reducing the defects in their manufacture to a minimum. As the result of these experiments, a new process has been devised which is said to make these small springs almost perfect. Thin sheet steel rolled to a suitable thickness for the manufacture of the desired spring is split into ribbons, considerably wider than the finished spring. They are then carefully and solidly wound on arbors against a face plate, so that they resemble solid disks. The face plates are then placed upon a lathe and the edges of the spring ground until all cracks, no matter how minute, have been removed, leaving the wound ribbon a perfectly smooth and polished disk of metal. The other side is treated in the same way, and the result is a ribbon of thin steel perfectly solid on its edges and the same thickness throughout.
As the thickness of a mainspring is between 0.008 and 0.009 of an inch, the degree of heat at which this bit of steel will take a proper temper is a fine point. To secure the even temperature required, a clever electrical apparatus has been invented. A vertical tube, thoroughly packed by asbestos to prevent its being affected by the outer air, is heated by means of an electric current, which is governed by a rheostat to regulate the temperature. An opening at the top of this tube is just large enough to admit the steel to be tempered. At the lower end of the heating tube is placed the chilling bath, which is supplied with oil from a pipe, the flow being steady and even. By an ngenious arrangement, the oil is fed to the bath on both sides of the moving ribbon of steel at the same time, thus subjecting every part of the wire to a uniform chilling temperature.
The metal passes through the heating tube into the chilling bath without exposure to the air, the intervening space between the tube and the chilling medium being covered by a second tube with an air-tight connection, which forms a muffle. In this way there is secured a ribbon of steel without cracks on its edges or scales on its surface, perfectly even and straight and of uniform temper. As the wire is heated by radiation and has no opportunity to become oxidized, "pitting" is altogether prevented. Experts speak highly of this new process, and it would seem as if the days of the perfect watch spring were near at hand.-Bos. Jour. Com.

Old Spruce for Violins.-The ancient Hammond house in Marblehead, Mass., is being torn down, and some of its spruce timbers, which have been protected from rain and wind for more than 200 years, are being eagerly sought after by violin makers for use in the eagerly sought after by violin ma
manufacture of their instruments.

RECENTLY PATENTED INVENTIONS. Steam Boiler.-Philip J. and Fred. W. Doll, La Salle, III. This is an upright tubular boiler, with tubes leading from the fire box in the lower part of water line. The smoke box is shaped like the frustum of a cone, and supports a conoidal bonnet of cast iron,
which does not radiate much heat and mat be easily rewhich does not radiate much heat and may be easily removed when burred out, the emoke box proper being
mon
protected by the wate and the products of combution protected by the water, and the products of combustion
therein assisting to generate steam. The boiler is detherein assisting to generate steam. The boiler is de-
signed to be inexpensive, extremely durable, and very fective.
Furnace Door.-Charles W. Reneau, Meridian, Miss. The door opening, according to this in vention, has a lining provided with transverse ribs on its sides, whereby air spaces are formed between the
sides and the wall of the opening, and the door itself has an air inlet and an air space opening into the air spaces vering the interio opening of the iling. . hee siases and enas of the dor
lining are made separate, to facilitate replacing any of the sections as
Motor.-Frank W. Clark, Mount Desert, Me. A vertical shaft connected with the machinery engaged by a shaft provided with a weighted arm and adapted to swing, the upper end of the latter shaft being journaled in a swinging lever and pressed upon by
springe. The device is designed to uniformly transmit motive power, through a continuous rotary motion, from
Valve.-Thomas P. Ford, Brooklyn, N. Y. This is an improvement on a former patented in
vention of the same inventor, providing a valve of sim ple construction which workè automatically to introduce lubricant when the pump is running. The invention compries a valve carrying a piston controlled by fluid
pressure, and a lubricator having a valve controlled by pressure, and a lubricapr having a valve controiled by
the piston, so that when the valve is seated the lubrica
tor itshut off tor isshut off, and when t.
cator feeds the lubricant.

Electrical.

Conduit for Buildings.-James J. Powers and Robert Van Buren, Brooklyn, N. Y. This is wall, floor, or ceiling, and is of built-up sections, each having apertures to receive wires, collars around the apertures at one end of a section being received in re-
cesses at the opposite end of each section. The condui may be placed in a building and the wire omitted for any portion for laying along with the brick in a wall, and left unglazea on the exterior, with a rough surface t
ladaptit to receive and hold mortar. The construction admits of readily changing the wiring when necessary.
Electric Belt.-Adolf' Stephenson and Jonas Backstrom, Stromsburg, Neb. This is a belt to be worr on the person for remedial purposes, and is
formed of elastic webbing, with a lining of flannel, provided with a series of studs or buttons of copper and zinc, the metals alternating with each other, and the larger portions of the buttons being in contact between
the flannel linings and the elastic webbing. The shoulder straps connected with the belt are also provided with contact with the skin when the belt is worn, and there being electrical connections to complete the circuit.

Miscellaneous.

Treating Refractory Ores.Charles J. Fauvel, London, England. This is a metho idize and eliminate the associated sulphur, arsenic, antimony, and tellurium compounds, by subjecting the
crushedore in afine, free-faling stream to increasing de crushedore in a fine, free-falling stream to increasing de grees of radiant heat and a reversely flowing current of
hot air and steam, out of reach of contamination wit the furnace gases, the particles of incandescent ore bein then quenched in cold water to split up the particles, re move scala, and generate steam to assist the oxidizing
and desulphurizing action of the air. The improved process is preferably carried out by mean
formerly patented by the same inventor
Making Sulphuric Acid.-Francis B Hacker, Charreston, S. C., and Peter S. Giichrist, Bati more, Md. A sulphuric acid apparatus is provided by hisi invention with improved connections between the
several lead chambers, the lead chambers and the Glove tower and between the chambers and the Gay Lussac
twer, to reduce the usual chamber space and cost of plant, increase the quantity of acid, carry off sive heat caused by the mixing of the gases, and provide
for the quick and thorough mingling of the gas molecules for the quick and thorough mingling of
as they pass from chamber to chamber.
Shutter Worker.-Thomas N. LupTon, Winchester, Va. This invention provides a simple
and compact construction whereby the shatter may be opened or closed from within the room, and locked and unlocked in both its open and closed position
without requiring the window to be opened extending through the window frame and provided extending through the window frame, and provided with
a handle within the room, has a connection with the a hande within the room, has a connection with the
hinge of the shutter involving a novel construction and combination of parts, whereby the shaft may be easily
torned to torned to open or close the shatter. The construction is
such that the shutter may be easily lifted off when

Wood Tile Flooring.-Antonio Salvatico, Garessio, Italy. The tile, according to this im
provement, is preferably of wood, and may be of any desired shape or thickness, the tiles being laid close to one another at their upper faces, and tongued and grooved on their edges, and also grooved or channeled on their lower faces in such manner as to receive a ce--
ment or glue to hold the blocks firmly on any bed prepared to receive them, the engagement between the
tiles and their support being such that the floor will be proctically soundless.

Clothes Pounder. - Samuel and Frederick G. Davis, Las Vegas, New Mexico. This i
device having a circular apertured, bell-shaped bod not to be used as a pounder, but to be alternately pressed down upon and raised from the clothes, forcing and drawing the water through them, the action being facili-
tated by the arrangement of the air chamber and holes tated by the arrangement of the air chamber and holes,
so that a brisk circulation is kept up as long as the dethat a brisk circulation is kept up as long as the de-
ice is operated, thus washing or rinsing the clothes ithoutinjuringthem
Oven Door.-Walter R. Webster and ames Hamilton, Pine Grove, Cal. This is a door with It is so made that the edge of the glass will be kept comparatively cool, and the whole body of the glass will be evenly heated, and thusprevent breaking. With this view non-conducting flexible packing, in such manner as to dav for itsexpansion and contraction, while a free circulation of air if provided for around the edges of the $\substack{\text { class, w } \\ \text { glat. } \\ \text { metal. }}$

Reed Puff for Furniture.-Charles Sush, Newburg, N. Y. A strong, durable, and inexpensive ornament for furniture is provided by this inven-
tion. It is a reed puff fabric made by clamping a series of reeds around a former to bend them into proper shape, and while the reeds are so clamped beveling their inner faces at the ends, finally flexibly connecting the beveled ends of the series. The construction is such that a piece
of the fabric of suitable length may be made to inclose a dor other part of a piece of furniture and form an
Holder For CuFFs, etc.-Richard Katzer, Brooklyn, N. Y. This is a compact case of dutravelers for mone especially designed for the use of travelers, for conveniently holding cuffs, collars,
scarf, neckties, handerchiefs, etc. supported on its sarfe, necties, handerchiefs, etc. Supported on its
folding or bellows sides is a series of longitudinal partitions forming separate compartments for the articles to be stored, which are thus kept in a flat condition, room being provided for a larg
Bicycle.-George F. Case, Medina, N. Y. A spring-cushioned connection between the frame of the machine and the driving wheel is provided by this
vention, to render the riding more comfortable over ough road, while the driving wheel is held at all times in proper
Nore.-Copies of any of the above patents will be send name of the patentee, title of invention, and date send name of
of this paper.

SCIENTIFIC AMERICAN

BUILDINGEDITION.

SEPTEMBER, 1893.-(No. 95.)

TABLE OF CONTENTS.

. Elegant plate in colors, showing a residence at Greenwich, Conn., erected for Miss E. L. Kirtland. Floor design. Mr. W. S. Knowles, architect, New York Plate in colors showing the Queen Anne residence of W. H. McKnight, at Springfield, Mass., erected
at a cost of $\$ 11,500$ complete. Perspective views and floor plans. An attractive design.
Perspective view and floor plans sign. Cost $\$ 3,476$ complete. Mr. H. G. Ten
Eyck, architect, Newark, N. J. cottage erected at Bridgeport, Conn., at a cost o $\$ 2,775$ complete. Floor plans, perspective view,
etc. Mr. A. M. Jenks, architect, Brooklyn, N. Y. An excellent design.
5. Engraving and floor plans of a Queen Anne dwelling recently erected for W. Q. Taylor, Esq., near
Boston, Mass. Samuel J. Brown, architect, Bos Boston,
ton, Mass.
cottage at Allston, Mass., erected at a cost of $\$ 2,500$. Floor plans and perspective view. A pleasing de-
sign. Mr. A. W. Pease, architect, Boston, Mass loor plans and perspective elevation of a cottage a Allston, Mass., costing about $\$ 2,000$. Mr. A. W
Pease, architect, New York. . A tasteful design for a smithy or blacksmith shop 9. Illustration of a new English
0. View of an Italian courtyard.

1. The Fifth Avenue Theater, New York. View showing a section of the proscenium arch and a portion of the family circle, also an engraving of the old Fifth Avenue Theater, burned in 1891.
2. Miscellaneous contents: Wood pavements.-Lead
as a coating for iron and other metals.-White in as a coating for iron and other metals.-White in
house painting. - Ontario metallic paint.-Deadening floors.-Tropical roofs.-Purification of air.Seasoning stone.-Stone under the microscope.-
Housekeepers should remember. - The Climax covering.-Litharge cement. - Tower supported tavering, illustrated.-Larsen's improved refrigerator ander
illustrated.-The New York Aquarium.-Adjust-
able States pitch pine industry.-The Cook paten levels, illustrated.
heaters, illustrated.
The Scientific American Architects and Builder Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages; forming, practically, a large and splendid Magazine of ArchitecTURE, richly adorned with elegant plates in colors and
with fine engravings, illustrating the most interesting with fine engravings, illustrating the most interesting
examples of Modern Architectural Construction and allied subjects.
The Fullness,
The Fullness, Richness, Cheapness, and Convenienc of this work have won for it the Largerst Circulation
of any Architectural Publication in the world. Sold by of any Architectural Publication in the world. Sold by
all newsdealers. MUNN \& CO

361 Broadway, New York
ßBusiness and Wersonal.

The charge for Insertion under this head is One Dolar a line

Tir eanents musthion; be rececived at pubicication office as earli a

Order pattern letters \& figures from the largest varie "U. S." metal polish. Indianapolis. Samples free. "U. S." metal polish. Indianapolis. Samples free.
Improved iron planers. W. A. Wilson, Rochester, N.Y. Improved iron planers. W. A. Wilson, Rochester, N.Y.
For stone quarry engines. J. S. Mundy, Newark, N. J. Shingle machinery. Trevor Mfg. Co., Lockport, N. I Microbe Killer Water Filter, McConnell Filter C_{0} Steam Disinfectors
on St., Boston, Mass Steam Hammers, lmproved Hydraulic Jacks, and Tu
Expanders. R. Dudgeon. 24 Columbia St., New York. Screw machines, milling machines, and drill presses,
The Garvin Mach. Co., Lairht and Canal Sts.. New York The Garvin Mach. Co., Laight and Canal Sts., New York Centrifugal Pumps. Capacity, 100 to 40,000 gals. per
minute All sizes in stock. Irvin Van Wie, Emerson, Smith \& Co., Ltd., Beaver Falls, Pa., will
send Sawyer's Hand Book on Circulars and Band Saws free to any address.
Guild \& Garrison, Brooklyn, N. Y., manufacture stea pumps, vacuum pumps, vacuum app
acid blowers, filter press pumps, etc.
The best book for electricians and beginners in elec tricity is "Experimental Science", by Geo. M. Hopkins
By mail, $\$ 4$; Munn \& Co., publishers, 661 Broadway, N. Y.
For the original Bogardus Universal Eccentric Mill Foot and Power Presses, Drills, Shears, etc., address
J.S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y.

Patent Electric Vise. What is claimed, is time saving. No turning cf handle to bring jaws to the work, simply
one sliding movement. Capital Mach. Tool Co., Auburn one slid
$\mathrm{N} . \mathrm{Y}$.
Competent persons who desire agencies for a new popular bcok. of ready sale, with handsome proft, may
apply to Munn \& Co., Scientific American office. 361 Broadway, New York.
(Fiz'Send for new and complete catalogue of Scientif and other Books for sale by Munn \& Co., 361 Broadwa
New York. Free on application.

Hidustampris

HINTS TO CORRESPONDENTS.

(5355) P. J. L. writes: I am making an instrument in which I wish to use a magnetic force of
some distance attraction. It is desirable to have this attractive force of as even. draught as possible. I find that
and by removing the core from a magnet (coil) I have a mag netic force exerted upon a piston head of softiron work ing through this core thole which observes the center whether I con increase this force by unse of a hollow ire whether I can increase this force by use of a hollow iro
core, and how this core should be mades Should it be complete cylinder or be slotted or severed in the side Should it have head on closed end? A. In Thomson' "Electromagnet" you will find the subject of obtaining a long range for a magnet discussed. In general term use a long magnet core. The easiest way is to employ equalizing levers or cams. We can supply the book
small edition, $\$ 1$; last edition, enlarged, $\$ 6$ by mail.
(5356) B. C. W. says : I have an amount of steel fittings that I have to braze with brass spelter and I have great difficulty in cleaning the borax off after ward, that I use as flux, as the work is of an awkward kind to get at. Is there any other kind of flux that can he borax is thy way? There is nothing so the borax in any way? A. There is nothing so good as
borax for brazing. The borax can readily be dissolved and removed by boiling the articles in sulphuric aci pickle, 1 part acid, 4 parts water, in a copper pan for a few minutes, then wash with clean hot water and dip in
hot soda or lime water to keep the articles from rusting
(5357) H. C. L. asks : 1. I have heard at there is a new metal which other. What is it called? How much would 36 inches expand to a degree of heat? A. Zinc is the best accessible metal for expansion by heat. A bar 36 inches long will expand 0.0006 inch per degree. 2 . What is the price of lithium per pound? A. $\$ 1$ per grain, or $\$ 7,000$ per hund. 3. What is the rule to find the fifth root of better to do it by logarithms.
(5358) Deutsche Continental - Gas-Gesellschaft in Dessau write: Please tell us in Notes and Queries of your valuable paper the relation between the
B. T. U. of heat and the calorie as being in general use in this country. We learn from an article in your contemporary, American Gas Light Journal, that the Pittsburg gas has a heating power of 4343 B . T. U. of heat per cubic foot. Now, what we want to know is, how
much is that in calories per cubic meter? Is it that the B. T. U. of heat means the quantity of heat peeded to raise the temperature of one pound avoirdupois of water 1° Fah.? Also the relations between the electrical units
used in the United States and our ohm, kilowatt, farad and others? A. The calorie in terms of the Briti and others $\%$ A. The calorie in terms of the British
onits is 1.8° Fah. and 22^{2} pounds water, or a ratio of 1 to

1:222. Then a cubic meter belng $35 \cdot 31$ cubic feet multi
plied by $434 \cdot 3$ B. T plied by $434 \cdot 3 \mathrm{~B}$. T. U. per cube foot $=\frac{1}{1 \cdot 222}=12136$ alories per cubic meter. The B. T. unit being 1 pound of water raised 1°
or all countries.
(5359) W. S. W. asks (1) if there is such thing as vegetable ivory. A. Vegetable ivory is part of nut; the nuts are a regular article of importation. 2 .
What can be used to dissolve it ? A. It cannot be dis(5360) H. W. D. writes : Will you please nform me in your Notes and Queries the candle power
of the light used in the largest of the search lights on the Manufactures and Liberal Arts building at the World's A. The large search (5361) B. \& H. ask: Will you kindly nform us through the columns of the Scientific Amerian how paper is made that the atmosphere will cause it to change color ? A. Saturate paper with a solution
of cobalt chloride. The color will change with the hange of moisture in the air.
(5362) S. G. S. writes: 1. Please tell me what makes my well pump squeak and howl so. I top of connecting pipe, instead of a pump standard. It top of connecting pipe, instead of a pump standard. It
is attached to a windmill, and in spite of all I can do it howls whenever itmoves. I thought it was in the stuffing box, but I at last located it in the cylinder. The rod that connects plunger of pump and mill is perfectly
straight and no crooks in side of pipe. It has been told straight and no crooks in side of pipe. It has been told me that the brass being sonorous caused this noise in
ome kinds of water. A. The squealing of deep well pumps is generally due to the pressure of the cupped ather packing against the sides of the cylinder and posod also adds to the motion to the piston. 2. Can a $21 / 2$ inch cylinder draw ater 1,500 feet through a 1 inch pipe when the rise is nly 15 feet? A. The $21 / 2$ inch pump cylinder should
raw the water through 1,500 feet of 1 inch pipe if well charged with water to start with. No more than $31 / 2 \mathrm{gal}$ lons per minute can be drawn through it, from the increased head due to friction. We recommend a larger
pipe, $11 / 4$ or $11 / 2$ inch. 3. I have a range boiler back of my stove, and the tank that supplies said boiler is only bout 5 feet above the top of boiler, and an air trap has
ormed somewhere, so at times I get no hot water in bath room. The pipes are air tight. How does this air get in and how can I get it out? How high should my supply tank be above the boiler in order to have pressure enough to overcome the air trap? A. The air in the boiler is
liberated from the incoming fresh water by heat and probably accumulates in a siphon leading to the bath tub. The tank is too low and does not give pressure enough to vercome the air trap. No details of the run of the pipe being given, we cannot decide as to proper height of tank
to overcome the air trap. 4. Where can I get suitable to overcome the air trap. 4. Where can I get suitable
tables or books to give me the amount of friction of water in the pipes? A. Haswell's "Engineer's Pocket Book" gives detail.
$\$ 4$ mailed.
(5363) J. G. H. writes : I have a launch, hull 22 feet over all, 19 feet l. w. l., 4 feet 10 inches beam, and about 18 inches draught. I wish to fit her What forse and would like to know the following: her, and what speed do you suppose I will get with the orse powimpe side valve and also should be the size of ngine, simple silide valve, and slide value steeple com did not know what horse power would be required Also would you recommend one of the boilers meftioned in Supplement, No. 702, which one, and how much larger it would have to be made to get the horse power
required? Also the diameter and pitch of propeller for his rize. Also the diameter and pitch of propelar Also about the weight of the boiler recommended, and about what would be the extreme weight allowable fo mane of galvanized sheet iron, would ask if the hull will affect the compass ? If so, how can I remedy the same ? A. For power you will need 4 indicated horse power with steam at 100 pounds pressure to make 8 miles per hour Single cylinder, $3 \frac{1}{4}$ inches diameter, 4 inches stroke, making 320 revolutions per minute, propeller 20 inche diameter, set as low as possible or just under water at ight load. Pitch of propeller 30 inches, 3 blade. We do not recommend a compound engine for sc small a boat.
It is too complicated for comfort. The 4×4 will be a good engine, if it is light and compact. It will give the equired power with less pressure than 100 pounds. The if m ers in Scientific American Supplement, No. submede large enough, would occupy too much room. nches high vertical tube boiler, 22 incnes diameter, about 330 pounds, which with the engine and water in boiler will bring the weight up to about 650 pounds. The iron hull and machinery will deviate the compass to a
considerable extent, which will be counteracted by setting the compass within an iron ring.
(5364) Conductor, Galveston, writes Will you kindly give a receipt for making a dip for re ewing unirm brass butcons hal have become tar nished? A. Remove all traces of lacquer and dirt from water and dip in strong nitric acid for from 3 to 6 seconds and immediately dip in boiling hot water, dry and lacque while hot with thin shellac varnish.
(5365) W.: G. R. asks: What horse power boiler will be required to heat a house 45×38 and
1118×30, two stories high, and tworo Also amount of steam pressure. How do you compute the above? Is there any way of maintaining a pressure on water pipes so as to have running water in second story without having a supply tank overhead? If so, eet high and Assuming that your ceilings average wl need a 5 horse power boiler having a fire heating surface the house to contain 50,000 cubic feet of space, which requires one square foot of radisting surface in rooms requires one square foot of radiating surface in rooms
to exposure and situation of rooms. This will make 500
square feet of pipe surface, and the boiler should have square feet of pipe surface, and the biller shigus surface,
one-eighth of the radiating surface in its heating sur or 62 square feet. It is safe to make it 75 square feet.
Pressureln water pipe can only be maintained from an Pressure In water pipe can only be maintained from
overhead tank or the continued action of a pump.

TO INVENTORS.
An experience of forty-four years, and the preparation
of more than one hundred thousand applications for pa-
temts at home and abroad, enable a sto andersan the laws and practice on bott' continents, and to possess unequaled racilities or por procuring patents everywhere. A
soropsis of the the United States and all
foreign countries may be had on application, and persons contemplating the securing of patents, either at homeo or
abroan, are ivvited to write to this offree for prices
which are low in accorance with the times and our ex-
 may, New York.

INDEX OF INVENTIONS

For which Letters Patent of the

September 5, 1893,
AND EACH BEARING THAT DATE.

Can. See Measuring can.
Can bottome, W.C. Winineld.
Can opener, E. Wiliams.:
Car brake, Anderson \&aug

thereto, , L. Ludloff.................................

Coal or ore bins, discharge apparatus for, \mathbf{k}.. \mathbf{W}.
Ericson

 Cultice.... w. H: Traphä.......
 Finger or toe nail cutter.
Cutting-ofand formin tooi, G. Witherell.......
Cycle whel, A. ©. Brown

 . 50

 5

IMPROVED ITHFC MODERN

SPECIAL NOTICE!

A New and Valuable Book.

2,500 Receipts. 708 Pages. Price $\$ 5$. This splendid work containg a careful compilation
 Over Twelve Th ousand selected Receipts are
here collected iveariy nearly branch of the suenil arts
being represente. II is by far the most compehensive eing represented. It is by far the most comprehensive
olume of the kind ever placed before the public. The work may be regarded as the product of the stud-
ies and practical ex perience of the ablest chemists and
workers in all parts of the world; the information given vinnof the highest value, arranged the and condensed in
concise form convenient for ready use. Almost every inquiry that can be thought of. relating
to formulz used in the rarious manufacturing indus-
tries, will here be found answered. Instructions for working many different processes in
the arts are given. Those who are engaged in any branch of industry
probably will and inthis book nuch taat is of practical
value in their respective callings. Those who are in search of independent business or
employment, erelating to the home manumacture of sam-
ple artices, will find in it hundreds of most excellent
suggestions.

MUNN \& CO., Publishers Sircula
SCIENTIFIC AMERICAN OFFICE,
361 Broadway, New York.

0 HIO STATE UNIVERSITY, columbus, Fouryear courses in Civil, Mining, Mechanical and Electrical Engineering and in Industrial Art. Each

$\underset{\text { Gas }}{\substack{\text { Gas } \\ \hline}}$

Gorards. device for compound engines. in. C :
Governiong gas, steam, or other motive power en-

 The distribution of your power is as important as its application. I know a good
deal about the economical distribution of powdeal about the economical distribution of pow-
er. Perhaps I could give you a few pointers. Inquiries answered free, catalogues sent free. Catalopues: A, woodworking mach'y; B, mach'y for
brass, ivory, horn, etc.; C \mathbf{c}, shaft'g, pulleys, hangers, etc. P. PRYIBIL, $488-500 \mathrm{~W} .41 \mathrm{st}$ St., NEW YORK.
VANDUZEN STEAM PUMP THE BEST IN.THE WORLD.
Pumps Any Kind of Liquid
Always in Order, never Clogs not Aumays in Order, never Clogs nor
ireezes. Every prmp nuaranteed. 110 SIZEES.
200 to 1200 Gallons per
Cost $\$ 7$ to $\$ 75$ each. Addros. Cost 8 to 75 each. Addross
THE VANDUZN \& TIFT CO.,

Catalogues Wanted, Messrg, Segrove \& Lord, Me

 WM. GRAVER TANK WORKS,
 Manofacturers of Iron and Steel STORAGE TANKS. 3d Floor, Rookery Bldg
CHICAGo, ILL. TCE-HOUSE AND COLD ROOM.-BY

 CATES ROCK \& ORE BREAKER最

 GATES IRON WORKS,

The Griffin Milis
 A perfect pulverizer of all refractory substances by either

 the wet or dry process. It works better and at less expense than any other Mill, and is conceded to be the only perfect pulverizing Mill manufactured.For FREE Illustrated Pamphlet address
bradley fertilizer co., 92 STATE ST, BOSTON. SCI
MEN
AME
AM

xAstronomical Telescopes Photographic Lenses, etc
Manufan $\underset{\text { Send } \mathrm{f}}{\mathbf{\text { Ba }}} \underset{\text { Ma }}{\text { M }}$

THE ARMSTRONG MACHINES,
 our Stocks and Dies. Which ares niavarines as ackuon as edged to me THE BEST. tF' Send for catalogue.
THE ARMSTRONG MFC. CO., Bridgeport, Ct.

$\$ 10.00$ to $\$ 50.00$

Perfect Newspaper File

"ECONOMY IS WEALTH." Agents wanted to sell the Im-
proved bandrd Typewriter
The only standard machin mad for a reasonabale price. Prints al
languages. Interchangeable type.
Addrean
 THE PEARY EXPEDITION: AN IN teresting narrative of-With 8 illustrations. Contained
in SIIENTFIC AMERICAAN SUPPLEMET. No. 882.
Price 10 cents. To be had at this office and from all
newsdealers.

I N IDEAL STUB PEN-Esterbrook's Jackson Stub, No. 442 I A specially EASY WRITER, a QOOD INK HOLDER and a DELIGHT to $\mathbf{\$ 1 . 0 0}$ per gross. THE ESTERBROOK STEEL PEN CO., 26 John St., New York.

INOVF RREADY!
Fourteenth Edition of Experimental Science

revised and enlarged.
120 Pages and 110 Superb Cuts added.
The unprecedented sale of this work shows conclu-
sively that it is the the book of the age for teachers, stuents. expermenters, and all others who desire a general
now iedge of Physics or Natural Philosophy.

 tiffc readers, 82 fine cuts, substantially and beautifully
840 pages
bound. Price in clot h, by mail, \$4. Half morocco, $\$ 5$.

MUNN \& CO., Publishers Office of the SCIENTIFIC AMERICAN,

PUBLIC WORKS DEPARTMENT, CAIRO, EGYPT.

 ire the laving of the line and branches indicated in
Art. . of the Act of Concession.
Offers will therefore be received at this Ministry up to noon on the 1st February 1899.
Pensonst endering forthention of these linges
must indicate the width, the dimensions, and all other muspositions of the line and the romening stock, as an well as
dise amount of annual compensation to be paid to G overnment.
The fare per maximum trip (given in Art. 13 of the
the of Concession) to be charged is also to be stated in Copies of the Act of Concession will be forwarded to
those who apply for them by letter, addressed to the
Minister of Public Works.
 WR SALE: SECOND HAND DYNAMOS SMOTORS

MABE EAMES LEFFEL \& CO ${ }_{\text {S }}$,

 WHEELSIf you want the best CHUCKS, buy Westcott's

Combination Lathe Chucks, Patlain Chucks, Geared

STEEL TYPE FOR TYPEWRITERS

Biccicicizes

วోDertisements．
ORDINARY RATES． Inside Page，each insertion，－ 95 cents a line
Back Page，each insertion，－$\$ 1.00$ a line Back Page，each inser
Riv For some classes of
Higher rates are required．
The above are charges per agate line－about eight
Words per line．This notice shows the wiath of the thne，
and is set in agate type．Engravings may head adver－ tisements at the same rate per agate line，by measure－
ment，as the letter press Advert isements mast be
reeeived at Publication offe as earl as Thursday
morning to appear in the following week＇s issue．

COLD FORGED PRODUCT．
Forged Wood Screw

I
 Scientific pook Eatalogue RECENTLIY PUBLISHED． lng works on more than fifty different subjects．Will be mailed tree to any address on application．
MUNN \＆Co．，Publishers Scientift
$\mathbf{3 6 1}$ Broadway，New York．
ACCOUNTANTS
who use the Comptom
 have no trouble with their
trial balance．Has it ever oc trial balance．Has it ever oc－
curred to you that by getting
one you might save lots of time，avoid mistakes and not
ruin your nerves
Write for Pamp Write for Pamphlet．
FELT \＆TARRANT MFGCO．
52－5E ILINOIS ST．，CHICAGO．

Parsons Horological Institute． Eearn the Watch Trade Engraving and Jewelry Work． PARSONS，IDE \＆CO．
302 Bradley Ave．，PEORIA，ILL．

THE STANDARD
HiN．JOHTS ASBESIOS BOILERCOVEDIMES

Patented

GPATENTS！
 In this line liventors． experience，and business they have had forty five vears now have unoaualed facilities for the preparation of Patent Drawings，Specifications，and the orosention of Applications for Patention in the United States，Canada，and Foreign Countries．Messrs．Munn
 We also send，free of charge，a synopsis of Foreign Pa－ tent Las，showing the cost and method of securing Patents inall the principal countries of the world． MUNN \＆CO．，Solicitors of Patents，

 $\left\{\begin{array}{l}\text { Sand orn } \\ \text { caname }\end{array}\right\}$

Rochester， \mathbf{N} ．

SCIENTIFIC EXPERIMENTS．－DE

 ELETRO－PLATING

Apparatus and Material．
THE
anson VanWinkleCo

The Smith Premier Typewriter
All the Essential Features Greatly Perfected．
All type cleaned in Ten Seconds without Soiling the Hands． The Smith Premier Typewriter Co．，Syracuse，N．Y．，U．S．A． We have 20 branch offices in the principalcities tbroughout the United States．

GREENERD ARBOR PRESS
 the and Bitisideani
 CHFANDIER \＆FARQUHAR，

Mechanical Help for Inventors．
There is nothing like a first－class ma－ There is nothing like a first－class ma－
chine shop，organized for and adapted to miscellaneous jobs，to carry out an in． ventor＇s ideas and make the most of them．Primer to send．

HIEFCHRTC TEICHIT

there．We illuminate the Tower of Light，the Electric Fountains，the Manufactures

 Building nnd Electricity Building．

Rubber Rolls and Wheels．

EXPERT MODEL MAKING，Etanling

MECHANICS＇TOOLS．

Tha Amainar Bell Taphome Comatiay

125 MILK ST．，BOSTON，MASS．

This Company owns the Letters Patent No．186，787，granted to Alexander Graham Bell，January 30，1877，the scope of which has been defined by the Supreme Court of the United States in the following terms：
＂The patent itself is for the mechan－ ical structure of an electric telephone to be used to produce the electrical action on which the first patent rests．The third claim is for the use in such instruments of a diaphragm，made of a plate of iron or steel，or other material capable of in－
ductive action；the fifth of a permanent ductive action；the fifth，of a permanent magnet constructed as described，with a coil upon the end or ends nearest the plate；the sixth，of a sounding box as de－
scribed；the seventh，of a speaking or scribed；the seventh，of a speaking or
hearing tube as described for conveying the sounds；and the eighth，of a perma－ nent magnet and plate combined．The claim is not for these several things in
and of themselves，but for an electric tel－ ephone in the construction of which these ephone in the construction of whi＂
This Company also owns Letters Pa－ tent No．463，569，granted to Emile Ber－ liner，November 17，1891，for a Combined Telegraph and Telephone；and controls Letters Patent No．474，231，granted to
Thomas A．Edison，May 3， 1892 ，for a Speaking Telegraph，which cover funda－ meaktal inventions and embrace all forms of microphone transmitters and of car bon telephones

エエエヨ

Fhendil minem
The Most Popular Scientific Paper in the World Only 83.00 a Year，Including Postage

This widely circulated and splendidy illustrated paper is published weekly．Every number contains six－ teen pages of useful information and a large number of original engravings of new inventions and discoveries，
representing Engineering Works，Steam Machinery， New Inventions，Novelties in Mechanics，Manufactures， Chemistry，Electricity Telegraphy，Photography，Archi－
tecture，Agriculture，Horticulture，Natural History． tecture，Agriculture，Horticulture，Natural History，
etc．Complete list of patents each week． Terms of Subscription．－One copy of the ScIen－ CIFIC AMMRICAN will be sent for one year－ 52 numbers－
postage prepaid，to any subscriber in the United States， Canada，or Mexico，on receipt of three dollars by the
publishers；six months， 81.50 ；three months $\$ 1.00$ Cublishers；six months，$\$ 1.50$ ；three months，$\$ 1.00$ ． Masters．Write for particulars．
The safest way to remit is oy Postal Order，Draft，o The safest way to remit is oy Postal Order，Draft，or
Express Money Order．Money carefully placed inside Express Money Oraer．Money carefiny placed insiae
of envelopes，securely sealed，and correctly addressed，
seldomen all letters and make all orders．drafts，etc．，payable to
MUNN \＆CO．， $\mathbf{3 6 1}$ Broadway，New York．

Scientific Sanericant Supplemput This is a separate and distinct publication from＇＇G
SCIENTIFIC AMERICAN，but is uniform therewith in size， number containing sixteen large pages full of en gravings，many of which are taken from foreign paper
and accompanied with translated descriptions．THE SCIENTIFIC AMERICAN SUPPLEMENT is published week ly，and includes a very wide range of contents．It pre－
sents the most recent papers by eminent writers in all
the principal Arts，embracing Biology，Geology，Mineralogy，Natura History，Géography，Archæology，Astronomy Chemis rry，Electricity，Light，Heat，Mechanical Engineering，
Steam and Railway Engineering，Mining，Ship Building， Marine Engineering，Photography，Technology，Manu
facturing Industries，Sanitary Engineering，Agriculture Horticulture，Domestic Economy，Biography，Medicine etc．A vast amount of fresh and valuable information
obtainable in no other publication． The most important Engineering Wrorks，Mechanisms，
and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT
Price for the Supplement for the United States， Scientific American and one copy of the Stipple MENT，both mailed for one year to one address for $\$ 7.00$ Single copies， 10 cents．Address and remit by postal orde express money order，or check，
MUNN \＆CO．． $\mathbf{3 6 1 1 3}$ ．

ghuilding Cedition．

The Scientific American Architects＇and
Builders＇Edition is issued monthly．$\$ 2.50$ a year． Single copies， 25 cents．Thirty－two large quarto pages， richly a large and splendid Magazine of Architecture other fine engravings；illustrating the most interesting examples of modern architectural construction an allied subjects．
of a variety of the latestzand best plans for private resi－ dences，city and country including those of very mod erate cost as well as the more expensive．Drawings in perspective and ind
Descriptions，Locations，Estimated Cost．etc． The elegance and cheapness of this magnificent work
have won for it the Largest Circulation of any dealers．\＄2．50 a year．Remit to

361 Broadway，New York．
PRINTING INKS：

