a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

Vol LXIX. - No. 11 .	NEW YORK, SEPTEMBER 9, 1893.	

THE WORLD'S COLUMBIAN EXPOSITION-TRIUMPHAL ARCH AND PERISTYLE.
The Court of Honor of the World's Columbian Exposition is bounded on the north by the huge Manufactures building, on the south by the glorious façade of the Palace of Agriculture, to the west rises the majestic dome of the Administration building and on the east is the Peristyle with a triumphal arch bearing the Columbus Quadriga. In the center of the Court of Honor is the main basin, with the MacMonuies fountain at one end and the outlet to the lake under the Triumphal Arch at the other. The Court of Honor itself is the most beautiful feature of the Exposition, and at night, when the buildings are outlined with electric lights, the effect produced is enchanting beyond description. The perfection of proportion, which is so noticeable in the Exposition and which is so wonderful when the number of different architects is considered, is nowhere better illustrated than in the Peristyle and the Triumphal Arch.
The Peristyle connects the Casino and the Music Hall and forms the eastern end of the Court of Honor. The Peristyle was designed by Mr. C. B. Atwood in the classical style, and is free from what architects calls nervousness, which is apt to take away the dignity that is so essential in a work of monumental grandeur. The Peristyle is composed of forty-eight columns, twenty-four on each side of the arch. The columns symbolize the States and Territories. Above the balustrade on pedestals, which form the continuation of the columns, are heroic f ares fourteen feet high, representing Eloquence, Music, etc. Just below the cornice are the names of the States of the Union.

The Peristyle affords a shady walk on a warm day, and its protection is not to be despised, for the colonnade measures 234 feet from each corner building to the Columbian portico. In the center of the Peristyle, and forming the water gate or outlet of the main basin, rises the majestic Triumphal, or, more properly speaking, Columbian Arch. The arch somewhat resembles the Arc de Triomphe of the Place du Carrousel in Paris. Between the two columns on each side are colossal figures representing the genius of Navigation and Discovery. Each of the figures stands on the prow of a vessel. These pieces of sculpture are the work of Bela L. Pratt, of New York. Over the arch are angels blowing trumpets. Just under the cornice on both the lakeward and landward sides appear the names of the great explorers, Cartier, Champlain, De Soto, Ponce de Leon, La Balle, Cortez. High up on the pedestal which supports the Quadriga is an inscription which should make all Americans thrill with pride: "Ye Shall Know the Truth, and the Truth Shall Make You Free."
There is no more fitting monument to commemorate victories of either war or peace than a triumphal arch surmounted by a quadriga. A triumphal arch, if not properly treated, becomes simply a brutal manifestation of power, as in the Brandenburg Gate at Berlin. In the present instance the genius of Mr. D. C. French has given us a remarkably strong and satisfactory group. Four horses full of fire champ their golden bits and paw the ground. Each pair is held in check by a draped female figure. In the chariot stands a majestic figure of him to whom the western world is now doing
rider with a banner. Although the Peristyle is built of staff, the clever artificers have wrought so cunningly that the whole appears to consist of white Pentelic marble. It is to be regretted that the beautiful Peristyle with its noble arch cannnot be perpetuated in more enduring materials, but it is safe to say that all who have viewed this beautiful creation will find it indelibly fixed upon the memory.

How to Show Lines of Electric Force.
The following experiment for making visible lines electric force is described by Herr Bruno Kolbe Into a flat cylindrical vessel pour purified anhydrous il of turpentine to a depth of about 2 cm ., and add ome sulphate of quinine. To the rim of the vessel attach two wire springs, adjusted so that the two small metallic balls at their ends dip into the turpentine. Stir the quinine with a glass rod so as to distribute it evenly, and place the vessel on a black cardboard. Join the two wires to the terminals of an influence machine, and turn very slowly. At once the white crystals group themselves so as to form beautiful curves, representing the "lines of electric force" The form of these curves recalls that of the brush discharge of the influence machine. Prof. Weiler, of Esslingen, gives the following experiment: Prepare a milky mixture by stirring up finely divided quinine n oil of turpentine. On sending a series of dischayges through it, a clearance is produced at the positive pole, and the particles cluster round the negative pole, arranging themselves in streamers directed along the lines of force.

Srientific American.

HSTABLISHED 1845.

MUNN \& CO., Editors and Proprietors

 PUBLISHED WEEKLY ATNo. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH TERMS FOR THE SCIENTIFIC A
copy, one year, for the

 The scientific American supplement is a distinct paper from the Scientiric A MERICAN. THE SUPPLEMENT
 doultrs and fifty cents it yent. Building Edition.
TBE ARCBTTECTS AND BULDER EDITIONOF THE SCIENTIFIC AmERI-

 \& CO. Readers are specially requested to notify the publishers in case of
any failure delay, or irreauarity in receipt of papers.
NEW YORK, SATURDAY, SEPTEMBER 9, 1893.

TABLE OF CONTENTS OF
 SCIENTIFIC AMERICAN SUPPLEMENT
 No. 923.

For the Week Ending September 9, 1893.

Price 10 cents. For sale by all newsdealers.

 ful engineering feats of the ancient Eexptians.....................
III. CHEMMSTRY. Absitue Alcohol. - By PETER WYATT SQUIRE.

 V. ED
VI. ${ }^{\text {en }}$

 IX. MISNELLANEOUS.-Carner Pigeons.-By JosEF V. Pley fi.

tion
ing p
xiI.

1478

THE LATEST ARMOR TRIAL AT INDIAN HEAD. On Saturday, August 26, a trial of armor took place at the Naval Ordnance Proving Ground, at Indian Head, which resulted in the provisional acceptance of about 370 tons of nickel steel armor from Carnegie, Phipps \& Co.
The specimen plate that represented the group, which ncludes armor for the battleships and the conning tower of the Indiana, was an 8 inch barbeite plate for the Oregon. Its curve subtended an arc of 120° on a radius of about 8 feet; it was 10 feet 7 inches horizontally and 5 feet 4 inches high, secured to an oak backing with 13 three-inch bolts. The backing at the medial line of the plate was 47 inches thick. The plate was nickel steel, acid treated, possessing a tensile strength of about 98,000 and an elongation of 20 per cent.
The gun was a modern 6 inch breech-loading rifle, mounted on a central pivot carriage, at a muzzle distance from the plate of 61 feet.
The projectile used was a Carpenter armor-piercing shell weighing 100 pounds.
First Round.-Charge of powder, 3784 pounds. Dupont's brown prismatic; striking velocity, 1,762 f. s. This round was for the premium cracking test, the conditions of which were that the projectile must not get through, and the plate must not show through cracks to the edge.
The point of impact was 21 inches below the upper edge of the plate and about 18 inches to the right of the medial line, the impact beting practically normal.
The projectile struck the point aimed at, got its nose just through and rebounded to the gun platform, where it was picked up near the carriage. The marks on the oak planking showed a spiral movement of the shell when it landed over the boards, where it knocked over a stand of blind projectiles, then returning, came to rest under the gun, with its nose pointing toward the plate. It was apparently undeformed, but decidedly cracked, and its point was highly polished and smeared with melted copper from the rotating band. On cooling, the shell began to flake off around th swell, disclosing a grain of finest metal.
The plate was not cracked and showed no other damage than the hole of impact, the edges of which were turned up with a fringe $2 \cdot 35$ inches high. This round decided the acceptance of the plate for the cracking test, but it failed to win the premium cracking test. Second Round.-Charge of powder, 48.3 pounds : striking velocity, 2,012 feet per second. This round was for the premium perforation test. The shell must not penetrate the backing. The premium offered was $\$ 30$ per ton for the whole group represented by the plate. The shot struck the plate 21 inches to the left and below the first point of impact, on the medial line of the plate, penetrated the plate, 47 inches oak backing and 10 inches of additional wood, where it remained. The plate was not cracked, and showed only a clean, fringed hole.
While the plate failed to win a premium for the contractors, the test was eminently satisfactory to the government inspectors. The trial was conducted by Lieutenant Newton E. Mason, U. S. Navy, in charge of the proving ground, in the presence of Captain W. T. Sampson, the Chief of the Bureau of Ordnance, and a number of prominent steel men and ordnance
officers. The Carnegie Company was represented by Mr. Hunsecker and their naval agent, Lieut. Stone.

THE PURIFICATION OF WATER IN WELLS AND CISTERNS.
 We have recently described and illustrated an elec-

 ric puritication process for water from the Croton watershed. The existence of vested rights therein involving the disposal of sewage by villages or individual houses has made this object hard to attain, Tracing one source of contamination to a restricted area, the purification process we have alluded to has been applied thereto with considerable success. The process virtually amounts to treatment of the water with hypochlorites and other highly oxidized salts. These decompose the offensiveLiquids form a peculiarly efflcient vehicle for the sustenance and dissemination of the lower forms of life forming the dangerous class of "organic matter." The presence in liquids of certain of these germs means disease for those who drink it. While science has not yet reached the point of distinguishing between all safe and unsafe bacteria, it seems to have reached
The country districts are notorious among sanitarians for bad water supply. The picturesque well, with its old oaken bucket, is often situated so close to a source of sewage contamination that it becomes a center for the dissemination of typhoid fever, diph theria, or other deadly malady. In the supply of water for country houses it would seem the sanitary chemist had a good field for his operations. If it is possible to treat one of the affluents of Croton Lake cheaply and effectively, so as to make a marshy and
tary sense, how much easier an object of attack would be the well of the country boarding house, or of the seashore hotel, now so often overshadowed by at least a suspicion of unhealthfulness. In many cases houses in the country depend upon rain water for the supply. This water collected in subterranean cisterns would seem to have every title to the highest grade of purity, especially if the first rainfall is discarded by a special by-pass. Yet cistern water often acquires a very unpleasant taste, which is traceable to no visible or discernible impurity.
The treatment of such cases would seem to be simple, and a formula for each case based on an examination of the water might easily be deduced. An agent, such as the hypochlorites, added in predetermined quantity might be found applicable. Potassium permanganate or binoxide of hydrogen would also seem available reagents and of undoubted efficiency. The highly colored permanganate salt would be of special advantage, as it might be added to the limit of discoloration, thus in itself supplying its formula of application. We have before this had occasion to describe direct aeration applied to the purification of water; the simple bubbling of air through water is found to remove odor and taste. It is possible that many cases of local trouble with water might be treated by a proper air pump for the injection of atmospheric air through water in the cistern or well.
The chemist's permanganate test for organic matter in water consists in the addition of an acidulated solution of permanganate of potash of known strength in measured volume to the water to be tested. Organic matter in the water destroys the salt. Its solution is of a very strong violet color, the merest trace of imparting a rose tinge to water. In the test, after addition to the water, the rose-colored mixture is al lowed to stand for a definite period. If decolorization takes place, more is added until the water retains a faint red color, when it is assumed that the decolorizing power of the water is exhausted. By calculation the quantity of oxygen absorbed from the permanganate is determined and is reported as oxygen required to destroy organic matter in the water in question. The application of such a process to a cistern or well would seem quite possible under proper management such as might be formulated by a competent chemical authority. If a colorless salt were used, then of course there would be no direct method of knowing when enough had been added. If, however, a virtually nonpoisonous substance were used, an excess of which would not be disagreeable, then it would be quite possible to devise such a system as we describe to be applied by any person.
The rendering sea water potable by the addition thereto of silver citrate, thus substituting sodium ci trate for sodium chloride, has been suggested for use in cases of shipwreck, and the exact formula for its ap plication has been published. As sea water is virtually of constant composition, a formula was of easy preparation. For organic matter in water, something which constantly varies in amount, no universal for mula can be produced, and the best that can be done might be the use of some agent which even in excess would not affect the water injuriously, while destroy ing organic matter.

John Rae.

Dr. John Rae died at his home, in London, on July 24, after a prolonged iliness. Dr. Rae was born in the Orkney Islands. He studied medicine at the University of Edinburgh, and after graduation there he took his degree as licentiate of the Royal College of Surgeons before he was twenty-three years of age. He served for a time as surgeon on a ship of the Hudson's Bay Company, and in 1845 accepted the command of an expedition to the Arctic Seas to endeavor to complete the survey of about seven hundred miles of the coast forming the shores of a large bay, which Parry had failed to accomplish. This expedition, which proved successful, was the beginning of a series of voyages of discovery that made Dr. Rae famous as an Arctic explorer. He was afellow of the Royal Society, fellow of the Royal Geographical Society, honorary correspondent of the Geographical Society of America, and honorary member of the National History Society of Montreal. The Founders' Gold Medal of the Royal Geographical Society was awarded to him several years ago.

In both France and Germany one-fourth ($1 / 4$) reduced to a decimal is written as 0,25 ; in England it is written $0 \cdot 25$ (always with the period at the top of the line), and in the United States in this way, 0.25. France and Germany always use the comma (,), England and the United States the period (.), the only difference being he manner in which it is placed upon the line. Sir Isaac Newton is given the credit of originating the present English method of using the decimal point, his reason being that by placing it at the top of the line it could bedistinguished at a glance from the "full stop" punctuation mark. All English mathematicians use the mark in the way proposed by Newton, and the period as à sign of multiplication.

The Electrical Congress was held during the week ending August 26, and proved to be one of the most interesting as well as one of the most valuable congresses that has been held. The work was divided into three sections, "Pure Theory," "Theory and Practice," and "Pure Practice." The third section was by all odds the most attractive so far as attendance was concerned. In addition there was a Chamber of Delegates composed of representatives appointed by the leading governments of the world. All the sessions of this chamber were held in secret and important results were accomplished, which were embodied in a report, especially in the direction of adopting units for electrical measurements. These included the ohm, ampere, volt, coulomb, farad, joule, watt and henry. This last unit derives its name from the eminent American electrician and is the unit of induction. Many valuable papers were read at the meetings of each section, but the discussions brought out even more instruction than did the papers. Long distance transmission received a great deal of attention. The members of the congress received much attention and visited the Exposition to inspect the Intramural Railway and its plant, the movable sidewalk, the Exposition electrical plant, and special features in the Electricity building. An important feature of the programme was a lecture by Nikola Tesla on "Mechanical and Electrical Oscillators," which touched chanical and Electrical Oscillators," whic
upon new principles in the electrical field.
The live stock exhibit, which opened to the public on August 22, to continue for about three weeks, was a very popular attraction. It included some twelve hundred head of cattle-Sbort Horn, Hereford, Aber-deen-Angus, Galloway, Devon, Jersey, Holstein-Friesian, Ayrshire, Guernsey, Red Polled, Polled Durham, Dutch Belted, and Brown Swiss ; over eight hundred horses, including French Coach, German Coach, Clevehorses, including French Coaqch, German Coach, Cleveland Bay, Percheron, Clydesdale, Shire, French
Draught, Belgian, Suffolk Punch, Hackney, MorDraught, Belgian, Suffolk Punch, Hackney, Mor-
gan, Arab, Americo-Arab, French Trotter, and Russian; besides Shetland and other ponies; jacks and jennets, and mules; eighteen hundred sheep and fifteen hundred hogs. The animals were shown in the live stock pavilion, which is in the shape of a large Roman amphitheater, and has seating accommodations for ten thousand people. Forty stables were built by the Exposition in which to house the animals, each stable being 200 by 42 feet in size and provided with modern conveniences. One of the most attractive features of this exhibit was the display of twenty-one horses sent by the Czar of Russia. Some of these horses are almost priceless in value and special attendants were sent from Russia to care for them. Emperor William, of Germany, also sent many fine horses from bis stables. The awards in this department aggregated over $\$ 150,000$. Fine animals were contributed from Canada as well as from many sections of the United States.
The week ending August 26 was the banner week up to that time, so far as attendance at the Exposition was concerned, as it exceeded $1,000,000$. The average attendance for the six days was over 163,000 . Illinois day, which was August 24, there were 240,909 paid admissions. Special exercises were held at the State building and there was a large parade. Other special days of the week were West Virginia day, Delaware day and Colored People's day. A feature of Delaware day was the distribution of a carload of luscious peaches.

A prince of the royal family of Japan reached Chicago the last week in August to attend the Exposition. He was in time to be informed of the many awards that the juries are making to exhibitors from his country. No country has, proportionally, made so fine an exhibit as Japan, and it is reaping the benefit now by receiving more awards than any other country.
The great telescope which Charles T. Yerkes has presented to the Chicago University is set up complete, so far as outward appearance is concerned, in the center of
the main aisle at the north end of the Manufactures and Liberal Arts building. The part of the instrument exhibited was manufactured by Warner \& Swasey, Cleveland, Ohio. It is mounted on a heavy
iron column 43 feet high and weighing 50 tons. The polar axis is of steel and 15 inches in diameter, while the declination axis is of steel and 12 inches in diameter. The tube, as now seen without the lenses, weighs 6 tons, is 64 feet long, 52 inches in diameter at the cen-
ter and tapers toward the ends. Three electric motors ter and tapers toward the ends. Three electric motors
of one horse power each control all the motions of the
instrument, and one of these motors automatically winds the driving clock, keeping the tube in exact sidereal time. This instrument was opened to the public with formal ceremonies, many eminent scientists being present.
Foreign commissioners, correspondents and jurors to the number of fifty or more have been given an excursion into the North west over the Great Northern and sion into the Northwest over the Great Northern and
other railways through the wheat fields of Minnesota other railways through the wheat fields of Minnesota
and South Dakota. The main purpose of this excursion was that these foreign visitors might see the extensive manner in which farming, and especially wheat raising, is carried on in the Northwest. One of the special events of the excursion was witnessing the cutting of an eleven thousand acre wheat field. The trip was carried out with great success and was a revelation to many of the visitors.
In one portion of the Manufactures building the publishers of the principal magazines have taken pains to show what the magazines are made of. Here may be seen the originals of illustrations that have secured fame for their designers all the world over. Nor are the manuscripts less interesting. Some dainty pieces of literature, which one might think had been put on
paper with the finest of crow quills, are actually found paper with the finest of crow quils, are actually found
as though the manuscript was the product of a very blunt stick. On the other hand, there are original manuscripts of important and popular works, like the original copy of "Ben Hur," for instance, so fine as to task the sharpest eyes. When looked at through a magnifying glass, however, the small handwriting is found to be very distinct, each letter being carefully formed and accurately united. Readers of magazines, after trying to decipher the copy of some favorite authors, will ever after gratefully appreciate th services rendered by typesetters and pressmen.
Saturday, August 26, was special day in the Palace of Mechanic Arts, and every machine in the building that could be put into operation observed the day. People crowded the building from early in the morning until late at night, watching the various exhibits; riding on the electric traveling cranes, which had riding on the electric traveling cranes, which had lecting many unique souvenirs of the day, and going about from one special feature to another. The special event of the day was printing a souvenir newspaper. This event began at the paper-making machine, where wood pulp was made into paper. In the meantime compositors were busily at work at the opposite side of the building, setting type with the inotype machine. By the time the paper was made the type was set, and in sixty-three minutes from the time the pulp was put into the machine, souvenir
papers were printed. The celebration had many papers were printed. The celebration had many
ridiculous features connected with it. One large pump supplied a constant stream of lemonade, and on the lagoon in front of the building sports were carried on, such as climbing a greased pole, hanging over the water, and boat crews battling with each other with streams of water.
Such a profusion of electric lights as one sees in the buildings and on the grounds of the World's Fair has probably never been viewed by mortal man before, so says the Electrical Review. Arc and incandescent lamps are every where. The white buildings reflect the lights and make the scene as bright as day. On those nights when every lamp is burning, the electric fountains playing, and fireworks are shooting up from the lake, the scene is almost beyond description. No picture can do it justice-it must be seen. The Grand Basin is outlined in living fire, the surrounding buildings glow with light, the massive dome of the Administration building, crowned with electric lamps, rises heavenward in graceful curves, while the electric fountains shoot forth ever-changing sprays of colored water. Involuntary applause breaks forth among the spectators ever and anon, as they sit and stand about in open-eyed astonishment at the grandeur of an artistic accumulation of electric lights.
A very interesting novelty is the Columbus egg, as it is called, shown in the Westinghouse lighting exhibit. On a table on the west side of the space are placed a pair of large induction coils for exhibiting the effects of the two-phase rotary current. A wooden table is placed over these on which metal objects commenced to spin around as soon as placed upon it. Two copper eggs, one small, the other about eight inches long, when placed over these coils commence whirling and soon turn up on the end and continue to whirl. In the room provided for the exhibition of high tension currents a series of transformers and Leyden jars are so arranged as to give heavy discharges over glass and
rubber plates. In the plates.
In the Electrical Palace the electric stoves and cooking utensils are objects of attraction and interest. As they have no pipes, and give rise to no smoke or dust,
they readily lend themselves to ornamentation They can also be placed in any convenient place or position. Some of the stoves are very elegant and would adorn a parlor.
Probably the largest photograph at the World's Fair is to be seen in the gallery of the Mining building. It belongs to the exhibit of the Standard Oil Company.

Among other things are transparencies illustrative of il works and distilleries, storage tanks, etc., in various parts of the country.
Recently the company had a large relief map made, and the work of securing a good photograph of this on glass was given to J. K. Hillers, of the United States Geological Survey, who is an expert in large photographs. A good sized negative was made of the relief map, and upon a paper print from the negative were drawn the States, lakes, and names. From the print a negative 20 inches square was taken, and from this an enlarged transparency on glass, 7 feet long by 4 eet 2 inches wide, was made.
No ordinary camera could do the work, so the photographer made a camera of a room 12 by 15 feet in size. The room was blackened inside and made light and even air tight. The shutter was placed in the window and the lens in the shutter. Mr. Hillers had three expert photographers assisting him in the work, and they built a silvering vat which used $\$ 250$ worth of nitrate of silver, and a developing vat, both in the gigantic camera, so that probably for the first time the camera itself was used as the developing room.
The work was focused on a ground-glass plate, the same size as the photograph. This was done by three men holding the plate and moving it back and forth until the proper focus was secured. Then the sensitive plate was made ready. This was a piece of American plate glass, three-eighths of an inch thick, made and polished for this particular picture. A work of this nature had never before been attempted on such a large scale. Mr. Hillers was obliged to feel his way, for he did not know just how long the plate should be exposed. A test was first made with a small plate, and this gave him an approximate measure of time.
With rare good fortune, the first exposure of the new plate was a success, and a beautiful photograph was secured. Then a specially arranged hose was turned against the big plate to wash away the chemicals. It took an hour to do this. After the toning process came the matter of varnish. This was the critical phase of the operation. The plate was laid on four rubber balls, the operation. The plate was laid on four rubber balls,
one at each corner, and Photographer Hillers tilted it while an assistant poured on half a gallon of varnish. Success still remained with him, and the transparency was ready for its colors.
The oil-bearing districts are shown in yellow, and each particular region where oil is actually brought to the surface is shown in the color of the oil itself. It took four months from the beginning, when the first negative of the map was taken, to finish the transparency. It is valued at $\$ 5,000$.
New Yorker's Impressions of the World's Fair.
Taking the fastest express from New York for Chicago, going in twenty hours, as comfortably almost as if in one's drawing room, the World's Fair city is reached without any appreciable fatigue or discomfort.
In entering the city of Chicago, much time is lost because the tracks run through a traveled street at
grade, requiring a very slow speed. Toa New Yorker, accustomed to the rapid speed on the Park Avenue viaduct and tunnel, this was especially noticeable.
In approaching the city, as most of the roads do, from the foot of Lake Michigan, the first glimpse of the roofs and domes of the Fair buildings is obtained, and an idea of their magnitude is realized. Landing in the city, one is struck with the peculiar smokiness of the atmosphere and the dinginess of all the buildings, the sunlight having a sort of yellowish cast. There is a special league in Chicago organized to stop the smoke nuisance, which by constant agitation is expecting to bring about an improvement. By the general use of electricity as a motive power, great changes may some day be accomplished. But the smoke is now tolerated, as a Chicagoan says, because the fuel is cheap, and is thereby one of the means of enabling the factories to prosper.
The court or finest general view of the World's Exposition is acknowledged to be from the lake. It is really the front view of the aggregation of buildings, and is very impressive. Starting from the foot of Van Buren Street in the large whaleback steamer Christopher Columbus, a delightful sail out on the lake and parallel with the shore for about eight or nine miles supplies a continual panorama of interest.
One observes the swift and frequent so-called "cattle trains" traversing the Illinois Central tracks close to the lake shore; then the large substantial hotels surrounding the north end of the grounds are seen, and beyond, close to the domes and turrets of the foreign buildings, is a big, tall, unsightly blotch of a building inclosed in black scaffolding, called the "Spectatorium," located close to the water's edge. But when this is passed the long facade of the Palace of Liberal Arts facing the lake, the pier, the Peristyle, and through it the gilded dome of the Administration Palace, the Agricultural Palace, and glimpses of the Court of Honor are observed, with an ensemble and ymmetry of architecture that is grand and imposing. At the pier the first novelty to be seen (after passing
(Continued on page 166.)

EVOLUTION OF THE SAFETY LAMP AS SHOWN AT THE FAIR.

The display of the Colliery Engineer Co., of Scranton, Pa., consists of an evolutionary exhibit of safety lamps for use in gaseous mines. All types of lamps, from the primitive inventions of Sir Humphry Davy and Dr. Clanny down to the most approved types of modern lamps, are shown. This exhibit was prepared at the request of the Mining Department of the Exposition and is not intended as a competitive one. It is the most complete collection of safety lamps ever exhibited. The Colliery Engineer Co., through its journal the Colliery Engineer, and its correspondence schools of mines and mechanics, has naturally paid great attention to the subject of the safe and economical working of mines, and naturally was well qualified to arrange this important exhibit. Through the reputation of the Colliery Engineer, and a thorough knowledge of the subject on the part of its officers, the lamps of all the leading manufacturers of the world were secured, and they are exhibited side by side. No attempt is made to show the superiority of any one make over the others, but a handsome pamphlet containing information regarding the principles of the leading types, together with information as to the best types for either testing gases or for working at the face of the mine, is distributed. The matter contained in this pamphlet is taken from the instruction paper on safety lamps used in the Correspondence School of Mines, which is also owned by this company
The Correspondence School of Mines is an institution that teaches all branches of science connected with mining by correspondence, and during the past two years has enrolled over 2,000 students. Students are not required to leave their homes or neglect their business Everything is taught by correspondence and each student receives special attention, as he is a class by himself. The Correspondence Schoo of Mechanics, under the proprietorship of the same company, is a similar institution for the education of students in the various principles of mechanics and mechanical drawing. The facilities offered working men, who cannot afford to leave their homes or neglect thei work and who desire such education in either mining or mechanics as will enable them to advance in their business, are most excellent, and the terms of tuition, including the lesson and question papers, are very low. Payments for instruction can be made monthly, and this places the advantages of the schools within the reach of any working man. The schools are both indorsed by all prowinent mining and mechanical engineers who have examined into the system, and numerous students have been recommended to the schools by prominent educators in all parts of the country.

a balanced steam engine valve

The valve shown in the illustration, recently patented by Mr. Augustin Roche, of Butte City, Montana, is completely balanced, both as to the inlet and the exhaust. Figs. 1 and 2 are side and transverse sectional views of the improvement as applied, and Fig. 3 is a plan view. Fastened in the bottom of the steam chest, on the cylinder, is a casing having in its bottom ports registering with those of the cylinder and with the ports in

roche's steam engine valve.

a cylin Irical valve sliding in the casing, the latter inlet ports registering with two ports in the top of the casing which open into the interior of the steam chest. The stuffing boxes in which the valve stems slide are screwed into position, and when removed the valve may be passed through the apertures in the ends of the steam chest. To prevent the turning of the valve, a screw in the top of the casing projects into a longi-
tudinal recess in the top of the valve. The cut-off mechanism consists of a saddle with flanges sliding in guideways on the valve casing, there being on one side of the saddle a rack engaged by a pinion on the lower end of a shaft turning in a stuffing box on the cover of the steam chest. The shaft is actuated by a hand wheel to move the saddle so that it will cover to a greater or less extent the ports in the top of the casing opening into the steam chest. The top of the hand wheel has a graduation on which is a fixed pointer, to indicate at all times the position of the saddle, and the wheel may be actuated from a suitable governor in

THE WORLD'S COLUMBIAN EXPOSITION- THE COLLIERY ENGINEER" EXHIBIT OF SAFETY LAMPS.
inclosed in a separate casing, it is completely counter balanced, both as to the live steam and the exhaust and the casing serves to relieve the valve of the pres sure of the steam entering the steam chest. The seve ral 'parts of the valve are readily removable from the steam chest for repairing or other purposes.

Sucrol.
Sucrol is the namegiven to paraphenetal carbamido harmless substance of deliciously sweet taste, pro duced by adding a solution of potassium cyanate to muriate of amidophenetol. It is easily crystallizable in small white tables having a melting point of $160^{\circ} \mathrm{C}$ $\left(320^{\circ}\right.$ F.) It is soluble in alcohol and ether and in ho muriatic acid, also in hot acetic acid, as well as in al the solvents usually employed. Diluted alkalies or aufes do not act on it. Its solubilities appear from the table given below :
1 gramme dissolves in 50 grammes of hot water.
1 gramme dissolves in 800 grammes of cold water.
1 gramme dissolves in 25 grammes of alcohol 90 per cent.
1 gramme dissolves in 80 grammes of alcohol 45 per cent.
1 gramme dissolves in 480 grammes of glycerine.
Dr. Henry Paschkis has made exhaustive experi ments to determine its value and applicability. He finds that sucrol has no influence on the circulation, respiration, or digestion, nor on the nervous system in general. It is particularly adapted for use by diabetics, dyspeptics, and those suffering from obesity. Its sweetening power is 200 times that of sugar. Ther is a slight difficulty in the use of the powdered preparation, as it is not easy to moisten it; but this is abso lutely absent if it is used in the shape of fine crystals. To sweeten tea, coffee, etc., it is, best to pour them hot on the sucrol in the cup.

The First American Rallway.

Mr. Lewis Cheney, of Chelsea, Mass., now 85 years old, enjoys the distinction of being the only man now living who worked upon the famous "Granite Railway," built in 1826, in Quincy, Mass., chiefly to transport stones for building Bunker Hill monument. He chances also to have been the man who drove the horses which hauled the cars which carried the first load of stones over the road. The record given by the "Columbian Sentinel" of this historical event, whose importance was then little dreamed of, was as
ollows: "This railroad, the first we believein the country, was opened on Saturday (Oct., 1826), in the presence of a number of gentlemen who take an interest in the experiment. A quantity of stone, weighing 16 tons, taken from the ledge belonging to the Bunker Hill Association, and loaded in three wagons, which together weighed five tons, was moved with ease by a single horse from the quarries to the landing above Neponset Bridge, a distance of more than three miles. The road declines gradually the whole way, from the quarry to the landing, but so slightly that the horse conveys back the empty wagons, making a load of five After the starting of the load, which required some exertion, the horse moved with ease in a fast walk. It may, therefore, be easily conceived how greatly the transportation of heavy loads is facilitated by means of this road. A large quantity of beautiful stone already pre pared for the Bunker Hill monument will now be rapidly and cheaply transported to the wharf at the termination of the railroad, whence it will be conveyed by lighters to Charlestown. The road is constructed in the most substantial manner. It rests on a foundation of stone, laid so deep in the ground as to be beyond the reach of frost, and to secure the rails on which the carriage runs effectually against any change in their relative position, they are laid on stones of 8 ft . in length, placed transversely along the whole extent of the road at a distance of 6 to 8 ft . from each other. The space between these stones is filled in with smaller stones or earth, and over the whole between the rails a gravel path is made. The rails are formed of pine timber, on the top of which is placed a bar of iron. The carriages run upon the iron bars and are kept in posi tion by a projection on the inner edge of the truss wheels. The wheels are of a size considerably larger than a common cart wheel.
"We learn from a gentleman who has visited the principal railroads in England, that in point of solidity and skill of construction thi is not exceeded by any one there."

a convenient saw setting device.

With the device shown in the picture saw teeth of all ordinary sizes may be accurately set to any desired degree, and the sharp points of the teeth be protected by a clearance in the setting tooi, by means of which also the truing up of the teeth to even lengths and at right angles with the blade may be readily effected. The improvement bas been patented by Mr. Carl M. Kardell, of Marshfield, Oregon. The main blade of the tool is of tempered steel, and has in both edges notches of various sizes and depths for the different sizes of saw teeth to pass into when the saw is being set, the bottom portions of the notches being enlarged to form a clearance for the sharp points of the teeth. A reversible and adjustable cross bar is set tightly upon the main blade by a thumb screw, and at each end of the bar is a thumb screw, either one of which bears against the side of the saw blade in setting, the amount of the setting being regulated by the adjustment of the bar and one of the thumb screws at its ends. The main blade also has at one end a slot terminating in a space into which a flat file may be stuck, for filing evenly the points of the teeth of a large saw, while. the other or handle end of the blade has a smaller slot, for tru ing the teeth of small saws, a space being provided at the bottom of the slot for the insertion of a three

rardell's saw setting device.

cornered file. Both of these slots are slightly widened hear the file-receiving spaces to give room for the set of the teeth.

Breech-Loading rifles were invented in 1811, but did not come into general use for many years. It is estimated that over 12,000,000 are now in actual service in the European armies, while 3,000,000 are, zeserved in the arsenals for emergencies.

THE GRIFFIN ROLLER MILL AT THE FAIR. In the Mines and Mining building are two exhibits of the Bradley Fertilizer Company, of Boston. One is in group 63, where an elevator for roller mill is shown for moving, storing, and delivering ores, and the other is a roller mill exhibit, in group 64, shown in our illustration. These mills have fully proved themselves to be among the most successful machines known for pulverizing all refractory substances, such as quartz, ores of all kinds, etc., effecting a great saving in working expense as compared with stamp mills and other appliances for reducing ores, while the first cost of the mill is only about a quarter of that of a stamp mill. The mill is constructed upon a new principle, which involves the use of a ring or die, on the inner surface of which a roller runs, the roller being carried by a rotating shaft hung on a universal joint. This joint is inclosed in the driving pulley, which revolves in a horizontal plane. The ring or die is inclosed in a pan in the base of the machine, and the roller carries shoes or plows, which throw up the material contained in the pan below the ring, so that it is acted upon by the roller. As the lighter portions of loose material come in contact with the screens arranged above the ring or die, they escape through the screen into the annular casing surrounding the space above the ring. The operation of grinding is continuous, the material being constantly agitated and thrown up, so that it is acted upon by the roller as it travels around the inner surface of the ring. As the grinding is done by the pressure of the roller against the ring or die as it travels around, no power is wasted, and the product secured is in the most satisfactory condition. It is found upon microscopic examination that, whatever the nature of the substance treated in the mill, there is always a clear fracture, thus securing results that for nearly every purpose are superior to those obtained by rubbing or abrasion. The range of work of the mill is very great, and many of them are now employed on phosphate rock, carbon foundry facings, plumbago, Portland rock, cements, etc. It will work either wet or dry, and operates equally well on substances as hard as flint or as soft as lime, grinding them to any desired degree of fineness. Grinding to 60 m

CREAMERY AND DAIRY APPARATUS AT THE FAIR.
The large exhibit in the Agricultural building of the Vermont Farm Machine Co., of Bellows Falls, Vt., well displays the leading productions of what is said to be the largest manufactory of dairy and creamery apparatus and supplies in the United States, if not in the worid. The company was incorporated in 1873, and manufacture everything for handling milk and cream in the dairy, creamery and cheese factory-creamers, churns, butter workers, all styles and sizes of cream separators and butter extractors

THE GRIFFIN ROLLER MILL AT THE FAIR.
or dairy and factory, the Babcock milk testers, etc. box churns have two features that creamery men find The company fit up dairies and butter and cheese to be very desirable. One is the square openings that factories with every article needed to run them. A are placed at the corner of the churn. These are so leading specialty of their manufacture is the Cooley $\begin{aligned} & \text { large that it practically amounts to taking the side of }\end{aligned}$ creamer, seen near the right in the picture. It has the churn off, and are more popular than the trunk proved to be the leading milk-raising apparatus in the churns, from the fact that they answer all the purworld, having taken first place in all dairy countries. poses of the trunk churns, and at the same time are The butter made by this process has been awarded less liable to leak. Another feature is the building of twenty-five gold medals at the fairs and expositions in the wood palley around the body of the churn. This the different parts of the world. It received the is becoming very popular among creamery men. All highest award at the Paris Exposition, and scored the iron parts of the cover are galvanized.

highest points at the July exhibit of the Columbian The United States cream separator, shown at the | highest points at the July exhibit of the Columbian | The United States cream separator, shown at the |
| :--- | :--- |
| Exposition at Chicago. The Cooley system of setting | |$|$ extreme left of the picture, furnished only by this company, has not been on the market as long as some other devices of this character, but it is claimed to be superior to the older machines. It is a centrifugal machine which is said to separate the cream from the milk so thoroughly that the skimmed milk will in no case show more than a trace of fat, and in many cases absolutely no fat.

The capacity of the creamery machines of this class runs from 1,300 to 2,300 pounds of milk per hour, and the dairy sizes from 300 to 600 pounds of milk per hour. The skim milk is discharged from the bowl at the bottom, and is delivered from a spout at the side of the frame into a tank, obviating the neces sity of siphoning the milk or water out of the bowl.
All who are in any way interested in the business of handling milk or cream should send for one of the company's illustrated catalogues.

Fall of a Meteor.

At 4 o'clock in the morning of July 29 the heavens ahove Suffern, N. Y., became sud denly suffused with an unusual glow. Soon a large bluish-tinted ball made its appearance, high in the northwest, and pursued an apparently slow but steady course earthward to the southeast; lighting up the whole neighborhood and leaving in its wake a long, bright, gauzy tail. As it approached the zenith its speed seemed to increase. Suddenly it burst into a multi milk for raising cream consists of putting the milk |tude of variously colored fragments, which were disinto cans, which are submerged and water-sealed in persed in all directions. The glow ceased a moment the creamers, the milk being automatically skimmed afterward, and then the report of the explosion was while the cream is raised. The processes are covered by patents, which have been sustained by the U.S. Circuit Courts in Iowa and Vermont, and within two months by the U. S. Court of Appeals, New York. The Cooley creamer is made in several different styles, the favorite one having an elevator attachment, in which there is no lifting of milk cans by hand. The process of skimming the cream from the milk with this apparatus is so rapid that the average time is less than one minute per can.
The milk cooler and aerator is shown at the extreme right. This is an indispensable article to all dairymen who sell their milk, as it will cool the milk to any degree desired in less than two minutes. The square
heard. One of the pieces of the meteor fell, north of Mahwah and two miles south of Suffern, in a field of oats belonging to Farmer Conrad. It formed a hole in the ground, four feet in diameter, like a newly-dug well, the sides of which' had fallen in. The grain round the edges of the cavity was burned to a crisp, and the leaves on one side of an apple tree in the vicinity were shriveled as if by intense frost Three miles north of Suffern another piece of the shat tered visitor fell. Two pieces only of the remains have thus far apparently been discovered.

The Cherbourg "digue" is 4,120 yards long, having two arms inclosing the entrance.

A New Yorker's Impressions of the \mathbf{W} (Continued from page 163.)

the admission gates) is the endless sidewalk railroad operated by electricity, which extends over the entire length of the pier. For five cents a person may ride upon it all day if desired. In approaching the buildings from the pier, the splendid group of statuary surmounting the Peristyle appears in strong relief against a blue sky, while the other single statues on either side and underneath form an appropriate setting or surrounding. Once the Peristyte is reached, the mas siveness of its three rows of columns becomes appar ent and the solid pavement underneath brings one to a realizing sense of Venice. A paved arched bridge is provided in the center of the Peristyte over a narrow waterway which connects the basin of the Court of Honor with the lake. Steam launches pass through this and under the bridge in going from the Court of Honor to the lake. The Peristyle fronts directly on the lake, making a pleasant place to sit on a hot afternoon, as the cool breezes from the lake draw through between theicolumns.
After crossing the floor of the Peristyle inward, the first unobstructed view of the various buildings in their majestic proportions is had. Close to the spectator at the lake end of the Court of Honor, isolated on a pedestal rising out of the water, is the mammoth gilded statue of the Republic, facing westward toward the Administration building, which causes the statue to be seen first from the back. The statue is 60 feet high and cost $\$ 25,000$. The two arms are raised upward parallel with each other, one hand holding a flag and the other a staff with a liberty cap on it. It is very imposing and can be seen from nearly every point of view. To the right of the Peristyle as one enters from the lake is the Palace of Music, decorated with statues
of heroicsize to correspond with those on the Peristyle. of heroic size to correspond with those on the Peristyles.
This palace is 130×250 feet in size and its interior conThis palace is 130×250 feet in size and its interior con-
struction is so perfect that it is said to possess the struction is so perfect that it is said to possess the
finest acoustic properties for orchestral purposes of any hall in the United States ; 2,500 persons can be seated in it. It is here that Theodore Thomas held seated in it. It is here that Theodore Thomas held
his daily concerts, which were so little appreciated his daily concerts, which were so little appreciated
by the general public. At the other end of the Peristyle, opposite and symmetrical with the Palace of Music, is the Casino, in which a restaurant is located equal in every respect to those of New York. On the south side of the Casino, secured to the wharf, is the famous Santa Maria, a complete copy of the Columbus ship, and it is usually crowded with visitors.
There is another direct connection here with the lake. The huge Palace of Agriculture stands west of the Casino, and the waterway between the two is bridged over. Right near the Santa Maria, secured to the dock adjoining the Agricultural Palace, are the other caravels of Columbus, the Nina and Pinta, admittance to which is refused. On the other side of the water, opposite these vessels, standing apparently on an island, is the reproduction of the La Rabida monastery, containing many interesting relics of Columbus. This building eontrasts strongly in its simplicity with the grand architecture of the adjacent buildings. Passing westward along the south side of the basin, directly in front of the long facade of the Agricultural Palace, an excellent view of the Palace of Liberal Arts, bounding the opposite side, is obtained, and also glimpses of the Palaces of Electricity and Mining, while at the extreme western end the stately gilded dome of the Administration building looms up as a fitting background and center for so many buildings. The bright greensward between the walk in front of the buildings and the pier line, relieved at boat landings by massive white statues, forms a pleasing contrast with the white of the buildings.
Walking still westward until the west end of the Agricultural Palace is reached, another waterway is seen at right angles to the length of the basin, and seen atright angles to the length of the basin, and
parallel with the lake front. Looking south, the Columbus monument and colonnade, imitating somewhat the Peristyle, is seen, and north is observed in the distance the Wooded Island and the dome of the Illinois State building, while the long western facade of the Palace of Liberal Arts shows its size to advantage.
Standing in the open plaza directly in front of the Administration building, at the western end of the basin, the expensive and grand MacMonnies fountain (called the Columbian fountain) is the most conspicuous object; its odd shape and curious combination of picturesque statuary mark it truly as one of the chief works of art in the Exposition. The color is white like the buildings. On each side of this fountain are two large electricfountains whose basins are sixty feet in diameter.
In the daytime these fountains do not present a attractiveness, but at night the multi-colored illumined fountain is particularly beautiful. On the eastern porch of the Administration building, facing the basin and lake, is St. Gaudens' beautiful statue of Columbus in heroic size. The view from the balcony of the eastern porch of this building is particularly pleasing, bringing in, as it does, the fountains, the basin, lined on each side with beautiful green lawns,
and the artistic facade of the Agricultural Palace,
while in the distance can be seen the statue of the Republic and the lake through the columns of the
Peristyle. South of the Administration building Peristyle. South of the Administration building
stands the immense Palace of Machinery, with its long row of Corinthian columns, and on the north are the Mining and Electrical Palaces, simple but harmonious in shape and idea with the other larger buildings. In the porch of the Electrical Palace is a beautiful statue of Franklin drawing electricity from the clouds. West of the Administration building is a large open space, bounded by the Central Railroad depot, an imposing building and very large. In the gallery of this building is a spacious writng room, equipped with every facility for correspondence. The building seemed to be too large for the purpose, and there was much waste room. Just west of this are the train sheds for thirty-five tracks, having accommodations for thousands of visitors. Not more than one-
third of the tracks were in active use. Coming to the Fair in this way, via the Illinois Railroad, the visitor is landed close to the Administration building, and has for a first view the delightful vista of the basin and lake from the eastern porch of that building.
The aluminum bronze dome of this building, shining ike gold, looming up 275 feet above the ground, can be seen from a great distance, and is particularly conpicuous at night when covered with rows of hundreds of incandescent lights. The designers have allowed ample space between the buildings properly to show them off, and while apparently near together, as observed by the eye, they are in reality separated some distance apart, as can be proved by attempting to walk from one to the other.
One noticeable difference from the Centenial Expoition in 1876 is the absence of cheap and rapid comnunication between these large buildings.
Electricity is used so successfully in propelling boats bout the lagoons and canals that it is surprising elec ric carriages were not introduced to take visitors about the grounds for a small sum. The need of such imple, direct transportation should have been thought of. The only method adopted is the use of rolling chairs, to be hired at 50 cents per hour, or electric aunches at 50 cents a round trip. The rolling chair privilege has proved to be somewhat of a failure thousands preferring to walk rather than pay the high figures. At Philadelphia one could reach any building for five cents by frequent trains. In my next some of the notable exhibits will be described.

MEETING OF THE AMERICAN ASSOCIATION AT

The concluding portion of Dr. Hovey's report is as follows:
biloxi indians, of louisiana.
Prof. J. O. Dorsey, chairman of the Anthropological Section, described a peculiar tribe of aborigines that he visited in 1892 and 1893 for ethnological study. He said that the name "Biloxi" was a corruption of the name they gave themselves, and which simply meant the First People. They were known to have lived in 1669 at Biloxi Bay, Mississippi; but in 1763 they removed to Louisiana, and of the entire tribe only seventeen individuals remain alive. They formerly existed in three divisions, named for the deer, the grizzly bear, and the alligator, and each of these branches refused to eat the meat of the animal whose name they bore. Among social peculiarities may be mentioned the fact that a Biloxi cannot marry his wife's aunt or niece, but might marry her sister, differing in this from the Sioux and other tribes. They hold to a form of transmigration. For instance, the spirit of a deer revived and took the body of another deer. Thunder stories should only be told on a fair day. Hummingbirds always tell the truth, and signs from them are regarded as sacred. Various superstitions were described. The Biloxi language appears to be the oldest of the Siouan family. There are linguistic proofs that the Biloxi, Hidasta, Tutelo, and Winnebago dialects were offshoots from a parent stock, or at least that those speaking them dwelt near each other. But by careful investigation it appears that 1,500 years must have elapsed since their separation, and that it took place in Virginia. In this connection, the fact may be mentioned that Dr. Washington Matthews entertained the section by rendering speeches, war songs, and sacred songs of different Indian tribes, by the aid of the phonograph. He had his own cylinders. His account of the difficulties of inducing the Indians to speak or sing into the instrument were amusing.

bear and wolf stories.

For forty years Prof. W. H. Brewer, of Yale College, has been a steady attendant on the meetings of the A. A. A. S., and always has something bright and original to say. This time his theme was the instinctive interest children take in stories about bears and wolves. Nothing can be told them about lions, tigers, leopards, or cats that so fascinates them as the class of stories named above. He has repeatedly experimented
on this matter with very young children, even as young
as five years, and has never found their interest to flag s long as he was willing to talk about bears. He told a child five years old a story about a grizzly bear that ed on the carcass of a whale near his camp on the Pacific coast, and when he saw that boy a year later he climbed on his knee and demanded the same story over again. Bear stories never grow old. Children may forget about Samson and the lion, but never about the she bears that revenged the bald-headed Elisha. To some extent the same interest is manifested in wolf stories, e.g., the fascinating tale of "Little Red Riding Hood." Now, why is so much interest taken in these animals? Two explanations may be offered. One is that it is entirely a matter of education, due to the consecutive traditions of the nursery, and the place they have in juvenile literature. The other is that this interest is instinctive. The latter is the true explanation. The origin of instinct is a mooted question among naturalists. Most evolutionists have held it to be due to the inheritance of acquired experience, memory, habits, and wistes. This is now denied by naturalists of certain shools, but held to by others. Our own belief is that the matter now considered belongs to inherited memory. Bears and wolves have been the most destructive of all wild beasts known in our latitude and climate. The destruction of children by these animals in parts of Europe is still more renarkable. Formerly it must have been very great, and must have made a permanent impression on the mind. We know that several of our finest breeds of dogs were originally evolved as wolf dogs. The fear inspired by bears and wolves in the childhood of our civilization, and the education of successive generations in this fear, descends to us as an inherited memory, or instinct, of sufficient force to impart a fascina tion to all stories about them.
Among papers read in other sections the following may be named as attracting special attention: "Natural Gas from New Lisbon, O.," by W. A. Noyes. A Tempered Steel Meteorite," by E. Goldsmith. Negative Lightning," by W. LeConte Stevens. "The Rotating Disk in Photometry," by E. S. Ferry. "The Latitude Variation Tide," by A. S. Christie. "Automatic Fire Sprinklers," by D. S. Jacobus. Use of the Name 'Catskill' in Geology," by Prof. J. J. Stevenson. "The Fossil Sharks of Ohio," by E. W. Claypole. "Photography as Applied to Record ing Micro-organisms in Artificial Cultures," by G. F. Atkinson. "Lichens of the Black Hills," by T. A. Williams. "The Roots of Orchids," by Prof. M. B. Thomas. "Relations of Production and Price of Sil ver and Gold," by Henry Farquhar.
The total number of lectures, addresses and papers read this year was 179, many of which were doubtless as interesting as those that happened to arrest the writer's attention. All the more important ones will appear in the published proceedings of the society. Nothing more is now attempted than to give a kind of bird's eye view of the great annual gathering of men of science, and some idea of what they talked about. The entire number in attendance as registered was 290, a less number than has usually been enrolled. It had been hoped that the proximity to Chicago and the World's Fair would attract a larger number; but the reverse has proved to be the case. So many congresses of one kind or other, and such diversified objects of interest at the Fair as may there be seen, served to draw away from the meeting at Madison.
Grateful mention should be made of the charming hospitality shown by the citizens, the faculty of the University, and the State officials. Never on any previous occasion has the Association had such ample facilities of every kind at its disposal, and such quiet yet spacious quarters for its sessions. The illumination of the lake shore on Monday evening was as grand as could well be imagined. The various excur sions to localities of interest were well planned and admirably managed. Among the points thus visited were the Effigy Mounds, along the shores of Lake Mendota; the Driftless Area of Wisconsin; 'the singuar walled lake known as "The Devil's Lake;" the various kames, eskers, and drumlins telling of the ice age and its results; and most wonderful of all, the pic uresque and instructive Dalles of the Wisconsin.
The principal officers chosen for the next meeting are: As president, Prof. Daniel G. Brinton, of Media,
Pa.; vice presidents, Section A, G. C. Comstock; Section B, W. A. Rogers; Section C, T. H. Norton Section D, Mansfield Merriman; Section E, Samue Calvin; Section F, S. H. Scudder; Section G, L. M. Underwood; Section H, Franz Boas; Section I, Harry Farquhar. The office of permanent secretary is held by Prof. F. W. Putnam; Prof. H. L. Fairthild, of Rochester, N. Y., is general secretary; and Prof. J. L Howe, of Louisville, Ky., is secretary of the council. The treasurer of the association is Prof. William
Lilly, of Mauch Chunk, Pa. The next meeting will be held in some Eastern city, probably in Brooklyn, N. Y., although it is not yet determined.

I'He total cost of the Suez Canal exceeded £20,

The Great Depression in Manufacturing

Industries.

The effect of the prevailing monetary stringency or general depression in trade on manufactoring industries throughout the country becomes a matter of interest at this time, in view of the numerous reports of the closing of manufacturing establishments.
The earlier stage of the squeeze in credits, as is usually the case, was seen in the extreme liquidation in Wall Street, and the second phase, in logical order, has been and is being observed in its effect on manufacturing industries.
Returns have been received concerning nearly 800 establishments, nearly all of which are of more or less prominence, and all of which have closed their doors for one cause or another since June 1. The report likewise includes the best available information concerning the discharge of the number of employes of silver mining companies in the far West, as well as of employes rendered idle by the shutdown of iron ore mines. So far as changes of the character referred to at a few of the larger business centers are concerned, many reports by trade unions or statistical bodies having access to such data have been employed.

A summary of the results of the investigation shows that no fewer than 463,000 industrial, building trades and mining employes have been thrown out of work within the period specified, due to the absolute closing of the establishments at which they were engaged or the shutting down of work at the mines.
Of this large aggregate no fewer than 80,000 , or 17 per cent, were engaged in the production or the manufacture of iron and steel: 55,000 , or 12 per cent, in woolen, silk and cotton mills or in the manufacture of clothing; 50,000 , or 11 per cent, in leading lines in building trades at a few of the larger cities; 44,000 , or 9.5 per cent, in silver mining and allied industries, and 41,000, or 9 per cent, in coal mining and coke producing. Of the aggregate of these five classes, 270,000 , it is possible that as high a proportion as 30 per cent are customarily idle for a short time at this season of the year.

It is noteworthy that out of the approximate aggregate of 800 establishments reported shut down about 79 per cent declared this action is taken because of the prevailing "depression in general trade," a "lack of orders," "stringency in the money market," or "inability to make usual discounts due to tight money," while only 6 per cent state that the shutdowns are due to usual vacations at this season of the year, or owing to the necessity for making repairs or for taking inventories. Strikes or wages disputes are given in explanation of the closing down of only 2 per cent of the establishments reported, while failures in business or other embarrassments, fires or other disasters, account for the shutdown of about 3 per cent of the concerns reported. Less than 1 per centr state in so many words that shutdowns are so many words that shutdowns

When it is realized that this report, complete as it may be, is quite incomplete so far as the country at large is concerned, even with respect to manufacturing establishments which have wholly closed down for one reason or another, and that it takes no account of the thousands of reductions of working forces in other manufacturing establishments, in commercial houses, or by transportation organizations, large and small, it becomes plain to the casual observer that there are in all probability no fewer than 800,000 or 900,000 idle employes of manufacturing, commercial and other enterprises at this time who were nearly if not all actively employed three or four months ago, and that not more than from one-sixth to one-fifth of this aggregate may fairly be said to have bean out of work during the past two months owing to the "customary midsummer shutdowns," or to the necessity for repairs or to taking of inventories, even though the not infrequent midsummer wages dispute in the iron and steel industries be taken into account.-Brad street's.

Promethínm.
This is an alloy containing' 60 per cent of copper, 38 per cent of zinc, and 2 per acint of aluminum. These metals are melted together and sodium or other metal lic fiux capable of oxidation at the temperature of the mixture is stirred in. The quantity used should be sufficient to fiood the surface of the mixed metals. The sodium increases the tenacity of the alloy and prevents deterioration by exposure to air or sea water. The de gree of hardness may be varied by varying the propor tions of the ingredients. The alloy is termed "pro methium " or "titanic metal."

THE QUAKER CITY GRINDING MILL AT THE

 EXPOSITION.In section E of the Agricultural annex at the ColIn section E of the Agricultural annex at the Columbian Exposition may be seen one of the widely
known Quaker City grinding mills, manufactured by A. W. Straub \& Co., of Philadelphia, for grinding corn and cobs, feed and table meal. The concern was es tablished a quarter of a century ago, and these mills have been brought to a high degree of perfection, the most recent improvement being the adoption of a thrust ball bearing for the back end of the spindle This improvement can be added, when desired, to the mills already out. In the illustration the machine is shown in section grinding oats to lubricate the disks,
while grinding corn and cobs and mixing the product. The cobs fall a t one end and slide at the other into the case around the "drunken" cir cular saws, which cut the cobs into three or four sections, the teeth on the sides sawing the sections fine, when they pass through the mill with the corn.
The double reduction grinding disks, an enlarged section of one of which is shown in the small view, are cast of steel and readily interchangeable. The conveyor flights upon the sawtoothed inner edge act like a fan to draw cool air and grain into the mill at a very low speed, the grain being first cut fine, then rolled, mashed and mellowed, so that it enlarges nearly one-third in bulk. In the picture, the location of the grinding disks is indicated at 1 , the training ring, 4, being on a universal joint, free to move every way, except to revolve with the running disk. The crushing saws, 2, are formed on a sleeve cast fast with lead to the spindle, 5 , which is of steel. The degree of fineness is regulated by turning a small
hand wheel on the end of the temper screw, and there hand wheel on the end of the temper screw, and there
fal and injuriousinsects, field trials of implements, and stock shows, while the second part is a history of the agricultural exhibit and agricultural products of the United States. In the preparation of the first part of the report Professor Riley was aided by Messrs. Amory Austin and C. L. Marlatt, while the second part, in addition to Professor Riley's reports on the internaional congress of agriculture held during the Exposition, and upon injurious and beneficial insects in the United States, contains reports by experts, mostly connected with the Department of Agriculture, upon such topics as the meat industry of the United States. associated dairying in New England, the leather pro duction of America, tobacco, viticulture, vegetables, cereals, etc. Some 219 cuts and 77 plates are included n the two parts of the volume.
The chapters in the first half of the report upon the agronomy and agricultural statistics of France and her methods and appliances for agricultural instruction are of great interest and value to the agriculturists of this country, as exhibiting the wise liberality with which the French republic fosters agriculture and the generous provision which the state makes for instruction in the science, many features of her system, Professor Riley thinks, being well worthy of our imitation. The Minister of Agriculture in France is a cabinet officer, and liable to frequent change, in common with the other ministers of the state; but his chief subordinate, the Director of Agriculture, is practically a permanent officer, the present (1889) incumbent hav ing held the office for some 20 years. Three other di rectors also report to the Minister of Agriculture, charged respectively with forestry, the stud (Haras) and waterworks. There are also various councils committees and commissions for the consideration of technical affairs, such as the superior commission upon the phylloxera, the consulting committee upon epizootic diseases, etc.
Agricultural instruction is provided for by the Na tional Agronomic Institute at Paris, three national schools of agriculture, one national school of horticulture, twenty-seven practical agricultural schools, seven farm schools, thirteen primary agricultural schools ninety departmental professorships of agriculture and courses in normal schools, professorships of agricul ural chemistry in various faculties of science, seven teen counses of agriculture in lyceums, colleges, primary schools, etc., and fifty-six agronomic sta tions and agricultural laboratories. This generous provision puts agricultural in struction within the reach of almost all, and the recently instituted order of the Merite Agricole is held up to all sincere agriculturists as a goal to be striven for only second to the historic decoration of the Legion of Honor.
That the extent to which scientific agriculture is fostered in France is not exag gerated is shown by the magnitude of the agricultural interest. With a population (in 1886) of a little over thirty-eight mil lions, the capital employed in agriculture in France exceeds $100,000,000,000$ of francs or about $20,000,000,000$ of dollars. The figures are almost inconceivably large, and only intelligible when it is remem bered that the great majority of the hold ings of land in France are very small, and that therefore the closest cultivation is practicable or rather necessary. Of 5,670, 000 holdings in France, 2,167,000 occupy less than one hectare (1 hectare equals $2 \cdot 47$ acres), while only 30,000 occupy over 100 hectares (247 acres), almost half the holdings being thus less than three acres in extent. A comprehensive exhibit of the appliances for agricultural instruction in France was made at the Exposition, and other countries made similar but less cou prehensive exhibits of the same subject. All of these the report gives a succinct account, but the greater part of the chap ter on this subject is devoted to France, and deservedly so, for, says the author, "probably in no other country in the world has agriculture received greate attention from the government."
The second part of the volume forms
are three discharge spouts with tin covers, allowing the desired one to be opened, either iside or downward.

Agriculture in France.

The fifth and last volume of the reports of the United States commissioners to the Universal Exposition held t Paris, in 1889, has recently been distributed from the State Department. It is a profusely illustrated volume of 900 pages, and constitutes the report of Professor C. V. Riley, as expert commissioner for the eighth group and representative of the Department of Agriculture, on the agricultural phases of the Exposition. The volume is divided into two parts, the first devoted to agriculture, vine cultivation and wine making, uso- exhibit of certain phases of agriculture in the United an exhibit of certain phases of agriculture in the United
States, each chapter written by an expert. The monographs composing this part of the report were trans lated into French for distribution during the Exposition, and their preservation in English in this perma nent form is to be highly commended, since they form the most complete and modern treatise upon American scientific agriculture we have seen. The volume has an appendix of several pages devoted to expert opinion from French and English newspapers on the American exhibit, showing a high degree of appreciation of it. The report as a whole is a most valuable contribution to agricultural literature, and many of its chapters might with advantage be reprinted separately for special distribution.

THE WORLD'S COLUMBIAN EXPOSITION-THE NORTH

 CANAL AND BRIDGE.The Fair grounds contain many picturesque bits in which the buildings, statuary and the water of the lagoons and canals form happy combinations. We present herewith a view of the bridge which affords a passageway between the Electricity building and the Manufactures building. This bridge begins jus beyond the luminous fountain at the end of the lagoon, and is the main thoroughfare to the great Manufactures building. The body of water in front, over which the sharp-prowed gondola swiftly skims, is the North Canal that empties into the main basin, which is at right angles to it. At the right of the picture the dome of the beautiful Agricultural building will be noticed. The large column directly over the bridge is one of the six rostral pillars which are placed at intervals around the main basin. The pillar is ornamented with the prows of galleys and is surmounted by a statue of Neptune. The balustrade which runs along the Manufactures building from north to south is decorated by a number of large plants. The magnificent tlight of steps afford a landing place for the launches and gondolas. Balustrade, bridge, col umn and statuary are all covered with the dazzling white staff which has given the Exposition the name of the "White City." As will be seen by the illustration, each arched entrance to the Manufactures building is covered by a small dome which is painted by an American artist. These little domes, which were introduced for decorative purposes, deserve careful study, as they are painted by the most eminent men in the profession. Blashfield, Reinhart Beck with Shirlaw, Coz with, Shirlaw, Cox,
Simmons, Reid, Simmons, Reid,
Weir, Melchers, F. D. Millet and Earle, each have specimens of their work upon the domes. The subjects, with one exception, are treated in the classical style, and represent the arts of peace and war. It seems almost impossible that this huge building would seat 300 , 000 persons. The architect of t he architect of the Manufactures build-
ing was Mr. Geo. B. ing was Mr. Geo. B
Post, of New York, Post, of New York,
its length is 1,687 feet, and it is 787 feet wide. It is said to be the largest roofed building ever erected. In the con struction of this mammoth edifice $17,000,000$ feet of
lumber, $12,000,000$
pounds of steel, $2,000,000$ pounds of iron and five car loads of nails were employed. The glass for the roof filled forty cars. The roof is 212 feet 9 inches high.

Aluminum Flashlight.

Professor Glasenapp emphatically advocates the use of aluminum in place of magnesium for the production of flashlight. He states that aluminum, if employed in the form of bronze powder, is equal to magnesium as a source of light in taking photographs by flashlight, and that it is much cheaper then the latter. The following mixture is recommended by the author:

> Sulphide of antimony
> Potassium chlorate.
> .21, 7 parts by weight. $. .64,5$

In preparing this mixture the same precautions are to be taken as in the case of magnesium flashlight. As the rapidity of combustion of the above mixture, one seventeenth of a second has been found out. Two grammes of the mixture were burnt in a small heap, 2 cm . long and 1 cm . wide. With regard to the chemical intensity the author has found, by exposing gelatine plates beneath a Warnerke actinometer to the light of the above mixture and to that of other mixtures prepared with magnesium, that by employing equal quantities of metal the aluminum light is superior to the magnesium light, though not very considerably. The speed of combustion is slower (about one-fifth of a second) if the following mixture is used :

Aluminam powder.
Potassium chlorate.
Potassium chlorate.

In no branch of the electroplaters' art has there been so much progress made in recent years as in that of copper plating. With improved solutions and methods, copper plating is becoming a more important industry every day, and the following notes on some new applications and methods may prove of interest to your readers:
The application of copper electrically deposited to protect and ornament architectural iron work is, perhaps, the most important use and deserves consideration first. This use is now firmly established and a plating department is recognized as a necessary adjunct to all large iron works. There is no paint or other like protection known that will prevent iron exposed to the weather from rusting in time. But when iron is covered with a sufficiently heavy coat of copper it is rust proof. The amount of copper required to do this varies. For rolled sheet steel or iron where the surface is smooth and free from sand holes, from 8 to 10 ounces of copper per square foot of surface will be sufficient. Where rough cast iron work is to be plated, 14 to 16 ounces will be required. These amounts are greater than is generally given in books treating on this subject, but from practical experience the writer has found that to give a protection that will last as long as the structure will stand, and to prevent entirely any ap pearance of rust, the above amounts are necessary The first cost of copper protection is, of course, greate

THE WORLD'S COLUMBIAN EXPOSITIGN-THE NORTH CANAL AND BRIDGE.
of cleaning the cast iron and the use of two solutions in depositing the copper, as the object, after the varnish was dry and the plumbago applied, was placed directly in the acid solution. This method gives a coating that is not firmly attached, and is liable to be torn off on coming in contact with any hard object. Examples of this system of plating may be seen on the lampposts of Paris and on the beautiful fountains of the Place de la Concorde and of the Place Louvois. The method used in this country deposits the copper directly on the iron, and a sheet of steel or iron so plated may be bent or twisted into any shape without the copper becoming detached. To attain this result, the greatest are must be taken in cleaning and keeping clean the ron surfase before immersion in the plating solution, in this case a cyanide one, which, when properly made, is run cold and deposits the copper in a bright state. The acid solutions have also undergone improvements, and copper can now be deposited at the rate of 20 to 25 ounces per square foot that is as malleable and almost as smooth as rolled copper. The density of current can also be much increased over what was formerly believed possible. The writer has deposited copper $1 / 8$ inch thick at the rate of 10 pounds per square foot in 24 hours. (The usual rate is about 8 ounces in 24 hours.) This would take only one-twentieth the time usually required for obtaining a shell in electrotyping. Another new application of copper plating is the manu facture, quickly and cheaply, in copper, of all kinds of raised mouldings and of artistic objects in bass-relief. This is done by first preparing thin sheets of copper by electrodeposition on a pre pared steel surface, then stripping them off and stamping the design, in relief, on them, and, afterstop ping off the face, backing them up in the bath with more copper to the requir ed thickness.
Signs are also made by electro-deposition ; but this is only a form of elec trotyping, although the finished result when nickel or silver plated is very beau tiful.
There are other minor applications of this kind that are new, but would take too much space to describe, such as the plating with copper of natural objects, leaves, flowers, etc., attached to brush and mirror backs. The brush or mirror and spray of leaves or whatever may be used, is rendered conducting by a new than paint, but this is more than compensated by its process, which does not include bisulphide of carbon lasting qualities, and in some instances, where there are in its application with its attendant dangers of explodifficulties in reaching the work to paint it, as in high towers, lighthouses, etc., its use would seem to be particularly indicated.
For inside work, where plating is used more for effect than as a protection, zinc, tin, or aluminum is generally added to the bath to give the copper a bronze appearance, and a coat of 2 or 3 ounces to the square foot will suffice. Electro-bronzing has been used extensively for ornamenting inside iron work in recent years, much more so than copper plating has been used to protect outside work, which is comparatively a new use for copper plating. But this use is extending all the time. Architects are quick to see the advantages of an impervious coat of copper on iron work, which overcomes the most objectionable features of iron for architectural use, rusting, and the constant expense of keeping it painted. A notable example of both kinds of plating will be seen in the new Bourse building, about to be erected at a cost of, outside of the land, $\$ 1,000,000$, in Philadelphia. The outside iron work, such as the window frames, will have a heavy protective coat of copper deposited on them and the inside work will be electro-bronzed.
As I have said, great improvements have been made in the solutions and methods used. In France, where copper plating was first used to protect iron, the copper was not deposited directly on the iron, but on a coating of varnish rendered conducting with plumbago, or powdered copper, applied to the iron surface and allowed to dry. This was done to avoid the difficulties
sion and fire.
The manufacture of metallic papers by depositing copper on a prepared surface and then pasting paper thereto and stripping the two off together.
The latest and most interesting proposed use of copper plating is the protection of ships' bottoms. By a recently patented method copper can be applied quickly and cheaply in sections, which overlap each other, to the hull of the vessel during construction, or t may be applied to vessels already built.
The above are a few of the new applications of copper plating, and serve to show the progress that has been made in the art.
J. D. Darising.

Mr Thos. H. Cox, of Chamberlain, South Dakota, urnishes us with the description of a new artesian wel lately drilled at that place. The well is situated 1,342 eet above the sea level, and is about 200 feet from the Missouri River. The well is 8 inches in diameter and is 662 feet deep. The drilling consumed $173 / 4$ days and was proceeding in the usual manner without meeting any obstruction until August 2, when a light flow com menced and the drilling was continued until 4 A . M. the next morning, when the tools were thrown out. The pressure increased until the column of water ejected reached 13 feet 2 inches in height. This is the third artesian well in the city, and will be utilized for power for a flour mill and electric light plant. One of the other wells, 6 inches in diameter and 760 feet deep, exother wells, 6 inches in diameter and 760 feet dee
erts a pressure of 117 pounds to the square inch.

THE WORLD'S COLUMBIAN EXPOSITION-A VIEW FROM THE FERRIS WHEEL.
The charm of the Midway Plaisance is due to that strange medley of colors and costumes that change each minute like the pieces of a kaleidoscope. In this truly cosmopolitan street children of the desert, savage warriors from Dahomey, tall Copts, swarthy Nubians and crafty Cairenes are brought into curious juxtaposition with the electric scenic theater, the ice railway and the Ferris wheel-all the products of the civilization of the nineteenth century. The chance of a trip around the world does not come to all ; but here are collected together what would require the expenditure of months of time and thousands of dollars to see elsewhere. The whole world, civilized and uncivilized, has been laid under world, civilized and uncivilized, has been laid under
contribution, and the result is a collection of shows which is absolutely unique, and which give perhaps as keen a sense of mental refreshment and mental ac-
amid dynamos and rock drills, looms and wäl paper, until the head whirls and the tired feet almost refuse to obey. Passing under the Stony Island viaduct, we are in a new world, which, while it does not pretend to instruct, still conveys quite an amount of real knowledge, though carefully enshrouded in a sugarcoating of amusement.
The most conspicuous object by all odds is the great wheel which rises a half mile below. Chicago has a yearning for the superlative degree even more than Eastern American cities. This is abundantly shown by the tall buildings which grace this city; but it is a ucky chance that a tower was not selected as the great feature, for in that case Chicago would never have rested until Eiffel had been out-Eiffeled by a tower 2,000 feet high, and as Chicago comes by her title of the "Windy City" honestly, it would be impossible to state the consequences. 'This is the biggest wheel on earth, and is devoted to giving pleasure by swinging

Cairo Street is the theater which presents the national (?) dances of Egypt. These dances are reprobated by ministers and moralists, but of course it is necessary or them to see them "just once" before they can paint their sinfulness in lurid characters. And then they are "national."
Just beyond the Woodlawn Avenue viaduct is the German village. The German village partakes more or less of the German character, the tower of the German museum rising picturesquely above the trees suggests Nurembeng or Ratisbon. The greater part of the German village is taken up by a beer garden: Here the Germans and many who are not Germans quaff the cooling beverage and listen to one of the two German military bands which play delightfully. Beyond the half-timbered German house the thatched roof of the Dutch settlement or Javanese village, as it roof of the Dutch settlement or Javanese village, as it
is usually called, will be noticed. In this village dwell
the curious little people who have won all hearts by

THE WORLD'S COLUMBIAN EXPOSITION-VIEW FROM THE FERRIS WHEEL.
quisition as any portion of the Fair, except the effect of the architecture, which is supreme.

The Midway Plaisance comprises a strip of land between Fifty-ninth and Sixtieth Streets, extending from Stony Island Avenue, which borders the Fair proper, to Cottage Grove Avenue. It is here that all the concessions in the way of shows have been granted, with the exception of the Esquimaux village, which requires the use of a pond, and some of the ethnological shows, which are properly placed near the Anthropology building. There are several entrances to the Midway Plaisance, and it is also reached by the open passageway near the Woman's building. Admission to the grounds proper also includes the Plaisance. A viaduct has been built to allow the Illinois Central tracks to cross, and some of the streets also cross the Plaisance, as will be seen by our bird's-eye view. The Plaisance is a particularly delightful place to spend an hour or two after fatiguing sight-seeing, and the time is well spent, as the Plaisance is full of knowledge which can be pleasantly acquired. Let us suppose that we have been walking around for foue hours
the visitor up two hundred and fifty feet; in other words, it is a colossal merry-go-round ; for at the extremity of each spoke is attached a car, so that the visitor can make the whole revolution with safety.
Let us for once pay our fifty cents, start on our trip Let us for once pay our fifty cents, start on our trip
and examine the objects which the revolution of the big wheel brings into view. Looking toward the main Fair grounds, we get a fine bird's eye view of the Plaisance. At the extreme left, just by the viaduct, will be noticed a few people just entering the Cairo Street, which is on many accounts the most attractive feature in the Plaisance. Here the donkey boys scream " Yankee Doodle donkey! Bismarck donkey!" at the top of their voices, and describe in glowing terms the delights of a camel ride; but woe to the unwary who trust themselves on the back of this conveniently jointed animal, if they are subject to sea sickness, for the English Channel would prove a paradise in comparison ; but, luckily, twenty-five cents does not rent a camel for a very lengthy period. Egyptian goods of all sorts are sold in the street and it is a very good $\left.\begin{aligned} & \text { all sorts are sold in the street and it is a very good } \\ & \text { place to buy sonvenirs. A little tarther down the }\end{aligned} \right\rvert\, \begin{aligned} & \text { tering the St. Lawrence gateway (Drogheda), we ap- }\end{aligned}$
their natural and graceful manners. In the large hall plaintivances are given many times a day to the tive orchestra. The little matting houses are delightfully cool and the delicious tea and coffee of Java are dispensed by some of the 125 natives who people the village. The whole entertainment in the Javanese village can only provoke approval, and the dancing pavilion can be visited by ladies without the necessity of going out because of the immorality of the performance. Just this side of the second viaduct will be noticed the three odd-looking roofs of the Japanese bazar, where thousands of visitors buy souvenirs, for the goods are not only attractive, but the prices are low. Beyond the second viaduct will be seen the Libby Glass Company's furnace. The enterprise of this firm is shown by the erection of an expensive plant, and the small admission fee is credited upon any purehase. Here are shown the processes of glass blowing glass cutting, and glass spinning. To the left will be noticed the round tower of Mrs. Hart's Irish village. En-
proach Donegal Castle. In the green is a Celtic cross, and round it the merry Irish lads and lassies dance on moonlight nights to the sound of the pipes. Irish in dustry and Irish art are well shown in this inclosure Passing under the railroad tracks and the Stony Island Avenue viaduct, we emerge into the main Fair grounds.
In our illustration the Woman's building rises directly in front of the entrance to the Plaisance. Th towers of the Fisheries building may be seen in line over the Libby Glass Works, while on the left the homely dome of the Illinois State building is seen. At the extreme left is the Art Gallery, over the other end of the Woman's building is the Government building and on the extreme right rises the immense Manufac tures and Liberal Arts building, with the low dome of the Horticultural building in front.
As the great wheel revolves once more, let us ex amine the buildings on the right of the Plaisance The lofty minaret of the Moorish Palace rises in the foreground, while beyond the viaduct is the Turkish village, composed of several isolated buildings. Here are mosques and bazars, and a Turkish street filled with venders of rugs and cigarettes. In a small booth just beyond the mosque, "Turkish soft drinks" are advertised, but let the stranger beware of these Oriental compounds. Just before reaching the large panorama of the Bernese Alps will be seen the long, low Turkish theater. Our ideas of the dramatic art of the Ottomans will be very much modified after witnessing one of the performances. "A Marriage in Damascus" is very well rendered; a special man-he might under some circumstances be called an in-terpreter-makes pitiful attempts to give an English version of the dialogue and fails. Beyond the panorama is the Natatorium and the Vienna restaurant, which come in for a large share of patronage. James J. Corbett has just completed an engagement at the Natatorium. The Hagenbeck animal show is well worthy of a visit, and is conveniently situated just beyond the second viaduct. Here Miss Lilly, the dwarf elephant sulks, or rather did sulk, for she died recently, in a corner. The performing animals are really wonderful, and it is a strange sight to see a maned lion riding on a tricycle. He realizes his disgrace, and looks deprecatingly at the audience, as if to say, "How low I have fallen!" The Venice-Murano Glass Co. have a fine building opposite the Libby Company's building, and here they exhibit the manifold steps in the process of making some of the beautiful but fragile Venetian wares. The Blarney Castle next greets our eyes, and the bird's eye tour of the Plaisance is finished just as the wheel lands us at the platform, and the guard calls, "All out," and we pass down the Plaisance, and out to the Sixtieth Street station of the Illinois Central Railroad.
The Plaisance is Nijni-Novgorod brought to our very doors, and the curious street is even better, for the Plaisance contains a more heterogeneous collection of people than the great exchange of Asia and Europe can show, for here are also assembled the natives of America, Africa and Oceanica.

The Dog and the Bicycle.

A Broadway car bowled past Grace Church on a Sunday afternoon. A man stood on the back platform, turning every little while to encourage a big dog which trotted along behind the dashboard and apparently didn't mind the speed at all.
Sunday bicyclers infest Broadway and seem to find the broad iron strip for the cable a beautiful roadway. Behind the panting dog on the car track was a pneu-matic-tired bicycle. The rider sometimes got unpleas antly near the big dog, who barked vociferously to show his displeasure, but the wheel kept close to his heels.

Whether the dog knew the sort of tire attached to the wheel or whether he didn't will probably never be known, but as the car slacked up at Thirteenth Street the canine turned, and stepping aside, made a vicious snap at the slowly revolving wheel. His sharp teeth punctured the tire, the pressure drove out the air, and the rider found himself with a collapsed tire and a useless bicycle. By the time the rider discovered what had happened, the dog, relieved of his pursuer, was half a block away. The wheelman took to the sidewalk and pushed his machine home.-N. Y. World.

Fish oils.

The examination of a number of different fish oils demonstrates that the solid fatty acids are made up in the main of palmitic acid, with small quantities of stearic acid; the liquid fatty acids are not identical with any of the known acids : Asellic acid, $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{2}$, and jecoric acid, $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{2}$, isomeric with linolenic acid, to which the easy oxidation of the oils is due; both of these acids are oxidizable by alkaline permanganate of potassium solution, yielding characteristic oxy-acids; the ultimate analysis of the oxy-jecoric acid gave results indicating the presence of a third acid, possibly isomeric with linolic acid.-Dr. W. Fahrion, Chemiker Ztg.

POSITION OF THE PLANETS IN SEPTEMBER.

UPITER

morning star. No one will dispute his right to tak

 the first rank on the September planetary record. He fast regaining that brilliancy which at times is suffi with phene headings by his light. As the revolving earth draws nearer to him, it is safe to say that his surface will be scanned as it never was before. Recent discoverie have aroused an eager interest in this most important member of the system and in everything connected with his movements, the constant changes in his disk the number, shape, and revolutions of his satellites.Jupiter is stationary on the 19th, and then com mences to slowly retrograde or move westward, holding in this course beyond the end of the present year. This apparent change of movement in Jupiter is du to the superior speed of the earth in its interior course, as both planets circle in the same orbital direction around their common master, the sun.
Jupiter is to be found in the constellation Taurus here is no need of pointing out his exact position or his own superiority in light and beauty leaves him without a rival in his field. Still he has interesting neighbors, the Pleiades being a few degrees toward the northwest, while Aldebaran and the group of the Hyades are about the same distance to the southeast When the month closes Jupiter will rise about eight oclock in the evening and will be in fine position for observation.
The following are among the most interesting configurations of the satellites of Jupiter, and are selected from the Nautical Almanac. They are for an inverting telescope, and the exact hour to look for them is midnight after the given day
On the 5th I. is occulted, III. is on the left or western side of the planet, II. and IV. are on the right or east rn side.
On the 9th II. is making a transit, IV., I. and III. are all on the right and quite close to each other and to the planet.
On the 10th III. is making a transit, II., I. and IV. are on the left and quite close to each other and to the planet.
On the 12th I. is occulted, IV. and III. are on the ft and II. is on the right.
On the 15th the satellites are perhaps in the most avorable position for being all seen at once by low powers, IV. being on the left hand side and quite separated, II. and III. are on the right and nearer together. The same configuration occurs again on the 9th.
On the 20th I. is making a transit. III. and II. are near together on the left and IV. on the right.
On the 23d II., I., III., and IV. are all on the right. On the 25th II. is occulted, III. is on the left, I. and IV. are on the right.

On the 29th the configuration of the 15th, as given above, is almost exactly reproduced, and the apparent positions on the two dates are almost exactly identical. Those who have telescopes of sufficiently high powers may be interested to observe the eclipses of the first three satellites and the transits of their shadows over the body of the planet. In the case of the fourth satellite the position of the nodes is such that the satellite is not eclipsed at present, nor can its shadow be seen.

The moon, one day before the last quarter, is in conjunction with Jupiter on the 2 d at 1 h .10 m. P. M., being $3^{c} 56^{\prime}$ north. Four days after full the moon is again in conjunction with Jupiter on the 29 th at 7 h . $31 \mathrm{~m} . \mathrm{P}$. M., being then $4^{\circ} 47^{\prime}$ north. At this time the moon will here be on the eastern horizon, and when Jupiter rises, say one-half hour later, the two will form a charming picture.
The right ascension of Jupiter on the 1st is 3 h .56 m ., his declination is $19^{\circ} 20^{\prime}$ north, his diameter is $39^{\prime \prime} .6$, and he is in the constellation Taurus.
Jupiter rises on the 1st at $9 \mathrm{~h} .55 \mathrm{~m} . \mathrm{P}$. M. On the 30th he rises at $8 \mathrm{~h} .2 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.

venus

evening star. Her apparent distance from the sun increases very slowly as she follows and gains upon the earth. Venus sets at the beginning of the month about an hour and a quarter later than the sun and at the end of the month an hour and a half later. Her light gains in brilliancy about one-fifth during the month, but her southern declination, which increases very rapidly during the same time, will prevent her customed to regard her
From September 8 to September 11 Venus will be within three degrees of Spica Virginis, passing a little more than two degrees to the north of Spica.
The moon when a three days' old crescent is in conjunction with Venus on the 13 th at 12 h .19 m. A. M., being $0^{\circ} 30$ south. The resulting occultation of Venus will not be visible to us, as both moon and Venus will then be five hours below the western horizon, but on the evening of the preceding day, Tuesday, September 12, the crescent moon, Venus and Spica Virginis

The right ascension of Venus on the 1st is $12 h$ 44 m ., her declination is $4^{\circ} 12^{\prime}$ south, her diameter is $12^{\prime \prime} .8$, and she is in the constellation Virgo.
Venus sets on the 1 st at $7 \mathrm{~h} .42 \dot{\mathrm{~m}}$. P. M. On the 30 th she sets at $7 \mathrm{~h} .8 \mathrm{~m} . \mathrm{P}$. M.

SATURN

is evening star, but is rapidly approaching the sun Its distance from the earth is increasing and has nearly reached its maximum. During the greater part of the month Saturn may be said to be lost in the sun's rays. It sets quite soon after the sun throughout the month, at the beginning one hour and twenty minutes, at the end only twenty minutes or so.
The moon when two days old is in conjunction with Saturn on the 12 th at 12 h .47 m. A. M., being $1^{\circ} 48^{\prime}$ south.

The right ascension of Saturn on the 1st is 12 h .45 m . his declination is $2^{\circ} 25^{\prime}$ south, his diameter is $14^{\prime \prime} .8$ and he is in the constellation Virgo.

MARS

is evening star at the beginning of the month and morning star at the close. He is in conjunction with the sun September 4, 4 h .13 m. A. M., at which time he changes from evening to morning star. At the same time he is at. very nearly his greatest distance from the earth and shines with only about one-fortieth of the brightness of a year ago. Mars, though morn ing star, may be said, like Saturn, to be lost in the sun's rays, for even at the end of the month he rises only forty minutes before the sun.
The moon, a few hours before the change from old to ew, is in conjunction with Mars on the 9 th , at 8 h .50 m. P. M., being $2^{\circ} 7^{\prime}$ north.

The right ascension of Mars on the 1st is 10 h .49 m ., his declination is $8^{\circ} 42^{\prime}$ north, his diameter is $3^{\prime \prime} .8$, and he is in the constellation Leo.
Mars sets on the 1st at 6 h .32 m . P. M. On the 30 th he rises at 5 h .10 m . A. M.

MERCURY

is morning star at the beginning of the month and evening star at the close. He is in superior conjunction with the sun on the 20 th at $3 \mathrm{~h} .16 \mathrm{~m} . \mathrm{A}$. M. when he changes to the eastern side of the sun to commence his short career of evening star. An ex perienced eye might possibly pick up Mercury at the beginning of the month, but generally he will be invisible to the naked eye.
The moon one day before its change from old to new is in conjunction with Mercury on the $9 \mathrm{th}, 5 \mathrm{~h}$. 58 m. A. M., being $1^{\circ} 59^{\prime}$ north.
The right ascension of Mercury on the 1st is 9 h 4 m ., his declination is $11^{\circ} 42^{\prime}$ north, his diameter is $6^{\prime \prime} .0$, and he is in the constellation Leo.
Mercury rises on the 1 st at 4 h .15 m . A. M. On the 30th he sets at $5 \mathrm{~h} .56 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.
uranus
is evening star, not very far removed from the sun especially at the close of the month, and invisible to the naked eye.
The moon four days before the first quarter is in conjunction with Uranus on the 14th, at 1 h .55 m . A. M., being $2^{\circ} 14^{\prime}$ south.

The right ascension of Uranus on the 1 st is 14 h . 22 m ., his declination is $13^{\circ} 41^{\prime}$ south, his diameter is $3^{\prime \prime} .6$, and he is in the constellation Virgo.
Uranus sets on the 1 st at 8 h .
0th he sets at $6 \mathrm{~h} .54 \mathrm{~m} . \mathrm{P}$. M.
NEPTUNE
is morning star. This remotest member of the solar ystem is to be found about as far to the northeast of Aldebaran as Jupiter is to the northwest, but he will require optical aid to pick him up.
The moon on the day of her last quarter is in conjunction with Neptune on the 3d at 10 h .0 m. A. M., being $5^{\circ} 45^{\prime}$ north, and five days after full is again in conjunction with Neptune on the 30 th at 3 h .31 m . P. M., being $5^{\circ} 53^{\prime}$ north.

The right ascension of Neptune on the 1st is 4 h . 49 m ., his declination is $20^{\circ} 55^{\prime}$ north, his diameter is $2 " .6$, and he is in the constellation Taurus.
Neptune rises on the 1 st at 10 h .45 m. P. M. On the 30 th he rises at $8 \mathrm{~h} .47 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.
Mercury, Venus, Saturn and Uranus are evening tars at the close of the month. Mars, Jupiter and Neptune are morning stars.

THE HARVEST MOON
is the full moon which occurs nearest to the autumnal equinox. This year the autumnal equinox is on the 22d of September. The sun enters Libra and autumn commences September 22, $2 \mathrm{~h} .55 \mathrm{~m} . \mathrm{P}$. M. The September moon fulls on September 25, 3 h .23 m . P. M., and is, therefore, the harvest moon. The full moon next following, that is, the October full moon, is called the Hunter's Moon. The phenomenon known as the Harvest Moon is the, so to speak, coasting of the nearly full moon along the horizon at the time of rising, in consequence of which for several days pre ceding and following the day of full, the nearly full moon will have smaller intervals between its succes sive risings than at any other period of the year. This year the phenomenon of Harvest Moon will be particularly marked, and the lowest interval possible in New York, namely, 23 minutes, will be reached.

THE WORLD'S COLUMBIAN EXPOSITION-INTERIOR OF

 woman's building.The accompanying illustration shows the interior of the Woman's building, looking from the north corridor over and across the rotunda in the central part of the building. This building is two stories high, with a series of rooms on each side which open into this rotunda, both on the main floor and in the gallery. The rotunda is 70 feet long by 65 feet wide and reaches through to the roof of the building, where it iscovered with a skylight. The walls of this rotunda are hung with pictures exhibited by the United States, Great Britain, Germany, Austria, Italy and other countries, while the floor is occupied by forty or more cases in which there are displayed the choicest specimens of the handiwork of women in all parts of the world. Scattered about among these cases are pieces of statuary in marble and bronze. Across the south end of the building, seen in the distance in the picture, is the south wing, which is devoted to exhibits from foreign nations. The north wing, immediately back of the spot where the picture was taken, contains exhibits of the United States and also a few foreign exhibits. On the ground floor are salesrooms, together with other rooms devoted to the display of exhibits. Much of the southern end of the gallery in the south wing is devoted to an overflow exhibit room, and in this and the adjoining room, called the organization room, are the headquarters of fifty or more philanthropic and religious societies. Along the west or right-hand side of the gallery are exhibit rooms, record rooms, a library fitted up with much taste and the Connecticutroom. On the east gallery or lefthand side, as seen in the picture, are the Kentucky, Cincinnati and California rooms, each fitted up and furnished by women from these places. The California room is especially rich in the display of redwood, with which the room is entirely finished and noostly furnished. In the north wing of the building, immediately back of the corridor from where the picture was taken, is the Assembly room, in which all the meetings under the auspices of the Board of Lady Managers are held, and opening out of this is the model kitchen, whert frequent lectures and lessons in cooking are given. Since there have been threats of war between France and Siam, the Siamese exhibit in the Manufactures and Liberal Arts building has attracted more than usual attention. This exhibit was described in the Scientific American of July 1.

Dogs as Draught

Animals.
Among the reports from the consuls of the United States for July is the following, from the American consul at Liege, Belgium :
The first distinctive institution that attracts the attention of a stranger in Belgium is the working dog. From time immemorial this hereditary loafer has been given over to pleasure ; but, like certain other of the privileged classes in this revolving world of ours, he has had his day-at least in Belgium. Such amateur service as he has rendered in the past in aiding the shepherd, guarding the household, and rushing with sledges through the frozen regions of the north is too much in accordance with his instincts to be classified as labor; so it is here, for the first time in his history, that the necessity of doing something for which a natural repugnance is felt (and this, I believe, constitutes the essential difference between work and play) has been forced upon him; but, like the old noblesse, he accepts the change cheerfully and patiently performs his task. Sentimentalists, taking no thought of the man oreven of thewoman whoseburden he shares, may complain that he is greatly wronged; but sensible people must rejoice that he has at last been set to work and compelled to earn his own living.

Liege is a city of large wealth and great industrial activity, possessing the largest manufactory of machines and machinery in the world and employing as many horses as any other town of its size in Europe, and yet for every horse at least two dogs are to be seen in harness on its streets. They are to be met at all in harness on its streets. They are to be met at all
hours of the day, but in the early morning the boule-

THE WORLD'S COLUMBIAN EXPOSITION-INTERIOR OF WOMAN'S BUILDING.
morality is no longer known in Belgium-areformation which would in itself justify the harnessing of all the dogs in America.
The expense of feeding them where a number are kept or when placed, like horses, at livery is from- 5 to 6 cents per day, horseflesh and black bread forming the staple of their food; though here, as elsewhere, the maintenance of one or two in a family is practically without cost. The expense of shoeing, no small item to the keeper of horses, is also saved.
All the experiments of breeding which.have from time to time been tried for the improvement of horses are now being made to produce a dog of special fitness for harness. Newfoundlands and rough-coated St. Bernards are ruled out on account of their hair. The mastiff has been found too long in the back and legs, and it is thought a desideratum to graft the splendid chest and breathing capacity of the bulldog upon this stalwart stock. Markets are established, where they are bought and sold like their equine colaborers at are bought and sold like their equine colaborers at built and well-broken dog to sell for $\$ 20$ or $\$ 25$.
It is the fashion in America to bewail the loss of power at Niagara, though no thought is taken of that equal force which is running to waste at the very heels of the people. Since the days of Caligula horses have fed upon golden oats, and yet an energy which is free, always at hand, and aching to be employed is still everywhere ignored. Without having the census at hand, I assume that there is a general average of one dog to two electors in the United States, giving us, in round numbers, canine population of 7,000 ,000. Estimating the trength of a dog at 500 pounds-and itis a low es imate-we have an idle orce in America of 3,500, 000,000 pounds, or a power which, like faith, if once exercised could remove mountains. But it is not n its mass, but in the sim ple divisions in which we find it, that its value consists.
Though the inanimate forces are doing the heavy work of the world, a multitude of minor tasks to which they cannot be protably applied remain to be performed by man and is domestic assistants. For them the horse posses ses superfluous energy, and his maintenance is too ex pensive for the poor They are left, therefore, to this clean, cheap, noiseless, and intelligent animalthe dog-who, besides being out of business-for even hunting dogs are folowing hunting nobles into oblivion-seems to be spe cially fitted by nature to meet the requirement.
There is not an article of merchandise, from a ton of coal to a loaf of bread, sold in any of our cities which the use of his legs, had a perambulator so constructed might not be more advantageously delivered by dog that a Danish hound which had been his companion than by horses. The noise made by hucksters, parfor years could be hitched and almost concealed between the wheels, and now appears as regularly in his old haunts as any of his friends. The hound is not only as happy as when he loitered at his master's heels, but is manifestly proud of the service he renders him. Let it not be forgotten that the Belgians are among the most refined and cultivated people on earth, and that this new use of the dog is one of the latest and most approved developments of their civilization. Thirty years ago, I have no doubt a dog in harness would have excited as much remark in this city as he would to-day in Louisville or Memphis, though he is now as well recognized an institution of the people as the mule is in either of those cities.
Rigorous discipline and the long habit of wearing muzzles seems to have subdued the belligerent instincts of these dogs, for they now meet as strangers at the crossings without those supercilious inspections and hostile 'demonstrations which characterize both men and dogs till they have received the last touches of civilization. There remains, however, a rudimentary love of the chase, of which the artful driver often avails himself to quicken their speed; though, as Lord Chesterfield in his excessive refinement is said to have laughed without cachinnation, they have learned to hunt without barking. But a more interesting incident of their labor is the complete extinction of the sheep-killing propensity. Gentlemen bred in the
ticularly in early morning, in our residence street is a source of great annoyance to the sick and nervous, and the substitution of the gentler ways of women and the silent trade of dogs would be hailed by them with joy. Nor would their employment be without a certain municipal advantage, for the litter made by horses is the most fruitful source of dirt in our cities, to say nothing of the great saving in the wear and ear of pavements.

Nicholas Smith, Consul.
Liege, June 3, 1893.
Electrical Power for Brick Machines In Auburn, Me., Mr. Charles Dunn, one of the most progressive brick manufacturers in New England, has arranged an electric motor to do the work of horses in grinding. In all yards where horses are used it is an established fact that on ϵ of the greatest troubles ex perienced in the windlass and treadmill is the rapid decline of the horses, as the strain upon their shoulders is so great that they succumb in a very short time. Other New England manufacturers are adopting the use of electricity in their plants, and with such excel lent results as to premise the opinion that it will soon become universal, so says the Clay Record.

A Silver Dome for the Denver Capitol.Seven thousand square inches of the dome of the capitol building are to be covered with silver, two ounces to the square foot.-New York Press.

REGENTLY PATENTED INVENTIONS. Eńgineering.
Locomotive Boiler Furnace.-John milton, Alexandria, Va. This is an improvement in other boplier fornaces of the same inventor, in which air
ie introduced into the fire box through perforated pipes ia introduced into the fire box through perforated pipes
in an inclined partulion above the fire, protected by In an inclined partition above the fire, protected by Water beds or refractory jackets. According to this in-
vention, water pipee are arranged in the fire box above vention, water pipes are arranged in the fire box above
the fire and have commonication at both ends with the the Are and have commonication at both ends with the
water space of the boiler, the pipes supporting two lay-
 tween the layers.

Rallway Appliances.

Car Trici.-George F. Fischer, Rocheater, N. Y. This track consists of eaddles connected Connecting the saddles being supported by the truss, Fnile alao connected with the truck is a center bearing and friction rollers, the latter being received by a plat-
form provided with slideways. The truck will support form provided with slideways. The track will support
any acr body, or may be uesed in pairs or in number, or r may be beyed without a firor or as a anpport for ank body, or as a fat or logsing car. A Apecial forlity re
coupling is provided, and the trucks antomatically turn to the center of the body which they support paseing from a curred to a straight line of track.
Coal Chute.-John F. Schmadeke, Brooklyn, N. Y. For use where coal is liable to be invention provides aped from cars cant for connectio with the hoppers. The chute is open at its top and has
cne side open, butadapted to be closed by a series of verane side open, butadapted to be closed by a series of ver-
tically sliding doors, which may be successively raised, beghtiming with the lowest door, so that the chate may be
opened for a little distance from the bottom or for its opened for a little distance from the bottom or for its
entire height, according to the quantity of coal to be dieenharged.

Electrical.

Batteiry.-Charles H. Brown, Port lend, Oregon. This battery has poisitive plates formed of an alloy of zinc and aluminum, preferably equal parts, complete. Great economy is thus designed to be in aured in the protection of the carrent, and by employing a n number of positive plates, placed near each other but
not in contact, the electrolyte is economized. The bat not in contact, the electroltye is economized. The bat tery may be need for either open
for motors, electric lighting, etc.

Mining.

Ore Separator.-Robert Dilworth, ORE. SEPARATOR.- Robert Dilworth,
kt Paso, Texas. To rapiliy separate gold and silvee
trom sand and other tailinga is the expecial object to trom asand and other tailinge in the especial bobject for
 dee, the lowernoest riffe disccharging into a trough through which pase the finer tailingg, and there being mechanism Yor giving longitudinal and lateral oscillation to the table
and a ecreen mecured on it over the riffes.. The hearier

turned or delivered to a stamp for further treatment.
 . Solr, Asbland, Neb. This if a sulky harrow in which provision is made for the use of parallel rows of teeth, to
be lateraily reciprocated in opposite directions when need upon an unplanteded fild. Means are also provided whereby certain of the teeth may be removed and a
shield attached to the beams carrying the teeth in such a shield attached to the beame carrying the teeth in such a
manner as to canose the shield to to cover and protect young plants, while the ground is being collivated around them By means of a aimple and easily operated derice the
teeth may be made to enter the ground more or lese deepts.
Atyxiliary Movldboard for Plows.
Ohaties E. Fox, Natchez, Mise. This is an attachment to enasble an ordinary plow to te used succesaftuly in cul tivating gmall plants, the auxiliary mooldboard facilitat
 mjuring or covering them. The auxilary mould board is ahallow as to width and has a graduated overhanging
upper edge curred upwardand outward from the body, the forward end of the overhanging eection meeting the tront edge of its body portion, while the rear section.i arched over the rear upper edge of the body. By the use
of this device the storage and coest of an extra implemen may be avoided.

Rotary Plow and Pulverizer.

 George f. Whitmore, West Union, Iowa. The rotatabledigere frame has colter digks connected near their edeses by radial blades forming beckets in which operate
followers antomaticall discharging the dirt efter it been ele antomatically discharging the dirt ater th dir been elevated. A pllverixing platform receives the dir
forced out of the buckets and drops it to the rear of the colker frame

Miscellaneous.

Producing Chlorine and PurifyExa LiLad.- Pranham M. and Cecil H. M. Lyte, London Englifine is prodacesd conjointly with the puriflcation o
 uitrute of lead. The operations are carried on in a cycle
treat i quantitites of lead and of calcie chloride being addee
 aldm fomin impure lejid, and pure lead is recovered, the and Hime.
Vacuum Pump.-Whitiam s. Moore, Now York City. This. - Wis a proble apperates with

In which ammonia may be subjected to heat, producing
gea, which expele the aiff from the chamber. The exit pipe being closed, the gas is condensed by the admiseion
of a few drops of water from a sealed cap, when, by opening a valve in an inlet pipe, the vacuum cham ber
may be filled with any flid deatred by placing the inlet pipe in commonication therewith.
Pipe Fittiva.-John McIntyre, Jersey City, N. J. This fitting is provided with an annular re-
cess, from which extend branch openings to the pipe sec tions, a that screwing in the receese to press the packing material through the branch openings into the pipe sec
tions. A metallic packing is also provided, formed by tions. A metallic packing is also provided, formed by
concentric rings connected with each other by branch arms, the fitting very securely connecting the pipes with each other without danger of leakage at the joints Anrongh sand holes or other defects in the castings.
A further patent of the eame inventor provides a fitco more especially designed for pipes carrying corrosive nuid, to prevent leakage by the destruction of the threads in the couplings or other pipe fittings. The fitting has nnts having differential screw threads, and screwing one
in the other, and both on the adjacent ends of the pipes, there being a packing between the nuts and presed in screwed up one on the other.
Brace for Trenches, htc.-George M. Pilcher, Logansport, Ind. A bearing block is conacliversal io plug in one end of an open-ended tube by the tabe has a removable outer annular section, through which a ecrew rod extends into the tube, a bearing block being pivotally connected with the screw rod at its outer
end. The device is egpecially adapted for use in bracing end. The device is especially adapted for use in bracing he banks of excavations, being of simple and durable construction, easily applied and adjusted, and
to have any of its parts accidentally detached.
Battenmivand Padding in Hawse Bowbinc. - Oegeffe Knower, Greenwood, Wie Thin,
fiexible lumber for making arched wooden celling by being bent into form, and too thin for tongaing and grooving, is liable to strink and expoee the jointa $-a$ defect which this improvement is designed to obviate. For this parpnee battens of pecculiar construction are pro-
vided, with padding of a paper material , so thas on the vided, with padding of a paper material, so that on the
shrinking of the lumber the padding and battens keep shrinking of the lumber the padding and battens keep
the joints cloeed and water and air tight. This padding and battens may be readily applied and made to serve as
Wagon Seat.-Charles C. Field, New York City. This invention provides a simple and strong ed driver to conveniently swing the seat trase, to permit in use. Sockets are secured to sapporting postt on the
truck floor, and each of the sockets is formed with est, which is engaged by a bar hinged on the socket and fastened to the seat proper. The seat is readily swung
forward and folded against the frontaides of its support. lorward and folded against
ing posts when not in use.
Oillcloti Cuttrr.-Jamee W. Lewts, Ganister, Pa. Dealers who cat oilcloth from the web are rovided by this inventior with a cheap and simple doquared, and cat off. It comprises a guide, consisting of paralle, and Aliggtitly geparated stripe, hasiog lonitudidnal between the estripe, with a guide plate at its lower end diding between the grooves. A tape measure is hang a one end of the guide.
Cabinet.-William S. Stanley, Wash ington, D. C. A chiffonier or chest of drawers, wash traction being such that when the cabinet is not tased am washstand or dreseer, tts apper portion will be closed ne conceal all contained therefin. The front panel may tion for use withont interfering with the furniture of the washstand, and the eidee
ith or without mirrora
Spraying Device.-John J. Dugan, Salem, Oregon. For spraying plants by hand, the holired form of nozzele in is adapted to support any desiome a positionan to direct the porays apwaid, go he water may pe directed to the under sides of tithe eaves. The desices is particularily adts.
Cigar-tip Cutter.-Ira C. C. Rine-CiGAR-TIP CUTTER-ITA C. C. Rineet on a connter, and it has a coil spring mechamiam with ger tripped by the entrance of the cigar tip, thus allowng the catter to rotate and cat off the cigar tip.
Nort.-Copies of any of the above patents will be furnighed by Munn \mathscr{E} Co., for 25 cents each. Please
send name of the patentee, title of invention, and date ond name of

NEW BOOKS AND PUBLICATIONS

Home Warming and Ventilation and Herenden Mandfacturing COMPANY'S SOUVENIR EDITION OF
CATALOGOE OF FAULTLES F FURMan Heaters. Geneva, N. Y.
16 mo . Pp . $64+288$, illustrated.
Both the hot water and steam heating systems are de scribed. The sonvenir catalogue is chiefly illed with of the Herenden Company has been installed. The amphiet on home warming and ventilation is compoos aniliaection of articles by persons who are choroughy ny businese 9 ene biject but who are not con in regard to arions gystems in
Electricity up to Date. By J. B. Verity, London and New York:
Frederick Warne \& Co r893,
16mo. Pp. 163. Ilustrated. Price 75 16 mo .
cents.
Thise ilttle work has now reached its third edition. W bearn from the preface that the aathor finlshed his wort In Janaing, 1899 . The book is intended for non-profes

PBusiness and Personal
The chargef for Ineertion under this head ts one Doalar a line
for each ineertion; about cioht woords to a line. Adver-

Order pattern letters \& figures from the largest varite - H. W. Knight \& son, seneca Falls, N.Y., drawer 111. " U. S." metal polish. Incianapolis. Sampies free.
Kemp's Manure Spreader, Syracuse, N. Y. See Adv. team Disinfectors
T. McLauthin \& ${ }^{2}$. ${ }^{20}$ Ft. Boston, Mase

Universal and Platp Muling Machines.
Handle turning machinery. Trevor Mfg. Co., Lockrt, $\mathrm{N} . \mathrm{x}$.
Wm. Jessop \& Sons have a handsom
The Improved Hydraulte Jacks, Punches, and Tub Stow flexible shaft. Invented and manufactured by
 Se Garrin Mach. Co., Laikht and Canal Sts., New York. Centrifugal Pumps for paper and pulp mills. Irrigating Emerson, Smith \& Co.. Lto., Beaver Falls, Pa... Will ree to any address.
High Speed Engines-Single Cylinder and Compound, or all electrical \&and manufacturing uses. Watertow Split Pulless at Low prices, and of same strength and appearance as Whole Pulleys. Yocom
Perforated Metals of all kinds and for al purposes general or special. Adress, stating require
Uarrington \AA King Perforating Coo., Chicago.
The best book for electricians and beginners in elec riolty is "Experimental Sclence," by Geo. M. Hopkins y mail. 4 ; Munn $\&$ Co., pubishers, 30 broad way, N. Y. Patent Klectric CIIe. What is claimed, 18 time saving.
No turning ct handle to No turning cf handle to bring Jaws to the work, simply
oue sliding movement. Capital Mach. Tool Co., Aubarn N. \mathbf{x}.

Canning machinery outats complete, oil burners for
soldering, air pumps, can wipers, can testers. labelling machinges. Presses and dies. Burt Mik. Co., Rochester.
N. \mathbf{Y}.
Competent persons wbo desire asencies for a ne

- Send for new and complete catalogue of scientile and other Books for sale by Mann
New York. Free on application.

HINTS To CORRESPONDRNTS.

Mincrals sentfor examination should be dietinctly
marked or labeled.
(5320) The Harrodsburg Water Com pany write $: 18$ there any phone attachment by which yo can detect leaks in water pipes, such as dropping wire in
service box or attaching same to pipe 9 Also, I have presesure garge at pump station graduated in pounds and
feet, by which I determine when stand pipe is foll. When same is at rest I have no trouble, as the hand is
still and steady, but while pump is working the band still and steady, but, while pump is working, the han vibrates 15 or 20 pounds, and cannot tell when pipe is full
only by stopping the pump. Is there any attachment to steady same ? I take pipe to gauge out of discharge of pump. A. There has been a number of devices invented for detecting water leaks and waste from neglect during the night, by attachments to the street service pressure by nearly closing the street cock. There are pretical diffculties in their adaptation, mostly in the expenee or maintaininga niform system. It was tried in
New York some years since, and found to cost more than the lost water. By putting a cock in the pressure vibrate to any extent, and the mean of the small vibra tion will show the pressure or height of water in the stand pipe. By simply holding a rod of wood against
the pipe, a current of water passing through it can be the pipe, a carrent of water passing through it can be
detected. If the cocks are supposed to be closed, such
(5321) W. F. S.,Jr., Sandusky, O.,says send you a specimen of wom foand ina yard adjoi ing our premises. It was foind lying on the sifiewalk onder a crab apple tree. As nobody around here ever
saw one like it, any information you maj glive in the saw one llke it, any information you may give in the
columns of your yaluble paper concerning it will be of interest. A. Reply by Professor Riley : The specimen is the larva of the Tornus swallowtail (Papilio turnus,
Linn.) a large and handsomelemon yellow butterffy, the wings of which are banded and bordered with black. It is not uncommonly seen fititing abont orchards and over
meadowlands, and in one of our handsomest and most stiling g pecelies. It is widely distributed, being fond in nearly all parts of the United States and Canads, and
int larva foeds on a great variety of trees and plants and affects partccilarly apple, cherry, and allied trees and
ave a purely esthetic and scientific interest. The very young larve are black in color, ronghened with brownish and greenish, thickening toward the reddish brown head. On the dorsal edge of the first segment is a raised yellow fold from which the larva protrudes, when disturbed, a fleshy, yellow, forked organ giving off a very disagreea-
ble odor, which is the means of defense of this otherwise ble odor, which is the means of defense of this otherwise Opless markings peculiar to the larva are a raised yellow fold on markings peculiar to the larva are a raised yellow
portion of the fourth segment bor dered with black, and an eye-like spot inclosed with black on either side of the third segment. The larva transforms to a chrysalis in the early part of August, fastening itself or sappoitt to fence posts or other objects by the help of silken band around the middle of the body. This chrysalis changes to a dull brown color, and in this state the insect hibernates until the following spring, when the butterfly is disclosed. The first specimens of the ant during June and July, depositing their nearly ronnd ant during June and July, depositing their nearly round (5322) C. E. D. asks : 1. Is there any process, chemical or other, by which illustrations, half
tones or even woodcuts, may be transferred onto white ones or even woodcuts, may be transferred onto white
paper 9 A. Wedo not think there is any very satisfactory way of accomplishing this. You might, however, ry saturating the print with naphtha, and applying it to the plain paper under very heavy pressure, leaving it for
some hours to dry. 2. Would like to know the best some hours to dry. 2. Would like to know the best method of repairing a flute of grenadilla wood that has become cracked sufficiently to slightly injure the tone.
A. Probably the best method of repairing the flute will e to fill .the crack with a cement composed of gutta percha, pitch and shellac, equal parts. 3. Please to give
directions for making leaf photographs. 2 . If you refer rections for making leaf photographs. 2. If you refer think you will succeed by stretching the paper in a suitable frame while wet, and allowing it to dry ander tension. 4. At what height above sea level will eggs cease to boil, and why ? What would be the tem-
perature of boiling water at 15,000 feet above sea level? . The height varies with the pressure of the barometer. t high altitudes water may boil at a temperature below at required for cooking eggs.
(5323) R. S. C. writes: 1. The wheel on my wagon is 3 feet 11 inches diameter. How manyrevo-
lutions will it make in a mile ? A. Your query is one of simple arithmetic. A wheel 8 feet 11 inches in 280 feet $12 \cdot 34$ (the circumerence of the wheel) will go in $5280,427 \cdot 7$ times, which is the number of revolutions made by the wheel in the distance given, provided there are no slips. 2. Also please tell me where I can get the directions for making the telephone used by the Bell
Telephone Company. A. For directions for making

$$
\text { ephones consult SÜPPLEment, No. } 142
$$

(5324) J. T. D. says : I wish to build a eservoir for holding water. I want it to cover about wish to eonstruct pond is partly clay and partly black oam. Cati you tell me what is necessary in order to from wells outside to pond A. In my water supply from wells outside to pond? A. In excavating for an
ice pond in a mixed soil of clay and loam, the loam hould be carried to the banks and the clay saved for clay and sand or clay and loam puddle over all parts of the ground where there is no clay bottom found, and up the sides of the bank to above the water line. The clay puddle should be made as thick as the clay found in the excavation will permit, and not less than 6 inches for
shallow pond for ice purposes, say of 3 feet in depth. On hallow pond for ice purposes, say of 3 feet in depth. On and as can be found, 3 inches or more in depth, extend hg to the top of the bant. This will keep the water clear and free from clay and will make clear ice.
(5325) J. A. W.-Answer by Professor Riley : The plant sent is a species known to botanists as
Exochorda grandiftora, a species which only occurs in cultivated gardens in this country, but which is native in orthern China. There are only two or three species of he genus to which this plant belongs, and all of them come from the same region in China. They are flowering question is not uncommonly met with in botanical gar-

$$
0-1
$$

(5326) A. H. S. writes: I have a cellar walled and arched whth brick, cemented inside with Portland cement, top, sides and bottom. I have it thoroughly drained. Whon the atmosphere is dry the walls of cellar are dry, but when the atmosphere is moist (a or sweat, which will cather in large drope and down to floor, making a great puddle of water. What caw apply to the walls to stop this condensation? A. The best remedy for condensation on a cellar wall is to fir off, lath, and plaster, on all parts exposed to earth back ing. Only a non-conducting material between the wal covering of felting would do, but should be made of as
(532\%) G. B. writes : I would like to put up a bell in my house and use an earth connection. Now and then connect the street side of meter with the hons ide, would I get a good earth ? If not, could you tell the way down to the cellar. A. Your proposed plan for naking the ground connection is very good. We think meter.
(5328) L. E. Y.-We see no fault with your diagram. Yonr difficulty probably arises from to
(5329) F. W. B. asks: What is the origin of the word penny as applied to nails \& A. Nails are called 6,8 , and 10 penny accorning as 1,000 or a par-
ticular kind weigh 6,8 , or 10 pounds; "penny " being the old term ased for pound.
(5330) W. T. D.-Reply by Professor
an uncommon spider and is widely distributed through
out the United States. Its beautiful regular orb web out the United States. Its beautiful regular orb webs
are to be found in woods and fields and very also about dwellings and outhouses, from which latter habit it doubtless received its specific name. It establishes itself in sheltered angles of barns or porches, and if the presence of the web is no objection to the housekeeper, this spider will be of considerable service in reducing thenumber of house flies, for which it has a spe-
(5331) J. L. says : I have a twenty-five foot hull. Would you kindly recommend to me through your query column the safest and cheapest motor (no
steam) that can be used for same ? A. A gasoline or petroleum explosive engine is probably the cheapest and as safe as proper care and attention can make a motive
power for a boat. Electric power is no doubt the safest, power for a boat. Electric power is no doubt the safest,
but has not yct arrived at a practical condition for general use. The storage electrical system is in use, but charging is not always convenient. The combined live battery and storage system is under improvement, but as yet rather a burden in a boat, from its bulk.
(5332) C. B. writes: I have found upon my tomato vines during August a green worm, about $11 / 2$
or 2 inches long and $1 / 4$ to $1 / 2$ inch in diameter. All over the body of this worm are little white substances, apparently eggs, sticking out straight, each one about
$3 / 6$ inch long, and as thick as a hairpin wire or a trifle $1 / 6$ inch long, and as thick as a hairpin wire or a trifle
thicker. Each worm carries about thirty or forty of thicker. Each worm carries about thirty or forty of
of these. Will your entomologist kindly inform as to this phenomenon? Of course the worm doesn't stick these foreign bodies all over himself. What insect does it, and why? Reply by Professor Riley.-Your correspondent has observed a rather common phenomenon at this
season of the year. The large green worm which he deseason of the year. The large green worm which he de-
scribes is one of the Sphingid caterpillars, and the minute scribes is one of the Sphingid caterpillars, and the minute white egg-like bodies projecting from it are the cocoons A single parent fiy deposits in the partially grown A single parent fiy deposits in the partially grown Sphingid larva a very great number of eggs, usually ex-
tending into the hundreds, which ultimately hatch into minute grub-like harvereand which subsist on the fatty matter of the host larva, avoiding the vitalorgans. On
reaching full growth, or having attained a length of about reaching full growth, or having attained a length of about
$1 / 4$ inch or less, they pierce the skin of the host larva and, $1 / 4$ inch or less, they pierce the skin of the host larva and,
remaining attached in the puncture at the posterior extremity, construct a beautiful silken cocoon which, on account of the immense numbers and close regular disposition over the back and sides of the larva, always ex-
cites the greatest curiosity when observed for the first time. Each of these cocoons, in a week or sor will distime. Each of these cocoons, in a week or so. will dis-
close a small black fiy, exactly similar to the one which was the author of the original parasitism. The females of these, after mating, will seek other larve, in accordance with their parasitic instincts. There may be seve-
ral broods of these parasites in a single season, the later ral broods of these pa
ones wintering over.
(5333) J. N. writes : I am making two carbon batteries, using $3 / 4$ inch carbons. I would like to know if I bored holes in the top of these carbons and
filled them with hot lead, if that would make a perfect contact, so that I could solder or put set screws into it? Also the strongest carbon battery, in volts and amperes A. You will do better if you cast your lead in a collar or cap shape around the top of the carbons. If the carbons are copper plated, tin the upper part of the copper with solder to insure contact. A battery can have any amperage. It depends on its size, nature of solution, etc.
Practically 1.5 to 2 volts is the limit of E. M. F. for prim Practically $1^{\circ} 5$ to 2 volts is the limit of E. M. F. for prim-
ray carbon batteries.
(5334) A. B. R. asks : Which of the following metals will be the most durable and have the least frictional resistance when used together, $i . e$., one
metal used in a bearing and the other in a revolving
shaft : mild steel, wrought, cast and malleable cast iron, copper, brass? A. Mild steel journals running in brass boxes are considered the most durable in service and run with least friction. Wrought and malleable cast iron and cast iron, running in brass boxes, are next in order, as enumerated. Copper is not desirable as a journal box, from the difficulty of cas
(5335) R. H. asks : 1. Describe method of making a small electric furnace for heating soldering
iron, using the Edison current. A. Use a heavy platinum coil within a chamber of non-conducing material. The coil should surround the iron. 2. Of what material is the magnet in a Thompson refiecting galvanometer made of ?
Would a piece of watch spring do, or would it be better Would a piece of watch spring do, or would it be better to have two astatic needles? How should the needie be
magnetized? A. Watch spring is excellent. For details, magnetized? A. Watch spring is excellent. For detains,
see our SUPPLEMENT, No. 628. 3. Is the arc light introduced into the Edison current without any resistance A. Resistance is generally used. 4. Is the arc light used
on other systems the same as the Edison, and can they be transposed? A. No.
(5336) E. L. S. asks : 1 . How is a galvanic battery made, using sodium as one pole? What is the
other pole composed of, that is, the bath? The electro motive force? Is it an open circuit battery? A. A
sodium battery is provided with a porous cell filled with sodium amalgam. In one form the amalgam is a paste composed of 1 part of sodium and 50 of mercury. In two ther formsitis a liquidfcomposed respectively of sodium part, mercury 100 parts; sodium 1 part, mercury 200
parts. The electro-motive force of the sodium battery is parts. $21 / 2$ volts. 'The other elements of the battery con sist of carbon, and the electrolyte is dilute sulphuric acid. There are other combinations also. 2. How can I scars by electricity, you should consult a competent sur
(5337) J. E. B. asks for: 1. The U. S. government rule for safety valves. A. For boilers having fiat or stayed surfaces, 30 square inches for every 500 fee indrical fiued, 24 square inches. 2. In designing a field mag A. Always work by ampere turns. 3. Thave about 4 pound of No. 31 cotton-covered copper wire. I wish to make a volt meter with a reading as high as 110 volts E. M. F Would it be possible to use this wire to make a good spark coil \& A. Ycur wire is rather too large for a volt mekr, Instrument Making for Amateurs," 50 cents by mail,
proper, ampere or amphere ? A. Ampere. 5. For othe
definitions asked for consult the "Century Dictionary." (5338) F. W. A. asks: 1: What horse ower is one of the Edison motors, such as used in the phonograph, motor to run at about 1,500 revolutions per
minute, and using a large plunge battery, such as described on page 401, "Experimental Science"? A. The power What is the length of time the above battery will run giving full power, before being exhausted? A. One or wo days. 3. If two of the Edison phonograph motors were coupled together, would the plunge battery abov furnish power enough to run one of the Barnes 13 inch by
69 inch lathes and do work within the capacity of whot 69 inch lathes and do work within the ca
man could do on same lathe ? A. No.
(5339) J. H. M. A
ight a three candle power writes : I wish t light a three candle power lamp, requiring six volts,
about. Will you please tell me: 1 . Will three cells of about. Wiltyou please tell me: 1. Will three cells of
storage battery be enough? A. Yes. 2. How many square inches of plate surface, including both + and -, should each cell have? A. Allow one square foot of
positive plate. 3. The cells are to be made as nearl alike as can be. Will charging each cell separately fo the same time with the same battery make them nearly enough alike to use together in series? It is far better to charge in series. You can, however, charge separately.
4. Will it be best to use resistance box and volt meter, so as to always obtain the same voltage through the lamp ? A. This is not necessary. The batteries will be nea nough. 5. With eight hours charge, how long will the should give ten hours' current.
(5340) C. D. asks : 1. Why could not the armature and field magnets in the simple electric moto described in the Scientific American of March 17, 1888,
be wound with No. 28 wire? A. Any sized wire could b used. The size is a matter of calculation, and depend on the E. M. F. and current to be employed. 2. Would it not increase the resistance so as to need more battery?
A. It would, if wound singly, increase the resistance, and would require higher E. M. F. or more cells of battery but such cells could be much smaller in such case. (5341) G. D. C. writes : 1. If thirty dry as described in "Experimental Science," on page 498, ed, would it run it to its full power? If not, how man would it take? I want them to run itabout three-fourths an hour at a time. No other battery can be substituted in this case. A. Probably 200 dry cells would be re-
quired, and it is doubtful if they would run it for the quired, and it is doubtful if they would run it for the
time mentioned. 2. In making this motor twice the size of the other one, must I use the same size wire for the This is all a matter of celculation. See preceding
(5342) W. H. asks how to prevent barprevent fermentation, salicylic from orid or mercuric. cmloride prevent fermentation, salicylic acid or mercuric caloride
might be ased. By barreling the extract at a boiling
temperature and closing the barrel while hot, fermentaion should be prevented
(5343) F. S. asks for a good zinc solution for plating on copper, and also the necessary acids for dipping. A. A "Watt's" solution is made by dissolving in a strong solution of cyanide of potassium, with am monia added. The proportions given are as follows: 200 ounces cyanide of potassium, 20 gallons of water, and 80 ounces, by measure, of strong aqua ammonia. A good
dipping acid is formed of sulphuric acid 4 pounds, nitric acid 2 pounds, water 4 pounds. 'The fumes from the solution should not be inhaled. You will find further par-

ticulars in Watt's "Electro-Deposition of Metals," price iculars in Watt's "Electro-Deposition of Metals," price | by mail $\$ 3$. |
| :--- |
| (5344) |

(5344) O. A. W. asks how to make nitro nonzene. A. Treat benzene with a mixture of 2 volumes rong sulphuric acid and 1 volume strongest nitric acid. Drop the benzene slowly into the mixture
through dry salt, after separation and washing.
(5345) J. S. M. asks : Can 20 to 30 tons if ice be put up in one ice house and keep satof loss in one season? How be the percentage
fill be required, and how should it be constructed will be required, and how should it be constructed ?
A. Ice in quantities of 20 and 30 tons can be stored to dvantage, and with a loss of no more than 10 per cent when packed with ordinary care. Thirty tons will occupy a space of $10 \times 10 \times 10$ feet, or 1,000 cubic feet, with inches all around the inside and 3 feet at the top for ventilated, and, if possible, the ice house shaded from the sun. See Sci. Am. SUpplement, No. 59, for construction of ice houses and cold storage rooms; 10c., mailed.
(5346) R. A. S. says: A says that if wheels to stop turning and slide on rail, all power to stop train is absorbed. B claims that if brakes are not applied quite so strong, but as strong as possible without causing wheels to slide on rail, more force is exerted
to stop train. Who is right? A. B is right. A skidto stop train. Who is right? A. B is right. A skid-
ding wheel does not hold to the track as well as a ding wheel does not hold to the track as well as a
rolling wheel with the brake on nearly to the limit of the (5347) F. W. L.-The ordinary newspaper pictures are produced by making a print from a negative of the same size which the newspaper print is
to be. This print must be made on plain silvered paper; a be. This print must be made on plain silvered paper,
an artist then draws exactly the lines which appear in the picture, with waterproof indigo ink; the print is
treated to a bath of bichloride of mercury dissolved in treated to a bath of bichoride of mercury dissolved in
water or alcohol; this fades away the photograph, leaving only the black ink lines. The drawing is then touched up if necessary and photo-engraved
drawing. The print must not be toned.
(5348) E. McC. writes: We have a woolon mill driven by small turbine, 50 feet head; mill was formerly driven by a 30 foot overshot, and think we
did as much work then as now with the increased head. The turbine is liable to breakage, is delicate and so high speeded. Why would not a water motor made on principle of chain and buckets-something similar to eleva-
tors in a flour mill-with water thrown on top, or pitch
back, answer every parpose without the objections of an
overshot, as weight is the principle \& Have you ever
known such, and results? How does the Pelton nown such, and results? How does the Pelton efficiency? A. Probably your turbine is too small and does not use all the water that the overshot wheel used. If of proper size and kind, it should give you much more power with the same quantity of water and head. With 50 feet head you should realize 80 per cent of the gross alue of the water fall. The chain and bucket system is of less value than an overshot wheel and has proved, so
far, nothing better than a rattle trap. The Pelton wheel far, nothing better than a rattle trap. The Pelton whee
has proved itself one of the most efficient motors for igh heads, and equal to 85 per cent of the gr
(5349) J. B. asks: 1. Who was the inventor of piano; in what year? There is one in Louis-
ville, Ky ., made in 1776. A. The first instrument known the name of "piano" was constructed in 1726, by Christofor. Instruments of the nature of pianos were
made in 1668 and in 1521
2 at the car works in this town at night. I went into the ngine room one night and sat down on the platform on which the dynamo was set, and magnetized my watch; is there anything that will save it from being thrown away A. You can have your watch demagnetized by almost
any jeweler, or you can demagnetize it yourself by suspending it on a twisted string, allowing the watch to re evolving, and receding from the dynamo before it
(5350) L. M. asks: 1. Please inform me hrough your valuable paper if the amount of heat conentrated by a double convex lens depends on the dis proportional to its diameter? A. The heat-gathering capacity depends on the diameter of the lens. 2. Have ric machine described in "Experimental Science," by George M. Hopkins? If so, please state the number A. You will find a number of descriptions of modifica ions of the Wimshurst machine in the Supplement
(5051) C T T. Wrat
(5351) C. K. T. writes: 1. From whom pounds? Please state nearest place to me. A. Address ny of our advertisers who deal in scientific and electri apparatus. 2. Does the lightning which one frequently why ? A. The subject of thunder is obscure, whether as regards its presence or absence at the time of a lightning discharge. Hot-weather lightning is often produced a distant places, too far off for the thunder to be heard 3. Please mention number of SUpplement to Scien
Hific American which contains directions for making mimpeelectric motor. A. No. 641
(5352) L. W. writes: I desire to construct an electric battery for general experimenting that
will give a strong and lasting current, and will not be to expensive to keep in order. How should I proceed to make a one-gallon battery of this kind ? Also how many cells would be required, of one gallon each, to furnis A. We advise you not to try primary battery lighting. The bichromate batteries are the best. Many varietie Scientierc Acribed in our Supplement and in th ohm lamp may be allowed. Our Supplement, No. 792, gives a powerful plunge battery. We also refer you to Nos. 157, 158, and 159 for other batteries.
(5353) P. C. asks: 1. Can I successfully light a photographic dark room by electricity, employing some. 2. If so, what is the best battery to get? A. Us Bunsen or Fuller bichromate mercury battery. 3. Wha candle power lamp would it require to produce the sam wick ? of light as a kerosene lamp employing a would be the cost of the above plant with only one light, supposing a six c. p. lamp sufficient? A. Fifteen o wenty dollar:
(5354) R. M. P. asks: 1. What size wheel and how much power can I get from an undershot deeprand 1,000 feet long? and race 14 feet wide by 3 feet can be obtained from the size race stated will probably be, with a water velocity of 4 feet per second, 168
cubic feet per second falling 2 feet, 38 horse power. 0 his an undershot wheel 14 feet wide, 12 feet diameter will realize about 40 per cent, or 15 horse power. A pro or 30 horse power. 2. Can you tell me the neme the firm or company that make a the firm or company that make a succession of under-
shot water wheels to develop power, that is, 2,3 , or 4 wheels working in the same flume? I was told they are made at Kansas City, Mo. A. We do not know o from water wheels; 80 per cent of the total power i the largest known output with any known combination of water wheels for low heads. 3. How many pound pressure 18 carried on small gas machines for house use Gas to be made from gasoline. Also have you any paper A. The gasoline vapor and air gas machines are used with from $1 / 2$ inch to $3 / 4$ inch water pressure. Address Gilbert \& Barker Manufacturing Co., Springfield, Mass or their circular descriptive of their gas machines.

Replies to Enquiries.

The following replies relate to enquiries published in and the numbers therei
(5262) In issue of August 12 under Notes and Queries (No. 5262) J. B. asks is there any way
to harden steel castings? I have a process of tempering cast steel or cast iron all the way through, and will be pleased to be placed in communication with him.-L. B. venue, Bradford, Pa
(5278) F. K. J.-Replying to inquiry (5278) F. K. J., August 19, 1893, would suggest filling rusted pipes with a strong solution of caustic potash or
preferably canstic soda of say 36° B. Solution should preferably canstic soda of say 36° B. Solution shi
remain in pipes for several days.-s. C. Strunz.

To INVENTORS

 INDEX OF INVENTIONS
 Por which Letters Patent of the United States were Granted

August 29, 1893,

AND EACH BEARING THAT DATE.

[See note at end of list about coples of these patente.]

 Fdwards＇ 900 Wxamination Questions and Answers for
Hanineers and Firremen（Stationary and Marine）who
desire to obtain a U ．S．Covernment or State License．

 THis A circular showing in full the very elaborate inder
to this important book will be sent free of postage to any
one who wap apply． BY THE SAME AUTHOR．

 TENTH THOUSAND．

 postage，That theove or antication of ources，Books sent by mand math free of

 HENRY CAREY BAIRD \＆CO． 810 Walnut St．，Philadelphia，Paog U．S．Ao THE SIMPLEX TYPEWRITER
 Catalogues Wanted．Mesars Segrove δ Lord，Me－

TRTMESES IS the COMING

ITOWN ERIGADII

Fourteenth Edition of

Experimental Science

REVISED A ND FNLARGED．
120 Pages and 110 Superb Cuts added．

 840 pages 782 fine cuts，substantially and beautifnly
bound．Price in colth，by mail，\＆4．Half morocco，$\$ 5$. MUNN \＆CO．Publishers，
Office of the SCIENTIFIC AMERICAN，
361 BROADWAY，NEW TORK．

PRICE

$\$ 2.00$

MALLEABLER

TURMER ROTARY ENGINE

 3．track．Vacnum Pump．Keeping the gauge at 28 inches， 4：asteady pull． $\begin{gathered}\text { ater } \\ \text { Water } \\ \text { Water }\end{gathered}$

fruit evaporator

PUBLIC WORKS DEPARTMENT， CAIRO，EGYPT．

SCIENTIFIC EXPERIMENTS．－DE－

セٌu －AND CHAIN．

Tho most Elegant and Useful Souvenir pro

 duced in this Oolumbus year．The sase is a rare production in point of design and verimanship．It is made of embossed metal and hand－ American Lever Movement
and Rersen Movement，Patent Escapemen ting Attachment，requiring no key．
The chatin is made of a series of embossed medalions neat－ is linked torether．The heads of Col mbus，Washington，
Lincoln，Grant，Sherman，and Cleveland are delineated thereon with dies made by a noted medalist，at large ex－ pense．Made in plain or oxidized silver finish．
Every watch Timed，Testen，and Reoulated before leaving our hands，and caratolly packed with chain．
Price 82．00， $\begin{gathered}\text { postpaid．} 3 \text { for } \mathbf{8 5 . 5 0 .} \mathbf{8 1 8 . 0 0} \text { per } \\ \text { dozen，by express．}\end{gathered}$.
R．H．INGERSOLL \＆BRO．， 65 Cortlandt St．，NEW YORK． IMPROVED TROLLEX SYSTEM．－DE－

STEEL TYPE FOR TYPEWRITERS

FUELS AND THEIR USE－A PRESI－ bential address before the Society of Chemical Ind ustry
by J ．Emerson Reynoldas，M．D．，discussing the modery

 BO Mas

VOLNEY W．MASON \＆CO．
FRICTION POLLETS，CLOTCHES，and ELETATORS $\xrightarrow{\text { Delaney＇s Metallic Gaskets }}$

 Perfect Newspaper File

SMOKELESS POWDER AND MAGA

[^0]
lew＊B00ks

， The American Ready Reckoner．A new and
complete assistant for merchants，mechanics and fand
ers．For the purpose of showing ata alance the amount

 A new dictionary of terms in electrical science and
alitied branches．The dennitions cover the meaning and
scope
 vised or newly calculated tables of equivalents．The
work aims to be the most completa and relitale ever
pubbished Syonyma

 Dyelng，A manual of dyeing；for the use of practi－

 methods for the determination of their chemical com－
position．By w ．L．Gadd．One vol，coth． 24 pages
Ilustrated．

 Street Railway Motors．With descriptions and
cost of plants，and operation of the variour
use
use or proposed for motive power on street

 The Great Barrier Reef of Anstralia；Its
Products and Potentialties．Containink an actonnt，
Pith with copious Colored and Photographic Mustrations
（Che latier here produced for the drat time）of the
Coral and Coral Reefs，Pearl and Pearl－shell，Bethe－de－

ミ「ココ。

Our entirely new Catalogue of scientite and Techni－ more than 300 difirerent erbictas with，and embraing
will be mailed free on application to any address in
the world．Address MUNIN \＆CO．，
Publishers of the＂Scienthic American，＂ 361 Brotidway，New York．

Parsons Horological Institute. earn the Watch Trade

- $)^{\text {Engraving and Jewelry Work. }}$

PARSONS, IDE \& CO. (*) Circular free 302 Bradley Ave., PEORIA, ILL. ELEGTRO MOTOR. SIMPLE. HOWW TO

THOMPSOH IMPROYED MNDICATOR
 notaot ured sololy by CO 5,000 IN USE. Aopoted by the U. s . Navy
on an the goverment
 A1so Manufacturers of
POP SAFETY VALVES, STEAMI PRESSURE GAUGES, ETC 34 Chardon Street, Boston, Mass.

RECENTLY PUBLISHED.
Our new catalogue containing over 108 pages, includ-
ing works on more than fifty different subjeots. Will be lng worts on more than fifty diferent subje
mailed tree to any address on application.
MUNN \& CO., Publishers Scientific GASOLINE ENGINES 5 Stationary \& Portable ALL SIZES.
wwarfin size and
Giants in Strength. Costs only 10 centsa Day
per H. P. to run them, ex
 Write for particulars
and testimonlals. HE VANDUZEN GAS \&
ASOLINE ENGME CO.

4

 MUNN \& CO., Solicitors of Patents.

W. L. DOUGLAS \$3 SHOE
 Grontiomen.
 Best Calf Shoe in the World for the Price,
 W. L. Douglas' name and price is stamped on the bottom before they leave the factory to protect you against high prices. Dealers who make the price on unstamped shoes to suit themselves,charge from $\$ 4$ to $\$ 5$ for shoes of the same quality as \mathbf{W}. L. Douglas $\$ 3.00$ Shee shose of the same quality as W. L. Douglas 83.00 Shoe. If you wish to get the best shoes in quality for your money it will pay you to examine To get the best shoes in quality for your money it will pay you to examine W.L. Douglas Shoes when next in need. Freent by mail, Poantion Shoe dealers cannot supply you. Send for catalogue with full instructions how to order by mail. Won 551, Brockton, Mase.

KODAKS

Eastman Kodak Company,

CHOLERA: EPIDEMIOLOGY OF.-

30,000 SOLD
"OTTO"
GAS AND GABOLIN ENOINES. $1 / 2$ to $100 \mathrm{~h} . \mathrm{p}$. Can
be used in cities or
in country indepenIn country indepen-
dent of gas works
or gas machines. dent of gas work
or gas machines.
No Boiler, 30,000 GOLD.
OTTO GAS FNGINE WORKS, PHILADEIPHHA.

 125 MILK 8T., BOSTON, MAS8.
This Company owns the Letters Patent No. 186, 787, granted to Alexander Graham Bell, January 30, 1877, the scope of which has been defined by the Supreme Court of the United States in the following terms:
"The patent itself is for the mechanical structure of an electric telephone to be used to produce the electrical action on which the first patent rests. The third claim is for the use in such instruments of a diaphragm, made of a plate of iron or steel, or other material capable of inductive action; the fifth, of a permanent magnet constructed as described, with a coil upon the end or ends nearest the
plate; the sixth, of a sounding box as deplate; the sixth, of a sounding box as described; the seventh, of a speaking or hearing tube as described for conveying the sounds; and the eighth, of a permaclaim is not for these several things in and of themselves, but for an electric telephone in the construction of which these
things or any of them are used." things or any of them are used.'
This Company also owns Letters Patent No. 463,569, granted to Emile BerTelegraph and Teliner, November 17, for a Combined Telegraph and Telephone; and controls Letters Patent No. 474,231 , granted to
Thomas A. Edison, May 3, 1892, for a Speaking T. mental inventions and embrace all forms of microphone transmitters and of car bon telephones on telephones.

The Most Popular Solentific Paper in the World Only 83.00 a Year, Including Postage
This widely circulated and spiendidy illustrated
paper is published weekly. Every number contains sixpaper is published weekly. Every number contains sixteen pages of useful information and a large number of original engravings of new inventions and discoveries,
representing Engineering Works, Steam Machinery, New Inventions, Noveltias in Machaniser Manufactures, Chemustry, Lecture A Aqiculture, Hortieuiture, Natural History, To. complete list of patents each week.
TIFIC AMERIOAN will be sent for one year-52 numberspostage prepald, to any subscriber in the United States, Canads, or Mexico, on receipt of three dollars by the
pablishers six months, 81.50 ; three months, 81.00 Clubs.-special rates for several names, and to Post Masters. Write for particulars.
The safest way to remit is dy Postal Order, Draft, or The safest way to remit is dy Postal Order, Draft, or
Hxpress Money Order. Money carefully placed inside Express Money Order. Money carefully placed inces.
of envelopes, securely sealed, and correctly addresed, seldom goes astray, but is at the sender's risk. Address all letters and make all orders. drafts, etc., payable to
MUNN \& CO., $\mathbf{3 6 1}$ Broadway, New Y ork. THE
Scientitic Simericatit Supplement This is a separate and distinct publication from THE sery number containing sixteen large pages full of engravings, many of which are taken from foreign papers and accompanied with translated descíptions. Tre 8CTENTIFIC AMERICAN SUPPLEMENT is published week-
h, and ficludes a very wide range of contents. It presents the most recent papers by eminent writers in all the principai departments of Sclence and the Useful Arts, embracing Biology, Geology. Mineralogy. Natural History, Geography, Archæology, Astronomy Chemis-
try, Flectricity, Light, Heat, Mechanical Enotneoring, Steam and Railway Fmpineering, Mining, Ship Builiding. Marine Engineering, Photography. Technology, Manufacturing Industries, Santtary Engineering, Agricultare. Horticulture, Domestic Economy, Biography, Medicine. etc. A vast amount of fresh and valuable information
obtainable in no other publication.
Thie nost important Enoineering Works, Mechantsms. The most important Engineering Works, Mechanisms, and described in the Supplementr.
Price for the SUPPLEMENT for the United States, Canada, and Mexico, 5.00 a year; or one copy or the
CIIENTIFIC AMERICAN and one copy of the SUPPLEMENT, both mailed for one year to ope address for $\$ 7.00$. single eoples, 10 cents. Address and remit by postal order
express money order; or cheeck,

gruilding cufitiont.

 BUilders' EDition is issued monthly. $\$ 2.50$ a year.
Single copies, 25 cents. Thirty-two large quarto pages, forming a large and splendid Magazine of Architecture, richly adorned with elegant piates in coliors, and with other fine engravings; illustrating the most interesting ramples ors.
A special feature is the presentation in each number of a variety of the latest and best plans for private residences, city and country including those of very moderate cost as well as the more expensive. Drawings in
perspective and in color are given, together with Plans, Descriptionan, Locations, Estimated Cost. etc. The eleganuoe and cheapness of this magniffent work
have won for it the Largest Circulation of any rehitectural publication in the world. sold by all news Aealers. 82.50 a year. Remit to

361 Broadway, New York.
PRINTINE INTKE:

[^0]:
 DRILL CHUCKS．

