A WEELLLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

$\underset{\text { EstaRLISHED }}{\text { Vol. L845. }} \text { ISIX. }$	NEW YORK, AUGUST 26, 1893.	$[83.00 \underset{\text { Werkly. }}{\text { A PEAR. }}$

§rientitic gmxican.

HSTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
NO. 361 BROADWAY, NEW YORK.
O. D. MUNN.
A. ह. beach.

TERMS FOR THE SCIENTIFIC AMERICAN.

 taf Acoitrecta Buillune Edition.

NEW YORK, SATURDAY, AUGUST 26, 1893.

table of contents of
SCIENTIFIC AMERICAN SUPPLEMENT

No. 921.

For the Week Ending Angust 26, 1893. 1. AERONAUTICS.-NTHROPOLOGY.-Among the Abori.............................. 1 custocount of this interest
U. ARBORICULTURE - D..
 Do Plants Tibini i
 roads.- 3 illustrations..
Chu UM BlaN EXPOBITIN.-The Horticultural Palace at the
Chicago Exposition. beautful collection of exhbits.-The

 METALL...
bined electrolytic and amalgamatice atraction of Goold.-A com

 LI. PHOTOGRAPHY.-Pbotography of the Human Eye.-The
hatovy of otempta tophotorah the retina, and of the most re-

 XVI. TECRNOLOGP.-How to Test the Finish of acloth. -Pr tical
testr for colths. Full directions for tis examination by the pur-

PROGRESS OF RAILWATS IN THE UNITED STATES
From Poor's Manual for 1893 we learn that the tota length of track existing at the close of 1892 was 175,223 miles, for which the aggregate liabilities of the various companies was, in round numbers, eleven thousand and eighty-nine millions of dollars ($\$ 11,089,000,000$). The aggregate amount paid for operating expenses for 1892 was eight hundred and forty-six millions six hun dred and thirty-three thousand dollars ($\$ 846,633,000$) The total traffic receipts were one thousand two hun dred and five millions of dollars ($\$ 1,205,272,023$), and the net earnings $\$ 358,638,520$. The number of passengers carried was $575,769,678$, and of freight $749,331,860$ tons.
Out of this nearly two hundred and thirty-three millions of dollars were paid for interest, and a little over eighty-three millions went for dividends.
The aggregate rolling stock at the close of 1892 was as follows: Number of locomotives, 35,754; passenge cars, 26,321 ; baggage cars, 7,900 ; freight cars, $1,168,867$

ARMOUR INSTITUTE.

Armour Institute, the great technical school of Chi cago, will open its doors on September 14 to 400 stu dents, who have been enrolled by the president, Dr Frank W. Gunsalus. The equipment in mechanica and electrical engineering is very fine, and some idea of the shops may be obtained when it is stated that a 150 horse power engine can be built in the machine shop. The equipment of electrical testing instruments is very remarkable, nearly all of them being purchased from the exhibits of the Fair, the buying being done by Mr. Stine, who is a juror of awards in the electrical department. The four years' course in electrical engineering at the institute will be very thorough, and will aim to prepare students to hold responsible positions in electrical companies, for the commercial side of the science is to be treated in a more practical manner than in the other institutions which have courees in electrical engineering. The Armour Institute's electrical department is divided into four laboratories. The main laboratory will be fitted up with fifteen dynamos and motors as well as all the leading makes of transformers, and regular station voltmeters, ammeters, meters, etc. The second and will contain much of the high class apparatus purchased at the Fair. The institute will offer to electric light stations and colleges a testing bureau for standardizing resistances. The third laboratory is on on stone piers to prevent vibration. The fourth laboratory will be devoted to the measurement of the candle power of lamps and will be fitted with the bes photometric apparatus obtainable. The Armour In stitute has every chance of having a brilliant future

COLOR PHOTOGRAPHY

The subject of color photography has occupied the minds of investigators from the earliest days of the art. Even Daguerre and Niepce in their work with the mercurialized film on polished silver gave an approach to its latest development, the Lippman pro cess. We have given notices of this assumed triumph of photography-but which has been virtually relegated to its proper place, the science of physics. Lipp man's process simply consists in the production of a film, by photographic printing or exposure, whose thickness varies with the color of the light which has fallen on it. This film, by the interference of light, produces the well known colors of thin fllms, the same that are seen in the soap bubble. Lippman has succeeded to a limited extent in producing an image of the spectrum. This is about as far as color photography has yet gone.
The low actinism of colors belonging to the red und of the spectrum necessitates a very long ex posure. This objection might be overcome. But the whole development up to date is one of grea interest from the physical standpoint, while it is of but little value from the photographic standpoint. It in dicates in the art sense a very short step in advance The production of a portrait or landscape by the Lippman process is yet an achievement to be hoped for. Its accomplishment is very problematical.
It is of interest to note the status of color photography, as an exaggerated report of the Lippman processes has been extensively circalated. When it is realized that the daguerreotype itself presents a strong analogy to Lippman's work, it will be evident that we should not be too sanguine of our hopes of an early realization of color photography

Intelligence of the Horse.

Recently a New Jersey farmer, while passing along the street in New York, heard the well known "neigh of his good old horse, which had been stolen from hi barn last winter, six months having elapsed. The farmer turned, and there, sure enough, was the affec tionate old animal, hitched to a butcher's wagon. The customed signal. The farmer recovered his property and the thief was arrested.

The Pioneer Steamer of the Pacificiocean.
Nearly threescore years have passed since the Hud n's Bay Company's steamer Beaver floated down the Thames. The Beaver was the first European teamer to round Cape Horn and was the pionee steamer of the Pacific Ocean, the passage from London to Astoria, Oregon, consuming 163 days. The Beaver was 101 feet long, 20 feet broad and the depth was $111 / 2$ feet, the tonnage being $1093 / 4$. The boiler and the two side lever engines, of 35 horse power each, were made by Boulton \& Watt at their Birmingham works. The engines cost $£ 4,500$ and weighed 52 tons. The vessel was built in the most substantial manner of live oak and greenheart, the timbers being held to gether by copper bolts. The Beaver was used as a fur rading vessel by the company, and on one of these trips coal was discovered on Vancouver Island. In 1849, during the gold excitement, many miners took passage on this little black steamer. In steaming out of Burrard Inlet in the fall of 1888 she struck a rock and, wrapped in a sheet of troubled waters, with head resting on a huge barnacle-clad bowlder, the Pacific pioneer steamer Beaver passed into history. Unsuc cessful efforts were made to float the Beaver and she remained on the rocks nearly four years. An attempt was made to take the Beaver to the World's Fair, but was abandonen, owing to her damaged condition and the cost of transportation. Messrs. McCain \& Menzies well known contractors of Vancouver, B. C., pur chased the vessel and obtained 975 pounds of old brass and copper, which will be made up into souvenir medals. The number will be limited and each will be stamped with a number, to prevent any possibility of counterfeiting. The timber has also been worked up into souvenir canes, etc. Built and equipped at a period when steam navigation was in its infancy, it is scarcely a wonder that there should be a call for sou venirs of the first steam vessel to plow the broad Pacific.

Platinum

The mining of this valuable metal is chiefly in Russia, and the following information is given by Mr. Geo. F. Kunz in the report of the mineral industries in the United States at the eleventh census. The two de posits in the Ural Mountains are the Goro-Blagodat or Isa region, in the basin of the river Isa, and the Nisjne Tagilsk or Demidoff district, on the Martin River. The former is under government control, while the latter is worked by private enterprise. In the latter field there were three large wasming plantsand a fourth is being erected. Besides these, the peasants have many small workings, for which they pay two-thirds of the produce as a royalty. The deposits are placers com posed of serpentine bowlders, mixed with chrome iron ore, the platinum-bearing sand forming a layer of 6 inches to 10 inches in thickness on the bed rock, at a depth of 30 to 40 feet. The sand is mined by driving levels from a shaft, and is only worked in the winter, when the washing plants have to stand idle, as the water is all frozen. For washing the material, it is hauled in cartloads of about 1,500 pounds and emptied into a revolving screen. The small stuff is stirred up in water by two women and the heavier materials set tle in riffles in the troughs. Both the tailings and the heavy sand are rewashed. In two slifts of 12 hourseach shift, however, including 4 hours' rest-about 640 tons of sand are washed, yielding 2.7 pounds of platinum in each machine. The average daily yield of the whole of this district is about 9 pounds, worth about $£ 2$ per ounce, and the yearly production is about ,620 pounds.
No details of the cost of mining are available, but the cost of labor for washing in the three plants for the 180 days during which the work could be done is about £7,000. Wages are not extravagantly high, as a driver gets 1.3 rubles a day for himself, horse, and cart, and he has to haul 60 loads daily. For each machine, 40 drivers, besides 16 workmen at 70 kopeks each and 4 women at 40 kopeks each, are employed.

Metal Surfaced Paper.

A well polished yellow brass or nickeled sheet of metal is wetted by means of a paint brush or sponge with a solution of higher alkaline sulphide or hydrosulphide, for instance, a solution containing 5 parts by weight of potassium trisulphide or hydrosulphide to 100 parts of water, and in addition, 1 per cent of spirit which is added to remove any greasy particles which may be present. The plate is then immersed for a short time in a neutral solution of copper sulphate (1 to 5) and transferred to an acid copper bath in which copper is deposited on it. It is immersed in a zinc bath in which it receives a deposit of that metal, and is subsequently treated with a solution of hydro-sulphate of ammonia, mercaptan, or similar compound or allylesulphide previous to pasting the paper thereon or causing the paper to adhere by paste in which the said substances are mixed. The metallic surface of the paper so produced is rubbed over, when dry, with a mixture of gold or silver cyanate with carbonate of potash in order to produce a real gold or silver paper. C. Endruiveit, Berlin, Germany

In the Transportation building the exhibits of bicycles occupy a larger part of one of the galleries, and include every kind of bicycle as well as their accessories. The array of wheels is very fine. All the leading manufac turers are represented
An exhibit of much interest is the tent, camping outfit, and palanquin used by Mrs. French-Sheldon during her recent travels in Africa. The palanquin is made of cane and bamboo, very light, and covered with waterproof material.
Another novel vehicle is a replica of an ancient chariot. The original was found in a tomb at Thebes, Egypt, and is believed to be a Scythian racing chariot. It is now in the Royal Egyptian Museum, Florence, Italy.
South American methods of transportation are wel illustrated by life-sized reproductions of the animals used, as well as models oftthe men and women. These include a Colombian rider's outfit-a man mounted on a fine steed with gorgeous equipments; an "arriero," or mule driver, from Bogota; a pack mule with panniers; a burro with pack saddle; a "lechero," or milk woman, mounted on a mule; a saddled llama; a male cargadore or pack carrier, also a female cargadore; a cargadore or pack carrier, with "silla" or chair on his back for carrying passengers; and a sedan chair of the style used by ladies in Bogota.
Japan exhibits several models of engineering works, one of which is of a cantilever bridge built in 1662, or 231 years ago. This bridge has a span of 161 feet. Another model represents the Kintai bridge of five spans. Other models show a pontoon bridge on the Ogaki Canal sluice, built in 1691 and still used.
In the English section there are exhibited a thrash ing engine made by Trevithick in 1812, Earl Durham's bicycle "Dandy Horse," bicycle of fifty years ago, and a model of the Forth bridge on a scale of one nch to forty reet:
Methods and means of transportation in Jerusalem and Syria are illustrated by the exhibit of the United States Consul Merrill. The type of boat now used on the Sea of Galilee is shown, and is said to be the same style of boat used in the time of Christ. Otherarticles are a palanquin from Jerusalem, a box in which women are carried in wedding processions, a bag for carrying children, a chair for teaching babies to walk, leather bottles for wine, a water jar to be carried on the head, etc.
Steamship traveling is finely illustrated in the French section. Paintings are presented which illustrate the harbor of New York, port of Algiers, port of Marseilles, passengers embarking at Havre for New York, the smoking room on one of the steamers of the Compagnie Generale Transatlantique, interior view of the workshops where these steamers are built, showing the work of constructing a steamer, the engine, propeller and shaft lying about; a dining saloon, where passengers are at the tables.
Germany shows many models of vessels, also models of engineering works, a section of the North Canal at Kiel, and railway engineering undertakings. A model is shown of a boat that was unearthed in the marshes of the Baltic Sea, and which is believed to be about 1,500 years old
In the navigation section of this country are large models in relief of the works of the Union Iron Works at San Francisco and of the Newport News Shipbuilding Company, Virginia. The several government war vessels that have been constructed at the Union Iron Works are represented by miniature vessels floating just off the docks of these works. The model of the Nicaragua Canal is 30 feet long. Water is used to represent the canal and its connections. A model of the Mississippi River raft boat Juniata is shown, towing an immense raft of logs, also a relief map of the State of New York, showing the canal systems and boats.
The pavilion of the Standard Oil Company is a white and gold colonnade in Italian Renaissance style, in which Ionic columns alternate with tall lamps and vases of handsome oils. In the center is a lighthouse. A collection of all the varieties of crude petroleum found in the United States is presented. There are about 200 of these specimens, and they are graded by color from black to pale straw. These oils are in the original condition in which they came from the ground. Some of the oils, which are black and thick like tar, are ten times more valuable than the more attractive amber oils. Black oils are obtained from nearly every State where petroleum is found-New York,

Pennsylvania, Indiana, Ohio, Kentucky, Illinois, Kansas, Texas, Colorado, Wyoming, New Mexico and California. Blackest and thickest of all is the oil from Louisiana. Among these crude oils is a most unique collection of the sands from which the oils are derived. Hanging in the windows are a large number of transparent photographs showing the processes of obtaining and handling petroleum. One of these transparencies, 50×80 inches in size, represents a relief map of the United States, on which is marked every locality in which petroleum has been found and the color of the oil. Along the front of the exhibit the geology of the oil regions is represented by a profile section from Olean, N. Y., westward through Pennsylvania and Ohio to Fort Wayne, Ind. Here miniature derricks and tanks show where the oil wells are located. Tiny threads of glass filled with petroleum indicate the depth of wells and grade of oil produced.
How oils and other products are prepared is shown in a miniature working refinery of glass.
The manufactured products are arranged on stands which radiate from a huge bottle of crude oil in the order in which they are obtained. This central bottle holds one barrel-which is the quantity delivered by the pipes lines of the United States during every second of time throughout the year. The primary divisions are naphtha, burning oils and resi duum or petroleum tar. One case displays the naph tha derivatives. In a larger case all the oils are col lected which boil athigher temperatures than naphtha All these distillates require treatment with sulphuric acid before they yield the merchantable product. A third case shows a jar of residuum ; other specimens how how it is redistilled, yielding a light oil for fuel and a heavier distillate for lubricating oils. There is also a piece of "tar still coke," which is the final residue left in the still. The "heavy distillate" is next shown treated by sulphuric acid, then chilled till a quantity of paraffine wax is crystallized out. This is pressed out and pressed again, yielding successively oft paraffine, "chewing gum stock," or hard paraffine wax for candles. A mound of pure white paraffine is the starting point for candles. Other cases show how the black unattractive coke is transformed into car bons for electric lights, battery cells and other uses, and also the uses for paraffine wax, the latest use being lemonade straws. These are simply pieces of paper rolled up and coated with this wax.
The exhibit of the evolution of the oil lamp begins with a large pebble hollowed on one side, filled with il and supplied with a wick. This ${ }^{2 s}$ used by the Esquimaux. The next queer lamp is a shell laid on
a three-pronged stick with a bit of twisted bark for a wick. This is from Japan. Then there are East India lamps of clay; a Bedouin Arab glass lamp; old Roman terra cotta and bronze lamps; Jewish hang ing lamps; Flemish lamps, a horological lamp, Moor ish lam
The State of Washington makes a creditable exhibit in its State building. In front of the building is a nast, one straight piece of fir, three and one-half feet in diameter at the base and two hundred and fifteen feet high. The south wing of the building and the north wing each rest on one piece of timber three feet by three and a half feet in size and one hundred and twenty-five feet long. Each of these pieces was cut rom a yellow fir tree seven feet eleven inches in dia meter and three hundred and forty feet high. A lifesized full length picture of Washington has a frame
made entirely of small pieces of wood, inlaid with made entirely of small pieces of wood, inlaid with
seventy-seven different kinds of wood found in this State.
The display of coal, gold and silver ores is large. One piece of coal, believed to be the largest lump ever handled, is twenty-six feet long, five feet four inches high and five feet eight inches wide. It is semi-bituminous, weighs 50,250 pounds and is from the Roslyn mines in Kititas County.
The main part of the building is devoted largely to exhibits of the resources of the soil. The center is occupied by a block some thirty-five feet square, which rep resents a farm. At one side is a house and other farm buildings and the rest of the area is divided into grain and other fields, with horses, farming machinery and men in miniature, going through the operations of plowing and harvesting.
The Maryland building contains exhibits which give an excellent idea of the oyster industry. Models of oyster boats are shown and a model of an oyster, pack ing establishment.
The original commission which made Christopher Columbus an admiral is now exhibited in a separate glass case on the altar in the chapel of the convent of La Rabida. A United States soldier guards this priceless document. An inscription says: "This is the beginning of American history."
A plaster reproduction of the fishing house which Izaak Walton built on the banks of the River Dove, in England, has been erected among the trees on the shore of the north lagoon. "Piscatoribus sacrum" is the inscription over the doorway, and this is followed by the date 1674.

An apparatus for sterilizing milk is exhibited in the Agricultural building. It consists of a steam chamber designed to hold the bottles, which are held in position by springs. Steam is turned into the chamber, and, as soon as the air is expelled from the bottles by the heat, a vent in the chamber is closed and the milk is subjected to the action of the steam for thirty minutes.
The wheelmen have had their day at the Exposition, and the display last week closed with a procession of over 1,000 bicycles. Many wheels were elaborately decorated and illuminated during the evening.
The Associated Amepican Exhibitors of the World's Columbian Exposition have elected to honorary membership the "Queen of Inventors," Mrs. Harriet Ruth Tracy, of New York, for her notable invention of a rotary shuttle, lock and chain-stitch sewing machine, whose lower bobbin carries over 1,000 yards of thread. Several other inventions by this lady are also shown.
The Algerian village and the theater are in the hands of the sheriff. The seizure was made on a suit of the Columbian Exposition for a percentage on the receipts of the concession, the amount involved being \$6,130.
The Swedish commissioners on behalf of the Swedish government have sent a letter to the Foreign Office tendering their national building to the South Park commissioners to be held in trust for the people of Chicago.
The attendants who push the so-called "gospel chairs" struck on August 15, owing to a 25 per cent reduction in their salary of $\$ 30$ a month. Many of them took off their pretty uniforms, entered the grounds and offered to push visitors for 35 cents an hour. The company got 40 cents for the use of their chairs, so the visitors paid the same as if the regular orce of chair pushers was propelling the chairs, but the 35 cents went to the pusher and not the company.
Electrical thief catchers are in operation in some of the sections. Their operation is as follows : Ross \& Co., of London, have an exhibit in the British section of the Manufactures building. For some time they have been missing valuable lenses. Finally the case reached such proportions that it was decided to lay a trap for the thief.
Several lenses were temptingly displayed within eemingly easy reach, but underneath each lay one end of an electric wire, to the other end of which was attached a bell. The mechanism was so arranged that, as soon as one of these lenses was touched, an lootrie boll mouid tus out ike a telophoue. TIT guards in that section of the gallery were told of the trap and instructed what action to take when the alarm sounded.
Just before the Manufactures building was closed Sunday night an elderly man, eminently respectable in appearance and neatly dressed, passed along the aisle and soon the gong was heard. The guards ushed in and there on the floor lay the lenses whose theft the old gentleman had undertaken. He was arested.
The total paid attendance to August 15 is 7,736,706. Rand \& McNally's "A Week at the Fair" gives, under an article signed by D. H. Burnham, director of works, the estimated attendance at the Chicago Fair as $35,000,000$. The attendance at the Centennial was $9,910,996$; at Paris, 1878, 16,032,725 ; Paris, 1889, 28,149,50.

Owing to the reductions made by the Western lines, the rural population is now making the trip in large numbers. The increased interest in the agricultural exhibits shows that a large portion of the attendance is made up of farmers and their families.
An international swimming match was held in the lagoon on August 11. Captain Concas, of the Spanish caravels, Paul B. Du Chaillu, and Magnus Andersen, of the Viking ship, were the judges appointed. The heathen from the Midway enjoyed the affair hugely The Zulus, the South American Indians, the Turks, Dahomans, South Sea Islanders, and East Indians, took part in the aquatic contest before the 25,000 spec tators. The distance was 1,550 feet, and Adolphus, a native of British Guiana, received the $\$ 5$ gold piece.
The Rajah of Kaparthala gave the visitors to the Fair on August 15 a glimpse of royal splendor. The Rajah was invited by the director-general to review a procession which wàs arranged in his honor. The a loose rpeare in a mith , old and ing with jewels. His attendants bore the insignia of rank which obtains in India; over his head was a gorgeous silk umbrella, and a servant cooled him with a fan of peacock feathers blazing with all the colors of the rainbow. The line of the aquatic procession was through the ponds to the lagoon and the MacMonnies fountain. The barge of the Rajah was decorated with rugs and shawls. A red carpet protected the Rajah's feet from the cruel gravel when he walked to the eviewing stand. He was seated on a throne which was erected on the grand stand. The Rajah enjoyed the procession immensely, and the people all thoroughly enjoyed seeing the Indian potentate in all his glory.

A KINDERGARTR TEACHING DEVICE.
An exceedingly simple educational device, adapted for use in the kindergarten method of instruction, is shown in the illustration, and has been patented by Mr. Jose Gallegos, of Ocos, Guatemala, C. A. A light cylin-

GALLEGOS' DEVICE TO TEACH ARITHMETIC.
drical case, with a glass front, is divided by radial ribs into numerous compartments open at their inner ends, where there is a sentral recess, in which is placed a circular pocket. This pocket is revoluble by means of a knob or handle at the back of the case, as shown in the sectional view, Fig. 2, and has in one side a slot to permit the balls to pass through, one by one, into the several compartments between the ribs. By permitting one or more balls to pass through the slot, as shown in Fig. 1, the pupil may be taught to add and multiply as the balls are distributed, counting being taught as the balls are dropped one by one through the slot. The device is also designed to serve to some extent to amuse small pupils.
\triangle IACHINE FOR FINISHING SAWs.
A new method of finishing saws, with a machine adapted to facilitate the work, form the subject of a patent recently issued to Mr. Thomas I St. Louis, of Cadott. Wis. It is designed by this means to prevent the cracking of the saws by removing their sharp edges, destroying the cross creases, and breaking up and removing the case-hardening made by the emery wheel in grinding the teeth. The saw is held upon an anvil on the front side of the frame of the machine, in such a position that each tooth may be engaged by a die in the shape of a pin projecting from a crank disk, as shown in the illustration, the pin-shaped die having a groove in its working edge which straddles the top edge of the saw tooth. The crank disk is held on a transverse shaft mounted in oring of the southern landscape, and the more somber a slightly swinging frame, which has its fulcrum on the hues of the Hessian Mountains, all combine to produce main driving shaft, the shaft frame being yieldingly held on the main frame of the machine by a spring connecting it at one end with the base of the machine. A laterally sliding pinion and clutch on the main driving shaft afford the means of causing the rotation of the crank shaft as desired on moving a shifting lever. With the saw held in position, as shown, the rotation of the crank disk moves the die in contact with the top edge of the saw tonth, the die rolling off thereon and finally engaging and roll

st. Louis' saw finishing machine.
ing in the throat, at the same time pushing the saw orward as the rotation of the disk continues, the yielding frame swinging upward according to the
downward movement of the die. The distance of the die from the center of the crank disk is such that at every revolution the saw blade will be moved forward a sufficient distance to cause the die to engage the next tooth on the succeeding revolution, the die in each case exerting a rolling pressure along the top edges of the tooth, in the base of the throat, and up on the forward edge of the succeeding tooth.

A GOLD AND SILVER REMITING ESTABLIBHMENT.
An exhibit in the German department of the Mining building highly pleasing to the eye, through its refined elegance, is the pavilion of the Deutsche Gold u. Silber Scheide-Anstalt, vorm. Roessler (the German Gold and Scheide-Anstalt, vorm. Roessler (the German Gold and
Silver Refinery, late Roessler), Frankfort-on-the-Main, located on the main aisle dividing the building from east to west. The large showcase is entirely constructed of walnut with gold ornamentations, the chemicals, etc., manufactured by the concern and its branches being shown to the right and left in large glass cases, while the background is formed by a plastic and pictorial representation of the different establishments.
Well executed models of the works and the centra office in Frankfort-on-the-Main and of the desilverizing establishment at Hoboken, near Antwerp, are mounted in the foreground. To the left is seen the Mediterranean port of Mazarron, in the Spanish province of Cartagena, with the silver-lead ore smelters of the Compania Metalurgfoa de Mazarron, the Spanish branch of the concern. To the right, the painting represents the Bergstrasse in Odenwald, with the quinine factory Auerbach and the ruin of the old castle
of the same name. The azure blue of the Mediter ranean, with its bright sky overhead, the brilliant col-
\qquad

THE COLUMBIAN EXPOSITION-A GERMAN GOLD AND SILVER REFINERY EXHIBIT.
lin and Vienna. Alt these establishments sare named on the border of the showcases.

\triangle DEVIOE TO TEACH BPELET

This is a cheap and simple device, whith many be easily carried in the pocket. It consists of a luman and ight frame, flush with the back side of which vis serted a glass, while its top or outer portion has fiangted

GALLEGOS' DEVICE TO TEACH SPELLING.
edges adapted to inclose a slide block designed to be moved along over the glass. The device may be applied to words or numbers upon a book or any other surface, so as to cover a portion and expose other portions, dividing the word into syllables and letters, as may be desirable in tearhing small children, or exposing successive figures as may be advantageous in teaching the reading of numbers. The improvement has been patented by Mr. Jose Gallegos, Ocos, Guatemala, Central America.

An Adhesive Cement.
Equal proportions of gum tragacanth and tapioca are ground together and heated with water at about 70° Fah., after which there are added about 50 per cent of gum hog and an equal amount of starch, and the whole mixture heated at from $70^{\circ}-120^{\circ}$ Fah. The cement thus produced is said to be superior to any hitherto known for the requirement of silk and cotton manufacturers, calico printers, book binders, hat and boot makers, etc.

AN IMPROVED BALANCED SLIDE valve.

The valve shown in the illustration, recently patented by Mr . George S. Neeley, of Pacific, Mo., is of very simple and durable construction, and is designed to reduce the friction to a minimum and utilize the steam to the greatest advantage. Fig. 1 is a sectional view showing the valve in position on a steam chest, Fig. 2 being a plan view. The ports of the valve are moved by the valve stem to alternately connect with the ports at either end of the cylinder, the valve ports diverging from a common port registering at all times with a port in a plate held loosely on the top of the valve. On this plate is a hollow piston fitting steam tightit in a cylinder in the cover of the steam chest, the upper end of the cylinder being closed by a cover through which extends the steam supply pipe, while on the under side of the cover is a spring pressing on the hollow piston, to hold it in contact with the plate The area of the piston is about one-fifth more than that of the port in the plate, and, while all the steam passages are very direct, it is designed that,. by the in terposition of the plate between the hollow piston and the slide valve, the latter will be sufficiently counterbalanced to insure easy running, with the least pos sible friction.

NEELEY'S BALANCED SLIDE VALVE.

The Malleability of Iron.

The mill manager of Messrs, W. Hallam \& Co., of the Upper Forest Tin Works, near Swansea, succeeded in making a sheet of the finest appearance and thinness that has ever yet been seen by mortal eye. The iron from which the sheet was rolled was made on the premises. It was worked in a finery with charcoal and the usual blast; afterward taken to the hammer, to be formed into a r gular fiat bottom; from thence conveyed to the balling furnace, and when sufficiently heated taken up to the rolls, lengthened, and cut by shears into proper lengths, piled up, and transferred to the balling furnace again; when heated it was passed through the rolls, back again into the balling furnace, and when duly brought to the proper pitch was taken to the rolls, and made into a thoroughly good bar.
It was then taken to the tin mills and rolled till it was supposed to be thinner than 23 grains, afterward passed through the cold rolls to give it the necessary polish, and it stands on record as the thinnest sheet of iron ever rolled. The sheet in question was $10 \times 51 / 2$ inches, or 55 inches in surface, and weight but 20 grains, which being brought to the standard of $8 \times 51 / 2$ inches, or 44 surface inches, is but 16 grains, or 30 per cent less than any previouseffort, and required at least 4,800 to make one inch in thickness. Paper Maker's Journal, England.

Great Circle Sailing
The advantages to be derived from sailing upon the arc of a great circle are described in the North Atlantic Pilot Chart for July, issued by the United States Hydrographic Department, as follows:

It is too common a practice among mariners to accept the straight line of the Mercato chart, i. e., the rhumb line, as a direct route. The rhumb line in itself, offers the single advan tate of a true course (technical ly, so called) which is constant but this is more an imaginary than real advantage, because the true course must frequently be corrected for the magnetic variation, and the original rhumb is never strictly main tained over long distances.

Although the chart serves to direct a vessel's course and to mark her progress, the vessel herself actually sails upon the surface of the sphere. When her course is shaped by the rhumb, she approaches her port in a roundabout way, in reality never heading for her port until it is in sight. The rhumb line of the sphere is a spiral, which has the property of making a constant angle with the meridians. Upon the Mercator chart it projects as a straight line, and thus presents a false appearance of minimum distance.

A glance at a globe, or at a thread stretched across its sur face, makes it apparent that the shortest distance between any two places upon the surface of the sphere is along the great circle which joins them, and that it is only while maintaining her great circle course that and bevel wheel are securely fixed, the former gearing the vessel heads for her port as if it were constantly in sight. Except when sailing along a meridian, or the equator, the true course upon a great circle changes gradually with the advance of the vessel, but so slowly that in practice a new course need be set only for each 100 or 200 miles of distance made good. Since the great circle course for any position of the vessel is quickly found, the necessity for a change of course may be easily investigated

When a great circle route is to be taken, the whole route should be projected upon the sailing chart, either by a continuous line or by frequent points, that it may be examined for general direction, obstructions, meteorological conditions, etc. When a vessel falls of the original great circle she should not attempt to regain it, for the shortest distance then is upon the great cir cle that jpins her position to her place of destination. Her coares is always the great circle course at her actual position. In general, it will suffice for sailing vessels to shape courses as usual, following the general direction of the original great circle as projected, but it is preferably for fast steamers to ascertajn the exact great circle courses. From what has been said it is
seen that a vessel, in pursuing a great circle route practically sails upon a series of short rhumbs closely approximating a great circle.
The distance saved by a greatucircle route, as compared with a rhumb route, varies greatly, according to conditions. Between Yokohama, Japan, and Cape Flattery, Washington, it is 268 nautical miles; from Belle Isle to Malin Head it is only 36 miles, the total distance being only 1,692 miles.

IMPROVED CIRCULAR AND ELLIPTICAL BORING MACHINE.

We illastrate from Eneineering a circular and elliptical boring machine copstructed by Messrs. G. \& A Harvey, Albion Works, Govan. On the upper surface of the main frame or standard, which is of box section, there is bolted a slide or bed having planed V's and carrying a belt, cone and spur-driving gear. On the front of the bed there is fitted a saddle with a bearing for a sleeve, through which passes the boring spindle,
which is 8 inches in diameter. On this sleeve a worin

Practicablity of Increased Tractive Power on the (

The experience of the "Alley" elevated road in Chicago shows very conclusively, says the Railroad Gazette, that six, seven, and even eight-car trains áre readily handled, so far as loading and unloading are concerned, whenever the platforms are made of snit able length. This is practically a demonstration that the capacity of existing elevated roads can be increased naterially by hauling a greater number of cars at the hours when more capacity is needed.
In Chicago, for instance, the number of trains that an be sent out fron Congress Street in an hour i limited to the delivery of a single stub terminal. The headway so far has been about $21 / 2$ minutes. With a ix-car train this accommodates about 500 passenger each $21 / 2$ minutes, or 14,400 passengers an hour. With eight-car trains it would be 19,200 passengers an hour. The only extra cost of hauling the greater number of passengers lies in the increased number of guards on passengers lies in the increased number of guards on
the trains and some additional expense for fuel. The increased fuel used is not in pro portion to the increase in train, being much less; so that the total train expense per passenger is materially decreased by using the longer train. The result then is a decrease in train ex pense per passenger, and in crease in total capacity by using nore cars per train.
To make the same time over the road this requires a heavier engine, as elevated railroad mo ors are, as a rule, worked to their full capacity. In Chicago their capacity is about seven cars per train. So far as the structure is concerned, it is not strained practically any more by a longer train than by a short one, except perhaps on curves but as the trains are allowed to loat around the curves at a slow speed, probably no greate strain would be produced there The limit of train length with the present form of steam motor ies in the limit of weight that can be made available for ad resion on the locomotive: The ocomotives in New York weigh about 47,000 pounds ; in Chicago about 58,000 pounds. If all of the weight of the Chicago en ines could be made available for adhesion, the locomotives would be sufinciently powerfu to haul at least nine cars per rain. The steam supply is quite ufficient on those engines for he increased work that would be demanded. As the engines are designed, they have trucks under the tank which carry about 18,000 pounds, or nearly one-third of the total weight This weight is useless for ad hesion, and is, in fact, a dead weight that has to be carried without serving any really useful purpose.
This explains the preliminary facts relating to the point we wish to bring out, which is that the existing elevated railroad structures could be made to arry much longer trains by a nto a bevel pinion on the end of the spur wheel shaf the motion of either driving arrangement being con veyed direct from three-stepped cone or double gear as desired. The spindle carries a double-ended tool slide having $82 / 2$ inches in vertical travel, the tool boxe of which are movable horizontally for boring diame ters from $31 / 2$ inches to 00 inches. By using one too box and giving motion along the slide to the saddle by means of worm, worm wheel, disk and connecting bars, holes may be boreã varying from a complete circle to those of an ellipticaĺ form, whose transverse and conjugate diameters have not morethan a differ ence of 7 inches. The spindle is counterbalanced by lever and weight, und has 14 inches vertical travel by hand or self-acting feed when the double-ended slide is removed. On the upper tool slide there is fitted a com pound table adjustable by hand by means of serews The upper table is furnished with $\mathrm{J}^{\text {-slots }}$ for 'securing the work required to be operated upon.

By mixing a saturated solution of carbonate of soda
with ordinary carmine ink, red lines may be success fully drawn onblue prints.
proper arrangement of the weight of the locomotive. Before radical steps are taken, if ever they are, to modify existing structures of elevated roads, it should be seriously considered whether longer trains would not be more profitable than the flve-car trains now run.

Sudden Death to Fhes

"Come inside a minute," said a Fourth Avenue dealer in pianos, yesteqday afternoon. "I have dis covered the greatest fiy trap on earth and I want to show it to you." He led the way to an instrument at the rear of the store on which was a newspaper. On the paper had been placed a bunch of sweet peas. At least a thousand dead flies were lying on the paper in the immediate vicinity of the bunch of flowers. "I threw these here by chance," he continued, "and in about ten minates I happened to notice that every fly that alighted on the flowers died in a very short time." Eren as he spoke a number of the insects which had stopped to suck the deadly sweet had toppled ove dead. They alighted with their usual busz, stcpped momentarily, quivered in their lege, flapped thieir wings weakly several times, and then gave up the ghost-Iouisville Journal

Carboalzing Metal.
One method used in Germany for introducing carbon into a molten metal bath is by mixing pulverized anthracite and lime water together, and forming the mass in briquettes under great pressure, these briquettes being then brought into contact with the molten metal ; in this way, exactly, the desired proportion of carbon for the formation of steel of various tempers and qualities can be imparted to the converter. The method of recarbonizing is stated to cost only about one-sixth that of the ferro-manganese plan, but the most important advantage presented is the greater accuracy and uniformity with which any required quality of steel may be produced, ranging all the way from the hardest to the very toughest sorts. It is anticipated that rails made according to this new system will have a life of from 35 to 40 years, while girders made in this way possess very great additional durability.-1ron Trade Reviero.

xylolith or Wood stone.

Xylolith, or wood stone, says the American Architect, is coming into extensive use in Gramany. A recent number of the Bautechniker gives a variety of additional particulars. Xylolith, or steinholz, or wood stone, is made of magnesia cement, or calcined magnesite, mixed with sawdust, and saturated with a solution of chloride of calcium. The pasty mass, before the cement sets, is spread out into sheets of uniform thickness, and subjected to an enormous pressure, amounting to more than a thousand pounds to the square inch. The compressed sheets are then simply dried in the air. The original invention of this material dates back to 1883 , but it is only within the last five years that a single firm, that of Otto Sening \& Co., at Pottschappel, near Dresden, has undertaken the manufacture of it on a large scale, and has met with such success that it is already engaged in the erection of extensive additional works in the Austrian territory, to supply the South German market. In 1888, a series of tesis of xylolith was made at the royal testing station for building materials in Berlin, covering its chemical as well as mechanical qualities. In resistance to tension it was found, naturally, that the dry material was much superior to the same soaked with water, dry specimens resisting a tension of about 100 pounds per square inch, while pieces saturated with water resisted only two-thirds as much. Soaking the dry material in linseed oil increased the tensile strength about ten per cent, and freezing diminished it slightly. The resistance to compression proved to be about 800 pounds to the square inch. This was diminished about ten per cent by freezing, and increased to about
the same extent by careful drying and saturation with the same ex

The specific gravity of the new substance was found to be $1 \cdot 553$. The fractured surfaces showed a yellow color, with a peefectly uniform and close grain. When immersed in water, unbroken sheets of perfectly dry material took up $2 \cdot 1$ per cent of their weight of water in twelve hours and 3.8 per cent in two hundred and sixteen hours. Broken pieces absorbed in the same time about twenty per cent more water than the unbroken sheets. To try the resistance to the influences of the weather, a large number of samples were taken, and subjected to boiling in water, brine, sodalye, hydrochloric acid, andsolutionsof sulphate of iron, sulphate of copper and sulphate of ammonium, alternating the boiling with sudden cooling. After several days' treatment with hydrochloric acid a loss of 2.3 per cent in weight was observed, but the properties of the pieces under test were not perceptibly affected. In the other cases no loss of weight could be detected, nor was there any other apparent alteration, and the liquids used for treating the samples remained perfectly clear. Expoşure to superheated steam, in a Papin's digestor, also produced no visible effect. In hardness, the material was found to occupy a position between feldspar and quartz, being scratched by the latter, but not distinctly so by the former. As a conductor of heat, the xylolith was found to rank between asbestos and cork, being, therefore, one of the best nonconductors known. To test its fire-resisting qualities, sheets were exposed for three hours to the flame of a Bunsen gas burner, by which the actual surface touched by the flame was charred, although there was no crumbling, or extension of the charring beyond the marks of the flame. Similar pieces, laid on the burning coal in the fire box of a drying oven, and kept for some time at a red heat, were rendered brittle, and crumbled at the edges, but kept their shape and cohesion, and showed no sign of breaking into a flame.

For use, xylolith is delivered in sheets, from a quarter of an inch to an inch and a balf thick, and of all sizes, up to a meter square. The dimensions are almost, unchangeable by dryness or moisture. A sheet measuring one meter square when perfectly dry will expand from one to two-tenths of one per cent when soaked in water, and a moist sheet will contract in drying to about the same extent. Being so little subject to contraction and expansion, it is extensively used for floors in railroad stations, hospitals and simi-
lar buildings, and for decks of vessels. It is readily planed, ssa wed, bored and fashioned withordinary wood working tools, and may be painted or decorated in the same manner as wood. It is itself nearly waterproof,
and with suitable putty in the joints, and a good coat of paint, it may be made entirely so. It is not surprising that a material possessing so many advantages should have come into extensive use abroad, and we trust that its manufacture mar be introduced here. It is sold in Germany, in sheets of thickness suitable for flooring, at abont seven cents per square foot, an
the laying costs, complete, about four cents more.

EXPERIMENT BHOWINe MAGNETIC LAG.

Most students of electricity know theoretically what is meant by magnetic retardation, or magnetic lag and electrical engineers and manufacturers of electrical machines understand the causes and effects of this action in the armatures of dynamos and motors; but to most people, and especially to students who really desire to fix an idea in their minds, an experimental demons.
It is.
It is of course impossible to see what goes on in an armature while moving, but it is known that the armature core becomes a magnet by induction, and that its poles are of the opposite name to the adjoining poles
of the field magnet. It is also known that time is reof the field magnet. It is also known that time is required for, the magnetization and demagnetization of the armature. The time element is thus seen to be one which cannot be left out of the calculation in designing dynamo-electric machines.
A very simple experiment, which helps to an understanding of what magnetic lag is, is shown in the annexed engraving. A perforated block is inserted between the polar extremi ties of a J -magnet to receive a pointed spindle attached to a soft iron disk held near the poles of the held near the poles of the
magnet. The pointed end of the spindle rests upon a cross bar inserted between the arms of the magnet. The disk, which turns very freely, absorbs the magnetic lines and becomes strongly magnetic. When the disk is at rest, poles are front of the poles of the magnet, but when the disk is turned ever so little, the poles in the disk are carried forward in the direction of rotation. This is proved by the action of the disk when it stops. It immediately moves a short distance in a retrograde direction, showing that
the points of greatest magnetic density in the disk lie beyond the poles of the magnet in the direction of the rotation of the disk, and that these points are attracted toward the magnet poles. Owing to the friction of the bearings of the spindle, and to the almost
immediate readjustment of the magnetic lines in the material of the difk, the return movement does not represent the entire lag, but it shows in a striking manner what lag is.

The Next World's Fair.

It is announced that the next World's Fair will be held in Antwerp in May, 1894. The Antwerp Exposition will be much smaller than the World's Fair at
Chicago. Antwerp has the advantage of being able to take exhibits directly from the vessels in which they are transported, as the river Scheldt will float vessels of 8,000 tons burden. Antwerp is readily reached in a few hours from Paris and all parts of Belgium, Holland, and the Rhine provinces of Germany. London and Antwerp are only eight or nine hours apart by the Harwich route or the Ostend route, while Antwerp is Harwich route or the Ostend route, while Antwerp is
directly accessible from the United -States by the Red Star line, which furnishes first-class accommodations at moderate rates. In Belgium there is no hostility to government appropriations and no municipal prejudice. There will be no sandbagging by the railroads, and it is to be hoped none of the disgraceful wrangles which have characterized our Fair. Although there is not the slightest possibility that the Antwerp Fair can compare with ours, still when Paris celebrates the opening of the new century in 1900 it is probable that the Chicago Exposition will be equaled if not surpassed.
Already the French engineers are making preparations for 1900, plans are being made for the railroads which are to convey the passengers to the Bois du Boulogne, for while the Champs de Mars has notgrown smaller since 1867, the size of international expositions

Blue Focusing Glans.
Photographic Work says: A blue focusing screen has been suggested as eliminating the effect of color in the case of the camera image, and so enabling the photographer to better judge as to how his work will look; the colors of a landscape often giving a charm to the cene which is not realized in the photograph.
It is suggested to wash over the ordinary groundglass screen with an alcoholic solution of an aniline blue; but in this case the screen could not be readily cleaned. Hence a much better course would be to finegrind a piece of blue glass.
It is very easy to make a fine ground focusing screen by using the finest emery of the shops-sold as "flour emery." Thisshould be mixed with water, and worked on one surface of the glass with a rubber consisting of a piece of thick plate glass about aninch square. The progress of the work can be seen by rinsing the emery off, when special attention can be given to any imperfectly ground parts. It is obviously desirable not to scratch the back of the plate, and to insure this the plate should be held steadily on a flat surface while the rubber or muller is being used. A flat-topped bottle stopper often makes a convenient muller.

The August Meteors,

Happening to be in Ithaca, N. Y., on the night of August 10, I watched for Perseids from 10:20 P. M. until midnight, 75th meridian time. With the exception of about three minutes, I kept my face directed toward the radiant point of the meteors during the entire interval of an hour and forty minutes. The sky was cloudless, but covered with a light baze, which slightly less, but covered with a light haze, which slightly
dimmed the fainter stars. I counted forty-fivemeteors. Of these, thirty-five were plainly Perseids. All but one of the others traveled in approsimately parallel paths from near the square of Pegasus toward or across Andromeda. None moved in any other direction except one rather large meteor, which shot from west-southwest, passing overhead about 11:45. It should be said that my view toward the west as well as toward the south and southeast below the square of Pegasus was shut off by neighboring buildings and trees, so that if any meteors appeared in those quarters moving from Pegasus as a center, I could not see them. All of the meteors just described as not traveling from the Perseid radiant were, with the exception of the one seen overhead, small and swiftnoving.
A few of the Perseids were as bright as first and secad magritade etars and left beantifnl though evanesent trails. These bright meteors had a distinct reddish tint. One of them, which shot straight across under neath the Pole star at 10:45, was at least as bright as Sirius. Its visible path was not less than 20° in length. It was yellow bordered with a flare of red, but at the moment of extinction these colors were swallowed up in an outburst 'of white and vivid green. After its disappearance a greenish white train, five or six degrees long, remained visible along the latter portion of its track for half a minute. This train undulated rapidly likea ribbonstreaming in the wind, and gradually shrunk and faded until it vanished, when a fourth magnitude star suddenly made its presence manifest at the poiut where the last shred of the meteoric train had been seen. The star had not been noticed when it was behind the train.
At about 10:55, while my eyes were fixed in the diection of the radiant, a faint stellar object made its appearance a few degrees northeast of Chi Persei, and quickly brightened until it equaled a third magnitude star, when it vanished. It was evidently a meteor coming "end on" toward my eyes. I had a distinct impression that its light appeared drawn out into an excessively brief trail, like a short dash in the Morse alphabet, which would indicate that the meteor was not moving exactly in the line of sight. But the deviation was so slight that I could form no accura te estimate of its amount. The point where this meteor appeared was, by estimation based on a subsequent consultation of a star chart, in right ascension 2 h .50 m ., declination north 58°.
About half an hour before beginning my watch I saw three Perseids within two minutes. Two of them were arge and reddish, making conspicuous trails. They appeared not more than fifteen seconds apart. Both started from near the radiant point and they noved in paths almost exactly at right angles to one another. The effect was surprising and beautiful.
It seemed to me during my watch that the larger meteors showed a gregarious tendency. If one appeared after a long interval, during which only small ones had been visible, it wasalmostinvariably followed within a short time by another of more than ordinary size and brilliancy, but not traveling in the same direc tion across the sky. Afterward again only small ones were seen for a considerable time.

Garrett P. Serviss.
IT is estimated that about 250,000 canary birds are aised every year in Germany. The most important market is the United States, which take about 100,000
birds per annum. birds per annum.

NASMYTH'S TORPEDO BOAT OF 1853.

More than forty years ago, to wit, February 19, 1853 the Scientific American published illustrations of James Nasmyth's torpedo boat, which presents several features of novelty, and we have thought it of sufficient interest to our readers to reproduce the description and illustrations as originally given by us. Peculiar interest attaches to this submarine boat of nearly half a century ago from the fact that a selection is soon to be made, by a board of examiners of the Navy Department, of a type of submarine vessel, for the construction of which Congress has appropriated $\$ 200,000$. Some fifty or more proposed plans have been examined, and the selection has, it is stated, been narrowed down to a choice between the Baker and the Holland types, the former of which has had ormer of which has had some trials on the Detroit River and the latter in the wa-
ters near New York City. ters near New York City.
Both of these submarine boats have been illustrated and described in the Scientific American; the Baker boat, CAN ; the Baker boat,
July 30,1892 , and the HolJuly 30,1892 , and the Hol-
land boat experimented land boat experimented
with also by Lieut. Zawith also by Lieut. Za-
linsky, August7, 1886. The following is the description :
"The annexed engravings are views of a floating, partly submerged propeller, torpedo vessel, proposed by James Nasmyth, of Patricroft, England, for destroying large ships of an invading fleet. Fig. 1 shows the floating mortar, steered by the man at the sight hole, X, and shown attacking the enemy. Fig. 2 is an enlarged view of the great brass mortar and shell. The cap, C, explodes the instant it is brought in contact with the breech, \mathbf{R}; this it does in consequence of the protruding end of the shell being crushed against the side of the enemy. The flange, S S , is just so strong as to resist any ordinary pressure, and is thereby made safe till crushed back by contact with the side of the enemy.
" Fig. 3 is a transverse section of the mortar.
"Mr. Nasmyth is the inventor of the steam hammer, which bears his name, and various other useful inventions, and, besides, he is a first-rate astronomer and mathematician. The following is his own account of the invention, which was sent to the Rlustrated News:
" The principles on which the arrangement and construction of the floating mortar is based consist, in the first place, of a monster self-exploding shell, so arranged as to explode on having its breech end crushed against the breech of the mortar, the selfexploding cap being situated there, as will be seen on reference to the engraving.
"In order to enhance the destructive effect upon the enemy's ship, the shell is so far submerged as to tear its way into the enemy six feet under water line.
"Next, to protect the shell from the effect of the water while resting in the chamber of the mortar, it is rendered waterproof by being inclosed within a perfectly watertight copper case, which will so effectively

Fir. 2.
secure it from the action of the water as that it may remain, if need be, for years in the chamber of the mortar, submerged, as before said, six feet under water line, and ready for service at any time.
"The crush consequent on coming in contact with the side of the enemy is the agent whereby the monster shell is made to explode. A very moderate velocity of the floating mortar would, when brought up against the side of the enemy, prove sufficient for this purpose; so much so, that, in order to obviate the chance of its explosion by accidental contact with any other object, I have so placed the flange joint of the copper case against the mouth of the mortar that the crush against the side of the enemy, resulting from a speed of two
or three miles per hour, shall besufficient to overcome the resistance of this flange, and crush the self-exploding cap at the breech end of the shell against that of the mortar, and so cause it to explode and tear its fear ful way through the side of the enemy. Thus it wil be evident that we can never fail to render the shel effective, inasmuch as that it is the very fact of contact with the side or hull of the enemy that brings the self-exploding agency into action. No ship that has ever been built, either wood or iron, could survive the fearful hole which a monster shell, exploded under such circumstances, would produce.
"The next feature is the intimate union of our mor
tar with the hull of the screw steam vessel, which
and, instead of terrifying her foes by keeping watch and ward on their coasts, as she once did, she is keeping a sharp lookout for the defense of her own coasts by such water hogs as this of Mr. Nasmyth. Prudence no doubt, is the better part of valor, but we apprehend that this vessel could very easily be taken prisoner by a few boats before it was permitted to drive its snout against the side of an invading war ship. It, no doubt, could be used at night as well as during daylight ; but at the same time, we must say that since Mr. Nasmyth has brought this subject before the public, invading ships will be prepared for it, as they now understand what it is. Torpedo submarine vessels are not new more than one has been invented in America, and for many years they formed a more interestingsubject to Robert Fulton than his teamboat. He was fur nished with means by Na poleon to blow up an Eng ish frigate, but failed, and after that Napoleon seemed to entertain a prejudice against him. Lord Coch rane invented a torpedo ubmarine vessel, but no hing of any consequence o far as we are informed esulted from it, and never will, we suppose."

Genuine Vinegar.
In the British Pharmacopøia, The Analyst says, vinegar is defined as "an acid liquid, prepared from a mixture of malted und unmalted grain by the
Fig. 1.-NASMYTH'S TORPEDO BOAT OF 1853.
transports it direct to the object which we desire to destroy. The mortar is (as will be seen on reference to the engraving) made part and parcel of the vessel, and so situated as to unite the most effective mechan cal arrangement with the strongest position of the vessel, viz., 'end on,' so that the entire mass of our vessel (mortar and all) is brought into play, as the means whereby the concussion or recoil due to the explosion of the shell is absorbed by the entire mass of the floating mortar, so that no sensible recoil or concussion would be experienced
"Next is the manner in which the crew who attend to the navigation of the flating mortor, together with the steam engine, boiler, and screw, are protected from the action of shot, whether red hot or cold. This object is attained by giving the vessel, in all directions where assailable, such a thickness of timber as that no shot, of whatsoever description, can penetrate to the interior. To insure this, the hull of our floating mor tar will be made at least ten feet thick, of poplar wood which material is admirably adapted for the purpose by reason of its lightness, toughness, and incombustibility. Red hot shot might lodge in it, but would fail to set it on fire. A red hot shot would only char a few inches of the timber around it and cool at its leisure, and from the extent to which the hull would be submerged, the portion above water presents no surface favorable for the effective action of shot; while, as there will be most ample accommodation in the interior for a high pressure engine and boiler, with direct action screw propeller, there is nothing to prevent our obtaining a velocity of eight or nine miles an hour, although for the actual objects of the vessel a speed of five or six miles would be ample. The draught of the engine furnace would cause perfect ventilation for the crew, which need not consist of more than three or four handy men.
"I would observe, in conclusion, that as this class of vessel is chiefly designed for defense against invasion, and would not have to act against an enemy, probably, at greater distances than one or two miles from our shore, it could speedily return for another shell; the means for lodging which in the chamber of the submerged mortar are most simple, but not needful at present to describe. I conceive, however, that the total destruction of one enemy's ship at each trip would be sufficient strvice.
"Three or four such floating mortars, each of which sending to the bottom of the sea the largest ships an invading enemy might dare to bring toward our shore, would make such a demonstration as would strike terror into the largest fleet that molested a peaceful nation; and not fail to confirm the maxim, that the best way to prevent war is to render the results so terrible as that evil-disposed nations will think twice ere they face such wholesale destruction as our floating mortars would not fail to deal out to them.
"The fear of an invasion has been very strong in the minds of the people of Britain ever since Louis Napoleon became President of France, and at present the excitement, we can perceive, is approaching fever heat. It was said once that, ' A sight of the gray coat of Napoleon (the great we mean) was enough to set all Europe in an uproar.' We must say that England seems afraid now in trasting in her wooden walls,

53.
he specific gravity is from
cetous fermentation." The speeific gravity is from
1.017 to 1.019 , and it is to contain about 5.41 of real acetic acid $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)$.
The vinegar of the German Pharmacopoia is requir ed to contain at least 6 per cent of absolute acetic acid In Russia the minimum limit of strength is 5 per cent; in Austria, 6 ; in Belgium, 5.6 ; in France, 8 to 9 ; and in the United States, 4.6 per cent.
In 1874 the Society of Public Analysts adopted 3 per cent of real acetic acid ás the minimum limit of strength for vinegar.* This limit certainly cannot be said to err on the side of too great stringency, and there have been veryfew prosecutions for the sale of vinegar containing less than this very moderate proportion of acetic acid.
With regard to the sale of vinegar, the pharmacist stands in a far more delicate position than the genera dealer, for it might be argued, with some plausibility, that, when purchased of a registered pharmacist, an article recognized in the British Pharmacoposia ought to comply with the description of it given by that authority. This would limit the "vinegar" to be sold by pharmacists to the very best quality of malt vinegar and if the B. P. definition of vinegar were legally applied to-day, a considerable proportion of the trade would probably be caught tripping.
With the single exception of Brannt, who appears to hold that vinegar may be legitimately manufactured from wood acid, while admitting that the product is inferior to the fermentation acid, all the authoritie above quoted agree in regarding true vinegar as an

Fig. 3.
acid liquid produced by the acetous fermentation of alcoholic liquids, and consequently regard acetic acid from wood as not answering to the description of genuine vinegar.

It is said a female codfish will lay $45,000,000$ eggs during a single season. Piscatorial authorities say that were it not for the work of the natural enemies of fish they would fill all the available space in the seas, rivers, and oceans.

* By the term "real acetic acid" there is good reason to believe the to 853 per cent of $\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}\right) \mathrm{OH}$.-A. H. A.

WARBURTON ROAD BRIDGE-MANCHESTER SHIP CANAL.
We present herewith an illustration of the Warburton Road bridge over the Manchester Ship Canal. The canal was constructed to enable sea-going vessels to reach Manchester, and thus avoid expensive railway transfers of freight at Liverpool.
The Manchester Ship Canal is $351 / 2$ miles long, 26 feet leep, and 120 feet wide at the bottom. Docks are built at intervals to accommodate the largest vessels which traverse the canal. The docks at Runcorn, Salford, and traverse the canal. Thedocks at Runcorn, Salford, and Manchester are very extensive
of the company is $£ 9,812,000$.
Engineering works, as locks and bridges, were necessitated by the country which the canal traverses and the exigences of travel, and these works required the skill of the best civil engineers. The most important problem connected with the scheme, next to the cutting of the canal itself, was the providing for the traffic which exists between was the providing for the traffic which exists between
the two sides of the river Merseyand theIrwell. Four roads cross the canal, one at Barton, one at Warburton, and two at Warrington. In addition to the road bridges, the Bridgewater Canal and five railroad bridges, as well as the famous Runcorn Viaduct, cross the canal. In the final plans, swing bridges were abandoned and high level bridges were substituted. The Warburton Road bridge was designed by Mr. E. The Warburton Road bridge was designed by Mr. E.
Leader Williams, M. Inst. C. E., and is a fine example Leader Williams, M. Inst. C. E., and is a fine example
of a cantilever bridge. For the illustration we are inof a cantilever bridge. For the illustration we are in-
debted to the Engineer. The Manchester Ship Canal
should expect, for there is no presumption that the meat of which they were made was bad. Indeed, the contamination must have taken place after they left the baker's oven. The ptomaines of decomposed meat may pass through the baking process without change but it is hardly possible to suppose that living bac teria could survive such an ordeal.
This, then, is a matter entirely different from the ordinary ptomaine poisoning due to the use of bad meat, and it raises a question of considerable interest. The pork pie, be it ever so good and fresh, forms a most admirable culture medium for microbes, and when we think of the late revelations concerning the disgraceful sanitary conditiốn of our bake houses, we cannot but wonder that outbreaks likethat at Camberwell do not occur more frequently. Short of actua poisoning, however, we suspect that the question is one of no little practical importance to the public that cooked meats are pretty often contaminated with bacteria, and that a large proportion of sick-headaches, summer diarrhœa, and the like are to be accounted for in this way.-Chem. and Drug.

Prehistoric Irrigation in Arizona.
In the July Anthropologist, Mr. F. W. Hodge gives some interesting notes on this subject, from which we take the following:
In none of the extensive archæologic remains of Southern Arizona are the industry, perseverance, and
broadening until they reached the brinks, which were about thirty feet wide. Thus a main ditch consisted, so to speak, of one watercourse within another ; so that if at any time a small current of water only could be supplied at the head-gate, owing, perhaps, to drouth, the lower and narrower ditch was doubtless always filled sufficiently to supply the towns beyond, while during the rainy season the upper and much broader portion of thegreat canal would readily accommodate all surplus waters.
Several years ago, when the Mormons first settled at Mesa City and began the irrigation and cultivation of the fertile plain about them, they utilized this ancient canal bed for a considerable distance, including that portion encircling the knoll of volcanic tuff mentioned. The writer has been informed by one of the founders of this settlement and builders of the Mesa canal, which is nine miles in length, that the saving to them by using the ancient canal was from $\$ 20,000$ to $\$ 25,000$.
In tracing the routes once pursued by many of the canals, great depressions-the sites of ancient reser-voirs-are observable. The remains of one of these reservoirs, nearly a mile long by about half a mile wide, occur on the open plain at the terminus of one of the main canals that formed the source of water supply of Los Muertos, and about three miles southwest therefrom. It is possible that this great depression was, in part at least, a natural sink, deepened by artificial means to serve more fully the purposes of a storage basin of surplus waters from the Los Muertos irrigat

MANCHESTER SHIP CANAL-WARBURTON ROAD BRIDGE.
is described and illustrated in the Scientipic Ameri can Supplement, Noe. 383, 515, 555, 685, 715, 763.

Pork Pie Poisoning.

The recent extensive outbreak of poisoning n Camberwell has revealed a little-suspected danger that may lurk in the pork pie et hoc genus omne. The outbreak was peculiar in two respects. The symptoms did not come on till after a lapse of from twenty-four to thirty-six hours, and those who scarcely tasted the pies suffered almost as severely as those who indulged freely. One woman, indeed, who had taken none, was attacked; but it was found that she had used a knife with which a pie had been divided.
In ordinary ptomaine poisoning the symptoms some on almost immediately, and their severity is, of course, directly proportionate to the amount of food taken. Here neither of those conditions was fulfilled, and the facts permit of but one interpretation. The pies were, so to speak, only potentially poisonous. They did not contain an actual chemical poison, blat they did contain living bacteria, capable of growing in the body, and of producing deadly toxines therein. The period that elapsed before the onset of the symptoms was, no doubt, the incubation period of the bacteria, and with the enormous power of reproduction possessed by these organisms it mattered little whether many or few were introduced.
The pies, it is said, were made in Leicester on a Thursday, and sold either on the following day or on Saturday, and no complaint was made by any of those who partook of them that they were otherwise than perfectly fresh and good. This is exactly what we
more faithfully illustrated than in the many works of irrigation thatabound in the valleys and on the mountain slopes of this section.
Judging from the remai s of extensive ancient works of irrigation, many of which may still be seen passing through tracts cultivated to-day as well as across densely wooded stretches considerahly beyond the present non-irrigated area, it is safe to say that the principal canals constructed and used by the ancient inhabitants of the Salado Valley controlled the irrigation of at least 250,000 acres, even without considering the economical methods employed by a primitive people in all its undertakings.

The mode of canal construction employed by these pueblo builders was another indication of their patience and industry. Their canals are models for the modern farmer to imitate; yet they óould have been dug in no conceivable manner save by the laborious process of hand excavation with stone or wooden implements, the easth being borne away by yeans of blankets; baskets, or rude litters. Notwithstgnding this, the autlines of at least a hundred and fifty miles of ancient main irrigating ditches may be readily traced, some of which meander southward from the river a distance of fourteen miles.
Unlike ordinary irrigation ditches, these were constructed in such a manner as to control to some extent the depth of the current as well as to prevent waste through seepage. The bed of the canal was about four feet wide, but the sides broadened in their ascent to within about four feet of the bank, where a "bench," three feet in width, on each side of the canal had been made. From these benches the banks continued, \mid that
ing system. Every cluster of communal structures in Los Muertos was supplied w th a reservoir on a smaller scale than the one just mentioned, a single canal forming both its inlet and outlet. Sometimes a lesser communal dwelling shared with a neighboring structure in the water supply from a single storage basin.

The Iron Industry.

President Richards, in his closing remarks before the British Iron and Steel Institute, said : "So successful have we all been in economically increasing production that we have inundated and swamped the markets for the time being; at present, and for some time past, there is not enough work for half the steelproducing power of the country. Thus we go on, and we look about in vain for new markets. We compare America with 60 millions of people, having 175,000 miles of railway, with India, having 250 millions of people and only 17,000 miles of railway, and wonder why, under our sway, it develops at such a wretchedly slow rate. Where is the trade to come from to keep our workmen employed and our establishments in operation? No one seems to be able to answer this question; but we know that we have had many serious depressions before, though none seem so deep, so prolonged as this. The iron and steel trades may be likened to Pandora's box, from which, once filled with all good things and all bad, everything escaped -the good things back to heaven and the evils to infest and plague the earth; but there is still left to us that which neverdeserts us, the inestimable blessinghope."

tHE CENTURY VASE AT THE FAIR.

This most elaborate and highly finished representation of American art work in silver, valued at $\$ 25,000$, and designed to commemorate the completion of the first century of the republic, forms a portion of the exhibit of the Gorham Manufacturing Company at the Columbian Exposition. Their display is in a pathe Columbian Exposition.
vilion at the beginning of vilion at the beginning of
the United States section, in the Manufactures and Fine Arts building, its main entrance being on the circle bounded by the four countries, the United four countries, the United States, Germany, England,
and France, The vase is and France, The vase is
4 feet 2 inches high, and its base is 5 feet 4 inches long, the weight of silver in it being 2,000 ounces. The pioneer and Indian on the front of the oval base suggest the first phase of life here, and at the extremities of the oval are festoons of native flowers. Above, on the left, is represented the genius of war, and on the right a lion led by children. The front panel of the vase, rising from the plinth, represents Genius ready to inscribe on the tablet the progress made in literature, science, etc., while surm ounting the vase are four figures, the three subordinate ones representing Europe, Asia, and Africa, while the central and highest shows America inviting all nations to unite with her in an international exposition.

THE SANTA MARIA AT

 THE FAIR.The principal vessel of the Columbus caravels, puoored at her pier alongside \mid ple-expansion, direet weting ${ }_{\text {gonginee. }}$ Thepropelling of the Casino, has attracted constant attentiốn ever and circulating pump engines have a combined horse since she became practically a portion of the great World's Columbian Exposition at Chicago. ${ }^{\circ}$ Crowds of visitors go aboard of the little craftevery day, but the number of such visitors is small compared with the far greater number of those who simply content themselves with an outside view, on account of the multitude of other attractions which the Fair presents. In our view the Casino is seen nearest the vessel, the Music Hall beyond, and the statue of the Republic on the left.
The arrival at New York of the vessels built to faithfully represent the original squadron of Columbus,and thegreat naval parade and review in honor of the event, were fully described and illustrated in the ScIEntific American of April 29 and May 6. The Santa Maria, it will be remembered, is the largest of the three vessels of the squadron, but her greatest length is only 75 feet, width 23 feet, and burden from 120 to 130 tons. One would be counted a venturesome navigator who started in these days to cross the ocean in such a craft, and it is the vividness with it is the vividness with
which this idea presents itself to a visitor familiar with modern facilities for travel that constitutes the never-tiring interest the little craft has for so many thousands of sightseers.

The New Torpedo Boa Ericsson.

The firststeel vessel ever built on the Mississippi is now nearly ready for launching, and her builders, the Iowa Iron Works, of Dubuque, propose to of Dubuque, propose to
invite the governors of the invite the governors of the States in the Mississippi Valley to be present. The Ericsson is guaranteed to have the highest speed of

THE WORLD'S COLOMBIAN EXPOSITION-THE CENTURY VASE. inch Whitehead torpedoes.

The Wilmot \& Hobbs lManufacturing Company, of Bridgeport, Conn., has recently been awarded an importantgovernment contract for their cold-rolled steel for especially difficult stamped and drawn work. This steel, of which the company is now making a specialty, had been previously submitted to severe competitive tests, and is said to have well demonstrated its superiority.

THE WORLD'S COLUMBIAN EXPOSITION-THE SHIP OF COLOIBUS, THE SANTA MARIA, AT RER DESTINATION.

The Berliner Telephone Patent.
Not much has been heard recently, says the Electrical Engineer, of the government suit to annul the Berliner microphone patent. It is quite certain, however, that the case will not run on undertermined for seven or eight years, like the old and still unsettled suit to cancel the Bell patent of 1876 . It is evident that the American Bell Telephone Company has a stronger motive for seeking dispatch than for securing delay this time. The Berliner patent is on a very different footing from that occupied by the Bell patent when it was attacked by the Department of Justice. That patent had been very thoroughly adjudicated and upheld by the courts, and the government suit went harmlessly on its leisurely course during the remaining life of the patent (and still goes on, although the patent is some months dead), forming no obstacle to the issuance of injunctions against infringers. But the Berliner patent, which on its face seems fundamental in respect to nearly all existing forms of microphone transmitters, has not yet had the judgment of any court as to its scope or validity. In its first ordeal it is put upon its defense under the attack of the Attorney-General. It is, therefore, not at all likely that its owners, the American Bell Telephone Company, will institute any infringement suits until it knows whether or not it has a sound patent. A court would hardly take nd circulating pump engines have a combined horse present circumstances of tife patent. Moreover the the power of 1,800 . The torpedo tubes are for the new 18 - ceptional control of an entire art enjoyed by the Bell

Comp cedpany for seventeen years, because of the unpre pronted scope of the Bell patent, which would have protected it against the use of the Berliner invention had it been in other hands, would probably be deemed by any court of equity a good reason for turning a deaf ear to any plea of urgency on the part of the Bell Company in dealing with an alleged infringer.
It is understood that testimony is now being taken in the government suit, and we have no doubt that any unnecessary delay in pushing the case to a conclusion will be chargeable to the Department of Justice ather than to the defend ant.

The decision of Judge Coxe filed July 18, 1893, affirming the expiration of the Faure storage battery patent in the United States, will not, says Electricity, make the manufricity, make of this type of accumulator in this country entirely free, as the courts have already construed the scope of this patent to include only the application of the active materials in the form of paste, paint or cement, while the Brush patent, which is yet in force, is broader and covers all forms of active material applied to the plates except where it is in the form of paint, paste or cement, or is formed from the material of the plate itself, as in the Plante type of cell. The decision, however, opens a field in this line of business in which considerable progress may be expected, and it will doubtless be takenadvantage of by the manufacturers against whom injunctions have been procured by the company which controlled the Faure patent.

WORLD'S COLOMBIAN EXPOBITION-ENTRANCE TO the palace of agriculture buidding.
Theglory of the Exposition is the Court of Honor and the glory of the Court of Honor is the Agricultural building. Situated on the south side of the great basin, it extends from the south canal nearly to the Casino, a distance of 800 feet. The building is 500 feet wide, and the cornice line is 65 feet above the grade of the walks. Architecturally the Agricul grade of the walks. Architecturally the Agricul-
tural building is one of the most successful in the tural building is one of the most successful in the
inclosure. The architects were Messrs. Mcim, Meade \& White, of New York, who, are so well known as the architects of the Madison Square Garden, in New York. The building is classical, and of an order designated as heroic by the architects. Pavilions are reared at each corner, and from the center of the building, the center one being 144 feet square. We illustrate one of the corner pavilions surmounted by a dome on which is a group of, maidens of heroic size, called the Horoscope Group. These figures are represented as holding aloft a globe about which is a zone with the signs of the zodiac. The figures are made of staff, while the globes are of sheet copper. Each corner pavilion is surmounted by a group representing a distinct race, one the Caucasian, another the Mongolian, the third the Ethiopian, and the fourth the American Indian. Huge Corinthian columns 50 feet high and 5 feet in diameter support the pediment ovar the porticos. The dome over the main entrance, which is one hundred feet in diameter, is surmounted by St. Gaudens' statue of Diana, formerly in New York. On each corner pavilion are two reproductions of what are called the Four Seasons, making altogether eight of these groups. This group consists of four female figures representing the four seasons of the year, spring, summer, autumn, and winter. They are set back to back with their arms outstretched for sheaves of wheat extended above their heads.
We have already illustrated the large cattle group in our issue of April 29. From what has been said it will be seen that the decorative scheme of the Agricultural building takes its motive from agriculture, and primarily American agriculture; this is no less true when the minor decorative work is considered, maize, the potato, tobacco, etc., being freely used as decorative motives with excellent effect. The painted decoration in the entrance porticos is the work of Mr. GeorgeW. Maynard, of New York, who chose the Pompeian style of mural decoration as the best one adapted to the severely classic outlines of the Agricultural building. Mythological deities and figures representing "Abundance," "Fertility," etc., were chosen. The little bit of color adds greatly to the success of the
general effect. We give some details of the other general effect. We give some details of the other
pieces of sculpture on this beautiful building, the depieces of sculpture on this beautiful build
scription being taken from a former issue.
"On the exterior walls of the building, in strong relief, are fifty-four single figures of the Angel of Abundance holding a cornucopia which is overflowing with the fruits of the harvest. These figures are clothed in loose flowing robes and are classical like the others. Between the springs of the arches of the north, east, and west sides of the building are twenty-two more single figures in relief representing a female classically clothed, holding in her hands the signs of the zodiac. On the east front there are two spandrels, also two on the west and one on the north side. Four of these are the same. The two on the west side are immediately under the Horoscope Group and represent a pastoral scene of a shepherd with a crook in his hand, sitting on the ? spandrel represents the triumph of Ceres, and is on thenorth front. Ceres, the central figure, is represented as standing erect, holding a sheaf of wheat in her left hand and a shepherd's crook in her right. Further down on the pediment are other reliefs. On the left is a reproduction of Flora, Bacchus, and other mythological deities seated in a chariot drawn by two tigers. Over against this relief on the right hand is a figare of Mercury and pastoral deities in a car drawn by two dragons. The statuary is all the work of William Philip Martini, of New York, with the exception of Diana, which is the work of Mr. Augustus St. Gaudens."
Thetotal cost of the building was $\$ 618,000$, including the annex, which measures 312 by 550 feet.
In the interior thirty-seven States of the Union and thirty-five foreign nations exhibit agricultural products. Here may be found models of breweries with a capacity of one barrel of beet a day, exhibits of corn, maize, wheat and the complicated machinery used in their cultivation. Preserved meats, Apollinaris water, dairy products. sugar, bread, tea, coffee, spices, vege table fibers follow one another in quick succession as the visitor hurriedly passes down the long avenues. Some of the oriental countries make choice exhibits, and here may be seen some of the possible uses of the bamboo.
In the galleries are attractive exhibits of well known food producte, Quaker oate, Kingsford's starch and Maillard's chocolate and a thousand and one food preparations, with which we have been lamiliar

The exhibits are shown in achoice setting, and the marvelous beauty of the white building makes a lasting impression upon the memory.

Argentine or Silver Paper.

A substance known as argentine hasbeenintroduced in Germany for making the so-called silver paper, which is used instead of tinfoil as a packing material. It is a finely-divided form of metallic tin, also known as tin dust, of such a texture as tobecome an extremely fine powder, which must be perfectly uniform in grain, of a bright metallic gray tint, and entirely free from crystalline particles. The author was for some time in charge of a manufactory of this article, and introduced some modifications in the process, which are described. The raw materials of the manufacture are tin, hydrochloric acid, and zinc. The first may be used in the form of block or grain tin, but generally waste materials, such as bearing metal turnings, which are ob tained from railway repairing shops in large quantity, are preferred. These are very variable in composition, including both white and red metal, with the proportion of tin varying from $27 \cdot 6$ to $74 \cdot 5$ per cent. The solution is effected by boiling the alloys with hydrochloric acid in large copper vessels, taking care to keep the tanniferous material in large excess, under which condition the copper is not attacked, while the greater part of the tin dissolves, lead, copper, and antimony remaining wholly or partially undissolved. The solution is filtered through a layer of sand in a hard-wood tub with a double bottom, wherethe lead chloride contained in the hot liquor crystallizes out on cooling. The residues are passeat on to another establishment, to be used in making copper and antimony preparations. The purified solution, consisting essentially of stannous chloride, with traces of antimony, lead, and iron, having an average density of 40° B., corresponding to about $23 \cdot 5$ per cent of tin, is diluted from one to two hundred times its volume of water, and transferred to large vats in which plates of zinc are suspended, when, f all conditions are right, the tin precipitates as a uniform gray mass, rendered spongy by the simultaneous volution of hydrogen, falling, when dried and rabbed through a sieve, to a fine dust.
The precipitate is removed every day, fresh liquor is added, and the process is renewed until the zinc chlo ride solution remaining has reached a strength of 20° to 25° B., when it is removed and concentrated to 50°, corresponding to a strength of 52 per cent of chloride of zinc. This is readily sold, as it is extensively used for preserving railway aterpers. The fingtred product should be as nearly as possible pure tin. An average sample analyzed by the author contained : Hygroscopic water, 0.83 per cent; lead, 0.6 per cent; zinc, 0.83 per cent; the remainder being tin, with small traces of iron, chlorine, and antimony.
As the silver paperis used in wrapping up provisions, the tin dust used in its preparation must not, according to the sanitary laws of the German empire, contain morethan 1 per cent of lead.
In the year 1890 the price realized varied from 72 . to 7l. 10s. per cwt.
Formerly silver paper was made by covering ordinary white paper with a priming of white lead and size, upon which either silver leaf or tinfoil was cemented. At present this has been almost entirely replaced by argentine, which is made to adhere to the paper by the use of so-called wax solutions, prepared by methods which are kept secret. According to the author, the methods are as follows.
In the first, 4 kilos. of wax and $3 / 4$ kilo. of potash are boiled with 50 kilos. of water, and the melting fluid so produced is stiffened to a thick paste by stirring the tin precipitate into it.
In the second, 75 liters of freshly made 4 per cent starch solution are mixed with 750 grms . of a wax solution prepared from 5 lb . of wax and $11 / 2 \mathrm{lb}$. of potash tissolved in hot water, and 25 kilos. of argentine are dissolve
The paste so obtained is printed by rolls on to paper, which dries to a dull gray tone, but becomes brigh when burnished by passing through hot calender rollers, when it exactly resembles tin foil.

Soap Bubble Solution.
According to a communication recently made to the Academy of Sciences the following solution affords very thin and permanent bubbles:

Boil until completely dissolved, andbefore use dilute the solation with four times its volume of water. It is somewhat difflcult to float soap bubbles upon carbon dioxide, because, if you managed, afterascoreof trials, to free your bubble from the pipe on which you blew. it, the bubble usually bursts the moment it touches your heavy gas. Mr. Newth lets us into the secrefin his recent book. You must remove every trace of hydrochloric acid, which is carried over with the gas, by washing, the presence of this acid being fatal to the

Sorrespondence.

Color Blindness at the miller scheol

To the Editor of the Scientific American:
A report on the color blindness found in this school may be of interest, from the fact that, in accordance with the will of the founder, Samuel Miller, none of our pupils are of wealthy families, while all are from one county, Albemarle.
About two months ago I examined the pupils, some wo hundred and sixty, of this school for color blindness, using Dr. Oliver's method, a modification of that of Holmgreen. There were five test skeins of worsted -red, rose, yellow, blue, and green-each with two skeins of darker shade and two of lighter tint. Besides these there were a large number of confusion skeins of different colors, shades, and tints.
The test was made in the usual way, by matching colors. Those who matched the colors correctly, red with red, green with green, etc., as a matter of course, were considered all right, while those who matched such colors as red and green together were considered color blind.
Of the two hundred and sixty persons, students with but few exceptions, examined, one hundred were girls and one hundred and sixty were boys. Not one instance of color blindness was found among the girls, while eight cases of very decided color blindness were ound amonethe boys. Seven of these were cases of red blindness, being untable to distinguish between the so-called rose and green of the same shade. One boy seemed unable to distinguish between any two colors of the same shade, even matching rose, green, and yelow together.
It is stated by high authority that only one of a housand women will be found color blind, while one of every twenty men has this defect. The above re port, thereiore, while interesting, should not be a sur prise. W. J. Humphreys, Professor of Physics. The Miller Manual Labor School of Albemarle,

Crozet, Va., August 2, 1893.

A Simple optical Photometer.

A simple optical photometer, serving also to measure the degree of visualacuity, has been devised by Dr . Simonoff. A book of twenty-four pages is arranged the first being of a clear gray tint, the second of double the intensity, and so on to thelast, the color of which is nearly black-being twenty-four times the intensity of the first. On every page are printed a few phrases in black letters of different sizes. The amonnt of illumination available in a badly-lit apartment may be estimated by turning over the pages of this little book, held at a distance of about a foot from the eyes, until one can no longer read the line of letters of a selected size. With good illumination, the characters on the twentieth or even the twenty-fourth page may be read; but with poorer light legibility ceases at the tenth, or twelfth, or fifteenth page. The appliance is meant for indoor use exclusively, and must, of course, be employed with intelligent reference to the power of the eyes of persons making the test. But it is said to give fairly reliable comparative indications of the degree of lighting in a building; and it is likely to be useful in ascertaining the sufficiency of the lighting of class-rooms and public buildings intended to be used for educational purposes.

The Modern Steamer.

In order to appreciate the great development of the steamship, which borders on the marvelous, the Polytechnic says, we have only to make a few figures as to the possibility of propelling a vessel with oars at the calculated speed of the Campania. If it were possible to place 300 oars on each side, making 600 oars altogether, each worked by three men, there would be 1,800 men at work at one time. As they could not work continuously for twenty-four hours, but only for a total of eight hours each man, divided into four-hour watches, it would be necessary to have a crew of 5,400 men alone to man the oars. If six men could develop one horse power, the total horse power developed by the 600 oars handled by 1,800 men would be but 300 , as against 30,000 in the Campania, or the same power would require the employment of 180,000 oars and a crew of 558,000 men to manipulate them. The first steamer built by the Cunard Company was the Britannia, which was launched February 5, 1840, or fifty-three years ago. She was built of wood, by Robert Duncan, at Port Glasgow, her length being 207 feet; breadth, $34 \frac{1}{8}$ feet; depth, $22 \frac{1}{8}$ feet; tonnage, 1,156; passengers carried, 115 ; cargo, 224 tons. The engines, by Robert Napier, were side levers, with two cylinders, 72 inches diameter by 82 inches stroke of piston, driving paddle wheels $281 / 2$ feet diameter. Steam of 20 pounds pressure was provided by four fiue boilers, with twelve furnaces, which consumed 38 tons of coal per diem. The speed of the vessel was $81 / 2$ knots, with the engine developing 710 indicated horse power; coal consumption, over 6 pounds per indicated horse power : time in making the voyage, 14 days.

Man in South America

There is nopart of the world that offers a more curious subject of speculation as to its future than the continent of South America, as was well set forth in an address before the American Geographical Society, by its president, Mr. Gardiner G. Hubbard.

That the Amazon river system alone drains a basin of fertile land basking under a climate of perpetual summer, greater in area than the whole of Europe, is an astounding fact in itself. This vast territory is practically uninhabited. Its aboriginal population is disappearing, or has disappeared, and the whites, who in sparse number take their place, scarcely pretend to come with the expectation of remaining. There are tracts as large as the whole of France of which we know less than of any equal area on the globe. Tribes of men are living there who are yet absolutely in the stone age, and who, even by barter or distant rumor, never heard of the European race or the use of metals.
The question up to which Mr. Hubbard leads his reader is second in importance to none in anthropology -that of acclimation. Is it possible for the white race, when it shall be endowed with all the resources of art and science which it is soon to have in its grasp, successfully to fight against the terrible odds of a tropical climate? He quotes in his favor the words of the historian, Buckle, and the naturalist, Bates; he might have added others of weight; but it cannot be doubted that most of the medical observers who have devoted themselves to this vast inquiry lean to the opinion that never will the white race flourish under tropical skies.-Šience.

Dr. Nansen's Polar Expedition

After three years' preparation the Polar expedition under Dr. Fridtjof Nansen has finally sailed from Christiania, Norway, for the North in the good ship Fram (Advance), the first vessel that has been especially designed and constructed for Arctic research.
The party consists of twelve men, including Dr. Fridtjof Nansen, as leader of the expedition; Lieutenant Scott Hansen, R. N., as scientific member; and Henrik Blessing, M.D., as surgeon and botanist.

The expedition sails in the vessel Fram, which is a model of strength, but she is a trifle too small for the enormous amount of stores with which she has been loaded and which have brought her so down in the water'that the ice sheathing has had to be heightened, while giving her hull the appearance of something between a Dutch koff and a Thames barge. The accommodation on board seems toe orampert for twelve men. The main cabin or saloon measures but 6 ft .3 in. in height, $131 / \mathrm{g} \mathrm{ft}$. in length, 16 ft . in width at the lower, and 11 ft . at the upper end, while the six sleeping cabins off it are diminutive. In the deck house are a small chart room and Dr. Nansen's study, both smallin proportion, and on the whole itgives one the idea of being a neat little doll's house for twelve gigantic puppets. The stove in the saloon consists of an iron case containing numerous copper tubes, and is heated by paraffin lamps. Lighting will be electric or by means of lamps. The dynamo is worked either by steam, wind or hand power. A large windmill will be erected on deck, where there is also a winch which can be worked by four or more men, and, in order to give the hands sufficient exercise during the darkness, the latter will be daily resorted to in the winter months. The caboose, or kitchen, contains an ordinary cooking range, and also a very compact and handycopper stove heated by lamps, the gift of a London firm. The engines are triple expansion, and to obtain a speed of seven knots consume three and a half tons of coal a day, of which she carries a supply of about 350 tons, calculated for 200 days' continuous steaming at about four to flve knots speed. The furnaces are constructed to burn petroleum, or even blubber, and under petroleum the vessel obtained on a trial trip the same speed as with coal.
The provisions are of various kinds, quantities being specially prepared on scientiflc principles, to give the men's stomashs the least possible expansion with the greatest possible quantity of nutriment. Clothing is of many sorts, from woolen jerseys and underclothing to fur outer garments and waterproof British linen. The sledges differ considerably from those taken by Astrup for the Peary expedition, being much lighter, from 9 ft . to 10 ft . in length, $11 / 2 \mathrm{ft}$. in breadth, and about 6 in. in height. They are said, however, to be wonderfully tough, and capable of bearing heavy loads, and most are shod with German silver to protect the wood. Numerous Norwegian "ski" arealso taken. The Fram carries seven large boats, including a naphtha cutter, of the ordinary sealing or whaling type, and will be used for the chase of walrus and seals and other sporting purposes, while two will be specially fitted for escape should any aecident happen to the Fram herself.
Last summer Dr. Nansen changed his plans, and announced his intention of proceeding, not via Behring Straits, but round the Norwegian and Russian coasts, to the spot north of the Liakov Islands which will be the starting point for the journey on the ice to
plunge into the glacial stream is avoided, but the chances of not reaching his destination at an early date are very considerably increased, as the ice in the Kara Sea may be impassable, and but very little is
known of its conditions on the Siberiancoast.-London Dails' Graphic.

A TWIN DAIBY.

Scores of adulatory verse have been written by poets of "the fields white-decked with nodding daisies." Gross dozens of earthen flower holders have been filled, by blooming maidens, with daisies for conspicuous ornamentation. The more practical husbandman, however, utters imprecationstill the atmosphere takes on a cerulean hue as he speaks of those pests of his field, "them common daisies."
A very uncommon one, however, is the subject of ur illustration. Not for its economic or pictorial aspect do we show this strange departure from the regular growth, but on account, first, of its oddity, a genuine twin daisy ; and second, because if one daisy is good, two on the same stalk must be better.
Daisies were not made alone for poets, maidens, or farmers. There is our old grandmother, bless her soul! when we wereourselves so enfeebled by weakness as to have copious night-sweats, such as fairly saturated the bedding with our oozingstrength, she gathered some of thesecharming flowers and decorated theinterior of the tin teapot with their beauty-practically steeped them into a tea and told us to drink freely of it, when cold. She knew better than farmer or poet that there were other virtues than verse and curse in this little creation of God. It stopped ournight-sweats immediately, and

in our builded-up strength we have thought possibly it were better to have two daisies grow where but one grew before.

Steel for a Cent a Pound.

In a recent interview with the reporter of one of the Pittsburg papers, Andrew Carnegie, when asked about the condition of the iron business, replied : Well, I do not need to say anything about that; it speaks for itself. One pound of steel for one cent! The robber baron has ceased to rob and is now being robbed. The eighth wonder of the world is this: 2 pounds of iron ore, purchased on the shores of Lake Superior and transported to Pittsburg; 2 pounds of coal, mined in Connellsville and manufactured into $11 / 4$ pounds of coke and brought to Pittsburg; one-half pound of limestone mined east of the Alleghenies and brought to Pittsburg; a little manganese ore mined in Virginia and brought to Pittsburg ; and these $41 / 2$ pounds of material manufactured into one pound of solid steel and sold for one cent! That's all that need be said about the steel business. The capacity of the country to manufacture is beyond its wants. Some furnaces and mills must stop, others must restrict production, and, until that is done, we must expect the continuance of low prices. It is the same all over the world. England is even worse than we are, but she has endured the depression so long that she has closed many of her works. The longer all parties continue to run, the lower prices will become, and the more disastrous the stop will be to some of these when the end comes."

The Latest Form of Trolley.

According to the Baltimore $\mathbb{S} u n$, the novel sight of a man taking the place of the trolley rod on an electric car was recently seen on the Lake Roland Elevated Railroad. The trolley on one of the large electric cars was caught in a wire, and the entire trolley apparatus was torn off, falling to the street. The accident happened at a time when the traffic was heary, and it was
necessary to prevent a block. A linesman was equal to the occasion. He procored a piece of insulated wire, and, afterstripping each end of the insulating material, and, afterstripping each end of the insulating material,
connected one end through the car roof and, standing
on the top of the car, held the other end against the wire. A connection being thus made, the car was run over the elevated structure to the car shed without accident or delay to the other cars.

Spiders and their Foes.

The spider, rejoicing over the captives ensnared in his silken meshes, and binding them securely in his larder as stores against hungry days, lives in continual danger of a righteous retribution, which awaits him at the hands of many foes ; but the ghastliest of all is the ichneumon fly, which does not kill its victim, but merely paralyzes it and renders it a totally passive agent incapable of offering the smallest resistance to the cruel power which enthralls it.
I believe that the English representative of this family makes its nest underground, so it generally escapes observation; but the ichneumon fly of Ceylon works in full light of the sun, where all who care to watch its domestic habits can do so.
It is a green insect, in form resembling a wasp, with a marvelously thin waist. It makes its nest of wellworked clay, and then goes out on a hunting expedition. Its victims are invariably spiders of various kinds, but all are subject to the same mode of treatment. A scientific sting injects some poison which effectually paralyzes the luckless spider, who is then carried off to the nest and there fastened with a dab of moist clay. Another and another victim is brought to this chamber of horrors. Then the prescient mother ichneumon fly proceeds to deposit her eggs, one in the body of each spider, which can just move its legs in a vague, aimless manner, but can offer no resistance.
This done, the fly returns to her work as a mason. She prepares more clay and builds up the entrance to this ghastly cell. Then she commences a new cell, which she furnishes in like manner, and closes; then she adds yet another cell, and so proceeds till her store of eggs are all provided for, and, hef task in life being accomplished, she dies, leaving her evil brood to hatch at leisure.
In due time these horrid little maggots come to life and find themselves cradled in a larder of fresh and find themselves cradled in a larder of fresh
meat. Each poor spider is still alive, and his juices afford nutriment for the ichneumon grub, till it is ready to pass into its chrysalis stage, thence to emerge as a winged fly, fully prepared to carry out the traditions of its ancestors with regard to spiders, and to fulfill the purpose for which they have been created, according to ichneumon belief.
In California the spiderslive in dread of a certain yellow-winged dragon fly, which darts upon them, stabs them, and devours them. Ons wary spider, which is there called tarantula, or, more properly, the trap-door spider, constructs for itself a house of refuge, where it retreats in the hour of danger. It is a wonderfully ingenious architect, and displays amazing skill and patience in contriving and constructing its home, which in truth is a fortress, with a strong door to keep out all besiegers.
The nest is a little well of clay sunk in some earthy bank, just large enough to admit an average-sized human thumb. The interior is smoothly polished, but this so-called tarantula is not content with bare plastered walls. She is a diligent worker, ever weaving dainty fabrics; so she lines her home with a double curtain-a hanging of coarse spider cloth next the wall, and over that a rich white satin material, smooth and glossy.
At the upper end of the well-like nest there is a circular door, fastened with a sort of hinge. It opens outward, so that when the spider goes out, it falls and closes of its own accord, and no foe would ever notice the little disk in the earthen bank, which is the only trace of the tarantula's home. But to make assurance doubly sure, the wary spider provides means to secure it on the inside. At the side furthest from the hinge it leaves several small holes in the disk, and by clinging to these with its claws it keeps the door tightly closed from the inside, so that no enemy can enter.
The door is in itself a marvelous contrivance, and a monument of patient ingenuity. Though barely the eighth of an inch in thickness, it is composed of thirty triple layers, each consisting of a coating of clay, lined with two ply of spider cloth similar to the tapestry within the nest. These ninety layers are all fastened together, making a solid door, which is largest on the outside, and fits into a groove, so that it closes quite tight. I suppose sufficient air for breathing purposes comes in at the keyholes.
The yellow-winged dragon fly, against which the spider defends itself so securely, even endeavors to scratch open the closed door behind which its prey has taken refuge. But once within that portal, the fugitive is safe from winged foes. His chief danger then lies from the keen-eyed Indians, who know what a ready sale these curious silk-lined clay nets command among the pale-faced travelers from far countries, many of whom have already obtained very similar spider nests from the shores of the Riviera, and are anxious to compare the spider architecture of the Old World and the New.-C. F. Gordon-Cumming in Old World and
Leisure Hour.

Algonquin Park.

The great forests of Canada have for years been suffering as much from fires and from reckless cutting as have the wooded regions of our own country, and this fact the thoughtful people of the Dominion have, fortunately, begun to realize. The public desire to interpose some check to the pitiless attack upon the woods, and to save a portion of what remains in its primeval condition, took form a few years ago in a project for establishing in the province of Ontario a forest reservation and national park, and commissioners to make inquiry concerning the matter were
appointed in the spring of 1892 . This commission, of which $\mathbb{1} \mathrm{I}$. Alexander Kirkwood was the chairman, made a report last March, and the bill prepared at their suggestion has since then been enacted as a law under the title of "An Act to Establish the Algonquin National Park of Ontario." Under this act a tract of land in the northern part of the province, some forty miles long and thirty-six miles wide, has been set apart "as a public park, forest reservation, fish and game preserve, health resort and pleasure ground for of Ontario," and the lieutenant-governos in council is empowered to add to the park any adjoining townships or parts of townships in which no lands have been heretofore granted. Our experience in the case of the Adirondack Forest and elsewhere shows the
difficulty in setting apart any considerable part of the difficulty in setting apart any considerable part of the
public domain when it includes scattered areas which have become the property of private individuals. Fortunately, although some of the timber included in Ontario's new park had been disposed of, the crown continued to hold the title to the land itself, so that no vested interests stood in the way of securing complete possession. It is fortunate, too, that under
the laws of Ontario the park could be placed directly under the control of the Department of Crown Lands, and that the governor in council was authorized to make all needed regulations for the maintenance and management of the park, so that it was not necessary in the beginning to formulate any elaborate code of administration. The commission, too, seems to have been singularly fortunate in that they were able to secure so large a tract and one which is shown by the report to be in so many ways suitable for the purpose it was to serve.
The site itself is an elevated area, containing but little soil fit for cultivation, with few high hills, but many successive ridges of Laurentian rock alternating with valleys and marshes. It lies on the summit which divides the waters flowing toward the Georgian Bay from those which flow into the Ottawa River, and rises to a height of 1,300 or 1,400 feet above the sea level. There is probably not elsewhere in the province a tract which, within the same small space, gives rise to so many important streams, and the
commissioners do well, therefore, to note that one
of the most important functions of the reservation will be that of maintaining and regulating the water supply of these streams. The park itself contains large volumes of water in lakes, rivers, brooks and ponds, the entire water surface covering about 166 square miles, while the area of the land is 1,300 square miles. Fortunately, the forest cover of this region is practically unimpaired, so that it will not be dificcult to preserve in their original condition these elevated lakes and the streams which run under overarching woods.
The park is a place of singular beauty. The clearing of land for agricultural use, the cutting away of the timber for lumber, with the added ravages of fire, of Ontario, as well as of the United States, the memory of the beautiful woodland scenery which once prevailed all over the land; and while the preservation of forests in their original state is advisable for economic reasons, it certainly is also worth while to preserve somewhere a remnant of country in its original condition, so that the native and untamed beauty of forest, lake and river may be enjoyed forever. Some kinds of trees, once common in Ontario, are becoming scarce; wild flowers and undershrubs, which diversified the primeval forests, are now almost forgotten where they once abounded, and the perpetuation, therefore, of a large district in its original sylvan conditions will afford a keen pleasure to the visitor as well as a field of study to the student, whilefor all it will preserve pleasing memories of the past.
Game, fur-bearing animals and some kinds of birds, once abundant throughout Ontario, are becoming scarce. Not many years ago the moose, the monarch of the Canadian woods, browsed in the proposed reservation, herds of red deer grazed in every meadow, the beaver built his dam on every stream, and the bear, mink, otter, and marten were common. The great game has been pursued with the same ferocity which has practically exterminated the buffalo on our own plains. In the spring of 1887 there were found in the district now set apart as a park for the province the carcasses of no less that sixty moose, which had been killed for their skins alone. Surely it is wise to fence in one spot in Ontario where these innocent tenants of forest and stream can be saved from the cruelty and greed which pursues them to the point of
extermination, and where they can rear their young in safety.
Here, too, as the commission well points out, is a fair field for experiments in systematic forestry on a limited scale. Forest fires and the operations of lumbermen have diminished the quantity of pine still standing, but extensive areas within the park limits are still well stocked with this valuable wood, and hard wood trees grow in great abundance in groves or mixed with pine. Besides white and red pines, hemlock, tamarack, balsam and cedar, there is an abundance of black
birch, with maple, beech, ironwood, ash and bassood. This variety of trees will furnish opportunities or experiments in every department of forest culture.
Nor is it unreasonable to suppose that so large a Nor is it unreasonable to suppose that so large a
reservation will have a growing importance as a sanitarium. Its height above the sea level, its succession of hill and valley, lake and river, its groves of balsam and cedar and pine, which are supposed to have some specific value in curing certain diseases, combine to offer great advantages to invalids who are likely to improve under the conditions of an outdoor life in the pure air and at a high altitude.
Altogether, the establishment of Algonquin Park, a name which perpetuates the memory of the powerful Indian nation who held sway over this territory centuries ago, seems to mark an important advance in the development of Ontario. A hundred years hence it will be cherished as one of the most precious possessions of the province. It is to be hoped that these reservations will be multiplied both in this country and in Canada. There is small danger that the wants of coming generations in this respect will be too lavishly provided for.-Garden and Forest.

Peach Yellows

The Agricultural Department has just issued a bulletin on the subject of peach yellows, prepared by Special Agent Erwin F. Smith. It embodies the re sults of four years' experiments with fertilizers to determine thêr value as preventives and cures of the disease. The experiments were made in the Middle States, and Dr. Smith says he is satisfied that peach ellows cannot be prevented or cured by fertilization of the soil. He therefore recommends that further xperiments be abandoned.
The report made by Special Agent Dodge on the leaf fibers of the United States has just been published by the Department of Agriculture. Mr. Dodge says that the United States annually imports $\$ 8,000,000$ worth of leaf fibers, a large proportion of which should and could be grown in this country. The pineapple industry in the United :States is increasing each year and it is believed that if the fiber contained in the leaves of the plant can be successfully extracted after the fruit has been gathered, it will add largely to the profitableness of the pineapple industry.

Fishing by Electricity.

A: apparatus for fishing by electricity consists of a arge iron frame interlaced with netting, which can be opened and closed at the will of the operator. An electric light incased in a lantern is lowered into the net, the electricity being furnished by a motor in the bow of the boat. As the boat moves along the network is thrown open, and the bright light of the lamp which is seen at a great distance in the clear water, arouses the curiosity of the fish, which readily swim into the trap.
recently patented inventions.

Engineering.

Rotary Engine. - Wentworth Rice, Rapid City, South Dakota. This engine has a main cylnder and two auxiliary cylinders, the latter about hal the size of and one on each side of the main cylinder,
the three pistons turning in the cylinders being secured on one main shaft. A cut-off valve is arranged close to the piston to shorten the inlet port for cutting off the steam at any time during the revolution of the piston, to
use the eteam expansively in the cylinder. The engine use the steam expansively in the cylinder. The engine
is perfectly balanced and arranged to utilize the steam very economically and to the fullest advantage.

Mechanical.

Tool Holder.-John C. Hunter, San Francisco, Cal. This invention relates to tool holders for Iathes, planing, shaping, slotting, and other machines, It provides a head made in sections, between which the
tool l s clamped, one of the sections being adapted to be seated in the stock. To securely hold the tool in proper peated in the sections are provided with recesses or
posito
grooves corregonding to the cross esection of the tool grooves corresponding to the cross section of the tool,
the latter being clamped in place by the screwing up of nuts. The device is of very simple and strong con struction.

Agricultural.

Cattue Stall--Jakob Aeberly, St. Paul, Minn. This is an improvement in stalls for milk
cattle, providingtherefor a feed crib protected by a pendent gate, to the lower end of which is hinged a cover, a shaft being attached to the gate and a flexible device on
the cover, whereby the latter may be adjusted toward or from the feed crib. The arrangement is such that when the gates and covers are closed the animals will naturally step rearwardly, and maylie down upon clean platforms, thus enhancing

Tregular feeding.

Thrashing Machine Attachmentr.Alfred Gilmore, Stillwater, Minn. This is a device to be substituted for the usual cylinder and concave in ma-
chinesfor thrashing flax. Adjacent to the feed rollers is chinesfor thrasaing fiax. Adjacent to the feed rollers is
a group of thrashing rollers comprising lower uupporting rollers upon which rests an upper pressing roller, composed of independent disks, guides bearing against the ende of the preaing roller, while a flexible armed beater
located in advance of the thrashing group of rollers. A the flas straw fed to the machine varies in thickness the disks of the pressing roll rise and fall, while pressing equally upon the straw throughout the length of the
thrashing rolls, preventing the escape of unbroken heads,
without without breaking or injuring the straw.

Miscellaneous.

Metal Roofing.-Benoit B. Detombay, Chenee, Belgium. Metal roofing sheete are, accor-
ng to this invention, formed with paralle hollow ribe ing to this invention, formed with parallel hollow ribs, construction being such that the fastening rivets or naile will be covered, and the joints rendered absolutely wind and water tight. The sheets may be rapidly applied to vertical wall or a roof having any degree of pitch,
Cash Register.-Charles J. Passick, Seward, Neb. This is a register adapted to be secured
beneath a counter, and to display to a purchaser when beneath a counter, and to display to a purchaser when
operated the amount of a purchase, which is also regisoperated the amount of a purchase, which is also regis
tered. The cash drawer can only be opened when one of the registering buttons is preseed. The device is operated positively, and is but little likely to get out of
Vending Machine.-Owensby H. Woodill, Nevada, Mo. This is a machine especially adapted to deliver packages containing stamps, car tick-
ets, etc, or small packages or books. A sight opening ets, etc, or small packages or books. A sight opening
in the casing shows the coin deposited to work the mein the casing shows the coin deposited to work the me-
chanism of the machine, any smaller coin falling into chanism of the machine, any smaller coin falling into
the coin compartment without causing a delivery of the goods. The machine is deeigned to be of very simple, compact, and durable construction, and the invention covers various novel features of construction and combiations of parts.
Rock Drill.-Harvey P. Jones, Denver, Col. A drill adapted to be operated by hand or power, which may be held at any desired angle, and has an automatic feed, has been provided by this inventor. he drill-holding frame is supported by a strap from the body of the workman, who will ordinarily turn an operating crank by hand, pulling back a hammer against
the tension of springs, the hammer upon its release the tension of springs, the hammer upon its release
striking upon the shank of the drill. The rebound of striking upon the sank of the drill The rebound of is turned at each blow, the mechanism being such that by a moderate turuning of the crank a r rapid succesion of
powerful blows will be truck and the drill will be held powerful bows will be etrue.
ap to its work all the time.
Warehouse Gang Plank.-Lonard at one end a hinged, wedge-shaped apron and flap plate is hereby provided, to forman improved removable
per gangway froma warehouse to a car or the reverse. The
device is of simple construction, and adapted for easy stowage below the floor of the warehouse, while conve. nientror extension therefrom and adjustment forservice,
belng alooe adjustable in ita parts to suit cara having
floors of varying height relatively to the warehouse ${ }_{\text {Plor }}^{\text {fiper }}$ Box.-Joseph T. Craw, Jersey Citr. N. J. This invention provides a blank in one piece, which may be quickly and conveniently folded to
assume the assume the shape of Noab's ark, thus affording a novel
receptacle for thus made the articles may be packed without danger
ther fark of the box coming open unless it is to reach the contents.
Sofa, Table and Bed.-Dennis W. Palmer, Gloucester, Mass. This is a combination piece
of housenold furniture which may be puickly changed
to to ft it for one or another use. It consists of a frame table hinged to the heads being adapted to form a back for the frame, and also to be supported on the headd, a bottom head in sections
Blind Stop.-William W. Hoskins Houston, Texas. A short metal rod attached to the lower end of the slat strip of the window blind is piv oted at its other end to a pivoted toothed segment swinging in a semicircular case fastened to the bottom
rail of the shutter, the notches of the toothed segment rail of the shutter, the notches of the toothed segment
being engaged by the tooth of a spring-presed detent. being engaged by the toothor a a spring-presed detent.
Upon pressing upon the detent, the slate of the blind may be moved up or down and adjusted in any desired position, for the regulation of the light and air, the detent, when released, locking the segment and slat strip in position.
Door Hanger. - Theodore C. Prouty, St. Joseph, Mich. This invention relates to an improvement in trackless door hangers, two hangers being
used with each door, and the construction admitting of such connection that when the door is closed or en. tirely open it rests upon the floor, while in its move.
ment from a closed to an open position or vice verse ment from a closed to an open position, or vice versa, the
door is raised above the floor or carpet. The device is designed to be se simple and durable, and not liable to get out of order when fitted to a door
Window Garden Spraf.-Benjamin F. Sill,Long Ieland City, N. Y. In a short section of hose is a compressible bulb formed integral with a spraying nozzle, by means of which the plants may be
easily and thoroughly sprinkled in every direction, without danger of breaking or injuring them in passing the nozzle between the branches. The outer end of the hose section, to be placed in a pail or other veseel con-
taining water, Kitcren ano I
Kitchen and Ironing Table.-Mrs.

Thistable has a hingedleaf, supported when extended bs legs alapted on oolde at itst gide, the top surface of
the table and leaf being padded, and the padded sur aces folding leaf being padded, and the padded surabble. A sliding board in front forms an ironing board for shirt boooms, etc., and a sliding board at one end orms a bracket on which the irons may be placed. A box is supported under the table by meann of chaine,
the box being adapted to receive and store the sad irons, etc., and being arranged to be drawn ap and locked in etc., and being arranged on of drawn ap and locked in
place on the under side of the table top. The table place on the under side of the table top. The table table, but may be readily opened out to constitute a large

Cider Mill.-Clemment W. and Enoch G. Gest, Brazier, Ohio. The hopper of this mill has a grinding wheel with knives on its periphery, and the hopper discharges into a chute at the bottom of which
is a chamber with a horizontal slowly working plunger which is hollow and has a head covered with canvas to form a strainer. The press box is cone-sbaped and its
interior is lined with canvas, and by using the canvas interior is lined with canvas, and by using the canvas
ining in the press box and the strainer over the plunger theypulp !may be ground very flne, none of it escaping brough the fabric forming the strainer and lining.
Writing Tablet and Copy Holder. George H . Munson and George B. Haines, New York igned for the use of stenographers, to hold the book or paper in proper position for taking or copying notes. The tablet is provided with a holder pivoted to swing either to the front or back, while a support is pivoted on the sides of the tablet and keepers at the pivot ends of the support. the keepers having angular offeets to limit the
outward movement of the support. The device is of very simple and inexpensive construction, but is deigned to be a great convenience to stenographers and pewriters.
Measuring Proportional Parts For MIITVVREs.-Alexander K. Suddoth, Memphis,TTenn.
This invention provides a conveniently manipulated This invention provides a conveniently manipulated
gauge for determining the amount of any two or more gauge for determining the amount of any two or more being placed in separate compartments, and the gauge manipulated to simultaneously drop the predetermined quantities. The gauge is especially adapted for dental use, for regulating the proportionate amount of mercury and use in making a plate.
Nots.-Copies of any of the above patents will be furnished by Munn \& Coo., for 25 cents each. Please send name of the patentee, titile of invention, and date
of this paper.

NEW BOOKS AND PUBLICATIONS.
Qualitative Analisis Tables, and
the Reactions of Certain Or-
\#anic SUbsTances.
Belfast: By E. A. Letts.
Bayne
All rights reserved. Pp. 91.
This is one of those books with elaborate tables designed to lie upon the working table of the chemist or
on his desk, to be referred to constantly. Its excellent and clear printing, its selection of subjects and its full index make it of particular value for this purpose.
The Perfect Calendar eor Every
Year of the Christian Era. By
Henry Fitch. 1891. New York:
Henry Fitch. 1891. New York:
Funk \& Wagnalls Co. 8vo. Pp. 37.
Funk \& Wagn
Perpetual calendars are by no means new, but the present work appears to have solved the difficulty of farnish ing a perfect perpetual calendar which is simple and in
tended for everyday use. With this little book all the tended for everyaay use. With this little book all the A brief history of the calendar is annexed.

AnNual Report of the Minister of
PUBLIC WORKS FOR THE FISCAL
YEAR $1890-91$.
Parts I
I

Ottawa. 189.
Price 50 cents.
Canadian annual reports, Part II, contains the water levels of the river St. Lawrence between Quebec and
Montreal. Hlustrations to accompany Part II come in separate volume, price 90 cents.

Cyclopedic Review of Current HisTory. First quarter 1893. A. S.
Johnson, A.M., Ph.D., editor. Buffalo : Garretson Cox \& Co. 8vo. Pp.
214. Illustrated. Price 40 cents. This is not a new publication, as it is numbered vol. 3, No. 1, but it has changed hands. The Review is in-
tended to give a clear and dispassionate view of the tended to give a clear and dispassionate view of the
eventsof contemporary history. Some of the headings eventsof contemporary history. Some of the headings
are as follows: The Behring Sea dispute, the Hawaiian question, the reciprocity policy, U. S. politics, the mer-
chant marine, cholera, necrology, disasters, silver question, etc.
Any of the above books may be purchased through this office. Send for new book catalogue just
lished. MuNN \& Co., 361 Broadway, New York.

SCIENTIFIC AMERICAN

BUILDINGEDITION
AUGUST, 1893.-(No. 94.)

table of contents.

1. Elegant plate in colors, showing the villa erected for J. Armor Knox, at Primrose Park, Mount Ver non, N. Y., at a cost of $\$ 14,928$ complete. Flloor
plans and two perppective elevations. An excellent plans an
design.
2. Plate in colors showing the colonial residence of L . Allyn Wight, at Montclair, N. J., erected at a
cost of $\$ 15,400$ complete. Perspective view and floor plans. Mesers. McKim, Mead \& White, architecta, New York. An attractive design.
3. A cottage erected at Portland, Me. Perspective view and foor plans. A model design. Cost 83,400
complete. Mr. J. C. Stevens, architect, Portland, Me.
4. A Queen Anne cottage, erected at Wayne, Pa., at a cost of 88,000 complete. Floor plans, perspective
view, etc. Messra.'F. L. \& W.L. Price, architects, Philadelphia, Pa. An excellent design.
5. Engraving and floor plans of a dwelling recently erected for A. B. Root. Esq., at Springfield, Mass., at a cost of $\$ 2,500$ complete
6. Engraving and ground plan of Grace Episcopal
Church, at Plainfeld, N. J., erected at a cost of Church, at Plainfield, N. J., erected at a cost of
$\$ 40,000$ complete. Mr. R. W. Gibson, New York City, architect.
7. A dwelling recently completed at brookline Hills, elevation and floor plans.
8. A cottage at Elm Station, Pa., erected at a cost of
9. Wood and stone dwelling at Narberth, Pa. A unique design. Perspective elevation and floor plans. Estimated cost $\$ 5,000$, complete.
10. Design for a village library
11. The Fifth Avenue Theater, New York. View of the family circle and ormball, architect, New Yorts
a suggestion in corner decoration. Bay window
12. Miscellaneous contents: Wiring of buildings for electric lights.-Montauk club house, Brooklyn,
N. ∇.-A novel system of domestic water supply, illustrated.-Wood mantels and ornamental fire places, illustrated.-Fencing made of sheet metal, illustrated.-The Hartman sliding blind; view of factories.- An improved dimension saw, illus-
trated.-Plumbers'and steamfitters'supplies.-The trated.-Plumbers'and steamfitters' supplies.-The Capitol hot water heater, illustrated.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages; forming, practitwo hundred ordinary book pages; forming, practi-
cally, a large and splendid Magazine or Architeccally, a large and splendid Magazine or ArchitecTURE, richly adorned with elegant plates in colors and
witn fine engravings, illustrating the most interesting examples of Modern Architectural Construction and examples of
allied subjects.
alied suljects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Laramer Crrcination of any Architectural Publication in the world. Sold by
all newsdealers. MONN \& CO., Pubirsiers,
MUN 361 Broadway, New York

PBusintess and Xersorial.
charge for Insertion under this neadis one Dollar a line or each inservion; aboive eioht woras to a line. Adver-
tisements must be recived at publication oftce as early as Thursday morning to appearin the followind week's issue

Orderpattern letters \& flpures from the largest varie-
y. H. W. Knight \& Son, Seneca Falls. N.Y., drawer1115. ' U. S." metal polish. Indianapolis. Samples free. "U. S." metal polish. Indianapolis. Samples free.
Wood pulp machinery. Trevor M fg. Co., Lockport, N.Y. Steam Disinfectors.
eoo. T. McLauthlin \& Co., 120 Fulton St., Boston, Mass Patent Open-Side Planing and Shap., n Machines.
Pedrick \& Ayer, Philadelphia, Pa. Wm. Jessop \& Sons have a handsome displa Mining building at the World's Falr.
The Improved Hydraultc Jacks, Punches, and Tube
expanders. R. Dudgeon, 24 Columbia St., New York. Will purchase patent ot meritorious small article
ive particulars. Manufacturer, box 2238 , New York. Stow flexible shaft. Invented and manufactured by
Stow Mfg. Co., Binghamton, N. Y. See adv., page 12%. Screw machines, milling machines, and drill presses Centrifugal Pumps for paper and pulpmills. Irrigating Wanted-Capital to develop a patent. For sale, two patents, in whole or part. "Develop Patent," 11 Wash ngton Street, Newark, N. J.
Split Pulleys at Low prices, and of same strength and
appearance as Whole Pulleys. Yocom \& Son's Shafting Works, DrinkerSt Philadeys. Yoco
Perforated Metals of all kinds and for all purposes, general or special. Address, stating require
Harrington \& Eing Perforating Co., Chicago.
The best book for electricians and beginners in elec By mail, st ; Munn \& Co., publisbers, 361 Broadway, N. Y. Competent persons who desire afencies for a new
popular bcok. of ready sale, with handsome proft, may popular bcok, of ready sale, with handsome proft, may
apply to Munn \& Co., Scientifc American office. 361 (T-send for
有 other for new and complete catalogue of Sclentific and other Books for sale by Mun
New York. Free on application.

Mandes aremies

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our
or no atten tion will be paid thereto. This is for our
information and not for publication.
References to former articles or answers should
 Iny uiries not ankwered in reasonable time should
be repeated ; correspondents will bear in mind that
Bome ansers require not a little research, and,
though we endeavor to te

 Bomay be had at the ompe. Price 10 cents each.
prise. referred to promptly supplied on receipt of
Mincrals sent for examination should be distinctly
marked or labeled.
(5286) L. R. B. asks : Could unused arc lightcarbons be used with advantage as positive poles of
batteries? If so, how are they best arranged in cell and what solutions should be used? What would be the E. M F. and resistance of such battery ? A. The electric light carbons can be used as you suggest. If they are copper
coated, the copper must be removed by means of mutric coated, the copper must be removed by means of metric
acid. The solution used in zinc carbon batteries is made by dissolving blchromate of soda in water, making a one-fifth of its bulk of commercial sulphuric acid. The zinc should be amalgamated.
(5287) J. B. T. asks : Will you kindly inform me through your paper where I can get some in
formation abont oxidizing silyer or if you know of a good formula to be used for that purpose ? A. Dip the
clean silver article in a solution of sulphide of potassium (liver of sulphur), 2 drm . to a pint of water. Heat this solution to a temperature of $175^{\circ} \mathrm{F}$. Immerse for a few
seconds only, when the article becomes blue black. Fo seconds only, when the article becomes blue black. For
a velvet black, dip the article, previous to oxidizing, in a solution of mercurous nitrate and water and rinse. Then dip in the sulphide solution as above. For a brown
shade, oxidize in the potassium sulphide as above, then dip in a liquid composed of 10 parts blue vitriol and 5 parts sal ammoniac to 100 parts vinegar. After oxidation brush with a scratch brush very lightly, to brighten and variegate the surface.
(5288) B. L. Association writes: An our city with arc lights of 2,000 standard candle power each. What is the standard candle of comparison, and how may we know,' with reasonable accuracy, wha power lights we are furnished with? Is any book published which gives full information in regard to the
strength of lamps and lights as furnished by electric lighting companies, and method of measuring same? A The candle power is nominal; 2,000 candle power reall 120 grains per hour. Your contract should specify cur rent and potential. We cannot recommend a book corering the precise ground which you specify.
(5289) J. C. C. writes: I have come across a number of open circuit batteries with the bind
ing posts so corroded by the action of the solution as make them useless. After the batteries have been charged, would it not be advantageous to put on top a
tablespoonful of heavy oil, to stop the salt from keeping; or would this be injurious to the life of battery $?^{-}$A Oil can be used as you describe. It has the objection o being dirty. It is a good plan to give a coating of paraf to theupper half inch of the jar.
(5290) F. R. C. asks: 1. Will wooden cells, well lined with black pitch, abot $1 / 8 \mathrm{in}$. thick, be
durable for storage cells \& A. The ase of wooden cellh is
not advisable. With a proper mixture they can be
made serviceable. It is doubtful if plain black pitch would answer. 2. What shall I use to seal the above not be sealed, as, in charging, gas is of ten evolved. They may be partly closed by any form of stopper; best of (5291) H. J. S. asks for a formula of a composition or name of a substance which when
placed in water will assume larger proportions, and when removed from same will not resume its original size, but remain compact and hard $?$ A. Compressed
oft wood, such as holly, answers your requirements
(5292) P. S. asks: Will the motor described on page 497 in "Experimental Science" run the ynamo described on page 487? Will there be any gain on strength of current? A. Win sumicient carren will be no gain in strength; on the contrary, there will be a loss of from 25 to 50 per cent.
(5293) J. J. S. writes: I run a small desk fan attached to a No. 1 Po: ter motor on the regu it in incandescent light wires. To prevent fuse melting will only run with a 32 c . p. lamp, 1 or 216 c . p. lamps having no effect whatever. Can you give the reason for this, and also if I can run the fan without any lamp in the circuit? A. Withoutintroducing some resistance in the circuit along with your motor, the motor takes an melt the fuse. Probably your motor is running ver neconomically. If it were wound with fine wire, o as to have a suitable resistance, it would take
the requisite amount of current and run with much greater economy. It is important in connecting up a greater economy. It is important, in connecting up a
motor in an electric circuit, to have themotor adapted to the current and electromotive force.
(5294) P. J. L. asks whether illuminating or fuel gas can be made from the action of sul-
phuric acid upon zinc, and its gas forced through a carburetor for a commercial value, and, if so, at about what cost? And further, does this make a better gas for illuminating purposes than air carbureted which contains no acid gas? A. The gas you describe cannot
be made commercially, as it is very expensive. It makes
(5295) E. J. M. asks at what time the ncient classification of four elements was made and by whom $?$ A. Earth, air, fire, and water were elements
enumerated by Empedocles. Ether was added to these enumerated by Empedocles. Ether was added to these
as a fifth element. The division undoubtedly preceded Empedocles' time
(5296) A. B. C. asks : 1. I inclose a sample of somemineral which is found near this town; it is ground among gravel, and it is also found embedded in rate stone. I tried to melt some of it, but when it blue flame and smelled very strong of sulphur. The tame does not last long, but it stays hot a long time. also inclose a sample of stone resembling slate, which when broken smells like petroleum, and when heated gives off a gas which burns. Please tell me what they
are. A. The mineral sent is iron pyrites in shale, of no value. 2. How much weight will a straight electro-mag net lift, the core of which is made of $1 / 4 \mathrm{inch}$ iron, 3 inches long, and wound with 4 layers of No. 18 double
wound wire, if a current of one volt E. M. F. is sent through it, the distance of the weight from the pole of the magnet being $1 / 8$ of an inch ? A. Your magnetmight lift 2 ounces. A magnet of this form is not well adapted to lifting or sustaining weights; better use a magnet of
horseshoe form. 3. Should the air be kept out of sal-ammoniac battery? A. Sealing the battery preventa vaporation. If your battery has a porous cell, the sealng should be perforated to allow the escape of air on he enting an electro-magnet what rule is there for finding the amount of wire required for a given size of iron? A The common rule is to make the depth of the winding equal to the diameter of the core. 5. What is meant by ampere turns? A. An ampere turn is the equivalent of one ampere carried once around a magnet core; thus the passage once around the core of one ampere is an am pere turn, or 10 turns of a wire carrying one-tenth am pere is an ampere turn. 6. How many ohms are required tor ? A. It is doubtful if ter? A. It is doubtful if any amount of resistance
would entirely destroy an E. M. F . of one volt. Much epends upon the sensitiveness of the galvanometer.
(5297) F. L. A. asks: 1. How to put the black finish on brass. A. The fineblack finish 5 brachms perchloride of iron dissolved in one pint of water. Also by rubbing the surface with chloride of platinum salt moistened. 2. What causes the alternate ircles of light and dark under the electric light? A the effect of diffraction, possibly intensified by reflection from the inside of the globe. 3. Where can I buy Clerk Maxwell's work and what is the price? A. We maild Clerk Maxwelis in two volumes on "Electricity and Magnetism," \$8.
(5298) F. W. P. asks : 1. How cad I reduce stick phosphorus to a powder, or to a form I can handle in making an alloy? A. Use red phosphorus. Stick phosphorus cannot be powdered and is very unsafe to work with. 2. Can mercury be deposited on brass \&o hata m wish to mate a reflector of A This is an mpossibility as far as a practical reflector is concerned. Silver-plate it.
(5299) R. A. G. writes: Will you please tell me which is the best system of penmanship for a tele which can be written the faster, also where can I get the ystem you recommend? A. The best system of penmanship for telegraphic, i.e., recelving, is that which is simplest and quickest to execute. This appears to be the moderately rounded hand with forward stroke; it is speed.

INDEX OF INVENTIONS

Por which Letters Patent of th United States were Granted

August 15, 1893,

and EACH BEARING THAT DATE.

[See notea tend of list about copies of these patents.]

At

卛

\qquad | 503,44 |
| :--- |
| 503,34 |

 503,34
503,253

AREVOLUTION me price o THE LEADING COSMOPOLITAN MACAZINE By mati. S1. EO A YEAR.
MONTHS $\begin{aligned} & \text { EO CENTS. }\end{aligned}$
 ${ }_{\text {CENTS }}$ MONTH Address, 6th Ave. e. 11th St., New York. CANNING MACHINERY
 OIL BUR BERS
AIr
AIr Pumpas
 Tin Workîne Mach'ery Rochester, \mathbf{N}. \mathbf{Y}.
TURNER ROTARY ENGINE

 4: Water Pump. Tga siction and forso pamp. as

Useful Books!

 their respective callings. Our post offco department
permits st the tranamission of books through the malls at very emall cost. A comprehensive catalogue of
useful books by diferent authors, on more tban firty osefur boiss byifferent authors, on more basa ifty
dirreent subjects, has recenty been published for
free circulation at the offlee of this paper. Subjects
 copy have only to ask forit. and it will be ma led t
them. Δ didress, MUNN \& CO., 361 Broadway, Now York.

NO SEITIMD FNGINWHR,

 THE SHIPMAN AUTOMATIC STEAM ENGINE.KEROSENE OII FUEL $\quad 1,2,4,6$ and 8 HORSE POWER
No extra Insurance. Efficient, Economical, Durable.
SHIPMANENCINE COMPANY, 200 SUMMER STREET, BOSTON MASS.

ARKANSAS

 Capaity pto eno toup pritur.

Perfect Newspaper File

THE FOX SAFETY RAZOR.

 * THE " MUNSON" TYPEWRITER. 单 This machine is an ."evolution, the outgroth of years of exporiraneo and the
 INTERCHANGEABLE STEEL TYPE WHEEL

 FARRISON CONVETOR!
 $\underset{\text { Hasoring Grain, Coal, Sand, Clay, Tan Burk, Clnders, Ores, Seeds, \&c. }}{\text { Fis }}$ sond for Circalar.| BORDEN,

Model \& EIperimental Work. Absoncto

THE MODERN MARINE BOILER.-

MALLEABLE:

VOLNEY W. MASON \& CO.
FRICTPN POLLETS, CLUTRAES, and ELEVATORS PROVIDENCE $\mathbf{~ B . ~ I . ~}$

Model \& Experimental Work Smanl Articles Man Mafactured in Qnantitides.
 W云 SALE: SECOND HAND OYNAMMS KMOTORS

Engineering School of the Western University of Pennsylvania The leading Engineering School of DANIEL CARHART. Dean,

Allegheny, Pa.

fruIT EVAPORATOR
 IMPROVED TROLLEY SYPTEM.-DE-

NOVN RTEADY!
Fourteenth Edition of Experimental Science

MUNN \& CO., Publisher Office of the SCIENTIFIC AMERICAN,
Barnes' Hand, Foot \& Steam Power Iron \& Woodworking Machinery

 W. Cataoo e on a appication.

WE SEND FREE

IUE-HOUSE AND COLD ROOM.-BY

STEEL TYPE FOR TYPEWRITERS

JUST PUBLISHED.

By Richard A. Proctor, F.R.A.S.
A series of twelve elegantly printed Mape of the Heavens, one for everry month in the year. Spec alls prepared for use in North America. With descriptions
accompanying each map, giving the names of the prinaccompanying each map, griving the names of the prin-
cipal stars and constellatione, showing their relative posittons at given hours and days of the month. A most beautirul and convenient work, specially
adapted for the use of those who desire to aoquire a general knowledge of the starry realms. To which is added a description of the method of
preparing and using artifcial luminous stars as an ald in fring in the mind the names and places of the
various stare and constellations, by Alfred E. Beach. Altogether this is one of the most popular, useful, One quarto volume, elegantly ever published. 82.50, postpald.

MUNN \& CO., Publishers,
361 Broadway, New York.

CELLULOID ZAPON (O. CELLULUFABTD LAGQUERS
 41 EARCLAY STB NEW ME

Forged Wood Screw
Aug. 19, Oct. 21, 1890; April 7 May 12, 1891;
July 19, 1892 .
Its Advantages are:

1. Stronger than a commo 3. Reguires the use of but one bit in hard
wood. 4. Inserted easier.
2. superior holaing powe

T Send for
aMERICAN SCREW CD.
PROVIDENCE, R. I.
ELECTRO VAPOR ENGINE. GAS OR GASOLINE FOR FUEL. no boiler. no file. no danger
no engineer.

You turn the Switch,
Eugine doen the rest.

THOMAS KANE \& CO. CHICAGO, ILL.

HYDRAULIC

WHEEL PRES8E8 At APECIALTY.

 Parsons Horological Institute. earn the Watch Trade \rightarrow Engraving and hemelry Work. PARSONS, IDE \& CO © Circular

HOLNTS WRNIED EDAFINE TOOLS INEVERYSHOP.

RATENTS

W. L. DOUGLAS \$3 SHOE amaim

 Best Calf Shoe in the World for the Price. W. L. Douglas' name and price is stamped on the bottom before theyleave the factory to protect you against high prices. Dealers who make he price onunstamped shoesto suit themtet petce. charge from $\$ 4$ to $\$ 5$ fo

KODAKS

The Columbus Model Folding Kodaks combine the desirable features of a complete
camera with the compactness of a Kodak.
Recent Improvements include the iris diaphragm shutter with pneumatic release, double wing back and siding fron. Can be used with Easily adapted to stereoscopic work. Maie in three sizes: $4 \times 5,5 \times 7$ and $6 \$ \times 8 \%$. EASTMAN KODAK CO. Sendifor
Catalogue. Rochester, N. Y.

"OTTO" GAS AND GASOLINE ENGINES. $1 / 2$ to 100 h h. p. Can
be used tic cities or In countryindependent of gas work
or gas mahines. No Boiler,
No Da 30,000 80LD. OTTO GAS ENGINE WORKS, PHILADEKPHIA. THE COPYING PAD.-HOW TO MAKE

Scientific Book Catalogue IEECENTLY PUBLISHED. Ing works catalogue containing over 100 pages, incluad mailed free to any address on application.
MUNN \& OU.. Publishers Sciention

gTEUENS PATENT SPRING SCREW THREAD CALIPRRS	
Leader, No. 71. Price, by mail, postpald.	
fishi,	
Idaed and Leeder Mpring Dividers and	
P.O. Box 200, Chicopee Falls, Masa.	

The Smith Premier Typewriter
 Perfect and Permanent Alignment. All type cleaned in Ten Seconds without Boiling, the Hands.
Eithent. The Smith Premier Typewriter Co., Syracuse, N. Y., U. S. A.

H.W. youNs' Copud Rents
 oil and she highest gra de of pigments? /heyart

are unequaled byany in ruchness and permarmency of color. One gallon will cover.from 275 to 300 square fert. two coats without thining and cande sofdy thinned with $1 / 2$ gallon linseed oil 10 one gallon paint for firs'l caal

H.W. Johns Míg Co.

Lifk SAVING DEVIOEA- A COL-

THOMPSON IMPROVED INOICATOR
 34 Chardion Street, Boston, Mass.

COMPLETE ELECTRICAL EQUPMENTS

 ARC or INCANDESCENT LICHTING.Arc Lamps. Incandescent Lamps. House Wiring Appliances.
MINIATURE \because LAMPS \because FOR \because DECORATIVE \because PURPOSES GENERAL ELECTRIC COMPANY,

OISTRICT OFFICES:

Ma Amitua Bul Taquan hamay

125 MILK ST., BOSTON, MASS.

This Company owns the Letters Patent No. 186,787, granted to Alexander Graham Bell, January 30, 1877, the scope of which has been defined by the Supreme Court of the United States in the following terms:
"The patent itself is for the mechanical structure of an electric telephone to be used to produce the electrical action on which the first patent rests. The third claim is for the use in such instruments of a diaphragm, made of a plate of iron or steel, or other material capable of inductive action; the fifth, of a permanent magnet constructed as described, with a coil upon the end or ends nearest, the plate; the sixth, of a sounding box as described; the seventh, of a speaking or hearing tube as described for conveying the sounds: and the eighth, of a permaclaim is not for these several things in claim is not for these several things in
and of themselves, but for an electric telephone in the construction of which these things or any of them are used." This Company also owns Letters Paliner, November 17, 1891, for a Combined Telegraph and Telephone: and controls Letters Patent No 474,231, granted to Thomas A. Edison, May 3, 1892, for a Speaking Telegraph, which cover fundamental inventions and embrace all forms of microphone transmitters and of carbon telephones.

EBTABIISHED 1845.
The Most Popular Scientific Paper in the World Only 83.00 a Year, Iucluding Postage.
This widely circulated and spiendidy illustrated apor is published weekly. Every number contains sixoricinal engravinss of new inventions and discoveries, reprefienting Enpineering Works, Steam Machinery, New Invent Ions, Novilties in Mechanics, Manufactures, Chemistry, Electricity Telegraphy, Photography, Archicecture, Agriculture, Horticulture, Natural History,
etc. Complete list of paterts each week. Terms of Sinbacriptiou. - One copy of the ScIen-
time AMERICAN will he sent for me weat- 52 numbersfivic: American will he sent for me yetr-52 numbers-
postage prepaid, to any sabscrib r in the United States, postage prepaid, to any sabscrib r in the United States,
Canada, or Mexco, on receipt of three dollaris by the Capada, or Mexteo, on receipt of three inliar'w by
publishers; six months, 81.50 ; three months, 81.00 . Clinbs.- Special rates for several names, and to Post Masters. Write for particulars.
The safest way to remit is oy Postal Order, Draft. or Express Money Order. Money carefully placed inside seldom Roes astray, but is at the sender's risk. Address Mletters and make all orders, drafts, etc., payable to
MUNN \& CO., 361 Broadivay, New York. THE
Scientific Simericat Supplemont crentific American, but is uniform therewith in fize verynumber containing sixteen large pages full of encravings, many of which are taken from foreign papers and accompanied with translated descriptions. This
ScikNTIEIC AMRRICAN SUPPLEMENT is published week , and includes a very wide range of contents. It pre sents the moat recent papers by eminent writers in all the principal departments of Science and the Useful Arts, embracing Blology, Geology, Mineralogy. Natural
Histors, Geography, Archæology, Astronomy Chemis 15. Electricity, Light, Heat, Mechanical Engineering, Steam and Railway Engineering, Mining, Ship Bulfing, Marine Engineering, Photography, Techaology, Manufacturing Industries, Sanitary Engineering, Akricalture, etc. A vast amount of fresh and valuable information obtainable in no other publication. Works, Mechanisms The mist important Engineering Works, Mechanisms, and Mancfactures at home and ab
and described in the SUPPLEMENT.
Price for the SUPPLEMENT for the United States, Canada, and Mexico, 85.00 a year; or one copy of the SCIENTIFIC AMrRICAN and one copy of the SUPPLEMENT, both mailed for one year to one address for 77.00 express money order, or check,
MUNN \& CO, .. 361 Broadway, New York

Buildiug Edition.
THE Scientific American Architects' ANi
BULLDERS' EDition is issued monthly. 82.50 a year Single copies. 25 cents. Thirty-two large quarto pares, forming a large and splendid Mazazine of Architecture, richly adorned with elegant plates in colors. and with
other fine encravings; jllusirating the most other fine engravings; illustrating the most interestin
examples of modern architectural construction and allled subjects.
A spectal feature is the presentation in each number of a variety of the latest and best plans for private resi dences, city and country including those of very mod
erate cost as well as the more expensive. Drawings in perspective and in color are given, together with Plans, Descriptions, Locations, Estimated Cost. etc.
The elegance and cheapness of ths magnifceat work
have won for it the Largest Circulation of are won for it the Largest Circulation of any
Architectural publication in the world. Sold by all news dealers. se.50 a year. Remit to

PRINTING INKS.
PRanvir

