a Weekiy journal of practical inforyation, art, Science, mechanics, Chemistry, and manufactures.

[^0]
power between hoisting, swinging and truck motion with a lever and link to control the speed in the engine. These are placed at a commanding position on the floor of the frame.
The lift is three part, using a $11 / 2$ inch chain.
The boiler is vertical, of $75 \mathrm{~h} . \mathrm{p}$., carrying 100 lb . steam pressure, placed over the counterweight, which is ballasted with 75 tons of iron. The total weight of each crane is 192 tons.
They were built by Wm. Sellers \& Co., Philadelphia.

Improvements in the Manufacture of Dyestuffs.

 blackish blue azo dye.This new dyestuff is derived from equal molecular proportions of diazotized dianisidin, the sodium salt of mono-sulpho-dioxy-naphthoic acid, and ($1 \cdot 4$) alphanaphthol alphamono-sulphonic acid of Nevile \& Winther, and which is a grayish black glittering powder of a metallic luster, easily soluble in water with a blackish blue, in concentrated sulphuric acid with a greenblue coloration; difficultly soluble in alcohol and insoluble in ether and benzine.

IMPROVED DYE FROM ALPHA OXYUVITIC ACID.
The improvement consists in the new process of manufacturing of meta-azo compounds serving as coloring matėrs, said process consisting in combining alpha oxyuvitic acid with diazo compounds.

GRAY BLACK TETRAZO DYE.
This dyestuff is produced in combining one molecular proportion of tetrazo-diphenyl or ditolyl with two molecular proportions of the sodinm salt of mono-sulpho-dioxy-naphthoic acid, and which is a dark glittering crystalline powder of metallic luster, which dissolves easily in water with a red-violet, in concentrated sulphuric acid with a pure blue coloration, and is insoluble in alcohol, ether, and benzine.

NEW PINK DYE.

This is a new article of coloring matter, manufactured from the alkali salt of a sulphonic acid derived from fluorescein chloride and mesidine, and having the formula $\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{So}_{2}$ alk.; a light red powder easily soluble in hot and cold water, difficultly soluble in alcohol, giving vivid red color, mineral acids precipitating from its aqueous solution, the sulphonic acid in the form of red flakes.

A New red dyestuff.
This new red azo dye coloring matter is derived from diazotized mono-nitro-benzidine, salicylic, and alpha-naphthol-alpha-mono-sulpho-acid (Nevile \& Win ther), and which is a red brown powder difficultiy
soluble in cold water and alcohol, insoluble in benzine, soluble in cold water and alcohol, insoluble in benzine,
but readily soluble in warm water, with a yellow-red color.-Textile Record.

The president of the Huanchaca Mining Company, of Bolivia, was recently reported as saying that he expected that silver would still further decrease in value, but that such decrease would have no effect on the Huanchaca Company, because it could produce silver at a profit even if the price dropped to 270 francs per kilo, or say 42 cents per ounce. This is by no means an idle boast. During 1891, this company mined $5,497,963$ ounces of silver at a total cost of $\$ 2,414,360$, or 44 cents per ounce. This cost in detail as follows : Mining, 16 cents; new works, 6 cents; reduction and smelting, 9 cents; taxes and export dues, 5 cents; general expenses, 8 cents. Notwithstanding the low price of silver during the past year, the output of this mine increased nearly 15 per cent, amounting to $6,667,703$ ounces, and the ore reserves are larger than before. For the 15 years ending with 1891, this company produced bullion valued at $\$ 43,033,899$, paid $\$ 14,168,038$ in dividends, and has set aside a reserve fund of $\$ 1,776,765$.

This mine by no means stands alone as regards cheapness of working, although it stands second among the silver mines of the world in point of output. Thus the Broken Hill Proprietary Company, of Australia, the greatest silver mine in the world, produced in six years and a half ending May 30, 1892, a total of $36,512,445$ ounces of silver and 152,000 tons of lead, at a total cost of $\$ 21,356,235$. The cost per ounce of silver varied from 66 cents in 1887 to 41 cents in 1890, the average being 47 cents; the cost per pound of lead varied from 2.3 cents in 1887 to $1 \cdot 4$ in 1892, the average being $1 \cdot 65$ cents. This company has paid dividends amounting to $\$ 19,480,000$.
In the United States the Ontario Mining Company has, since 1880 , produced $26,261,076$ ounces of silver at a total cost of $\$ 14,771,862$, an average of 55 cents per ounce. The Granite Mountain Mining Company has, since 1883 , produced $21,430,000$ ounces, at a total cost of $\$ 8,376,620$, an average of 39 cents per ounce. Some of these mines are becoming exhausted, notably the Granite Mountain, but new ones are constantly being discovered, and in all probability will continue to be discovered for many years to come. Thus the recently discovered Creede district produced $5,000,000$ ounces in 1892, of which it is said that the greater part was produced at an average cost of less than 40 cents per ounce.-Eng. and Min. Jour.

Zrientitir Ammerian.

ESTABLISHED 1845

MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN.
A. е. BEACH.
terms for the scientific american.

Building Edition.

Thia safest way to remit is by postal order, express money order,
dratt or bank check. Make all remittances payable to order or MUNN $\mathbb{C O}$. Readers are pecially requested to notify the
any failure delay, or irreenularity in receipt of papers.

NEW YORK, SATURDAY, JUNE 10, 1893.

TABLE OF CONTENTS OF

SCIENTIFIC AMERICAN SUPPLEMENT

NO. 910.
For the week Ending June 10, 1893. Price 10 cents. For sale by all newsdealers.
AGRICULTURE.-The Loss of Nitrogen in Manures.-By A. A.
MUNTZ and A. CH. GIRARD.-A great source of deterioration in MONTZ and A. CH. GIRARD.-A great source of deterioration in venting it, and the simpler methods available for the farmer..... 1
ANTHROPOLOGY.-Among the Cliff Dwellers.-By CLEMENT L.
WEBSTER.-A most interesting discovery.-A mummy of a child Webster.-A most interesting discovery.-A mummy of a child
of the Cliff Dwellers.- Description of the locality where the my was found and of the mummy itself.-2 illustrations.... III. ASTRRONOMY.-Novel Theory of the Moon's Surface.-A theory of the formation of the mountains and other superficial irregu-
larities upon the moon.-The probability of the impact upon the larities upon the moon.-The probability of the impact upon the COLUMBIAN EXPOSITION.-Th
sition.-A very valuable and timely Warld's Columbian Expothe views of different foreign journals upon the Fair, with numerous illustrations of the buildings, rounds, and personnel, showing the favorable impression the great American Exhibition has
produced upon different authorities abroad.-32 illustrations..... ELECTRICITY.-The Telectroscope.-By Leon Le Pontois. suggestion for the electrical transmission of vision.-Seeing at a distance by means of electricity.-A suggestive and interesting paper.- 3 illustrations...
I. MECHANICAL ENGINEERING. - Improvements in Tool Holders and Cutting Tools.-A very ingenious tool for use on the
lathe.-The use of circular eccentrically pivoted cutters adjusta-lathe.-The use of circular eccentrically pivoted cutters adj
ble by a set screw in the end of the tool bar. -5 illustrations.. II. MINING ENGINEERING.-The New Hydrogen Miner's Safety
Lamp.-By Prof. F. CLowes.-A miner's lamp capable of supply-Lamp.-By Prof. F. Clowes.-A miner's lamp capable of supply
ing at once the ordinary illuminating flame, and when desired a bydrogen flame for testing by means of the "flame cap" for the
presence of explosive gas.. 1
III. ORNNTHOLOGY--The Cockatos.-An interesting family of
the parrot order.-A full description of their habitat.-Their the parrot order.-A full description of their habitat.-Their pecially to the cockatoos in the Paris Garden of Plants.-1 illus-
tration... ... J. CARTER BELL.-The curious utilization of skim milk for mak-
ing artiflial bone or ebony and similar substances as proped be carried out in England.-An American patent for similar pur-
poses........................ .. 1 cides.-By L. R. TAFT.-The use of sulphate of copper and othe fruit.-The necessity of care in the application of such poisons, fruit.-The necessity of care in the application of such poisons,
with minimum strength required to do efficacious work..........

THE COMMERCIAL NATIONAL BANK OF CHICAGO.
In our issue of May 27,1893 , alluding to the reported failure of the bank established in the Administration building, our correspondent in Chicago inadvertently gave the name as the Commercial National Bank of Chicago, whereas the real delinquent was the Chemi cal National Bank of that city. Those who are at all acquainted with the monetary affairs of Chicago must have observed the error at once. The Commercia National Bank is well known as one of the safest and most reliable banking institutions in the country, while its officers and directors are distinguished for their sterling integrity and business ability. Such a calamity as the failure of the institution, at the present time, in the height of its prosperity, is out of the question. We greatly regret that the error should have crept into our columns.

PHOTOGRAPHY AT THE WORLD'S COLUMBIAN EXPOSITION.

It is an easy matter for people inclined in this direc tion to find fault, and in such an enormous under taking as the World's Columbian Exposition there are naturally many things to which exceptions can be taken. But the Exposition is such a grand success, as a whole, and it has been carried out on such a broad plan that fault finding in most instances can only be of a dyspeptic sort. There is one matter, however, that has been allowed to drag which should have been taken up long ago, and which should even now at this late day, be discussed in such a manner as to bring the attention of the Exposition management to it and lead to reform. We refer to photography in connection with the Exposition.
At the time of the Centennial Exposition dry plates were just coming into use and amateur photography was beginning to be popular. During these intervening years there have been no startling or radical changes in photography, but amateurs have become so skilled, and in many instances have produced such perfect specimens of work, that public taste has been educated up to a point where it accepts only good photographs-pictures in which the subject is well chosen and which also are well developed and printed with care and judgment. So much progress has been made in this direction since the Centennial that people naturally expect to find on sale at the Columbian Exposition photographs that the photographic fra ternities would feel proud of. There never has been opportunity for such a harvest of fine pictures as this exposition affords. It has a large amount of ornamental statuary that is acknowledged to be thoroughly artistic and beautiful. Its buildings are infinitely finer in design than anything ever seen in the new world. The grounds in which the Exposition is located are a masterpiece in landscape gardening. Many people of this country as well as many Europeans who have traveled extensively are astonished at the conception of the Exposition and at the beauty to be found in Jackson Park.
Yet, in spite of all these things, it is not possible to procure thoroughly good official photographs at the World's Columbian Exposition. The workmanship is in no respect better than was to be found at the Centennial. In fact, it is not as good, considering the fact that so many years have intervened and that so many improved processes have since been introduced. The subjects are selected with a lack of judgment and taste, and the developing is of ordinary quality. An exhibition by amateur photographers in any part of the country, judging by the samples that have been seen by members of photographic societies, could show specimens of work superior to the pictures offered for sale at the World's Columbian Exposition. The photographic department is such an appalling failure from the standpoint of the photographer, whether he be amateur or professional, that some public protest should be made against this condition of things before it is too late to have the necessary photographs taken to preserve some of the beauties of the Exposition.

Brass Coloring.

A fine black color, which can be varied to a light brown, can be produced on brass by treatment with an ammoniacal copper solution made by dissolving one part of copper nitrate in two parts of ammonia of specific gravity 0.96 while keeping the solution cool. The brass articles, which must be carefully cleaned, acquire a light tone on first being immersed, but on exposure for some hours become deep black. The treatment can be interrupted when the desired tint is reached. A luster can be put on the articles by rubbing with a little wax or vaseline. The process can be varied and other color effects obtained by treatment of the article after the development of the black color with very dilute hydrochloric acid, which dissolves the coating gradually and thus modifies the tint. The composition of the brass also has an influence on the result, and the coloring produced recalls that seen on Japanese bronze, which has possibly been obtained by a similar method.

During the month of May many sensational news paper reports were published regarding a lack of harmony in the management of the World's Columbian Exposition. Judging by many inquiries that have been received in Chicago, it would seem as though many people who contemplated visiting the Exposition had become imbued with the idea that the Exposition had been much neglected in order that these official differences might receive all publicattention. A great deal more is known in the outside, world about these differences than is heard in Chicago; in fact. they at tract no attention in Chicago, being entirely over shadowed by the magnificence of the Exposition. If any troubles exist they are, doubtless, due to the complicated nature of the management. It has been quite impossible from the first to know where authority rested and to whom officials were responsible. The national commission has felt that it was final authority, as it represented the government; but the directors have considered that they should have final say, because of the fact that they represent the corporation which put up the greater part of the money to pay the bills of the Exposition.
By far the most attractive feature, of late, at the Ex position, has been the evening sessions, when the
grounds and buildings were illuminated. The full grounds and buildings were illuminated. The full
scheme of illumination has not been carried out, although it has been promised on one or two occasions, and had it not been for these promises the illuminating as given would have been more thansatisfactory. The as given would have been more than satisfactory. The
Basin forms a center around which all the illuminating is done, although many people seem to have been taken with the idea that the whole grounds would be illuminated on the same plan. The cornices of all the
buildings facing the Basin are outlined with incandesbuildings facing the Basin are outlined with incandescent lamps, and the nosing of the walls forming the side of the Basin and adjoining waterways is also outlined with these lamps. The great Columbus arch in the Peristyle is made brilliant with red lights, while at the opposite end of the Basin stands the Administration building, which is a mass of illumination with lights on the cornices and on the ribs of the dome. On
the colonnade story are torches on each of the four the colonnade story are torches on each of the fous faces, which add much to the effect with their flare
and flicker. Owing to a mistake in the arrangements of the electrical fountains, it has not been possible, as yet, to use them. This is not because of any fault in the electrical equipment, but to a mistake in the hydraulic arrangement. Every evening that the Exposition has been open the attendance has been much larger than during any day with the exception of the opening day on May 1.
Several attractive features of the Exposition were much delayed in opening to the public. The Streets of Cairo, the Irish Village, and other attractions in Midway Plaisance did not open to the public until the last week in May, while inside the Exposition grounds some of the German, also the French, Italian and other exhibits, were delayed in opening. The Electrical building was not formally opened to the public until the first of June, although visitors had had free access to the building, and were permitted to see it in its unfinished state.
A corps of official guides has been provided to pilot visitors about the Exposition grounds. The grounds are so immense and there are so many buildings that it is bewildering to visitors who are not thoroughly posted to find their way about. One difficulty that has been experienced all along has been the fact that the Columbian guards have known nothing about the several buildings in the grounds, so that as guides they several buildings in the grounds, so that as guides they
have been useless, and visitors who have not learned to make their way about have found it impossible to locate some of the most attractive exhibits without loss of time. The guides are intended to be thoroughly posted, not only upon the general plan of the grounds, but also upon matters pertaining to the exhibits, so that they may be of practical use to visitors who wish to make a study in any direction or in any particular line of exhibits.
The last Sunday in May will be a memorable one in the history of the Exposition, as it was the first Sunday upon which the grounds were thrown open to the
public. If the question of Sunday opening had been one for the local directory to pass final judgment upon, the grounds would have been open every Sunday. The question was not sufficiently settled until the 24th day of the month, when the national commission, which was the last body to consider the question, voted for Sunday opening. The result proved in every way all that had been hoped for by the friends of Sunday
opening. The attendance was the largest of any day up to that date with the exception of the opening
day on May 1st. It was not until about one o'clock day on May 1st. It was not until about one o'clock
that there was any semblance to a crowd inside the gates. During the early part of the day, when church services were being held, the grounds were practically deserted, but by one o'clock visitors were pouring in from all directions, and before night at least one hundred thousand people had paid admission, to say nothing of the number of passes that were used. The people seemed to comprise very largely those who were not able to visit the grounds during the week. Family parties were in the majority, and a large portion of the people carried lunch, with the evident purpose of reaping the full benefit of the long day, as the Exposition was open until eleven o'clock in the evening. One of the interesting sights of the day was to see the many nationalities represented. Thousands of Germans visited the German village in Midway Plaisance, the German government building, and the several German exhibits. Swedes and Norwegians seemed to visit their respective buildings and exhibits, and many Irishmen visited the two Irish concessions. Chinamen were in abundance in the Chinese theater. The main center of attraction, judging by the size of the crowd, was the Midway Plaisance, which was jammed with people from early in the afternoon until nearly eleven o'clock in the evening. The bazars were all opened to the public, and did a large business.
In the main Exposition grounds the Government building was closed, and no machinery was running in the Palace of Mechanic Arts. Many of the State buildings were open, as were also foreign government buildings. The Gallery of Fine Arts was very popular and was densely crowded. The Manufactures and Liberal Arts building was nearly as popular as the Gallery of Fine Arts. Most of the exhibits were thrown open. A few, however, were closed. The illumina-
ion in the evening was the first one that many of the ion in the evening was the first one that many of the probably than any illumination that had been held since the Exposition was opened. A large part of the power plant was required to be in operation because of the illumination, and visitors thronged Machinery Hall, watching the great electrical engines. The day was beautiful and the crowd was orderly in every respect,
there being less trouble than there had been on most here being less trouble than there had been on most
week days during the month. Just outside of the grounds saloons and fakir shows in great variety were in full operation and used every effort to attract the crowd, but business, to use the expression of the managers of the fakir shows, was "bum." On previous Sundays thousands of people had haunted these shows and saloons, and the lawlessness and drunkenness reulting was quite appalling.
The Midway Plaisance is one of the features of the Exposition that has not been appreciated by early visitors at the Exposition. Many people have not attractions are. It is a part of the Exposition, so far as the admission is concerned. The Scientific AmerICAN of May 27 contained a full list of the more important of the concessions, but no idea of the real interest there is in many of them can be conveyed in words. Certain it is that visitors who neglect to see what there is in the Midway Plaisance make a mistake.
Much fine music has been rendered at the Exposition, but has not been fully appreciated by the public, although the band concerts in the open air have been well attended. Music Hall has been used almost daily since the Exposition was opened, but because of the comparatively small attendance at the Exposition, and probably because of the chilly weather, the attendance has been small. In addition to concerts, in which an admission is charged, free concerts are given each day in this hall at noon. These concerts are orchestral. Band concerts are given daily in the open air from the band stands in front of the Administration building. The more important musical gatherings are held in Festival Hall. This building was erected for this special purpose, and was formally opened on May 22 with a Wagner's programme, the day being the anniversary of the reat composer's birth. The best week of music was that held during the last week in May. The special
feature for the week included three chamber concerts, two oratorio performances and three symphony concerts in addition to the regular daily programme.
The Public Press Congress, the second of the series in connection with the World's Congress Auxiliary of the Exposition, opened on Monday, May 22, and continued for a week with several meetings every day. Representatives were present from nearly every nation in the world. Woman's work in the newspaper world
received its full share of attention, and all lines of journalism were discussed, including trade journalism, the religious press, etc. Many interesting papers were read by well known newspaper workers and much attention was shown those in attendance at the congress both in the city and at the Exposition. Resolutions were unanimously passed pronouncing the charges of extortions in the city of Chicago as unfounded $;$ de-
claring that the "public can attend the world's greatest Exposition at a reasonable cost;" and calling upon the press of the country to make known the rights of the people for cheaper rates to the Exposition.

African Exploration.

M. Delcommune, who, with his surviving companions, has just arrived in Belgium, has issued a summary of his discoveries. The London Times says they complete those of Livingstone, Cameron, and Stanley to the north, and of Reichardt, Capello, and Ivens to the south, comprising as they do the sources of the Congo and the course of its principal affluents.
The Congo issues from a chain of mountains, which extends from the shores of the southern extremity of the Tanganyika Lake to the extreme north of the Nyassa. It forms in those countries a river called the Tchambesi, discovered in the course of the last century by a Portuguese traveler, Lacerda, and forms the chief affluent of Lake Banguelo. The waters of the Banguelo descend from a height of 1,100 meters into Lake Moero, 900 meters above the level of the sea, by means of the River Luapala, 300 kilometers long, which is a succession of rapids. The Moero constitutes a second reservoir, and sends forth a stream 800 meters broad, which reaches the village of Ankorro by a series of waterfalls. At this point it becomes navigable, receiving upon its western bank the Lualaba, also navigable, whose waters have been swollen in their turn by the Lunga and the Lovoi on the western, the Lufira on the eastern bank, and by the discharge of the Lakes Kabele, Upemba, and Kassali.
Between the 8th and 9th degrees of latitude, the Congo receives on the right the Lukuga, which draws off the overflow of Lake Tanganyika, as described by Cameron and Stanley. M. Delcommune confirms the assertions of these explorers, that the Lukuga is an unimportant waterway, as its course is obstructed and only flows freely when the waters of the Tanganyika are exceptionally high. The Luapala, on the contrary, empties Lake Banguelo, which was formerly an inland sea, but is now bordered by vast swamps. When the Congo finally reaches Nyangwe it measures some 1,200 meters from bank to bank. Lake Landji, though marked on the maps according to the reports of the Arabs, has no existence.
M. Delcommune left Albertville, on the Tanganyika, on September 29, and arrived at Lusambo on January 7, after M. Dhanis' victory. He was rejoined at Lusambo by the Bia expedition. The country which he traversed with his caravan of 112 persons is good. He did not suffer from famine, as in the south, nor did any Arabs cross his path.
A telegram has been received from Boma by the Congo companies, reporting the death of M. Van den Kerckhoven, the leader of the Lado expedition.
Letters from the son of Tippoo Tib confirm the report of the death of Emin Pasha, who is represented to have been killed fighting, as well as all his people.

A Life Saving Exhibit at the Fair.
Besides the exhibits of all the latest life-saving apparatus contained in the new station at the world's fair, there are several exhibits of older appliances which have interesting histories. Among them is the first life car ever used on the coast of the United States, and with it the mortar and ball which are the neccessary adjuncts to such work. With this apparatus, in 1850, a life-saving crew on Squan beach, New Jersey, saved 250 lives from the wrecked British ship Ayrshire. The passengers were mostly Irish immigrants, some of whom settled in the immediate neighborhood, and it was from them that Lieutenant McClellan, of the revenue marine service, who is in charge of the station, got the story which he tells about the relics. The shot, which weighs twenty-five pounds, struck the deck and bounded down one of the hatches, striking a woman between the shoulders, but doing her no injury beyond giving her a great scare. In the excitement attending the rescue the ball was detached from the line which it carried to the ship when fired out of the mortar. The hulk settled in the sand, and, like all such incidents, the wreck was soon forgotten. In 1875, twenty-five years after, a heavy gale set up a current in another direction and the sand was washed away, and once more the hull of the Ayrshire came to view. A party of wreckers going through the ship's hold came across the old rusted cannon ball. Its presence excited no little comment among the wreckers, and when they went ashore they told their story of the strange find in the hold of the Ayrshire. There were some of the people whe came over in the ill-starred ship still living in the neighborhood and they soon explained the presence of the big twenty-four-pound cannon ball. It was sent to the Smithsonian Institution in Washington, where, with the curious-looking old mortar and the life car, it has since.remained. Only one life was lost in the rescue of the passengers and crew of the Ayrshire. It was that of a man who became too impatient to wait for his turn to go inside the car and insisted on going ashore on the outside. A heavy wave turned the car over and he was washed off and drowned.

IMPROVED ELECTRIC RAILWAY CONSTRUCTION.
The illustration represents a conduit system railway with continuous metallic line conductors, but which may be operated with a single trolley wire with return through the rails, the conduit being always well drained and easily reached to make repairs. The improvement has been patented by Mr. George F. Moffett, No. 195 North Seventeenth Street, Portland, Oregon. In addition to the perspective view, with parts broken away, to show the improvement in use, Fig. 1 represents a cross section of the conduit, and Fig. 2 a section of the trolley support. The conduit walls are arranged to be taken apart in sections, being suspended by arch-shaped yokes and re-enforced by angle

MOFFETT'S CONDUIT ELECTRIC RAILWAY

plates at opposite sides of the slot. The sleepers on opposite sides are connected by a nearly semicircular tie bar, and the conduit is strengthened by crossbraces, while drain pipes lead from its lower portion to the sewer. The conducting wires are held at intervals between clamping pieces on the upper ends of forked posts whose lower ends are held in a bed of insulating material in a cup or socket supported by brackets from the side walls. The double trolley employed with a continuous metallic circuit is composed of two similarly connected frames, insulated from each other, secured to a central vertical stem extending up through the slot, and so arranged that the trolley may be conveniently raised and the circuit broken when necessary. The trolley conductors extend through insulating sleeves at the front and rear of the stem, provision being made for a continuous circuit with the motor and the return of the current to one of the conduit conductors. The construction is such as to permit the car to pass easily around a curve without straining the trolley, and in front and rear of the conductors are vertical guide bars sliding in the slot to keep it open and remove obstructions. When a single conductor is used the trolley has but one frame, and the wires at the ends of the trolley conductors are connected together and also connected to one pole of the motor, from which the current is returned to the rails in the same way as in the overhead system.

Submarine Blasting.

The most extensive submarine blasting operation ever undertaken for the improvement of a harbor was that for the removal of the rocks known as Hell Gate, which obstructed the passage between New York Harbor and Long Island Sound. The works for the final operation in removing the middle reef consisted of the excavation of 21,669 feet of galleries through the rock, of an average section of 10 feet square, and involving the removal of 80,232 yards of rock by blasting. The total quantity of roof and pillars remaining to be shattered by the final explosion to a depth of 30 feet amounted to 270,717 cubic yards. The number of cartridges placed in the holes was 42,500 , containing 240,399 pounds of an explosive consisting of potassium an explosive consisting of potassium
chlorate and nitrobenzol and 42,331 chlorate and nitrobenzol and 42,331
pounds of dynamite. The cost of the final explosion was $\$ 110,950$, the total expenditure in breaking the reef being $\$ 1,094,000$, exclusive of removing the shattered rock. The cost per cubic yard averaged $\$ 2.75$. The total estimated cost of the Hell Gate improvement works amounted to $\$ 5,353,250$. The work for breaking up the middle

Pleasure Barge for an Indian Prince.

TWIN ELM TREES, IOWA COUNTY, IOWA.
reef rock extended from June, 1875, to October, 1885, when the final explosion took place.

A MACHINE FOR WASHING, DRYING AND SEPARATING COAL, ORE, ETC.

This machine, patented by Mr. George H. Tench, of Pottsville, Pa., is comparatively inexpensive to build and is designed to do its work rapidly and automatically, being also adapted to do the screening under water to avoid creating a dust. It has an open-ended tapering drum, carried in nearly horizontal position by a shaft rotated by a gear from the driving shaft. A chute extending into the smaller end of the drum feeds the material to be screened, and the lower portion of the drum turns in water held in an inclined tank, supplied by a pipe delivering into the small end of the drum, the dirty water being let off through a pipe at the lower end of the tank. Arranged longitudinally in the drum is a cylindrical slightly inclined screen, whose lower portion is adapted to be submerged in water, and near the lower end of the screen is a circular transverse partition, having a central opening connecting with a supplemental tapering screen, there being on the in ner face of the partition radial scoops delivering through the opening. The smaller end of the tapering screen is se cured to the partition and its larger end is supported by spokes carried by the shaft The end wall of the large end of the drum is of screening material, and between the end of the drum and the partition is a second series of scoops made of perforated material adapted to raise dirt or other fine material passed through the longitudinal screen and deliver through an outwardly inclined ring, beneath which is a dirt pocket, the pocket having an inclined bottom and a door at its lower end to facilitate the removal of the dirt. The coal or other material discharged through the supplemental tapering screen is received in a cylindrical drier and separator also mounted on the shaft, and inclosed at its front end by a steam jacket connected with steam supply and exhaust pipes. The connection of the drier and separator with the washing and screening mechanism enables the entire operation of washing, screening, drying and separating to be carried on continuously and rapidly. The machine is especially adapted to wash, screen, dry and separate coal, culm, pebble phosphates, ore and similar material.
most of which have had to be specially cut. There are no windows, but all four sides of the barge will be hung with pure silk of the richest quality, while the deck will be cushioned in the same costly way to a height of some feet. The barge will be propelled by two feathered paddles, placed between the bows and sterns of the two supporting boats and turned by handles after the manner of a small canoe. The barge is intended for use on a lake near to which the Nizam has a summer palace.

THE TWIN ELMS.

To the Editor of the Scientific American:
I take great pleasure in sending you photograph of the "Twin Elm Trees." 'They are located in Honey Creek Township, Iowa County, Iowa, one and a half miles northeast of the town of Kaszta, in the Iowa River bottom timber. They stand seven feet apart. It is thirty feet from the ground to where they unite.

From the point of union it is three feet in diameter for at least ten feet.
Each body is two feet and six inches in diameter, and from the ground to the topmost twig it is fully ninety feet. The widest diameter of the tree top is about seventy-five feet.
I discovered the curiosity September 30, 1864. It was photographed May 14, 1893, by Mr. A. R. Brinkley.

Wayne A. Sullenbarger.
Belle Plaine, Iowa.

A Curious Method to Take Foul Air out of a well.

I saw, says a writer in the GlobeDemocrat, a curious method used, the other dar in Illinois, to take the foul air out of a well. The well was to be cleaned, but the man that took the job was afraid to go down until he had ascertained the quality of the air at the bottom. He let down a lighted candle, and when it descended to about six feet of the bottom it went out as suddenly as though extinguished by a whiff of air. That was all he wanted to know. He was then sure that the well had poisonous gas in it, and took a small umbrella, tied a string to the handle and lowered it open into the well. Having let it go nearly to the bottom, he drew it up, carried it a few feet from the well and upset it. He repeated this operation twenty or thirty times, with all the bystanders laughing at him, then again lowered the light, which burned clear and bright even at the bottom. He then condescended to explain that the gas in the well was carbonic acid gas, which is heavier than air, and therefore could be brought in an umbrella just as though it were so much water. It was a simple trick, yet perfectly effective.

AN IMPROVED WRENCH.

The wrench shown in the illustration is of simple and durable construction and comprises virtually but three parts. It has been patented by Mr. Frederick B. Wells, of No. 50 Crescent Street, Montreal, Canada. The shank, which carries the outer jaw, has on one face a series of teeth, and sliding on the shank is a frame integral with the inner jaw, as shown in section in Fig. 2, this frame carrying a locking sleeve, shown separately in Fig. 3. Fig. 1 is a horizontal section showing the frame and locking sleeve in position on the shank of the wrench. The locking
sleeve is capable of lateral movement in the frame and has on its front inner face teeth adapted to engage the teeth on the shank, the two sets of teeth being normally held locked by springs. To move the inner jaw toward or from the outer one the thumbis pressed against the back of the locking sleeve, forcing it inward against the tension of the springs, thus unlocking the sleeve, the thumb at the same time being used to slide the frame and sleeve inward or outward on the shank to effect the desired adjustment of the jaws. As will be seen, the wrench may be operated with one hand, leaving the other hand free and permitting the use of the tool in places inaccessible to wrenches requiring the use of both hands of the operator.

AN IMPROVED MANGLE.

The demand made by large institutions and saundries for a mangle that will iron all kinds of flat work without having it first dried in a dry room has brought out several types of such machines. An illustration of this class of machinery appeared in the Scientific American of January 14. The one shown in the engravings, in perspective and sectional views, has been patented by A. T. Hagen \& Co., Rochester, N. Y., manufacturers of modern laundry machinery, and is of very large capacity and gives an excellent finish to goods.

It consists of four steam chests placed parallel and close together, with their under sides planed straight and their upper sides concaved. Into each of these is placed a $12^{\prime \prime}$ revolving roll. The goods to be ironed, after being wrung, are fed by an operator under the first roll and then carried by each to the succeeding roll. After being passed through the machine in this way, they are returned by means of an apron, tightly pressed against the under side of the steam chests and then carried back by another apron underneath the first one to the delivery side of the machine and deposited on a folding table.

The concaved surface of each steam chest measures about $11^{\prime \prime}$ and the convex surface (or space between each roll) about 11". Thus the goods, after being pressed against the heated chest under each roll, are exposed while passing to the next roll, allowing the steam to escape. After passing through the machine in this way, any dampness that may remain in the goods is taken out while on the moving aprons. One great advantage of this mangle is the small amount of floor space it takes up, considering its capacity ; another, the absence of all stuffing boxes. This machine is provided with a device for changing the speeds to accommodate the different thicknesses of goods that it may be required to iron.

Tanning by Electricity
At Turin experiments are in progress, under the direction of R. Pinna, in which hides are subjected to the action of weak alternating currents while im. mersed in the tanning liquor. A non-soluble metallic conductor, of about the same superficial area as the skins, is placed in the bottom of the tan pit and the hides are spread out and piled one upon the other on this
conductor. The liquor is run in until this pile is submerged completely.
The second electrode is carried on a wooden framework, and is situated above the pile, being equal in size to the lower electrode. These electrodes are varied to suit the required current density. At present the current used is $0.04-0.10$ ampere per square decimeter, according as the skins are light or heavy. The voltage is 50 , and the frequency of the alternations 5,000 per minute. A rheostat is used for governing the current density and the temperature is kept below 35° C. Experiments are also in progress with hides stretched vertically and kept separate from each other, while the other conditions are the same. It is stated that an exposure of from 100-400 hours, according to the quality of the skins, is sufficient to convert the raw material into leather.

The Localization of the Perfumes of Flowers.
Mesnard's method of examining floral odors is applicable to a wide range of micro-chemical studies. A ring of glass is cemented to a suitable glass slide, and within this cell another smaller ring is glued, in such a manner as to leave between the two a clear annular space. In this space is placed pure chlorhydric acid. On a cover glass, large enough to cover the whole of the larger cell, is put a drop of pure glycerine containing a good deal of sugar, and in this reagent is deposited the section of petal to be studied. The cover glass is now to be inverted and applied to the outer ring. By the concurrent action of the vapor of the acid and the dehydrating activity of the glycerine, the essential or the fatty oil containing the perfume separates in minute drops.
A modification of the process directs that the central ring be covered by its own cover glass. On this the drop of glycerine is to be put, and this is to hold the sections.
By this simple method, the localization of the per fume of the jasmine, rose, violet, and tuberose has been effected.-G. L. G., American Journal of Science.

Photography on Marble.

Mr. Villion publishes the following process: Coat an unpolished plate of marble with the following solution: Benzine, 500 parts; spirits of turpentine, 500 parts; asphaltum, 50 parts ; pure wax, 5 parts. When dry, expose under a negative, in sunshime, for about twenty minutes. Develop with spirits of turpentine or benzine and wash in plenty of water. Now cover the plate where it is intended to be left white with an alcholic solution of shellac and immerse the same in any dye which is soluble in water. After awhile, when enough of the coloring matter has entered the pores of the stone, it is taken out and polished. The effect is said to be very good.-Photographisches Archiv.

THE HAGEN MANGLE-SECTIONAL VIEW,

THE HAGEN MANGLE.

A SIMPLE FORM OF SAFETY POCKET.

A safety pocket, more especially designed for carrying a watch, and which may be readily attached to or detached from a garment, is shown in the picture, and has been patented by Mr. Henry C. Diefenbach, of No. 124 Webster Avenue, Jersey City, N. J. A U-shaped wire frame has on its ends pintles for hinges connecting the ends of spring plates, having inwardly project ing teeth, as shown in Fig. 2, and this frame is placed in a separate pocket made of any suitable material, the spring plates forming the front and back edges of the

DIEFENBACH'S SAFETY POCKET.
pocket at its top. Fig. 1 shows such a pocket in position in a garment, to which it is secured by a safety pin passed through eyes extending inward from one of the plates. The upper ends of the wire frame have little knobs, and by pressing these toward each other with the thumb and one finger the spring plates open ufficiently to permit the convenient insertion or removal of the watch.

Electricity at the opening of the Fair.
The Electrical Engineer says : The devices for starting the engine and pump were connected in series with the key, and twelve cells of Exeter dry battery supplied he current. President Cleveland, in closing the circuit, first pressed the key lever, and then closed the circuit breaker, in order to keep the circuit closed and allow the starting mechanism time to act. The installation was made by Mr. L. Ethridge, superintendent of the World's Fair fire alarm service, and Mr. L. J Auerbacher, electrician for The E. S. Greeley \& Co.
The conductors were run under the platform and thence through the subway to the AllisCorliss engine in Machinery Hall. Thence another wire extended to the pump house at the east end of the hall, where the great Worthington pump is situated. The electric fountains were operated by separatecircuits from the northeast tower of Machinery Hall and were started by a signal in multiple with the main circuit. There was not the slightest hitch in the proceedings and everything worked to the perfect satisfaction of those in charge and the intense delight of the multitude. The device used for opening the throttle of the great Allis-Corliss engine in Machinery Hall is the invention of Mr. Frederick D. Taylor, of Hartfor, \boldsymbol{l}, Conn The operation is extremly sim ple. When the circuit is closed the armature is drawn toward its magnet, thus releasing the outer end of the tumbler. The shipping lever, then being free to move, is thrown over by its spring and withdraws the pawl from the ratchet on the barrel, leaving the latter free to revolve under the action of the powerful coiled spring within; and this motion is communicated by means of the shaft, sprocket wheels, and drive chain to the throttle valve of the engine.
An arrangement is also provided for mechanically releasing the spring barrel if desired by simply pressing upon the outer end of a rod whose inner end engages the pawl and moves it away from the ratchet. The whole device is inclosed in a handsome hardwood case.

The diamond drii is pointed with black diamonds.

Application of Electric Propulsion by A

The Company of Tramways of Paris and the Depart ment of the Seine has, for a few months past, been operating its Saint Denis lines by means of electricity furnished by accumulators. This new application of electric propulsion by means of accumulators is more important than any of those that have preceded it. The installation of the Saint Denis depot was made in view of the exploitation of two lines, each about 9,250 meters in length. Both start from the crossroads of Picardie, at Saint Denis, one running to the Madeleine and the other to the Opera House.
The programme laid out for the constructors of the motors and the electric accumulators was as follows To replace, upon the above mentioned lines, the horse cars by self-moving ones, capable of accommodating fifty passengers and two employes of the company. The mean speed demanded for a full car was 12 kilometers per hour, with the possibility of reaching 16 outside of Paris, and 6 at a minimum upon heavy gradients of from 38 to 40 millimeters per meter The company, moreover, desired that it should be pos sible that the electric cars should haul another car. The daily trip estimated for each car was 135 kilo meters. Finally, the weight of the accumulators, in cluding all the accessories, was not to exceed 2,800 kilogrammes. All these conditions have been fully realized.
The body of the car rests, through the intermedium of rollers, upon two single-axled trucks, carrying bolster pins, and connected with each other by a spring coupling, that permits the axles to converge on curves and brings them back to parallelism on a straight line. Each axle is actuated by a dynamo-electric machine by means of two sets of gearings. The ratio of the angular velocities of the motor and axle is 12 to 1 .
The electric motors are bipolar, of the Manchester type, with Gramme ring armatures. The brushes consist of four blocks of carbon placed at right angles with the surface of the collector. Each machine, at a velocity of 1,300 revolutions, is capable of developing a power of 10,000 watts under a difference of potential of 200 volts. Under such circumstances, the rendering between the terminals of the dynamo and the axle reaches 73 per cent.

The trucks are provided with the Lemoine winding brake.
The battery, which is placed under the seats of the car, consists of 108 elements of 11 plates, contained in ebonite troughs. The plates are 0.2 meter in length, 0.2 meter in width, and 0.006 meter in thickness. The total weight of the active material of each element is $17 \cdot 5$ kilogrammes. These 108 elements are distributed among 12 wooden boxes, 6 on each side of the car. The 9 elements of each box are grouped in tension, and the poles of the small batteries thus formed each ends at a strip of copper fixed to one of the lateral sides of the box. Plates of brass, connected with the circuits of the dynamos through a coupling commutator, are mounted by springs upon wooden supports in the car. The introduction of the boxes between these plates, upon which slide the strips of copper, establishes a connection between the elements of the battery automatically.

The charging of the batteries is done upon benches formed of tarred planks, supported by bricks, from which they are separated by glass insulators. These benches carry spring contacts, similar to those of the axies of the cars. The battery, placed upon the charging bench, has all its elements grouped in tension. The accumulator hall now comprises 24 battery benches, each of which is connected with the distributing board of the charging current by a special circuit containing an amperemeter and an indicator of the direction of the current, and, upon each pole, a circuit breaker and an interrupter. The transfer of the batteries from the benches to the cars is effected through trucks running upon tracks alongside of the benches and the side tracks. The platform of the truck is raised or lowered by means of a screw and winch, so as to bring it exactly to the level of the interior of the car or to that of the charging bench.

The current is furnished to the accumulators by three Desrozier dynamos, each actuated by a Corliss horizontal condensing engine of 125 horse power. These engines are supplied by three semi-tubular boilers. The dynamos, at a velocity of 600 revolutions, furnish a current of 230 amperes under an E. M. F. of 260 volts. They, as well as the circuits of the batteries, are grouped in quantity. The charge is made at a constant potential. The duration of the charging is six hours for a battery that has furnished its whole capacity, which is 230 ampere-hours. The rendering of the batteries in energy is 70 per cent.
The necessities of the exploitation require the possibility of running at various speeds. This desideratum is realized by modifying the coupling of the battery elements. The battery is divided in the car into four parts, or sub-batteries, each including three boxes, say 27 elements in tension, that correspond to a difference of potential, in closed circuit, of about 50 volts. By means of coupling commutator within reach of the motorman, three different couplings may be obtained.

The speed of the car varies, in passing from one coupling to another, in the ratio of 1 to 2 .
The motors of the cars are normally associated in series, but it is possible, through the commutator, to couple them in quantity so as to obtain a greater speed or to develop a greater stress. The commutator permits, also, of changing the direction of the car by reversing that of the current in the induction circuit of the motors, and, in case of damage, of suppressing one of the motors. A single motor is capable of continuing the service with a slight diminution of speed.
The service of each car is assured by two batteries, that permit of four or six trips being made without re charging. In the latter case, the battery furnishes a motive power for a trip of 55.5 kilometers. The duration of a trip, including stoppages, is 55 minutes. The weight of the car, complete, is 13,500 kilogrammes, 2,600 of which are for the battery and its accessories and 3,500 for the passengers. The mean tractive stress is 12 kilogrammes per ton.

FALGUIERE'S STATUE "LA FRANCE" at THE CHICAGO EXPOSITION.

The commissioners of the French section of the Chicago Exposition having decided upon the execution of a symbolic figure for the commercial section of the French exhibit, a statue of France was immediately thought of, and, in spite of the shortness of the time at their disposal, Mr. Roger Ballu, inspector of the

THE WORLD'S COLUMBIAN EXPOSITION-FALGUIERE'S statue "la france."

Beaux Arts, asked the eminent sculptor, Falguiere, to undertake the task. Mr. Falguiere accepted, and in twenty days he had accomplished the work honorably. We give the original drawing, for which we are indebted to our contemporary L'Illustration.
France is represented seated and wearing a cuirass, the right arm being raised with a proud but pacific gesture. The left arm rests on a tablet bearing the inscription "Droits de l'Homme" (Rights of Man), while the left hand holds the national sword. The head, which is characterized by a calm and serene beauty, is ornamented with a diadem symbolical of liberty, equality and fraternity.
The statue is seven feet ten inches high, and will be erected on a pedestal nine feet ten inches high. It will ornament the French section, which is very remarka ble as a whole and will attract much interest.

The Thermometric Systems.

We learn, says La Nature, that the Prussian government has just rendered legal the centigrade thermometric system, or that of Celsius as it is called outside of France. Apropos of this, a word of history : It is to the celebrated meteorologist Dove that is due the remains of popularity that the Reaumur system enjoys in Germany. While recognizing the advantages of the centesimal system, he said to his young disciples: "After my death you may do as you wish, but please do not force me to change my habits, I am too old." In his history of the thermometer, Mr. Renou observes that the English employ the system of.Fahrenheit, a Dane, the French that of Celsius, a Swede, the Germans that of Reaumur. We shall complete this paradox by saying that the Fahrenheit system was defined by Hanow, that of Celsius perhaps by Christin,
and, finally, that originally the Reaumur thermometers marked a point in the neighborhood of 100° and sometimes higher for the temperature of boiling water. In fact, Fahrenheit graduated his thermometers by naking 0° at the lowest temperature of winter and 24° in exposing the instrument to the sun. Later on, his degrees were divided into four parts. In 1737, Hanow wrote: "According to the most important thermometers that Mr. Romer, at Dantzig, has had constructed, and of which Mr. Fahrenheit is the best manufacturer, water boils at 212° and freezes at $32^{\circ} . "$ Celsius, to whom the thermometer owes great improvements, pubished the processes of graduation of his instruments in 1742. At this epoch he designated the temperature of boiling water by 0°, and that of melting ice by 100°. It was not till later on that he reversed his scale. At the same epoch Christin, of the Lyons Academy of Fine Arts, published a series of articles upon the graduation of mercury thermometers. It was in July, 1743, that he publicly proposed the division into a hundred parts. On the 11th of September, 1743, he wrote: "If the public wishes to adopt the division into one hundred degrees, I think it will do well; but if, on the contrary, it does not, I shall not be offended. I shall always have the satisfaction of having done my best." It will be seen, then, that the present centesimal division was proposed by Christin independently of Celsius. Who was the first to employ it? We believe that this point of history is not yet decided.
As for Reaumur, he established his system in the following manner: Having found by experiment that a certain quantity of hydrated alcohol, occupying a volume of 1,000 at zero, assumed the volume of 1,080 in boiling water, he defined, as a degree of temperature, the elevation necessary to expand this alcohol by 1-1000 of its volume. He thought that he had thus divided the interval comprised between the congelation of water and its boiling point into 80 parts. This definition was preserved in the system of Reaumur, although he himself determined the higher point of the scale by the temperature of ebullition of a certain alcohol. In reality, he divided into 80 parts an interval correspondreality, he divided into 80 parts an interval correspond-
ing to about 80 of our present degrees, so that, in following the practice of Reaumur, and not his definition, thermometers would have been constructed graiuated nearly according to the centigrade system. It was by grafting a bad process upon a bad definition that was established the system that physicists are now having much trouble to extirpate. Although the Prussian government has just decided upon the sys tem to be employed, the imperial government had taken the lead by specifying that medical thermometers should be constructed of a certain glass (the nor mal glass of Jena), and that they should be officially verified at the Physico-Technical Institute of the empire. The latter has thus found itself obliged to comparelas many as 90,000 thermometers a year. In France the liberty of the thermometer is absolute, but in England, the country of every liberty, the same is not the case. True or false, the origin of the law as to ther mometers, as it is told us, is worth remembering. Once, when the Prince of Wales was sick, the thermometer
used throughout his illness gave readings that were used throughout his illness gave readings that were erroneous by two degrees. He came near dying, bu as soon as he got well he set about preventing a repetition of such errors. Since then, 5,000 medical ther mometers have been annually verified at Kew.

A Telegraph Decision.

A message filed with a telegraph company at a city in Texas, addressed to the sender's agent in California read as follows: "Close the trade. I will come soon." On his arrival the sender discovered that the message had not been delivered, and that the deal had failed, thus requiring him to return to Texas. The court held that his expenses to and from California were proper items of damages against the telegraph company, but losses resulting from the sale of his property at a sacrifice before starting were not. The telegraph company having received full pay for transmission of the message to its destination, without any contract limiting its liability to its own line, was bound to deliver the message to the sender's agent, even though it had to be sent part of the way over the line of another company. The sender's testimony showed that the message was not written on a blank contract of the telegraph company, and that, when he returned from California, he examined the original copy, which was not then attached to one of such blanks. The company's agent testified that when he received the message he immediately attached it to a blank contract form, and that he was not authorized to receive or send a message unless on such blank. The testimony justified the court in finding that the message was not attached to a blank contract form when received by the agent.

A subscriber suggests that there is a demand for a type writer for travelers, the machine to be of the better class, or two-handed, and not to weigh over eight or ten pounds. The type writer has become a necessity for many traveling men, and a light, portable machine would find many purchasers.

Sorrespondence.

Feathers and Lightning.

To the Editor of the Scientific American:
It has been commonly believed that feathers were non-conductors of lightning, and timid people have often been laughed at for seeking refuge on a feather bed when lightning was shooting promiscuously about.

The members of our household have lost faith in the feather protection since one day in March of the present year, when our handsome Brahma rooster was killed by a stroke of lightning, the effects of which were felt some distance away. His post-mortem examination showed a badly blackened body, and the shock had passed the entire length of his spine. This is the first instance I have ever known where a chicken was struck by lightning in an open lot.

Viroqua, Wis., May 15, 1893.

The Largest Flour Mill in the world

To the Editor of the Scientific American:
When a journal enjoying the high reputation for candor and accuracy of statement which deservedly belongs to the Scientific American "slips an eccentric," it attracts the attention of its friends. In an article headed "Remarkable Dust Explosion," found in the issue of May 20, 1893, are the following remark able sentences : "The great mill, said to have been the largest flour mill in the world, was blown to pieces," etc., and in closing, "The loss of the mills, which had a capacity of 2,000 barrels of flour per day," etc. Minneapolis is something of a milling town, and I am disposed to correct a statement that a 2,000 barrel mill is the largest flour mill in the world, or that any other city enjoys the distinction of having that mill.
Among the mills of Minneapolis, as well as of the world, the "Pillsbury A" stands at the head. Its capacity is 7,200 barrels of flour per day, which quantity has been actually made in the time. The " Washburn A" has a capacity of 5,200 barrels per day. The "Pillsbury B" follows with 4,000 and the "Washburn C" with 3,200. There are eight or ten mills in Minneapolis making more than 2,000 barrels of flour per day
The "Pillsbury A" has five railroad tracks running to it. It handles all its cars by machinery, the daily demand being 200 to bring the wheat to and carry the products from the mill. One can hardly comprehend 36,000 bushels of wheat being ground into flour under one roof in one day, and the product being all removed. But this is the daily business, and it moves with the utmost accuracy and apparent ease. That this mill is a "wonder of the world" is shown by the fact that a register is kept as in a hotel, and the daily registration is from one to two pages of names of visitors from all parts of the world. Ushers are constantly employed in conducting parties through the mill, this feature being a characteristic of the courteous natures of the whole Pillsbury family. Minneapolis is the largest primary wheat market of the world, and the greater part of all the wheat coming to the city is made into flour in her mills. The Pillsburys lead, of course, and "Pillsbury's Best" is a familiar legend with the dealers in flour in all the marts of the civilized world.
E. L. Otis.

Minneapolis, May 23, 1893.

Stars of the Milky Way.

A Sun reporter recently spent an evening in St. Louis with Prof. E. E. Barnard, of Lick Observatory, Prof. Barnard is the discoverer of sixteen comets, and he bears the reputation of being the keenest of all the eagle-eyed searchers of the heavens. He is yet a young man, and he is enthusiastic in the work he is now pursuing-photographing the Milky Way.
Original investigators are usually very careful to make no statements concerning their work which facts do not fully bear out, and Prof. Barnard was no exception to the rule. When asked how many suns there were in the Milky Way, he replied: "The old text books said the Milky Way probably contained $20,000,000$ suns, but I can photograph more than that number in a five minutes' dry-plate exposure. We estimate pretty accurately that the Lick telescope shows $200,000,000$ stars. Of course, you know that photography catches stars which the telescope does not reveal. The greatest revelations now coming to astronomers come along the line of stellar and nebular photography. Modern methods in astronomical photography are such as to give us a quite clear delineation of the Milky Way, nebulæ, and comets. Some of the negatives I have in this little case show us the growth and changes of comets and nebulæ in a most satisfactory way."
Prof. Barnard then exhibited three photographs of the comet which he discovered in October. The first showed the nucleus quite diffuse and the tail split in two sections. A negative made twenty-four hours later showed the head contracted, the tail shorter, and the sections closer together. Strangely, another photograph forty-eight hours later showed the tail
elongated and the head condensed, giving evidence o a growth of many millions of miles in the tail in th two days which elapsed between the photographs.
"How many nebulous groups have you discovered in the Milky Way to date?" he was asked.

I have been at work on my photographs about two years, and I think I have found forty or fifty groups of nebulosity supposed to belong to the infant stages of world-making, according to the nebular hypoof worl
thesis."

Prof. Barnard did not like to make an approximate statement of the number of stars in the Milky Way. Finally, however, he said:
"I do not believe I have half finished my photographs, and it will require three years to complete them, for it is tedious labor, which often requires many hours' exposure, at favorable times, aided by a delicate manipulation of fine instruments. At the conclusion of my labors I believe an estimate may be made, and I think these little specks will prove to be say 500 millions of suns. You must know that no known clockwork will move the instruments so as to keep a given star in one position, so the fingers must be used to adjust the camera. Furthermore, we have to wa long for just the proper conditions for this work."
Prof. Barnard's plates are the most complete and satisfactory ever undertaken, for, besides being an eminent and competent observer, he has been a photographer from childhood. Making photographs of the Milky Way interests him more than any other work he has ever undertaken, and the work has been fruitful in unlooked-for directions. It was while doing this labor that he noticed certain displacements and lights which led to the discovery of many comets. The photographs of suns so large that ours is a grain of sand on the infinite shores of matter in comparison do not show larger on his plates than the thousandth of an inch in diameter, while movements of mighty orbs at the appalling velocities of hundreds of miles per second are slower in the telescope than the creeping of the hour hand on a small clock's face.
"Yet a vaster thought," said Prof. Barnard, "is that the Milky Way, thickly studded as it is with giant stars, and resplendent with varied lights and magnitudes, shows that every star has back of it a luminous background of possibly millions of suns; and the black spaces on my negatives, which presumably show the vault of empty space, in reality represent billions of miles of the universe, which a longer exposure of the plates would probably people with infinite suns, each with its train of planets, surging with the throb of life and responsive to the control of law."-New York Sun.

Life in the Aretic Regions.

Dr. W. H. Neale writes as follows to the London l'imes: As medical officer to Mr. Leigh Smith in his two expeditions in the Eira in 1880 and 1881-82, I can speak with some experience of the advisability of choosing this route for an expedition which intends to spend the winter in the Arctic regions.
As you know, the Eira reached Franz Josef Land easily in 1880, about 150 miles of new coast line were discovered and accurately laid down in the chart, and the whole expedition returned to England the same year. In 1881 Mr . Leigh Smith again reached Franz Josef Land without any difficulty, but, unfortunately, while waiting for the ice to clear away from the land to enable further exploration, the Eira was crushed between the land ice and the pack, and sank about two miles from C. Flora on August 21, 1881.

Between the time the ship was crushed and her going down, we had about two hours to save provisions and clothing; during that time we were able to save enough bedding for all hands, and enough provisions to last us about two or three months.
It was not a very hopeful look-out for us. Twentyfive men to be left on an unknown land, with, at the outside, provisions enough for three months, with only four open boats, and a certainty that 12 months must elapse before we could be relieved, or take to our boats and effect our own escape. However, everything turned out well; within two weeks of losing our ship we had built a hut with stones and turf, and covered it with sails; in this 25 of us lived for ten months, without any case of illness appearing among us, after which we spent six weeks in our boats
getting to Nova Zembla, where we met the Hope, which had been sent out to look for us under the command of Sir Allen Young. When I state that we had no lime juice, very few tinned vegetables, and very little flour, most people will be surprised that we all returned home, and never had a case of scurvy or sickness break out after the loss of the ship.
This clean bill of health was, in my opinion, entirely due to our being compelled to live on the food we were able to obtain by shooting the animals of
the country. During the year we consumed 36 polar bears, 29 walrus, and over 2,000 loons. Every animal we shot was carefully bled before it was cut up, and every drop of blood we could save was kept in tins or pails. This blood was frozen within 15 minutes
we wanted it for use; every day, if possible, about 1 lb . of blood was put into the soup, and by thi means we had a daily supply of fresh blood. When I say fresh blood, I maintain that blood, frozen before it has time to coagulate, retains all the prop erties of blood just drawn from a live animal, and if you can keep men on this food during the winter, you will not know what scurvy is. If, on the other hand, we had saved enough tinned meats to last us through the winter, we should never have managed to make the crew eat fresh meat, and scurvy would have thinned our numbers long before the summer came. Only those who have been in the Arctic regions can know how a crew composed of whalers will do all they can to obtain tinned meats, and refuse bear or walrus as long as they have anything else to eat.
One good point, then, in favor of the Franz Josef Land route is the fact that there is an abundance of fresh meat to be obtained during the winter months, if you only have a rifle and a few cartridges. Another point in favor of this route is the mildness of the climate. Compared with that of Smith's Sound, where Sir George Nares wintered with the last English expedition, the climate of Franz Josef Land is decidedly mild, and the difference of the temperature charts of the two expeditions was much more than could be accounted for by Sir George Nares being two degrees further north than we were.

Fire Jets.

In a paper recently read before the American Water Works Association, Mr. J. T. Fanning dealt with the question of supply for fire service. First, as regarded the pressure necessary; as a general rule he thought that a pressure capable of throwing a jet 80 feet high was sufficient to meet the requirements of small citie and the suburbs of large ones. The lofty office build ings common in large American cities required, however, special methods. To facilitate the preparation of plans, Mr. Fanning has prepared the following table:

Jupiter and His satellites.

Dr. Wm. H. Pickering, Director of the Boyden Astronomical Station of Harvard University, at Are quipa, Peru, has made new and interesting observa tions relating to Jupiter and his satellites, which are set forth in the May number of Astronomy and AstroPhysics. He says :
The first conclusion to be drawn from these observations is that Jupiter is not self-luminous, but is only visible when it is illuminated by sunlight. The second conclusion is that it is surrounded by a rare atmo sphere outside of its cloud surface, which is capable of producing a measurable refraction. This refraction has been computed, employing the observations at first and third contact, and these when the satellite was separated from the terminator by 0.5 " and also by its own diameter. Employing the third of these observations as our standard of comparison, the refraction of Jupiter's atmosphere at its cloud surface amounts to $0.59^{\prime \prime}$. Employing the fourth observation as our standard, the refraction appears to be $0.38^{\prime \prime}$. The third observation was probably the more accurate, but was partially vitiated since the satellite was not yet free of the planet's atmosphere, which is still suff. ciently dense to produce an appreciable effect at an altitude of $0.8^{\prime \prime}$ or 1,900 miles above the planet's limb. If we take the atmospheric refraction at the cloud surface at $0.50^{\prime \prime} \pm 0.05^{\prime \prime}$, we shall probably be not far from the truth. That the atmosphere should rise to such a great height above the planet's surface was perhaps to be expected from the gradual character of the absorption of the planet's light near the limb. That such a height should be reached in spite of the high gravitation constant in those regions is an independent indication of a high temperature at the planet's surface, and a comparatively low temperature at an altitude of 1,900 miles above it. The faint glow seen beyond the dark limb of the planet for about a minute before the satellite made its appearance was doubtless analogous to the same phenomenon seen preceding the rising of our own moon, and may have been caused also in part by the illumination of clouds in the

Earthen Ware Ignition Tubes.
Ignition tubes for gas engines are now made of composition consisting of kaolin, chalk, sand, and feldspar. These materials are ground up with water before being mixed, and the coarser particles are allowed to subside, the creamy fluids containing the finer particles in suspension are then mixed and allowed to settle. The paste deposited at the bottom is drained, kneaded, and stored for some months in a damp place. It is 的en moulded into the required shape, and dried
by exposure to the air. The tubes are then packed in \mid sung out before one of Edison's phonographs. Imby exposur sung out before one of Edison's phonographs. Im by the flame of a wood fire. Such tubes have lasted and the vibrations recorded by microphone The 546 days and showed no signs of wear, whereas a wrought iron tube is often destroyed in three days.

Photography of the Phonograph.

At the recent international congress of physiology at Liege, Prof. Hermann demonstrated his method of photographing the sound of vowels. The vowels were
latter was furnished with a mirror, which reflected the light of an electric lamp upon a registering cylinder, covered with sensitized paper and protected by another cylinder, with a small opening which gave passage to the rays of light from the reflector. By this mean were obtained very distinct photographic traces, and the constancy was remarkable for the different letters.

Rescue Practice, First Method-The catch for one
Rescue Practice, Third Method-A sure grip when the
Rescue Practice, Second Method-A firm grip when the who may be quiet when rescued.

BLAKE'S CARRIAGE INDICATOR.

The difficulty of making the driver hear directions given from within a moving carriage when one is riding in a closed vehicle often causes no little inconvenience, to obviate which is the design of the improvement shown in the accompanying illustration. Attached to the dashboard, conspicuously in view of the

A CARRIAGE ATTACHMENT FOR SIGNALING THE DRIVER.
the only difference between the two countries in this respect was that it was carried out in different degrees. The Japanese reverenced their elders more than the English people did. Referring to the relations of the sexes, he stated that the inferior position of woman in Japan was due to the influence of the Chinese over a lengthened period. Dealing in detail with the relations between parents and children, he remarked upon the importance of the paternal powers and rights, and described the systems of child life and education, the arrangements in regard to marriage, and the laws relating to succession, divorce, and the settlement of family disputes. Amid much laughter, he stated that the mother-in-law in Japan was not the terror to the son-in-law as in this country, but the position was reversed, and the wife stood in extreme terror of her husband's mother. The most important duty of the parents was to find matrimonial companions for their sons and daughters, and the non-fulfillment of that duty was regarded as a disgrace both to the young people and to the parents. The Japanese children were brought up under a compound system of bitter and sweet, under which the father was supposed to be strict, while the mother was benevolent. In fact, according to the Japanese idea, one of the four terrible things in the world, three of which he described as earthquakes, thunderstorm, and conflagration, was the strict father. The lecdriver, is a dial on which is marked a variety of the/turer finally alluded to the relations between brothers most usual directions, such as "stop on right," "stop and sisters, husband and wife, and master and servant. on left," "slower," "faster," etc., as shown in one of the views, there being also on the face of the dial an indicating hand adapted to be moved by the occupant of the carriage to either of the special directions. The shaft on which is the indicator hand is moved by a sprocket chain, which extends downward and beneath the seat (as shown in the broken-away portion of the large view) to the central shaft of a similar dial within the carriage, provided with a thumb screw, whereby the shaft and the indicating hand may be turned to any desired point, such movement simultaneously turning the indicator of the dial on the dashboard to direct the driver. As the indicator hand is turned, a toothed wheel on the shaft of the outside dial, as shown in the sectional view, engages and tilts a dog oper ating a hammer which strikes a gong to attract the atten tion of the driver. To facilitate the use of the improve ment at night, electric lamp may, if desired, be arranged to illuminate the dials, such lamps being connected with a suitable battery carried in a convenient place in the car riage and arranged to be connected up to light the lamps by the movement of one of the dial hands. In applying the improvement to different kinds of carriages the posi tions of the dials may be changed as desired, the ope rative connections being cor respondingly arranged.
Further information relative to this improvement may be obtained of the patentee, Mr. Arthur M. Blaké, Wash ington building, No. 1 Broad way, New York City

Family Relations in Japan. A meeting of the Japan Society was held recently in London, Sir E. J. Reed, M.P presiding, when Diayoro Goh, the Chancellor of the Imperial Japanese Consulate-Gen eral in London, read a paper on " The Family Relations in Japan." The lecturer dwelt in commencing his paper upon the peculiarities of the religions and family systems in Japan, which he described at some length, and remarked that the ethics of the Japanese people were kept up in a great measure by domestic instruction. The family system was founded on love and reverence, as, indeed, was the case in Great Britain, and

Diamonds at the Columbian Exposition

A very complete diamond exhibit is made by Cape Colony, South Africa. The exhibit includes 10,000 carats of uncut stones, a large quantity of very fine cut and polished ones, together with all that is necessary to show the proc ss of mining and washing. For this it has been necessary to transport to Chicago 100 tons of pulverized blue earth, 50 tons of unpulverized earth and a complete washing machine, which will be operated by natives. The exhibit will also include a unique collection of crocidolite and special diamondiferous products.

Fig. 1.-ROLLING MILL OF THE ETAINGS WORKS.

PNEUMATIC COTTON PICKER.

The illustration represents a machine designed to pick cotton by the simultaneous action of blast and suction pipes, whereby the bolls wili be removed from the plants and conveyed through a tube to a cotton box on a vehicle. The improvement has been patented by Mr. Gustav A. Mauermann, of San Antonio Texas. A blower driven by a belt from the vehicle axle draws the air from the interior of the cotton box, within which a partial vacuum is created, the mouth of the pipe leading from the box to the blower being protected by a screen to prevent the picked cotton from being drawn into the blower. A blastpipe from the blower extends rearward, terminating at a point about as high as the average cotton plant, and directly opposite the mouth of this pipe is a suction pipe leading into the rear end of the box, the space between the mouths of the two pipes being sufficient for the passage of the cotton plants. Suspended by hangers from the bottom of the box are rearwardly converging fenders, their ends reaching very close to the mouths of the pipes, and when the machine is drawn over the rows of cotton plants these fenders are designed to guide the plants so that the bolls will be brought

MAUERMANN'S COTTON PICKER.
within the powerful air current of the blast and suction pipes, whereby the cotton will be cleanly and apidly picked and delivered into the box.

THE 100 TON STEAM HAMMER AND THE LARGE ROLLING MILL OF THE ETAINGS WORKS.
We have already had occasion at various times to point out to our readers the continuous development and the incessant transformations that the materiel of large forges is undergoing in view of the preparation of military products. As well known, artillery is daily trying to increase the offensive power of its engines, the rapidity of fire of its guns and the penetration of its projectiles. On their side, military and naval engineering are improving the efficiency of defense by increasing the bulk and strength of the organs of protection that they are capable of opposing to an attack that is daily becoming more dangerous. In order to satisfy the exigencies of this ceaseless contest, the iron-working industry has had to make continuous modifications in its equipment, so as to putitself in shape to handle heavier and heavier ingots and the products of increasing dimensions that are now demanded of it.
We have at various times described the most important of these large tools, and we believe it of interest to return to the subject in calling attention to the recent setting in operation of two apparatus in the works of the Marrel Bros. at Etaings (near Rive-de-Gier). iron masters whose names are justly honored in the industry. We find herein a new proof of the incessant efforts of our great forges and of the continuous sacrifices that they do not hesitate to make in order to ever remain in a position to respond to the needs of the national defense in the preparation of
the military materiel that is destined to play so im- \mid wishes solely to give the last form to the piece that it portant a part in the contests that the future has in has just shaped, one sees it descend gently, in restrainstore for us. works may bill and steam hammer of the Etaings metal, and only making the minor corrections that works, moreover
one of the high, are provided with a 350 -foot chimney, the highest that exist in France.
The armor plate rolling mill of the works, which was installed in 1868, has been transformed and enlarged since the month of February last. It is represented in Fig. 1 at the moment of the passage of a large armor plate that it has just finished.
The cylinders of this train, which weigh $66,000 \mathrm{lb}$. each, are 3.28 feet in diameter, with a table 10.8 feet in length. They are capable of flatting ingots and fagots of all thicknesses up to 4 feet. This apparatus thus permits of obtaining those large plates of 20 inches in thickness, and of a finished weight that often reaches $66,000 \mathrm{lb}$., that are now demanded for the armoring of ships. Laterally the apparatus includes two vertical cylinders $4 \cdot 25$ feet in height, that are capable of being moved toward each other in order to produce a certain pressure upon the narrow sides of the fagot during the flatting

The movable journals of the cylinders rest in vertical guides which receive, in addition, the transmissions of motion. The vertical rollers, moreover, are arranged in these cages when it is desired to do the flatting through the whole extent of the horizontal cylinders. The weight of each of these cages is $94,600 \mathrm{lb}$.
In the figure may be seen the various transmissions of motion that permit of regulating the distance apart of the horizontal and vertical cylinders.
The Messrs. Marrel's large power $h a m m e r$ has a height of fall of 18.4 feet and a total weight of 100 tons. This apparatus possesses an energy of impact greater that that of any analogous hammer in France, and probably in Europe. It can be exceeded, we think, only by the hammer of the Bethlehem works of Pennsylvania, the weirht of which is 120 tons, but the height of fall of which we do not know. The rolling mill, by reason of the great length of its cylinders, is capable of working pieces of larger dimensions than can be handled elsewhere. Fig. 2 gives a general view of the power hammer under consideration, as well as the vertical boilers of the reheating furnaces that supply this apparatus. There may be seen, besides, the large crane used in conjunction with it, and the
power of which amounts to 180 tons, thus exceeding that of any other lifting apparatus hitherto constructed. At the same time an idea may be had of the huge proportions of this apparatus, the summit of which, situated at 62 feet above the floor, seems as it were to pierce the roofing of the large hall that gives it shelter, while, with its imposing mass, it dominates all the neighboring accessory apparatus, which themselves have had to have their size increased in order to proportion it to its own. It is in the spectacle of the maneuvers of this huge machine that may be especially admired the action of intelligence dominating brute force. This heavy mass obeys, in fact, an impulsion that is insensible in appearance, and one sees it violently strike the glowing ingot, which it works in projecting sparks that form a true aureola to it, while the floor trembles and everything is agitated around it, owing to the vibrations that it transmits. When the docile giant, ever guided by a hidden intelligence,

Such oppositeness of effects and such facility of reg ulation assume so much the more interest when it is a question of larger masses, the least movement of which seems destined to bring, about irresistible shocks. The hammer rests upon an independent anvil block, which itself constitutes a colossal mass, for the total weight of this piece amounts to no less than $1,670,000 \mathrm{lb}$. This block is arranged in a trench formed to this effect between the beds of the uprights. It is placed upon a bed of oak resting upon courses is
18.4 feet. The mass of the metallic colossus thus contituted represents a weight of no less than $2,970,000$ b. In the figure may be seen the arrangement of the hall, with the central lantern and the two trusses that consolidate the hammer. The span of this hall is 85 feet.-La Nature.

Engineering in Mexico.

At a recent meeting of the Engineers' Club of Phila delphia, President Birkinbine referred to some of the ngineering features which impressed themselves upon him during a recent trip in Mexico, and contrasted the journey which he made by railroad and in sleeping cars with one covering a portion of the same territory made eleven years ago in diligencias and on horseback, noting the improvements made, but calling attention to the tenacity with which older methods and appli nces are still adhered to He referred to the diffi culty of locating and con structing railroads in a country where the sup plies, and even the water had to be carried long dis tances, and instanced the necessity at present o ome of the railroads at taching one or two tank cars of water behind the ocomotive tender, so as to ross waterless plains of one hundred miles o more.
He gave a table of the different elevations of the , 831 miles of railroad in the republic of Mexico, which showed that three ourths of the entire raiload mileage in Mexico i t elevations greater than re reached by any of our Pennsylvania railroads About one-half is above a evel of 5,000 feet above tide and one-half below that height. Of the higher portion, some 200 miles of the tracks are laid from 8,000 to slightly over 10,000 eet above sea level
He described the genera alignment and profiles of the various railroads, and illustrated this by dia ram ; referred to the difficulties of construction and cost of some of the roads, and laid stress upon the iberal use of metal sleep ers, which meet with favor rom engineers, managers, and contractors. He also discussed the measure which had been taken in former times to drain the city of Mexico, and refer red to the present canal and tunnel, the former re quiring the handling of $12,000,000$ cubic meters of earth.
After discussing the existing conditions in Mexico which lead many investors astray, namely, the cheap abor and high cost of fuel reference was made to the numerous important aque ducts and the possibilitie of irrigation being carried on upon a liberal scale by the erection of large dam he erection of large dam stone supported by the solid rock, so that it is capable on the mountains. The publication of an engineer of withstanding, without danger, the violent impacts of the 100 ton hammer. It is composed of blocks connected with each other by hoops and forming four courses, the three lower ones of which include pieces of 90 tons each. As for the upper course, that is in a single piece, the weight of which amounts to 125 tons.
The two uprights are in two pieces and are carried by cast iron plates firmly anchored in the masonry and cross-braced by strong cast iron pieces, so that the support is of absolute rigidity. The uprights are 35 feet in height and are cross-braced at the center by strong plates, and connected at the summit by an iron entablement upon which is placed the steam chest surmounted by the large cylinder that crowns the whole. The piston of the cylinder is connected with the hammer through a rod 15 inches in diameter. The piston itaelf ham a diameter of $61 / 2$ feet and a stroke of ${ }^{2}$ antediluvian goose-quill supreme.

RECENTLY PATENTED INVENTIONS.

Railway Appliances

Car Coupling.-Nicholas J. Hopkins, Owen Sound, Canada. The coupling link of this device is flat, and has on each end a latch notch, adapted to be ngaged by a spring-pressed vertical pin, the pin
pressing against the side of the link to hold it in position to enter an approaching drawhead. A yoke engag ing the ends of the pin is connected with a lever at the side and a hand wheel at the top of the car, whereby the pin may be drawn out of the path of the latch hook to ancouple the car. The device is quite simple and inexcoupling being effected from either the top or the side of the car.
Rail Support.-William N. Morrison nd Thomas P. Swin, Brooklyn, N. Y. Two patents devices, one of the patents providing for a series of base plates or chairs to be secured on the ties to support the
stringer, over which are fitted casings, one for each hair, the ends of the casings having flanges to engage recesses in the sides of the chairs, while the tops of the casings form shoes or rests for the rail, the sides of the casings extending upward to prevent lateral displacemen of the rail. The spikes which secure the rail to the
casing fasten the latter to the stringer. The other patent provides a support to securely hold the rail in place without spikes or bolts. The support is provided with cap of approximately inverted U shape, its top portion having a rail seat formed by longitudinally extending integral flanges, while the rail web has longitudinal interlocking flanges adapted to engage the flanges of the cap.

gricultural

Plow.-William B. Wherry, Overton, Texas. An improvement in land sides for plows has dapted to be quickly and conveniently removed from the hank plate, while the latter is so made that the share hen placed on it will be firmly held in position and pre ing connection between the land side of the shank plate nd the land side proper, bolts firmly uniting one part with the other, and yet admitting of the ready removal of the land side.
Stump Puller.-Thomas A. Terrell, a machine of but rom place to place, and which can be quickly and con veniently operated. A drum mounted on a frame has ratchet wheels on the ends of the drum shaft, segmental rames extending over the ratchet wheels, while levers pivoted on the frames have a virtually hinged connection with dogs engaging the ratchet wheels, the latter being are worked up and down to draw upon the drum the rope or chain attached to the stump to be pulled
Thrashing Machine Attachment. -Richard Keeling, Walhalla, North Dakota. This is separator device to receive the straw from the thrashing
cylinder of the machine, thin out and loosen it, and fan in such manner that the chaff will be separated from the straw, permitting the grain to more readily fall down through the straw and rattle rake of the machine. The invention is very simple, and capable of application to any form of thrashing machine, providing for a quick and ample separation of the grain
out in any way injuring the latter.

Miscellaneous.

Type Writing Machine.-Edgar H. Berry, New York City. This invention consists princi pally of a single key lever connected with two type bars
and having a changeable fulcrum. Two oppositely pivoted type bars are adapted to act on the same impression cylinder or surface, in combination with a single key lever and two rods connected with it on opposite sides of its fulcrum, and pivoted at their upper ends to the type
bars on opposite sides of the fulcra of the latter. The bars on opposite sides of the fulcra of the latter. The machine is designed to be of simple and durable con-
struction, not liable to get out of order, and is arranged to print two different type characters by the use of the same key
Plumb Level.-Lee J. Rogers, Pomona, Cal. This is a combined plumb and level in which
the stock casing has a central socket in which is fitted metal casing open at its top and bottom, a weighted mendulum carrying an upwardly extending pointer being pivoted on a bail longitudinally adjustable in the lower part of the casing. By this means the bearing of the
pendulum can be quickly adjusted so that the index point will register true with the gauge line on the uppe plate.
Pump Gearing.-Stanley L. Fulford, Los Angeles, Cal. This gearing is designed to successively
and rapidly actuate a number of pumps with the full power of the motor, the invention consisting of a series of cross heads mounted to slide in stationary bearing reciprocate them. Any desired number of pumps may be actuated in this manner, the several plungers being successively moved by the full power of the motor.
Oil Well Agitator. - Thomas H. Gallagher, Olean, N. Y. This invention affords means in drilling a well, thus facilitating the cleaning out of al the sand at once. The working sections of the improvement correspond somewhat to an ordinary drill jar, but there are hung in these sections radially swinging arms which normally lie vertically, these arms being thrown violently out in a radial swing as the working section is churned up and down by the working of its connection

Machine for Coloring Skins. Abert F. Jones, Salem, Mass. Revolving coloring ombination by this invention, aranged in pars, ling pipes discharging coloring fuids uporated sprink while an endless skin carrier has cross rods or wires ove
which the skins may be folded, the carrier passing be tween the brushes of each pair. The machine is more the brushes rubbing the coloring liquid on and into the skins most effectively, and none of the coloring materia being wasted.
Vehicle Running Gear.- John Q A. Haney, Buckhannon, West Va. In the construction designed by this inventor, half axles are used, there bebeing fixed to the wheel at its outer end, and the bearing box supporting the outer end of the axle is pivotally connected with a bed or bolster, so that the wheel mas turn laterally. The invention also covers other im provements, the gear being especially adapted for rough
and uneven roads, and means being provided for automatically turning the rear wheels when the forward

Rein Holder. - Homer C. Davis Normalville, Pa. This is a device to be attached to the dashboard of a vehicle, and consists of an upper preser bar operated on by a spring to hold the reins between reins are laterally introduced between the clamping de ices from opposite ends.
Window.-Everett C. Horton, Jersey City, N. J. This invention provides hinged and laterall spring-pressed closing strips to be held on the side bar of the sash in a window casement, thus automatically affording means for the support of the sash at any de sired point of ad justment. The improvement facilitates
the easy movement of the sashes, while insuring tight joints and compensating for changes in thickness of the sashes due to expansion or shrinkage.
Roofing and Siding Strip.-James . Hammett, Eureka, West Va. These strips are forme of inner and outer sections pressed at their adjacen faces having corrugations, the ridges of which come faces having corrugations, the ridges of which come op-
posite each other, forming hollows or dead air spaces which prevent the wind from carrying rain, snow cold air through the roof or siding. The sections ar drawn together upon the roofing or siding material by clamps or screws.
Guitar.- Christian F. Hartmann, Bethlehem, Pa. The neck of the guitar, according to quickly and conveniently removed from connectio with the body, thus facilitating the storage or carrying of the instrument. Means are also provided whereby th neck of the guitar may be adjusted to cause the string
Organ Action. - William Schwarze Brooklyn, N. Y. An action mechanism designed give a quick response from the pipes or reeds of an or gan when the keys are touched is provided by this in vention. In the pressure box is located a valved bellow and a trip mechanism opens the valve when the bello air in the pressure box, so that upon the slightest press ing of a key the proper tone of that key will be immediately sounded. This action may be conveniently applied to an organ of any description. A further patent, embracing especially means for operating pressure box bellows or organs, was granted this inventor, providing means for obtaining a quick response be-
tween the keys of organs and their pipes, and enabling tween the keys of organs and their pipes, and enabling
organ keys to be manipulated with the same facility as piano keys.

Coffee Making Pot. - Cordula Ackerman, Pekin, Ill. This pot has a lower hot water and steam reservoir, and an upper compartment for the forated metal sieve-like receptacle in which the ground coffee is placed to be infused. Fitted loosely in the bottom of the hot water compartment is a close metal hot water retainer, a tube from which passes upward through a sleeve and has on its top a bent spout that passes steam and water on the coffee to infuse it. The apparatus is
continuous and self-feeding, and the coffee can be kept continuous and self-feeding, and the coffee can be kept
hot without cooking it over again, thus especially recommending the improvement for use in hotels, restauranta Stool and Foot Rest. - John K. Phillips, South Orange, N. J. This is an article of
furniture of neat appearance, especially designed for use furniture of neat appearance, especially designed for use
in shoe stores. The foot rest is so arranged that when not in use it may be readily swung under the stool, out of the way. A front panel is also provided in the stool, an advertisement, the panel in a measure

Clothes Drier.-Elihu H. Thomas Clothes Drier.-Elihu H. Thomas the outside of a window, and consists of a frame carrying parallel guide rods and a rack, together with a series of clo.hes-receiving rods having each an independent sliding connection with the guide rods, and also adapted
for engaging the rack. The lines or rods upon which for engaging the rack. The lines or rods upon which
the clothes are to be placed may be drawn into the room and supported while the clothes are being hung in potion, the rod with its clothes being then carried outside
Fish Hook Disgorger. - Frank T. Verharen, Spencer, Iowa. This device has a shank by
which it may be conveniently held in the hand, and at ts outer end is a hook adapted to fit closely upon the hook, there being on the hank, opposte the rom being caught in the membranes of the fish's mouth while the fish hook is being dislodged.

Designs.

Spoon.-Austin F. Jackson, Taunton, Mass. The leading feature of this design consists in the of the handle, there being continuous head and side rolls and bead-like representations
Napkin Holder. - Joseph Walter, New York City. This design is of a holder provided
with a base having four ornamented lega, the carved
band extending upward from a perfo
portion being also highly ornamented.
Wagon Hub Band.-Charles C. Field, New York City. This design provides an annular in mo beange on the inside of the hub band at it ront edge, the bead or
round in cross section

Note.-Copies of any of the above patents will be
urnished by Munn \& Co., for 25 cents each. Please furnished by Munn \& Co., for 25 cents each. Please
send name of the patentee, title of invention, and date send name of
of this paper.

NEW BOOKS AND PUBLICATION

Suburban and Country Homes. Con tain ingdesigns for houses of moder tects, together with "Suggestions on House Building." By A. W. Cobb Hosford. New York: William T Cosford. 23 Warren Street. 1893.
Price $\$ 3$.
This very handsome work is a collection of plates, with rief descriptions giving a great variety of country house stated in each case. The price is also given in many in stances, so that the prospective builder of a home has a good chance of knowing in advance just how far he is going if he follows the plans. In some cases, of course it is given only approximately, and in other cases it 1 re not given. Where stated costs generally range from $\$ 4,000$ to $\$ 6,000$, and exceedingly good results seem to be reached thereby. Yet one very pretty cottage with six ooms only costs $\$ 1,500$.
Municipal Improvements. A manual public improvements, for the muni public improvements, for the muni
cipal officer. By W. F. Goodhue
New
1893.
Pp. viii, 129 .
The subject of municipal improvements is one which is every day acquiring importance in this country. The inder different headings, sewerage, street sprinkling water works, municipal franchises, paving, bridges, as essments, and city finances, as well as the board of
health work all being included in it. Lack of an index mars the work, although its place is taken to a certain

The Measurement of Electric CurReNTS. Electrical measuring instru
ments. ters for electrical energy By C. H.
Wordingham. Edited by T. Com
merford Martin. Illustrated. New York: D. Van Nostrand Company 1893. Pp. ii, 237 , iv. Price 50 cents.

This volume includes two papers presented before the Institution of Civil Engineers, and they embody an ex cellent and practical treament of the titular subject. The Nostrand Science Series.
Abroad and at Home. Practical hints for tourists.
New York: Morris $\quad \begin{gathered}\text { Bhillips. } \\ \text { Brentano's. }\end{gathered}$ Price \$1.
This discursive work is really best described by it itte. In it some general points about a number of popular points of travel and resort are given with adequate and other information of that character fill the last of the 365 pages of the book. The preface is by A. Oakey Hall, appropriately dated from the Lotos Club. London, Paris and the United States are the principal subjects
treated. The book, from its sketchy and graphic char treated. The book, from its sketchy and graphic char
acter, is excellent reading. In addition to the illustra cter, is excellent reading. In addition to the illustra Electrical Tables and Memoranda. By Silvanus P. Thompson and
Eustace Thomas. London: E. \& F. N. Spon. New York: Spon \& Cham
berlain.
1893. Pp. 50 cents.
This tiny work, of vest pocket size, will be found ac ceptable by the engineering profession. It naturally written from the English standpoint, and is adapte

Outlines of Forestry ; or, The Ele THE SCIENCE OF FORESTRY. By J. B. Lippincott Company. 1893. Pp 254. Price \$1.

Professor Houston in this book has departed from the realms of physics and electricity and given us what he erms a series of primers, 18 in number, upon the fores ucal, is illuts seems to be excellently classified, very pra found, with its appendix and very fullindex, an excel ent contribution to a very important subject
Electrical Measurements a nd other Advanced Primers of Electri-
city. By Edwin J. Houston. New York : The W. J. Johnston Company,
Limited. London : Whittaker \& Co. 1893. Pp. 429. Price $\$ 1$.

Professor Houston here gives us 18 primers on his
titular subject. As in the book just reviewed, the last section is termed the primer of primers, a sort of sum marization or collection of points which did not fall
within the preceding chapters. The work will be found creditably written one and a very acceptable addition to the literature of electricity
Catalogue of Swedish Exports.
Edited by Wilhelm Tesch. Stock Edited by Wilhelm Tesch. Stock-
holm: Royal Printing Office. P. A.

Standard Tables for Electric WireMEN. By Charles M. Davis. New pany, Limited. $1892 . \quad$ Pp. 100. Price $\$$.
This work, with its simple, clear illustrations and conIll be found an excellent addition to the written entirely from an American standpoint. In the dvertising department, an alphabetical list of works on electricity is not the least valuable part of it. Among the books cited certain are marked with an asterisk "as most
likely to furnish reliable information on the subjects of likely to furnish reliable information on the subjects of which they treat." We strongly suspect that a different
distribution of the asterisk might have been made without doing the system any injustice.
Alternating Currents of Electri UREMENT, DISTRIBUTION AND ApPLICATION. Authorized American edition by Gisbert Kapp. With an
 Price $\$ 1$.
Gisbert Kapp, whose efforts have so often taken the hape, in this work attacks the subject of alternating rrents. From its briefness and practical treatment the ork will be a favorite one with the working engineer. he alternating current system is of growing importance meching as rats fone same footing, as re

The Moslem World is the title of a singular description of paper to be printed in the English oy Mohammed Alexander Russell Webb, an American who has lived several years in Mohammedan countries. It is the purpose of the paper to diffuse a knowledge of Mohammedanism, as it is known to its editor, and to try for the Hatever conversion of people to the doctrines of 1slam. Webb has at least succeeded in getting himself widely talked about by his efforts, and the first number of his paper is very creditable to its publisher
Fs Any of the above books may be purchased through is ofice. Send falogue just pub

SCIENTIFIC AMERICAN

BUILDING EDITION.

MAY, 1893.-(No. 91.)

table of CONTENTS.

. Elegant plate in colors, showing an elegant residence at Bridgeport, Conn. Floor plans and two perspecLongstaff \& Hurd, architects, Bridgeport, Conn. Rutherford, N. J. Two perspective views and loor plans. Mr. F. W. Beal, architect, New York. An attractive design.
handsome dwelling at Plainfield, N. J. Perspèctive views and floor plans. A model design.
Messrs. Hartwell \& Richardson, architects, Boston, Mass.
A dwelling at Utica, N. Y., erected at a cost of $\$ 4,700$ complete. Floor plans, perspective view, etc.
Mr. W. H. Symonds, architect, New York. An Mr. W. H. Symonds, architect,
Old Colonial style of architecture
Engravings and floor plan of the Fairfield Congregaional Church at Fairfield, Conn., erected at a cost of $\$ 52,000$. Mes.
New York City.
stable erected at Plainfield, N. J. A model design. Messrs.
Mass.
An excellent design for a modern stable at Bridgeport, Conn. Messr
Bridgeport, Conn.
8. A residence at Belle Haven, Conn. A very picturesque design, perspective elevation and floor plans. Cost
$\$ 6,000$ complete. Mr. Frank W. Beal, architect, New York City.
. View of a tasteful shop for a builder erected at Neuilly, Paris.
10. The Fifth Avenue Theater, New York.-View of the Worthington steam fire engine pump.-View of tight scene pit. View of the Edison Electric Illuminating Company's switchboard, with par iculars of construction, etc
Miscellaneous contents : A Pacific coast bathing es-tablishment.-An improved spring hinge, illus-trated.-The J. A. Fay and Egan Co.-The H. W. Johns paints, etc.--An adjustable sash holder, illustrated.-A labor saving screw driver, illusa factory across the Atlantic.-Architectural wood turning.-Tnnneling the Simplon.-New resawing
band saw machine, illustrated.-The Wheeler wood filler.-An improved hip shingle, illustrated.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies, cents. Forty large quarto pages, equal to about cally, a large and splendid Magazine of ArchitecRE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting examples of
allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Laraest Circulation 1 newsdealers all newsdealers. MUNN \& CO., Publishers,
ⓤsiness and Personal.
The charge for Insertion under this head is One Dollar a line for each insertion; about eight words to a line. Adver
tisements must be received at publication office as early as Thements must be received at publication office as early as
Thursday morning to appear in the following week's issue

Order pattern letters and figures from the largest va-
riety. Knight \& Son. Seneca Falls, N. Y., drawer 1115. riety. Knight \& Son. Seneca Falls, N. Y., drawer
Acme engine, 1 to 5 H. P. See adv. next issue. Acme engine, 1 to 5 H. P. See adv. next issue.
"U. S." metal polish. Indianapolis. Samples free Stave machinery. Trevor Mfg. Co., Lockport, N. Y. Improved iron planers. W. A. Wilson, Rochester, N.Y. Chain Belting \& Grain Dryers, F. H. C. Mey, Buffalo, N. Y
For stone quarry engines. J. S. Mundy, Newark, N. J. Microbe Killer Water Filter, McConnell Filter Universal and Plain Milling Machines.
Pedrick \& A yer. Philadelphia, Pa. Steam Hammers, Improved Hydraulic Jacks, and Tube
Expanders. R. Dudgeon. 24 Columbia St., New York. Expanders. R. Dudgeon, 24 Columbia St., New York
All kinds of Perforating done in every kind of me
F. Erdle Perforating Works, Rochester, N. Y. Will purchase patent of meritorious, small article
Give particulars. Manufacturer, box 2238, New York. Screw machines, milling machines, and drill presses.
The Garvin Mach. Co., Laight and Canal Sts., New York. Centrifugal Pumps. Capacity, 100 to 40,000 gals. per
minute. All sizes in stock. Irvin Van Wie, Syracuse, N.Y. Fine machine \& model work. Prices low. Workman-
ship unexcelled. J. L. Crandall, North Attleboro, Mass. To Let-A suite of desirable offices, adjacent to the Scientifc American offices, to let at moderate
Apply to Munn \& Co., 361 Broadway, New York.
The best book fcr electricians and beginners in elec-
tricity is "Experimental Science," by Geo. M. Hopkins. tricity is "Experimental Science," by Geo. M. Hopkins.
By mail, $\$ 4$; Munn \& Co., publishers, 361 Broadway, N. Y. For the original Bogardus Universal Eccentric Mill,
Foot and Power Presses, Drills, Shears, etc. address Foot and Power Presses, Drills, Shears, etc., address
J.S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y. Canning machinery outfits complete, oil burners for soldering, air pumps, can wipers, can testers, labeling
machines. Presses and dies. Burt Mfg. Co., Rochester,

Competent persons who desire agencies for a new
popular book. of ready sale, with handsome proftt, may popular book. of ready sale, with handsome profft, may
apply to Munn \& CO., Scientific American office. 361
Broadway, New York. sroadway, New York.
ny Manufacturer
of hardware or machinist's specialties, desiring to be
represented in New York City and vicinity, willf find it t represented in New York City and vicinity, will find it to
his interest to address $\mathrm{E} . \mathrm{J}$. Hussey \& Co., 0 OJonn Street, New York. We are centrally located, active workers, and can furnish best of references.
Send for new and complete catalogue of Scientific and other Books for sale by Munn \& Co., 361 Broadway
New York. Free on application.

HINTS TO CORRESPONDENTS.

(5101) L. S. F. asks: Please let me a lamp, and why there is an air vessel on the suction pipe of a pump. I have seen one on the pump of the
Hone brewery. The pipe runs over a high bank, the air vessel is as high as the bank next to the pump.
Place the lamp in water with a little soda and boil it, soften the plaster. Air chambers are put on suctio
pipes to prevent water hammer
(5102) A. C. H. asks : Please give mein formation as to how moss is cured and prepared for use
A. Moss is soaked in water tanks until the bark is rotted then dried and the bark whipped off in the same manne
(5103) L. H. S. asks: What is estimated to be the temperature in a perfect vacuum? Could a
body suspended in a vacuum be heated by applying hea
to the outside of the vacuum? to the outside of the vacuum ? Could meat be cooked in
a vacuum pan? A. A vacuum should have the same temperature as the surrounding walls. Bodies that do
not evaporate may be heated in a vacuum by radiation. not evaporate may be heated in a vacuum by radiation
Meat could be cooked in a vacuum pan. Meat or any-
thing containing water neutralizes a vacuum by vaporiz thing.
(5104) R. W. H. writes: : I would like to
now how diamond drills are made and whether they can be made to drill hardened steel. A. Diamond drills are made by setting the borts or small black diamonds in the
edge at the end of a brass or steel rod or tube, so that edge at the end of a brass or steel rod or tube, so that
thediamond cuts the hole clear of the metal. They will bore hardened steel.
(5105) A. B. says : Kindly inform us the best means to prolong the life of clarinet reeds. Should
they be oiled ? A. Soak the reeds in boiled linseed oil and thoroughly dry.
(5106) J. M. writes: We have a boiler 4
eet diameter which we are building. How wide and feet diameter which we are building. How wide and
how deep should our fireplace be immediately above the grates, and how much space should there be behind the
grates in depth and width ? A. The fire chamber should grates, ind depth and width? A. The fire chamber should
be 4 feet 2 inches wide, 2 feet from grate to boiler shell
for coal. Back chamber 4 feet 2 inches wide and full
depth to level of ash pit.
(5107) H. Bros. ask : To settle a dispute Eastern iron or wood? Also date of building of first iron vessel. A. The Great Eastern was an iron vessel. The
first iron vessel was built in England in 1787 The first iron vessel was built in England in 1787. The firs
iron steamer also in England in 1821. Iron ocean steamers were commenced in England in 1833.
(5108) G. D. - To prevent shrinkage corks may be treated with parafine. Melt the paraffine
and boil the corks therein, kept below the molten mass and boil the corks therein, kept below the molten mass.
Remove the corks, dry on a cloth. In case the cork has a tendency to slip out, rub with powdered chalk. Rubber corks may b
sential oils.
(5109) W. S. C. asks : Will you kindly inform me throg an H armature in the motor described in "Experimental Science"? A. A drum armature or ring
armature is preferable, and one or the other of these should be used when it is possible
(5110) J. T. McC.-The plant sent for (5111) F. S. asks if it would be better (5111) F. S. asks if it would be better small dynamo. A. A field magnet might to advantage the core of the armature.
(5112) C. C.-The lowest temperature freezing. Pictet has succeeded in reaching this wonder (5113) C. C.-The normal speed of Par (5113) C. C.-The normal speed of Par
(5114) F. H. asks : 1. How can chemical action be prevented in the Bünsen battery on an open
circuit, the zinc being amalgamated? A. It cannot be circuit, the zinc being amalgamated? A. It cannot be
entirely prevented without removing the zinc from the entirely prevented without removing the zinc from the
solution. 2. How can the deposit of zinc sulphate on the amalgamated plate be prevented? A. By renewing
the solution frequently. 3. Which would be the best the solution frequently. 3. Which would be the best, order to run a Swan lamp of 8 v . 0.8 a., by using four
batteries, and still prevent chemical action on an open circuit, as I use the lamp every day for an average of 4 hours a day? A. A solution of chromic acid for the porous cell and dilute sulphuric acid for the jar, with a
small percentage of bisulphate of mercury added to keep up the amalgamation. 4. Please give the description, Fuller battery. A. 2 volts, resistance 2 ohms, amperes 1. 5. Could I run an 8 volt 0.8 ampere Swan lamp on an average of 4 hours a day (sometimes even 6 hours) by the following method: I use two 1.6 v . batteries, giving a cur--
rent of $1 \cdot 6 \times 2=3 \cdot 2 \mathrm{v}$. The batteries are 16 centimeters rent of $1 \cdot 6 \times 2=3 \cdot 2 \mathrm{v}$. The batteries are 16 centimeters
high; with this I charge for 20 (sometimes 18) hours two storage batteries, each 22×13 centimeters (i. e. the size of he jar containing the lead coil), and what battery would
be the for charging? A. For an 8 volt lamp you would require 4 storage cells, and for each storage cell for charging (5115) J. A. writes : I am making the permanent magnet telephone described in your Sup-
PLement, No. 142. I have been careful to follow measPLEMENT, No. 142. I have been careful to follow meas-
urements exactly, but succeeded in winding only $1 / 2$ ounce of 36 covered wire on the spool instead of $3 / 4$ ounce.
Will this amount do, or must I make a spool larger than your directions and wind upon it full $3 / 4$ ounce? Should the binding posts come in contact with diaphragm ? Probably you could wind three-fourths of an ounce of wire on the spool if you are careful to wind the wire as
thread is wound on a spool; however, your telephone should operate fairly well with half an ounce of wis
(5116) H. V. F. asks : 1. Will it increa the power or distinctness of the telephone described in SUPPLEMENT, No. 142, Fig. 5 , to add a soft iron What cheap book tells how to make test instruments, voltmeter, ammeter, resistance coils, etc.? Price ? A
"Instrument Making for Amateurs," by S. R. Bottone price by mail 50 cents, will probably answer your pur pose. 3. I wish to make an induction balance similar to
the one described in the Scientific American, issue of August 20 , 1892. Please inform me of the size and amount of wire in the primary coils, size and amount of wire in secondary spool and of hole? Is the primary placed inside of the secondary or beside it? Is the arrangement If same for the movable coils? Is any core needed?
If coilsed side by side, should the core extend through both? A. We have not the precise measure-
ments of the instruments, but we think you will be able to get at the proportions by referring to Supplement,
$\underset{\text { (5117) F. W. W. Q. asks : 1. If I have }}{\text { manometer tube containing air at a pressure of one at }}$ mosphere, and send a half inch a spark from a Leyden jar through it, how much would the pressure increase ?
A. It would depend entirely upon the quality of the spark and the quantity of air contained in the tube. 2.
Is there any advantage in reading by sound in cablegraphy, over reading the signals by light? A. There would be an advantage if the Morse code could be used. (5118) L. M. W. asks : 1. What should be the resistance of a small motor to be run by one cell
of Grenet battery? A. 2 or 3 ohms.
2. Can aluminum be used for electric contacts in place of platinum? It is not a good substitute for platinum.
(5119) J. W. S. writes : I want to make a small dynamo to light my engine and boiler room.
Will you please give me the dimensions for a dynamo to make about 8 or 10 lights? My fly wheel is 13 feet in
the diameter and 4 inches face. Could I run it with a friction pulley? And about how much power would it take? I have a 360 light Edison dynamo. Could I use the same
switchboard for the small dynamo? A. Without doubt switchboard for the small dynamo? A. Without doubt
you could run your small dynamo by a friction pulley in
the manner suggested. It will probably require a little
more than one horse power. You can doubtless use nore than one horse power. You can
your switchboard for the small machine.
(5120) R. C., Iowa.-I send you by thi aail a sample of maple wood which is infested with some insect. Will you please let me know what it is,
and if it is liable to injure our maple grooves, which are quite useful to us for shelter? All the samples were taken from one tree, about four years old. Answer by Professor Riley.-The maple twigs which Mr. Carithers sends comprise some of last year's growth and some of
he season of 1891. The formerexhibit longitudinal row the season of 1891. The formerexhibit longitudinal row
of closely connected punctures, while the latter show simply an old scar, with no indication that the twigs ar unhealthy. The punctures have been made by th snowy tree cricket (Oecanthus niveus) in laying its eggs
A longitudinal slit through the twig shows the somewhat curved eggs laid side by side, with their axes horizonta to the axis of the limb. Beyond damaging vegetation in this way the snowy tree cricket does little harm, since it is partly predaceous (feeding upon plant lice and other small insectss, and does little harm by its other method
of feeding, which consists in gnawing the leaves. The of feeding, which consists in gnawing the leaves. Th ers sends are particular interesting, since the wood layer which has grown on the side of the punctures nearly as thick as that on the opposite side, the former
being 3 mm . in thickness and the latter somewhat less than 4 mm . This indicates that with the maple the With blackberry, raspberry, and grape, however, i which the insect more usually lays its eggs, the twigs are frequently killed. The only satisfactory remedy consists in
pruning the infested canes during the winter time and pruning the infested canes during t
burning them with the inclosed eggs.
(5121) F. E. H. writes: I have a spring that furnishes 477 gallons of water per minute. There is a fall of 84 feet in the first 75 yards, then there is a
gradual fall of 50 feet in the next 400 yards, to the bed of creek. Please tell me the proper size of pipe to use to kive size of pipe to start with, and the sizes all through. power would there be with a good jet water wheel, with the 134 foot fall? A. It will require an 8 inch pipe the whole distance, with a conical enlargement to 10 inches
at the spring. This will cause a friction loss of about 3 feet in the head. A $11 / 2$ inch nozzle will discharge the
ating full flow of the spring and give you 12 horse power on a
24 inch Pelton wheel.
(5122) C. R. asks: How much water do $1 / 2$ and $1 / 4$ and $1 /$ inch nozzles discharge in one min-
ute? Head 75 feet, no friction. And what horse power ate? Head 75 feet, no friction. And what horse power
will nozzles give with 3 and 4 foot Pelton water wheel same head? A. $1 / 2$ inch nozzle will discharge 566 cubic eet per minute $=\frac{\text { fig }}{100}$ of a horse power $; 1 / 4$ inch nozzle
will discharge $1 \cdot 41$ cubic feet per minute $=\frac{10}{100}$ of a horse power; $1 / 8$ inch nozzle will discharge 0.354 cubic foot per ninute $=$ rot of a horse power. The above size nozzle
are only suitable for 12 inch, 8 inch, and 6 inch wheels.
(5123) B. W. C.-A dip for brass is as follows : Strong sulphuric acid, 2 parts; water, 1 part;
red fuming nitrous acid, 1 part. These must be mixed in the open air, as the gas evolved on mixing the nitrous acid with the vitriol and water is of a suffocating character; this will pass off in the course of an hour or so, dur-
ing which time the mixture may be occasionally stirre ing which time the mixture may be occasionally stirred
with a glass rod. The bright, gilded effect produced on he brass by this mixture is so good that any one trying it will not return to the use of nitric acid. The subse too soon after the dipping, as the articles tarnish rapidly if kept unlacquered.
(5124) Secy. Y. M. C. A. says: Our members greatly enjoy your valuable paper, and we have
thought you could probably make it more valuable to us if you would kindly give us through its columns recipe
in to for cleaning carpets and wall paper. A. 1. A dusty carpet may be cleaned by dipping the broom in cold water,
staking off all the drops, and sweeping a yard or so at a shaking off all the drops, and sweeping a yard or so at a
time. Wash the broom and repeat until the entire carpet has been swept. 2. To take out grease spots, rub the spot with hard soap and wash out with a brush and cold To remove stains or marks where people have rested their heads on wall papers, mix pipe clay with water to the consistency of cream, lay it on the spot, and allow it to remain till the following day, when it may be easily removed with a penknife or brush. 2. Cut off the crust of a loaf of bread and rub the wall with a lump of the read; this will remove a great deal of the dirt.
(5125) A. E. writes : Kindly mention in your valuable paper what motor power will it require to
run a wagon weighing about 400 pounds at the rate of one mile in three minutes? And also how many storage
cells (same as described in Scientific american of cells (same as described in Scientific American o
March 4), plates size 10 inches $\times 10$, shall I need for above motor 9 A. It will require three horse power for the 400
pounds wagon alone on a very smooth, level road. To this must be added the weight of the electric motor, stor age batteries, and persons driving and riding in the ve hicle. A motor for such a rig would weigh about
500 pounds, and the storage cells will weigh about 13 pounds each and require 60 in number, weighing 780
pounds, making the total load about 1,700 pounds. Total ive horse power.
(5126) P. J. T. writes: 1. A friend claims din cable is not on the bottom of the ocean, but suspend strong that it would not permit the cable to sink to the bottom. I say the cable is on the bottom, and that it
was weighted at certain distances in order to sink it and steady it on the bottom, the weights being put on while the cable was rolled off. Please decide which is right,
A. The cable rests on the bottom of the ocean for the A. The cable rests on the bottom of the ocean for the greater portion of its length. It may in places be sus-
pended by rocks above the bottom for short distances, but as a general thing it rests upon the ocean bottom. It water. 2 . I have a 8×10 photographic lens of 10 inc focus. Would it be possible to make the focus longer by getting a new tube and remounting it? Or is there any
way of getting a larger picture of a distant object with
focus of your lens by placing behind it a concave lens of
proper focal length. It might, however, interfere with proper focal length. It might, however, interfere with
the definition of the lens. 3. What part of the crankshaft of a steamship is the crankpin? A. The part (5127) D. W. R. asks : 1. Why conducors on an electric light circuit burn when they somein contact. A. Because the resistance is great at the point contact and the heat generated is snfficient to melt omed, which melts or burns the wires. 2. Can the field "be unduly excited when the external resistance s low? A. No. 3. How is the regulation effected on a rom a "shunt" wound? A. It is regulated by the difference in current flowing in the shunt and series winding. 4. How should the lamps be connected? A. Arc lamps should be connected in series, incandescent lamps in parallel. 5. In what direction does a current flow in a dynamo, and how can I ascertain it? A. The positive
brush of a dynamo is the one on the side of the commnbrush of a dynamo is the one on the side of the commu-
tator which moves toward the positive pole of the field
(5128) P. A. B. asks : What degree of heat would be produced by condensing the rays of the in diameter? What is the nature of the sun's heat that nables it to pass through clear ice or very cold glass
ithout warming either? And why can we not increase the intensity of the heat from the rays of a very bright hot fire, electric or gas light by using a lens to gather and condense the rays? A. The loss of heat in passing through glass by reflectionand absorption is considerable,
and the loss by wave interference is still greater; so that and the loss by wave interference is still greater; so that
the relative areas of lens and image is no criterion as to the relative areas of lens and image is no criterion as to y a thermometer hat that may be developed or absorbed y a thermometer at the focus. The condition of the at-
nosphere is also a large factor, as everybody's experince shows. From 200° to 300° are possible, as you decribe. The power of heat to pass through different transparent bodies is very variable. It being of a vibraory nature, the vibrations are retarded or absorbed in ifferent proportions, according to the molecular condi-
ion of the bodies transmitting heat. Thus rock salt will ion of the bodies transmitting heat. Thus rock salt will
ransmit 92 per cent, glass 39 per cent, and ice only 6 per transmit 92 per cent, glass 39 per cent, and ice only 6 per
cent of heat rays. All bodies absorb more or less heat by transmission. All heat-giving sources can be intensi(5129) (5129) P. B. writes: Let a current of ectricity be sent through a coil of wire. That will inThen use this secondary coil as the primary coil to induce currents in a coil of wire adjacent to it. Would not four and two by the reverse ? Continuing, and using this last oil as a primary, would not eight currents be induced? nd so could not currents be multiplied in that manner ntil they became of the frequency of the vibrations of light? If it were possible to do this, by using fifty coils
and breaking and making the first current in all twenty mes per second, according to my calculations we would mes per second, according to my calculations we would is not possible, why not? A. There is no reason why requency in the manner suggested; but unless you had a very large current to start with, a current from the 50th coil would be slight. The reversals of the current in the irst coil would dominate all the currents in the other
coils, so that you would have a period of the twentieth of a second in your last coil as in your first, so that the sebrations would be periodic.
(5130) E. H. J. asks: What is the highst degree of heat ever obtained by man ? A. The high-
st temperature is obtained in the arc light, about $7,232^{\circ}$ (5131) R. A. C. writes : I want to build small furnace for melting brass in small crucibles, $31 / 4$ $\times 21 / 2$ inches. Can you please tell me the size to make
he chimney and the size of gratesurface? A. Any ordiary stove chimney, 8×8, will give sufficient draught. (5132) W. A. W. asks: 1. What diaphragm is the best for receiving sound waves? A. Edi-
on, in his phonograph, uses a glase diaphragm one twoson, in his phonograph, uses a glase diaphragm one two-
hundredth of an inch thick. 2. What material should I mix with wax to make it hard? A. The material of mone phonographcylind rve a think you can add anything a You might, however, try some parafine. 3. How can insert a needle in the middle of a watch glass? A. It
is not easy to do this. You might insert a needle in a iece (5133) J. W. P. writes : I wish to use three-eighths copper wire for lightning rods, and want
to know how to splice or join them. A. You can join know how to splice or join them. A. You can join
he ends of your copper rods by using a brass or copper the ends of your copper rods by using a brass or copper
screw coupling, and to secure a more perfect electrical (5134) J. J. F. asks : Would lead obtained by melting lead pipe and scraps of lead be suitasmooth sheet? How do you mix and apply litharge nd red lead? Is any liquid used in so doing? A. The kind of lead to which you refer will answer for a storage battery, You can cast it in a metal mould. The litharge and red lead are to be mixed with a 10 per cent solution
of sulphuric acid in water. You will find a simple storge battery described in "Experimental Science," also in he Scientific Anerican, p. 134 vol. 68
(5135) C. W. F. asks : What speed could I expect from a 2 horse power safety vapor engine in a
boat 30 feet long by 5 feet, good modelfor speed ? A. You may obtain about 4 miles per hour with your boat as
(5136) C. K. W. asks: How many Leclanche cells will it take to explode the small platinum uses, such as are used in blasting in quarries, that is to
et off the powder or dynamite? Will it be necessary to ntroduce in the circuit a spark coil? If so, what number wire and what length will it take and how many Le-
clanche cells? A. Where platinum fuses are used a spark
coil is not needed. If you are not too far from the bl
wo cells would probably heat the platinum wire suffici-
No

A printed copy of the specification and drawing of
any patent in the foregoing ist，or any patent in print
 Cauaclian patents may now be obtained by the in－
ventors for any of the inventions named in the fore－

MPROVED ENGINE LA AED DESIGNS Sebastian Lathe Co．

IOE－HOUSE AND COLD ROOM．－

 Hes GEAR WHEELS．\＆PARTS OFFMODES＇
GOODNOW．\＆WIGHTMAN
Inventions and Novelties Developed mal Reparirory

ALUMMNUM：ITS USES AND AP

BEATTY Oranas， 27 Hation get．Pinnos．Sis．

SPECIAL NOTICE！

Oil Well Supply Go

THECOPYIVG PAD－－HOW TOMAK

WM．GRAVER TANK WORKS，
Manufacturers of Iron and Steel STORAGE TANKS． 3d Floor，Rookery Bldg． CHICAGO，ILL．
MODEL $\overline{\text { \＃OQ }}$ WORK

 The Griffin Mifis A perfect pulverizer of all refractory substances by either the wet or dry process．It works better and at less expense than any other Mill，and is conceded to be the only perfect pulverizing Mill manufactured．

For FREE Illustrated Pamphlet addres
BRADLEY FERTILIZER CO．， 92 STATE ST，BOSTON

Rubber Rolls and Wheels．

NICKEL
ELECTRO－PLATING Apparatus and yiteria Hand wivine

Steel Type for Writing Mactines，

GASOLINE ENGINES．

Stationary \＆Portable manitisizi cinever $3=2$ $3=3$ Tiuwizices

datumatica

The Conaut fomez Peading Dithogitajphopt

INK－BELT MACHINERY CO． Engineers，Founders，and Machinists，

ELECTRO MOTOR．SIMPLE．HOW TO make．By．G．M．Hopkins．－Description of a small electrc mateurs to make a motor wnich might be driven witt
dvant age by akerrot derived from a bitery，and
nich would have sutticient power to operate a fool

KEMP＇S MANURE

KEMP \＆BURPEE MFG．CO Box 66.

エエエモ

SMEMMA MFRICN

The Most Popular Scientific Paper in the World Only $\$ 3.00$ a Y Yar，Including Postage．
Weekly－52 Numbers a Year．
This widely circulated and splendidy illustrated
paper is published weekly．Every number contains six－ teen pages of useful information and a large number of
original engravinzs of new inventions and discoveries， original engravin2s of new inventions and discoveries，
representing Engineering Works，Steam Machinery， representing Engineering works，Steam Machinery，
New Inventions，Novelties in Mechanics，Manufactures， Chemistry，Electricity Telegraphy，Photography，Archi－ tecture，Agriculture，Horticulture，Natural History，
etc．Complete list of patents each week． etc．Complete list of patents each week．
Terms of Subscription．－One copy TIFric American will be sent for me heat－ 52 the numbers－ postage prepaid，to any subscriber in the United States， Canada，or Mexico，on receipt of three dollars by the
publishers six months， 81.50 ；three months $\$ 1.00$ publishers；six months， 81.50 ；three months，$\$ 1.00$ ．
Clubs．－Special rates for several names，and to Post Masters．Write for particulars．
The saf The safest way to remit is oy Postal Order，Draft，or
Express Money Order．Money carefully placed inside of envelopes，securely sealed，and correctly addressed， seldom goes astray，but is at the sender＇s risk．Address
all letters and make all orders．drafts，etc．，payable to
MIUN N COO．， $\mathbf{3 6 1}$ Br Broadway，New Y ork．

> THE

Scientific Samexirat Supplement This is a separate and distinct publication from THE
CIENTIFIC AMERICAN，but is uniform therewith in size every number containing sixteen large pages full of en－ gravings，many of which are taken from foreign papers
and accompanied with translated descriptions．＇TBE Scientific American Su PPLEment is published week－ ly，and includes a very wide range of contents．It pre－
sents the most recent papers by eminent writers in all the principal departments of Science and the Useful
Arts，embracing Biology，Geology，Mineralogy，Natural Arts，embracing Biology，Geology，Mineralogy，Natura
History，Geography，Archæology，Astronomy CCemis－ Steam and Railway Engineering，Mining，Ship Building， Marine Engineering，Photography．Technology，Manu－ facturing Industries，Sanitary Engineering，Agriculture，
Horticulture，Domestic Economy，Biography，Medicine Horticulture，Domestic Economy，Biography，Medicine，
ett．A vast amount of fresh and valuable information
The most important Engineering Works，Mechanisms， and Manufactures at home and abroad are illustrated
and described in the Stuplement． Canada，and Mexico，$\$ 5.00$ a year；or one copy of the SCIENTIFIC AMERICAN and one copy of the SUPPLLE－ MENT，both mailed for one year to one address for $\$ 7.00$ ．
Single copies， 10 cents．Address and remit by postal order， express money order，or check，
MUN $\&$ CO．， $\mathbf{3 6 1}$ Br

Buildimg Ellition．
Tbe SCIENTIFIC American Architects＇AN
BUILDERS＇Edition is issued monthly．$\$ 2.50$ a year Single copies， 25 cents．Thirty－two large quarto pages， forming a large and splendid Magazine of Architecture，
richly adorned with elegant plates in colors，and with other fine engravings；illustrating the most interesting examples of
allied subjects．
A special feature is
of a variety of the latest and best plans for private resi－ dences，city and country，including those of very mod－ perspective and in color are given，together with Plans
Descriptions Descriptions，Loeations，Estimated Cost．etc． have won for it the Largest Circulation of any Architectural publication in the merld．Sold by all news $\begin{aligned} \text { dealers．} & \text { \＄2．50 a year．Remit to } \\ & \text { MUNN } \boldsymbol{\&} \text { CO．，Publishers，}\end{aligned}$
\qquad

COLD FORGED PRODUCT.
Fluted Tire Bolt
 shank prevents the bolt from turning
COLD
FORGED

SA WS Wanted sjow Samyers $\mathbf{S A}$ WS

"Wise men
They realize that there is an improved, perfected, quick=winding Waterbury watch; in coin-silver and gold, filled, cases. An entirely different affair from the one laughed at of old; winding in five seconds; surpassing in style and quality anything deemed possible at the price; elegant enough for any lady to carry, and satisfying the accurate business man. Far superior to any cheap Swiss watch; with closer and more uniform adjustment.
Your jeweler keeps this watch in
many different styles, a boy's
watch incluaded $\dot{j}^{\text {all }}$
winders.
$\$ 4$

4
 ATENTS!

 MUNN \& CO., Solicitors of Patents,

IT WILL CONVINECE YOU OF OUR ABMITY TO SUPPLY, TOILET PAPER EOR LESS MONEY THAN IT CAN BE OBTAINED ELSEWHERE. A.P. WATAPER CO.ALBANY N.Y.

The Smith Premier Typewriter Perfect and Permanent Perfected.
Prignment
ll type cleaned in Ten Seconds $\begin{gathered}\text { Easiest Running, and Nearly Silent. } \\ \text { without Soiling the Hands. }\end{gathered}$ The Smith Premier Typewriter Co., Syracuse, N. Y., U. S. A. have 20 branch offices in the principal cities tbroughout the United State
SCIENTIFIC AMERICAN SUPPLE-

KODAKS,
Take one with You to the World's Fair.

tical camera for the purpose. No bulky glass plates-no troublesome holders-no
need of hunting up a dark room. With our special you can have your Kodak laaded before leaving
your
astman Kodak Co., Ma mana Bill Ramber Comay I25 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent No. 186,787, granted to Alexander Graham Bell, January 30, 1877, the scope of which the United States in the following terms :
"The patent itself is for the mechanical structure of an electric telephone to on which the first patent rests. The third claim is for the use in suph instruments of a diaphragm, made of a plate of iron or steel, or other material capable of inductive action; the fifth, of a permanent magnet constructed as described, with a coil upon the end or ends nearest the plate; the sixth, of a sounding box as described; the seventh, of a speaking or hearing tube as described for conveying the sounds; and the eighth, of a permanent magnet and plate combined. The claim is not for these several things in and of themselves, but for an electric tel ephone in the construction of which these things or any of them are used.
This Company also owns Letters Pa tent No. 463,569 , granted to Emile Ber liner, November 17, 1891, for a Combined Telegraph and Telephone; and controls Letters Patent No. 474,231, granted to Thomas A. Edison, May 3, 1892, for a Speaking Telegraph, which cover fundamental inventions and embrace all forms of microphone transmitters and of car bon telephones
THE PREMIER CAMERA

Is the best in Market.
Simple of Manipulation.
Plates or Films are used. The Shutter is always set. PRICE \$18.00.

Send for Catalogue and copy of Modern Photography

we make all kinds of cameras.
ROCHESTER OPTICAL COMPANY,
PRINTING INKS.

[^0]: TRAVELING CRANES AT THE BROOKLYN NAVY YARD.
 Among the improvements recently adopted by the Navy department for handling the heavy armor plates and guns for our new navy are the new traveling cranes illustrated in this issue, being the greatest advance in navy yard appliances made since the building of the present dry docks, each of the Brooklyn dry docks now having one of the largest traveling power cranes in the world.
 They are of the capacity of 40 tons at a distance of dock. It is a massive structure resting upon 16
 distance nearly covers the entire vessel. At the new dock, it covers the sides and gun carriages.
 Our illustration represents the new armored cruiser Maine in the dock, and the crane handling a 10 inch gun. The placing of the protective armor will be done while the vessel is in the dry dock, the plates of which, weighing from 25 to 30 tons each, will be handled by the new crane.
 It is of the balanced type, running on an 18 feet gauge track on the sides and around the head of the
 each, swiveled; each pair of track trucks is connected by a swiveling beam under the main frame. Two of the wheels in each combination truck, or 8 in all, are driving wheels geared through a compensating gear train with the main engine, to enable the rane to be moved on the short curve around the head of the dock without strain or undue friction
 The power for all work is derived from a pair The power for all work is derived from a pair
 of engines with cylinders 10 inches by 12 inches, geared to an iron grooved drum 30 inches diameter, 8 feet long. Shifting clutches operated by levers on the floor of the frame are the devices for transferring the

