
a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

Vol. LXVIII.-No. 21.]	NEW YOPK, MAY 27, 1893.	
WINBY'S EXPRESS LOCOMOTIVE AT THE COLUMBIAN EXPOSITION.		
	Length outside................................. 8 ft. 111/3in. Breadth outside at bottom.	Height from rail............................ $13 \mathrm{ft} .6 \mathrm{in}$. Diameter inside.
Among the striking exhibits at the great Exposition	Depth below center of boiler, front............. $6 \mathrm{ft} .81 / 4 \mathrm{in}$	Heating surface-
are the locomotives from foreign lands, of which several	Depth below center of boiler, back 5 ft. 1014 in.	Tubes. 1817.4 sq. ft
from England and France take high rank. One of the	Thickness of wrapper plates................ $5 / 8 \mathrm{in}$.	Fire box............................. 188.6
most imposing of these is the English locomotive de-	Thickness of throat plates $5 / \mathrm{in}$.	Total..... $2000 \cdot 0$
signed by Mr. Winby, of the firm of Westwood \&	Thickness of back plates...... $5 / 8 \mathrm{in}$.	Grate............. 28.0
Winby, of London. We give an engraving of this fine	Fire box (copper)- Length at bottom inside. $8 \mathrm{ft} .33 / 4$	Working pressure... $175 . \mathrm{lb}$. per sq. in. Weight in working order-
piece of mechanism, for which and the following par-	Breadth at bottom inside...................... $3 \mathrm{ft} .41 / 2 \mathrm{in}$.	Weight in working order- \quad Bogie.... \quad Tons cwt. qrs. 050
ticulars we are indebted to The Engineer, London.	Center of boiler to top of box front........... 1 ft .4 in .	Leading driving. 18 0 0
Dimensions of Winby's Locomotive.	Center of boiler to top of box back.......... $1 \mathrm{ft} .11 / 2 \mathrm{in}$. Thickness of tube plate...... $7 / \mathrm{in}$.	Trailing.................. 17 0 0
Boiler (steel)-	Thickness of other plates.................. 1/2 in.	Total.............................. 60 0 0
Height of center from rail................... $8 \mathrm{ft} .21 / 2 \mathrm{in}$.	bes (brass)-	Tractive force per lb. of pressure. 143.2
Length of barrel. 9 9 ft. 21/4 in.	Number. 235.	Brake-The Westinghouse quick-acting brake is fitted.
	Length between tube plates................... $14 \mathrm{ft} .91 / 4 \mathrm{in}$. Diameter outside............ 2 in.	(Continued on page 327.)

THE WORLD'S COLUMBIAN EXPOSITION-WINBY'S FOUR-GYLINDER ENGLISH EXPRESS LOCOMOTIVE.

Srinutitir Ammeran.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.
terms for the scientific american.

dYT The safest way to remit is by pastal order, express money order, dract or bank check. Make all remitances payable to order of MUNN

ard Readers are specially requested to notify the
any failure delay, or irregularity in receipt of papers.
NEW YORK, SATURDAY, MAY $27,1893$.

TABLE OF CONTENTS OF

SCIENTIFIC AMERICAN SUPPLEMENT
No. 908.

For the Week Ending May 27, 1893.
 Price 10 cents. For sale by all newsdealers.

I. BIoGRAPHY.-Galileo Galilei.-The life of Calileo, with nu
ous views of scenes connected with his life.- 14 illustrations. The Galiieo celebration at at Padua.-- Notes on the celebration of
The the 300th anniversary of Galileo's professorstip at Padua CHEMISTRT.-Separation of Wool and Cotton.-An excellen
method for separating the two staples in analyzing fabrics
 REN.-The explosive combination of these two gases brought
about by increase of pressure, and simple method of carrying out about by increase
the experiment.
III. MECHANICAL ENGINEERING.-The Genesis and Exodus of Steam.--By George it. Ba acock.--A very valuable and practic
 $\underset{\substack{\text { manut } \\ \text { tions. }}}{ }$
IV. MEDICAL-The Origin of the Sigmoid Flexure and the Appendicula Vermiformis of the Human Colon--A curious view of the
origin of the visceral f fatures of the human organization
 - A plea for gentleness in dental practice.-How to avoid pain in treating the teeth.
Water Cures
Water Cures from Clinicaland and Experimental Points of View.
By Prof. WILAELM WINTERNTIZ.-What can be done by hydro By Prof. WILELLIM Wivteriviz.-What can be done by hydro-
pathy.-A paper from an investigator of thirty years' standing... metallurgy.-The Ctilization of Blast Furnace slag.-By Herr R. ZSIG moviv.--Difierent methods of utilizing this waste product of the metallurgist.-Bricks, plaster, and cement made with slag.
I. NAAAL ENGINEERING.-The Austrian Torpecto Criuser Satelit.-A twenty-two and a half knot cruise
trial by the Austrian government.- 2 illustrations.
The Best All-Around Modern Ship.- Notes of the ships in the
recent naval pagant.-Testimony to te terit on reeent naval pageant.
States ship New York.
 ships draughts.-2 illustrations
II. PHYSIOLOGY.--The Sensitiveness of the Eye to Light and
Color.-By Capt. W. DE W. AByEr.-The subjective aspects of Color- -By Capt. W. DE W. ABver.-The subjective aspects of
color.-How they afect the eye in nature, with experimenta illustrations of the same. 5 illustrations.
III TECH NOLOGY.-Camphor Manufactaring in Japan.--A very
graphic and interesting article on this little known industry, with graphic and interesting articele on this little known industrry, with
illustration of the arpliances used by the J apanese. 1 illustration Lilustration of the arpliances used by the Japanese. - 111 ustration
veretable Wax.- Note on the great variety of vegetable waxes
as produced inathe Orient, and how are they produced.......
tests and awards at the world's fair. Considerable feeling has been caused among exhib, both domestic and foreign, over the uncertainty as to the manner in which tests and awards are to be made at the World's Columbian Exposition. The American Society of Mechanical Engineers made recommendations some time ago as to tests of engines, boilers, etc., but the committee on awards has made no announcement as to whether the recommendations
will be acted upon in whole or in part. In regard to awards, a plan of action has been carefully studied out, but does not seem to be well received, especially by the foreign commissioners.
This system possesses many features which recommend it over the much used comparative merit plan. The principle upon which the proposed plan is based is the merit of the exhibit as compared with a certain standard set by the Exposition, and the question of making awards is to be primarily in the hands of experts who report to a department committee. In making the a ward consideration is given to whatever originality there may be in the exhibit, importance to the commercial world, and whatever other facts concern the exhibit. By making awards on this basis, exhibitors are not pitted against each other, and one exhibit will not be placed in second, third or fourth class, while another exhibit, probably no more deserving, is awarded first prize. Again, an award made on this proposed plan carries with it a guaranteed degree of excellence and quality, whether it stood alone in its class at the Exposition or whether there were many other exhibits in the same class, all of a more or less degree of excellence.
Representatives of Germany, Great Britain, France, Belgium, Italy and Russia, in entering their protest against this proposed method of making awards, expressed the belief that there was not sufficient time to examine all the exhibits on the lines of the proposed plan; they considered the system of graduated awards as preferable to the system proposed, asking that at least there be a distinction as to the degree of merit of the exhibit, and unless these and other concessions asked for in the matter of awards were made, the
commissioners reserved the right of placing their respective exhibits hors concour's and of withdrawing them from the consideration of the judges.
It is unfortunate that such a crisis as this should arise, yet it will probably result in good to both sides of the question and lead to the adoption of some satisfactory policy. The proposed plan carries with it some excellent ideas, especially the one that an exhibit must possess a stated degree of excellence to receive any award. Furthermore, on general principles it an individual expert, with the sanction of a department committee, than to imitate the old custom of making an award by comparing one exhibit against another, on the recommendation of several men who are chosen for the purpose
In the matter of tests, it is of great importance to the mechanical and industrial world that there be a series of tests more comprehensive and exhaustive than any ever yet contemplated. There have been such refinements of late years in the matter of generating and applying energy that it is of much importance that whatever tests are made be so complete as to become a universal standard. The Exposition engineers appreciate the importance of this and have been engaged for months in preparing the preliminaries necessary to carry on the tests.

electrical engineering as a profession.

One of the mosteminent and practical working electri cians of the country, in a recent article, urges young men to keep out of electrical engineering unless they are willing to work hard and have an instinctive hankering for this line of work. If they think they fulfill these conditions, they should by all means secure a practical education in some good scientific school, and then bend all their energies in one particulardirection. Electrical engineering has become specialized, like all other lines of engineering, and there is opportunity for so much work and investigation in any one special line that few men can master more than one. It is particularly noticeable in this connection that the World's Columbian Exposition has had its regular force of electricians and electrical engineers, yet in laying out the lighting and other large engineering schemes has employed specialists as consulting engineers, and by doing so has prevented several glaring failures, particularly in light ing effects. The demand for such specialists is limited, but the supply is never too great, and is not keeping up in quality with the increased demand.
But in urging upon young men to make themselves competent specialists, the writer in question did not refer alone to such lofty positions as are only within the intellectual scope of a chosen few, but more particularly to lesser yet in their way equally important lines of work. There are not many engineers in the country that thoroughly understand afl the fine and necessary points required in planning and equipping
an electric station of medium or large capacity. Nor is an electric station of medium or large capacity. Nor is
thereanywherenear supply enough of men who are com-
petent to take charge of a plant, put it into good running condition, keep it in such orderthat consumers of light or current can feel as sure of their supply as they are of the coming of each day, and at the same time have in mind the fact that while he is maintaining the high est efficiency in the plant, he is remembering that the stockholders are looking to him to operate the plant with a high degree of economy. In this particular line of work there are probably better openings for intel ligent, well-trained young men than in any other line. Whatever the work may be-and it is equally true of all lines of engineering-the successful men are, as a rule, those who fully master one branch of their chosen profession.

Fiber from the Dwarf Palm in Algeria.
The French Monde Economique says that the dwarf palm, which furnishes considerable quantities of fiber, rows in great profusion in Algeria, and is one of the principal obstacles to the clearing of the land, so thickly does it grow and so difficult to pull up; its roots, in shape resembling carrots, penetrate into the ground to the depth of a yard or more, and when its stem is only cut, it sprouts out again almost immediately. As its name indicates, this palm is very small, and can only attain a certain height when protected, as in the Arab cemeteries, for example.
Various uses are made of this plant. Its roots serve as combustibles, a light kind of coal being made out of them, and the natives have employed the fibers that they extracted from the leaves and the stems, mixed with camel hair or wool, in the manufacture of stuffs for tents; with the leaf itself they make baskets, mats, hats, fans, bags, and other articles. Considerable at tention is now being paid by the authorities to the encouragement of this industry in Algeria, as, in the first place, it affords to the Arabs an easy means of making living, and, in the second, the land is thus rapidly cleared of this parasite. The idea of embarking in the ndustry of fiber production from the dwarf palm originated, a few years ago, with a landed proprietor living in Cheragas, about eight miles from Algiers. At the present time there are in Algeria numerous establishments which are devoted to this branch of industrial enterprise. The principal factories are those of Aversing, Elaffroun, Chiffa, Duperre and Douera, and the exports of late years have exhibited a decided increase. In 1880, the quantity of fiber exported from Algeria amounted to $9,000,000$ kilogrammes, in 1885 to $15,000,000$ kilogrammes, and in 1891 to $19,000,000$ kilogrammes.
In preparing the fiber, the following is the system adopted. The leaves are plucked by the Arabs, and carried into the courtyard of the factory in a green state, at a price of twenty francs per ton. As they are at once used, and as they fear neither the rain nor the sun, it is only necessary to pile them on the floor in a heap. The first operation consists of sorting, which is effected by women and children. The weeds are re moved from the stems which frequently adhere to them and the broken or dried-up leaves are cut away. Another operation consists in combing the leaves, or rather in carding them. This is effected as follows : A workman holds tightly in his right hand a handful of green leaves which he applies to a small carding machine. Th is machine consists of a drum on which some nails have been roughly fixed, and is constantly turning with great rapidity. To protect the hands of the workman it is incased in wood, with only an opening sufficiently large to admit the leaves. As it is necessary that these leaves should be damped during the work, a tap is placed above the drum, from which a constant stream of water falls upon the leaves. With this most primitive system, a workman is able to card from five to six hundred kilogrammes- 1,000 to 1,300 pounds-of leaves a day.
When the leaves have been combed at both ends, they present the appearance of a handful of rough and short fiber. They are then dried, and, after certain preparations, are ready for use in stuffing chairs, couches, etc. To curl the fiber, a workman takes up a quantity of carded leaves and applies it to a benthook, fixed upon the axle of a wheel, which is turned by a child. The first fibers accumulate round the hook, and wind themselves round it; the latter, which is constantly turning, draws in the others, and the workman recedes from the wheel while grinding the fibers with his hand. The latter soon constitute a sort of cord, one end of which is fixed to the hook, the other held firmly and horizontally by the workman. At this stage of the proceedings, the child who turns the wheel stops and detaches one extremity of the cord, which he returns to the workman, after having passed it round the hook. In this operation the cord is subject to the natural impulse of twisting and rolls up on itself, so that it is only necessary to fix the ends so that it cannot come unrolled. The fiber is kept in this condition for several weeks, and is then untwisted, and is then considered to be sufficiently curled. A frican fiber is employed in its natural state or dyed. In the latter case. the fibers are passed through various solutions of suipnate of iron and logwood, then curled, and again plunged into the solution.

An official list of the concessions at the World's Columbian Exposition grounds has just been published, giving the purpose of each concession and the admission fee, wherever there is one. Most of these concessions are located in the Midway Plaisance and none of them are regarded in any sense as a part of the Exposition proper, but as mere side shows.
Following is a list of the more important of these concessions in the Midway Plaisance :
Constantinople street scene, including theater, restaurant, etc. Admission 25 cents.
Cairo street scene, Egyptian museums, theater, etc. Admission 25 cents. Egyptian Temple, admission 25 cents more.
Dutch East Indies village, with theater, music, dancing, etc. Admission 25 cents.
German village of medisval times, with music, restaurant, etc. Admission 25 cents.
Natatorium, with music. Admission, with use of bath, 50 cents.
Moorish palace, with sale of native goods, chamber of horrors, cafe, etc. Admission to museum features, 25 cents.
Panorama of Bernese Alps in Switzerland. Admission 50 cents.
Panorama of the volcano of Mt. Kilauea, Sandwich Islands. Admission 50 cents.
Algerian village, with streets, bazars, cafe, etc. Admission 25 cents.
Hungarian concert pavilion and cafe, with musical theatrical performance, etc. Admission 25 cents.
Venetian glassware and mosaics, with factory in full operation and sale of wares. Admission 25 cents.
Chinese village, with theater, joss house, tea garden and cafe. Admission to theater and joss house 25 cents.
cents.
Irish village and Blarney Castle. Exhibition and sale of Irish products. Admission free.
Persian building, with sale of Persian goods, musical entertainment, etc. Admission 50 cents.
Beauty show of women from forty or more countries. Admission 25 cents.
Typical Irish village. Admission 25 cents.
Japanese bazar, for the sale of Japanese wares. Admission free.
Vienna cafe and concert hall. Admission free. Model of St. Peter's Church, Rome. Admission 25 cents.
Hagenbeck's animal show. Admission 25 cents. Model of Eiffel tower. Admission 25 cents.
Electric scenic theater. Admission 25 cents.
East Indian bazar for the sale of native wares. Admission free.
Captive balloon. Admission 25 cents. Trip in balloon $\$ 2$.
Inside of Exposition grounds proper are the following special concessions:
Esquimau village, representing a Labrador trading post. Admission 25 cents.
Japanese tea house on the Wooded Island. Admission varying according to purchases.
Ruins of Cliff dwellers and an exhibition of antiquities. Admission 25 cents.
Crystal cave in Horticultural building. Admission free.
Whaling bark Progress, with museum. Admission 25 cents.
In addition to these there are the several concessions for methods of transportation, including movable sidewalk on the pier at 5 cents a ride; the Ferris wheel, at 50 cents a ride; elevator to the promenade on the roof of the Manufactures and Liberal Arts building, 25 cents; elevator to the roof on the Transportation building, 10 cents; ride in gondola, around the basin and lagoon, 50 cents; wheel chair, 75 cents an hour with attendant; ride in electric launch through the lagoons and basin, 25 cents; ride in steam launch through the lagoon and out into Lake Michigan, 25 cents; round trip on the Intramural Railway, 10 cents; ride on a donkey or camel in the streets of Cairo, 50 cents and 25 cents per ride respectively; use of sedan chairs, $\$ 1$.
There has been considerable trouble especially with exhibitors in the Manufactures and Liberal Arts building because of their selling goods that have been imported free of duty, without paying the duty. Customs officials notified several of these exhibitors that they were amenable to the law, but the notification did not seem to be regarded. So many cases occurred that
an English exhibitor was arrested and taken before
the United States commissioner on the charge of smug gling. He was dealt with leniently, but other exhibitors were cautioned to be more careful, as in future cases they would be held accountable.
The failure of Commercial National Bank of Chicago was a serious complication to exhibitors and concessionaires at the Exposition, because of the fact that this bank operated the national bank recently established bank operated the national bank recently established
in the Administration building. The failure of the in the Administration building. The failure of the
bank not only locked up a large amount of deposits, but prevented the opening of another bank, as this one was established under an act of Congress. Pending the settlement of the bank's affairs, President Higginbotham, of the Exposition, and other wealthy men of Chicago, guaranteed the deposits of foreign and other exhibitors, so they were able to obtain their money exhibitors, so they were able to obtain their money
and were not embarrassed by its being tied up. The and were not embarrassed by its being tied up. The
amount that these men became liable for was about $\$ 75,000$.
Mr. A. T. Goshorn, who was Director General of the Centennial Exposition in Philadelphia, was in Chicago recently and was surprised at the greatness of the Columbian Exposition. At an informal reception by the National Commission Mr. Goshorn congratulated the committee on the scale upon which the Columbian Exposition was planned, upon the beauty of its architecture and of the grounds, and of the forward condition in which the exhibits were.
An interesting exhibit was installed in the gallery of the Transportation building soon after the opening of the Exposition, being a relief map 'on a large scale of the Nicaragua Canal, showing the entire route of canal, with mountains, cuts, etc. The exhibit is made very practical by the use of running water to demonstrate the manner in which the canal will be operated.
The completion of the elevators which are to carry visitors to the promenade on the roof of the Manufactures and Liberal Arts building was an event of considerable interest. This elevator has a direct lift of 185 feet, and the sensation of going up in it is quite startling, because of the fact that there are no walls on any side of it and the ride seems like a flight through the air. The upper landing for the elevator is near the roof, which is reached by a short flight of steps. The view from the promenade is a fine one, as it commands
the entire Exposition grounds, while at the north lies the city of Chicago and to the east on a clear day is plainly seen the shore of Michigan. The promenade is 80 feet wide and is guarded on either side by high and strong metal fencing. The view of Lake Michigan is one of the most attractive features of the promenade.
The local directory voted on May 12 that the Exposition grounds should be opened Sundays, beginning Sunday, May 21. This action was taken upon the recommendation of the legal adviser of the board, and was in accordance with the action recently taken by the National Committee, which left the question of Sunday opening to the local directory for decision. The legal opinion was that the local directory could The legal opinion was that the local directory could
open the grounds to the public, keep the Exposition open the grounds to the public, keep the Exposition
buildings closed and not come in conflict with the act of Congress, which prohibited Sunday opening. Because of the buildings not being open the entrance fee to the grounds was reduced from 50 to 25 cents. This action of the board brings to a climax the Sunday question, which has so long been agitated, and in connection with it the leading stockholders of the Exposition, including the city of Chicago and its park commissioners, ask the court to compel the Exposition manage-
ment to open the Exposition Sundays. On the other hand, there is every probability of an application to the court to compel the Exposition to obey the act of Congress and not open the Exposition on Sundays. The question will be speedily settled, if possible, and, Mid way Plaisance and many foreign buildings will be Midway Plaisance and many foreign buildings will be
open to the public, so that Sunday visitors will see open to the public, so that Sunday visitors will see
some of the most interesting things in the Exposition grounds. This action was only preliminary, and there is a probability that it will result in the whole Exposition being opened, but without the machinery being in operation.
When the strike of the carpenters in the employ of the Exposition was settled about the middle of April, it was agreed that delegates representing the Carpenters' Union should be given passes to the Exposition
grounds in order that they might see what work the Union carpenters were doing, and to be assured that the Exposition was keeping within its agreement with the Union, and that the carpenters were keeping up their end of the agreement. When the second strike of the carpenters was ordered, within a week of the settlement of the first strike, the men did not quit work, but the representatives broke their agreemen with the Exposition, and when they applied for their passes were refused them on these grounds. Many of the carpenters have withdrawn from the Union.
A decidedly unpleasant trouble has arisen between the Exposition management and the music department, because of the refusal of leading piano manu at one of these bolting manufacturers were used at some
exhibit considered it an injustice to them that a bolting manufacturer be permitted to reap the benefit of the use of his instruments in the concerts when he did not take part in the Exposition. Some serious charges were made against the music department, among these being one that the director of the department was working wholly in the interest of one of the bolting concerns. Much unnecessary ill feeling has been stirred up, and more attention has been given to this matter than to some of the most important matters that have come before the directory.
An exhibition test of the fire department of the Exposition was given May 13, for the benefit of the insurance interests which are carrying policies in the Exposition grounds, and also for the Chicago fire department and officials of the Exposition. An alarm was rung in at exactly ten o'clock, at the southeastern corner of the Manufactures and Liberal Arts building, and in half a minute one engine and truck were in place. In another minute six engines and a fire boat were throwing streams of water, and in less than five minutes of the time the alarm was sounded a one hundred and sixty foot extension ladder was in position on the side of the building and firemen were at the top of the ladder with a lead of hose, throwing water upon the roof. Six hundred or more Columbian Guards were also on hand to act as firemen, and in other ways assist the fire department. This exhibition was decid dly satisfactory to the insurance interests and demonstrated that every possible advantage for fighting fire was provided. In addition to this equipment of the fire department a third alarm would bring twelve fire engines belonging to the city of Chicago into the grounds and a fire boat from South Chicago.
Forty-two foreign nations are now represented at the Exposition by three hundred and twenty-seven representatives. These men are from all parts of the world, and the several nations and states with their representatives are as follows: Argentine Republic, 5; Austria, 9 ; Belgium, 10 ; Brazil, 21 ; British Guiana 1; Bulgaria, 1; Canada, 24; Cape Colony, 4; Ceylon 2; Colombia, 1 ; Costa Rica, 7; Curacoa, 1; Denmark, 10 ; Ecuador, 5 ; France, 25; Germany, 44; Great Britain, 11; Greece, 2; Hayti, 4; Italy, 11; Jamaica, 3 ; Japan, 9 ; Johore, 2 ; Liberia, 3 ; Mexico, 22 ; Netherlands, 2; New South Wales, 10 ; Nicaragua, 1; Norway, 8 ; Orange Free State, 1; Paraguay, 5 ; Persia, 2 ; Portugal, 2 ; Russia, 12; Siam, 3; Spain 13 ; Sweden, 8; Switzerland, 2; Trinidad, 1; Turkey, 5; Uruguay, 5; Venezuela, 10 .
Every precaution possible has been taken to protect the purity of the water supply at the Exposition. Spring water is supplied at 150 or more booths throughout the grounds for one cent a glass. This, however, is a concession. The Exposition itself provided one hundred or more drinking fountains throughout the grounds and as many more in the Exposition buildings which furnish water filtered on the latest improved scientific methods. Further precaution has been taken, not only in the Exposition grounds and throughout the buildings, but also in Midway Plaisance, to pre. vent water being used for drinking purposes that has not been properly filtered.

The Cage Bird Club.

The Cage Bird Club was inaugurated recently in London, Dr. Martin, chairman of the Norton Ornithological Society and vice-president of the London Cage Bird Association, presiding. A paper was read by Mr. W. H. Betts, auditor of the Crested Canary Club, in which he stated that the object of the club was the enrollment among its members of ladies and gentlemen who, from the fact that the majority of cage bird clubs were held at public houses, were debarred from membership thereof. He said the club would endeavor to train novices in the management of cage birds, would give encouragement and assistance to ornithological societies generally, would circulate literature with the object of elevating the moral tone of the cage bird fancy, and would endeavor to prevent cheating at shows, and to put an end to brutality. One very common practice which the club would endeavor to stop was that known as "tailing and fighting." This consisted in taking a young bird, a month or six weeks old, and in wrenching daily from its wings and tailtwo or three quills. The bird was thereby kept in lingering pain for weeks, and sometimes its wings were disocated, the only object of such barbarity being the off-chance of winning a prize of the value of a few shillings a little sooner than was otherwise possible.

A Long Snow Journey.

A journey of 1,800 miles on snow shoes has been made by a Mr. C. H. Hamilton, an employe of the Yukon River Transportation and Trading Company. He was frozen in with a steamer of the company two weeks' journey above the mouth of the Yukon, and was sent to carry the news to his company at Seattle. He started on November 23 with three sleds, twentyone dogs, and some Indian guides, and arrived at Chilkoot, 80 miles above Juneau, on March 20, after an koot, 80 miles
1,800 mile trip.

A ROTARY WATER METER.

The improved meter shown in the illustration, designed more especially for use in irrigating ditches, is adapted to accurately measure and register the quantity of water used, no matter how much or how little it may be, and however it may vary through the day or night. A flume set in the ditch or channel through which the water flows has near its discharge end a pit in which is journaled a wheel, the circular ends of which fit closely to the sides of the flume, as shown in the sectional view, and the wheel shaft being connected

WOOLLENS' METER FOR IRRIGATION DITCHES.
with a suitable counting or recording apparatus. The construction is such that one of the several buckets will always be in the pit, and, the bottoms of the inlet and outlet of the flume being on a level with the bottoms of the buckets, no one of the buckets can discharge until it has been completely filled. The small figure represents a device to prevent the wheel being turned backward. Both the register and detent are preferably kept under lock and key to prevent tampering with the meter, and the stopping of the measuring wheel prevents any further flow of water. The register is designed to keep a record, without further attention, of all the water which can go through for at least thirty-five days and nights, the wheel having a velocity corresponding to the volume of water passing through it.
Further information relative to this improvement may be obtained of the patentee, Mr. Theodore Woollens, Jr., Cheyenne, Wyoming.
artistic and comfortable furniture.
The central figure in the accompanying illustration represents a novel arrangement to conceal two ugly

doors, while allowing one or both to be opened if necessary. The divan in the center is divided, and is formed in two seats, with backs, which can be used in any part of the room. The doors are covered by a cur-
tain, with a brass rod, and the fabric should be heavy enough to prevent draughts. The woodwork matches the dado.
The chairs shown are representations of the work of Chippendale, an English cabinetmaker, who attained distinction about a hundred years ago, and whose productions have ever since been copied, though but seldom with a reproduction of the spirit of the original, as Chippendale was an artist as well as a skillful handicraftsman. They represent both diningroom and drawing-room chairs, but are of a period when the line was not so sharply drawn between the articles of furniture appropriate for the two apartments respectively as is the case at present. We are indebted for our illustrations to the Furniture Trade Review.

Photographic Properties of Cerium Salts.
Messrs. A. and L. Lumiere have found that light, under certain circumstances, rapidly reduces the persalts of cerium to the cerous condition, and the reaction may form the basis of interesting photographic processes. Gelatinized or highly sized paper is sensitized by a solution of ceric sulphate or nitrate, which colors the paper strongly yellow. The paper being now exposed under a transparent positive, the exposed parts become bleached by reduction to the cerous condition. On now treating with organic matters which the ceric compounds can oxidize into coloring compounds, a positive image is developed on the paper. Thus, an acid solution of phenol gives a gray print, aniline salts give green, alpha-naphthylamine blue, amido-benzoic acid brown. Cerium papers are more sensitive than iron or manganese papers.

AN IMPROVED HAY STACKER.

A machine of light and simple construction, which may be readily moved about a field and easily operated to deliver hay where required in building stacks of various sizes, is shown in the accompanying illustration, the small view representing in dotted lines the position of the carriage in delivering the hay. The improvement has been patented by Mr. Isaac Allen, of La Belle, Mo. The inclined tracks and the standards and uprights are pivotally connected, and the tracks at their upper ends are connected by a rod on which is pivoted a dumping arm carrying at its outer end an adjustably journaled friction pulley and at its inner end a latch. The standard holding the tracks at their upper ends is made in two sections, the uprights

the upper section extending downward through those of the lower section, and being held at the desired elevation by means of pins, to give any desired inclination to the tracks. The carriage is preferably L-shaped and has a lower section which may assume a horizontal position when receiving its load, and an upper section which may assume a vertical position. Wheels are so located as to rest upon the platform or travel upon the track, and upon a central cross bar of the carriage is a pulley, a rope attached at one end to the outer end of the dumping arm passing over this

ALLEN'S HAY STACKER.
pulley, thence over a pulley in the rear extremity of dumping arm and downward over a third pulley near the base of the standard, and out from the machine, forming the draughtrope. When the load of hay has been received, the carriage is first rolled or tilted on its wheels as the rope is drawn upon, the hay being thus rolled to the center of the carrier, which is then drawn up the track until the latch engaging the dumping arm is automatically released, when the load is dumped. The construction is such that the carriage is not liable to leave the track, and it is easily restored to position to receive another load.

For Closing milk Bottles Air Tight.

An exchangeaccredits it to a Frenchman, and it consists simply of a disk of red India rubber with a conical finger or nipple on its under side. This goes into the neck of the bottle, and the milk is then boiled by immersing the bottle in a bath of boiling water. It is afterward cooled by withdrawing it from the water, and the partial vacuum inside the bottle sucks the cork firmly into the neck and effectually closes it. A metallic cover is then placed over all.

ARTISTIC AND COMFORTABLE FURNITURE.

Fall of Aerolites.
A dispatch in the New York Tribune from Ossawatomie, Kan., states that an aerolite fell near that town in the afternoon, April 8, striking the monument to John Brown, "Ossawatomie Brown," as he was sometimes called, erected to him by private subscription originated by Horace Greeley in 1863. The meteor broke off the left arm of the statue. It passed through broke off the left arm of the statue. It passed through
the dome and nave in a slightly southeasterly direction, and through six feet of clay just south of the crypt, stopping only at bedrock. Experts say the aerolite is composed of metal supposed to exist only in the sun.
The Cleveland, O., Leader states that on April 4, at Washington, Oregon, a meteorite, weighing about 80 pounds, was excavated by workmen employed by the Rev. T. B. Collins, a former citizen of this place. Mr. Collins, at the request of a Chicago college, set men to work making the excavation.
Ever since the night of May 12, 1886, it has been the opinion of our citizens that at a spot beneath a large oak tree, near the corner of Main and Temple Streets, a meteoric stone was embedded in the earth. On that night a terrific electrical storm was raging, when citizens in that part of town who happened to be looking out of their windows saw an immense ball of fire traveling at an incredible speed toward the earth. It came crashing down through a large tree, struck the curbstone, and scattered portions of it fifty feetaround. Window lights were broken in the houses throughout that locality, and the report sounded like the report from a big cannon. A large hole was made in the earth, but, strangely, it was left to this late day to discover the meteorite.
On April 4 the workmen discovered a soft streak in the earth, and followed it to the depth of nine feet. There, embedded in the earth, was a meteorite several feet in circumference and oblong in shape.

A RAILWAY CAR LIFE GUARD.

The life guard attachment shown in the illustration extends all round the car, so that there is no liability of a person getting under the wheels in falling at either side or end of a car, or between cars. The im-
that the mosquitoes are killed by a poison that they find on the lower side of the leaf, but it is stated that if a dozen leaves are placed about a room that swarms with mosquitoes, they will disappear without leaving any dead ones lying about.

THE INSTANTANEOUS DIVIDER.

The instantaneous divider devised by Mr. Robert Personne, of Sennevoy, consists of a jointed parallelogram, in the interior of which, and parallel with one of its sides, are arranged small rules equally spaced and jointed at their extremities. Each rule contains, according to its longitudinal axis and to one of the diagonals of the parallelogram, a small numbered aperture designed for the passage of a pencil point, in order to mark the divisions. In order to divide any line into a certain number of equal parts, 17 , for example, it suffices to place the zero of the instrument upon one of the extremities of the line, and to bring to the other extremity the aperture marked No. 17, and then to point off through all the apertures from 0 to 17 . It is clear that, in cases in which it would not be possible to bring the aperture carrying the number chosen to the extremity of the line to be divided, it will suffice to replace such number by one of its multiples. For example: In order to divide a line of 20 centimeters into 3 , it will be easy to point off $5,10,15$, or else $4,8,12$, etc. The principal figure in the engraving indicates the modus operandi.La Nature.

dozen of fruit butters, was ever burst by action of cold or heat."
Dr. Simson Pratt, of the British army, says :
"Taking my experience in India and the late Nile expedition, in which the test of tinned provisions was exceptionally severe, from continued exposuer to the powerful direct rays of the sun, I have found that tinned provisions, meat, and vegetables, put up separately, or combined in the form of soups, are practically undamageable by any climatic neat.

Effects of Heat and Cold on canned Foods.

INSTANTANEOUS DIVIDER.

1. View of the apparatus. 2. Method of using it.

In a recent army circular, Adjutant-Gene-
ral Williams repeats the information heretofore published in the American Grocer concerning the keeping qualities of canned foods under exposure to extremes of heat and cold. General Greely, of Arctic fame, says :
"Apples, peaches, pears, rhubarb, green peas, green corn, onions, potatoes, and tomatoes were all subject [at Lady Franklin Bay] to extreme temperatures (over 60 degrees below zero), and were solid for months at a time. The second summer they thawed, the following winter froze solid again. All the articles named presented the same appearance as though freshly canned, and their flavor was as good when the last can was eaten as in the first month. It should be understood that these were first-class canned goods and from dealers of standing and from dealers of standing and
reliability. Cranberry sauce, preserved damsons, preserved peaches, and fruit butters suffered certain changes from candying, etc., which detracted somewhat from their flavor, though not materially so. Dealers in such preserves predicted that such conditions provement has been patented by Mr. Henry Hen- and changes would occur. I had also canned turnips, thorne, of No. 345 North Fourth Street, Newark, O. squash, beets, and carrots, as well as pineapples, cher- $^{\text {a }}$ The guard preferably extends to within about three \quad ries, grapes, clams, shrimps, and crabs, which, although inches of the rails, its bottom boards being located directly in the line of the car wheels, and extending somewhat beyond the car ends, where there are transverse end boards. In the bottom boards are openings of just sufficient size to accommodate the wheels, and the device is supported from the trucks by stirrups or hangers, strengthened by oppositely disposed braces. At each side of the car between the trucks is also a latticework, serving not only to prevent a person getting under the car between the trucks, but to give additional strength to the guard. The end members of the guard project far enough out from the end of the car to permit of their use by the trainmen as a step or platform in coupling cars, the guards of two cars provided with the improvement coming so close together that there will not be room for a person to fall between them.

A Mosquito Exterminator.

The Indian Medical Record for March 16 says that a Bombay newspaper calls attention to the virtues of the castor oil plant as a means of protection against mosquitoes. In Egypt it is planted about houses to drive the insects away. In towns, a better plan is to have the young plants in pots, and bring them into the house for a day or two at a time, but they must not be kept too long in the shade, for the Palma Christi is a sunloving plant. A writer is cited as saying

a simple and compact engine and dynayo.
"The only class of provisions that, in my experience, suffers from great heat is that of uncooked articles, such as butter, cheese, and some forms of potted meats."

THE MAGIC WAX LIGHTER.
The small, thin, self-lighting pocket device shown in the illustration is designed to be a good deal more of a convenience generally than the ordinary cigar lighters, although its use for such purpose is very obvious. A readily removable slide of the casing contains a roll of wax-coated tape, shown in one of the views, and this tape has along its surface a series of igniting pellets, at short distances apart. When the lid or

THE MAGIC WAX LIGHTER.

cover is opened, by depressing the key at the side, the exposed wax taper is at the same time automatically lighted. Should iight be desired for more than the brief period during which the exposed portion of the taper is burning, a further depression of the key, bringing forward a fresh surface, will effect the object, and this may be repeated as often as required. The construction is such that there is no possibility of chance ignition. The Magic Introduction Co., of No. 321 Broadway, New York City, is introducing this improvement, and the company has ready also a further novelty in the adaptation of the device to an umbrella or cane head.

A SIMPLE AND COMPACT ENGINE AND DYNAMO.

The direct coupled generator and engine, in one compact set, is, under conditions of restricted space and position, the ideal electrical plant. We illustrate a small, direct coupled generating set, recently perfected and manufactured by the General Electric Company, New York. It forms part of their display at the Columbian Exposition. As perfected, it represents the result of two years of careful practical experience.
For marine installations, where a separate engine is indispensable to drive the generator, these sets are especially adapted, being as cheap as, if not even less expensive than, belted plants, while they can be readily fitted to positions where a belt-driven dynamo and engine could not find a sufficiency of space. Compact and simple in arrangement, their suitability for small isolated plants in hotels and buildings where belting is objection-
able is undeniable. Under exhaustive tests, the engine shows the highest possible economy obtainable from machines of this size; and its simplicity is such as to reduce the attention necessary to a minimum. The generator is of the familiar General Electric Company quadripolar type, compound wound, having a regulation automatic, within two per cent over the entire range from no load to full load. The commutators are cross connected, so that only two brushes, 90° apart, are used. The rheostat is of the new, iron frame, incombustible type. The engine and dynamo are both provided with self-oiling bearings. The sets are manufactured in $4,8,15,30$, and 50 kilowatt capacities.

Decisions Relating to Patents.

INVENTION.
The Circuit Court decides that letters patent No. 278,294, issued May 22, 1883, to Otto Thum, for a sheet of fly-paper partially covered with a sticky composition, the latter being surrounded by a margin of less adhesive material, so as to prevent it from spreading over the edges, and the third claim of letters patent No. 305,118 , issued September 16, 1884, to the same person, covering the fly-paper with adhesive faces placed together, so as to be packed without folding, and adapted to be separated when ready for use, are not invalid for want of invention because plasters for the body had long been made with an adhesive margin surrounding the less sticky substance of the medicinal compound. 1 .

The United States Supreme Court rules that claim 2 of letters patent No. 224,923, issued February 24, 1880, to Joseph W. Kenna, for a combined child's chair and carriage, consisting of an ordinary chair pivoted at the lower part of its front legs to the corresponding legs of a standard having four legs, and supported at the rear by a bail attached to a crosspiece by means of a spring catch, is void for want of invention, since practically all that the patentee accomplished was to take the Patten or Chichester chairs (covered respectively by patents issued September 3, 1878, and July 9,1879) and apply to them the bail and catch of the prior "Pearl chair." 2.

It is held by the Circuit Court that claim 2 of reissued letters patent No. 10,021, issued January 31, 1882, to Andrew Saunders, for a pipe cutter, consisting of a stock, rotary cutters, antifriction rollers, arm, and feeding screw, is void for want of invention; for rotary cutters were well known substitutes for knife cutters, and every element in the combination had theretofore been patented in the same place, as is shown by the following patents : No. 52,715, to William S. Haworth, January 20, 1866; No. 65,066, to Theodore S. Foster, May 28, 1867; No. 67,530, to Henry Getty, August 6, | May 28, |
| :--- |
| 1867. |

The Circuit Court lays it down that letters patent No. 408,475, granted August 6, 1889, to Evan James Francis and Charles Banfield, for "a bottom for heating furnaces, formed of segregated masses, broken pieces, or fragments of non-combustible material having interstitial passages, and presenting a broken or uneven surface," disclose a patentable invention. 4.

In its rulings the Circuit Court says that letters patent No. 339,543, issued March 12, 1889, to William Mack, for improvements in opera-glass holders, possess no patentable invention, in so far as they merely provide for corrugations on the telescopic sections of his prior patent, No. 268,112 , to prevent twisting, and for the substitution of a longitudinally forked attaching device for the original clutch. 5.
The Circuit Court decides that letters patent No. 274,941 , issued April 3, 1883, to Isaac W. Heysinger, for a machine for inserting and clinching staples, are void as covering improvements obviously the result of mere mechanical skill. 6 .
The Circuit Court rules that claims 4 and 7 of letters patent No. 268,112, issued November 28, 1882, to William Mack, for improvements in opera-glass holders, show patentable invention, and are valid as covering a detachable telescopic opera-glass holder having at the upper end a clutch or fastening device adapted to clasp the transverse bars or cylinder of an opera-glass. \%. UTILITY.
It is held by the Circuit Court that when the existence of invention is doubtful, the fact of utility should have great weight in favor of the patent. 8. combination.
The Circuit Court holds that letters patent No. 226,402, issued April 13, 1880, to Isaac W. Heysinger, for a device for filing and binding papers, if sustainable at all, must, in view of the prior state of the art, be limited strictly to the structure shown and described; and, as the first claim is for a filing clip composed of a clamping arm and a base, the former being provided with a heel, which holds the arm locked when open, the heel is an essential element, and there is no infringement where this is lacking. 9.
The Circuit Court decides that the fact that the claims of letters patent No. 219,208, issued September 2, 1879, to Charles F. Brush, for an electric lamp, purport to cover broadly all forms of mechanism constructed to
separate the two or more sets of carbons dissimultane ously or successively, does not render the patent void as being for a function or result, since particular means are described in the specifications and referred to in the claims; and the patent covers such means or their substantial equivalents. 10.
The Circuit Court lays it down that letters patent No. 304,863 , to Henry Root, for a track brake for railway cars, is not void as being a mere aggregation of old elements, for the brake consists of two toggle levers, one operating upon the other, which is attached to the shoe, thus achieving a new and useful result, sufficient, when aided by the presumption of novelty and utility arising from the issuance of the patent, to sustain the same. 11.
The first claim of letters patent No. 337,187, issued March 2, 1886, to Frank W. Mix, for a trunk lock, covers "a hasp plate and a lock plate, the adjacent edges of which are constructed to interlock with each other, in combination with a hasp hinged to the hasp plate, and provided on its free end with a lock, which is received in a cup or frame in the lock plate, substantially as set forth." It is held by the Circuit Court that, as all these elements were old, the claim is too broad to be sustained in view of the prior state of the art, as shown by the "Star" lock; the Jones patent, No. 44, 869, November 1, 1864 ; the Uitting patent, No. 62,453, Feb ruary 26,1867 ; the Terry patent, No. 107,133, Septem ber 6, 1870 ; the Hillebrand \& Wolfe patent, No. 120,067 October 17, 1871 ; the Haskell patent, No. 214,252, Apri 15, 1879 ; and the Crouch patent, No. 235,130, December $7,1880.12$.
The Circuit Court decides that no limitation was placed upon the Brush patent by the fact that the in ventor's claims, as first presented, were rejected as functional, and that the language was twice slightly changed, for the file wrapper shows that there was no change in the essential features of the claims, and that the Patent Office, after a contest, finally yielded to the patentee's views. 13.

1. Thum v. Andrews, 53 Federal Reporter, 84.
2. Derby v. Thompson, 13 Supreme Court Reporter 181.
3. Saunders v. Allen, 53 Federal Reporter, 109.
4. Francis v. Kirkpatrick \& Co., 52 Federal Reporter, 824.
5. Mack v. Spencer Optical Mfg. Co., 52 Federal Reporter, 819.
6. Philadelphia Novelty Mfg. Co. v. Weeks, 52 Fede ral Reporter, 816
7. Mack v. Spencer Optical Mfg. Co., 52 Federal Re porter, 819.
8. Corbin Cabinet Lock Co. v. Eagle Lock Co., 52 Federal Reporter, 980.
9. Philadelphia Novelty Mfg. Co. v. Weeks, 52 Federal Reporter, 816.
10. Brush Electric Co. v. Electric Imp. Co., 52 Fede 10. Brush Elect
11. Pacific Cable Ry. Co. v. Butte City St. Ry., 52 Federal Reporter, 863.
12. Corbin Cabinet Lock Co. v. Eagle Lock Co., 52 Federal Reporter, 980.
13. Brush Electric Co. v. Electric Imp. Co., 52 Federal Reporter, 965.

Habits of Thought.

Habit reigns as supreme in the region of thought as in that of action. We often see persons whose lines of thought run mainly in the same groove, be it art, or science, or politics, the accumulation of wealth, or the desire of fame. Their thoughts become as truly fixed habits as anything which they are accustomed to do with their hands. There are some people whose minds drift hither and thither with every passing wind of circumstance; for so long a time has such been their practice that it has become a mental habit. Others have acquired the habit of self-control, not only in their active deeds, but also in their silent thoughts. By frequent practice they have attained the power of concentrating their minds upon one subject for a time, and of turning it to a nother when they deem it advisable.
Again, if we could examine the ideas which men hoid we should perhaps be surprised to find how many of them are due to habit rather than logic. In child hood man took for granted whatever he heard expressed by those to whom he looked up with respect. Whenever he heard any of their ideas criticised by others he resented it, and clung firmly to them. These opinions have come to be settled habits of mind with him. He regards them as certainties, and looks with suspicion upon those who do not share them. Yet, if challenged to defend them, he is utterly at a loss. They are his only by adoption; he has never earned the right to call them truly his own by the hard mental work of investigation.
This is the history of many of our most cherished notions, the foundation on which thousands stand in politics, in science, in the problems of the day, in social observance, in ethics, in theology. This practice of thinking from habit, if universal, would put an end to all progress. Happily, there are always
some men and women who are resisting this tendency
-the leaders of public opinion, the pioneers in the march of intellectual progress. Their effort should be, however, less to impress their own views upon other minds than to help every man to form his own ideas in an intelligent way.-Phit. Ledger.

The Carrier Pigeon.

josef v. plefel.
Of late years the interest in carrier pigeons has been very considerably enhanced. Belgium takes the lead, but the other countries are not far behind. The facility with which the carrier pigeon determines its course is as yet unexplained. To attribute this knowledge of direction to instinct is merely a confession of ignorance It is much rather sight, reflection, and sensation which guide the carrier pigeon on its course, and rarely guide t wrong. The same faculty is possessed by all migratory birds. To form an intelligent conception of this faculty, we must assume either a special sense or a delicate sensitiveness to atmospheric currents. Experiments by balloonists have shown that pigeons are incapable of flying at any great height. Birds thrown out at 6,000 meters fell like dead, and even at the mode rate height of 300 meters pigeons liberated by the bal loonist Gaston Tissandier approached the earth in a spiral course. It is evident, hence, that they are not guided wholly by sight. To bring a point 300 miles distant within the range of vision, it would be neces sary to ascend nearly 20,000 meters. The carrier pigeon, starting on such a journey, must consequently start with faith in the unseen.
As regards the speed of flight of carrier pigeons, there is considerable divergence of opinion. The Bel gian birds are admittedly the best, and the greatest achieved speed of a Belgian bird is given as 150 kilo meters (over ninety-five miles) within the hour. In favorable weather a good bird will cover thirty to thirty-five miles in an hour. The greater the distance, the smaller the probability of the prompt return of the bird. At a distance of say a hundred miles almost all birds return safely if the weather is favorable, but at distances of four or five hundred miles it is impossi ble to reckon confidently on the bird's return. It appears curious, but it is a well established fact that as the bird nears its home its speed is accelerated.
The question has frequently been raised as to whether the male or female pigeon is the better for racing contests. Practically there is nothing to choose between them when both are in condition, but a laying female should never be taken for the sport.
The carrier pigeon is not, as many suppose, a distinct variety. All domestic pigeons are presumably descended from the blue-rock pigeon, and all are more or less suited to the purpose. The common pigeon is not used, for, although a rapid flier for short distances, he has no great staying powers.
One of the best pigeons for the purpose is the tumbler Columba gyratrise), whose sense or sensation of direc tion is very strongly developed, and who rarely loses his way. The tumbler flies higher than most birds of the genus, and will continue circling in the air for hours. He has all the necessary staying power for long flight, and a great love of his home. Still, many of these birds leave much to be desired. In the first place, they are likely to waste time before setting out on their return; again, they are liable to fall victims to birds of prey; and, lastly, they are especially liable to diseases of the eye, which frequently result even in total loss of sight. Another bird of equal speed and endurance is the Persian "carrier."
In the first year the trainer rarely lets the test exceed from 60 to 90 miles; the following year the distance may be extended to 250 miles; and in the third year, when the bird is at the height of his powers, the imit may be cxtended to 350 or 400 miles.
In the last year of training, the first flight is from 120 to 130 miles, terminating in a contest which usually extends to about 300 miles. The longest contests are from 400 to 700 miles. Before entering a bird for the contest it should be carefully examined as to its fitness, and the feet cleaned, washed, dried, and oiled. Some trainers start their birds with empty crops, with the idea that it will make them more eager to get home This is a great mistake. The famished bird is liable to be exhausted by long-sustained effort.-Der Stein der Weisen ; Literary Digest.

Gigantic Icebergs.

The mail from the Falkland Islands brings the inelligence that the Dundee whaler Polar Star arrived at Stanley Harbor from the Antarctic season February 17. The whaling in the Antarctic seas had up to that time proved a failure with all the ships that went out. There were plenty of whales of the finner and humpback kinds, but not of the Greenland kind. There were too many grampuses for whales to be at all plentiful. Seals are very numerous, and there are also many sea lions to be got on the ice. Nothing unusual to Arctic navigators was seen except some icebergs of enormous size. One of them was fifty miles long and several others from fifteen to twenty miles long.
winby's express locomotive at the columbian EXPOSITION.
(Continued from first page.)
Sanding gear-Gresham and Craven's steam sanding gear is fitted to the four driving wheels.
Cylinder cock gear-Hawthorn's steam-worked drain valves working simultaneously.
eversing gear-Steam and hand coupled together, and working all valve gear simultaneously.
Injectors-Two No. 10 Holden and Brooke's "1892" patent injectors.
ings-All the bearing springs and the bogie controlling springs of Timmis' latest section.

Di. Cym (
Diameter.	17 in.
Stroke.	22 i
Center to centerof cylinders	$2 \mathrm{ft} .1 / \mathrm{I}^{\text {in. }}$
Center of cylinder to center of valve spindle.	1 ft .2 in .
Ports on top of cylinder.	
Diameter of piston rod.	314 in .
Valve motion (inside)-	
Ordinary link.	
Slide bars, number per cylinder....	4
Slide bars, width....	3 in.
Crosshead (forged solid with piston rod).	
Length of shoe.....	1 ft .1 in .
Cylinders (inside)-	
Diameter.	161/2
Stroke	24 in.
Center to center of cylinder	$6 \mathrm{ft}$.5 in .
Center of cylinder to center of valve spindle	1 ft .3 in .
Ports on top of cylinder.	
Diameter of piston rod.	31/4in.

Diameter of piston rod....................... 314/ in. Length of pistaide) 9 ft. $81 / 2 \mathrm{in}$
Joy's patent.
Slide bars, number per cylinder (in one steel
 Crosshead (forged solid with piston rod). Length of shoe.......................... $1 \mathrm{ft}$.3 in . All piston rods and valve spindles have metallic packing.
heels (cast steel centers)-
Bogie, diameter on tread
Bogie, diameter on tread........................ 4 ft .
Driving, diameter on tread.................
Driving, diameter on tread...................... $7 \mathrm{ft}$.6 in.
Axles (steel)-
Bogie.

Centers of bearings.
riving inside crank-
Diameter of journo
Diameter of journals.
Length of journals
Diameter of crank bearing $\ldots \ldots \ldots \ldots \ldots \ldots \ldots . .9$............... $81 / 2 \mathrm{in}$.
Length of crank bearing....................... 41/2 in.
Driving outside straightDiameter of journals... $101 / 4 \mathrm{in}$.
Length of journals................
rank pin-
Diameter
Length...
$\xrightarrow[\text { Length....... }]{\text { rames (steel)- }}$
From front end to center of bogie........... 5 ft .3 in .
From center of bogie to center of driving wheel 9 ft .8 in .
From center of driving wheel to center of trail-
ing wheel. From center of trailing wheel to end of frame. Total length of frame... Thickness of frames.. Between frames.
Between frames at front end..................... $4 \mathrm{ft} .11 / 8 \mathrm{in}$.
eel base-
Bogie wheel base..$~$
ft. 3 in.
Fixed wheel base...........

Mr. Winby has here aimed to design an engine which, while not intended to attain a higher maximum of speed than ordinary engines, should be capable of traveling at a much higher mean speed. To do this it was obviously necessary to increase largely the tractive power of the engine. It may here be stated that an ordinary modern express-say, for instance, Mr. S. Johnson's latest-has four wheels coupled, 7 feet diameter, and inside cylinders $181 / 2$ inches by 26 inches, giving a tractive effort of 106 per pound of steam, while Mr. Winby's engine is capable of exerting a tractive force of 143 per pound of steam, with wheels 6 inches larger in diameter.

This design has two pairs of cylinders, an inside pair, 17 inches by 22 inches, being coupled to the leading drivers in the usual manner, and an outside pair, 161/2 inches by 24 inches, being coupled to the trailing drivers; there being no coupling rods, each pair of wheels may go as it pleases, and there is no necessity to pinch the fire box in any way.

Terms of Water Measurement for Mining, Irrigation
and Mill Power. and Mill Power. by G. d. Hiscox, m.e.
The designation of the terms of water measurement seems to be somewhat misunderstood, or has become misleading in many parts of the United States, from the manner in which a primitive custom of water measurement has been adopted in different localities and afterward in some of its forms been made legal by the courts.
Differences in elevation above the sea and the latitude make a slight difference in the flow of water by gravity for a length of time, too small for practical consideration, but just enough for a legal quibble when water measure is referred to the courts.
Variation in the form of the orifice varies the actual delivery per square inch of orifice, and with all the conditions of variation in head, form of orifice, eleva-
tion of locality, latitude and dissimilarity in the lengths of orifice, there is found a variation in the accepted unit flow through a square inch of orifice of over half a cubic foot per second.
In this view the miner's inch of water used in the early days of California mining has become a standard of varying proportions in different localities, most perplexing as a definite and legal measure; so that the nominal miner's inch may 'deliver any quantity from $1 \cdot 20$ to $1 \cdot 78$ cubic feet of water per minute.
The largest volume for a miner's inch is the measure used at Smartville, Yuba County, Cal., called the Smartville inch, is deriyed from a horizontal rectangular orifice 4 inches in depth, through a 2 inch plank, under a head of 9 inches from the center of the orifice, and of the required width for the total flow, this being equal to $1 \cdot 78$ cubic feet per minute per square inch of orifice.
The miner's inch of the Park Canal and Mining Co., El Dorado County, Cal., is equal to 1.45 cubic feet per minute, with an orifice 2 inches deep through a $11 / 2$ inch plank-head 6 inches above center of orifice-this being the rating of several ditch companies in California.
By a series of experiments at Columbia Hill, Cal., lat. $39^{\circ}, 2,900$ feet above the sea, $1 \cdot 5744$ cubic feet per square inch per minute was assigned as a miner's inch, this being the flow per square inch through a rectangular slit 50 inches long, 2 inches deep, equal to 100 square inches, under a head of 7 inches from the center of the slit; this being also the rate with the North Bloomfield, Milton and La Grange Ditch Companies. In other parts of California 50 miner's inches are rated at 60 cubic feet of water, or 1.20 cubic feet per
miner's miner's inch. The statutory or legal miner's inch of California is equal to a flow of 1.394 cubic feet per minute, and is defined as the flow through a square orifice 1 inch in depth by 1 inch in width through a 1 inch plank, under a head of $41 / 2$ inches above the center of the orifice.
In Colorado, previous to statutory regulations and still in use by agreement, 40 miner's inches are reckoned at 60 cubic feet, or 1.50 cubic feet per square inch of orifice under a head of 6 inches above the orifice in the bottom of the delivery box, the stream falling vertically, the actual flow being 1.556 cubic feet per minute.
The statutes of Colorado now provide that "water sold by the inch by any individual or corporation shall be measured as follows, to wit: Every inch shall be considered equal to an inch square orifice, under a 5 inch pressure, and a 5 inch pressure shall be from the top of the orifice of the box, put into the banks of the ditch to the surface of the water."
The practice much in use in Montana is to deliver the water through a horizontal slit 1 inch in depth, of sufficient length for the required supply, under a head of 4 inches above the center of the slit, and is equal to a flow of $1 \cdot 25$ cubic feet per minute per square inch of orifice.
Six and a half inches head above the center of a 1
inch square orifice, or a long horizontal gate 1 inch in inch square orifice, or a long horizontal gate 1 inch in depth, is becoming the more usual practice in California, where the miner's inch originated, and will no doubt come into general use as the most satisfactory working condition of water supply for mining and irrigation purposes.
From experiments of the Pelton Water Wheel Co., the relation of flow under various heads and increasing widths of slot, with a uniform thickness of plank and distance of orifice from the bottom of flume, becomes interesting, in view of the varying practices in different States and localities. With a square orifice 2 inches in depth, 4 inches wide, a 5 inch head above the center of the orifice gave a flow of 1.348 cubic feet per minute ; 6 inch head, 1.473 cubic feet; 7 inch head, $1: 589$ cubic feet per minute per square inch of orifice. By lengthening the orifice horizontally the flow increased in quantity per square inch of orifice, owing to the increase of area relative to the increase of perimeter ; so that at 16 inches in width, 5 inch head, flow $1 \cdot 365 ; 6$ inch head, $1 \cdot 489 ; 7$ inch head, 1.60 cubic feet per square inch of orifice.
For the purposes of irrigation, the irrigating duty of water takes its base of computation from the flow per second or minute; but as this is not a constant quantity for different localities, owing to variation in the value of the miner's inch, the acre duty will be an uncertainty until some general law fixing a uniform standard of measure or detail, as to head and area to constitute a unit of measure, is made to extend over the different States and Territories requiring a system of irrigation.
As an irrigation term the "duty of water" means the area of land upon which a definite volume of water, applied during a given period, will successfully raise crops.
In Utah, where irrigation laws have largely covered the details of water rights, the "unit" of water measurement is designated as one cubic foot of water per second, called the "second foot," is the standard of expression for water service for irrigation, and is
the equivalent of one acre covered one foot deep, or 43,560 cubic feet, to which is added the time requirement.
In Utah the "second foot" is equal to two "acre feet" per day-" 60 acre feet" per month ; 100 California inches equal 4 acre feet per day; and 100 Colorado inches equal $5 \frac{1}{6}$ acre feet per day.
The "second foot" is becoming popular throughout the Western States and Territories, from its definiteness of meaning and understanding, and with which there is little chance for technical quibble.
The measurement of water for power in the eastern portion of the United States is the "inch," under a stated head. The "inch" or "inches," meaning the number of square inches opening in a gate, or orifice, leading to a water wheel under some specified head. The practice varies largely in different States. In New England, the water power companies have specific measures of gate opening, from one foot head upward, and also rate by the theoretical horse power for any form of flow.
Where no specified head is named, a 4 feet head from the center of the gate orifice to the surface of the water in the flume has become legalized in some of the States by statute or court decision; the height or head above or below the statutory 4 feet being reck oned by its relation to the unit, in power-producing effect.
This is made the basis in water power leases in Wisconsin from the time of the earliest leases in that State.
In some cases the actual heads are named. The valuation of variation in the head below and above 4 feet, when named as a unit, has been a cause of legal contention in several States, and in Wisconsin it has been fairly defined that the power derived from a unit orifice varies proportionately with the variation of the head, and that the area for a given power varies inversely as the square roots of the heads, less the proportion of increased head and the reverse for decreased head. The following table shows the relation of area in percentage of the unit area for various heads:

Head in Feet.	$\begin{gathered}\text { Inverse Velocity } \\ \text { Ratio. }\end{gathered}$ $\frac{\sqrt{4}}{\sqrt{\text { Head. }}}$	Inverse Ratio of Area Due to Head.	Proportional Area of Orifice for Varying Head.
$\begin{aligned} & 3 \\ & 4 \\ & 5 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	1.155 $1 \cdot 000$ 0.894 0.8162 007651 00.7036 0.6666	$\begin{aligned} &+0.25 \\ & \text { UnIt, } 0.00 \\ &=0.1788 \\ &= 0.2721 \\ &-0.3240 \\ &=0.3518 \\ &-0.3699 \end{aligned}$	$\begin{aligned} & =1 \cdot 443 \\ & =1 \cdot 000 \\ & =0.7156 \\ & =0.541 \\ & =0.4321 \\ & =0.3518 \\ & =0.2969 \end{aligned}$

Foul Water Main.

Mr. James Duane has described in a paper read before the American Society of Civil Engineers the effect of tuberculation on the delivery of a 48-inch water main. The author remarks that authentic data relating to the effect of tuberculation on the discharging capacity of water mains are rare, and when obtainable are correspondingly valuable. He has had an unusually favorable opportunity for observing the loss of head, due to this cause in a large water main, and comparing it with that in a perfectly clean coated new main discharging under the same conditions; both beng parallel mains of the Croton water supply system of New York. One line of mains was laid as clean castings, just as they came from the sand. The result was that in seven years the inside was discovered to be tuberculated to a surprising extent. All the lumps were of the same general shape, which was that of a rough frustum of a cone, with a height of one-half or one-third the width of the base, and a roughly flattened top. The largest were at the bottom of the pipe and the smallest at the top. The greatest projection of the lumps was about one inch; and they were so thick as to completely cover the interior surface of the pipe. As compared with the clean tar-coated pipe, the discharging capacity of these corroded mains showed a reduction of about 30 per cent. It was also observed by Mr. Duane that, having reached a certain stage in corrosion, a water pipe does not get worse with age. He regards a properly applied coating of tar composition as giving absolute protection against tuberculation, and cites in support of this belief the fact of a 48 -inch main so treated showing as high a coefficient of duty after eleven years' service as when first brought into use.

Tin from Tin Scrap.

By T. Twynam.-The scrap is coated with a film of chloride of calcium or similar fusible salt and heated to redness. It is then cooled by plunging in water, when a scale falls which contains all the tin and leaves the iron practically clean and suitable for many metallurgical processes. The insoluble scale may be smelted direct for tin after mixing with carbon and siliceous matter, or it may be heated with sufficient acid, preferably hydrochloric, to dissolve out the iron, leaving the oxide of tin in a nearly pure state, or the tin may be recovered as a soluble stannate after fusion of the scale with alkali.
tHE ELECTRIC RAILWAY BETWEEN CHICAGO AND ST. LOUIS.
Among other wonderful novelties promised us in connection with the World's Columbian Exposition is an electric railway of high speed between Chicago and St. Louis. The projectors expected to have the work completed in time to carry passengers to the great Fair; but they have been disappointed, and although it was announced some time ago that the roadbed was under contract and a considerable portion already constructed, still, for some reason or other, the enterprise has remained very quiet of late and we fear has come to a halt. We are indebted for the following description of the novel system and the great expectations of the projectors to the Graphic, of Chicago.

The Chicago \& St. Louis Electric Railway Company, a corporation organized under the laws of Illinois "for the purpose of constructing, maintaining and operating a complete electric railway system between the cities of Chicago and St. Louis, with suitable and necessary spurs and branches connecting with the towns and cities along said road, for the accommodation of local and through passenger and high-class freight, express and mail traffic, and for the further purpose of supplying citizens and cities on the route of the road with light, heat and power, for State, county,
making a minimum of 500 revolutions a minute, which would give the car a speed of more than 100 miles an hour. The large size of the driving wheels makes the revolution of the axle only about the same speed as that of the axles under an ordinary passenger coach moving at the rate of 50 miles an hour, and therefore the friction will be no greater. The axles of the electric car also turn on roller bearings which do not re quire the use of oil
The cars are to be run one section apart, and no current will be permitted to flow in the intermediate section, making it wholly impossible that cars should come within less than 10 miles of each other, and preventing absolutely the possibility of collisions. The top of the electric car will be only 9 feet from the rail, which is 3 feet lower than the ordinary street car. The center of gravity is thus brought very low, and quite near to the track, practically eliminating the possibilities of the car jumping the track. The front of the car is wedge shaped, and will cut the atmosphere in a way to very materially decrease the atmospheric resistance. The motorman stands just behind this wedge-like nose, and between his department and the rear wheels is the passenger compartment. After the passenger coach is a separate compartment for mail and high class express matter. An overhead electric
erected if required. The possibility of transmitting power electrically over long distances with economy was demonstrated at the last Frankfort Exposition, where 300 horse power was sent by electricity over a distance of 108 miles with an efficiency of 75 per cent. The road will have double tracks at first, but the ine will eventually build four tracks-twolight-weight outside tracks for local traffic and high class freight and two heavy-weight inner tracks to be used exclusively for through passenger traffic, mail and express. The standard schedule time of through trains will be 100 miles an hour, the trip from Chicago to St. Louis being made in two hours and thirty minutes. No passenger trains, it is said, will be run at night, or at least not later than 9:30 P. M.; and the track will be employed during these hours by cars carrying freight, mail and express matter. The cars will be lighted and warmed by electricity, and will be provided with all the comforts of the modern car. A through train will be run every hour, or oftener, as may be required, and accommodation trains will be run every half hour, as soon as tracks are provided for this purpose. The line of the road will be illuminated by incandescent elecric lamps for one mile ahead and one mile behind every car while running at night.
The economy proposed in the matter of fuel is an

BIRD'S EYE VIEW OF THE CHICAGO AND ST. LOUIS ELECTRIC RAILWAY AND BOULEVARD.
municipal, domestic, farming, manufacturing and other purposes," has perfected plans for the construction of an electric line which will satisfy the most zealous enthusiasts on the subject of rapid and cheap transportation.
The patents under which the new system will be operated were applied for by Dr. Wellington Adams in 1883, and granted to a Missouri company known as the Adams Electric Company in 1884; and were the first patents ever issued covering the essential elements of an electric railway. These patents were subsequently assigned to the Adams Electric Railway Company, and later conveyed to the Chicago \& St. Louis Electric Railway Company.
The line between the two cities will be divided into 25 sections of 10 miles each, and will be operated from power stations located at coal mines belonging to the company along the route. The electric coach or car to be run is a long, low, compactly and strongly built car of very light weight; its weight being an import car of very light weight; its weight being an import-
ant feature in the economy of operation. The car has two pairs of driving wheels, each of which is driven by a separate and distinct electric motor. The entire weight of the car, with its passengers, and of the two motors comes upon these two pairs of driving wheels, and consequently is all serviceable for adhesion between the rails and the wheels, through the agency of which the car is propelled. The driving wheels are 6 feet in diameter, and are estimated as capable of
construction will be used, consisting of central poles and cross arms, with a trolley wire running along the side of the car. Motors operating under this system require no commutators or brushes, and may be so constructed as to be water and fire proof.
The line of the road will be practically straight, and there will be no railroad or country road crossings at grade or on a level with its own line. The tracks of the electric road will be elevated above the crossing tracks of other railroads by means of iron bridges, and the country roads will be thrown up over the track of the electric road by means of wooden bridges. It is estimated that there will be about 250 of the latter to construct and 17 of the former. This will give the line a roadway completely protected from interuptions of all kinds, and insure against the occurrence of the many accidents common to other railways. There will not be a frog, a switch nor a drawbridge on the entire line.
The weight of the whole car, with its equipment, will not exceed 15 tons, eliminating the great difficulty encountered by steam railroads, which have so large an amount of dead weight to draw. In the case of these roads there are hauled 19 tons of non-paying weight for each ton of paying passenger weight. In the electric road this will be reduced to the ratio of 1 to 5.
It is thought that two power houses may be sufficient to provide the necessary force, but more will be
important feature. The company has secured coal lands suitable for its purposes, and will operate its own mines by means of electric mining locomotives, electric drills and electric cutters, largely cheapening the cost of mining the coal. The good coal will be sold and the waste, dust or slack, which is a complete loss under the present methods of mining, will be utilized in the engines which develop the power for operating the road and the mines.
The entire line of the road has been surveyed and the location definitely settled. A large percentage of the right of way has been acquired, and valuable terminal facilities and entrances have been secured in both Chicago and St. Louis. At the latter city the road will cross the Mississippi River on the Merchants' Bridge and run over the new elevated structure of the Merchants' Terminal railway into the Union Depot. At Chicago it will enter the city over the elevated structure now being built for the Chicago Elevated Terminal Railway Company, and run into its station at State and Twelfth Streets. Work was recently begun at Edinburg, Ill., where power house No. 1 of the company is located, and is being actively prosecuted under supervision of Chief Engineer Hughes. Over 8 miles have been completed since work was commenced, and they have every assurance that the road will be completed and carrying passengers during the World's Fair in 1893. The new electric line, it is claimed, will afford a much needed link between the large number
of Southern and Western railway lines centering in St. Louis and the Northern and Eastern lines centering in Chicago, and will do a very large proportion of the passenger, express and mail traffic of these systems between the two cities. The enterprise is backed by some of St. Louis' leading financiers."

Since the above was written there must have been important changes in the expectations and means of the company, for we cannot learn that any definite progress in the work has been realized.

MANUFACTURE OF MACARONI.

Our illustrations are taken from the plant of the Columbia Macaroni Manufacturing Company, New York City. Macaroni is a preparation of wheat originally peculiar to Italy, in which country it is an article of food of national importance. The same substance in different forms is known as vermicelli, spaghetti, Italian pastes, taglioni, etc. These substances are prepared from hard, semi-translucent varieties of wheat. Hard wheats are richer in gluten than the soft and tender wheats. These wheat preparations styled macaroni are met with in various forms, such as fine thin threads called vermicelli, from its thread-worm-like appearance, thin sticks and pipes, stars,
means of a circular piece of copper held in place by a through these holes in the shape known to us as macpin running across the center of the hole on the inner aroni. At this stage of the process it is, of course, soft side of the mould. As the dough is pressed over the and flexible, and in order to keep the various little pins it divides in the center and unites itself again as strings of dough from sticking together, it is constantly it passes out of the mould. About 100 pounds of fanned by a boy, so that the current of air thus dough is placed in the cylinders at a time, which is pressed out through the moulds by means of an accurately fitting plunger or piston. One thousand pounds pressure is used, the cylinder emptying itself in about 45 minutes. As the pipes of macaroni pass out of the mould they are cut off into 10 foot lengths and taken to the cutting table, where they are recut into small lengths for drying. The macaroni is then placed on pasteboard and racked away for eight days to dry, in a temperature of 80 degrees, when it is placed in boxes and is ready for market. The company employs about 125 Italian hands and turns out about $3,500,000$ pounds yearly.
Having thus described the method of manufacturing macaroni in New York, we will now give an ac count of the way the article is made by hand in Italy The hardest and flintiest varieties of wheat are selected, first washed and then thoroughly dried in the sun. This wheat is then coarsely ground and run through a revolving sieve to separate the starch from made may slightly dry the outside of the strings and prevent them from adhering. It is then cut off and hung on racks or frames made of bamboo to dry. As t hangs on the frames the different pieces are of unequal length, and a boy passes rapidly over them, wringing off the longer ends to make them uniform. The drying has to be done in the shade and in a place not exposed to the wind ; for, if dried too quickly, or if the slender pieces were blown against one another, they would be apt to break. When sufficiently dry it is removed from the frames and packed in boxes such as are familiar to all grocers.
The different sizes are made by changing the movable bottoms of the press and employing different sized perforations. Each of these perforated holes has a core or center around which the dough has to pass and this produces the hollow which is a characteristic of the macaroni. The reason of this arrangement is, if the macaroni is made solid, it would take very long to dry when hung upon racks, and also when dried it would be very difficult to cook it without a great deal of

THE MANUFACTURE OF MACARONI, NEW YORK.
macaroni about 100 pounds of semolina or granulated | passed through a series of six hand sieves, each a little wheat is first put into a circular iron mixing machine 3 feet in depth and 2 feet in diameter. A quantity of boiling water is then added and the substance mixed up into a stiff dough by a revolving shaft armed with circular teeth which runs down through the center of the machine. The dough is then taken out and placed in a circular wooden rolling machine, 3 feet in height and 8 feet in diameter, over which for 40 minutes travels a revolving granite roller 5 feet in diameter, 18 inches in width, weighing 3 tons.. After the dough has been thoroughly rolled and pressed, it is placed in a kneading machine. A layer of dough about 4 inches in thickness and about 8 inches in width is placed around the outer edge of a circular revolving pan 6 feet in diameter and 18 inches deep. Attached to the framework of the machine across the center of the pan are two loose cone-shaped gearing wheels. As the pan revolves around, the dough is passed under the cone-shaped wheels, which in turn revolve, burying their teeth into the dough. This operation continues about 20 minutes, thoroughly mixing and kneading the substance. It is then placed in the cylinders of the macaroni press. These cylinders are about $21 / 2$ feet in length and about 15 inches in diameter, on the inside of which, resting on a flange at the bottom, is a copper mould. These moulds are about 1 inch thick and perforated with holes through which the pipes of macaroni are pressed. The pipes are made hollow by
finer than the preceding, for the purpose of separating the flinty portions from the bran. This apparently simple process requires considerable skill, and a certain knack which it takes time to acquire. The motion which is given to the sieves by the sifters is half rotary and half up and down, with an indescribable side motion, which can only be characterized as a "boomerang," for it throws the mass which is being sifted in an pposite direction to that taken by the sieve. Every few minutes each sifter pauses and skims off the bran which has worked to the top and center of the sieve, and after these various manipulations there remains a clean, flinty farina, known as semolina. This is then mixed with warm water into a stiff dough, and this dough is thoroughly kneaded by means of a long prism-like, hardwood lever, soadjusted that the spring of the timber may be utilized in alternately raising and depressing it upon the mass of dough, which is hen pressed and kneaded into the required consistency. It is rather amusing to see two or three men sitting on the end of this lever and bobbing up and down so as to throw their weight at one instant on the lever, bringing it down into the dough, and then allowing it to spring up again, in order that it may be brought down in a new place.
After it has been thus mixed and kneaded for about an hour, the dough is put into presses with perforated
boiling, and impossible to do so uniformly. So important is this considered, and so defective do the Italians regard the product if not thus perforated, that a proverb has arisen in Italy to the effect that "A foolish person is like macaroni without any hole in it."
Vermicelli is made from the same material and in the same way as macaroni, except thatitis not hollow, it being so small that it is neither practicable nor necessary to make it so.

Photographic Work in France and Belgium.

M. De Saint Florent has communicated to the French Photographic Society a method of printing with salts of iron, by which he says colors may be faintly reproduced-the red, yellow, and green being more distinct than the violet and blue. A gelatinobromide plate is taken, and the silver is removed from the film by fixation in the hyposulphite bath, and, after washing, the plate is dried. The film is now sensitized in the following :

Ferric ch
 Ferric chloride
 100 parts 10

After rinsing, the plate is dried and exposed for rather a long time under a colored original-as, for example, colored glasses or gelatines. It is next washed with warm water, by which some of the more soluble parts of the gelatine are removed, and it is finally dried.

A GANG HYDRAULIC STEAM PRESS.

The improvements which have been made in all descriptions of presses by the Boomer \& Boschert Press Company, of Syracuse, N. Y., during the past twenty years have been little less than remarkable, and have fully kept pace with the demands of manufacturers in all lines of industry. In hydraulic presses, especially, the company has been particularly successful in building work for a great variety of uses, but all distinguished by strength and simplicity of construc

Acetic Acid as a Menstruum.

Professor Remington has been advocating, at a meet ing of the Philadelphia College of Pharmacy, the use of sixty per cent acetic acid as a menstruum for extracting drugs. The suggestion was not put forward as a novel one, but it was urged that the acid is an excellent solvent of the active portions of drugs, and is both preservative and antiseptic. Dr. Squibb has ob tained very definite and positive results by its use tained ve
It appear It appears to form soluble compounds with the active principles of drugs in many instances. Acting on the knowledge that volatile oils are very soluble in the acid, Professor Remington has prepared specimen extracts from various spices by its aid, treating them with four times their weight of the solvent. The whole of the active parts of cassia, cinnamon, cayenne, etc., are said to be extracted and inert residues left. As regards commercial value, acetic acid is, of course, far preferable to alcohol, and it is said to be more effective, weight for weight, than alcohol of the same strength.
According to the Pharmaceutical Review, experiments made with nux vomica and belladonna disclosed the fact that complete exhaustion can be obtained by the aid of this medium in less time than with an alcoholic menstruum, while fluid extracts, intended primarily for culinary purposes, are now pre tion and operation. The illustration shows a gang of pared in a similar way from cinnamon, cloves, carda small presses, built by the company, to be operated from an accumulator, and which can be constructed in this manner at less cost than separate presses. Each press is, however, independent. The head and base are formed of continuous steel beams, and the construction and operation will be readily understood. In order to save opening the press to its fullest extent each time, and to adjust for different thicknesses of moulds, stops are provided consisting of shafts attached to and dependent from the platens, passing loosely through holes in the lugs cast on the cylinders, with holes and pins for limiting the drop of the platen. The number of presses in a gang may be from two to ten or more.

THE MONITOR MIANTONOMOH

It is worthy of note that the first service of this vessel, after her recent completion, was in the firing of the salute in connection with the unveiling of the Ericsson statue, and taking part in the ceremonies of the naval parade which signalized the inauguration of the era of the Columbian Exposition. The keel of the vessel was laid by John Roach \& Sons, at their works on the Delaware River, in 1874, and she is in many respects a reproduction of the old wooden monitor Miantonomoh. She is 250 feet long, of $551 / 2$ feet beam, with a draught of 14 feet, a displacement of 3,815 tons, and indicated horse power of 1,030 . She has only about 3 feet of freeboard. The ship is of iron except the armor plates, which are of steel, the hull having a protective belt 6 ' feet deep and 7 inches thick. The outer plating of the turrets is $111 / 2$ inches thick, backed by 10 inches of wood, this being again backed by two steel plates, each $1 / 2$ inch thick. The turrets are 24 feet in external diameter, and rise a little over 6 feet above the deck. They are each surmounted by a conning tower a little less than 8 feet in diameter at the base, and projecting two feet above the main turrets. In each turret are two 10 inch breech-loading rifles manipulated by hydraulic gear. The vessel also has a fighting mast of hollow steel through which ammunition is hoisted to a fighting top. She has a double bottom, there being a clear space of 28 inches between the two skins. She is lighted throughout by electricity. Her speed is rated at 101/2 knots per hour.

THE MONITOR MIANTONOMOH.

many as 6,000 sheep have been loaded in one day. The steamers carry their cargoes to England. The vessels their cargoes in frozen condition.

The Pharos lighthouse, Alexandria, was built B. C. 285 ; height 550 feet, light visible 42 miles.

BETWEEN SADDLE AND GROUND-AN INSTANTANEOUS PHOTOGRAPH.

Many curious pictures are now frequently seen as a result of the facility with which instantaneous photographs can be taken. Our illustration represents a view of this kind, where a rider has been thrown from his horse but has not yet reached the ground. The inci-

BETWEEN SADDLE AND GROUND-AN INSTANTANEOUS PHOTOGRAPH.
dent occurred at a steeplechase meeting at Ashey, in the Isle of Wight, where Mr. R. Thirlwell's horse Cosmetic refused his third hurdle, and threw Mr. R. Woodlands, his rider. Mr. Charles Knight, of the Royal Studio, Newport, was on the spot with a camera, and he was fortunate enough to get a "snap shot" of the incident just as Mr. Woodlands was falling to the ground, the effect being to make the latter appear as if performing an acrobatic impossibility by supporting himself horizontally on the reins. For our illustration we are indebted to the London Graphic.

Something to Think About.

Mr. Carroll D. Wright gives us some very interesting facts. He estimates-and in the matter of statistics he is an expert-that there are in this country at the present time rather more than twenty-two millions of per sons who are "engaged in gainful occupations."
Subtracting from our sixty-five millions most of the wives and daughters, all of the decrepit and aged, and all the school children, it will be seen that we are a work-a-day nation in its shirt sleeves. The class of do-nothings because they have too much money and the other class of do-nothings because they are born loafers do not count for much either in number or influence. But Mr. Wright adds that not only is the aggregate of those who do work on the increase, but also the aggregate of those who are willing to work, but can't get it. There's the rub. That is the reason for the existence of labor organizations, for strikes, and for the unceasing conflict between capital and labor.
The remedy? There is but one. Skilled labor is nearly always in demand. A first-class workman is seldom out of a job. It is necessary, therefore, for the new generation to cease dawdling, to give up being jacks of all trades, to give themselves vehemently to some special department, and to become masters of that. There never yet was a time when it was not easier to earn $\$ 4$ a day because you are worth it than to earn $\$ 1$ a day at work which a million others can do as well as you; and, as the New York Herald says, the lesson is clearand it is emphatic.
recently patented inventions. Railway Appliances.
Car Vestibule Connection. Walter N. Thompson, St. Louis, Mo. A series of
springs is secured to the vestibule face plate and exsprings is secured to the vestibule face plate and ex
tends around the passageway, rods on the outer ends of the springs having their lower ends secured to sliding arms in the car platform, there being cross braces on the
rods and springs and a flexible face secured thereto. The rods and springs and a flexible face secured thereto. The
improvement forms a yielding flexible connection which improvement forms a yielding flexible connection which
does not have any buffer action, and is not intended to affect the movements of the train, but will form an air-tight seal, excluding all rain, snow, dust, etc., the protection
being equally good in going around curves. It may be easily attached to the cars.
CAR Door.-Napoleon Roy, Duluth, sinn. This invenion reates more especialy to in door which can be easily operated without using crow bars, etc., the fastening attachments not interfering
with the use or capacity of the car for coal or other rright. A slide door is is pivotally supported at its upper end over the dorway, so that it may be tilted, in con nection with locking devices and a lifting mechanism,
the latter consisting of a chain or cord, by pulling on the latter consisting of a chain or cord, by pulling on
which the door may be unlocked and moved upward which the door
Automatic Car Switch.-Joseph A. Hawkins, Brooklyn, N. Y. This switch is designed for ase in connection with electric, cable, or horse cars, and
is designed to enable the driver to quickly and con veniently switch a car from one track to another while the car is in motion. A switching rail is arranged ad jacent to one of the rails, and at its outer side a counter poise lever, one end of which is connected with the switching rail, while a shaft is connected with the
switch points, and a connection is made between the switch points, and a connection is made between the
shaft and the counterpoise lever, whereby one is oper ated from the other.
Automatic Grip Opener.- William P. Courtney, Oakland, Cal. This is a simple construc-
tion, designed to release the grip at the "let-go " in case the gripman should forget to do so. Combined with the grip is a pitman having a sliding and rocking connection bell crank lever and its other end to the pitman, while a ment may be readily applied to any ordinary form of grip without change of construction.

Mechanical.

Let-Off for Looms.-Patrick Duffy, New Bedford, Mass. This is a mechanism to let off the warp yarnn from the warp beam or roller, and give the
proper tension to the warp. A simple apparatus which carries a dead weight is arranged at one side of the shaft and actuates the weight by a shoe or arm, to shift the weight as the warp is wound off, thus keeping a absolutely even tension on the warp without regard t the amount of warp on the beam or roller. The me chanism is
of repair.
Perforating Machines.- Jacob B. Hemsteger, Piqua, O. A simple and durable automatic feed mechanism has been provided by this inventor, inat any desired distance apart. A gripper engaging on end of the paper is mounted to slide a predetermined distance, the gripper being actuated perio
Clutch Mechanism. - Gottlieb F Tinney, New York City. This is a device for a machin and pliable, the working being effected by coiling the motion to uncoil them. A novel and compact arrange motion of cam, gear, and clutch mechanism is provided to connect with the driving shaft and drum, the driving shaft rotating constantly in one direction while the drum reverses itself at the end of every seventh revolu
tion, so that the machine is entirely automatic.
Waterproofing Paper. - John J. Newman, Elkhart, Ind. This is an improvement on a
formerly patented machine of the same inventor, by means of which paper leaving the calender rolls passes over hot rolls, under a hot smoothing roll and between supplemental squeeze rolls. The paper is fed over a
wax bed, where it receives on its lower face wax forced wax bed, where it receives on its lower face wax forced polish and keep smooth both faces of smoothing ro polish and keep smooth both faces of the paper, and by Two connected tanks afford means of keeping the wax ing economy and rendering the application of the coat ing material uniform at all times.

Agricultural.

Potato Digger. - Isaiah H. Van Horn and William Neel, Thornville, Ohio. To the draught beam is connected a plow standard having at its lower end an A shaped detachable shovel, of differen
sizes for different uses, wings being bolted along th edges of the shovel and the standard. The upper one of
the wings is hung loosely to the standard, so that it is free to rise and fall, rising just enough to throw off the weeds and vines, leaving the ground level and the po tatoes scattered in the rear of the digger. The improve
ment affords a combined cultivator and potato digger ment affords a combined cultivator and potato digger,
which may also be used for ditching, furrowing out, splitting middles, hilling up, and it may be cheaply and strongly made by any blacksmith.
Straw Stacker. - John P. Wheeler Quincy, Il. A distributing attachment, for removable designed by this inventor, and it may be adjusted to distribute the straw delivered from the chate either in an outward direction to trim up the outer sides of the stack, or scatter it around the central or marginal por-
tions. The driving mechanism of the stackeris utilized to operate the attachment, which is readily adjustable for
any size or height of stack, and works automatically
Fruit Picker. - Anders W. Ohman, Tunsta, Insjon, Sweden. A long rod or handle carries dges of which are projecting teeth or knives, while secured to the under side of the ring is a flexible chute supported upon the handle and terminating at its lower end in a collecting bag. The knives or teeth of the ring are made to cut the stems of the fruit by movement of he handle, when the fruit drops through the chute to e bag without injur
Hog Trap.-James F. Boman and ohn Cornelius, Flat Rock, Ind. This is a combined trap and shipping crate, the trap forming also the crate. It has at its rear end a door sliding in guideways, and the front a horizontally swinging hinged door on which
is pivoted a lever with a recess in one edge opposite a is pivoted a lever with a recess in one edge opposite a
recess in a board of the door, a keeper on the lever, and a toothed arm pivoted on the door extending through head in the opening $\begin{aligned} & \text { is adapted to hold the anima } \\ & \text { and }\end{aligned}$ esses, in order to put a ring in the animal's mouth, et.

Miscellaneous.

Type Writing Machine.-Alfred N. Heine and William K. H. Woerner, Evansville, Ind. This is a machine designed to be cheap, durable, and of simple construction, easily operated, and calling for but ittle skill in its manipulation. It has a peculiar form of hollow prismatic type bar, carried on a type rod, and duced any desired number of characters, preferably elec trotypes, the bar sliding and turning on the type rod. It aso has a convenient arrangement for moving the car riage backward and forward, by which the printing may be seen as fast as made.
Fan and Motor.-George A. Snecker, San Antonio, Texas, and Charles E. Roth, New. York City. A spring motor is held in a clock-like casing, in
such manner that, through suitable mechanism, th pring is adapted to operate a fan shaft, with which a fan is adjustably and removably connected. The device
may be readily attached to any article of furniture or ther support, but is especially adapted for attachment a bedstead.
Fountain Pen.-Marcellus M. Hitt, Luray, Va. This invention provides an attachment tain pen. It consists of an elastic sleeve as one made of soft rubber, with a flexible tongue having on its end a dovetail tip for insertion in the aperture of the pen, the ongue and the pen together forming a reservoir for ink, which is fed automatically as the writing proceeds.
Envelope Opener.-Julius Ropes, Ishpeming, Mich. This is a device forcutting or opening olded edges of different material, the case having
grooved guide for the folded portion of the material t be cut, and being provided with an angularly arranged cutting blade. The device is also well adapted for cutting the leaves of books, etc. It can be made in light, compact, and ornamental form, suitable for carrying in the vest pocket, and can be readily taken apart
the two blades it is usually designed to carry.
Bookbinding.-William P. Sloan, noxville, Tenn. This invention provides for the conecting of signatures or sections by a binding thread with inding thread he bock of each slgnature the passage of the transverse bands. By means of the im provement it is designed to produce a compact and strong book, adapted to be fully opened, so that its leaves will e perfectly flat for conveniently writing upon.
Sled.-James W. Taylor, Vermillion, South Dakota. A simple and durable bob sled has been
esigned by this inventor. It is arranged to permit the unners to readily pass over uneven surfaces in the road without disturbing the position of the box. The front and rear axles are connected with each other, and the
unners are mounted to swing on them, a fifth wheel runners are mounted to swing on them, a fifth wheel the front axle, while there is also a fifth wheel connec on between the front bolster and its bearin.
Sleigh Guard. - Charles N. Hartling, Halifax, Canada. According to this invention, flat
elongated blades or auxiliary runners lie flat against the longated blades or auxiliary runners lie flat against the
ides of the runners, means being provided for raising and lowering the blades, so that when they are lowered hey will serve as runners and prevent sidewise move ny vehicle designed to run upon the snow or ice, and may be easily operated by the rider, and thrown below the shoes or runners to engage the snow or ice, caus ing the vehicle to run straight, but not acting as a Ladder and Truck.-Moritz Roessler, Jr., College Point, N. Y. A ladder which may be quickly raised to a great height, with its base resting on the truck by which it is carried, is provided by this in-
vention, the ladder being effectually braced from the top to the bottom. The raising and lowering mechanism proper point in the ladder is provided a platform. Means re also provided whereby the ladder, when elevated may be brought to a vertical position or placed at any esired inclination.
Roofing Tile.-Francis Andreu, New York City. This is a tile of simple and durable conain water without danger of ly drain and carry off the clay or other suitable material adapted to be readily pressed into shape. The tiles completely interlock on of sides to prevent lateral displacement, and fit one on top direction. The body has corrugations forming, on the on top channels for draining rain water, at the same of the corrugations.
Trap Door for Mines.-John Rees, Hamilton, Iowa. This door is hinged in a stout sup. porting frame to open in both directions, automatically
closing when opened either way. It is preferably made
in two face sections, and its frame is formed to fit at th place to place as may be desired. The construction such that the door retains its position against the air air under constant control and thus defices, keeping th gainst explosions, while also thus affording a salegan gainst explosions, while also saving labor and pr

Boot Tree.-James Bowler, London England. This is an improvement in boot trees formed of two parts hinged together, and provided with extree. The toe and heel portions are of the nsual shape exteriorly, and they are hinged together at about the ankle, with a space between their under sides to permi the heel portion to fold beneath the other and allow the then forced apart by presssing on the two upper portions the tree being then locked in extended position by atch. For convenience of racking, the front portion is made in two parts, united by a hinge, and fixed in rigid position for use by a screw.
Tailor's Measure. - Abraham M. Cone, Lee, Mass. This is an instrum horizontal back bar having a spirit level at or near one o both ends, adjustable horizontal side bars at right angles having spirit levels near their outer ends, and an uprigh od the bar in sliding or adjustable connection with on taking of more accurate measures by getting in a direct taking of more accurate measures by manner points on a level to work from.
Construction of Baskets, ETC. Peter F. Pia, New York City. This invention provides
an improved construction of baskets and other receptacles made of metal, and having their meeting edges fastened together by solder or other means. The basket is formed with a series of side flaps, the meeting edges of which are provided with a dovetail groove and prowith the outer faces of the flaps and secured in the grooves by compressing the walls of the latter. Th astening devices are struck up in the blanks of whic rticle may be made.
Dust Brush.-John J. Hassard, Har on, N.J. This is a brush auapta for walls and ceiling of a room. Its projecting bristles are one end of a long handle, there being also a pulley upon the shaft, and a belt connection whereby the shaft ma be rotated by means of a crank near the other end of the end, to turn the brush end in a horizontal direction fo use on side walls, and other joints of the handle, con nected by sleeves or
Folding Bed.-Henry B. Young, New York City. The bed frame carrying the mattress i
made of angle iron, and pivots near the head turn in earings of the stand pins with its free end on the wrist pin of the corresponding pivot, while each spring is also provided with an ex tension resting on one side of the standard. The construction is simple and durable, and the bed is readils accessible in all its parts for cleaning and other pur
poses. It can be conveniently set up, adjusted and counterbalanced, for folding or extending the bed, which ly held in either position.
Lamp Support.-James R. McGregor New York City. This is a device more especially de igned for use on sewing machines and similar purposes, supporting the lamp so thatit does not interfere with the
work and at the same time so that the rays are thrown where the light is required. It consists of a hanging ongitudinally slotted arm and depending socket in which the shank of the lamp stand may be vertically ad

Sad Iron. - Milton J. Shimer, Free
Free ired shape pa. The body of this iron may be of any de pair,of lugs at each end, on its top face. The handle is detachable, and provided with means for readily gripping and letting go of the staple. To remove the iron from the stove, the handle is simply pressed into posi-
tion to engage the lugs, thus fixing the handle in place, tion to engage the lugs, thus fixing the handle in place,
and when the iron is placed upon the stove its handle may be removed by pressing with the thumb upon may be removed by pressing
lever extending up at one side.
Kitchen Utensil.-Bertha A. Backman, Malden, Mass. This is a cone-shaped shield, comwith each other, for attachment to frying pans to prevent the spattering of grease upon the stove. It has
 etc., in boiling meat or vegetables, to prevent the water from boiling over, or
Tor. - Norman Allen, Rockaway Beach, N. Y. This toy is in the shape of an ege, and contains a follower over which is a folded ship or othe object, so arranged that the whole may be pressed down and concealed within the egg-like body until one end pressed down upon a support, when the folded object
will be forced outward and will automatically unfold and assume its normal shape, standing thus upon one then again be readily folded and pressed back into th body as at first.

Designs.

Spoon. - George Freund, Durango, ol. In the bowl of this spoon is a bird's eye view in which appears a river crossed by several bridges, and a moking chimneys, etc.
Pocketbook. - Isaac Scheuer, New York City. This pocketbook ilas on its outside an ad ditional smaller pocket, the inner sides and bottom of contrast to therigid face of the side of the pocketbook.
Notz.-Copies of any of the above patents will be

arished by Munn \& Co. for 25 cents each. Please end name of the patentee, title of invention, and date of this paper.

new boors and publications.

What Shalli llearn? or The Young

 Men's Business Guide. PhilaPp. 221. Price $\$ 1$. No index.This little work purports to detail, for some 60 differ-
 e method of learning the business in each case, the an. required and the probable prospects of remanera estatement of wase and prospects, while perhaps, in me cases, a little too sanguine, is, on the whole, characterized by conservatism. The preface justly states hat the book is radically different from anything that bas gone before it. For each trade two to six pages are all the way from the analytical chemist, engineer, anker, lawyer, and stock broker down through the trades glass maker, baker, lithographer, and wood engraver that nearly every one can find something about occuations within their scope. The book, while lacking an ndex, has a table of contents which really seems to make he index unnecessary. Moreover, the subjects are arnged alphabetically
ransactions of the American InSTITUTE OF Electrical Engineers.
Vol. IX. Published by the Institute,
New York City. Pp. Ix, 857 .
The Transactions of the American Institute of Electrial Engineers always forms a welcome publication. The subjects of the papers and discussions indicate those of
he day. We can really do no more than commend the the day. We can really do no more than commend the
work to our readers, as it would be quite impossible in work to our readers, as it would be quite impossible in
the limits of our space to give anything more than the he limits of our space to give anything more than the oticed with satisfaction is the papers. One thing to be nd the general creditable make-up of the book is also most commendable.
ifteenth Annual Report of the State Board of Health of the SEVEN MONTHS ENDING JUNE 30, 1892, WITH THE REGISTRATION REPORT FOR 1891 RELATING TO Births, Marriages Deaths, AND
DIvorces. New Haven: Tuttle,
Morehouse \& Taylor. 1893. Pp. xl, More
194.

SCIENTIFIC AMERICAN

bUILDING EDITION.

MAY, 1893.-(No.91.)

TABLE OF CONTENTS.

1. Elegant plate in colors, showing an elegant residence at Bridgeport, Conn. Floor plans and two perspec-
tive elevations. An excellent design. Messrs. tive elevations. An excellent design. Messrs.
Longstaff \& Hurd, architects, Bridgeport, Conn. Plate in colors showing a handsome residence at floor plans. Mr. F. W. Beal, architect, New York. floor plans. Mr. F.
2. A handsome dwelling at Plainfield, N. J. Perspec-
tive views and floor plans. A model design. tive views and floor plans. A model design.
Messrs. Hartwell \& Richardson, architects, Boston, Messrs.
Mass. Mass.
dwelling at Utica, N. Y., erected at a cost of $\$ 4,700$
complete. Floor plans, perspective view, complete. Floor plans, perspective view, etc.
Mr. W. H. Symonds, architect, New York. An old Colonial style of architecture
3. Engravings and floor plan of the Fairfield Congregational Church at Fairfield, Conn., erected at a cost of $\$ 52,000$. Mes
New York City.
4. A stable erected at Plainfield, N. J. A model design. Messrs. Hartwell \& Richardson, architects, Boston,
Mass.
An excellent design for a modern stable at Bridgeport, Conn. Messı
Bridgeport, Conn.
. A residence at Belle Haven, Conn. A very picturesque design, perspective elevation and floor plans. Cost
$\$ 6,000$ complete. Mr. Frank W. Beal, architect, New York City.
View of a tasteful shop for a builder erected at
Neuilly, Paris. Neuilly, Paris.
The Fifth Avenue Theater, New York.-View of the Worthington steam fire engine pump.-View of
the Hygienic Cement and Asphalt Company's watertight scene pit. View of the Edison Electric tight scene pit. View of the Edison Electric
Illuminating Company's switchboard, with particulars of construction, etc.
5. Miscellaneous contents : A Pacific coast bathing es-
tablishment.-An improved spring hinge, illus-tablishment.-An improved spring hinge, illus-
trated.-'The Lewis open fire base burner, illus-trated.-The J. A. Fay and Egan Co.-The H. W. illustrated.-A labor saving screw driver, illus-illustrated-A labor saving screw driver, illus-
trated.-A self-feed rip saw, illustrated.-Shipping trated.-A self-feed rip saw, illustrated--Shipping
a factory across the Atlantic.-Architectural wood turning.-Tnnneling the Simplon.-New resawing
band saw machine, illustrated.-The Wheeler wood band saw machine, illustrated.-The Wheeler
filler.-An improved hip shingle, illustrated.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies, two hundred ordinary book pages; forming, practically, a large and splendid Magazine of Architec-
ture, richly adorned with elegant plates in colors and TURE, richly adorned with elegant plates in colors and
with flne engravings, illustrating the most interesting xamples of Modern Architectural Construction and

The Fullnes

Pusiness and Personal.

The chargefor Insertion under this head is one Dollar a line for each insertion ; about eioht words to a l line. Adurer
tisements must be received at publication oftice as early as

Order pattern letters and figures from the largest vaAcme engine, 1 to 5 H. P. See adv. next issue. "U. S." metal polish. Indianapolis. Samples free. Kemp's Manure Spreader, Syracuse, N. Y. See Adv.
Improved iron planers. W. A. Wilson, Rochester, N.Y. Improved iron planers. W. A. Wilson, Rochester, N.Y.
For pile driving engines. J. S. Mundy, Newark, N. J. Chain Belting \& Grain Dryers, F. H. C. Mey, Buffalo, N. Open-Side Planing and Shaping Ma
Pedrick \& A Yer, Philadelphia, Pa. Best Handle Mach'y. Trevor Mfg. Co., Lockport, N. Y Microbe Killer Water Filter, McConnell Filter Co.
Buffalo, N. \mathbf{Y}. Wiffall, N. Y.
Will purchase patent of meritorious small article
Give particulars. Manufacturer, box 2238, New York. Steam Hammers, 1mproved Hydraulic Jacks, and Tube
Expanders. R. Dudgeon, 24 Columbia St., New York, Screw machines, milling machines, and drill presses,
The Garvin Mach. Co., Laight and Canal Sts., New York. Centrifugal Pumps. Capacity, 100 to 40,000 gals. per
minute. All sizes in stock. Irvin Van Wie, Syracuse, N.Y. To Let-A suite of desirable offices, adjacent to the Scientiffc American offices, to let at moderate
Apply to Munn \& Co., 361 Broadway, New York. Hydrocarbon Burner (Meyer's patent) for burnin crude petroleum under low pressure. See adv. pag
381. Standard Oil Fuel Burner Co., Fort Plain, N. Y. For the original Bogardus Universal Eccentric Mill, Foot and Power Presses, Drills, Shears, etc., address The best book for electricians and beginners in elec tricity is "Experimental Science," by Geo. M. Hopkins.
By mail, $\$ 4$; Munn \& Co., publishers, 361 Broad way, N. Y. Competent persons who desire agencies for a new
popular book, of ready sale, with handsome proft, may popply to Munn \& Co., Scientific American office. 361
Broadway, New York. Broadway, New York.
Patent for Sale-A new specialty, all metal, for gene-
ral and domestic use. Just patented in Europe ral and domestic use. Just patented in Europe and the
United States. Sale established. Offered to responsible United States. Sale established. Offered to responsi
parties. Address P. O. box No. 14, Rochester, N. Y. ight to manufacture and sell same, or to arrange wit right to manufacture and sell same, or to arrange with clusive use for certain purposes. Address, with particu-
lars, Vapor Engine, P. O. box 773 , New York. Any Manufacturer
of hardware or machinist's specialties, desiring to be
 nd can furnish best of references.

HINTS TO CORRESPONDENTS.

Names and AdAress must accompany all letters, or ro attention will be paid thereto. This is for our

MIInerals sent for eexamination should be distinctly
marked or labeled.
(5041) W. D. writes: You will oblige me by giving an explanation of the phenomenon de-
scribed below. It was observed on the 16th of March, at a point on the eastern slope of the Blue Ridge, about
Lalf a mile from the base of the mountain. There were no well defined clouds over the sky, and no appearance of rain showers; bnt the sky was covered only with
light film of haze, not enough to obscure its blue color light film of haze, not enough to obscure its blue color.
The phenomenon was an arc of rainbow ilike spectrum, distinctly green to yellow, but faintly defined as to the other colors of the rain bow. Its length was apparenti]
45. Its position was between the zenith and the sun, apparently 10° from the zenith, and 45 ' from the sun
It was convex toward the sun, the zenith being its apparent center. The phenomenon was first seen about 40 'clock P.M., and lasted at least an hour. The above
description agrees with the observation of more than description agrees with the observation of more than
twenty persons. A. The phenomenon described is
and the atmosphere and generally preceding a change weather. They are supposed to be caused by the refrac tion and reffection of sunlight by focakes of snow in the
upper atmoshere, the various forms of snow flakes upper atmosphere, the various forms of snow flakee
producing the variation in the form of the halos. They are described in Kaemtz "Meteorology."
(5042) A. H. P. asks : 1. Why is the water on small bodies of land surrounded by salt
water, fresh. And where does it come from? A. The water on islands surrounded by salt water is derived
from the rain falling upon the island, except in from the rain falling upon the island, except in
some peculiar localities, in which it is derived from subterranean communication with the main land through deep gravel beds. 2. Does the fair weather wind blow
from the north and the foul from the south in all regions? Why is it thus? A. Fair weather winds
blow from both north and south in most regions wher special conditions of climate do not prevail, as in the eastern United States. There are many localities where
south and southwest wind are storm breeders, while the northeastern wind in the Eastern States is usually storm wind. West of the Rocky Mountains the condi-
tions are somewhatdifferent, owing to the different direc
tion of the coast line and the great mountain ranges from the coast line and mountain ranges of the Eastern States.
The elevated plateau between the Rocky Mountains and Sierras also influence and localize the direction of storm winds. The story of storm winds is a long one for Note man's "Eclectic Physical Geography."
(5043) C. E. E. asks (1) for some scale for sizes of wire in making electromagnets. What size wire for magnets for door bells, etc. A. The winding of he bell magnets is generally arranged with reference to The ecomon equal to the magnet and line wire. 2. I would like to know the size of wire for magnet for a 3 and 4 inch bell, and how large wire, and how large size should a magne be for a quarter inch core? A. For a bell of the size
named the coresof your magnet should be $7-16$ of an inch named the cores of your magnet should be 7.16 of an inch
in diameter, 2 inches long, and the depth of the winding in diameter, 2 inches long, and the depth of the winding
should be equal to the diameter of the core. The rule in shoula be equal to the diameter of the core. The rule in
regard to the depth of the winding applies to your $/ / 4$ inch core
(5044) A. S. writes : I desire to protect safe in office, which is $1 / 2$ mile from residence, against burglars, by electric bells, by means of circuit breakers on office doors and windows. If an open circuit is used
wire might be cnt, if closed circuit it might be grounded. Ire might be cat, if closed circuit it might be grounded.
Is possible to use one line wire for both open and closed Isit possible to use one line wire for both open and closed
circuit system by alternately making the line at intervals the minutes an open and then a closed system through thereby detect trouble within 30 minutes, if the line has been either cut or grounded. If it is impossible to do so, pease state if it must take two lines, one open and the itting the wrong or grounding the wrong wire and ther by give the alarm ? A. Without doubt your best plan io ropose.
(5045) J. S. K. asks how to mould compencils for use in electric besteries end whether it would be necessary to clean the sheet zinc, or if when it is
melted he could remove the foreign substance from the op. How can the mould be made and the moulding carsand mould for your zinc castings and mel and make
 te zinc as you would brass or any other metal. 2.
Please state the price of mercury for amalgamation purposes. A. Metallic mercury is quoted at 82 cents per
(5046) J. B., New York, asks: What is the largest boat I can buila without requiring the service
of a pilot? A. Sail boats and yachts do not require the
(5047) B. W. R. asks : Do the propellers on a twin screw steamship run same way, or rit
left? A. The twin propellers run right and left.
(5048) H. C. T. writes: Can you explain where and how the terms "up north" and "down south" where and how the to the inclination of the axis to the
arose? Is it plane of the ecliptic. or purelya a conventional term? A.
The terms "up north" and "down south" probably origineted in the Eastern states, and may have been
suggested by the course of the rivers, which run in a suggested by the course of the erivers, which run in a
southerly direction. The position of the pole star may
s. southerly direction. The position of the pole star may
also have had its influence in designating the north as "up north," and of course its opposite would be "down
(5049) A. H. says: The awning deck of my steam launch was covered with oilcloth. The oilcloth all cracked up, no doubt from the sun shining on it.
Will you please inform me with what I can paint the oil-
cloth so that it will not crack I I thougt coat of boiled linseed oil would preserve it. The awn ing deck is stationary and the oilcloth is tacked on; therefore the paint put on the oilcloth need not be pliable when dry. A. Oilcloth cannot be saved from cracking
when exposed to the sun. Any desired color in ground when exposed to the sun. Any desired color in ground paint mixed with boiled
(5050) J. H. asks: Will there be any difference in the hydraulic pressure of a pipe say one mile ong, 10 inches diameter, one end 20 feet lower than the other, with both ends closed, and pressure applied by a
steam pump at the center of pipe oranyother point? A. There will be no difference in pressure dueto the place he pump connection; but the lower end will have about ${ }^{5 \pi}{ }^{5}$ nd pounds more pressure per square inch than the upper (5051) E. W. asks: Was not the disco ery of the moons of Mars indicated by.some astronomical nowledge before it really came to pass? I read in
"Gulliver's Travels" ${ }^{\text {a very }}$ accurate description of the two satellites, that seems to be too close to the facts to be merely a coincidence. A. The discovery of the moons of Condition or perturbation of the planet, although the ab ence of a satellite and its possiblities has been long disussed. The Gullivers story was only a romance that ac
(5052) H. C. M. asks whether it is possi ble to build a storage battery to be supplied from a com-
mon incandescent electric light plant that would "store " sufficient electricity to operate a one horse power moto some ewo or haree hours per day. A. You will find a
storage battery that will answer your purpose described
in "Experimental American, vol. 61, page 22 ; but we advise you to pur
(5053) E. F. B. asks: 1. How large y C. L. Woolley, be to light three 16 candle power 20 hould be 6×8 inches, and you will require 11 cells of battery. 2. Please explain the difference, if there is any, between putting all the plates of a storage battery in one
cell and placing them only two in a cell. A. By placing cell and placing them only two in a cell. A. By placing
all the paleetof each cell together the resistance of.the
battery is diminished and ita amperage is increased.
(5054) G. R. W. asks: 1 II it possible to magnetize a piece of steel about one-fourth of an inch
square, and how shall p proceed todo it ? A. Harden the piece of steel at the ends only, and draw the temper to purpish brown. Apply the steel to the poles of a strong from the center to the end, and with the other pole of the magnet from the center to the opposite end. 2
Could I revolve a piece of tin, about 1 inch in circumfer ence, by the aid of this magnet? Which would be the
best way to work the same? A. There is no way of do ing this with the magnet alone.
(5055) S. H. writes: 1. If you have a number of the Scientipic American containing ex
planation of difference between a universal focusiens for a photo. camera) and one which requires focusing, will you kindly send it to above address ? A. There can be no that name is simply a wide-angled lens, the back focus of which is comparatively short. With such a lens a very
slight movement of the plate or lens throws the imag slight movement of the plate or lens throws the image
into or out of focus, and when it is adjusted at what into or out of focus, and when it is adjusted at what
might be called an average focus, the picture is likely to be as sharp as it would be if the focusing were done for each view. 2. What shape, diameter, and focus lens should $31 / 4 \times 4 \frac{1 / 2}{4}$ plate ? A. It is best to buy a wide-angled shor focus lens from a reputable maker. The focus might be
about $31 /$ inches You can get single lenses for about $\$ 3$ nd you can purchsea a very good rectilinear lens for $\$ 1$ or $\$ 15$.
(5056) L. A. T. asks: 1. Have gasoline with what results? A. Gasoline engines have been
used for agricultural purposes. We do not know that they have been applied to thrashing. 2. What advantag would they have over a steam engine? A. They would
probably be lighter than a steam engine and boiler of the probably be lighter than a steam engine and boiler of the
same power. 3 . Why have they not been used more extensively? Successful engines are of practically recen date. 4. How many inches does the mercurial colum
(5057) B. M. C. asks how to cover pulley with paper. A. Scratch the face of the pulley with a
rough file thoroughly, so that there are no bright or smooth places. Then swab the surface with a solution of nitric acid 1 part, water 4 parts, for 15 minutes; the
wash with boiling hot water.
Having prepared a a pot the best tough glue that you can get, stir into the glue half ounce of a strong solution tannic acid, oak bark, or glue; stir quickly while hot and apply to the paper pulley as convenient, and draw the paper as tightly as
possible to the pulley, overlapping as many folds as may be required. By a little management and moistening of he paper, it will bind very hard on the pulley when dry,
and will not come off or get loose untilit is worn Use strong hardware wrapping paper.- From the "Scientific A
(5058) L. C. D. says: Will you please to placed upon the market? A.
Powdered turmeric

Mis the first three ingredients in a mortar capable of holding one gallon, then add the eggs, which have been
whiped previously, and incorporate thoroughly until an whipped previously, and incorporate thoroughly until an
emulsion is formed $;$ nest mix separately the mustard emulsion is formed ; next mix separately the mustard
and water, allow to stand ten or fifteen minutes, or until and water, allow to stand ten or fifteen minutes, or untin
the flavor is fully developea, then add the last four in gredients, mix, and add the liquid gradually to the conemulsion; finally, strain through cheese cloth. This is a seasonable preparation, and may serve not only for the delectation of the pharmacist himself, but would furnish an article of sale as well.-Pharm. Era.
(5059) C. N. asks : How is artificial malable of a fine polish, is made by precipitating a solution o sulphate of copper in the cold by carbonate of soda or of washed and dried and made into a paste with plaster of Paris and water ; allow the composition to harden.
(5060) H. S. S. asks for the best method of preserving eggs. A. Cold storage is probably the best
method, but the following is largely used : In the common "liming" process a tight barrel is half filled with
cold water, into which is stirred slaked lime and salt in the proportion of about one-half pound each for every pail ors add emall quantity of niter - no suan, and to the half barrel of pickle. Into this the egge, which must be perfectly fresh and sound, are let down with dish, when they settle to the bottom, small end down. The eggs isplace the liquid, so that when the barrel is full of eggs it is also full of the pickle. Eggs thus
pickled, if kept in a cool place, will ordinarily keep good for several months. Long storage in this liquid, however is apt to make the shells brittle and impart a limy taste ed by anointing the egg all over with lard mefore avoting in the pickle. Egss thus prepered are said to keep per in the pickle. Eggs thus prepared are said to keep per
fectly for six months or more when stored in a cool fectly
cellar.
(5061
(5061) G. M. S. asks: What causes fish is not changed at short intervals? Is oxygen the lifesustaining substance, the same as in mammalia, or, if not, what is in? And can the substance consumed by ine matter removed which causes the death of the fish, so as
to prolong life say 24 or 48 hours? A. Fish depend upon
gen is exhausted the fish die. You can keep up the suply of oxygen by continually aerating the water,
(5062) J. S. G. says: Please inform me ous best, strongest, and most durable disinfectant for or different umigation. 2. Sulphate of iron, copperas, dissolved in water in the proportion of $11 / 2$ pounds to the gallon, for soil pipes, sewers, etc. 3. Sulphate of zinc and common alt, dissolved together in water in the proportions of g, bed linen, etc. Zinc sulphate is a trong poison
(5063) W. A. C.-I noticed in your number March 25,1892 , a description of the process of using
old tin cans. Can you give me any information about tilizing scraps of tin? 1st. Can the tin be separated from the iron by simply heating and melting it off in a the tin, how are the iron products separated from the tin products? 3d. How is the tin salt then made commercially available? A. The tin cannot be separated from the iron by heat. The tin scrap is boiled in weak hydrochloric acid until the tin is dissolved. The tin solution is made into perchloride or tin salt, as used by
dyers, and into oxide for polishing. Any form of tin salt dyers, and into oxide for polishing.
is salable in the chemical trade.
(5064) A. P. G., writing from Meridian, Miss, says: One of the firms of this city, in connection
with their business, run a small gasoline engine, the oiler of which is made of heavy sheet copper, and is 8 inches long by 9 inches in diameter. The water was Yesterday morning their helper lit the gas as naval, Yesterday morning their helper lit the gas as usual,
ot knowing the boiler wasdry. The gas had burned some ttle time before he noticed that he had no water. He tarted the pump by hand, and the boiler immediately collapsed. The center puckered and lapped and contracted to $11 / 4$ inches hollow, while the boiler was dented nd warped all over. What caused it? A. The water could not have been entirely blown out of the boiler, nhen beho 3 , hen the cold water was pumpedin, producing a vacuum, oiler.
(5065) C. L. writes: 1. I take the liberty of asking for information in regard to a set of storage
ells made by myself. My cells consist of lead plates, 5 nches $\times 6$ inches, placed in round jars, 6×8, such as used for the ordinary gravity cell. The plates are threesteenths inch in thickness, having about 50 one-half ach holes drilled in regular order. I have filled these oles and covered the surface of the plates with a thick aste of red lead and dilute sulphuric acid for the negave and litharge and acid for the positive plates. Is this The first cell consisted of three negatives and two positives. This cell was charged with the current om four gravity cells, and would run a Porter two amperes, about one hour. I have since constructed
two more cells, using in one cell four negatives and four positives, and for want of sufficient plates used four negaves and three positives for the second cell. After chargingthese cells andaddingthe firstmentionedcell, they still
will only run the motor the same time-one hour. Any will only run the motor the same time-one hour. Any
one of the cells will run the motor one hour. Please explain why the three do no more work than one. Is it necessary to only fill the holes in plates or also coat the plates? A. Your arrangement of cells is not favorable
to the most economical working of the motor. The voltage of one cell is sufficient for the motor; by increas-
ng the voltage you only facilitate the exhaustion of the ing the voltage you only facilitate the exhaustion of the
battery. If you connect your cells in parallel, 3 cells of battery will probably run the motor three times as long as Does the thickness of the plate have anything to do with the successful operation of the cell, and how many amperes ought the above cell to supply? To charge the hree cells, I use twelve 6×8 gravity cells. After filling holes and coating plates, I placed thin sheets of cardthe paste in position as the plates, between them, holding ours. I then removed cardboard and separated the pates by means of fiber strips about one-eighth inch A. The thickness of the plate is favorable to the durabil . of the battery; otherwise there is no the durabil having a thick plate. Your battery should yield from 4 to 12 amperes.
(5066) T. S. H. S. asks : Is it possible to cycles in a reasonable time? If so, is it used extensively? What is the best method to apply steam to heat an oven, say 6 feet $\times 6$ feet $\times 4$ feet ? The temperature should be not higher than 300° Fah. If a lower temperature (say
250° is used, how long will it take to properly bake 250°) is used, how long will it take to properly bake
enamel on bicycles? Would it be more economical than enamel on bicycles? Would it be more economical than
gas? Any information as to what has or is being done gas? Any information as to what has or is being done
in this line will be very acceptable. A. Steam heat is in eneral use for baking japanned or enameled ware. Fo be used, and higher steam pressure than usual is required to control the heat, as there is considerable margin be tween the heat of the steam in the boiler and the heat de livered from the pipes in the oven. With 85 pounds boiler pressure and a short distance between boiler and
oven, you can obtain the desired temperature in a close oven, you can obtain the desired temperature in a close
oven, as you describe, with a gridiron or flat coil on the foor of 150 feet $3 / 4$ inch pipe and 75 feet $3 / 4$ pipe on th hree sides, near the bottom, the fourth side being for the although the time depends mnch upon the quality of the apan. It may not be more economical than gas, but ectly safe from setting fire to the japan vapor is expen (5067) J. W. N. again writes : On April $15, \mathrm{~J} . \mathrm{W}$. N., No. 4888, you were good enough to answee
an inquiry I made concerning hollow walls. I would like now to ask, Should not a brick wall of say 8 to 12 inche with two thicknesses of heavy tarred felt nailed on the
inside immediately_to the brick, then furred with 2 inch
furring and then the usual lath and plaster, be as warm or warmer and much cheaper than any hollowwall ? And also do you think that plastering a rough coat on to the
brick wall inside, then felting, then furring, then the usual lath and plaster, would answer the purpose betternamely, keeping out the cold and being cheaper? And would not the same methods of finishing a brick wall in side apply to a stone wall? A. The methods you suggest will, no doubt, be somewhat cheaper, but will not give
as good an insulator, for the reason that in saving the cost of the inner 4 inch wall, you lose not only the value of the 4 inch wall as an insulator, but also the air space, ter; besides the two thicknesses of tarred felt would be come a nuisance to most people, as the tar odor would penetrate the whole house for a long time. The plaste upon the inside and felting would only add a half or three-fourths inch to the thickness of a solid wall and cmplicate the putting on of a substantial furring by hid ing the brick courses and make the nailing of the strips ncertain. Cheapness may be good in some places, but 0 your severe climate no dwelling should have less tha
(5068) C. D. asks: 1. What is the most conomical battery for silver plating? I want to do some plating in one gallon solution. Give description, dimen ion, and mode of construction of battery. A. For silve plating on a small scale, probably the Smee battery is the
best. These batteries are made in different sizes. You might make or purchase one with two zinc plates, 4×8 inches, 14 of an inch thick, and a platinized silver plate 4×8 inches, or, in lieu thereof, a platinized carbon plate. The zincs must be thoroughly amalgamated. The olution used is acid 1 part, water 10 to 11 parts. 2 . I or 1 ary? I intend to use an ordinary incand cells are neces don't intend to use steady. A. We think you will find lighting your shop with incandescent lights with a cur ent derived from primary batteries will prove expensive and troublesome. If you use a 20 volt lamp, you migh be able to light it by the use of 14 or 15 Bunsen cells. 3 .
How is that battery made from tomato cans? A. We would not recommend it for electric lighting. It is de
(5069) M. O. G. - For carbon paper (10 parts lard, 1 part of wax and mix with a sufficient quantity of fine lampblack. Saturate unglazed paper. A rather fine pointed bone stylus is excellent fo tracing designs, etc.

TO INVENTORS

An experience of forty-four years, and the preparatio of more than one hundred thousand applications for paents at home and abroad, enable us to understand the qualed facilities for procuring patents everywhere. A synopsis of the patent laws of the United States and al ontemn countres es may be had onapplication, and person broad, arés invited to write to this office for prices which are low, in accordance with the times and our ex tensive facilities for conducting the business. Addres way, New York.

INDEX OF INVENTIONS

For which Letters Patent of the

 United states were GrantedMay 16, 1893 ,
and EACH BEARING THAT DATE

Alarm. See Burglar alarm.
Aluminous compound, Harison \& Semper
Aluminous compounds, making, Harrison \& Sem-

Board, punching machi........ u.. ciarì
 Bolt. See Door boit
 ler

Bratko. Sere, H. Wraklshel. W. Sitai engine braike.
Brate beam, Robertson \& Caritton......
Breast trap attachment, H. Borbes.:
Brick machine, C. H. Horton............

 Witubivivik敫

$\underset{ }{\mathrm{Car}}$

ngine. see Gas or oil motor engine. Rotary

TRADE MARKS.

DESIGNS.

Dforetisements.	
ORDINARY RATES.	
Inside Page, each insertion - - $\mathbf{7 5}$ cents a line Back Page, each insertion - -- $\mathbf{\$ 1 . 0 0}$ a line	
The above are charges per agate line-about eight words per line. This notice shows the width of the line, tisements at the same rate per agate line, by measure ment, as the letter press. Advertisements must be morning to appear in the following week's issue.	
Seneca Falls Mfg. Co. 695 Water St, Seneca Fallis, N.Y.	

$\stackrel{r}{\text { Fen }}$

THE COPYING PAD -HOW TOMAK

NEW DEPARTURE jection, LATERN mRoans of the Incandescent Electric Current,
PARAGON ARC LIGHT PROJECTOR

If you want the best Lathe and Drill

[^0]

STATIONARY
and PORTABLE PETROLEUM MOTORS.

J. M. GROB \& CO., Mfrs. LEIPZIC-EUTRITZSCH (CRMANY)

SPECIAL NOTICE!

 Rubber Rolls and Wheels.
 NICKEL electro-plating dpparatus and Material.

A N IDEAL STUB PEN-Esterbrook's Jackson Stub, No. 442 a STUB PEN. ASK YOUR STATIONER FOR THEM. Price

THE "GOLUMBIA"
CRUDE OIL BURNER and AIR INJECTOR SHIPMAN ENGINE MANUF'G CO., Rochester, N. \mathbf{y}.

MECHANICS' TOOLS.

Steel Type for Witing Machines,

Inventions and Novelties Developed.

CHEMICAL TEREMS: Relling and Pronunciation of, adopted by the

O. 179 Wandinger \&

Send for Catalague of Machinst Supplies.

ELECTRO MOTOR SIMPLE HOW TO

MODEL COEA $=$ WORK. any article in metal or wood. Coin operat ed slot ma
chines a specialty. Send stamp for catalogue. Amer
Vendin Mach. Co., 29 Murray Strett, New York

Scientitic Anncricat Supplement This is a separate and distinct publication from THE
SCIENTIFIC AMERICAN, but is uniform therewith in size, every number containing sixteen large pages full of engravings, many of which are taken from foreign papers , and includes a very wide range of contents. It prethe principal departments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural
History, Geography, Archæology, Astronomy ChemisHistory, Geography, Archæology, Astronomy Chemis-
try, Electricity, Light, Heat, Mechanical Engineering, Steam and Railway Engineering, Mining, Ship Building,
Marine Engineering, Photography, Technology, Manufacturing Industries, Sanitary Engineering, Agriculture.
Horticulture, Domestic Economy, Biography, Medicine, facturing Industries, Sanitary Engineering, Agriculture.
Horticulture, Domestic Economy, Biography, Medicine, etc. A vast amount of fresh and valuable information
obtainable in no other publication. btainable in no other publication.
and Manufactures at home and abroad are Hillustrated and described in the SUPPLEMENT.
Price for the SUPPLEMENT
Canada, and Mexico, $\$ 5.00$ a year; or one SCIENTIFIC AMERICAN and one copy of the SUPPLE-
MENT, both mailed for one year to one address for $\$ 7.00$. Single copies, 10 cents. Address and remit by postal order,

Ghuilding © Eldition.

The Scientific American Architects' anl
Builders' Edition is issued monthly. $\$ 2.50$ a year Single copies, 25 cents. Thirty-two large quarto pages, richly adorned with elegant piates in colors, and with other fine engravings; illustrating the most interesting
examples of modern architectural construction and allied subjects.
A special feature is the presentation in each number dences, city and country, including those of very mod-
rate cost as well as the more rrate cost as well as the more expensive. Drawings in
perspective and in color are given, together with Plans, The elegance and cheapness of this magnificent work have won for it the Largest Circulation of any
Architectural publication in the world. Sold by all newsdealers. \$2.50 a year. Remit to f envelopes, securely sealed, and correctly addressed. seldom goes astray, but is at the sender's risk. Address
all all letters and make all orders. drafts, etc., payable to
MUNN \& CO., 361 liroadway, New Yorls. , and includes a very wide range of contents. It preIry, Electricity, Light, Heat, Mechanical Engineering,
Steam and Railway Engineering, Mining, Ship Building,

xpress money order, or check, MUN N $\&$ CO.. 361 Broadway, New York,

TANNING: THEORY AND PRACTICE

 ESTABLISHED 1845The Most Popular Scientific Paper in the World Only 83.00 a Year, Including Posta This widely circulated and splendidly illustrated teen pages of useful information and a large number of riginal engravings of new inventions and discoveries,
epresenting Engineering Works, Steam Machinery, ew Inventions, Novelties in Mechanics, Manufactures, ecture, Agriculture, Horticulture, Natural History, Terumplete list of patents each week. FIFIC AMERICAN will be sent for one yeora of the ScIENCanada, or Mexico, on receipt of three dollars by the publishers; six months, 81.50 ; three months, 81.00 .
Clubs.-Special rates for several names, and to Post The safest way to remit is by Postal Order, Draft. or

ROOFING
 stamp for samples, and state size of roof.
EXCELSIOR PANT AND ROOFING CO
$\mathbf{1 5 5} \& 15 \%$ Duane St., New York, N. Y.
 THE GRIFFIN MILIL the wet or dry process. It works better and at less expense than any other Mill, and is conceded to be the only perfect pulverizing Mill manufactured.
BRADLEY FERTILIZER CO., 92 STATE ST, BOSTON.

AIR COMPRESSOR FOR SALE,

OOPPERRESOURCESOFTHE

 SMOKELESS POWDER AND MAGAthe varioussmokeless powders for mitilitary purposeses
ow in existence, and the weapons mostly used there-
with.

 grounds of the Parliament Buildings, at Ottawa, A. Macdonald.

Artists are in titel to submit height, which must be accompa nied with proposals for A premium of five hundred dollars will be paid the artist whose model and proposal are accepted. $\$ 300.00$
will be paid for the model considered next in order of Will be paid for the model considered next in order
merit, and $\$ 20000$ for the 3 d successful model. The models must be delivered to the Department of Public Works, Ottawa, on or before the 1st day of November next, and the premium models will remain the property of the Department. The others will be re-
turned to the artists, if they so express their desire when submitting them.
Copies of the conditions, etc., may be obtained on application at the office of the High Commissioner of
Canada, No. 10 Victoria Chambers, London, S. W., Eng canada, No. 10 Victoria Chambers, London, S. W., Eng-
land ; Hon. Hector Fabre, 10 Rue de Rome, Paris; Diland; Hon. Hector Fabre, 10 Rue de Rome, Paris; DiInterior, Brussels; and to the Secretary of the Depart-
ment of I ublic Works, Ottawa, Canada.
$\begin{gathered}\text { Department of Public works, } \\ \text { Ottawa April } 17,1883\end{gathered}$$\quad$ E. F. E. ROY, $\begin{aligned} & \text { Secretarı }\end{aligned}$
MALLEABLE ANO FINE GRAY IRONALSO STEEL

STEEL TYPE FOR TYPEWRITERS

 MENT. Any desired back number of the SCIENTIFIC
AMERIAN SUPIEMENT can be had at this office for
Iocents. Also to be had of newsdealers in all parts of
the country.

STORAGE BAITERIES. WRITE FOR PARTICULARS. STORAGE BATTERY SUPPLY C0. 23d ST. S SAVE.NEW YORK.

 that they want to swindle WHEELS WORKING MODELS \& LIGHT MACHINERY. INVENTIONS DEVELOPED. Send for rrodel Circular. Jones Bros. E CD., Cinti, O. I
C. HOCHSTRASSEL

TTTER MAKER, HMENS

JUST PUBLISHED.

Star * Maps
By Richard A. Proctor, F.R.A.S.
A series of twelve elegantly printed Maps of the
Heavens, one for every month in the year. Specially prepared for use in North America. With descriptions
accompanying each map, giving the names of the principal stars and constellations, showing their relative positions at given hours and days of the month. A most beautiful and convenient work, specially
adapted for the use of those who desire to acquire a general knnwledge of the starry realms.
preparing and using artificial luminous stars as an aid in flxing in the mind the names and places of the
various stars and constellations, by Alfred E. Beach. Altogether this is one of the most and valuable works of the kind ever popblished. One quarto volume,
S2.50, postpaid.

MUNN \&

DRIL CHUCKS, wiwly =

MAJOR'S CEMENT MENOS EVERYTHING

 to CHAS BESELERMAKERZIBCENTRE ST.

CHAPMAN VALVE MANUFACTURING COMPANY,
For STEAM, WATER, GAS, AMMONIA, OIL, ACID, Etc.; also We make a Specialty of Valves for Superheated and Pigh Pressure Steam, 100 Pounds

 Send for Oirculars and Prices. ato

A New and Valuable Book.

12,500 Receipts. 708 Pages. Price $\$ 5$. This splendi Seep, \$6. Half-Morocco, \$6.50. This splendid work contains a careful compilation of
the most useful Receipts and Replies given int theNotes
and and Queries of correspondents as pubished in the Scientitite American during the past fifty years;
with many valuable and important additions. Over Twelve Thousand selected Receipts are
here collected nearly every branch of the useful arts
being represented. It is by far the most comprehensive volume of the kind ever placed before the public.
The work may be regarded as the provuct of the stud-
ies and practical experince of the ablest themists and
 concise form convenient for ready use.
Almost every inquiry that can be thought of, relating
to formule used in the various manufacturing indusAlmost every in in iry that can be thought of. relating
to formule used in the rarious manufacturing indus-
tries, will here be found answered.
Instructions for working many different processes in Instructions for
the arts are given.
Those who are engaged in any branch of industry
probably will find in this book much that is of practical
value in their respective calling Those who are in search of independent business or
employment, relating to the home manufacture of sam
ple articles, will find in it hundreds of most excellent
sugestions. MUNN \& Cend for Descriptive Circular
SCIENTIFIC AMERICAN OFFICE A New and Valuable Book.

Pfovertisements.
ORDINARY RATES. nside Page, each insertion, - 75 cents a line For some classes of Advertisements, Special and The abose are charges per agate line-about eight
words per line. This noticeshows the width of the ine
nd is and is set in agate type. Engravings may head adver-

Victor Bicycles Are first in tires and improvements. The best pneumatic with inner tubes removable through the rim. If you are going o ride why not ride the best? Victor catalog is yours for the asking. Overman Wheel Co., Boston, Washing on, Denver, San Francisco A.G Spalding Bros., Chicago, New York, Philadelphia.

COLD FORGED PRODUCT.
"Rogers' Divire sceron:" 19, 1887;
uly 10,$188 ;$
July 19, 1892 .
It will turn like a screw with a hammer, and will not break the fibers of t common scre and, being cold forg, the entire surface has a metallic skin
For applying ste ror applying steps to Ele has no supe

AMERICAN SCREW CO. PROVIDENCE, R. I
THE WILMOT \& HOBBS MFC. COMPANY
 COLD ROLLED SHEET AND STRIP STEEL

HW.JOHIS as8essuas STEAM PACKING

Boiler Coverings, Millboard, Roofing Building Felt, Liquid Paints, Etc. H. W. JOHHS MFG. CO., 87 Maiden Lane, N. Y. A man

without a conscience is hardly worse off than without a watch.No excuse for lacking either.
A handsome 14-karat gold, filled, or coin-silver watch; jeweled movement ; a perfect time-keeper; stem-set and stem-winding (in about five seconds); may be bought for ten dollars-even less. It is far superior to any Swiss watch at the price:-The new, perfected, quickwinding "Waterbury.

Your jeweler sells it in a great variety of designs datides hunting-case, dainty chate

PATENTS! Mitt the publication of thin connection MMERICAN, continue to examine imprirc

 st they have had fortu-fove years

 NUNN. CO., Solicitors of Patents,

IN OTE MUNUTE
 IT WILS CONVINCE YOU OF OUR ABKITY TO SUPPLY, TOILET PAPER EOR LESS MONEY THAN IT CAN BE OBTAINED ELSEWHERE AA.P.WYAPER Co.albany, n.Y

 KODAKS.
 Take one with You to the World's Fair.

 The Smith Premier Typewriter tial Features Greatly Perfected.
 in Ten Seconds without Rouniling, and Nearly Silent. The.Smith Premier Typewriter Co., Syracuse, N. Y., U. S. A. We have 20 branch offices in the principal cities throughout the United States.

No one ever wrote 1000 Letters an Hour, EDISON MIMEOGRAPH

CHOLERA: EPIDEMIOLOGY OF.-

The Greut fompry Seading Dithogrobpherst

 PHOTO-SMOKE

This instru ment we have found ver useful in our shop, and we offer it for sale It is as well made as anysimilar tool in the mar MASON REGULATOR CO., Boston, Mess.

Phectric * Mrotors

FOR ALL POWER PURPOSES.
MILIS, FACTORIES, SHOPS, LOCOMOTIVE WORKS ETC, OPEPATED BY OUR
 Give Greater Returns for Outlay, than those op
GENERAL ELECTRIC COMPANY,
DISTRICT OFFICES
4 Broad Street.....itree
Equitande Race Suiding.
s.......

patent jacket ketiles

Plain or Porcelain Lined. ested to 100 Ib. pressure. Send for Lists. Front \& RROWS.-5AVVERY CO. Reed Streets, Philadelphia, Pa.

THE PREMIER CAMERA

Is The Best in Market.
Simple of Manipulation.
ims are used. is always set. PRICE \$18.00.
Send for Catalogue and copy of Modern Photography ROCHESTER OPTICAL COMPANY,

14 S. Water St., ROCHESTER, N. Y.
The Amanam Bell Tapponen Cmapay

I25 MILK ST., BOSTON, MASS.

This Company owns the Letters Patent No. 186,787, granted to Alexander Graham Bell, January 30, 1877, the scope of which has been defined by the Supreme Court of he United States in the following terms : "The patent itself is for the mechanical structure of an electric telephone to be used to produce the electrical action on which the first patent rests. The third laim is for the use in such instruments of a diaphragm, made of a plate of iron or steel, or other material capable of inductive action; the fifth, of a permanent magnet constructed as described, with a coil upon the end or ends nearest the
plate; the sixth, of a sounding box as deplate; the sixth, of a sounding box as described; the seventh, of a speaking or
hearing tube as described for conveying hearing tube as described for conveying
the sounds; and the eighth, of a permathe sounds; and the eighth, of a perma-
nent magnet and plate combined. The nent magnet and plate combined. The claim is not for these several things in
and of themselves, but for an electric telphone in the construction of which these phone in the construction of which these things or any of them are used.

This Company also owns Letters Patent No. 463,569, granted to Emile Ber liner, November 17, 1891, for a Combined Telegraph and Telephone; and controls Letters Patent No. 474,231, granted to Speaking T. Edison, May b, 180, for a peaking Telegraph, which cover fundaf microphone transmitters and of carbon telephones.

[^0]:

