
a Weekly journal of practical information, art, science, mechanics, Chemistry, and manufactures.

THE BROADWAY CABLE RAILWAY, NEW YORK.

 We illustrate the subway under Broadway opposite the power house at the corner of Broadway and Houston Street In this subway, which is over 100 feet in length along Broadway and its floor 40 feet beneath the street, are placed the great inclined sheaves which the street, are placed the great inclined sheaves whichdirect the cables from the driving wheels in the engine direct the cables from the driving wheels in the engine
room to the vertical sheaves on the overhead beam and to the arched cableways immediately under the grip slots.
The two sheaves in the foreground carry the cable running to 36 th Street and return.

The inclined sheaves in the distance carry the cable the Battery and return.
The cables between the Battery and 36th Street were tarted into motion on Thursday, May 11, by the seven year old daughter of John D. Crimmins, by opening he steam valve of the 2,000 horse power engine in the engine room in the basement of the great power house f the company at the Houston Street station.
The machinery and cables moved in their regular that the balance car on the incline moved but a few inches. A car has been run over the line from 36th

Street to Houston Street, and the line to the Battery will soon be under car trial.
The drivers of the present horse cars are now being chooled in the manipulation of the grips and brakes on the uptown line, and as soon as in proper drill will be placed in charge of the downtown cars. All cars will at first be run in time with the horse cars, and the time quickened as soon as the men acquire experience their new duties.
The illustrations of the immense steel structure of the central power house of the Broadway Cable Rail(Continued on page 312.)

the broadway cable railway-SUbWay under street opposite the houston street power house.

suruntifir Amorican.

HSTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. PUBLISHED WEEKLY AT
No. 361 BROADWAY, NEW YORK.
\qquad
TERMS FOR THE SCIENTIFIC AMERICAN.

Building Edition. THE ARCHITECTS AND BUILDERS EDITIIN of THE SCIENTIFIC AMERI-
CAN is a large and splendid illustrated periodical, issuedrmonthly, con-
taining floor plans, perspective views, and sheets of constructive details.

 MUNN \& CO., Publishers, $\begin{aligned} & 361 \text { Broadway, New York } \\ & \text {, }\end{aligned}$ The eafest way to remit is by postal order express mones order
or bank check. Make all remitances payabie to order of MUNN Readers are specially requested to notify the
pilure delay, or irregularity in receipt of papers.

NEW YORK, SATURDAY, MAY 20, 1893

TABLE OF CONTENTS OF
 SCIENTIFIC AMERICAN SUPPLEMENT NO. 907.

For the Week Ending May 20, 1893. Price 10 cents. For sale by all newsdealers. ARCH/WOLOGY-The American Exposition now Open in
Madrid.-The Mexican Halls.-Interesting archæological ex-
hibits at the Madrid Exposition. -2 illustrations............. II. BIOGRAPHY.-Nikola Testla and His Wonderf.... III. BOTANY. -Gases in Living Plants.-By J. C. ARTHUR - Some
interesting phenoma of plant life.-The breathing of plants

 IV. CHEMISTRY. Behavior of Some Metals with Gases.-By G.

 Water of the Vigne and a Arre.- An Winteresting article Paris.-The
supply of water for the city of Paris.- 5 illustrations..............

IX. METEOROLOGY.-Australian Hail Storms.-Interesting de X. MINING ENGINEERING.-Famous Gold Nugget..-World

 The Viking sibio. - Departure from. Ciristiania for Chicago of
the reproduction of the ancient Viking ship. 1 illustration....... xIII. PHARMACY. - Abstracts from the French Journals-Miscel-
laneous chemicai and pharmaceutical notes...........................
 XV. SUR VEYING.-The Dredge-Steward Omnitelemeter.-............. modi-
filcation of the ordinary box sextant for determining distances.illustrations..
VI. TECHNOL

PRICES AT THE WORLD'S COLUMBIAN EXPOSITION The specter of extortion is in danger of keeping many people from attending the World's Columbian Exposition, not, however, so much because of its actual presence, as because of the fear of its existence. Dur ing the first week or two that the Exposition was open there was without doubt excuse for these fears, but this is a thing of the past now. A typical case wa that of three dollars a day for a room in a shack of a building, the entire furnishing of the room costing jus forty-five dollars. Inside the grounds some of the
restaurants charged most unreasonable prices, particu larly in the cases of two foreign restaurants, whick seemed to be run on the plan that Americans wer gullible and would pay any price without complaint Investigations by representatives of the Scientific american lead to the conclusion that visitors at the Exposition need have no fear of excessive charges if they use judgment and discretion in securing accommodations and making other arrangements. The Exposition management has no jurisdiction whateve over the hotels, and cannot therefore regulate their prices, but fortunately there is no need of such juris diction, because of the intervention of the law of sup ply and demand. Within walking distance of the Exposition grounds are comfortable accommodation for over one hundred thousand people, while through out other parts of the city are accommodations for two or three times as many more people, and in all parts of Chicago are plenty of honest landlords whose prices are reasonable and who can be relied upon not to re sort to extortion. Intending visitors who wish accom modations sccured in advance, and who have no other means of securing them, should apply to the Bureau o Public Comfort connected with the Exposition man agement, which was organized for the special purpose of protecting visitors from extortionists. There is no reason why visitors should fall into the hands of sharks, except their own carelessness. As with rooms, so it is with restaurants. Throughout the city are innumer able restaurants which furnish meals at reasonable rates, so that strangers with limited means can secure as comfortable living in Chicago this summer as in any other large city in the country at but little if any more other
cost.
As to the charges at the restaurants in the Expo sition grounds, the Exposition management has re quired that all bills of fare and accompanying prices be submitted to a committee appointed for the purpose, and these prices are regulated in accordance with prices at restaurants of corresponding degree in the center of the city. There may be a slight increase but this little increase visitors will willingly pay, when they appreciate the fact that one-quarter of the gross receipts of the restaurants go into the Exposition treasury toward making the great undertaking financial success.
The cry of extortion is a false one so far as present conditions and future prospects are concerned, and should not deter one person from visiting the Exposition, which is the greatest industrial achievement in the history of the United States.

ONE HUNDRED AND TWELVE AND ONE HALF HILES PER HOUR.

Sixty years ago, when the steam engine began it competition with the stage coach as a means of passenger transit, its velocity was naturally a matter of won der and comment. We read in the books of that period of the great speed of fifteen or even twenty miles an hour being attained by the locomotive. Under the conditions of the day such a speed was no trifle. Tlie loosely coupled cars, with inefficient springs, rattled along over the imperfect rails and roadbed. The engine filled the air with sparks and cinders, which drift ed into the cars and made life miserable for the passen gers. The rails on which the cars moved were made of wooden beams, along which strips of iron were spiked Sometimes the end of one of these strips becam loosened, and bending upward over the wheel int "snake heads," would be driven through the floor o the car into the body of some unfortunate passenger, with fatal result.
The contrast between the old and the new was viv idly brought out in the exhibit prepared by the New York Central Railroad for the World's Columbian Ex position. In our issue of last week we showed the two extremes of railroad engineering in the State of New York. The De Witt Clinton of 1831 stands alongside of the New York Central engine No. 999 of 1893-the pygmy beside the giant. The great dimensions of en gine 999 were not all that entitled it to respect
The engine drawing a regular train of cars on the track of the New York Central road has surpassed the speed of any object propelled by man short of a projectile. The speed of the wind in the most powerful gales has been equaled, and the flight of the swiftest bird through the air has been surpassed. The mile record for a locomotive engine on Tuesday, May 9, was reduced by it to 35 seconds. With grim humor the engineer said of the machine, she was not feeling her best, although she gave a new world's record. On
new speed test was made. Batavia was passed at a speed of sixty miles an hour. This was increased until mile was run in thirty-five seconds, and soon after a mile was made in thirty-two seconds. For some dis tance a rate almost as great was maintained.
This speed, subjected to analysis, reveals the great ness of the achievement. In every second of its pro gress the engine covered a distance of 165 feet. This is the velocity which a body falling in a vacuum would acquire in a fall of 425 feet. In other words, if the engine could have had its course deflected to a vertical one, without loss of velocity, it would have been thrown to this height. A man at his best can run at a speed of 30 feet per second for a few seconds at a time. His best long jump is about 23 feet. With a rain running at the velocity of 165 feet, it seems as if the old stories of trains jumping chasms or running ver bridges too weak to support them might be real ized.
There are certain landmarks set for speed achievements by our imaginations. The "even time" of ten seconds for one hundred yards has been surpassed by a running man. The bicyclist it is claimed has sur passed his "even time" of a mile in two minutes, and aided by ball bearings and pneumatic tires the trotting horse drawing a sulky is approaching the same figures. The carrier pigeon with only aerial friction to contend against approaches a speed of a mile in one minute The running horse may yet reach the record of a mile in a minute and a half. Engine 999 has already es tablished her goal. It is a mile in thirty seconds, and it is believed that she will soon reach it
The achievement means a great deal. The advocates of flying machines speak of a possible speed of sixty or perhaps a hundred miles an hour. Recent experi ments with direct-geared electric motors have indicated the possibility of a speed of one hundred and twenty miles an hour. Atmospheric resistance at this rate begins to be taken into account as an important factor
Geo. Westinghouse, Jr., a recognized authority on the subject, has shown the difficulties in bringing fast trains to a stop and in reducing their speed on emergencies. His communication was reprinted in our issue of October 8, 1892. He depicts the many troubles to be encountered in running trains at the rate of ninety miles an hour. In the face of all this the great engine of the Columbian Exposition, while still new, while drawing a regular passenger train, and without any pecial preparation, runs at the rate of $1121 / 2$ miles an hour. It is a striking instance of theory and practice brought face to face.

THE ELECTRIC RAILWAY TROLLEY

Another broad patent for a gigantic monopoly has recently been issued by the Patent Office. This is a patent for the invention of the late Chas. J. Van Depoele, who was a well known electrician. The patent was applied for in 1887, but other inventors claimed ubstantially the same thing at the same time, which ed to the taking of evidence from the several claimants to determine who was the original and first inventor. These proceedings, termed interference pro ceedings, have recently been brought to a close, and the Patent Office awards the patent to the administra tor of Dr. Van Depoele, the inventor himself having passed away. The patent has been purchased by the Thomson-Houston Electric Co., and if its validity is sustained, of which there is at present no reason to doubt, the above company will enjoy a far-reaching monopoly, covering substantially all the electric rail ways in the country and the plants therewith con nected. Over six thousand miles of these railways are now in operation and they are being extended rapidly in all directions. This monopoly has seventeen year to run. It is probably of greater importance to the public and of more value to its owners than the tele ohone invention.
The claims of the Van Depoele patent are very broad and comprehensive. The principal claims are as follows :
The combination of a car, an overhead conductor above the car, an upwardly extending and laterally movable arm carried by the car and having its upper end free, and a contact device carried by the arm at its free end, and making underneath contact with the conductor.
The combination of a car, an overhead conductor above the car, a contact device making underneath contact with the conductor, and an arm on the car movable on both a vertical and a transverse axis and carring the contact device.
In an electric railway the combination of a car, a conductor suspended above the line of travel of the car, a rearwardly extending arm pivotally supported on top of the car so as to swing laterally and provided at its outer end with a contact device engaging the under side of the suspended conductor, and a tension spring for maintaining an upward pressure contact with the conductor, substantially as described.

Over one thousand steamships are traversing the four great ocean routes.

There was a great drop in the number of visitors at the World's Columbian Exposition grounds immediately following the opening day. The attendance during the week did not average over 35,000 paid visitors daily. In many respects this small attendance was a fortunate thing for the Exposition, as it granted exhibitors opportunity to complete the work of installing their exhibits without being interfered with by crowds of sightseers. The result was that an immense amount of work was accomplished both inside the buildings and in completing the work of laying out the grounds. Much to the surprise of everybody who had not witnessed the progress of installing exhibits, the Government building was the first one completed, The machines shown by the War Department in this building which manufacture cartridges, and other machines shown by the government mint which manufacture souvenir coins, to demonstrate the manner in which silver and gold coins are made, attracted especial at tention, not alone from the interest of the general public in these things, but from the fact that they were about the only machines which were prompt in start ing with the opening of the Exposition.
Another exhibit in the Government building which has proved particularly attractive to visitors is that of the models shown by the Patent Office. This exhibit is very complete, comprising something like 3,000 models representing as nearly as possible every important line of invention. A large number of the models shown were made by the Patent Office for this exhibit, and they include many interesting historical inventions. In connection with the more importan inventions many models are shown to illustrate the progress made in this particular line of invention. The exhibits are especially complete in firearms, steam en gines of all kinds, agricultural implements and especially in all kinds of labor-saving devices.
The appearance of the official catalogue on the opening day of the Exposition was a surprise, espe cially because of its complete condition. This catalogue is of different form than such catalogues usually are, a different volume being issued for each depart-
ment. This is a great convenience, because a bound melume of all the catalogues would be very bulky and volume of all the catalogues would be very bulky and
approach in size a book half as large as the Chicago City Directory. Each catalogue contains considerable condensed information regarding the Exposition, its officials and other subjects, besides general information regarding the building and exhibits it directly refers to. A different scheme of installation was followed in nearly every building because of the differences in design of the buildings. In each catalogue are diagrams showing the scheme of installation of the special building. to which the catalogue refers. By using this diagram a visitor can readily find just the location of any particular exhibit, as allof the exhibits have references to the particular section in which they are installed. In general it can be said of each building that the sections are arranged alphabetically one way and numerically another. If the reference following a certain exhibit should be D-4, an examination of the diagram would show exactly the relation this space bears to the building. The catalogue of the English exhibit was issued promptly and is an excellent specimen of printing. It contains a map of the grounds and buildings upon which the position of the Victoria House and the British exhibits in each building are indicated by red marks.
An unfortunate misunderstanding arose in the Department of Mechanic Arts immediately following the opening of the Exposition regarding the matter of power. The exhibitors seemed to infer that whatever power they wished was to be furnished by the Exposition without cost, while the Exposition proposed to charge $\$ 60$ per horse power during the Exposition. -The difficulty seemed to be chiefly because the exhibitors likened this Exposition to a county fair, which is obliged to offer all sorts of inducements to attract exhibits. The Exposition management does not consider that it is holding the Exposition for charitable purposes, but for the public benefit, and it believes
that every exhibitor who makes a creditable showing that every exhibitor who makes a creditable showing
will reap inestimable benefits from the display of his machines or wares. Some of the exhibitors, in their excitement, threatened to cover up their exhibits with canvas, while others proposed to withdraw their ex hibits. The Exposition does not propose to permit either of these things to be done.
As has been said before in these columns, the color effects at the Exposition have been designed to be made
by flags and bunting. For this purpose there are over
700 flagstaffs on the buildings and throughout the 700 flagstaffs on the buildings and throughout the grounds that have been set up by the Exposition man opening day was to see a flag thrown to the breeze from nearly every one of these staffs at the instant the Ex nearly every one of these staffs at the instant the Ex-
position was declared open. Most of the flags shown position was declared open. Most of the flags shown
are the American colors, but the Exposition also shows are the American colors, butthe Exposition also shows
its own colors, and in addition there are the special banners and emblems of forty-seven different nations. All the American flags were made in this country, while most of the foreign flags were manufactured in France. The special bunting for exterior and interior decoraion was manufactured on the grounds by the Exposi ion management, and over 5,000 such flags have been made in stock. The flags for exterior decoration are made of material that is not only strong, but with fast colors, while the bunting for interior use is consider ably cheaper material. In the larger buildings a large mount of this bunting is used; in the Manufactures and Liberal Arts building there are at least 400 sets of flags representing all the nations exhibiting. Hanging from the top of each immense truss is an American flag of immense size, which is very conspicuous among the other flags. On the exterior of this building there are 200 flagstaffs. It has been found quite impossible to make an elaborate display of the flags of each nation at all times, and they have therefore been divided into relays, as it were, by which the flags of sixteen different nations are exhibited in daily rotation.
Strict rules regarding the use of vehicles in the Ex position grounds are now in force. No wagon or vehicle of any kind is permitted on the promenades except the police and hospital patrol wagons in the employ of the Exposition. Bicycles and all other vehicles are exclud ed, excepting of course the wheel chairs, which are a special concession. All supplies for use in the restaur ants or for other purposes are delivered during the night time, and in special cases where deliveries are to be made during the day time, they must be made in push carts wherever possible.
Advertising matter may be distributed within rea sonable limits, and the Exposition has not yet drawn any close lines within which exhibitors must keep themselves. Circulars, catalogues and other literature pertaining to any specific exhibit may be freely dis tributed. There will be no general addvertising al lowed that shall in any way interfere with the best in erests of both exhibitors as a class and of the visitors The French fine arts display in the Gallery of Fine Arts was completed and thrown open to the public on May 5. This is believed to be the finest display by all odds that the French people have ever made, though perhaps not quite so extensive as the one at their own Exposition.
There was much complaint during the first week that the Exposition was opened of extortionate prices in the restaurants. In most cases there was ground or these complaints, and so much was said about the extortion by the local press and the public in general that the Exposition management took the matter in prices in all of the restaurants with prices in restaurants of corresponding degree in the heart of the city The result is that prices in all cases have been modified when necessary, so that a visitor can now get as good a meal at the Exposition grounds as in any restaurant in Chicago, for little, if any, advance. The fact that one-quarter of the gross receipts of all the restaurants
go toward defraying the expenses of the Exposition accounts for any slight increase in price.
The Intramural Railway was not ready for operation the first week and scarcely ran a train for passengers, owing to delay in completing some of the motor cars and in making connections in the steam plant. On May 8, however, everything was completed so that the trains were running regularly and many passengers were carried.
The first evening the Exposition was opened for the purpose of fully testing the electric display, which has received so much attention from the engineering department, and which has been anticipated with so much expectation by the general public, was on May 8. The attendance in the evening was large, and the results were much finer than had been anticipated, even by the engineering department. The scenes about immense search lights were used. The Administration building was illuminated in the most elaborate way, both exterior and interior, while the faces of the buildings adjoining the basin were ablaze with electric lights. The display was not so elaborate as it will be a little later, because the electric fountains did not play.
The Sunday question, which has been so seriously agitated for many months past, was given a practical test on May 7, the first Sunday after the Exposition was formally opened. The Sunday-closing rule was rigidly enforced, the foreign commissioners, as well as many government and Exposition officials, were ex-
cluded from the grounds. Fully seventy-five thousand people gathered outside the gates, expecting to be ad mitted, as this was the first Sunday that the grounds
have been closed since work was begun on the Exposition. In addition to these people there were believed to be one hundred thousand people in the city who also expected to spend the day at the grounds, but who did not go out because of the fact that the papers announced that the Exposition was closed. The results of the day were not particularly satisfactory to either side in the Sunday-closing discussion, because of the behavior of the crowds outside the gates and of t general drunkenness and lawlessness that resulted. T movement favoring an open Sunday received consi erable strength as the result of this one day's exp ment, and everything points to an open Sunday least by June first, if not before.

Phillips Flying Machine.

In the many attempts which have been madıt solve the problem of aerial nàvigation, the princo most in favor of late years has been the ${ }^{+}$of la plane surfaces. Upon this principle for o^{-}- \bar{s} eight years past Mr. Horatio Phillips has illne at length he has succeeded in demonstrafie Pc principle is fundamentally correct. But ${ }_{2}, \mathrm{ph}$! duced the dimensions of his planes from $\leqslant ;$ ssin five feet broad to those of Venetian blind le \mathbf{R} to his advantage. His method of proceedine l entirely different from that hitherto pursuenicas working in the same field, as neither large 烸, faces nor balloon arrangements are employed,
stored-up energy used. Advantage is taken vacuum and a plenum formed by induced vacuum and a plenum formed by induced the upper and under surfaces respectively or ori
slats or laths fixed horizontally in a verti The slats or laths fixed horizontally in a verti The
These slats are curved on their upper and faces and are thicker at their leading edg ${ }^{e}{ }_{w}$ their trailing edge. The curves are such that ${ }_{2 s}$ vex upper surface near the front edge deflects to upward, thus creating a partial vacuum on thi, surface of the slat or sustainer. The under sur1wiv the slat is formed to a parabolic curve which gradu puts the particles of air into motion downward, tr producing an excess of pressure on the under surf of the slats. The principle has been put into prac by Mr. Phillips in a machine which broadly resem canoe with a sail like a Venetian blind with the s fixed wide open, the machine being driven forward an air propeller to which motion is given by a stea engine.
The carriage is 25 feet long and 18 inches wide, ng to a point at the front end. It is borne on wheels a foot in diameter, one in front and two at ear. There are 50 sustainers or slats, each $11 /$ i wide and 22 feet long, fitted 2 inches apart in a 22 feet wide and 9 feet 6 inches in height. The su ers have a combined area of lifting surface of 136 se feet. The boiler is a cylindrical phosphor bronze sel 12 inches in diameter and 16 inches in length. heating surface is 12 square feet, and is made \mathfrak{t} Field tubes $3 / 4$ inch outside diameter and 14 ihbs ong. The firegrate area is 70 square inches, an t fuel used is Welsh coal. The engine is compound, ${ }^{\text {w }}$ ing cylinders $13 / 4$ inch by $35 / 8$ inch by 6 inch st. fitted with ordinary slide valves. The working p sure of steam is 180 lb . per square inch. The propel is 6 feet in diameter and 8 feet pitch, and has a p. jected area of blade surface of 4 square feet. Th speed is about 400 revolutions per minute, and the est) mated speed of the machine about 35 miles an hour The weights of the various parts of the machine ar approximately as follows: Carriage and wheels, 60 lb . machinery complete in working order, with water i boiler and fire on grate, 200 lb .; sustainers, 70 lb .; tot. weight of machine, 330 lb .; total weight, lifted an arried, including 72 lb . of added weight, 402 lb . In order to test the machine a wooden track 628 fet in circumference and about 6 feet wide has been 1 in the gun-proving grounds of Messrs. Ccgswell \& I rison, at Harrow, the machine being tethered to ? tral post. In some trials which we recently witne a number of runs were made, with the result t speed of 28 miles an hour was attained. As regt the ascensional powers of the machine, it was sho that it had a lift of about 3 feet from the ground at rear. The rise reached its maximum when the chine ran in the face of the wind, and was continut over about two-thirds of the track. The machine w also moored by a stern rope in which a dynamome was inserted, and on the engine being run at speed, the dead pull was 75 lb . On the whole the chine is one of promise, and is certainly a step in vance in aerial navigation.-Iron.

Fast Time of the Campania.

The new Cunarder, the Campania, arrived out Queenstown from New York on the morning of 12 , having made the voyage in 5 days, 17 hours, an minutes, thus beating by more than two hours best previous eastward record, namely, that of New York, in 5 days, 19 hours, and 57 minutes. it best day's runs of the Campania were 481, 490, 4747i and 492 miles, and the total distance traverseass 2,868 miles. An illustrated description of the Camia* was published in Scientific American of Maria

THE WORLD'S COLUMBIAN EXPOSITION-THE POPE'S PHONOGRAPHIC MESSAGE TO AMERICA.
We recently gave a description of the first trial of a phonograph by his Holiness the Pope at Rome, and we now present an engraving of the scene as given in th) London Graphic.
The Pope gave a private audience on March 19, in study, to Mr. Stephen Moriarty, who was introduced Mgr. Merry del Val, the papal chamberlain. Mr. ,riarty had with him a phonograph, by means of ich he delivered an address in Italian congratulat; the Pope on the occasion of his iscopal jubilee. He went on to say at he feltdeeply honored in being the rer of two messages-one from the Cardinal Manning and the other Cardinal Gibbons, Archbishop of timore, who would in their own ${ }^{2}$ press their devotion to his s. He concluded by begging pe to speak into the phonosore expression of love and his , which might be delivered to man Catholics of America on casion of the opening of the o Exhibition. He pointed out the Pope granted his request, ld be the first time in the history Papacy that the voice of the gn Pontiff had been heard in $\stackrel{a}{a}$
Pope then listened to the mesom the late Cardinal Manning, ich his Eminence asked for a ing and expressed a hope that the olic faith would soon spread over whole world. The Pope was tly affected when he heard the ce of the dead cardinal. He then ard the message of Cardinal Gib-
ns, who asked for the blessing of God upon the pe. His Holiness promised to send a phonographic ssage to the United States, and invited Mr. Moriarty eturn for another audience. This was given on onday, in the Pope's private study, the members of the Papal Court being present. At the request of his oliness, the messages of Cardinal Manning and dardinal Gibbons were repeated on the phonograph. he members of the Papal Court were amazed at hear the voices of the two cardinals loudly and clearly oduced, while the Pope sat back on his throne g at their astonishment. The Pope then said
ill now send my message to the people of United States," and bending over the phonoph , he spoke into it. Then, turning to Mr. riarty, he said: "I hand you this message; guard arefully, for it is the expression of my love for all
peopie of the United States. I wish you to deliver ith your own hand to the President." This message, ich is in Latin, by the Pope's special request wil t be published before it s been reproduced in inerica.

THE CROSSING OF RIVERS by means of leathERN bottles.

The advantages that an army in campaign can obtain from the use of leathrn bottles as floating suports cannot be overestiated. A leathern bottle ade from an ox hide is tble of sustaining upon aurface of the water a : ight exceeding that of o men, and may be sily used for the creation rapidly manufactured fts. Although the subet is somewhat technical appears to us of interest to show how it is possible o make these bottles in ' $t u$ by means of the hides the animals which serve the feeding of the solers, and which the troops lemselves daily slaughter considerable numbers. concerns this, the Joural du Genie Russe conins some detailed inforation that we shall anaze.
tAn ox may be slaughred in three ways. The ist, and most imperfect, ethod consists in strikg it in the forehead with felling ax. Two men en seize the animal by

Fig. 1.-MANNER of cutting the ox. Fig. 2-mandfacture of the leathern bottle.

Fio. 3.-MILITARY RAFTS FORMED OF leathern bottlea.
be taken not to cut the hide. The right hand, open or closed according to the stress to be exerted, is used for separating the flesh from the hide, while the left hand acts upon the latter.
It is now a question of closing the apertures that the hide presents. To this effect, holes 2 inches in width and 3 inches apart are made around the apertures and upon the two thicknesses at once (Fig. 2). Then the skin is turned inside out and a wooden pin 5 or 6 inches in length and $3 / 4$ inch in diameter is inserted in the
the horns, throw it down and cut its throat. The second, which is less cruel and more expeditious, requires a little more skill on the part of the men who are called upon to apply it. A two-edged knife is arranged between the nape and the first vertebra and driven in with a blow of the fist, and the operation is then finished as above. The third comprises the following operations. The fore legs of the ox are first tied together, and then the hind ones. On causing the former and latter to approach each other, the animal
is thrown down. Its four legs are then tied together

the pope's phonographic message to america.
and its throat is cut. This process is the easiest to put in practice by inexperienced men. It has the advantage over the preceding that it is applicable to horses. After the animal has been killed, its head is cut off according to the line, C D, and an incision is made from D to J (Fig. 1). Afterward, the skin is cut from the legs below the knees and the bones are removed by a disarticulation of the knee joints. The skinning is begun at the neck. An incision is made with a knife, and the hide is turned up on one side of the paunch so as to disengage the shoulder blade, which is then detached. Next, the corresponding leg is skinned. After this the same operation is performed on the other side. Then the hide of both sides is acted upon at the same time, and the lungs, liver, stomach, spleen and intestines are removed in order to facilitate the rest of the skinning. For the posterior part of the body, one operates in the same order, first on the back ligature is made behind the pin, which holds it in place. This done, the skin is turned right side out and the tying of the neck is begun. A blunt pointed pin about 12 inches in length and $11 / 2$ inches in diameter is introduced into the holes in such a way as to perforate the two sides of the hide and bend them alternately to the right and left, and then a ligature is made with eight or ten turns of strong twine. In order to tie the legs, eight or ten turns of wine are made, but no pin is employed. Before closing the fourth leg, the hide is inflated either with a bellows or the mouth. In the latter case, a reed pipe, T (Fig. 2), is used. The raft is formed of logs and cross ties from 12 to 14 feet in length and about 3 inches in diameter, assembled with tenons, or more simply with ligatures. The bottles, to the number of from four to six, are connected by the legs, which turn up over the cross pieces and are tied thereto with twine. Fig. 3 represents a raft thus formed, carrying Russian troops. Tholes are arranged for the oars, and, finally, the frame is covered with 5 inch planks for the carriage of infantry and with 14 inch ones for campaign artillery. A leathern bottle made of an ox hide weighs about 26 pounds. When it is inflated, it has a sustaining power sensibly equal to the weight of the animal from which it is derived, say about 440 pounds. A raft of four bottles is capable of supporting ten men while still preserving a projection of 6 inches above the surface of the water. With six bottles it will sustain twenty men and project from 3 to 4 inches above the surface Among these men, there are four oarsnen, who sit at the sides.
These bottles can be used immediately after their manufacture, but a few precautions are necessary in order to preserve them for a certain length of time. In the first place, at the time of preparation, the flesh side is treated with 13 pounds of marine salt, and the hide is then dried for three or four days under a shed. fter this of tallow and birch tar. This coating is renewed when some time is to intervene before the bottles are used. They are always preserved with the hairy side within, under well ventilated sheds, and they are inspected from time to time in order to make sure that rodents are not injuring them. During the course of practical exercises, it is well to take them out of the water every day, without discharging the air from them, and to place them upon planks under shelter from the sun. It is necessary also, every week or two, to renew the cords with which they are at-tached.-La Nature.

The Master Car Builders' Association recommend a drop test for ascertaining the strength of car couplers. The Buckeye Malleable Iron Co. has constructed a drop machine for testing the Buckeye coupler made by them. One or two couplers out of every heat are tested in this drop, and the lot is rejected if those selected do not stand. The machine consists of an upright frame, in which a $1,640 \mathrm{lb}$. weight moves, something like a pile driver. Three drops of 10 ft . and two of 15 ft . are used. The coupling iron is placed in the machine, knuckle up, and the weight drops upon it.

A MEASURING AND DRAWING TOOL.
A readily adjusted and easily applied tool for conveniently finding bevels, pitches, degrees, and lengths in framing roofs and similar purposes, is shown in the accompanying illustration, and has been patented by Mr. L. O. Allred, Palestine, Texas. The larger view is a partial representation in perspective, and the smaller one is a plan view of the straight edge. Pivoted in a slotted bar which forms the straight edge is a plate made in the shape of one-eighth of a regular octagon, with two sides of equal length intersecting at the acute angle and two other sides of equal length intersecting at the obtuse angle, the long and short sides forming a right angle or square at their intersections on either side. The plate has a series of apertures to receive the pivot bolt connecting it with the straight edge, and the upper edge of the latter indicates on various graduations and scales on both faces of the plate. On the faces of the plate are also arranged tables for figuring lengths. The edges of the sides of the plate have marginal lines marked B, SB, T, ST, for blade, sub-blade, tongue, and sub-tongue, and the mar-

allered's measuring and drawing tool.
gins are divided by lines indicated by even and uneven numerals, the lines being drawn from the centers of correspondingly marked apertures in the plate forming pivotal points of the straight edge, by means of which the rise, pitch, and run of a roof may be indicated. Numbers on the tongues and sub-tongues, and in rise columns, have the same meaning as corresponding figures at pivotal points or centers, and when the tool is set for a certain pitch of roof or rafter, the blade shows the bottom or lower end cut of the timber, and the tongue the upper end cut. Every pivotal point on either face of the plate is a center from which the tool can be set and used for laying off correctly a square, square miter, octagon, octagon miter, degrees, etc.

A VIKING SHIP

Within a comparatively recent period the remains have been dug up, at various places in Norway, of ancient Scandinavian vessels, models of which are to be exhibited at Chicago. Our illustration represents one of these models, which has recently sailed for America, after visiting most of the towns on the Nor-
wegian coast. It is an exact copy of an old Viking ves sel, the remains of which were discovered in 1880, near Sandefjord, Norway. The model is splendidly built, of the best materials; but it is said that the modern work in no way surpasses the original, so far as that has been preserved. Not a little apprehension has been felt at the risk of an Atlantic voyage with such a vessel, the original Viking vessels having been intended only for cruising along the European coast and in the Mediterranean, where they made numerous voyages during the ninth, tenth, and eleventh centuries. The great lug sail has been made in four parts, laced together, and reefing consists in removing one portion and lowering the sail accordingly. The men have to sleep on the bottom boards, and provisions are carried in tinned iron cases. All decorations, such as the shields, dragon's head and tail, etc., were stowed away, and fenders were fixed along the sides. The rudder which is placed at the side, is said to prove quite as ef fective as a modern one placed at the stern. The vessel is 74 feet long between stem and stern, 16 feet broad amidships, and draws 5 feet of water, its original being by far the largest craft found from the olden times. Local tradition in the neighborhood where the remains of the ancient vessel were dug up had it that here was the last resting place of a mighty king, who had been buried with costly treasures near his body.

SIMPLE HYGROSCOPE.

bY geo. m. hopkins.
In the sultry days of summer we hear a great deal about humidity. This means great discomfort to almost about hum
To be really comfortable on a hot summer's day we do not need shade, cooling drinks, and fans so much as dry air. When the air is dry, nature's method of cooling by spontaneous evaporation of moisture from the skin is carried on to the comfort and satisfaction of those who are compelled to spend the heated term in a warm climate; but when the air is overcharged with moisture nature's cooling process ceases and discomfort results To determine by observation how thermal and hygroscopic conditions are related to the enjoyment of existence in hot weather, it is necessary, in addition to a thermometer-which nearly every one possesses-to have a hygroscope or hygrometer of some kind that will either indicate the hygrometric state of the air or afford a means of actually measuring the percentage of moisture in the air.
The annexed engravings illustrate a hygroscopewhich may be used for measuring the moisture in the air with tolerable accuracy, and which might therefore be called with equal propriety a hygrometer.
The instrument depends for its action on the expansion and contraction of a strip of cardboard (Bristol board), formed into a helix and rendered impervious to moisture on the outer surface. The helix is rigidly held at one end while the opposite end carries an index which moves over a graduated dial.
The simplest form of the instrument is shown in Fig. 1. In this the upper end of the helix is glued to a cork which fits tightly on the wire projecting from the center of the dial. The lower end of the helix is cemented to a paper index which is perforated to receive the wire. To reduce friction, the hole in the index is black-leaded by twirling in it the point of a very soft lead pencil.
The form shown in Fig. 2 (in which parts are broken
away) is like that already described, except in the manner of supporting the helix and in the arrangement of the index. The index in this case is attached to a common needle or pin, which passes through hole in the center of the dial and is insertec cork in the end of the helix. In the end of th farthest from the dial is glued a cork, which i ported by an angled wire projecting from the ba the dial.
When the cardboard helix is as dry as it can made a zero mark is drawn opposite the point of t index, and on a very damp and sultry day the instru

Fig. 1.-SIMPLE HYGROSCOPE.
ment is placed in a steamy atmosphere until the index has moved as far as it will go from the zero mark; the coil is then inserted in the mouth without bringing it in contact with the tongue or lips, when it is breathed upon until the indexstops moving and a mark is made opposite the point of the index. This mark is numbered 100, as it is assumed that the atmosphere surrounding the helix at the time of making the 100 mark was saturated. The space between the 0 and 100 marks is now divided into 100 equal parts. The helix must be fixed so that it will not change its position relative to the scale, otherwise the adjustment may be lost.
|The percentage of moisture in the air will be indi-

Fig. 2.- sensitive hygroscope.
cated by position of the index on the dial. If it points to 75 , the air is within 25 per cent of saturation. If 80,20 per cent, and so on. The index makes something more than a half turn between 0 and 100 .
The important part of the instrument is the paper helix, but its preparation is very simple. A strip of thin Bristol board, $1 / 4$ inch wide and $61 / 2$ inches long, is wet on one side and wound on a lead pencil or similar object, with the dry side next the pencil. The ends are secured by winding a small rubber band several times around the pencil, as shown in Fig. 3.
When the paper helix thus formed is perfectly dry and before it is removed from the pencil the outer surface only of the cardboard is covered with two coats of

-ruchenta-

Fig. 3.-FORMING THE HELIX.

shellac varnish, the first coat being allowed to dry thoroughly before the second is applied.
The helix is now allowed to remain in a warm dry place for a week or more, to allow the varnish to become perfectly dry and hard. Neglect of this last precaution will insure failure, as the paper will not return to its original form after being expanded unless the varnish is hard.

A Solder for Aluminum.-R. Heaton.-The solder is an alloy of aluminum and tin, suitable proportions being 45 parts tin to 11 parts aluminum. The metals are melted separately, poured together, and then cast into suitable strips or ingots. No flux is required.

First Public Exhibition of Edison's Kinetograph. At the regular monthly meeting of the Department Dhysics of the Brooklyn Institute, May 9, the memwere enabled, through the courtesy of Mr. Edison, mine the new instrument known as the kinetoh. The instrument in its complete form consists n optical lantern, a mechanical device by which soving image is projected on the screen simultanesly with the production by a phonograph of the fords or song which accompany the movements pictured. For example, the photograph of a prima donna would be shown on the screen, with the movements of the lips, the head, and the body, together with the changes of facial expression, while the phonograph would produce the song; but to arrange this apparatus for exhibition for a single evening was impracticable. Therefore, a small instrument designed for individual observation, and which simply shows the movements without the accompanying words, was shown to the members and their friends who were present.
Mr. George M. Hopkins, president of the department, before proceeding to the exhibition of the instrument offered a brief explanation, in which he said: "This apparatus is the refinement of Plateau's phenakistoscope or the zootrope, and like everything Mr. Edison undertakes, it is carried to great perfection. The principle can be readily understood by any one who has ever examined the instrument I have mentioned. Persistence of vision is depended upon to blend the successive images into one continuous ever-changing photographic picture.
"In addition to Plateau's experiments, I might refer to the work accomplished by Muybridge and Anschuetz, who very successfully photographed animals in motion, and to Demeny, who produced an instrument called the phonoscope, which gave the facial expression while words were being spoken, so that deaf and dumb people could readily understand. But these instruments, having but twenty-five or thirty pictures for each subject, could not be made to blend the different movements sufficiently to make the image appear like a continuous photograph of moving things; the change from one picture to the next was abrupt and not realistic. In Mr. Edison's machine far more perfect results are secured. The fundamental feature in his experiments is the camera, by means of which the pictures are taken. This camera starts, moves, and stops the sensitive strip which receives the photographic image forty-six times a second, and the exposure of the plate takes place in one-eighth of this time, or in about one-fifty-seventh of a second. The lens for producing these pictures was made to order at an enormous expense, and every detail at this end of the experiment was carefully looked after. There are 700 impressions on each strip, and when these pictures are shown in succession in the kinetograph the light is intercep ${ }^{\text {ted }} 700$ times during one revolution of the strip. The duration of each image is one-ninety-second of a second, and the entire strip passes through the instrument in about thirty seconds. In the kinetograph each image dwells upon the retina until it is replaced by the succeeding one, and the difference between any picture and the succeeding one or preceding one is so slight as to render it impossible to observe the intermittent character of the picture. To explain in a very imperfect way the manner in which the photographs are produced, I will present the familiar dancing skele ton on the screen. You will notice that the image appears to be continuous, but the eye fails to observe the cutting off of the light, and the image simply appears to change its position without being at all intermittent; but when the instrument is turned slowly, you will notice that the period of eclipse is much longer than the period of illumination. The photographs on the kinetograph strip were taken in some such way as this. I will exhibit an ordinary zootrope adapted to the lantern, which shows the principle of the kinetograph. In this instrument, a disk having a radial slit is revolved rapidly in front of a disk bearing a series of images in different positions, which are arranged radially. The relative speeds of these disks are such that when they are revolved in the lantern the radial slit causes the images to be seen in regular succession, so that they replace each other and appear to really be in motion; but this instrument, as compared with the kinetograph, is a very crude affair."
After projecting upon the screen a few sections of the kinetograph strip, the audience-which consisted of more than 400 scientific people-was allowed to pass by the instrument, each person taking a view of the moving picture, which averaged for each person about half a minute. The picture represented a blacksmith and two helpers forging a piece of iron. Before beginning the job a bottle was passed from one to the other, each imbibing his portion. The blacksmith then removed his white hot iron from the forge with a pair of tongs and gave directions to his helpers with the small hand hammer, when they immediately began to pound the hot iron while the sparks flew in all directions, the blacksmith at the same time making intermediate strokes with his hand hammer. At a sig nal from the smith, the helpers put down their sledge hammers, when the iron was returned to the forge and
another piece substituted for it, and the operation was epeated.
In the picture as exhibited in the kinetograph, every movement appeared perfectly smooth and natural, without any of the jerkiness seen in instruments of the zootrope type which have heretofore been exhibited.
The machine in this case was not accompanied by the phonograph, but nevertheless the exhibition was one of great interest. The kinetograph in this form is designed as a "nickel in the slot" machine, and a number of them have been made for use at the Columbian Exhibition at Chicago.

an Improved calking tool.

To calk the seams of vessels, tanks, or any article which is to be made watertight, the simple and inexpensive tool shown in the illustration has been devised and patented by Mr. Joseph O. Walton, the tool being also adapted to dig out the calking from old seams when necessary. The handle is shaped to fit the hand nicely, and in its outwardly curved ends are pivoted rollers adapted to run in a seam and jam the calking material into place. One roller has a smooth face and is preferably slightly convex, and the other roller has a grooved or concaved face, forming sharp edges on opposite sides of the groove, enabling it to pack the calking very snugly in a seam, as shown in Fig. 2. The
rollers may be made in different sizes to fit different rollers may be made in different sizes to fit different
seams if desired. In a longitudinal groove and depres sion at one side of the handle is pivoted a hook, which lies within the groove when not in use, or may be moved into the position shown in Fig. 1 for use in removing old packing. The pin which forms the pivot of one of the rollers has also pivoted upon it an auxiliary tool or chisel, having at one end a chisel edge and

WALTON'S CALKING TOOL.
at the other a head which may be struck by a hammer, to force calking into a short or transverse seam where the rollers cannot be conveniently operated. This tool may be fastened in the desired position by a thumb nut, and is ordinarily held nearly parallel with the handle, as shown in Fig. 2. The edges of the grooved roller also act somewhat like a chisel, packing the calking as firmly as if a chisel were used, and much more rapidly. Further information relative to this improvement may be obtained of Messrs. Robbins \& Graham, Titusville, Fla.

Electrical Process for Boiler Preservation.
Demonstrations of the efficiency of a new method of cleansing and preserving steam boilers against pitting and general corrosion were made on board the steamship Tenasserim, Glasgow, by the Electric Anticorrosion Company, of Cardiff. The process consists of fixing electrodes in the boilers and sending periodically currents of electricity through them under definite conditions, adjusted and controlled by apparatus which is automatic in its action. When the current is passing from the anodes suspended in the boiler to the shell, hydrogen is liberated on the shell and tubes, and oxygen on the anodes; then by means of the depolarizing apparatus the action is changed, and most of this hydrogen and oxygen recombine, the result being that during the first period the hydrogen performs two distinct functions; first, it disintegrates mechanically by its volume the scale formed on the shell and tubes; and, secondly, some of the hydrogen combining chemically with the oxygen of the oxide of iron on the shell and tubes reduces this oxide to metallic iron, thus doing away with the oxidation of the boiler without wearing away the metal. The secondary action, in short, is to facilitate the disintegration of the scale, hasten the mechanical action of the hydrogen in bursting it off, and prevent polarization of the shell and tubes. Oxidation, it is well known, cannot take place in presence of hydrogen gas; consequently, the patentees contend that it will be impossible for corrosion or pitting to
take place on the interior surfaces of the boiler so long
as this electrolytic aetion is maintained; and, further the mechanical action of the hydrogen, which is capable of disintegrating the scale, will likewise prevent ts reformation.
The practical result of the application of the process is that after the apparatus has been working in an old boiler for a few months, the scale is said to be completely removed, and the surface of the iron is brought into sound and healthy condition by a deposit of metallic iron being formed on the shell and tubes. Where no lighting installation exists, the patentees fix a suitable dynamo, which may be driven from the screw shaft, and be of sufficient capacity not only to supply the boilers, but also to light up the engine room. It would seem to us, says the Engineer, that the dynamo had better be employed all the time in this lighting and the boilers would be best preserved by feeding them with pure water.

Joseph Francis-Inventor of the Life Boat.
Joseph Francis, inventor of the metallic life boat, the life-saving marine car, and other useful inventions, died at Otsego Lake, N. Y., on the 10th of May, at the ripe old age of more than 92 years. He was born in Boston, Mass., March 12, 1801. When quite a lad he exhibited mechanical talent, and later on was the author of various mechanical novelties.
His greatest achievements were in the construction of life-saving appliances. These consisted of life boats, life cars and surf life boats. Of the life boats, the first that he made was of wood, and was called the hydrogen life boat. The interior was fitted with copper air tubes, and the invention proved successful. As a result of later experiments, the use of wood in the construction cf his boats quickly gave way to iron, al though the use of iron in the manufacture of vessels of any kind was practically unknown at that time. To Mr. Francis may be conceded the first use of iron float ing vessels. Another improvement was added by having the spaces at the bow and stern of the boats made into reservoirs of air, as well as the spaces at the sides, thus enabling the boat to sustain a great load in the heaviest sea.
The New York Sun says: "The venerable inventor who died at Otsego Lake on Wednesday morning, in his 93d year, had rendered a conspicuous service to mankind, which was long since fittingly honored in foreign countries and more tardily in our own. In the Blue Parlor of the White House, just three years and one month ago, Joseph Francis received at the hands of President Harrison, after an address by Mr. Evarts, a gold medal which had been voted to him by Congress. It was a massive and handsome tribute, the largest medal, we believe, ever given by our government. Three pounds of solid gold were in it.
" That medal told the great work of Joseph Francis' career, in its representation of the metallic life car which rescued the passengers of the Ayrshire. 'You have made it possible,' said the President, in giving it, 'for the shore to send succor to the ship. You have invented and suggested appliances that have saved many thousands of human lives.'
"It is a little odd that Francis as a lad, before he had reached his teens, playing on the wharves of Boston, had fitted up a small boat with cork in bow and stern, which has been not unfairly called the first life boat built in America. The attention given to it, with his subsequent devotion to boat building, set all his faculties at work in that direction.

When as a young man he came to New York with an unsinkable rowboat, containing cork at the ends and air tubes along the sides and under the thwarts, and gave an exhibition of it in the river at the foot of Wall Street, his career was determined. England, Russia, and Brazil bought such boats of him. But he had another idea working in his mind for saving life on wrecked vessels, and as early as 1838 constructed a wooden car to run forth and back on a hawser, between ship and shore. That, however, did not work well, being dashed to pieces on its trial; and then, in 1842, Mr. Francis achieved his great success of a corrugated iron water-tight car.
"Years passed in attempts to interest the government in this device, with the result only of obtaining permission to try it at the life-saving stations. On the 12th of January, 1850, the British ship Ayrshire came ashore at Squan beach, on the New Jersey coast, with
about 200 souls aboard. The life car was near by and about 200 souls aboard. The life car was near by and
was hauled out to the ship. Five persons entered it and landed safely; then another five, and another, till about twoscore trips were made, and every person was saved, except one man who had attempted to ride outside the car and was washed off
'Honors to Mr. Francis followed from France, Austria and Russia, and from that time forward his life cars and pontoon wagons yielded a comfortable livelihood. In 1885 the New York Chamber of Commerce urged a testimonial to him from Congress, and this was at length secured. In former years a familiar figure at the Stevens House, in lower Broadway, he has passed away at a good old age, after a life made happy by thoughts of the good he had been ableto do to his.fellow men.".

Sorrespondence.

Do the Rings Indicate the Age?

To the Editor of the Scientific American
I have just read in the Leavenworth (Kan.) Standard of a huge walnut log now at the World's Fair. from Leavenworth County. The dimensions are not given, except that it is 16 feet long. It weighs 30,000 pounds. It is claimed to be the largest walnut log on the continent, if not in the world. On a transverse section of the log 572 concentric rings may be counted, and from this it is claimed that the tree was 572 years old when it was cut down. Do the rings indicate the age?
N. T. Allison.

Columbus, Kan., April 29, 1893.
It has been well established by cutting trees of known age that the rings indicate the annual growth. -Ed. S. A.
Improved Country Roads and Electric Transit. To the Editor of the Scientific American:
I read with some interest your page article on " Country Roads and Electricity." The subject of improved roads has the support of intelligent citizens as well as the wheelmen. Though I believe the county system the best solution of our road problem, I argued before the Senate Finance Committee in favor of a State system of two roads each way through every county, because it is necessary by some such radical measure to give the impetus and furnish each community with the object road. As for the imputation contained in your article as to the folly of so expensive an undertaking, if you will perform the mathematical problem of the proportionate share of such a system on each thousand of assessed valuation, you will find that the ten millions provided for by the Richardson bill, with carrying charge, and cost of repair figured at three hundred per mile, and sinking fund obliterating the principal in twenty-five years, with no account of increased valuation, distributed upon our four thousand million State valuation, would be about two cents per year per thousand dollars valuation for the twentyfive years. We could build 3,000 miles at ten thousand a mile, the proved cost of the Richmond and Queens County Telford roads, for thirty millions, being for the same period approximately a tax of six cents per thousand dollars valuation. The increased valuation of the State in this period would be likely to offset cost of new construction. Would it not be worth while for this State to have so comprehensive a system of improved roads, with their resulting effect and bene fit to each community and the State at large? Every argument in your article is equally an argument for the improved road. Those of us who are moving in this surely have enough to overcome without meeting, as is indicated in your article, the argument that we are blocking progress. I believe that in the future extended systems of electric roads will go out into the country as soon as the population warrants it. I be lieve also that the improved road will lead to an in creased country population and one much more pro gressive and likely to embrace better forms of com munication, as, e. g., electric-but such electric roads must run upon the sides and not upon the roadway It would be a monstrous use of the roadway, which is only tolerable on the ground of convenience and ne cessity in the cities, and which has no place in the more enlarged and freer dimensions of the country road It would undoubtedly cost more to lay the rails properly upon a macadamized road. It is equally true that it would cost practically double to do the same in any roadway to the construction necessary to make a more satisfactory road with \mathbf{T} rail along the side of the country highway. A good macadam roadway for driving and ordinary traffic, bordered by an elec tric road, neither interfering with the other, affords an ideal system of intercourse between places, and one that does not mar the beauty of the highway nor its common use. Such exists here between Rochester and Charlotte, on the boulevard, so called.
I trust that a paper of your character will not hinder the agitation for good roads, which are a crying necessity of this State, by such arguments as are put for ward in the article in question.

John A. C. Wright.

Wire-Wound Guns.

The British Admiralty, says the Army and Navy Register, has just adopted the new wire-wound, quickfiring six inch breech-loading gun for the navy. The new weapon is forty calibers long and weighs seven tons. It will fire an elongated projectile weighing 100 pounds a distance of over four miles. It is such a quick-firing gun that at long range when fired with cordite it has three or four shots in the air at the same time. Forty of the new guns have been manufactured at Woolwich and are being issued and mounted in ships in the British navy. The new gun is a breechloading rifled gun having a muzzle velocity of 2,600 feet per second.
In this connection it is interesting to note that it is expected trials will be made at Sandy Hook, during

April and May, of two wire-wound American cannon. One is the Woodbridge ten inch gun built at the Watertown arsenal under the supervision of the inventor, Dr. W. E. Woodbridge. The gun consists of a continuous steel tube, overlaid throughout its rear half with a cylinder of closely fitted steel staves, the whole wound with tinned steel wire, to be soldered or brazed in an oven. The whole length of the gun is divided into three sections by steel rings or bands, and forward of the staves the wire is wound directly upon the steel tube.
Another wire-wound gun, the Crozier ten inch rifle, designed by a young officer of the Army Ordnance Department, whose name is given to the gun, is nearly ready for trial. It was built at the Watervliet factory and consists of a steel tube, overlaid from breech to muzzle with a practically continuous covering of steel wire, wound in layers, with a jacket cylinder enveloping the steel wire over the re-enforce, and a continuous layer of steel hoops covering the wire from the trunnion band forward to the muzzle. The coils of wire are electrically welded, end to end, so that the gun is wound with a continuous strand of wire. The breech mechanism is of the usual service type.
The ordnance experts have taken every precaution in constructing these wire-wound rifles to overcome the most obvious weak point of this type of gun, which lies in insufficient longitudinal strength. The friends of the wire-wound weapon look upon it as a formidable rival of the so-called built-up guns. The wirewound gun does not necessitate the handling and finishing of the great forgings required in the built-up constructions. It is also claimed that such a gun could be built both more quickly and more cheaply.

The New York and Chicago Twenty Hour

The New York Central has given out a definite announcement of its new train to Chicago, which will begin running May 14. The time of leaving New York is 3 P . M., and of arrival in Chicago 10 A . M., making the running time 20 hours actual, 19 hours apparent time. There is to be an east bound train also, which will run at the same speed, leaving Chicago at 2 P . M. and arriving in New York at 11 the next morning. The distance through is 965 miles. About 10 miles at Chicago has to be traversed at reduced speed, so that the fast running must be done in about $191 / 2$ hours in a distance of 955 miles. This will mean just about 49 miles an hour, as against the 50.7 miles an hour of the Empire State Express. The train will probably consist of three sleeping cars and a combination smoking and baggage car, ezcept when a dining car is taken on.
This will probably be, going west, from Albany to S yracuse and Toledo to Chicago.
As every one knows, the New York Central and the Lake Shore make up the most favorable route between New York and Chicago for high speed. From New York to Albany the grades are very easy, although there are a good many curves for the first half of the distance. From Albany to Buffalo the curves and grades are not only very easy, but there are separate tracks for freight trains all the way. The only serious exception to this is the three mile ascending grade out of Albany, going west, where a helping engine has to be used. The Lake Shore has even a larger percentage of straight line than the New York Central, there being one tangent 70 miles long. This road is also practically double track throughout, there being, we believe, only one 14 mile stretch (between Toledo and tanks have been put in at five different points, so that the trains will make regular stops only at Erie, Cleveland, Toledo and Elkhart. We believe there are one or two drawbridges between Cleveland and Toledo at which trains have to come to a stop, but the numerous grade crossings of railroads along the line are said to be all provided with interlocked signals.
In the matter of safety at facing point switches the Lake Shore, is, however, far behind the New York Central. The latter has distant signals of some kind at practically all such switches, but on the Lake Shore nearly all the switches are entirely unprotected except by the ordinary target and lamp. In fair weather and daylight most of these switches are probably visible several hundred feet away, but in fogs and storms and, to a less degree, in the uncertainties that always exist
from sundown until dawn the next morning, the en ginemen of these trains will have a perplexing dual re sponsibility-to obey the rules and yet make time. The Lake Shore road is arranged on the principle so commonly followed in the level portions of the country that distant signals are needed only at obscure points, and that this definition means points which are always obscure, and as on most other roads, especially in the
West, even this principle is in many cases neglected. Where trains run regularly at the high speeds we ar now considering, the true principle is to treat all switches and other like dangerous points as though they were always obscure, that is, provide distant sig als for them.
The new " flier," it will be seen, differs from the Em pire State Express in several respects. It undertake
to keep up this remarkable speed more than twice as long, the rate, however, being a trifle slower. It will run about two-fifths of its trip in darkness, whereas the other train has daylight all the way except for two months in the winter. With three sleepers it will be a heavier train, even without the dining car. And last, but not least, it will depend for its profit largely, last, but not least, it will depend for its profit largely, are comparatively few, while the remarkable prosperity of the Empire State has come from passengers who travel only from one stopping place to the next. It is said that the competitors of the Vanderbilt lines demand that the fare by the new train be made $\$ 30$ through-fifty per cent above the regular rate.-Railroad Gazette.

The Incandescent Gas Light.

The brilliancy of gas light is greatly increased by causing a mixture of burning gas and air, as in the Bunsen burner, to impinge upon a lamp wick with which certain mineral substances have been combined. Nearly all the metals of the cerium and lanthanum groups have been experimented upon, and at the present time the following minerals are employed in this manufacture: Monazite, which contains 70 per cent of the oxides of cerium, lanthanum and didy mium, in combination with phosphoric and silicic acids, thorite and orangite, which contain a large percentage of thorium oxide, gadolinite and orthite, minerals which contain $35-45$ per cent of yttrium oxide in combination with zirconia and oxides of the cerite metals. From McKean's experiments the accompanying table has been drawn up to show the variation in the color of the light emitted from wicks or mantles made from these oxides in different proportions :

The oxides of lanthanum and thorium are used to greater extent than the other oxides, and the green color which is a marked characteristic of some of these mantles is due to the presence of erbium oxice. The oxides of didymium, niobium, and yttrium are seldom used, and have no very marked influence on the general color of the light.
The intensity of the light emitted by the various metals has also been recently investigated. Mantles of the different oxides were prepared in a similar manner, and used in the same burner. Gas was supplied to the burner at the rate of 85 liters per hour under a pressure of 25 mm ., and the intensity of the light determined in terms of the standard "Hefener" lamp.
The following figures were obtained :

Mantle.	Standard.	Color.
Thoria.	. 31 156	Blue white.
Lanthana.	28•32	White.
Yttria.	$22 \cdot 96$	Yellow white.
Zirconia	.15•36	White.
ria,		ed.

The best ligh \dagger effect is obtainable from a mixture of wo-thirds thoria and one-third yttria, while, if the blue tinge of the color is not objected to, the maximum amount of light is obtained from a mantle made only from thoria.

The Largest Dredger in the World

The Naval Construction and Armaments Company recently launched from their shipbuilding yard at Barrow a twin screw hopper and sand pump dredger named Brancker. This vessel has been built to the order of the Mersey Dock and Harbor Board, who have been so satisfied with the experiments made in cutting a channel through the Mersey Bar that they have determined to proceed with dredging operations there, so that steamers of the largest tonnage may be enabled to enter the river in any state of the tide. A vessel on a gigantic scale was designed by Mr. A. G. Lyster, under the direction of Mr. G. Fosberry Lyster, engineer to the board, the following being a general description of her dimensions: Length between perpendiculars, 320 feet; breadth, moulded, 46 feet 10 inches ; depth, moulded, 20 feet 6 inches; gross register tonnage, 2,560 tons. She is built of steel to Lloyd's highest class, and has amidships eight large hoppers, four on each side of the vessel, having a total capacity of 3,000 tons of sand. A well is formed up the center of the ship between the hoppers to allow the working f a sand pump suction tube, 3 feet 6 inches diameter, through the bottom of the vessel. This tube is raised and lowered by hydraulic power, and when lowered can dredge to a depth of 45 feet. Two large centrifugal pumps, having suction and discharge pipes 3 feet in diameter, capable of raising 4,000 tons of sand per hour, are driven by two sets of triple expansion engines. The vessel will be able to fill her hoppers with 3,000 tons of sand, proceed to the depositing ground and get back again to the scene of operations in one hour. The Brancker is the largest dredger in the world.

THE BROADWAY CABLE RAILWAY, NEW YORK. (Continued from first page.) way, corner of Broadway and Houston Street, New York, shows what may be accomplished in strength, stability and freedom from vibration in a building to may become dangerous. After preparing some in th be devoted to business purposes in all its upper part, usual manner, he added a small quantity of ammonia while machinery conveying 2,000 or more horse powe is being operated in the basement. The building rests on 73 steel columns, the 28 exterior columns resting on grillages of iron I bars on concrete, while the interior columns rest on steel caissons sunk into the water-bearing strata filled with sand and concrete and capped with an iron bar grillage, so that there is no direct connection between the walls that support the machinery and the columns that support the building. The main floor in the cut shows the mass of beams on the street level, having no connection whatever with the running machinery below, save through the sand of its deep foundation.
The cable grip of the Broadway Cable Railway

BROADWAY CABLE RAILWAY-POWER HOUSE CONSTRUCTION.

Liquefaction of Osmium.
The pyroxylin used in pharmacy and the arts, dini- While certain noted chemists have been striving to rocellulose, is usually regarded as non-explosive, but compass the liquefaction and solidification of gases C. O. Weber shows how, under certain conditions, it hitherto regarded as permanent, others have been asual manner, he added a small quantity of ammonia working as persistently in the opposite direction by to the water used for washing, so as to effect complete metals of the platinum group have presents. The presented most difficulty in this respect; but in a recent number of the Comptes Rendus, MM. Joly and Vezes explain the means by which they have been enabled to obtain, in the liquid form, osmi m, the most re ractory element of the group, and the last to yield o experimenta kill. Metallic os mium, which oc curs as small gray sh blue crystals, was heated in the lectric furnace of Ducretet and Le jeune, in a carbon crucible, and in an atmosphere of carbon dioxide At the highest emperature of the electric arc the metal was fused without ap preciable loss by volatilization. After fusion it was exceedingly hard and capable cutting glass, or scratching quartz but not affecting ful features of a grip suitable for the various emergen- removal of the acids more rapidly. A copper oven the topaz, while it appeared to remain unaffected by cies required in a complicated service, and mainly heated to $70^{\circ} \mathrm{C}$., used for drying about one ounce of the oxygen of the air. It is remarkably like ruthenium consists of the two vertical strips of steel on the out- the pyroxylin thus treated, was after three hours' in many of its properties, but differs from it in aspect, side-as shown in the cuts-fastened to the bottom drying torn to pieces by the force of an explosion, the having a blue metallic luster while ruthenium is section of the grip shoe, which is double, to take the fragments of copper being hurled all over the room. whiter than platinum, and resembles burnished silver. cable on each side, and are also permanently attached Since pure dinitrocellulose requires a temperature of to the crosshead on the truck. By this arrangement, 194° to 198° for ignition, while hexanitrocellulose only with one movement of the operating lever, the cable is ignites at $160^{\circ}-170^{\circ}$, it appeared that the explosion must taken up on either side of the grip. The narrow verti- be due to the use of ammonia in the washing process. cal pieces-as shown in the cuts-are attached to wedge shaped blocks for disengaging the cable, when the grip j aws are opened, by a lever movement shown in the cut. By this means a transfer is made at the cable loops by dropping the cable on one side of the grip and taking up the next cable line on the other side. The grip crosshead has a side adjustment by a sliding movement on cross bars fastened to the truck frame running on the axles, so that the vertical adjustment of the grip is made with the track, the variable load of the car adjust ing the body only by the springs. By the lateral slide of the grip on the cross bars of thetruck frame, the cars are enabled to pass around the curves with the grip frame riding

BROADWAY CABLE RAILWAY-BUILDING ENGINE ROOM BELOW SIDEWALK. ree from strain in the slot. The illustration of a car and grip shows the dried upon the nitrocellulose in a state of fine subdivi- mense falling off in the sugar crop. The Louisiana sugar method of attaching the grip to the car truck and the sion, and any trace of acid would then suffice to cause cable as when the car is running. The illustration is the salt to act as a fuse. The use of ammonia in this from a photograph of car No. 98 making its first trip connection is accordingly to be avoided.-Jour. Soc. from 50th St. to Houston St. on the night of May 10. Chem.

In A. D. 105 Trajan built a magnificent stone bridge across the Danube 4,770 feet long.

We learn from Engineering that the White Star Company are negotiating with Messrs. Harland \& Wolff, Belfast, to construct for the line two steamers, which are to have a speed in excess of anything now afloat, including the two new Cunarders. It is not yet possible to give details ; but it is said the vessels will

CABLE GRIP MECHANISM.
each be something like 60 feet longer than the Cunard vessels. They are to be propelled by threescrews. We are informed the stern framing is already under order, so that it is intended to proceed at once with the construction of the vessels. The stern frame is of novel design. The run of the keel has a curved rise in front of the rudder post, as in the case of some torpedo boats, and as it is of heavy section with suitable points for bearings, the intention is evidently to run a propeller in the space left by the curve on the keel plate or bottom part of the stern frame. The massive character of this frame will be appreciated when we state that it weighs about 20 tons. There are brackets for the two side screws, and these weigh 8 tons each. As to the power to be generated by the engines, it is understood to be about 40,000 indicated horse power.

Turkish Great Guns.

In 1478 Mohammed II., in forming the siege of Scutari, in Albania, employed fourteen heavy bombards, the lightest of which threw a stone shot of 370 pounds weight, two sent shots of 500 pounds, two of 750 pounds, two of 850 pounds, one of 1,200 pounds, five of 1,500 , and one of the enormous weight of 1,640 pounds, enormous even in these days, for the only guns whose shot exceed the heaviest of these are our 80ton guns, throwing a 1,700-pound projectile, our 100-ton, throwing one of 2,000 pounds, and the 110 -ton, throwing an 1,800 -pound shot with a high velocity. The stone shot of Mohammed's guns varied between twenty and thirty-two inches in diameter, about the same height as a dining table; 2,534 of them were fired on this occasion, weighing, according to a calculation of General Lefroy's, about 1,000 tons, and were cut out of the solid rock on the spot. Assuming twen-ty-four inches as the average diameter of the shot fired at this siege, the total area of the surface dressed was nearly 32,000 square feet. At this siege the weight of the powder fired is estimated by General Lefroy to have been 250 tons. At the siege of Rhodes, in 1480, Moham med caused sixteen basilisks, or double cannon, to be cast on the spot, throwing balls two to three feet in diameter. - Chambers's Journal.

The Mining District of
Guanajuato, Mexico.
To many people a Mexican silver mine is close kin to a Spanish castle, but the fact remains that the most productive silver mines of the world are in Mexico ; not the most pro ductive at present, but in the gross amount of the metal won in the past.
The mining district of

CABLE CAR-BROADWAY CABLE RAILWAY, NEW YORK.

Early on the morning of March 21, in the city of Litchfield, III., one of the most remarkable dust explo sions on record occurred in the "Planet" or Kehlor flour mills. Before the explosion a fire broke out in one of the elevators, and the watchman was unable to send an alarm before the fire had reached the mills. Here it was beyond control. The fire companies, on reaching the scene, got their apparatus connected. By this time the flames had reached the part of the mill where there presumably was an accumulation of dust, and the explosion occurred. The great mill, said to have been the largest flour mill in the world, was blown to pieces as if by dynamite. Bricks, timbers, and pieces of machinery flew in all directions. The spectators of the fire were thrown to the ground by the shock, and people a mile distant were prostrated. Towns sixty miles away telegraphed that they had experienced the effects of the explosion. At Decatur, fifty miles away, the atmospheric concussion was felt. In the town no house escaped injury. Those near the scene had every window blown out. Some houses two miles distant were entirely destroyed. The town bore the appearance of having been swept by a cyclone The incoming trains brought crowds of spectators.
When Sir Humphry Davy invented the safety lamp which bears his name it was supposed that mine explosions were due to inflammable gas, generally or mostly marsh gas, CH_{4}. But recently it has been mostly marsh gas, CH_{4}. But recently coal dust plays a most important role in found that coal dust plays a most important role in
mine explosions, and the miner's "fire damp" may be , mine explosions, and the miner's "fire damp" may be The recent development of steam milling has brought dust explosions more into prominence. In mill explosions there is absolutelv no gas. The flour dust i so fine that, mingled with and suspended in air, it produces an explosive mixture. The loss of the mills, which had a capacity of two thousand barrels of flour per day, represents about one million of dollars.

Separation of Flames.

As a supplement to the subject of flames, Professor Clowes recently performed before the Society of Chemical Industry, Nottingham, the experiment devised by Professor Arthur Smithells, of the Yorkshire College, Leeds, of separating the inner from the outer portion of the Bunsen flame, each burning independently of the other. Professor Clowes stated that the experiment he had shown would modify some of the theories of combustion. He would, however, enter into no details, as Professor Smithells would probably give one of the popular lectures at the forthcoming meeting of the British Association in Nottingham.

The great aqueduct which supplied Carthage with water was seventy miles long.

THE TRUMPETERS.

While the Palmipedes and the Gallinaceæ give us valuable auxiliaries, some of European origin, such as the geese, ducks and chickens, and others of foreign origin, such as the turkeys and guinea fowls, the waders at present furnish no domestic animal in our regions. But such was not the case in antiquity, for an examination of the Egyptian paintings and monuments shows us that in olden times, in the valley of the Nile, the gray crane was kept in captivity and treated like poultry yard birds. Nor is such the case in our own day, even, in tropical America, where man has been enabled to utilize the intelligence of certain waders, near relatives of the cranes, and make them protectors of poultry and guardians of sheep. These birds, thus domesticated, are the kamichis, the chaunas and the agamis, or trumpeters. The kamichis or screamers, the largest of all, live in a wild state in the for ests of Brazil, Guiana and Colombia. In their general form they somewhat resemble the turkeys, but they have a more elongated body and longer legs, and, instead of caruncles, they are provided on the forehead, toward the base of the bill, with a slender horn, which is adherent only to the skin. Besides, near the carpus, their wings are provided with two sharp spurs, with which they are capable of inflicting sever wounds upon their enemies.
The chaunas of Brazil and the Argentine Republic smaller than the kamichis, have a shorter bill, a relatively heavier body, stronger legs, a glossy plumage much more strongly mixed with gray and white, the forehead deprived of a horny appendage and the nape often ornamented with a tuft.
Finally, the agamis, with which we shall occupy ourselves particularly at present, and which constitute the genus Psophia of Linnæus, are of still smaller size, and recall the water hens and the sultans in their rounded form, but are of more graceful shape and have slenderer legs and neck and a more richly tinted plumage. The head is small and regularly rounded, and the bill is stout, with the upper mandible strongly arched and terminating in a hook. The body is ovoid and the tail is very short and formed of soft feathers concealed under elongated and flocculent ones that are usu ally of a delicate gray passing to dark russet. This light tint of the lower part of the back contrasts with the black color of the rest of the body and which is relieved upon the breast by green, blue, violet and golden reflections. The head and neck likewise are black and of velvety as pect, and the feathers are shorter and closer than those upon the body and resemble a sort of down very soft to the touch. The shades of the plumage vary somewhat from one species to another and permit of distinguish ing the green agami (Psophia viridis) from the dark agami (P. obscura), the agami with tawny wings (P. ochroptera) from the agami with white wings (P. leucoptera), and the Rio Napo agami (P. napensis) from the noisy agami (P. crepitans).
Of all these alleged species, some of which are cer tainly only local varieties formed at the expense of a ume type, the last named is assuredly the one most nciently known. We find it mentioned or described in a more or less accurate manner in the relations of the travelers or naturalists of the 17th and 18th centuries and of the beginning of the present one, in the works of Father Du Tartre, Barrère, Adanson, Pallas, Vosmaer and Buffon, and in the voyage to Surinam and in the interior of Guiana of Capt. J. G. Stedman, who informs us that in his time this species was called camy-camy by the Indians and agami or trumpet bird by the colonists of Guiana. This, by the way, shows us the etymology of the French name agami, which is
evidently but a corruption of the Indian name camy camy. As for the name trumpeter or trumpet bird, that alludes to the strange sounds that the bird makes, especially when it is frightened, but which only very remotely recall the sound of a trumpet. A piercing cry succeeds for about a minute a dull rumbling, which becomes feebler and feebler. It is a curious thing that after so many years have passed since the species was discovered, and after the agami has been the subject of numerous works, naturalists do not yet appear decided as to how this sound is produced. Trail and Poeppig supposed that it resulted from the vibration of the air that the bird, keeping the bill closed, causes to penetrate from the lungs into two pockets communicating with the trachea through two narrow slits, and comparable in all respects to the narrow sits, and comparable in all respects to the vocal sacks of the Caosar emen; but the recent re

THE AGAMI OR TRUMPETER OF GUIANA.

In their gait the agamis much resemble the cranes Like the latter, they have sudden fits of gayaty, dur ing which they execute dances that contrast singularly with their ordinary gravity. When pressed by danger they are capable of running swiftly, but their flight is so heavy and so slightly sustained that they cannot, by wing, cross a river of any great width. After the young are fully grown, they continue to live in famlies for several months, and, like many other waders, usually unite with other bands of the same species in order to constitute flocks that often include forty individuals, and that sometimes, even, if Schomburgk is to be believed, comprise as many as 2,000 heads.
The agamis have, for more than a century, been very ctively hunted for in Guiana, not on account of the quality of their flesh, which is always hard and dry but for the value of their plumage, the brilliantly colored and chatoyant parts of which are used for making ornaments. Such hunting is so much the more profitable in that the agamis are unable to fly to a great distance, and, moreover, are easily attracted up to the gun when one succeeds in imitating their cry. When captured alive they readily get used to captivity and are easily tamed.
They are found entirely free, says Schomburgk, in all the Indian establishments They serve as guardians to other birds. In the last century Mr. De la Borde wrote to Buffon that agamis were to be seen wandering about the streets of Cayenne, leav ing the city and coming back home at night. They may be approached and handled as much as one wishes, said he and they fear neither dogs nor birds of prey. In the poultry yard they render themselves masters of the fowls and make the latte fear them.
Almost all these birds have the habit of following some one in the street or out of the city, even persons whom they have never seen. It is in vain for one to hide or to enter a house. They will wait for him and always return to him, sometimes for more than three hours. I have sometimes began to run, added Mr. De la Borde, but they ran faster than I and always got ahead of me. When I stopped they stopped also and very near me. I know of one that never fails to follow every stranger who enters the house of its master and to fol low him around the garden until he leaves.
Mr. De Manoncourt, an other correspondent of Buf fon, Pistorius, Vosmaer, Sted man, Schomburgk and many other authors, ancient and modern, that we might men tion, agree in recognizing the intelligence and docility o the agamis reared in captivi ty. These qualities, moreover have been observed even in in dividuals brought to Europe at various times during the searches of the English naturalist Beddard have not last century and preserved for several years in the confirmed this hypothesis. It appears that the trachea zoological gardens of France, England and Holland. of the agami possesses no lateral slit, and does not pre- These birds become attached to those who take care sent, at least not always, the circumvolutions mentioned by Hancock.
These agamis live in a wild state in the great forests of Guiana and that part of Brazil situated to the north of the Amazons.
They make their nest on the ground, or, more accurately speaking, they content themselves with scratching the earth with their claws at the foot of a tree thus making an excavation which they line with grass and in which they lay a dozen eggs of a light green color. The young are very robust, and, scarcely freed from their shell, begin to trot along behind their parents. They feed at first upon insects and worms, but soon add fruits and seeds to this animal food. They remain covered for quite a long time with a soft dense down formed of fine feathers resembling hairs and very different from the feathers of the adult.
of them, obey their voice, follow them docilely or pre cede them in frisking like dogs, and manifest their joy at seeing them again after an absence of some little time. They like to be caressed, and show themselves jealous of those who share the good graces of their master. When an agami has been allowed to put foot in a house it tries to drive away the cats and dogs that give it umbrage, approaches the table at meal time without invitation and does not fail to strike the black servants with its bill.
In the poultry yard these birds soon exercise their domination over the fowl therein, and it appears, even, that it has been possible at times to make them play the part of shepherds' dogs and to charge them with guarding flocks of sheep.
Even though the exactitude of these facts were not attested by authors worthy of credence, we should be
disposed to concede that the agamis are susceptible of months or a year's time, the crop is ready. The stalks a certain education, for we know that a few years ago, of the plant are then cut off as close as possible to the at the Garden of Plants, a Numidian crane, that is to say a bird belonging to a family very closely allied to the agamis, conceived a very strong affection for its keeper and obeyed him like a dog. One day, even, when the keeper had taken sick, the bird, uneasy at not seeing him, went to his house, to which it knew the way on account of having gone thither several times in his company. - La Nature.

Arrowroot Manufacture in Queensland.
The manufacture of arrowroot is carried on extensively in the south of Queensland. In the districts of Coomera and Pimpana there are from 250 to 300 acres under cultivation, the chief plot-that known as "Rockholm "-being the property of Mr. Samuel Grimes. I recently visited this representative plantation, a description of which will serve to convey an idea of the whole.
The arrowroot grown in this district is the purple variety-the Canna edulis. It sometimes grows to a height of 8 feet, bears a pretty scarlet flower, and a dark purple seed pod follows, which is generally sterile. The best variety of arrowroot, the Maranta arundinacia, which is grown so extensively in the Bermudas, thrives well in this district, but its cultivation has been almost abandoned, owing to the difficulty of manufacture. This kind attains a height of 2 feet, and bears at maturity a small white flower somewhat resembling potato
The
The ground is plowed in ridges of about 46 feet wide, and thoroughly harrowed and scarified. Nine rows are placed in this, 5 feet apart, leaving six for the row in which the by-furrow comes. Shallow furrows, 5 inches deep, are run with the plow, after which the smaller bulbs-about the size of a small apple, which are found growing at the bottom of the stems-are placed 4 feet 6 inches apart in the drill, and covered by placed 4 feet 6 inches apart in the drill, and covered by
turning a furrow from each side on to the top of the bulbs. Cultivation is then carried on by keeping it clear of weeds by means of horse hoes or "scuffiers." When it reaches the height of about 3 feet the space between the rows is turned up with a one-horse plow, the soil thrown toward the plant, and a furrow left in the middle. No further attention is required till the arrowroot is dug up for the mill. When the tubers
have come to maturity, which is generally in ten
of the plant are then cut off as close as possible to the
tubers with a cane knife or strong reaping hook. The tubers are afterward raised with a grubbing hoe or mattock. They are placed with all speed in carts and conveyed to the mill, for the color is seriously affected by being exposed to the sun or weather before grinding. Sometimes as much as 50 pounds weight of tubers is obtained from the plant.
The machinery consisted in this case of a 6 horse
power engine made by Messrs. Manlove, Alliott \& Co Nottingham, a root washer, grinding mill, cylinder ieves for separating the farina from the fiber and pulp and a centrifugal drying machine. The roots are washed in a trough 10 feet long, 3 feet deep, and 2 feet in diameter. This has a half-circular bottom, through which a stream of water is constantly running. A spin dle having pegs about 4 inches apart, and of a sufficient length to reach within an inch of the bottom and sides, revolves in the trough. The pegs cleanse the bulbs of all dirt, and the latter gradually work down to one end of the trough. A wooden rake pushes the bulbs out upon a belt elevator, whence they are conveyed to the hopper of the mill. This is a wooden drum, 2 feet nches wide and 2 feet in diameter. It is covered with " galvanized iron sheet punched and placed with the "burr" on the outside. The drum revolves at a high speed, and a stream of water falls upon it from tanks fixed above.
Thus the bulbs are grated up, the bulbs and the water passing through the sieve No. 1, which is a cyl inder 8 feet long, with the bottom half perforated with holes about the size of a No. 7 wire nail. Within this a beater revolves, forcing the water and farina through the holes, and being placed\%on the screw the pulp and fiber are forced out at the end. The farina and wate
pass into sieve No. 2, which is similar to No. 1, except pass into sieve No. 2, which is similar to No. 1, excep that the holes are about the size of a large pin-head in trough, where the farina is deposited and the water passes off. The farina is now dug out, and passed through sundry more sieves, and washings by hand and in tubs, then finally left to subside. When fairly firm it is taken out and passed through a centrifugal machine. It is now placed on the drying frames, about feet long, with marsupial netting and calico stretched upon them. They are placed away from any dust or smoke, and the wind passing underneath, as well as
and air are not alone depended upon for drying, Mr. Grimes having erected a drying house capable of accommodating 180 frames. This is heated by means of steam pipes to 140° Fah.-Industries.

United States and Europe in 1893.

The United States is notin the least dangerous to us in connection with military affairs. But from an economic point of view it constitutes an immediate and pressing menace. The debt contracted by the United States during the war of the secession will be completely extinguished before the end of the century, whereas the total debt of European countries is estimated at the enormous sum of $126,000,000,000$ francs. The United States has an army of only 27,000 men, that is, scarcely as many as we have in one of our nineteen corps. In comparison with these 27,000 men, place the $3,500,000$ soldiers kept by the European countries in time of peace, and it is easy to see how much of their produc ive force the European powers annually sacrifice.
It must be taken into consideration that the men thus taken from the peaceful employments are all in the height of their activity and at an age when the character is forming. The loss of revenue which re ults from such a state of affairs is frightful when it is looked upon as a factor in the industrial war with the United States. One must be blind not to see, in these conditions of rapid and progressive development of the United States, that Europe is threatened with such a competition that there will come a time when the balance of industrial power and political influence must be placed to the profit of the New World. That movement threatens France more than any other European nation, because France carries the heaviest load and has the largest debt. Everywhere in Europe, even among the smallest states, nothing is spoken of at resent but armies, the increase of war materials, and, f course, new taxes.-Figaro.

Sawdust Building Bricks.

The sawdust is dried and screened, to remove the oarser particles, and is then mixed with cement, lime, and sand in the following proportions: One part cement, two parts lime, five parts sharp sand, and two parts sawdust. The sawdust is first mixed dry with the cement and sand. The final mixture is pressed nto blocks, which are said to be cheap and useful. There is as much lime and more than twice as much There is as much lime a
sand as sawdust in them.

RECENTLY PATENTED INVENTIONS.

 Engineering.Balanced Slide Valve.-Daniel Kiley, Brooklyn, N. Y. This is an improvement on a formerly patented invention of the same inventor;'relating
to slide valves having their top surfacestprotected from to slide valves having their top surfaces!protected from
direct contact with the live steam that enters the steam direct contact with the live steam that enters the steam
chest from the boiler, and provides a simple relief valve attachment for the valve, to cause it to operate more re liably and prevent accident.
Dredging Apparatus. - James B. Quinn, New Orleans, La. A swinging frame hinged to a support carries an excavating wheel having buckets and
discharging cells, the wheel being connected with a driving drum and cable, the latter being controlled by an adjustable tension device, while there are mechanism for raising and lowering the frame to give the wheel any desired angle to the support. There are no joints o bearings subject to abrasion by the grit stirred up by dredging, the buckets are built to be very dur
able and automatically discharge their loads at the able and automatically discharge their loads at the
right time, and the apparatus is designed to be operated with comparatively little power for the work it can do.
Floating Support for Drilling Devices.-Adoniram Fairchild, New York. City, de
ceased (Benjamin D. Fairchild, administrator). Upon a hollow float is a truss frame supporting a second float, there being a derrick frame on the upper float, which supports ballast weights, while there are flexible connec tions between the weights and floats, and devices on the top float drawing on these connections. The invention affords a simple and practical means to neutralize the ifting force of wave action on a floating support for th drilling apparatus used to perforate the rock bottom of
harbor or other body of water.

Rallway Appliances.

Switch Operating Device.-Benja\min Bartelmes, Brooklyn, N. Y. This is an improve ment especially adapted for use on cars of cable rallway the latter being switched onto and off the cable road and liable to leave open switches from the cable road to the divergent side track. The switch adjuster consists of a vibratable presser bar carrying on its outer end a ro-
table presser wheel, operated by an upright shaft on table presser wheel, operated by an upright shaft on
the platform, by means of which the gripman of a cable car will be able to close an open switch in advance
the car.
Street Railway Switch.-Daniel F. Doody, Brooklyn, N. Y. This is an improvement in that class of switches adapted to be thrown by means of
an actuating bar or like attachment on the car. Coman actuating bar or like attachment on the car. Com-
bined with two sleeves mounted to partially rotate and fitted one within the other, and located in a box-like structure beneath the track near the switch, is a switch lever connected with the inner one of the sleeves and
with the switch point, arms adapted to be tripped by the with the switch point, arms adapted to be tripped by the
trip arm carried on the car being made in separable sec trip arm carried on the car being made in separable sec-
tions and extending radially from the outer one of the
sleeves.

Agricultural.

Cultivator. - Henry Eastman, Raine, Wis. This is an implement adapted for use in working listed corn, and is supplied with runners to pro-
tect the corn, shovels to tear down the ridges, and cutters to remove weeds from the rows and direct the loosened earth toward the runners and the rows of plants. The runners may be readily adjusted to and from each other, and the shovels arranged either laterally or verti-
cally, while adjacent to the shovels are balance rollers cally, while adjacent to the shovels are balance rollers
adapted to travel upon the ridge acted upon by the adapted to travel upon the ridge acted upon by the
shovels, these rollers serving as guides to the machine and to preserve its equilibrium.

Miscellaneous.

Boat Stopping Device.-Pedro Samohod, Lima, Peru. On the bow of the vessel is a post carrying a vertically sliding, frame having on its sides pivoted wings adapted to extend transversely to present
a large resistance surface to the water, as the frame is large resistance surface to the water, as the frame is
immersed, its normal position being raised, with the immersed, its normal position being raised, with the
wings closed forwardly. The frame is raised and lowwings closed forwardly. The frame is raised and lowered by means of chains connected with a winch, and is
let down when the vessel is moving into a dangerous place, or is liable to collide with another vessel or iceberg, ete.
Stone Planer. - Charles Biganess, Quincy, Mass. This is an improvement in that class of stone-dressing machines having cutters which recipro-
cate and revolve simultaneously. The reciprocating and evolving shaft carrying the cutting plates has on its end rounded heads fitted by sockets in oscillating levers connected with an eccentric to oscillate the levers simultaneously. The planer shaft is revolved at a high speed, and a worm and gear mechanism makes the reciprocating movement very slow, whereby the cutting plates will
be brought in contact with the entire surface of the stone, be brought in contact
to plane it perfectly.
Pressure Regulating Valve.-August Heithecker, Brooklyn, N. Y. This valve is es pecially designed for reducing and regulating the pres sare of gas or other fluids. Its casing is made up in two is very simple, and there is nothing about it liable to get out of repair. The tension of the valve-closing diaphragm is regulated by a spring and screw arranged to be very nicely adjusted.
Life Preserver.-Michael O'Hara, Pittsburg, Pa. The body of this device has upper and lower series of vertical metallic tubes and intermediate
horizontal semicircular tubes, with fastenings, and boxes on the breast portion, the whole adapted to be made in the form of a garment, and be light and comfortable to
the wearer, while affording receptacles for food and drink.
Burglar and Fire Alarm.-William Dillman, Brooklyn, N. Y., and George A. Seib, New York City. This is a positive working apparatus which operates as an ordinary messenger call, and may be ope-
rated by the opening of a window or door to ring an rated by the opening of a window or door to ring an
alarm at the central station. It has automatic mechan
messenger call after the burglar alarm has been ope-
rated, and it may also be connected with any thermostatic or thermometric circuit breakers or closers to ring in an alarm in case of fire. The apparatus may be manually operated when de
tric mechanism.
Trousers
Trousers Hanger.-Joseph A. Jourdan, Paris, France. This device has two integral main
sections, each bent from a wire rod into two spring limbs that normally diverge, there being clasping de limbs that normally diverge, there being clasping de-
vices on the ends of the limbs and a connecting sleeve having opposite flanges bearing on hanger loops on the main sections. A hanger hook engages the bowed ends of the loops, and sliding rings on the main limbs are adapted to press the fingers together. The device holds
the garments stretched to permit its suspension in an unthe garments stretched to permit its suspension in
wrinkled condition in a wardrobe or show room.
Parallel Ruler.-Alexis F. Gillet, Kearney, Neb. This instrument has a base support or
rule along which is movable an angle holder having a rule along which is movable an angle holder having
transversely movable clamp section by which to secu the angle, and a step-by-step feeding mechanism for is designed to enable an amateur to the improvemen similar lines with as great accuracy as a skilled draughts man,while it will be useful to the latter in facilitating the rapid drawing of the lines, as the spacing may be accomplished automatically.
Wagon Axle.-The same inventor has also obtained another patent for an axle to be used on
farm implements and wheeled vehicles generally. spindle sleeve is provided for squared or other non-cir cular axles, the sleeve having its inner end slitted and having at such end a tapered threaded portion on which is turned a tapered nut. The sleeve, which may be made ceive all the wear of the wheel, and it may be cheaply when worn.
Sponge Moistener.- James S. McClung, Pueblo, Col. This is a device especially adapted moisten a number of sponges in a convenient and expeditious manner without bringing the hands in contact with the water or with the sponges. The device has a
partitioned compartment in which is held a table and a partitioned compartment in which is held a table and pivoted presser plate, and may be readily carried from
desk to desk by a child, to moisten and return the sponges used at each desk, the sponges being handled with pliers.

Chalk Rail for Blackboards. Willard S. Terry, Hilo, Hawaii. This rail is made in the form of a hopper-shaped receptacle having in its
bottom an opening connected with an exit tube, the top of the receptacle having an apertured covering. The device supports crayons or chalk, but useless particles and dust pass to the receptacle below and are thus prevented from settling on articles in the room or being inhaled by Frame
int, N. - Heinrich Schuessler, College Point, N. Y A simple and durable frame to hold and
lock a picture, looking glass, cards or other articles, is provided by this invention. An open casing held on the
spring plate fitting in the casing presses the article on its entire back surface, a locking device fastening the plate to.the cas
Guitar.-John F. Stratton, Brooklyn, . Y. The performer may, with this improvement, dickly change the stringing of the instrument by using ing the volume and purity of the tone when metallic trings are used. An auxiliary bar or lever is secured to the bridge and engages the strings at the top in the rear of the bridge fret. By using a tail piece in connection trument is transferred to the side, so that the top is not iable to warp.
Clasp. - Joseph F. Chatellier, New York City. This is a device for conveniently suspendas a fixed and a hinged swinging member, and the lasp is opened by moving a button out of a slot, to permit of swinging the hinged member away from the fixed nember. The device is very simple, and will conveiently engage or disengage articles without tearing or njuri
Fruit Pitter.-James L. Hall, Kingston, Mass., and Frank H. Chase, Grand Rivers, Ky. This is a device for conveniently removing the stones or wooden handle from which exterd a series of elastic prongs or fingers having enlarged heads, and preferably late or seed discharger sliding on the fingers. The ingers are forced through the skin and pulp, and are thus designed to engage the seeds, which are removed from the implement by the sliding perforated plate.
Cover for Pots, Pans, etc.-David D. Davies, Wilkesbarre, Pa. This cover has a central vary the size of the opening or close it altogether, a pring automatically holding the valve in adjusted posiion. Applied to a frying pan, this cover enables cooking to be done without greasing the stove or stewing the food, and as a ventilating pot cover it diminishes the esape of steam and tends to prevent the boiling over of

Wire Stretcher and Holder. Adolf Westmeyer, Pacific, Mo. Upon the handle of this mplement are dogs adapted to clamp the wire, while pon its shank is a pivoted, bent fulcrum block on
which a hook bar is movably arranged. The device forms a simple tool for stretching fence wire and holding it taut while being made fast to a post.
Riding Saddle. - Ferdinand E. Bu Moulin, Joliet, Ill. This invention consists of an attachment comprising a fork, a knee horn detachably and justably secured to the fork and provided with an orm, and a leaping horn detachably secured to the arm of the knee horn. By means of the improvement the
saddle may be quickly converted for use as a lady's riding or side saddle, the knee joint and leaping horn being cated either at the right or left of the tree, or it may be
side saddle the seat may
Trace Carrier. - William A. Mayhall, Gloster, Miss. This invention relates to buckles uch as are used to connect the back band of a farm har ness with the traces. The construction is simple and curely locking the traces in place and firmly holding the ack band.
Running Gear. - Axel Warenskjold and John G. Burgess, San Diego, Cal. This is an im-
provement upon a formerly patented invention of the provement upon a formerly patented invention of the
same inventors, for a simple and durable gear so arsame inventors, for a simple and durable gear so ar-
ranged as to permit of turning the vehicle in very short curves without binding the king bolt or other working parts. The improvement embraces a fifth wheel having two fulcrums. A fifth wheel is pivoted to one of the pivots with the other axle, while reaches crossing each other connect the axles with each other
Trousers Hanger.-Arthur C. Nash, Cambriage, Mass. This device consists of a looped cord furnished at opposite ends with hooks, and procord upon the legs of the trousers. By this mean trousers may be euspended in the best position for re-
taining their shape, and so that they will take up but taining their
little room.
Surgical Instrument -Frederick C. Thompson, East Tawas, Mich. This invention comprises a novel form of forceps, attached to the jaws on
blades of which near their forward ends is a soft elastic ting for use in connection with a flexible medicine cup. Medicinal Composition. - Otto L . Mulot, Long Island City, N. Y. This is a composition to
be used for the blood, to increase the healthy tone and natural action of the body. It comprises an electrolyzed distillate from a mixture of oil of turpentine, juniper berries, white oil of amber, aloes, gum myrrh, gum mas-
tic, flowers of sulphur, gum olibanum, and various other tic, flowers of sulphur, gum olibanum, and various other
ingredients, combined and prepared in a specified man-

Design for Bottle.-Daniel O'Rear don, Jersey City, N. J. This designprovides a peculiarly haped bottle, designed to have an antique appearance and somewhat resemblin
Note.-Copies of any of the above patents will be furnished by Munn \& Co., for 25 cents each. Please
send name of the patentee, title of invention, and date

SCIENTIFIC AMERICAN

BUILDINGEDITION

 MAY, 1893.-(No.91.)
table of contents.

. Elegant plate in colors, showing an. elegant residence at Bridgeport, Conn. Floor plans and two perspec tive elevations. An excellent design. Messrss.
Longstaff \& Hurd, architects, Bridgeport, Conn. 2. Plate in colors showing a handsome residence a Rutherford, N. J. Two perspective views and
floor plans. Mr. F. W. Beal, architect, New York. floor plans. Mr. F.
An attractivedesign.
3. A handsome dwelling at Plainfield, N. J. Perspec ive views and floor plans. A model design Messre
Mass.
Mweli
4. Adwelling at Utica, N. \mathbf{Y}, erected at a cost of $\$ 4,700$ complete. Floor plans, perspective view, etc.
Mr. W. H. Symonds, architect, New York. An Old Colonial style of architecture
5. Engravings and floor plan of the Fairfeld Congrega tional Church at Fairfield, Conn., erected at a cos of \$53,000. M
New York City
6. A stable erected at Plainfield, N. J. A model design. Mass.
. An excellent design for a modern stable at Bridge port, Conn. Messrs. Longstaff \& Hurd, architects ,
8. A residence atBelle Haven, Conn. A very picturesque design, perspective elevation and floor plans. Cos
86,000 complete. Mr. Frank W. Beal, architect 86,000 complete.
New York City.
9. View of a tasteful shop for a builder erected at
Neuilly, Paris. Neuilly, Paris,
0. The Fifth Avenue Theater, New York.-View of the Worthington steam fre engine pump.--View of the Hygienic Cementand Asphalt Company's water
tight scene pit. View of the Edison Electric tight scene pit. View of the Edison Electric llluminating Company's

1. Miscellaneous contents : A Pacific coast bathing es tablishment.-An improved spring hinge, illus
rated.-The Lewis open fire base burner, illus trated.-The Lewis open fire base burner, illus
trated.-The J. A. Fay and Egan Co. -The H. W. trated.- The J. A. Fay and Egan Co.- The H.
Johns paints, etc.-An adjustable sash holder,
filustrated.-A illustrated.-A labor saving screw driver, illus-
trated.-A self-feed rip saw, illustrated.-Shipping a factory across the Atlantic.-Architectural wood
turning.-Tnnneling the Simplon.-New resawing band saw machine, illustrated.-The Wheeler filler.-An improved hip shingle, illustrated.
The Scientific American Architects and Builders Edition is issued monthly. $\$$..50 a year. Single copies,
25 cents. Forty large quarto pages, equal to about cally, a large and splendid MAg AzINE of Architec TTRE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting ealied subjects
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largest Circulation of any Architectural Publication in the world. Sold b
all newsedealers.
MUNN \& co all newedealers. MUNN \& CO., Pubuishrrs,

361 Broadway, New York

DBusiness and Personal.
The chargef for Insertion under this head is one Dollar a line
for each insertion about e aioht worrds to a line. Adver

U. S." metal polish. Indianapolis. Samples free. Kemp's Manure Spreader, Syracuse, N. Y. See Adv. Shingle machinery. Trevor Mfg. Co., Lockport, N.
ersal and Centrifugal Grinding Mac
Pedrick \& A Aere, Philadelphia. Pa.
Skilled workmen and best materials are the basis for e deserved popularity of Jessops' steel.
Wanted to Invest-Thirty or forty thousand dollars The Improved Hydraulce Jacks, Punches, and Tu Stow flexible shaft. Invented and manufactured Screw machines, milling machines, and drill presses The Garvin Mach. Co., Laight and Canal Sts., New York Centrifugal Pumps for paper and pulp mills. Irrigating Guild \& Garrison, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vacuum app
Split Pulleys at Low prices, and of same strength an pearance Drinker St Philadelphis Yocom \& Son's Shaftin Perfor Mel
general or special. Address, stating requirements, The tarrington \& King Perforating Co., Chicago.
To Let-A suite of desirable offices, adjacent to the cientiffc American offices, to let at moderate term Hydro Muan \& Co., 361 Broadway, New York.
Hydrocarbon Burner (Meyer's patent) for burning
crude petroleum under low pressure. See adv. page The best book for electricians and beginners in electricity is " "Experimental Science," by Geo. M. Hopkins.
By mail, \$4; Munn \& Co., publishers, 361 Broad way, N. Y. Canning machinery outfits complete, oil burners fo Oldering, air pumps, can wipers, can testers, labelin machin
$\mathrm{N} . \mathrm{Y}$.
Comp

Competent persons who desire agencies for a new Copular book. of ready sale, with handsome proft, may
apply to Munn \& Co., Scientiflc American office. Broadway, New York
Patent for Sale-A new specialty, all metal, for gene-
ral and domestic use. Just patented in Europe and the United States Sole. Just patented in Europe and the ties. Address P. O. box No. 14, Rochester, N. Y. Engraver, die sinker, and letter cutter. Manufacture steel stamps for every purpose, steel letters and fig-
res, printing dies, burning brands, stencils, rubbe ures, prin
stamps,
York.
Want to Purchase-A patented vapor engine, the manufacturer of one already in the market for their ex clusive use for certain purposes. Address, with particuars, Vapor Engine, P. O. box 773 , New York.

HINTS TO CORRESPONDENTS. Names and Address must accompany all letter
or no attention will be paid thereto. This is for ou
information and not for publ in no attention will be paid thereto.
information and not publication.
References to former articles or answers should

 pecial Written Information on matters of
personal rather than general interest cannot be
expected without remuneration.
cientific American Suppements referred
to may be had at the office. Price 10cents each.
Books referred to promptly supplied on receipt of Books referred to promptly supplied on receipt of
price.
Minerals sent for examination should be distinctly
marked or labeled.
(5014) W. T. asks: With a stream of water 6 inches in diameter, having a head of 10 feet, and
using the best turbine wheel, what would be the available using the best turbine wheel, what would be the available horse power? Also, what would be the best water wheel
to use? A. You will have an available 5 horse power. Address James Leffel \& Co., Springfield, Ohio, for
(5015) C. H. S. asks : Is there anymean by which small red ants can be exterminated from aywn ny information thereof. Reply by Prof C. V. Riley It is difficult to accomplish this result without any injury to the grass, but the use of bisulphide of carbon, which I have frequently recommended, only temporarily destroys the verdure of the grass plots immediately above the nests. It turns them yellow for a few days, but does not impair the vitality of the plant. The nests of the small red ant are very small, and it will probably suffice to pour a hal teaspoonful or so of the bisulphide into the principa mound. With the more extensive nests of larger ants however, it will be desirable to pour a teaspoonful of iquid down each of the principal holes of the nests and overthem ten or fifteen minutes with a wet blanket, afterward exploding the vapor at the mouth of the holes mole
(5016) M. A. C. asks how to grind and the edge is rounded by strapping can be brought to a flat evel on the edge by placing them on a perfectly flat hone other flne grained stone, with a little thin oil, as lara he stone, and with small circular motions of the hand the stone, and with small circular motions of the hand, narks meet on both sides in a thin feather edge.
(5017) C. W. G. asks how to make po-
means of a scraping knife or an instrument similar to a atmeg grater; thro funnel, and allow pure cold water to run through the mass slowly for several hours. By this means all the minute starch granules may be washed through the
cloth; and on allowing the water to stand for some time hese will settle to the bottom, and may be removed by ecanting the water and straining.
(5018) R. H. P. says: Can you give me formula for perfumed carbolic acid? A. Carbolic acid, 4 oz.; rectified spirit, 6 oz.; oll of bergamot, 28 min .
oil of citronella, 10 min .; water, to make 1 pint. Dissolve the oils and acid in the spirit and add the water, shaking well.
(5019) G. C. G. S. says : Will you please give a table showing the contraction of castings in dif-
ferent metals? A. Table by Bowen \& Co., brass founders, London :

In thin b
 In thick

In zinc castings.
lead, according to purity
In copper
In tin,
In tin,
In silver,
In cast iron," according to purity \qquad

$\begin{array}{lll}1 / 8 & \text { in } 12 \\ 12\end{array}$ in 12
$1 / 8$ in 12
mount of ramming and temperate form of pattern
of ramming, and temperature of metal whe ry sand castings.
(5020) R, W. C. says: Will you please ell how to preserve the natural colors of plants? A. A recent improved receipt for preserving plants with their
natural colors is to dissolve 1 pt. salicylic acid in 600 part falcohol (parts by weight) beat the solution up to boil ing point in an evaporating vessel and draw the plant lowly through it. Shake them to get rid of any super fluous moisture and then dry between sheets of blotting paper under pressure in the ordinary manner. Too pro onged immersion discolors violet colored flowers, and in all cases the blotting paper must be frequently renewed
(5021) A. R. C. asks how to test air for ewer gas. A. Saturate unglazed paper with a solution water, let it of pure lead acetate in half a pint of rain pected of containing sewer gas. The presence of the lat er in any considerable quantity soon darkens or blacken he test paper.
(5022) B. J. M. wants to know how carton pierre ornaments are made. A. The following is a solved in water, 13 parts; pulverized litharge, 4 parts white lead, 8 parts; plaster of Paris, 1 part; very fine saw-
ust, 10 parts. Oil the moulds to prevent adhesion.
(5023) G. F. F. asks for a remedy for buffalo moths. A. Take strips of red or blue flannel (as these colors are particularly attractive to them), dip in solution of arsenic and lay around the edges of carpets, or wherever the pests are troublesome. Said by those who ave tried it to be sure death to the insects.
(5024) E. A. J. asks for the United States government formula for whitewash. A. The following
coating for rough brick walls is said to be used by the United States government for painting lighthouses, and it effectually fprevents moisture from striking through Take of fresh Rosendale cement, 3 parts, and of clean,
fine sand, 1 part; mix with fresh water thoroughly This gives a gray or granite color, dark or light, accordadd enough Venetian red to the rixture to produce the color. If a very light color is desired, lime may be used with the cement and sand. Care must be taken to have all the ingedients well mixed together. In applying the wash, the wall must be wet with clean, fresh water; then follow immediately with the cement wash. This prevents the bricks from absorbing the water from the wash to rapidy, and gives time for the cement to set. The was must be well stirred during the application. The mixture
is to be made as thick as can be applied conveniently with whitewash brush. It is admirably suited for brick whitewash brush. It is admirably suited for brick
work, fences, etc., but it cannot be used to advantag
(5025) N. K. K. asks: Is the incandescent lamp used as a "Geissler tube," useless withou M. La Briteaux)? A. The vacuum is too high to permit of using a lamp as a Geissler tube. The vacuum of an
(5026) G. R. C. asks: In what ratio doe the amount of steam (expressed by weight of water carbon vary? A. The total heat from 32° of one pound of steam at 0 pressure is 1,146 heat units and at 100 pound pressure is 1,184 heat units. One pound of best coal with perfect combustion, gives out from 14,000 to 15,000
heat units, and will make from 11 to $121 / 2$ pounds of eam at 100 pounds pressure if no heat is lost.
(5027) D. W. says : 1. I want to build the simple electric motor described in "Experimental Sci ence." It does not state whether the magnet wire use is single or double wound. Which is it? A. You can danger of crosses when double-coyered danger of crosses when double-covered wire is used.
Will the same size machine, with cast fields and wound as described for dynamo, furnish current sufficient for the motor to run two or three sewing machines? suggested it will not furnish current enough for running two sewing machines.
(5028) H. A. F. asks : Will you kindly give me advice on the following: I have a 16 foot boat, galvanized iron No. 18, in compartments of 3 feet, withhorse power gasoline motor in it, will I need to put in any ribs, and, if so, will $1 / 8+1$ angle iron do ? And will
A. You should strengthen the shell of your boat near the ngine. The 1 inch angle iron ribs will do. You will mercial traffic.
(5029) J. H. W.-The sawmill dogs you elting are, no doubt, steel castings, which are made by empered like bar steel. Steel castings are far better than malleable iron castings.
(5030) A. C. asks : Are not malleable nd hot attergs preferable to cast iron ones for steam and hot water heating purposes, and also for piping steam
under ordinary pressures, provided the interior shape is he same? A. The malleable fittings are preferable when made with taper threads for steam use, wherever there is liability of accidental breakage of the fittings and danger from leakage. For ordinary steam piping, cast
iron fittings are in almost universal use and considered ron fittings are in almost universal use and considered
(5031) B. W. C. asks: Is the sun motor used in this country? Could you pump water 160 feet,
and cost ? A. The sun motor, so far, has been only an and cost ? A. The sun motor, so far, has been only an
experiment. With the ordinary force pump, water may experiment. With the ordinary force pu
be easily raised the height you mention.
(5032) S. H. B. asks : Is there any appliance by which sorghum juice can be evaporated by running steam pipe through the juice and applying the
heat in that way? I have a friend who is raising sorghum, eat in that way? I have a friend who is raising sorghum, by steam heat through pipes. He wants to make sirup or molasses, not sugar. An answer to this will be appeciated. A. Sorghum juice can be evaporated in large flat pans with a flat coil of steam pipe in the bottom of the
(5033) J. B. asks: Is hemlock suitable or studs and joists in building a frame house ? If not, hat are the objections to it ? A. Hemlock for studding and joist is liable to warp and spring out of line and is
more shaky than pine ; yet it is largely used now in cotge houses on account y chernes
(5034) G. C. B. asks: 1. How high are the highest masts of sailing vessels, and how much can-
vas do they spread ? A. The tallest masts are from 160 to 180 feet high, and spread from 60,000 to 100,000 square inches per mile? A. The curvature of the earth is 8 ches per mile.
(5035) G. W. B. asks : Will a boiler buitt to furnish steam at 100 pounds pressure for an 18 ch cylinder, 18 inch stroke, furnish steam for a steeple ow pressure cylinders, 18 inch stroke both havigg condensers? If not, why? A. For equal indicated horse powers the compound condensing engine uses, or should use, less steam than any single cylinder condensing en-
gine. With the arrangement as stated, with both high arrangement as stated, er cut-off, may be twice the power of the single cylinder ongine, and may, by the relation of cut-off on each enne, require more steam.
(5036) W. F. C. writes: Is there any igh explosive, not easily fired by concussion, that could e safely used in bombs for ordinary cannons or mortars? shes? shes? Are these ashes considered evidence that the nalogy the heat of the sun is due to the same cause. Is his the reason why scientists claim that it will eventully expire? A. There is no high explosive as yet known that will stand the initial concussion of discharge from guns. Much experiment has been made in this direction, but without as yet practical results. Volcanic ashes are of much the same composition as pumice stone, or nearly the same as the primary rock formation of the earthmetallic uption, or the mater bustion going on within the earth. The heat held in the interior of the globe is assumed to have been nascen with its creation, and the interior heated mass to be inrt, volcanic activity being the vent for the relief of the ressure upon the hot fluid mass of the interior, caused by the contraction of the earth's crust by loss of heat from radiation. The heat of the sun is reasonably assumed to ave been derived in the same manner, only that its im theory of the progress of creation indicates that the sun nd the solar system is a cycle in the events of eterna time. Its life existence had a beginning and will have an (5037) J. W. writes : What is the most racticable way of storing power for future use, if any? I am owner of water power with limited storage ime, in fact all the time, and could use in 18 hours all the power I could develop in the 24 with the amount of water available; how could I store the 6 hours power pat goes to waste? I operate electric power and ligh
plant 18 hours out of 24 . A. In the absence of particuars as to the limit of water storage, the question of a higher dam, which alone will increase the power in the proportion that the additional height bears to the pres ent height, or the addition of power by the storage of water, need not be discussed, as you say you have a made available directly in your line of operation, and that is electrical storage. With your present plant you may charge storage batteries during the 6 hours to he full extent and power of your electric plant, and also tilize any excess of power that you may have to
(5038) Enquirer, Va., writes: Please vise me of an appro country if we excavate more than 12 to 18 . nch , wate stands under the floor and the floor joists decay, first in the brick walls and then throughout. A. Buildings on we round should have at least 3 feet space between the ground and the joists, and if stone or brick foundations are oundatios 1 foot square should be made through the nd along the sides, and ting fine enough to keep out mice. This will give thewind
a clear circulation under the building, and keep the ground
as dry as possible under the condition of a wet soil. If a as dry as possible under the condition of a wet soil. If a
layer of concrete or sand and hydraulic cement can be spread under such a building, it will greatly help to keep spreader story dry and preserve the timber from decay (5039) Amateur asks: In computing horse power of steam boiler what proportion of shell in considered heating surface? A. All of the shell expose
to the fire and heated gases. 2. Does the horse power of boiler increase in same ratio as steam pressure, i. e., if boiler is 30 horse power with 60 pounds, will it be 40 horse power with 80 pounds steam? A. Yes. 3. With boile pressure at 80 pounds, what is the pressure in cylinder of slidevalve engine in motion? What makes the differ nce? A. The cut-off of the valve, which prevents the following of the steam to the full stroke, makes the mean pressure. 4. How can the power a slide valve engine is of indicator? Boiler pressure at 80 pounds. A. By dynamometer. For excellent articles on dynamometer in general see our Supplement Nos. 264, 359, 376, 436, 684, especially the two first named ones.
(5040) J. B. D. asks: What is a good roof paint that will last five years at least, on either ron or shingle roofs, one I can prepare myself? A Prince's metallic paint (dry); mix it with raw linseed oil for shingle roofs; first coat thin, so as to spread easily with the brush. When this has well dried, which may be everal days, paint with the same paint mixed with boiled inseed oil, just thick enough to spread well with a brush For iron roofs use boiled linseed oil with the same paint
for both coats. for both coats.

NEW BOOKS AND PUBLICATIONS.

How to Become Expert at Figures; or, Rowland's Vest Pocket ComPENDIUM OF SHORT CUTS AND BUSI NESS PoINTERS FOR EVERYBODY. York: W. D. Rowland publisher. Pp. 113. Price 25 cents. No index. Many people would be much better at figuresthan they
are were the methods of doing quickly only shown. are were the methods of doing quickly only shown.
This little book purports to give these methods and does so with considerable success. In addition to the purely arithmetical part of it, notes of banking, commerce, and business in general with business hints are included. At the end a number of pages ruled for a cash account are given, with a note of how to use the same.

TO INVENTORS

An experience of forty-four years, and the preparation
of more than one hundred thousand applications for pa ents at home and abroad, enable us to understand the laws and practice on both continents, and to possess un-
equaled facilities for procuring patents everywhere. A synopsis of the patent laws of the United States and all foreign countries may be had on application, and persons contemplating the securing of patents, either at home or abroad, are invited to write to this office for prices
which are low, in accordance with the times and our ex ensive facilities for conducting the bus mUNN \& CO., office Scientific American, 361 Broadway, New York.

INDEX OF INVENTIONS For which Letters Patent of the United States were Granted

May 9, 1893
AND EACH BEARING THAT DATE.
at end of list about copies of Abrading device, portable electric, A. J. Nellis...
Adding machine, B. H. Philisp,
Advertisments, means for displaying, E. O. Hart. Agitator, J. E. James.
Air and gat apparatus for mixing, Thayer \&
Weld Air engine, carbureted E. A Aurand:
Air mostenng apparatus, A. Schmid.
Alarm. See Fire alarm.
 Alkali, apparatus for reco

 .497,090,
 Balot, votiog, k. Wibite...
Bar. See Terchntar.
Barrel, Pleukbarp at Ligg

 Boarr. See Ironing board.
Boiler cleaner, antomartc, E. Benjamin.
Bolting reel 3 P. P P sterlink

Burner. See Hydrocarbon burner.
Busk stel. .
Can. See Sil can.

Car bumper, mamp, Del. Bennetit...
Car construction, S . Aa Jennings.
Car coupinn, A. G. Baken.......

Drying brewers' grains, etc.,., apparatus for, w.
Drying brewers'
brains, apparatus for, c. C.
\qquad
 Egg case tray or fller, F. M. Wade.................
Electre ctrcuit switchboard, A. Lo ionrer....
Eleetric light and gas fixture coupling, G. Pee-

 evator. See Hay elevator.
Eievator indicator meechansm, Wylde....... 4
Engine. See Air engine. Gas engine. Rotary engine. Steam engIne.
Envelope opener,
Envelope opener, J. Puckett (r). Pupes.............
Extension tanber, S. S. S. Singes.
Eyelid lifter, H. K . Lamb
Ean

 Gauge. See surface gauge. Gauge. See Surface gauge.
Galvante batter, C. W. Hotrer.
Garbage vesel, G. . Sweger...
Gas, apparatus for the manufacture of, \mathbf{c}. E
Gas ente.. W. W. W. Grant...........
Gas generator J.
Gate Jackson
See Rail way
\qquad
rator. for polishing plate, R. Brockman......
Glass, bed fiver, oxtracting, Parkes \& Montgomerie
Gold or silv
Gold or siver from ores or compounds contanining same, extracting, Parkes. \& Montgom
Grann binder, H.

Grooving machine, W. L. Davis.
Hair pin, J. W. Granger.
Hamper. power.
Hammer, power, C. M. Brown.

策黄

\qquad

Separator, See ore se, arator.
Sewry machne, M. Minne..
Sewing machine quitine.

TRADE MARKS.

 2o the. In orderng please state the name and number
of the patent destred, and remit to Munn $\&$ Co., 361
Broadway, New York.

ICE－HOUSE AND COLD ROOM．－BY

The Sehastian－May Co．㕆梪 foir $\$ 60$

 qT TM MASI MASN \＆HAMLIN F1 M

STEVENS PATENT
SPRING INSIDE CALIPERS

WM．GRAVER TANK WORKS，

STORAGE TANKS． 3d Floor，Rookery Bldg．
turnow LATHES xoman enarise LATHES DESIGNS
 New Full Mounted Lightning Screw Plate，
 M
MANUFACTURERS and INVENTORS ATTENTION：

Mechanical Help for Inventors chine shop，organized for and adapted to miscellaneous jobs，to carry out an in them．Primer to send．

PRESS， 83 smain newspaper preses， ，mi

THE DENSMORE
SURPA SSES THE OLDER MACHINES in many ways， THE FAMOUS CARNEGIE STEEL CO．，Pittsburgh，are among the
great concerns that have adopted it，and have just purchased the fifteenth． Their chief stenographer，after subjecting a number of these machines to everywhere corroborating this，call the Densmore Densmore Typewriter Co．， 202 Broadway，New York
THE COPYING PAD．－HOW TO MAKE

WELL DRILLING MACHINERY， WILLIAMS BROTHERS， Mounted and on Sills，for deep or shallow wells， with steam or horse
 power． Sond fo catalogue． Fillimus Brothers

 OIL WIELL SUPPLY GO

Chain Belting Engineering Works，

Inventions and Novelties Developed

＂OTTO＂

溇 THE＂MUNSON＂TYPEWRITER．洸

 interchangeable steel type wheel，

CHAPMAN VALVE MANUFACTURING COMPANY， For steam，water，gas，ammonia，Gates We make a Specialty of Valves firsuperheated and High Pressure Steam， 100 Pounds

The McCONNELL Gemm Prow filitrs nesom wemeas
All Kinds of Disease Germs． Is a Filter and Cooler Combined．

The Mcconnell Filler Co．
PHOHOGRAPHS for sale．
Noth Anerian Phoograph
edison buildivg
Masonic Temple Bldg．．
Astronomical Telescopes
Photor deflning power，
Manufactured by
W． \mathcal{E} D．MOGEY，

ELECTRICITY
 ELECTRICAL SUPPLIES， STANLEY \＆PATTERSON，

DRAWIMG TAUGHT BY HAIL

After being on the Market Seven Years THE AGME AUTOMATIC ENGINE AND BOILER $\boldsymbol{s i r I T I}$ IEADS：
Halt to Four Horse Power．Marine and stationary．
Io to for either Natural Gas or Petro

ROCEESTER MACEINE TOOL WORKS，BTown＇s Race，ROCEESTER，N．I

Rubber Rolls and Wheels．

 THOMPSON IMPROVED INDICATOR

Sumplat mact

The Most Popular Scientific Paper in the World Only $\$ 3.00$ a Year，Including l＇ostage．

This widely circulated and splendidly illustrated paper is published weekly．Every number contains six－ ten pages of useful information and a large number of epresenting Engineering Works，Steam Machinery， Chemistry，Electricity Telegraphy，Photography，Archi－ tecture，Agriculture，Horticulture，Natural History， Terms of Sist of patents each week．
Comption．－One copy of the Scten－ postage prepaid，to any subscriber in the United States， Canada，or Mexico，on receipt of three dollars by the publishers；six months， 81.50 ；three months，$\$ 1.00$ ．
Clubs． Clinbs．－Special rates for several names，and to Post
Masters．Write for particulars． The safest way to remit is by Postal Order，Draft，or
Express Money Order．Money carefully placed inside of envelopes，securely sealed，and correctly addressed，
seldom goes astray，but is at the sender＇s risk．Address seldom goes astray，but is at the sender＇s risk．Address
all letters and make all orders．drafts，etc．，payable to MUNN \＆CO．， $\mathbf{3 6 1}$ Broadway，New Yorl
MUSters．

Scientific Ampricaty §upplempent This is a separate and distinct publication from T＇HE
SCIENTIPIC AMERICAN，but is uniform therewith in size， every number containing sixteen large pages full of en－ gravings，many of which are taken from foreign papers
and a acompanied with translated descriptions．＇T⿴囗十 SIIENTIFIC AMERICAN SUPPLEMENT is published week－
ly，and includes a very wide range of contents．It pre－ ly，and includes a very wide range of contents．It pre－
sents the most recent papers by eminent writers in all
the principal departments of Science and the Useful the principal departments of Science and the Useful Arts，embracing Biology，Geology，Mineralogy，Natural
History，Geography，Archæology，Astronomy Chemis－ History，Geography，Archæology，Astronomy Chemis－
try，Electricity，Light，Heat，Mechanical Engineering． Marine Engineering，Photography，Technology，Manu－ facturing Industries，Sanitary Engineering，Agriculture， Horticulture，Domestic Economy，Biography，Medicine，
etc．A vast amount of fresh and valuable information The most important Engin eering Works，Mechanisms． and Mancfactures at home and abroad are illustrated and described in the SUPPLEMENT．
Price for the SUPLEMENT for the United States， SCIENTIFIC AMERICAN and one copy of the SUPPLE－
MENT，both mailed for one year to one address for $\$ 7.00$ ． Single copies， 10 cents．Ad press money order，or check，
gruilding Cultitun．
THE Scientific American Architectis＇and Single copies， 25 cents．Thirty－two large quarto pages， forming a large and splendid Magazine of Architecture， richly adorned with elegant plates in colors，and with
other fine engravings；illustrating the most interesting examples of modern architectural construction and allied subjects．
A special feature is the presentation in each number a a variety of the latest and best plans for private resi－ erate cost as well as the more expensive．Drawings in perspective and in color are given，together with Plans， Descriptions，Loeations，Estimated Cost，etc．
The elegance and cheapness of this magnificent work have won for it the Largest Circulation of any
Architectural publication in the world．Sold by all news－ dealers．$\$ 2.50$ a year．Remit to
M MNN $\& \mathbb{C O}$ ．Publishers，

HENRY CAREYBAIRD \＆CO．UNRIVALED

Scienticic Book Caaloguic Our new catalogue containing over 100 pages，includ－
In\＆works on more than tfty difierent subjects．Will be
mailed tree to any address on application． MUNN $\&$ CO．，Publishers Scientiftc American，

ROSE POLYTECHNIC INSTITUTE

STEEL TYPE FOR TYPEWRITERS

VOLNEY W．MASON \＆CO． PRICTION POLLETS，CLDTCHES，and ELEVATORS

JUST PUBLISHED．

Star＊Maps
By Richard A．Proctor，F．R．A．S．
A series of twelve elegantly printed Maps of the Heavens，one for every month in the year．Specially prepared for use in North America．With descriptions
accompanying each map，giving the names of the prin－ cipal stars and constellations，showing their relativ positions at given hours and days of the month．
A most beautiful and convenient work，special adapted for the use of those who desire
a general knowledge of the starry realms．
preparing and using artificial luminous stars as an ai in fixing in the mind the names and places of the Altogether thic is on of the byrea E．Beach． and valuable works of the kind ever publishec．
\＄2．50，postpaid．
MUNN \＆CO．，Publishers，

Excellence of Design and

Construction， Simplicity，
Easy Operation， Speed，

Durability．
Send for Catalogue．

REMINGTON TYPEWRITER
Adopted as the Official Writing Machine of the World＇s Columbian Expositio
 Wyckoff，Seamans \＆Benedict， 327 BROADWAY，NEW YORK

No one ever wrote 1000 Letters an Hour， EDISON MIMEOGRAPH

Model \＆Experimental Work

INK－BELT MACHINERY CO．
Engineers，Founders，and Machinists，

＂BEWARE OF FALSE PROPHETS．＂They will tell you that the H

DRUL CHCKS，maway mame

THE SIMPLEX TYPEWRITER

BコRエINT Bエヒモ
VITRIFIED BRIGK．
An indestructible product，impervious to water and
acias，for room linings and flooring．Especially useful
NEW YORK BRICK AND PAVING CO．，
SYRACUSE，N．Y．

SINTZ GAS ENGINE CO GRAND RAPIDS，MIOEH，

J．H．\＆D，LAKE CO，${ }^{\prime}$ ，Massillon，O．O．U．S．A．A．

$\$ 10.00$ to $\$ 50.00$

HARRISON CONVEYOR ！
нanding Grain，Coal，Sand，Clay，Tan Bark，Cinders，Ores，Seeds，\＆C． Sirnd for （BORDEN，SELLECK \＆CO．，$\left\{\begin{array}{c}\text { Sole } \\ \text { Manurfers，}\end{array}\right\}$ Chicago，III．

Fluted Tire Bolt

iffer and stronger than a common bolt. The flute shank prevents the bolt from turning
 FORGED $\left\{\begin{array}{l}\text { LOCK ©AP SCREWS } \\ \text { SIDE KNOB SCREWS }\end{array}\right.$ AMERICAN SCREW COMPANY, PROVIDENCE, R.I.

ASTRONOMY Celestial Handbook just published. POOLE BROS., CHICAGO, ILL

Produced, ou

 GAS ENGINEical of any Engine made, for running Cream Freezers, Meat Choppers and Chicago Water Motor \& Fan Co 99 Lake St., Chicago, III. Your Wife's Watch

ought to be equal to yours; at least.

Her minutes cost her more than yours and bring her less. You see that at dinner time, at supper time, at breakfast time, and-well, all the time. Haven't vou learned her needs? She needs a watch that she can risk anywhere; accurate, stylish and genuine-and not expensive: the new, quick=winding Waterbury. Handsome as a hundred dollar watch, though it costs only $\$ 15$ down to $\$ 4$.
It is cased in gold, filled, coin-sit-
ver, etc.
It is
stem-winding
and setting, a jeweled move
one. Every jeweler keep
this watch in all styles.

4
 ATENTS
 MESSRS. MUNN \& CO., in connectio
 In this line of business thes have had fortv-five year

 Reports on Infringements, of Peatents. Als Albusiness in
Rrusted to them is done with special care and prompt A pamphlet sent free of charge on application, con-
taining full information about Patents and how to pro
 We also send, free of charge, a Synopsis of Foreign PaPatents in all the principal countries of the world. MUNN \& CO., Solicitors of Patents,

Office Headache. Mistakes in Addition. Mistakes in Carrying Forward.
 isting Scattered Items to add them.

 COMPMUTIR moman men nomam And all the time looking for errors.
FELT \& TARRANT MFG. CO., $52-56$ Illinois St., Chicago

KODAK

FILMS.

Our New Films are giving perfect satisfaction. They are highly sensitive, and repeated tests as glass plates. No other films are so free from imperfections; none so
Eastman Kodak Co.,
Rochester, N. Y.

The Smith Premier Typewriter
Perfect and Permanent Alignment.
type cleaned in Ten Seconds without Soiling, the Hands
The Smith Premier Typewriter Co., Syracuse, N. Y., U. S. A. we have 20 branch offices in the principal cities throughout the United States.

IN ONE MNUSTE

IT WILL CONVINEE YOU OF OUR ABMITY TO SUPPLY, TOILET PAPER EOR LESS MONEY THAN IT CAN BE OBTAINED ELSEWHERE. AA.PWAPAPER CO.ALBANY,NY.

SCIENTIFIO AMERICAN SUPPLE MENT. Any desired back number of the SCIENTIFIC
AMERICAN SUPPILEMENT can be had at this office for for
10 cents. Also to be had of newsdealers in all parts of

a GENTLEMAN'S LAUNCH

 United States. Send for catalogue of thatves Whistles SCI. AM. THe Lunkenteimer Compa ny, successorto THE LUNEEHEIMER BRASS MFG. Co., Cincin-
natio

PATENT JACKET KETTLES

Launches Your own engineer.

PADD1.E YOUR OWN CANOE. THOMAS KANE \& CO., Chicaso, Ill.

- Send for catalogue specifying line desir

ELECTRICAL * MINING * MACHINERY
Electric Mine Locomotives, Electric Drilis, Electric Coal Cutters, Electric Pumps, Electric Hoists. GENERAL ELECTRIC COMPANY,
${ }^{41}$ Broad Street......iteè New Tork
Chew
chicaso

Atlantic

Philaston, Mas
St. Pauia,
Sin
Washington, D.

THE PREMIER CAMERA

IS THE BEST IN MARKET. Simple of Manipulation.

Plates or Films are used. PRICE \$18.00.
Send for Catalogue and copy of Modern Photography We make all Kinds of cameras. ROCHESTER OPTICAL COMPANY,

THE FOX SAFETY RAZOR.

 125 MILK ST., BOSTON, MASS.This Company owns the Letters Patent No. 186, 787, granted to Alexander Graham Bell, January 30, 1877, the scope of which the United States in the following terms: "The patent itself is for the mechanical structure of an electric telephone to be used to produce the electrical action on which the first patent rests. The third claim is for the use in such instruments of a diaphragm, made of a plate of iron or steel, or other material capable of inductive action; the fifth, of a permanent magnet constructed as described, with a coil upon the end or ends nearest the plate; the sixth, of a sounding box as described; the seventh, of a speaking or hearing tube as described for conveying he sounds; and the eighth, of a permanent magnet and plate combined. The claim is not for these several things in nd of themselves, but for an electric telephone in the construction of which these hings or any of them ate used.
This Company also owns Letters Patent No. 463,569, granted to Emile Berliner, November 17, 1891, for a Combined Telegraph and Telephone; and controls Letters Patent No. 474,231, granted to
Thomas A. Edison, May 3, 892 for a Thomas A. Edison, May 3, 1892, for a Speaking Telegraph, which cover fundamental inventions and embrace all forms of microphone transmitters and of car bon telephones

