

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

MOVING A BRIDGE BY RAIL.

We illustrate in this issue a very interesting operation, the transporting by rail of a plate girder railroad bridge. The American type of truss bridge is distinctively a built-up, pin-fastened structure, all of Such bridges are put together in situ. The present bridge of the plate girder type represents the English style of riveted construction.
The general appearance of the bridge is shown in the illustration. It is a single track through span skew bridge with center pier. It is carried by four girders of identical dimensions. The girders were put together at the factory, and were taken to the place of erection on cars. This operation is the one which we specially iliustrate.
Each girder was 123 feet long and $91 / 2$ feet high, Each girder was 123 feet long and $91 / 2$ feet high,
weighing 46 tons. To each of them four cars were
allotted. The four cars were coupled together, and on the end ones of each group of four cars a framework was laid, comprising three cross members and two longitudinal members. On these frameworks the ends of the truss rested. Thus the weight of the truss was carried by the two end cars only. They were carried by the center transverse members of the frame. To keep them upright, two diagonal braces of wood were arranged at each end. These were secured at the top by a strap crossing the top of the girder. Long bolts ran down by the sides of the braces, binding all firmly together. Short chocks of angle iron on the longitudinal sleepers acted to brace all in place. As the cars took curves, the girders had sufficient freedom of motion to yield to the motion.
The two middle or intermediate cars were only present as a matter of security, and possibly might
the weight of the girder and its bracing did not develop sufficient coupling power. Thus each end car had to carry a weight of twenty-three tons.
As there were four girders, sixteen cars were used in heir transportation. A seventeenth car was included in the train, which car was loaded with the smaller portions of the structure, bolts, tools, etc.
The bridge was built by the Elmira Bridge Company. It was shipped on December 6, 1892, from Elmira to Wallingford Junction on the tracks of the N. Y. C. R. R. and thence via R., W. \& O. R.R. to Ogdensburg. It reached its destination December 9.
As shipped, the total height from the top of the rail to the top of the girder was about 14 feet 9 inches.
Our thanks are due to Mr. G. H. Thompson, civil engineer of the Now York Central Railroad, for infor-

Bricutitic Ammerica.

HSTABLISHED 1845.
MUNN \& CO., Editors and Proprietors PUBLISHED WEEKLY AT
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, for the U. S., Canada or Mexico. Remit by postal or express money order, or by bank draft or check. MUNN \& CO., 361 Broadway, corner of Franklin Street, New Yor The Scientific American Supplement

Building Edition

Spanish Edition of the Scientific Americall

NEW YORK, SATURDAY, APRIL 1, 1893.

table of contents of
SCIENTIFIC AMERICAN SUPPLEMENT
No. 900.
For the Week Ending April 1, 1893.

BiOGRAPHY-Ferdinand de Lesseps.-Scenes in the life of De
Lesseps. -3 I. BOTANY-The Discovery of the Sexuality of Plants.-Old-time

VII. HoRTICULTTUREM. Carex Japo
 X. NA NA ENGNEEREMGO-The ZZimer Boat.-A Recently pat. ORDNANCE-Cordite.-The English smokeless powder.-Its

XI. PHYsics.-Autcomatic Mercurial Air Pumps. - A pump for con-
tinuous workink. - The results of its operation. -1 llustration \ldots.

the legal status of railroad employes.
A very novel and important action, important, at least, as bringing a much discussed question into the area of judicial action, was taken on Saturday, March 18, in the United States court at Toledo. The engineers on the Toledo, Ann Arbor \& North Michigan Railroad had struck. Their places were filled as far as possible with outside men. The Brotherhood of Locomotive Engineers, by their chief, P. M. Arthur, had ordered Brotherhood engineers to refuse to handle cars of non-union and boycotted roads. This amounted
Of course, such action on the part of the sympathizing engineers caused utter derangement of business. The railroad authorities resolved to invoke the Federal powers. They obtained first an injunction from Judge Taft, restraining members of the Brotherhood of Locomotive Engineers from boycotting Ann Arbor freight. A suit for $\$ 30,000$ damages was also filed against Chiefs Arthur and Sargent for ordering the engineers to strike. Next, the Lake Shore road dispatched a special train to Cleveland and brought United States District Judge Ricks to Toledo, and obtained from him an attachment for three of their fire men and four of their engineers, who had refused to handle the boycotted freight. The men were required to show cause why they should not be prosecuted for contempt of court in face of Judge Taft's previous order
Locomotive engineers and railroad employes generally occupy quasi-public positions. The public is dependent on them for the carrying out of its business. Under the common law the conspiring to raise the price of labor or of other commodity is held to be unlawful. In England the quasi-public status of certain employments is definitely recognized. As a fully public employment, the soldier's or policeman's position may be cited. In joining the ranks of either of these bodies, a man surrenders a measure of his personal freedom. He voluntarily and knowingly puts himself under obligations which are more binding and involve severer penalties than those attached to ordinary contracts. Death cannot be the penalty for violation of a civil contract. Desertion from the ranks of the army may incur it.
The action of the United States courts in the railroad cases seems to recognize the status of railroad employes as assimilated to that of soldiers. To such operatives the affairs of the community are committed. A detention of cars does not mean injury to one person, or to a corporation, but it means injury to an indeterminate number of the public. Injury to the public is not the subject of private suit-it is a matter for indictment and government prosecution.
The railroads of the United States form an interstate system. This brings them under Federal jurisdiction. The striking engineers and firemen have been shown very clearly that they will not have State authorities only to deal with. They have to face the more rigorous administration of justice as meted out by the United States courts. They are being placed in the position of soldiers of the public. To attempt a boycott of freight, or to conspire in effecting a strike, is by these actions of the courts declared a species of desertion-
like the desertion of his colors by a soldier in face of like the desertion of his colors by a soldier in face of
the enemy. The great army of peace, which railroad employes really constitute, is always in face of its enemy-the overcoming of time and space in the interests of the public.
The court's action cuts in two ways. The representatives of labor are inclined to see in it an interference with their personal rights. Many protest strongly against it. If their privileges of sympathetic striking and boycotting are interfered with by the courts, the new state is pronounced slavery by the more rabid labor advocates. This view is of course totally false The soldier held down to the severest penalties, subject even to corporal indignities, and in some armies to flogging, is not held to be disgraced by enlistment. When a man chooses the railroad as the scene of his life's work, he virtually enlists, and should feel himselt subject to peculiar responsibilities and penalties.
The other view of the action of Judges Taft and Ricks involves the recognition by the state of railroads and the Federal regulation of their affairs. One school of socialists welcomes the interference by the courts as the first step in nationalizing the railroad service. This has long been clamored for. The interstate commerce act is the first step. The new injunction motions appear as a further movement in the same direction. The old time private letter expresses have been supplanted by the post office. The parallel course for the railroads of the country is advocated by many.
The court proceedings have for their immediate ob ject the purging of contempt of the employes and the defense of the Brotherhood's officers. Hence every technical point is availed of by the attorneys for the defense. This unfortunately prevents a full determination of the constitutionality of the injunction. But this must sooner or later be adjudicated. The equities of the case are, from the point of view of the public at least, on the side of the railroad. The passengers on a
railroad do not relish the idea of the engine crew de. serting their engine miles from any settlement and perhaps in weather which may involve sickness and death from exposure to the passengers. The shipper of freight must resent the loss of a market or perhaps the destruction by delay of perishable goods because of the blocking of a railroad by organized action on the part of its striking employes. Such action in the army or at sea would be mutiny. The events we are discussing may make it virtually matiny on railroads as well.

British Law as to Locomotive Sparks and Fire Haising.
The House of Lords, sitting as an Appeal Court recently, defined the law as to the liability of railway companies for fires caused by sparks from their locomotives. The case was raised, says Engineering, by a Port Glasgow Sailcloth Company against the Caledonian Railway Company, the Court of Session having decided in favor of the railway company. The issue was really between fire insurace corporations and railway companies. It was agreed that the fire which consumed the Sailcloth Company's flax store, and involved $£ 12,000$ damages, was caused by a spark emitted from Locomotive No. 85 while passing along the Caledonian line contiguous to the stores; but the Lord Chancellor, in giving judgment for the railway company, laid it down that the railway company, having statutory power to run along the line with locomotive engines, which in the course of their running are apt to discharge sparks, it was necessary to prove that the power given was not reasonably and properly exercised, and this the Sailcloth Company had failed to do. The mere fact that the destruction by fire was caused by the spark did not involve liability; the point really was whether the railway company had, as was their bounden duty, used the best practicable means, according to the then state of knowledge, to avoid the emission of sparks. The Sailcloth Company failed to prove to the contrary. The offending locomotive, No. 85, belongs to a type adopted in 1888. Prior to 1882 the engines of the Caledonian Company were fitted with a spark arrester-a grid in the uptake or funnel to prevent embers escaping with the exhaust steam. The new type, on the other hand, has the vortex blast and not a spark arrester. It was contended in evidence in support of the greater efficiency of the new arrangement, that in the old arrangement the lower tubes got blocked up and required a greater draught in the upper tubes to maintain the steam-raising power of the boiler. Consequently the spark arrester was required, owing to the enormous increase of draught. With the vortex blast arrangement, on the other hand, the draught is more equallydiffused. The consequence is that, as the lower tubes do not get blocked, combustion is more complete, and it is alleged fewer embers are likely to leave the fire box. It was, therefore, held by their lordships that the modern engine, even without the spark arrester, was more efficient than the earlier type with the spark arrester. As to the contention that an extra precaution might have been taken by adding the spark arrester, even in the vortex blast engine, there was conflict of testimony as to whether this would not militate against the other advantages mentioned, while the necessity was not clearly established. The Lord Chancellor also admitted that negligence or carelessness on the part of the engine driver would involve the liability of the railway company; but the fact that sparks issued from the funnel did not indicate negligence or carelessness. On the other hand, the engine driver was proved to be an experienced man, and there was nosuggestion why he should have departed on this occasion from the ordinary mode of working the engine. The five lords sitting on appeal all agreed in the decision in favor of the railway company, with costs.

Placing a Big Street Car Cable in its Trench. Over two miles of $11 / 2$ inch steel cable of the Broadway Railroad Company was recently placed in the trench beneath the street pavement, where it is to be used in hauling the cars. The end of the cable was attached to a car hauled by twenty-four horses, which was started from the power house at Seventh Avenue and Fifty-first Street, proceeding thence north to Fifty-ninth Street, back to Thirty-sixth Street, and from there to the power house again, where workmen commenced splicing the two ends. At the north and south ends of the space covered, where the cable changes its direction, it runs around wheels twelve feet in diameter.

An Undergronnd Stream

A dispatch from Augusta, III, says that four miles northwest of that place, a few days ago, William Allen bored a well on his farm, going to a depth of 77 feet, At that depth suddenly the entire bottom fell out, carrying all but about 5 feet of the walls with it. At the bottom of the deep hole thus formed could be seen a swift rushing stream. All efforts to fill up this hole have proved futile, the rushing current carrying away everything thrown into it.

position of the planets in april.

SATURN
is evening star. He takes the highest rank on the planetary annals for April, and is in better position for observation than he was during March. He rises now before sunset, and, when it is dark enough for the stars to come out, will soon be high enough above the horizon to make it easy and convenient to observe him with the telescope or the unaided eye. When the month closes, Saturn will be on the meridian about 10 o'clock, and half way between the horizon and the zenith about 7 o'clock. He continues to retrograde or move westward, approaching the beautiful double star Gamma Virginis. He is in conjunction with the star on the 8 th, being 6^{\prime} south. As 6^{\prime} of arc is a very tiny piece of sky, the telescope at that time will bring to view two celestial marvels of wondrous beauty, the ring-girdled planet and the star separated into its two silvery white components hanging side by side in two silvery white components hanging side by side in
the sky. It is a spectacle that amateurs who have the sky. It is a spectacle that amateur
The moon is in conjunction with Saturn, two days before the full, on the 28 th, at 0 h .30 m. A. M., being 50^{\prime} south. The conjunction will be visible as an appulse, and there will be an occultation of the planet in the southern hemisphere for observers who are in the right conditions to see it.

The right ascension of Saturn on the 1st is 12 h .38 m ., his declination is $1^{\circ} 11^{\prime}$ south, his diameter is $18^{\circ} .2$, and he is in the constellation Virgo.
Saturn sets on the 1st at 5 h .51 m. A. M. On the 30 th , he sets at 3 h .53 m . A. M.

URANUS

is morning star until the 28 th , and then evening star. He is in opposition to the sun on the 28 th, at 7 h .28 $\mathrm{m} . \mathrm{P}$. M., being at his nearest point to the earth, and reaching the meridian about midnight. These are the most favorable conditions under which he is ever seen, and the opportunity should be improved by observers who wish to follow his course, for he is barely visible who wish to follow his course, for he is barely visible
to the naked eye in his best estate. It is easy to keep to the naked eye in his best estate. It is easy to keep
track of the distant wanderer, his movement is so slow, for it takes him seven years to pass through a zodiacal constellation. The bright star 18° northwest of Uranus is Spica, the third magnitude star on the east is Alpha Librae, the fifth magnitude star on the west is Lambda Virginis. The last time the planet traversed the portion of sky he occupies at present was in 1809, and he will not return to it again till 1977. The best period of observation for Uranus is from March till August.
The moon, two days after the full, is in conjunction with Uranus on the 3d, at 10 h .34 m. A. M., being 1° 36^{\prime} south. The conjunction is invisible, occurring in the daytime.
The right ascension of Uranus on the 1st is 14 h .30 m ., his declination is $14^{\circ} 19^{\prime}$ south, his diameter is $3^{\prime \prime} .8$, and he is in the constellation Libra.
Uranus rises on the 1st at $8 \mathrm{~h} .34 \mathrm{~m} . \mathrm{P}$. M. On the 30 th , he sets at 4 h .59 m . A. M.

JUPITER
is evening star until the 27 th, and then morning star. The planet will be conspicuous by his absence from the sky. His reign has been long and brilliant, and his bright presence as evening star will be greatly missed, not only for his superb appearance, but for the record he has made, the jewel added to his starry crown. Very few observers will see the mythical fifth satellite, but every one interested in astronomy knows and feels its presence close beside the grand primary.

Jupiter is in conjunction with the sun on the 27 th, at 7 h .8 m. P. M. He then passes to the sun's western side, commencing his career as morning star, being for the present too near the sun to be visible. An interest ing incident marks his course. He is in conjunction with Venus on the 28 th, at 11 h .39 P. M., being 3 ' south. Jupiter, the day after conjunction, a one-day-old morning star, moving westward from the sun, encounters Venus moving eastward toward the sun, only four days before her superior conjunction with the sun. The planets are close together, and close to the sun. They have their meeting, make their appulse, and go on their way, the phenomenon as totally invisi ble to terrestrial observers as if the two brightest planets had dropped from the sky. Imagination has power, however, to pierce the solar veil and behold the picture securely hidden within the royal vestibule.
The moon, the day after her change, is in conjunction with Jupiter on the 17 th , at 0 h .13 m . A. M., be ing $1^{\circ} 44^{\prime}$ north. The conjunction is invisible for two reasons. Moon and planet are below the horizon, and are too near the sun to be seen.
The right ascension of Jupiter on the 1st is 1 h .59 m . his declination is $11^{\circ} 8^{\prime}$ north, his diameter is $32^{\prime \prime} .0$, and he is in the constellation Aries.
Jupiter sets on the 1st at $7 \mathrm{~h} .53 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 30 th , he rises at 5 h .0 m. A. M.
venus
is morning star. The only interesting event in her April course is her close conjunction with Jupiter, already described. She is of no account for nearly turee months to come, after which she will emerge

The moon, on the day of her change, is in conjunction with Venus on the 16 th , at 2 h .44 m. A. M., being 42 north. The conjunction is invisible.
The right ascension of Venus on the 1st is 0 h .18 m ., her declination is $0^{\circ} 21^{\prime}$ north, her diameter is $10^{\prime \prime} .0$ and she is in the constellation Pisces.
Venus rises on the 1st at $5 \mathrm{~h} .32 \mathrm{~m} . \mathrm{A}$. M. On the 30 th , she rises at $5 \mathrm{~h} .2 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. MERCURY
is morning star. On the 28 th , at $9 \mathrm{~h} .8 \mathrm{~m} . \mathrm{P}$. M. he reaches his greatest western elongation, when he is $26^{\circ} 56^{\prime}$ west of the sun. He may then be looked for in the east before sunrise as morning star visible to the
unaided eye. The success of the observer is uncertain, as the planet is 12° farther south than the sun.
The moon, two days before her change, is in conjunction with Mercury on the 14th at $8 \mathrm{~h} . \mathrm{P}$. M., being $1^{\circ} 39^{\prime}$ south.
The right ascension of Mercury on the 1st is 0 h . The right ascension of Mercury on the 1st is 0 h .
36 m ., his declination is $6^{\circ} 50^{\prime}$ north, his diameter is 36 m ., his declination is $6^{\circ} 50^{\prime}$ north, his
$11^{\prime \prime} .4$, and he is in the constellation Pisces.
Mercury rises on the 1st at 5 h .27 m . A. M. On the 30th, he rises at 4 h .7 m . A. M.

MARS

is evening star. He has dwindled to a ruddy point, and will soon be lost to sight. The planet is so small that he is only seen to advantage at opposition and during the month before and after. He is not in opposition in 1893, and observers must turn their attention to more interesting members of the sun's family. His synodic period, or fime from one opposition to the next, is 780 days, or $2 \mathrm{y} .1 \frac{2}{3} \mathrm{~m}$., the longest in the planetary system. The earth, therefore, revolves twice around the sun, and it then makes $1 \frac{2}{3} \mathrm{~m}$. of a third revolution before she comes into line between the sun and Mars.
The moon, three days after her change, is in conjunction with Mars on the 19 th , at $2 \mathrm{~h} .31 \mathrm{~m} . \mathrm{P} . \mathrm{M}_{\text {. }}$, being $2^{\circ} 45^{\prime}$ north.
The right ascension of Mars on the 1st is 4 h .1 m ., his declination is $21^{\circ} 39^{\prime}$ north, his diameter is $5^{\prime \prime} .0$, and he is in the constellation Taurus.
Mars sets on the 1 st at 10 h .36 m . P.M. On the 30th, he sets at 10 h .15 m. P.M.

NEPTUNE
is evening star. His right ascension on the 1 st is 4 h . 30 m ., his declination is $20^{\circ} 19^{\prime}$ north, his diameter is $2^{\prime \prime} .6$, and he is in the constellation Taurus.

Neptune sets on the 1st at 11 h .0 m. P.M. On the 30th, he sets at 9 h .9 m. P.M.
Mars, Saturn, Neptune and Uranus are evening stars at the close of the month. Mercury, Venus and Jupiter are morning stars.
total eclipse of the sun.
There will be a total eclipse of the sun on the 16th, invisible in North America, but visible as a partial eclipse in nearly the whole of South America, nearly the whole of Africa, and portions of Europe and Asia. The path of totality commences in the Pacific Ocean, traverses the central part of South America, crosses the Atlantic Ocean, and ends in the center of Africa. The central eclipse begins in Greenwich mean time, on the 16 th , at $0 \mathrm{~h} .54 \mathrm{~m} . \mathrm{P}$. M. The middle of the eclipse occurs at 2 h .27 m. P. M. The central eclipse ends at $4 \mathrm{~h} .19 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. Observers on the line of totality will behold the most magnificent phenomenon ever visible from this planet, when for a few moments the sun's face is hidden from view.
The conditions required for a total eclipse are that the moon shall be at her nodes or crossing points when at new moon. She must be near perigee when her diameter is greatest, and the sun near apogee when his diameter is least. These conditions are fulfilled in the present eclipse. The moon is near her node, and near perigee, and the sun is approaching a pogee. The $31^{\prime} 55^{\prime \prime} .4$. The moon's diameter exceeds the sun's $1^{\prime} 11^{\prime \prime} .6$. The result is that the eclipse will occur under very favorable circumstances, the totality lasting at some points of observation 4 m .42 s ., making the eclipse one of the finest of the nineteenth century, for its
comparative accessibility and the length of its concomparative accessibility and the length of its conThe ec
The eclipse will call out more observers than were ever assembled before. American and European astronomers are already making preparation for the great event at the stations they have chosen. Some are located at Ceara, on the northeast coast of Brazil, many are in the region of the Senegal in West Africa. The path of totality has been carefully mapped for observers to choose the localities best adapted to their special work. The whole astronomical world is greatly exercised with the hope of making discoveries within the solar precincts.
Much is expected from the condition of the sun, now at the maximum of sun spots. The sun's circumference will be aflame with rosy protuberances, and the silvery corona show signs, by its greater extent tate the sun and are reflected on the earth in magnetic storms and vivid displays of auroral light. If only the weather be propitious and the wearisome travel and great expenditure be not in vain !

Agricultural Notes.

The relative merits of sweet cream and sour cream for making butter were tested last year in a series of elaborate experiments at the Iowa Agricultucal College. Sweet cream, fresh from the separator, was thoroughly mixed and then accurately divided in two equal parts by weight; one of these parts was churned immediately at $52^{\circ} \mathrm{F}$., the other was ripened at 60°, and then churned at 59°. The butter-milk was tested for fat, and the butter was analyzed. In the nine tests the yield of butter from sour cream was 3 per cent larger than from sweet cream. The sour cream usually churned quicker than the sweet, and the butter contained $2-100$ of 1 per cent more casein. The losses of fat in churning, washing, and working were less with sour than with sweet cream. In nine trials the average difference was nearly $1 / 2 \mathrm{lb}$. per 100 lb . of butter made. After being kept five months the sweet cream butter acquired somewhat of the flavor and aroma of ripened cream butter, and was in better condition.
A very interesting series of tests have been made at the Wyoming experimental station to determine the quantity of water necessary to irrigate an acre of land. A continuous flow of one cubic foot per second during May, June, July, and August was found sufficient, with a rainfall of about six inches, for over 95 acres of land which had never been irrigated; but the next year, with a rainfall of nearly seven inches, it would have sufficed for over 216 acres of such previously irrigated land. The need of water varied with the kind of crop. Thus one second foot through the four months would have supplied 167 acres of oats, 295 acres of sugar beets, 336 acres of sorghum, 588 acres of peas, and 735 acres of corn, all growing on land close to the irrigation canal. The previously estimated duty of water for Wyoming was about 100 acres to the second foot through four months.
Some very interesting experiments have been conducted at the Texas experimental station, the object having been originally to see whether the belief of many farmers that cottonseed would kill pigs under certain conditions was well founded. The two years' successive tests in feeding cottonseed and cottonseed meal to pigs, and practical attempts to feed these products during the last ten years, show that there is no profit in feeding cottonseed in any form, or cottonseed meal, to pigs of any age, and a good deal of danger.

The Acids of Fruits.

Mr. George W. Johnson, in his Chemistry of the World, says in describing the "vegetable food of the world :"
'The grateful acid of the rhubarb leaf arises from the malic acid and binoxalate of potash which it contains; the acidity of the lemon, orange, and other species of the genus Citrus is caused by the abundance of citric acid which their juice contains; that of the cherry, plum, apple, and pear, from the malic acid in their pulp; that of gooseberries and currants, black, red and white, from a mixture of malic and citric acids; that of the grape from a mixture of malic and tartaric acids; that of the mango from citric acid and a very fugitive essential oil; that of the tamarind from a mixture of citric, malic, and tartaric acids; the flavor of asparagus from aspartic acid, found also in the root of the marshmallow; and that of the cucumber from a peculiar poisonous ingredient called fungin, which is found in all fungi, and is the cause of the cucumber being offensive to some stomachs. It will be observed
that rhubarb is the only fruit which contains binoxalate of potash in conjunction with an acid. It is this ingredient which renders this fruit so wholesome at the early commencement of the summer, and this is one of the wise provisions of nature for supplying a blood purifier at a time when it is likely to be most needed. Beet root owes its nutritious quality to about nine per cent of sugar which it contains, and its flavor to a peculiar substance containing nitrogen mixed with pectic acid. The carrot owes its fattening powers also to sugar, and its flavor to a peculiar fatty oil, the horse radish derives its flavor and blistering power from a volatile acrid oil. The Jerusalem artichoke contains fourteen and a half per cent of sugar and three per per cent of inulin (a variety of starch), besides gum and a peculiar substance to which its flavor is owing; and lastly garlic and the rest of the onion family derive their peculiar odor from a yellowish, volatile acrid oil, but they are nutritious from containing nearly half their weight of gummy and glutinous substances not yet clearly defined."
O. D. M.-In answer to the question, "How would a hot water boiler work connected with two ranges, one in basement and one on first story, with boiler on second story ?" the Plumbers' Trade Journal answers:
It will work all right if properly connected. Run your cold water pipe first to lower range, then with hot pipe to upper range-this will act as a superheater. If a large quantity of hot water is required, it will be a good way to supply the demand; otherwise you will create steam. If run any distance, put in a you will create steam.

AN IMPROVED CAMERA LUCIDA.

The camera lucida, that wonderful instrument invented by Wollaston in 1804, as well as the numerous improvements that have been introduced into it, still leaves much to be desired, in consequence of the disagreeable phenomenon of parallax that is produced in all the apparatus now in use. This phenomenon, which is due to the different distances that separate the eye from the object and the pencil, is completely suppressed in the new camera lucida of Commandant H . Blain. Moreover, it is always possible to proportion the light of the paper and that of the image that is projected upon its surface. It suffices to vary the in-

Fig. 2.-METHOD OF USING THE APPARATUS.
tensity of the light furnished by the silvered mirror, by placing a platinized mirror opposite it.

The hemerograph, for such is the name of the new instrument, is a very practical device that can be used without the least study. The drawing can be done without hesitation, the eye accommodates itself to all distances, and the point of the pencil and the image are always seen very distinctly.
The field of this apparacus is indefinite. It is used in a horizontal as well as in a vertical direction and at variable angles. It suffices to give a rotary motion to one of the mirrors that compose it in order to discover parts that remained invisible in a preceding position.

The hemerograph consists principally of two special mirrors of a perfect planimetry, arranged in a mounting of copper.
The upper, silvered mirror is provided in the center with an aperture that serves as a sight hole when the apparatus is placed horizontally. It is provided at
on a large scale an object situated at a distance of several kilometers, according to the power of the spy glass, just as if it were placed at a few meters from the observer. This means will be able to render very great service to officers sent out upon a reconnaissance. In order to place the instrument in position, as shown in Fig. 2, the jaws are fixed to a table, the ex tensible foot is adapted to it, and the mirror supports are installed upon the joint. By acting upon the binding screw, the foot is placed at the point desired, and the apparatus is ready to operate. It is necessary, then, to open the mirror supports, and when the foot is at the proper point to well expose the object, it is arrested by its adjusting screw. The instrument may be used with both eyes or one only. The play of the mirrors is so simple that after a first trial one will be master of the instrument.
Fig. 1 shows the method of using the instrument in the three directions : (1) horizontal ; (2) vertical ; and (3) at a variable angle. If it is used at a variable angle, the metalized mirror must be placed upon the lower edge of the cap of the spy glass, and the silvered mirror be brought to the angle most favorable for receiving the direct ray. The eye is placed as in the figure.
Enlargements can be obtained by interposing a convex lens between the apparatus and the objective, and, according to circumstances, between the apparatus and the paper. In order to obtain enlargements with a convex lens, the latter must be placed in the screw bolt fixed to the table, and brought to a focus by raising it or lowering it upon its slide, and the image or object be placed at about 15 centimeters behind. -La Nature.

A RECENT IMPROVEMENT IN BUCKLES.

The form of buckle shown in the illustration is designed to replace older varieties of buckles wherever a buckle is needed, and is particularly adapted to ad justably connect parts of harness for draught animals. It has been patented in the United States and Canada by Mr. George M. Aylsworth, of Collingwood, Canada, and a patent has been applied for in England. It is believed the new buckle will do away with the hand stitching now required to form an adjustable connection or joint between two or more pieces of leather, as these buckles are attached by means of rivets, and the tongue plate takes the place of the old form of keeper loop, as shown in Fig. 2. The frame of the buckle consists of a sheet metal blank secured to the strap by rivets, and with bent-up side flanges, in which, at one end, is a transverse pintle carrying a springpressed keeper plate. A tongue, formed of a rivet, is secured in the keeper plate, the tongue being adapted to pass through a strap and have a locking engagement with an opposite perforation in the web plate of the frame, as represented in Fig. 1, where the buckle is shown in use to make an ordinary joint. The buckle is convenient to adjust, and simple and cheap in construction, obviating the need of a keeper or loop on struction, obviating the need of a keeper or loop on
the strap to prevent the flapping of the end of the strap, and it is also very light, strong and neat in appearance. An affidavit of a practical harness manufacturer, familiar with the new buckle, sets forth that in his opinion a man will, with this buckle, make a set of harness in about half the time required with the old form of buckle.

Library Mutilators.

Among the notable institutions of New York is the Astor free library, where many thousands of volumes of the most important books, especially works of reference, are to be found. Any visitor may there consult a convenient index, call for the desired volume, and take a seat at a table. The work will shortly be brought to him by a polite attendant, and there he may sit and read for hours at a time. Most of the people who go to the Astor appreciate the benevolence of the founders of the institution and are careful to preserve the books intrusted to their temporary use. But there are some persons-two-legged skunks they might be calledwho are mean enough to mutilate the books. They cut out and steal pages or parts of pages, which they are too indolent to copy, and manage to sneak out of the library un-
its upper part with a second sight hole designed to be employed in a vertical direction (Fig. 1).
The lower mirror, metalized with platinum, possesses a calculated transparency that permits of seeing the pencil and object always very distinctly and without any fatigue to the eye. This mirror is movable and may be replaced by a smoked one when work is being done in sunlight.
This apparatus is supported by an extensible foot provided with a joint that permits of its being raised or lowered according to circumstances, and of being turned in all directions.
Finally, if the instrument be placed before a telescope or a simple field glass, it will be possible to draw
detected. One of the books in greatest demand is the "Scientific American Cyclopedia of Receipts, Notes and Queries." We are frequently asked by the librarian to replace such mutilated and missing pages. It is a pity that the book mutilators cannot be caught and punished.

AN IMPROVED CAR AXLE BOX.

The axle box shown in the illustration is provided with an improved sponge holder, has a novel spring closer for the lid of the box, and improved means to prevent the escape of oil from the box at its inner side. It has been patented by Messrs. Williain Rader and Edwin Hunter, Allentown, Pa. A center scroll on the Edwin Hunter, Allentown, Pa. A center scroll on the
lid is introduced between side scrolls in the box body,
detent disks with scalloped edges at the inner end walls of the side scrolls retaining the lid open or closed, by engagement of the notched edges with the body of a core rod secured in the scrolled end of a locking spring. The arrangement is such that the lid may be held at different points of open adjustment or in closed

AYLSWORTH'S BUCRLE.

position. The shell forming a bearing for the axle journal is of the usual form, and in the bottom of the sponge-holding cavity below the journal is a shoe readily inserted through the lid opening, the shoe having on its upper face ribs with serrated edges to sustain a mass of sponge at the front end of the journal. At the front top edges of the ribs is a vertical gate, held in side grooves of the box, to assist in keeping the sponge in place, and at the inner end of the box, in transverse slots, are pairs of sliding spring-pressed plates and gates preventing the escape of any lubricating material.

AN INDEPENDENT LATHE CHOCR.
The Westcott Chuck Co., of Oneida, N. Y., will not only have a large exhibit of its goods at the World's Fair, Chicago, but it is supplying, upon order from the

RADER \& HUNTER'S CAR AXLE BOX.
Columbian Commission, the chucks that are to be used in a large model machine shop adjoining Machinery Hall. The accompanying illustration represents an entirely new independent lathe chuck, recently got out by the company, and for which a patent has been issued to Mr. James H. Westcott. It is very strong, because the end thrust and strain come on the chuck body at its strongest points. Each jack screw has a steel carrier threaded on one side and fastened by a set screw, half of the screw having a bearing on the carrier and the other half having a bearing in the body of the chuck. The thrust is thus distributed so as not to spring or break the chuck body, and the screw carriers are adjustable. The range of adjustment of the jaw carriers is also greatly augmented, as compared with other independent chucks, thus giving much greater

capacity. In case of wear the carriers can be renewed at a small cost. All parts are interchangeable, and the jaws can be removed and the chuck body used as a face plate. The chuck is furnished with either two, face plate. The chuck is furnished with
three, or four jaws, or with special jawg.

MPROVED RUBBER TOYS

Rubber toys, on account of their durability and harmlessness, have long been a staple article, and are to-day found in the shops in much the same form as they were a dozen years ago. An improvement in this line, designed to give a new impetus to these goods, has lately been patented by Mr. Orville Carpenter, of Pawtucket, R. I., and by means of which such toys, when intended to represent images of human beings

CARPENTERS RUBBER TOY IMPROVEMENT

and animals, can be made to illustrate the most mar velous peculiarities without adding to the cost of production. This improvement consists in making these hollow images of varying thicknesses of rubber, so that when squeezed by the hand the thinner parts expand out of all proportion to the rest of the image, producing an endless variety of grotesque and ludicrous variations of the sameimage, according to the amount of compression given by the hand. The accompanying illustration represents one of these toys, Fig. 1 showing it in its normal state and Fig. 3 as the parts are distended when the toy is slightly squeezed by the hand. The thinness of the rubber at the eyes, nose, and chin is indicated in the diagram view, Fig. 2. It will be seen that this invention offers a wide range for the skillful designer in this line of goods, as by simply varying the thickness of the rubber in different parts of a toy startling results are made to appear by a simple squeeze of the hand.

THE OLDEST MUSICAL INSTRUMENTS,

The National Museum in Copenhagen, which is so well known and renowned for its excellent and admirably arranged collections of northern antiquities, contains a number (19) of a kind of musical instrument called the "lur" (the u pronounced like oo in poor), which date back to the bronze age, and which have all been found in bogs, as have also so many others of the old treasures contained in that interesting museum. A few instruments of the same kind (8) have

BRONZE "LURS" IN THE NATIONAL MUSEUM IN COPENHAGEN.
been found in provinces in Sweden formerly belong ing to Denmark, and five have been found on the Baltic coast of Germany nearest to Denmark. There is nothing like this instrument elsewhere in the world. An instrument used in parts of the East Indies at the present day is the nearest approach, in some respects, but it varies very materially from the "lurs."
The outward appearance of the " lur" is represented in the adjoining cuts. It is generally six or seven feet
long, twisted in two planes perpendicular on one another, and furnished with an ornamental collar at the butt or farther end. It is cast from a kind of bronze, only one to one and a half millimeters thick. (Could we do this at our present day ?) To increase the difficulty of construction, it is perfectly conical from end to end, cast in pieces, and joined together as indicated in the adjoining illustrations, and, as already stated, of a twisted shape.
All the instruments of this kind found outside of Denmark are more or less fragmentary. Of the specimens in the Danish collection ten are whole, and of these again six have just been slightly restored under the auspices of the author and musical critic, Angul Hammerich, who has caused some artist musicians from the royal chapel to,experiment with and practice on the restored specimens, with the very interesting result that these can now be played upon and emit tones as pure, strong and soft as when they were first touched with human lips, between 2,000 and 3,000 years ago. Well may we wonder at the constructive skill, the perfect knowledge of acoustics and the state of civilization in those remote times evinced by these old instruments. It is, of course, the preserving power of the bog water which we may thank for the perfect preservation of these unique instruments.
The bogs in which the "lurs," and so many other interesting objects from northern antiquity, have been found have, of course, at the time of deposit of the objects, been lakes or ponds. How the objects came to be placed here may be subject to varying surmises; the most probable is that they have been sunk down in such places to protect them from some invading enemy. Some authorities on this kind of subjects hold to the opinion that the objects have been brought as sacrifice to friendly or unfriendly gods, which supposition also seems quite likely.
The instruments are always found in pairs and twisted in opposite directions, indicating that they have been blown two and two together. This is so much more certain as the specimens of each pair harmonize with one another, while each pair varies more or less from every other pair in quality of tone, etc. It was formerly believed that the " lurs," when played upon, were resting over the player's neck and shoulders. They have occasionally been thus represented by artists. This Mr. Hammerich has proved to be a mistake. They were carried or held free in front of the players, with the ornamental butt collars facing one another, when the players were blowing them, standing or marching side by side, in which position the instruments balance easily and make a very odd and striking appearance, as of two gigantic and fantastically twisted horns of some fancied animal.
A few days ago the writer of this communication had the good luck and great pleasure to attend a fascinating lecture on the "lurs," by Doctor Hammerich, accompanied by experiments of two artist musicians, at the grand old style knights' hall of the National Museum in Copenhagen. Not only were military signals blown with great effect, but entire small compositions were performed. It was indescribably interesting to listen to the performance of an air from one of our most popular romantic plays. The intelligent reader with a measure of imagination may to some extent realize the impression it must convey to hear fanciful music performed on instruments which some 3,000 ful music performed on instrument
years ago were used at strange temple services, or on triumphal war marches, or as accompaniment of the songs and recitals of the heathen bards or scalds at the courts of kings and chiefs, or at great national feasts.
What an attraction it would be for the visitors of the Columbian Exposition at Chicago if their ears could be feasted with actual music or musical tests from instruments 2,000 or 3,000 years old! But this will hardly come to pass. Doubtless an attempt will be made to secure the bait, but our Danish authorities will hardly give their permission, and who can wonder ! Our "Flatö Book" will be fetched and returned with appropriate ceremonies in a U. S. man-of-war. A house will be built for the book telling of the first discovery of America, via Greenland, a thousand years ago, and watch will be kept over it night and day. All very well! As to the "lurs," we shall see. J. Pedersen-Bjergaard. Copenhagen, Denmark, January 10, 1893.

Hydrofluoric acid is manufactured by heating a mixture of 1 part of fluorspar in powder with 2 parts of sulphuric. acid. The reaction is conducted in a leaden still, to which a head and a receiver of the same metal are attached. In the receiver is placed a guttapercha dish containing water which absorbs the fumes.

AN IMPROVED HARROW.

The simple and inexpensive harrow shown in the picture, and which has been patented by Messrs. Samuel Riley and William Evans, of Huron, Kansas, may be easily carried to and from the field, and may be stored in small space when not in use. It is essen tially a chain harrow, the teeth and their supports partaking of the character of links. In eyes or hooks in the rear of the draught beam are held pi voted yokes,

RILEY \& EVANS' HARROW.
which engage the tooth supports, A, the latter engag ing the harrow teeth, \mathbf{B}, to hold them in a horizontal or in a diagonal position, as shown in Fig. 1. Each of the teeth-supporting links, A, Fig. 3, has its ends recessed to be fitted together and welded when desired, and each of the teeth, B, Fig. 4, has four spurs, C adapted to enter the ground, so that if any one of the prongs should become worn another may be turned down. Fig. 2 is an end view of one row of teeth. A tension bar, D, extending transversely across the last row of tooth supports, holds the chain-like body of the harrow in extended position ready for work, and this last row of supports terminates in hooks, E, adapted to connect a second harrow section to the first if desired. The harrow being made in detachable sections, it can be handled with great facility, sections being added as desired, and, as the teeth are set alternately parallel and diagonal to the draught beam, the ground is very efficiently stirred and pulverized, and the surface left smooth.

A TELLURIAN FOR THE HOME AND SCHOOL

The illustration shows a mechanical representation of the sun, earth, and moon, so arranged that, by taking hold of the handle below and near the earth, the latter can be moved to imitate its yearly motion around the sun, at the same time turning on its axis as in its diurnal motion, the moon simultaneously revolving around the earth and rising one hour later each night. The sun is placed eccentrically within the earth's orbit, and the earth's poles are inclined to the plane of the orbit, thus illustrating the seasons and the long and

short days. The small figures, \mathbf{A} and B , represent removable cones by means of which shadows may be imitated to illustrate eclipses of the sun and moon. By removing the shadow cone from the earth and putting in its place the tide disks $C \mathrm{C}$, as shown in one of the figures, the phenomena of the tides are made easy of comprehension. These disks are made of glass in hemispheres, and are thick in the middle to illustrate high tide and thin at the edges to show low tide-the earth revolving six hours into deep water and then six hours out again, the ebb and flow of the tide being
thus shown twice in twenty-four hours. This improvement has been patented by Mr. William R. Dunham, of Stoneham, Mass.

Weight of Compact Bodies.

The load which is produced by a dense crowd of per sons is generally taken at 80 to 100 pounds per square foot, and is considered to be the greatest uniformly distributed load for which a floor need be proportioned. That this value may be largely exceeded in an actual crowd was pointed out by Professor W. C. Kernot, of Melbourne University, Australia, in a recent paper Melbourne University, Australia, in a recent paper
before the Victorian Institute of Engineers, copied before the Victorian Institute of Engineers, copied
into Engineering News. In an actual trial, a class of students averaging 153.5 pounds each in weight were crowded in a lobby containing $18 \cdot 23$ square feet, making an average floor load of 134.7 pounds. There was still room to have placed another man, which would have brought up the loading to $143 \cdot 1$ pounds per square foot. Professor Kernot also quoted from Stoney, who placed 58 Irish laborers, averaging 145 pounds each in weight, in an empty ship deckhouse measuring 57 square feet floor area. This was a load of 147.4 pounds per square foot. In another test, with 73 laborers crowded into a hut, 9 feet by 8 feet 8 inches, Stoney produced a load of 142 pounds per square foot, and estimated that two or three more men could have been squeezed in. It appears from these experiments that while the figures ordinarily assumed of 80 to 100 pounds are sufficiently correct for spaces on which there is no cause to induce the collection of great crowds, larger figures, say 140 or 150 pounds per square foot, should be used for railway stations and platforms, entrances and exits to places of public assemblies or of office buildings,bridge sidewalks, pavements over vaults, and other places where dense crowds are likely to gather

Stationary Electric Waves.

Before the Berlin Physical Society Professor Raoul Pictet recently gave an account of experiments made by Messrs. Sarasin and De la Rive, by which the rate of the electric waves discovered by Hertz had been measured, and their identity with waves of light in the ether determined. By using large metallic surfaces 16 m . in diameter as reflectors, and by allowing the discharge of the primary spark to take place under oil instead of in the air, it was found possible to ob tain stationary electric waves in a long gallery and to determine their nodal points. In the discussion which ensued Professor Kundt stated that Dr. Zenker was the first person who had explained the photographing of colors by means of stationary waves, that stationary light waves were first experimentally determined by Dr. Wiener, and that Seebeck was the first to take photographs of colored objects. After Professor H. W. Vogel, pictures due to the action of light were firs taken by a doctor named Schulz, in Halle. In 1727 Nature says, this observer treated a solution of ni trate of silver in a small box with calcium chloride and obtained a grayish precipitate. He then covered the box with a lid in which was a hole the shape of some letter, and on subsequently examining the precipitate he saw a dark image of the letter on it. The experi ment was found to fail in the dark. Schulz hence concluded that the image of the letter was due to the action of light.

AN ELECTRIC HEATER FOR CARS.

The Consolidated Car Heating Company, of Albany N. Y., is now producing heaters depending for their effect upon the heating of a conductor by an electric current. The resisting conductor of wire is divided into twelve equal parts, and a multiple switch is provided to throw them in or out of "action. Six hundred and twenty-five feet of wire is used in one of their standard sizes. The principal use is for trolley cars, but for house and office use the same company manufactures other heaters, wound for any desired voltage, and for direct and alternating current supply. Our cut shows the neat appearance of the car heater.

Remarkable Armor Platen.

A test of a new nickel steel armor plate treated by the Harvey process was made Feb. 11 at the Indian Head proving grounds. The object was to determine the tests to be established for the 7,000 tons of armor for which contracts are soon to be let. The test was to include shots at low velocity to show whether the plate would break or crack, and at high velocity to test the resistance to penetration. The plate in this trial was 9 by 7 feet in size and 14 inches thick, and was the thickest plate yet submitted to test. The arrangement of the gun from which the shots were fired and of the backing were the same as in previous tests. The first shot was fired with a charge which gave a velocity at the point of impact of 1,472 feet per second. The projectile entered the plate 5 inches and broke in fragments; no crack could be found in the plate. The second shot, with a velocity at the point of impact of 1,860 feet, entered the plate about point of impact of 1,860 feet, entered the plate about
$61 / 2$ inches, and cracked it for a part of its length. The
third shot had a velocity of impact of 1,960 feet, and the result was almost the same as with the second. The fourth projectile, with the high velocity of 2,060 feet, entered the plate about 10 inches, cracking it in several directions, and breaking the backing. The tests were considered very satisfactory.

THE TELAUTOGRAPH

The telautograph, on which Prof. Elisha Gray has been working for several years, has now been so perfected that a public exhibition was recently made of it in New York and in Chicago, at which the representatives of the Scientific American were present.

Fig. 1.-THE teladtograph transmitter.

fig. 2.-The telautograph receiver.

Messages were sent over several miles of line. Two in struments, which are small in size and simple of construction, comprise the apparatus. They are the ransmitter and the receiver as illustrated. The elec trical energy required to operate this device is the same that would be required in a telegraph line of corresponding length, but the most efficient wire is copper instead of iron, and three number 18 wires are used. Two of the wires connect the transmitters with the eceivers, while the third is used for such operations as lifting the pen and pencil from the paper, moving the paper along, and the like.
The operator of the telautograph holds the pencil firmly as he would any pencil, and writes naturally, and rapidly if need be, taking care that there be no erky movements. The instrument has a convenient rest for the hand. The paper is in a roll and is five inches wide, and the operator writes on a plate to a depth of two and one-half to three inches before moving the paper along. Two small silken cords are at tached to the pencil and are connected, one to the right, the other to the left, to a small drum inside the case of the instrument. Under this drum, and attached to the same shaft that it is on, is a steel wheel

interior c. c. h. co. electric heater.
Every movement of the cords transmits its action to these wheels, and as each tooth of the wheels passes a given point it transmits an electric impulse to the re ceiver, which reproduces in facsimile whatever line made by the pencil on the transmitter induced the impulse. The receiver is constructed on practically the same principle as the transmitter, but the impulses receives are transmitted by electrical instead of me chanical means. It has toothed wheels, one at the right and the other at the left. and also a drum insid each wheel. Instead of having cords, both drums have an aluminum arm attached to them. These arms are hollow and ink flows through them, repro ducing on another roll of paper whatever mark the pencil has made.
The writing done by the receiver is in fact a series of ashes, but these dashes are so inflnitesimal as not to ashes, but these dashes are so inflnitesimal as not to
be reproduced, whether it be part of a letter, a flower or a face. Peculiar characteristics in a person's writing are reproduced to just the marked extent which they are apparent in the original copy. Dotting the I's and crossing the T's are easily done, as by the use of the third wire the pencil and pen are lifted from the paper in the operation. When the operator turns the switch to move the paper along another section, the paper in the receiver is moved automatically the same distance.

This, the latest and one of the most remarkable of Prof. Gray's inventions bids fair to become a formidable rival of the telephone and the Morse and printing telegraphs.

The Care of Tolss and Dashes of Carriages.
When a top carriage comes into the carriage painter's care for repainting, it should be his aim to not only give the leather of the top and dash a good appearance, comparably with a newly finished job, but the refinish upon the leather should be done with the object of preserving it, so that it will retain as good an appearance as the other parts of the carriage as long as possible.
All the so-called "leather dressings" in the market give to the leather a fresh and good appearance for a short time, but they do not wear as long as the finishing varnish used upon the carriage; consequently, a top and dash soon begin to look rusty, and long before the wood and iron work of the carriage needs to be revarnished, they have become so dull and unsightly that the owner of the carriage really has cause to be ashamed of them.
The leather upon carriages seems to have no one who is willing to assume responsibility for its shortcomings. The trimmer repudiates the care of it. The patent nostrum man appears periodically, screaming his dope up to the realms above everything; but practical use shows just what the truck is worth.
The harness maker, the blacksmith, the livery man, and the neighbors, all have a smear to suggest to undo the shabbiness of an old top. The painter is usually asked the leading question, when a carriage comes into his care: "Can you do anything with that top?" And reference is made to the dash in a similar way, and it falls to the painter's lot to do something for the top and dash. He generally buys a "leather dressing," for which he is not responsible in any way, and thus the care of the leather upon a carriage is taken by proxy, as it were, for which no one appears responsible. All the "top dressings" in the market are only a kind or quality of asphaltum varnish. They give a nice appearance to a top, but they do not keep out water, and they thicken the leather, and, what is equally bad, are not durable.
When a top is old and pretty well gone, leather varnish is as good if not better than anything else for it, because the leather is past being spoiled. For a carriage top on its first reappearance in the paint shop we recommend the following treatment, a method that has been tried on livery buggies, etc., during four years, and has proved itself an excellent one :
The top should be cleaned thoroughly, inside and out, and the rail and joints made ready to be blacked; then take boiled oil and put into it some thinned dropblack, and coat the leather all over with it, brushing it out well. When this has stood half an hour, the places where the top has been folded, and which are more or less cracked, will have absorbed the oil. Gooverthese spots again; then take some soft rags and rub all the oil and black off so clean that it won't dirty a clean piece of rag.

This treatment thoroughly cleans and polishes the leather, and it fills all the cracks so that they resist water. This oil and black does not dry as hard in a year as the enamel on the leather. It freshens the enamel and gives it a new lease of life. This oil also keeps the straps soft better than neat's-foot oil.
Sometimes a top which has been abused will take in the oil and look dead at the badly folded places the next day or so. These spots should be reoiled and rubbed dry. This does not thicken the leather, and as this oil dries it does not take dirt. Tops that have been done up four years in succession by this method look better than those treated in any other way.

Dashes can be treated with a thin coat of flat dropblack, and rubbed off clean with a rag. This cleans the leather, touches up the scratches, and blackens the seams. When this is dry, give them with the most scrupulous care a flowing coat of wearing body varnish. After four years of this treatment the dashes of common ungrained leather looked almost as good as new. -The Hub.

Patent 492,789, issued March 7, 1893, for a speaking telegraph or telephone, was applied for by T. A. Edison Sept. 5, 1877, nearly sixteen years ago. It has been held back by some concerted action between the Patent Office and Edison until the present time; and if the patent is held to be valid, it will not expire until nearly thirty-three years from the date of application.

Sorrespondence.

The Maximum Electric Current

To the Editor of the Scientific American:
In many of our text books on physics and electricity we find stated, but not proved, the fact that the maximum electric current, obtainable from a given number of cells, is got when they are so arranged that the internal resistance of the battery is equal to the externa resistance of the circuit.
This is quite a stumbling block to the student who is not familiar with the solution of maxima and minima problems. Nevertheless it admits of an easy algebraic solution, which has been useful to me in the lecture room, and which I therefore send you, hoping that it may interest some of your readers.

The cells of the battery are to be set up in columns and rows, each column containing the same number of cells all united in multiple, and finally all the columns, each of which acts as one large cell, united in series.

The symbols used in the solution are to be interpreted as follows:
$\mathrm{C}=$ strength of current in amperes.
$e=$ electro-motive force in volts of a single cell.
$r=$ internal resistance in ohms of a single cell.
$R=$ external resistance in ohms of the circuit.
$\mathrm{R}=$ external resistance in ohms of the circ
$p=$ the number of cells in each column.
$q=$ the number of columns.
$p q=$ the total number of cells in the battery.
The strength of current will, therefore, in accordance with Ohm's law, be represented by the following equation:

$$
\mathbf{C}=\frac{q e}{\frac{q \underline{r}}{p}+\mathrm{R}}
$$

in which $q e$ represents the electro-motive force, and $\frac{q r}{p}$ the internal resistance of the battery.

The problem is now to prove, with p and q both variables, but so related that their product, $p q$, is con stant, that C has its greatest value when $\frac{q r}{p}=\mathbf{R}$.
Equation (1) may be written thus:

$$
\begin{equation*}
\mathrm{C}=\frac{p q e}{q r+p \mathbf{R}} \tag{2}
\end{equation*}
$$

in which, since e and the product $p q$ are both con stant, the numerator $p q e$ is constant, however the values of p and q, owing to different arrangements of the cells, may vary. Thus C will have its greatest value when the variables p and q are so related that the denominator $q r+p \mathbf{R}$ has its least value. But
$q r+p \mathrm{R}=\sqrt{(q r-p \mathrm{R})^{2}+4 p q r \mathrm{R}}$
in which, since r, R, and the product $p q$ are constant the term $4 p q r \mathrm{R}$ is constant, and the term $(q r-p \mathrm{R})^{2}$ pos itive, whether $q r-p \mathrm{R}$ be positive or negative. Therefore the radical and its equal $q r+p \mathbf{R}$ have their least values and the current C its greatest value when q and p are so related that $q r-p \mathrm{R}=0$.
Or, transposing and dividing by p, when

$$
\frac{q r}{p}=\mathbf{R}
$$

(4)

That is when the internal resistance of the battery is equal to the external resistance of the circuit.
Usually, however, r and R are so related that, with a given number of cells, equation (4) is impossible; but no matter what the number of cells, nor what the relation between r and \mathbf{R}, it is evidentfrom equation (2) that C is greatest when $q r+p \mathrm{R}$ is least, and from equation (3) that $q r+p \mathbf{R}$ is least when $q r-p \mathbf{R}$ is most nearly equal to zero; that is, when $-\frac{q}{p} r$, the internal resistance of the battery, is most nearly equal to R, the externa resistance of the circuit.
We thus arrive at the general conclusion that the maximum electric current obtainable from a given number of cells in a given circuit is got when the cells are so arranged that the internal resistance of the battery is as nearly as possible equal to the external re sistance of the circuit.
W. J. Humphreys, Prof. of Physics.

The Miller Manual Labor School of Albemarle.

Induction Coil for Alternating Currents.

To the Editor of the Scientific American:
On reading the article "An Induction Coil for Alternating Currents" in the last issue of your paper March 11, 1893, I was very much surprised to find an accurate description of an instrument in use at the Jefferson Physical Laboratory at Harvard College. The instrument was made by Prof. John Trowbridge about ten years ago, and has been used by him on his class lecture table ever since.
The writer of your article, a Harvard graduate of the class of 1891 , is an assistant in chemistry at the Chi cago University, and having need of such an instru ment as he describes, he attempted to reproduce the one he had seen in the Harvard Laboratory. As his attempt was unsuccessful, he wrote to Prof. Trowbridge,
who furnished him with the descriptionand dimensions who furnished him with the description and dimensions that appeared in your last issue, The second attempt
to reproduce Prof. Trowbridge's piece of apparatus was not wholly successful, on account of the builder's limited knowledge of the induction effects of periodic currents. He again wrote to Prof. Trowbridge, and was furnished with the explanation of these effects and the method of obviating them, as they appear in his article.
The article in your paper was practically made up from Prof. Trowbridge's letters. Prof. Trowbridge, however, informs me that this form of induction coil for alternating currents, with the secondary coil built up about the center of a long primary coil, was first devised and used by Prof. Rowland, of Johns Hopkins niversity.

Townsend H. Soren.
65 Thayer Hall, Cambridge, March 16, 1893.

The Elliptical Sprocket.

To the Editor of the Scientific American:
Being somewhat interested in your reply to your correspondent on the elliptical sprocket for bicycles, I will give you my experience and will ask you another question. For the past three months I have been using one, and am convinced that there is a gain, and it is quite perceptible in going up grade. Most people have the idea that there is a jerky motion of the pedals when using one of these sprockets. After using one of these a little and then going back to the round, the latter is the one which seems unsteady. In relation to the leg and the body, is this not true? The motion of the leg from the thigh to the knee is an up and down motion, that is from center to center. By the use of an ellipse as applied to the crank axle, is not this motion more steady than a round sprocket would be? Now when using the round sprocket that is the one which seems to me unsteady, and it seems as though there was a back "pull" when nearing the centers.
C. L. Barker.

Pittsfield, Mass., March 6, 1893.

That $2121 / 2$ Tons of Pig Iron.

To the Editor of the Scientific American:
I am in receipt of George E. Andrews letter of the 7th inst., asking if it is possible for one man to handle $2121 / 2$ tons of pig iron in ten hours, and I am not at all surprised that the gentleman somewhat doubts it, and I was inclined to throw the article in the waste basket after writing. But I will say that there was no error in the figures, neither have I forgotten. To do what I did a man must pick up and throw onto a pile about 100 pounds every 6 seconds, and pigs of iron will average about 100 pounds each. If the gentleman will sprightly, strong man can do that.
The question would be, Can a man endure that for ten consecutive hours? This I know that I have done once in my life, but will never try the feat again, nor advise any other to try it. I confess that I never was so used up in one day of ten hours. I did not write the article to boast of what I had done, but merely to show what a man can endure.
J. E. Emerson.

Beaver Falls, Pa., March 12, 1893.

Notes from the Columbian Exposition.
Ceylon will make a unique exhibit at the World's Fair. The floor of the building lit will erect will consist of Ceylon woods. The pillars, capitals and carvings will all be reproductions of original objects in the ancient cities of Ceylon, and these will all be worked in ironwood, ebony, and satinwood. The gradations of coloring in the carved pillars will be striking. The shading is from pale crimson-yellow of satinwood to the warm orange-brown of the jakwood and the darker tints of margossa, palu and kumbuk. Suriyamara and old root-stem wood of the tamarind are beautiful in the markings. Abundance of light to reveal the beauties of carvings and traceries in the building is to be secured by a large number of windows with beautifully carved frames. One of these window frames will be a eproduction of the stone window from the palace at Yarahu. The building is to cost about $\$ 30,000$.
The Columbian Rolling Chair Company is now engaging college students for attendance in charge of the chairs. The rates fixed by the Exposition authorities are as follows : For chair carrying one person, 75 cents per hour, 40 cents per half hour : two persons, $\$ 1$ per hour, 50 cents per half hour ; one person, when chair is taken for a period of not less than 10 hours, $\$ 6$ for the first 10 hours, and 40 cents an hour for the time over 10 hours; carrying two persons, $\$ 8$ for the first 10 hours and 75 cents an hour after that. In employing men as attendants for the chairs, the company are following the instructions of the Exposition authorities in giving the first chance to college students. The roll will be completed March 1, and 1,600 men will then be employed to report for duty May 1. The attendants will be furnished with comfortable odgings near the Fair grounds, free of charge, and will be paid 25 per cent of their gross earnings, or will be paid $\$ 1$ per day and 10 per cent of their gross earn ings. The chairs will be mounted on bicycle wheels, with $11 / 2$ inch rubber tires and full ball bearings, and will be the
buildings.

There is to be a monument of coal at the World's Fair 50 feet high, 10 feet square at the base, and 4 feet square at the top. It is to be exhibited by a Pennsylvania coal company. It will be constructed in sections 6 feet long, and put together at Chicago. Pieces of coal will be selected that will show, when placed in position, all the connecting minerals that are found in the mining of coal. Some parts of the coal will be left in the rough state and others will be highly polished. One single piece of coalalready prepared weighsalmost two tons.
Apropos of the cost to visitors for seeing the sights of the Exposition, including the entrance charge of 50 cents, a writer in the Chicago Inter-Ocean expresses himself as follows: " In the whole length and breadth of the Plaisance are to be about fifty concessions. They include everything, from an electric tower, where a sightseer is asked to pay a dollar for a ride, to the street in Cairo and the Turkish mosque, where the prices are graded from a dime to half a dollar, according to the anxiety of the visitor and the number of sights he sees. Beginning at the east end of the Plaisance, one may pay to walk into the Irish village and see the natives make butter and lace; then he may step over to the electric tower and pay for a ride to the top and back. With his head whirling and his pocket book getting dizzy, he can come to the Bohemian and American glass factories, and pay a quarter for a peep at the blowers. Then he comes to the animal show, and drops half a dollar to see dogs ride tigers and lions draw a cart. If these leave him unsatiated, he can find two panoramas, a Turkish village with dancing girls, a minaret tower filled with curios, a street in. Cairomore dances-a Moorish palace and restaurant, the Algerian section, the Ferris wheel, the ice railway, an old Pompeian house, a Morocco section with balloon attractions, and an Austrian village, and last, a village of Amazons from Dahomey. Each of these has its of Amazons from Dahomey. Each of these has its
special features, to which admission is charged by authority of the Exposition. In most cases the fee is 25 cents, in some it is as low as 10 cents, and in others as high as $\$ 1$. In all cases the Ways and Means Committee derives a revenue of from 20 to 70 per cent of the gross receipts." Finally he arrives at the conclusion that with economy the whole may be seen for $\$ 15$.
The cars for the intramural elevated railroad at the World's Fair grounds will be 45 feet 111/4 inches long over the platforms, 8 feet 6 inches wide, and have a seating capacity of 70 . The seats are fixed back to back and extend entirely across the cars, as in the ordinary open street cars. The sides of the car are closed for a height of about $31 / 2$ feet, or to the tops of the backs of the seats, and are provided with sliding doors or gates for ingress and egress. Above this the doors or gates for ingress and egress. Above this the
sides are open, but are fitted with drop curtains to sides are open, but are fitted with drop curtains to
protect the passengers from the sun or rain. The running gear is almost a duplicate of the Manhattan and Chicago elevated trucks. The cars are equipped with the New York Air Brake Company's special brake for high speeds, and the first train of cars having been completed, tests of the apparatus will be made in Chicago in a few days. The motive power of the road is to be electricity. The motor car carries pasroad is to be electricity. The motor car carries pas-
sengers and in many respects is a duplicate of the others. In addition to the motors for hauling the train, it has an air pump operated by an electric motor. The brakeman stationed on the end platform of the car controls the hand brakes, the roller curtains and the gates. The cars weigh about 2,200 pounds and are lighted by electricity.

Leaky Roofs at Chicago.

Director-General Davis has issued an order to release no more exhibits from bond at present. Cass loaded with goods from foreign countries were stopped on the tracks at the entrances to several buildings. Customs inspectors were cautioned not to allow the seals to be broken and to hold the cars until further notice.
This order was the result of protesting against the leaky roofs of Manufactures, Agricultural, and Transportation halls by the foreign commissioners, many of whom had commenced to unpack their displays. They told Colonel Davis that their exhibits would be ruined if exposed to the rain that ran in torrents through the roofs, and demanded that the leaks be stopped at once, that they might go on with the arrangement of the displays.
The roof of Manufactures Hall is in a very bad condition. The construction department has not been able to make repairs since the snow slide crushed the skylights, and water rushes through in cascades. With the exception of several sections the floor was completely drenched lately. In some places water stood in pools an inch deep. The exhibitors of half a dozen foreign nations and many Americans were compelled to quit work.

The order has been given that all the portraits taken in her Majesty's prisons, as records of crimes and criminals, shall for the future be printed only on platinum paper, the object being to secure their permanency.

FACTORY DRIVING BY ELECTRICITY. Although the transmission of power by electricity is considered by many engineers to be principally applicable to cases in which energy is to be carried for long distances, yet זe are of opinion that, says the London Engineer, the day is not far distant in which electricity will become a powerful rival to the systems of belt, wire-rope, and cotton-rope transmission. The great losses which are unavoidably present in the last named systems are so important that it must be of interest to take note of any considerable application of electricity, either here or abroad, which tends to diminish them. The following, concerning the new small arms factory at Herstal, in Belgium, puts the matter
dynamo of 500 horse power upon the engine shaft. the motors is $77 \% 2$ per cent. The efficiency of the enThe engine had already been ordered, and was to run gine was guaranteed to be 92 per cent, but tests have at sixty-six revolutions per minute. A new type of dy- shown it to be 94 per cent, so that the power delivered namo had therefore to be designed, and the fly wheel by the motors is 72.5 per cent of the indicated horse was done away with, and the plummer blocks moved power of the engine. If we allow another 4 per cent further apart. Even if two dynamos of 250 horse power between the motor shaft and the actual counter shafts each were used, it would be no advantage, as the work of the tools, we obtain 69.5 per cent. The use of one must go on throughout the establishment regularly. dynamo has been criticised, but two dynamos of 250 The Sociéte Internationale d'Electricite undertook the horse power each could not well have been built to run work in order to compare the efficiency of electrical at sixty-six revolutions only; and if they could, the transmission with other kinds; the most eminent cost would be $£ 1,200$ in excess of that of one large ma firms were asked for details as to the power necessary chine. There are, however, two commutators, and at the engine to deliver a given power to the machines, these enable the dynamo to run at half load. A note \mid but not one would give a guarantee as to the efficiency \mid worthy fact is that, owing to the absence of all belt

Fig. 1.-COMPOUND CORLISS DYNAMO ENGINE, AT HERSTAL, BELGIUM.
very clearlybefore us. The area covered by the estab lishment is about $19 \cdot 8$ acres in extent.

The shafting may be conveniently divided into main and counter shafts, and if, for example, there would be 10 per cent loss upon each subdivision of energy, the total loss would be 30 per cent. In all systems of rope or belt driving a single accident may stop the whole establishment, and there is an excessive dead weight to be turned. The counter shafts and pulleys themselves weigh 110 tons, and the rest, without reckoning belts, at least 88 tons. Another great objection to ordinary mechanical transmission is the impossibility of extension. When shafts are put up for 300 horse power, all must be replaced if 450 horse power is to be transmitted. It is obviously best to transmit a large part of the power to distant points, and for this purpose ropes are very cumbersome and inefficient. Besides the pulleys and shafting, about 30 tons of hangers, plummer blocks, etc., must be put up. The idea was therefore accepted that the whole works should be driven by electricity. It was decided to place one
of a mechanical method of transmission. There are in all-

9 shafte requiring 12 horse power each $=108$
2 shafte requiring 16 horse power each $=32$ 2 shafts requiring 16 horse power each $=82$
2 shafte requiring 30 horse power each $=60$

Total, 200 horse power.
For these the following motors were putin, to be well above requirements

$$
\begin{aligned}
9 \text { motors of } 16 \text { horse power } & =144 \\
2 \text { motors of } 21 \text { horse power } & =42 \\
\text { (} 2 \text { motors of } 37 \text { horse power } & =74
\end{aligned}
$$

Total, 280 horse power

Of these the guaranteed efficiencies were 16 horse power- 87 per cent ; 21 horse power- 87 per cent; 37 horse power-89 per cent: making 296.9 horse power required; 2 per cent loss in leads, 5.93 ; total, 303 horse power.
The efficiency of the generating dynamo is 90 per cent, so that the efficiency of the transmission between
transmission, the power necessary to drive the engine idle is only 28 horse power instead of 40 horse power. A great advantage in the shops is that the shafts need not be parallel to one another.
Passing now to the electric machinery itself, we may say that the contractors guaranteed an efficiency of 70 per cent for the whole transmission, knowing well, however, that it would be exceeded. The cables are short, and the total weight of copper in them is 5.14 tons, so that the loss is only 2 per cent. The motors vary in size from 3 horse power to 37 horse power, and are of the usual type. The main dynamo was, however, the object of careful study, as no ma:hine, we believe, has previously been built to run at such slow speeds. The Gramme winding was the only type suitable, and the magnet cores had to be made of mild steel, as the price of wrought iron was prohibitive, and the cast iron would not give good enough results.
Our illustration, Fig. 2, represents the dynamo and part of the engine.
The field magnets are shunt wound, and arranged

Fig. 2.-THE GREAT DYNAMO, HERSTAL, BELGIUM.
in a ring consisting of ten pieces bolted together and port cross bars upon which the plates rest; all are ings, and carries two commutators, to which alternate having twenty pole pieces. The air space is 0.245 carefully insulated from the plates, and the latter are windings are attached.
inch wide. The magnets were fixed in position, then covered with paper. dismounted to allow the armature to be wound; this The winding consists of flat wire 0.158 inch by 0.196 easily dismounted and replaced. The top of one windhad to be done in position, owing to the size of the ma- inch, insulated with cotton and shellac. Only one ing and bottom of the next on the same side of the chine; the ring was then finally erected. The arma- layer is wound outside, but there are two layers inside, armature are soldered to a copper plate, which conture was constructed as follows : First a boss was forced as the wires have to pass between the teeth of the side ducts the current to a bar of the commutator, one bar upon the shaft by hydraulic pressure, and a hollow castings. The whole armature has 2,400 of these wind- corresponding to each winding. The commutators are saucer-shaped casting was bolted to each side to take the place of the arms of an ordinary fly wheel. The circumference of the castings is formed into a hundred teeth, and these grip the core of the armature, which is 15.8 feet diameter, and formed of iron plates 0.275 inch thick; these are placed side by side and make a total width of $15 \cdot 8$ inches; the radial length of the plates is $5 \cdot 1$ inch. This mass of iron forms the rim of the fly wheel, and possesses ample weight to insure regular motion. Through fifty of the teeth bolts are passed to hold the core plates togather, while the other fifty sup-

THE NEW STEEL STEAMER EL RIO.-[See page 202.]
8.2 feet in dianeter. Binding wires of phos-phor-bronze, 0.059 inch in diameter, are used for holding the winding in position. Eighty brushes collect the current, and these are lifted and lowered simultaneously by special apparatus, and the lead can be easily regulated.
This machine can develop 2,400 amperes at 125 volts, and four cables lead the current to the switch board. The efficiency, as previously stated, is 90 per cent, and the density of the current is 1,940 amperes per square inch in the armature winding and 1,000 amperes in the magnet windings.
The boss of the
armature weighs ten tons, the armature core six tons, the side castings eight tons, the copper in the magnets two tons, and in the armature 1,320 pounds. If a short circuit should occur in the works, the armature will be subjected to an action like that of a brake, but it will not have the bad effect which would be produced if the armature did not itself constitute the fly wheel. There are, as will be observed, only two bearings, one on each side of the machine. The two sets of cables are connected in parallel at the switch board, where the requisite instruments are fitted up, so that the pressure in either half of the macbine or in the shops can be noted. and suitable cut-outs are'fixed.
Lighting is effected by 116 arc lamps, two in series, using 10 amperes, and by 20016 candle power incandescent lamps. The current for the latter is taken from a ring main supplied by 24 feeders, and the total loss of pressure is 7 volts when all the lamps are lighted at once. The ring and feeders are of bare wire, except in cable tunnel. All the motors are of the Gramme type, with two windings. The base plate and the top yokes are attached together in casting to allow of boring the interior easily, and the magnet cores are cylinders of wrought iron shunt-wound. Carbon brushes are used on the motors, and have so far given no trouble. The electrician would not be able to occupy his time were it not that he has also to attend to the are lamps and replace their carbons.
The following is a list of the motors used throughout the works, or rather the list of those which were ordered at first :

Situation.	Horse power	No. of motors.	Guaranteed efficiency.
Main shop	16	9	87 per cent.
Wood-working department.	21	1	
Forge	37	2	89
Stamping and drawing shop.		1	87
" "	7	1	84
Feed pump	10	1	85
Fans.	3	1	80

The average efficiency can, of course, be obtained by multiplying the number of motors by their respective efficiencies. Taking this sum and dividing by the total number of motors, this gives $87 \% 2$ per cent.

Eventually the 7 horse power motor was countermanded, and a 16 horse power motor put down for the polishing shop and one of 21 horse power for the cartridge shop. On some of these motors the load is very variable, and several are exposed to dust and dirt, so that with 90 per cent efficiency of the dynamos, 98 per cent of the conductors, 87 per cent of the motors, the net result is 76.6 per cent power delivered. As the lost work in belt driving is practically a constant quantity for all loads, or at least is usually, considered to be, the power required to turn the shafting, pulleys, etc., at the normal speed when no work is being done on the machines, it follows that taking $79 \cdot 4$ per cent as the final output in two cases, one of electrical and the other of mechanical transmission, we find that at a load of 20 per cent the electrical system would stial
give 47.2 per cent useful effect and the mechanical nothing at all. From careful experiments which have nothing at all. From careful experiments which have been made in actual practice, it has been clearly proved
that to drive all the machines idle needs more power than to drive the shops in the ordinary course of work; whereas 11 electrical horse power is required when driving all the tools idle, only about 7 electrical horse power is needed in ordinary work, of which 4 electrical horse power is used to drive the shafts, belts, etc., alone ; this clearly shows how small a part of the power this clearly shows how small a part of the power
produced by the engine is actually used in useproduced by the engi
Such satisfactory results of the application of electricity to factory driving must attract attention and will doubtless lead to great changes in transmission, both in this country and on the Continent. Whether in the case of large machine tools it would not be better to discard machine tools it would not be better to discard
shafting and belts altogether, and supply a shafting and belts altogether, and supply a
special motor to each tool, is a question which special motor to each tool, is a question which
must be settled for each individual case which may arise ; the current could be switched on or off just as easily as the belt is now thrown from the loose to the fast pulley, and vice versa.
We give an engraving from a photograph of the engine, which was built by the Societe Anonyme des Anciens Ateliers de Construction Van den Kerchove, of Ghent, and erected by them.
It is designed to develop 450 horse power, but gives without difficulty 530 . The high pressure cylin der is 19 inches in diameter, the low pressure 32 inches and the stroke 5 feet. The number of revolutions is 66 per minute, with a pressure of 90 pounds. The dynamo, as will be seen, is placed between the high and low pressure engines, the armature being sufficiently heavy to dispense with a fly wheel.
The Compagnie Internationale d'Electricité, of Liege, have put in the electric plant with complete success. The regularity in running of the engine is all that can be desired, the governor keeping it under perfect control. Running light the engine indicates 28 horse power and loaded 590 horse power, which gives an
efficiency of 94.7 per cent. The consumption is about $13 \cdot 25$ pounds of water per horse power per hour. We are indebted to the Engineer for our illustrations and the foregoing particulars.

dust and sand figures on membranes.

T. o'conor sloante, pr.d.

Some attention has recently been excited by what are known as dust figures produced on the surfaces of vibrating membranes. They are virtually Chladn figures, and the membrane on which they are produced can be made to give good results with sand and lycopodium. Of course, the outlining of loops and nodes on vibrating membranes is old, but by substituting for the violin bow usually employed a more active system of obtaining vibrations, very curious and interesting restlts have been obtained.
In the cut we illustrate an exceedingly simple apparatus for this purpose. Over the to of a cylindrical box a sheet of very thin India rubber is stretched, and

APPARATUS FOR PRODUCING LOOPS AND NODES ON A MEMBRANE
held in place by a rubber band. Around the edge is a band of paper, projecting about half an inch above the surface of the rubber so as to form a species of fence or wall. A hole in the side of the box admits a tube. If, now, a note is sung into the tube, the India rubber is thrown into vibration with a production of loops and nodes whose position varies with the note produced. An endless variety of figures can thus be formed.
Lycopodium gives perhaps the most effective results. When the experimenter sings strongly into the tube, if the lycopodium has been scattered over the sheet, it begins to gather itself into most peculiar shapes; sometimes little circular heaps of it form which are maintained in perpetual agitation, the loops and nodes producing the most varied outlines. In the smaller
small cuts under the letter S, the results produced are less impressive, perhaps. At any rate, in precision of outline they do not, as a rule, compare with those given by brass or glass Chladni plates. Like the lycopodium figures, they give results which surpass those of solid plates in complexity and in the prevalence of curved outlines. The usual types of Chladni figures can hardly be obtained.
For the box, any tin or pasteboard box can be used. The rubber should be very light, and for even figures should be evenly stretched, but by stretching it with different tension in different directions the figures can be considerably modified. The appliances are all so simple that the experiment can be recommended as really a very interesting one.
One experimenter is said to have produced fixed reief maps of the curves by the use of plaster of Paris. In such cases the note must be uniform and must be maintained until the plaster sets hard.
In old violins dust balls are sometimes found. The experiments described give the clew to their formation. The vibrating wood of the violin acts to gather the dust into balls. The same action can be seen in the lycopodium on the vibrating membrane.

THE NEW STEEL STEAMER EL RIO

This new American steamer, built of steel by the Newport News Ship Building and Dry Dock Com pany, recently made her trial trip in this harbor, when she attained a speed of 17 knots per hour. The vesse has taken her place on the line between New York and New Orleans.
El Rio is a freight vessel of 4,500 tons register and of the following general dimensions :
Length between stem and after side of propellerpost 380 feet; breadth of beam moulded, 48 ; depth from top of keel to top of upper deck beams of lowest part of sheer, $33 \cdot 9$; length over all, 406.
She has three decks and a partial orlop deck at fore end of forehold. On the awning deck are steel houses. She is rigged with two steel pole masts and the necessary booms for handling cargo, together with steam hoisting engines located at the different hatches, to work in connection with them. Freight hatches and ports are located so as to handle cargo expeditiously.
The vessel is steered by steam from the forward pilot house or by screw hand gear from the after house.
A steam windlass and steam capstans are provided for handling anchors, hawsers, etc., as well as a stee rope with drum aft for towing.
She is propelled by a vertical triple expansion engine with three cranks, placed at angles of 120°. The cylinders are 32,52 , and 84 inches diameter by 54 inches stroke of piston, working under 167 lb . of steam, which is generated in three double-ended cylindrical steam boilers with three corrugated furnaces at each end. There are two fire rooms and one smokestack.
The vessel is lighted throughout by electricity.
The Newport News Ship Building and Dry Dock Company, at Newport News, Va., is one of the largest and most fully equipped ship building establishments. Several fine vessels of steel have already been constructed, and others are in progress, Among them are El Sud and El Norte, two splendid steamers, each of about 4,500 tons. Another, El Cid, is on the ways, same dimensions as El Rio.
Some idea of the extent of the works of this company may be had from the following: The ship yard contains 75 acres of land; frontage on the water, 2,600 feet; buildings cover 7 acres.
Dimensions of Dry Dock.- Length on top, 600 feet; width on top, 130; width on bottom, 50 ; width at entrance, 93 ; draught of water over sill, 25; time required for pumping water out of dock, 1 hour and 30 minutes.

Dimensions of Buildings.—Office building, 3 stories, brick, 40×200 feet; pattern and joiner shop, 3 stories, brick, 60×300; machine shop, iron and brick, 100×300; boiler shop, iron and brick, 100×300; blacksmith shop, 100×300; bending shed, iron and brick, 60×127; framing shed, frame, 344×270; ship fitters' shop, iron and brick, 60×320; ship blacksmith shop frame, $120 \times 208 ;$ pipe fitters' shop, frame, 50×208; power house, brick, 40×130; lumber shed, 2 stories, frame, 40×300; pump house, brick, 43×60; paint shop, brick, 50×160; fitting-up shop, brick, 50×175; stable, 2 stories, brick, 40×60; timekeeper's house, frame, 50×40. podium diagrams
A great point in producing the figures is to cease the note suddenly and without changing its pitch. One is very apt with cessation of sound to change the pitch and produce confusion. If, while the lycopodium is on the sheet rubber, the intensity of the sound is increased, some of the lycopodium is thrown in the air, and if the sound is made strong enough, a perfect cloud of the dust is maintained, sbarply localized over the points of agitation, representing the Chladni figures in a very beautiful and interesting manner.
With sand, three of whose figures are shown in the

Piers.-No. 1, 60×900 feet; No. 2, 60×350; No. 3, 80 350 ; No. $4,60 \times 550$; outfitting basin, 900×500.
Ship Ways.-Nos. 1 and 2, each 400 feet long; Nos. 3 and 4, each 450: Nos. 5, 6, 7, and 8, each 650 .
The various shops are fitted with machinery of the latest pattern, and are capable of handling the largest work known in ship building.
The machine and boiler shops are supplied with power-traveling cranes of 50 tons capacity, and the appliances throughout the yard for handling material are of novel design, enabling work to be done with dispatch and in an economical manner.

RECENTLY PATENTED INVENTIONS.

Railway Appliances.
Cable Grip.-James S. Patten, Baltimore, Md. This is a gripper of simple construction and easy to manipulate, which is adapted to grip the cable by lateral pressure and drop it vertically when released while the grip can be quickly adjusted to again pick up
the cable without the aid of lifting levers or other addithe cable without the aid of lifting levers or other additional means. When a cross cable is reached, the grip
automatically lets go its cable, rides over the other cable, and drops into position to again pick up its cable on the application of the gripman's lever. The clamp jaws are ncapable of slipping or loosening their hold on the cable after they are applied, thus saving frictional wear.
Elevated Cable Railroad.-William R. Heylmun, Rich Hill, Mo. According to this in vention, the cars are suspended below the rails, which form a duct for the cable propelling the cars. A novel means of switching onto side tracks is provided, with
means for actuating the grip to engage or release the cable. This road can be set up at a moderate cost on sea beaches, etc., and is more especially designed for pleasure
freight.

Mechanical.

Mortising Machine.-Simeon J. Hicks, Englewood, III. This is a machine especially dapted to make mortises in the stiles of doors, althoug useful for other purposes. It has a longitudinally reci-
procating carriage carrying work-holding clamps, a transprocating carriage carrying work-holding clamps, a trans-
verse reciprocating frame with chisels moving above the carriage, and a clutch-controlled driving mechanism reciprocating the frame and carriage. The machine is de signed to perform its work very nicely and rapidly, the
mortising chisels operating from both sides of the work, mortising chisels operating from both sides of the work,
while the article to be mortised may be quickly placed while the articl
and removed.
Supporting Journal Boxes.-J. Friedrich Hey, Strasburg, Germany. The bracket o hanger is provided with a disk having a circular recess,
while the bearimg support is provided with an eccentric disk or flange having an offset projecting into the recess of the disk of the bracket. A ring clamp secured to the
 a widerange of adjustment.

Agricultural.

Plow.-Agustin M. Chavez, Mexico, Mex. This is an improvement in plows whose beams are attached at their front ends to a truck or wheeled frame. A stirrup is adapted to be attached to the straight section of the plow beam, and by sliding this stirnup
toward the rear curved portion of the beam, the plowshare may be made to enter the ground more or less deeply, the nearer the stirrup is carried to the share the deeper being the furrow. In connection with the plow a sod cutter is employed, clipped upon the plow beam in such a manner that the turner will be adjustable.
Stock Watering Device.- Anson Carey, Ashland, Neb. This is a device for watering hog and other stock, and consists of a trough with a water
supply pipe in its rear, a gravity lid or nose gate hinged in its rear being adapted to close down on the trough, and having an upwardly and outwardly inclined lip at its forward end arranged, when the lid is down, to leave the top
of the trough open in front. A stopper to the supply of the trough open in front. A stopper to the supply
pipe is pivotally connected with the hinged nose gate for pipe is pivotally connected with the hinged nose gate for
operation by the latter in both directions. According as the nose gate is raised is the fiow of water to the trough, and the animal always has a fresh supply of water, but none is was
closes itself.

Miscellaneous.

Wind Wheel.-Benjamin J. Sykes, Sykesville, Pa. This invention relates particularly to mproved clunger rod, facilitating the utilizing of the shaft and wheels simultaneously, and equalizing any difference of speed between the wheels, preventing jerking or binding upon one side of the plunger rod. The construction is such that the entire machine is designed to be perfectly balanced, thus having great strength and durability. In
operation, one of the wheels is turned to face the wind, and the back of the other wheel corresponds with the and the back of the other wheel corresponds with th
face of the one in the wind, the wheels revolving simulta neously in opposite directions.
Vehicle Seat -Jacob Ruch, Mount Eaton, O . This invention provides improved connections between the seat and the vehicle body. The seat has a
hinged back, and a crank rod mounted on the under side of the seat has arms pivoted to its cranks and secured to the seat back, a lever being secured to the crank rod and seat is especially adapted for two-wheeled vehicles, the position of the seat back being readily shifted to make the seat easy, and also for its adjustinent to bring the weight of the load in the right position in relation to th
wheels, thus enabling the vehicle to be properly balanced so that it will ride and draw easily
Disintegrating Bituminous Rock. -Ben Hager, Salt Lake City, Utah Ter. This is an ap paratus especially designetlor disintegrating rock or dry
asphaltum, and the kettles in which the material is placed have each a stationary grate, between the bars which oscillating bars are made to swing, a steam pipe delivering steam beneath the grate while another pipe delivers steam above the grate. As the steam disintegrate the asphaltum the oscillating bars force it down to the bottom of the kettle, from which it may be drawn out as desired, the operation belng preferably carried on in tw
connected kettles, so that the work is continuous.
Post Hole Digger.-John Tipton Hymera, Ind. This device has a cylindrical body of iron
or steel, with its lower edge notched and beveled to for or steel, with its lower edge notched and beveled to form cutters, and within the cylinder is an adjustable or slid ing disk having a central opening, the disk being rigidly ring surrounding the handle. When the digger is forced
into the ground, the dirt is tamped inside the cylinder by the operator pressing with his foot upon the ring, thus latter to be lifted with the digger out of the hole.
Floor Clamp.-Mathias Lutgen, West Bend, Ia. This device has a base plate carrying a lever, nd means for fulcruming the body of the implement on a joist, a rocking dog being movable with the plate in response to the throw of the lever, the latter serving to
rock the complete implement on its fulcrum. The derock the complete implement on its fulcrum. The de-
vice greatly facilitates the clamping and pressing up of vice greatly facilitates the clamping and pressing up of the boards of a floor while it is being laid, toclose the joints between the boards, and provide for nailing th
boards while so closed and held one against the other.
Fence.-William P. Sharp, Lowell, Kas. This is a fence designed to be conveniently set up and takendown, and is well adapted for use upon even
as well as upon uneven ground. It consists principally of supports and panels, the supports being formed of two posts crossing each other near the upper end and conposts crossing each other near the upper end and con-
nected at about the middle by a cross bar. The panels have at each end a post or batten, to which are secured longitudinal rails adapted to engage the supports, the ad-
jacent panel posts being connected with each other at jacent panel posts being
their upper ends by a link

Support for Bracket Tables. John N. Tiffany, San Diego, Cal. A novel, convenient and substantial support is provided by this invention for a small table top that may be adjustably attached to a chair or bedstead for the use of an occupant, affording
means for holding an open book at any desired angle bemeans for holding an open book at any desired angle bebed or the chair, as may be desired. The table top is When not in use the support may be packed together in ompact form.
Sash Fastener.-Emanuel and Henry . Ensminger, Bloomington, Ill. This is a cheap lock, quickly applied to any window, so that it cannot be accivention is an improvement upon a former patented innention of the same inventors. The latch is pivoted on the top of the lower sash, and a spring concealed in a ransverse recess in the under side of the latch engages a stud to press the latch normally inward to lock the sashes. The sashes may be held at any desired height, or the lower sash may be ralsed and held as desired with-
out moving the upper sash t moving th
Folding Table.-John C. and Hiram A. Carl, Allentown, Pa. This invention provides an ex-
tremely cheap and simple table to which any kind of a able top may be applied, which may be extended when olded into small compass to make a neat and compact stand. The table, whether extended or folded, is very rong, and the invention covers construction and combinations of parts
Hand Stamp.-Samuel A. Harrison, ew York City. This is a registering or counting stamp,
which will positively count every impression and display he amount so that it may be easily read. Its construcion is simple, and sach that it is not likely to get out of
the epair, and it may be conveniently reset whenever necessary or desirable. The dial is in a glass-covered case in
the top of the handie, and the hands are moved every he top of the handle, and the hands are moved every
Lap Ring.-George Bobb, Yokena Miss. According to this invention the two members of the ring are connected by a loose universal or swivel joint, which adapts it to be easily and quickly applied to
or detached from single and double trees, chain links, c. The ring thus made is very strong and durable ide the joint between the two hooks is not formed by but by circular eyes, which are integral portions of the hooks.

Designs.

Head for Fur Colllars.-Bernard Cohen, New York City. This design represents an animal's head, to be used as an ornament, a rib-like figare
eing produced in relief upon the muzzle and extending round the edge of the mouth, and the curved tongue ying upon the under jaw.
Rug Fastener.-George B. Shellhorn, Montgomery, Ala. This fastener is a triangular-shaped octing aving concave edges and tapering extensions pro ions projecting oppositely to the other two.
Heel or Sole Plate.- George J. Davison, Richmond, Va. The leading feature of this design consists in the shape and ornamentation of the
completed article, of segmental shape, and with V completed article, of segmental shape, a
shaped openings with prong-like projections
Note.-Copies of any of the above patents will be furnished .by Munn \& Co., for 25 cents each. Please
send name of the patentee, title of invention, and date send name of

NEW BOOKS AND PUBLICATIONS

Aide-Memoire Pratique de Photo-

 Graphie. Par Albert Londe.J. B. Bailliere et Fils. Pp. 337.
The Daily News Almanac and PolitiCAL Register For 1893. Compiled by George the Phicago Daily News
Issued by the Chice
Company. Pp. 424 . Price 25 cents. From the Chicago Daily News we have received its almanac. It is a work containing in excellent shape the exhaustive data now found in the different newspaper
almanacs. Tips to Inventors. Telling what inventions are needed. and how to per-
fect and develop new ideas in any York: By Robert Grimshaw. New

Dr. Grimshaw is well known as a very bright and
number of suggestions of what people might invent, and he means by the following "tip," however, is not ver clear: " The chemist who will make from cotton seed either a drying or a non-drying oil should not want fo cash if he manages his affairs properly" (pp. 21, 22). Ex actly how this is to be considered a tip to inventors is
notclear. The advice on perfecting and developing pat ints and on selling patents makes very good reading.

Market Gardening and Farm Notes. Experiences and observations in the
garden and field, of interest to the By Burnet Landreth. New York
Orange Judd Company. 1893. Pp.
iv, 215 . Price $\$ 1$.
The subject of truck farming farming in this wor seems treated thoroughly up to date. The author is no
restricted in his knowledge to American gardening opera tions, but he is able to contrast American processes and customs with those of other lands. This gives the work an international character which makes it really attrac-
tive reading. We believe that it should be in the hand
in tive reading- We believe that it should be in the hand

How to Manage the Dynamo. A handbook for ship engineers, electric ight engineers, and electro-platers. millan \& Co. 1893. Pp. 63. Price 60 cents.
This very short treatise is designed as a handbook for ship engineers, electric light engineers, and electri platers. It is elementary,therefore, and quite practical is its treatment. Of its 63 pages, 17 are devoted to defin tons, so that attogether the amoun of mater given index adequate for its size
The "Practical Engineer" Pocket Book and Diary. 1893 Edited by
W. H. Fowley. All rights reserved. Second edition. Technical Publish$\begin{array}{ll}\text { Second edition. } & \text { Technical Publish- } \\ \text { ing Company, } & \text { Limited, London } \\ \text { John Heywood, Manchester. Price }\end{array}$ 60 cents.
In addition to very numerous horse power tables, notes on heat, waste of materials, and the usual data given in works of this character, a memorandum diary is found
making the work a useful compact companion for the civil or mechanical engineer.
Any of the above books may be purchased through this office. Send for new book catalogue just pub lished. Munv \& Co., 361 Broadway, New York.

SCIENTIFIC AMERICAN

bUILDING EDITION
MARCH, 1893, NUMBER.-(No. 89.)
TABLE OF CONTENTS.

1. Elegant plate in colors, showing an attractive dwell ing at Springfield, Mass. Floor plans and perspec-
tive elevations. Cost $\$ 9,750$ complete. E. L. Chesebro, architect, Springfield, Mass.
2. Plate in colors showing the residence of the Hon John J. Phelan, at Bridgeport, Conn. Two per-
spective views and floor plans. Mr. A. H. Beers, architect, Bridgeport, Conn. An excellent design. Cost $\$ 6,000$ complete.
3. A dwelling at Springfield, Mass., erected at a cost of $\$$ plans. Messrs. Granger \& Morse, architects, Spring field, Mass. A model design.
cottage erected near Brighton, Mass., at a cost of
$\$ 2,800$. Floor plans, perspective view, etc. A. W. Pease, architect.
Engravings and floor plans of a residence at Green-
wich, Conn. A beautiful design in the Coloniwich, Conn. A beautiful design in the Colonial
style of architecture. Mr. W. S. Knowles, archistyle of architec
tect, New York.
dwelling recently erected at Brookline Hills, Mass, at a cost of $\$ 5,300$ complete. A picturesque de
sign. Perspective elevation and fioor plans sign. Perspective elevation and fioor plans,
Messrs. Shepley, Ruton \& Coo idge, architects, Boston.
Sketch of a tasteful design for a three-family cottage to cost about $\$ 4,500$
Plans and elvations of an English cottage of quain
and pleasing design. and pleasing design
View of the Fifth Avenue Theater, New York. A
splendid example of modern architecture in the splendid example of modern architecture in the style of the Italian Renaissance. Together with a
portrait and biographical sketch of Francis H. Kimball, architect, New York City.
4. Misscellaneous contents : Paving estimates.-World Fair items.-Painting the World's Fair buildings.Drawinginstruments for colleges, etc., illustrated.-
A tasteful fireplace design, illustrated. ed steel spring hinge, illustrated. - Vegetable growth in water mains.-American machinery in London.

- A foot radiator valve for hot water radiators, il-lustrated.-New tin plate plant.-An improved furnace, illustrated.--Cincinnati woodworking ma A big heater company
The Scientific American Architects and Builders 5 cents. Forty large quarto a year. Single copies
5 ithes cents. Forty large quarto pages, equal to about
wo hundred ordinary book pages ; forming, practi cally, a large and splendid Magazine of ArchitecTTRE, richly adorned with elegant plates in colors and
with fine engravings, illustrating the most interesting examples of Modern Architectural Construction and Illied subjects.
The Fullness, Richness, Cheapness, and Convenience of any Architectural Publication in the world. Sold by of any Architec

MUNN \& Co., Publishers,

PBusiness and Personal.
The charge for Insertion under this head is one Dollar a line
for each insertion; about cight words to a line adver tor each insertion; about eight words to a line. Adver-
tisements must be received at publication office as early as
Thursday morning to appear in the following week's issue

Acme engine, 1to $5 \mathrm{H} . \mathrm{P}$. See adv. next issue.
Improved iron planers. W.A. Wilson, Rochester, N.Y
Open-Side Planing and Shaping Ma
Pedrick \& Ayer, Philadelphia, Pa.
Lathes $20^{\prime \prime}$ swing, planers $24^{\prime \prime} \times 24^{\prime \prime}$, at special prices.
Have you tried "aluminum Babbitt metal"? Write
A. W. Cadman Mfg. Co., Pittsburgh, Pa., about it. Steam Hammers, Improved Hydraulic Jacks, and Tube Stow ferible shaft Invented and manufactured bs Stow flexible shaft. Invented and manufactured by
tow Mfg. Co., Binghamton. N. Y. See adv., page 174 . Screw machines, milling machines, and drill presses. Centrifugal Pumps. Capacity, 100 to 40,000 gals. per
minute. All sizes in stock. Irvin Van Wie, Syracuse, N.Y. Steam engine, electric motor, and dynamo castings.
end stamp for catalogue. C. A. Sturtevant, Hartland,

For Sale-Patent on improved mine car. See illustrated otice on page 180. For terms and particulars address omer Durand, Starkville, Col.
To Let-A suite of desirable offices, adjacent to the apply to Munn \& Co.., 361 Broadway, New York.
Hydrocarbon Burner (Meyer's patent) for buraing crude petroleum under low pressure. See adv. page
381. Standard Oil Fuel Burner Co., Fort Plain, N. Y. Fine Castings in Brass, Bronze, Composition (Gun Metal), German Silver. Unequaled facilities Jas. J. For Sale-New 5 horse power upright engine, $5^{\prime \prime} \times 5^{\prime \prime}$
clinder and 30×5 ft. boiler, upright, new. All guaraneed. Spot cash, only $\$ 181$. Wm. C.Codd, Baltiuo ore, Ma. The best book for electricians and beginners in elecBy mail. \&4; Munn \& Co., publishers, 361 Broad way, N. Y. For the original Bogardus Universal Eccentric Mill, oot and. . G. Simpson, 26 to 036 Rodney St.,Brooklyn, N. Y. Canning machinery outfts complete, oil burners for
soldering, air pumps, can wipers, can testers. labeling Soldering, air pumps, can wipers, can testers. labeling
oachines. Presses and dies. Burt Mif. Co., Rocbebter, W. Y.
 Rare chance for general or special work. Box 230 , Milord, Del.
Competent persons who desire agencies for a new
opular book. of ready sale, with handsome proftt, may
pply to Munn \& Co., Scientific American offce, 361 apply to Munn \& Co.,
Broadway, New York.
For Sale-Electro-plating dynamos. Three 12 inch
Weston for siiver or nickel, one 8 inch Weston for sill ver, and one American Giant No. 4. Address Crane \& Breed Mfg. Co., Cincinnati, Ohio.

Any Manufacturer
of hardware or machinist's specialties, desiring to be represented in New York City or vicinity, will fnd it to his interest to address E.J. Hussey \& Co., 80John Street,
New York. We are centrally located, active workers and can furnish best of references.

Huduraurins

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our or no attention will be paid thereto. This is for our
information and not for publication.
References to former articles or answers should
give date of paper and page or number of question. References to former articles or answers' should
give date of paper and page or number of question.
In quiries not answere in reasonable time sholla
be repeated ; correspondents will bear in mind that be repeated; correspondents will bear in mind that
some answers require not a little research, and,
though we endeavor to reply to all either by letter
or in this department, each must take his turn.
 expected without remuneration.
ientifice American Supplements referred
to may be had at the office Price 10 cents each.
ooks referred to prompty supplied on receipt of Minerals sent for examination should be distinctly
marked or labeled.
(4787) G. W. V. asks how to make a Lalande oxide of copper battery in the cheapest way possi-
ble. I heard that they could be made of tin tomato cans. ble. I heard that they cou
A. See Supplement 792.
(4788) F. T. G. asks : If one heat unit raises the temperatnre of one pound of water one degree,
how many heat units will be required to raise the temhow many heat units will be required to raise the tem-
perature of one cubic foot of air one degree? A. One heat unit will raise one pound of air one degree. One pound of air at sisty degrees is equal to thirteen cubic cubic foot of air one degree
(4789) F. W. Q. asks whether he can get the same amount of electricity from a battery by immers
ing the zinc half way into the solution instead of all thg the zinc half way into the solution instead of al
the way; as, for instance, in the Grenetbattery described in Scientific American Supplement, No. 157. A. By immersing the zinc one half way into the solution, you
will get less current than you will if it is entirely sub will get less current than you will if it is entirely sub-
merged ; the electro-motive force, however, will be the ame in both cases.
(4790) A. P. J. asks what wash or preention, if any, may be used to arrestpowder posting in a
hestnut bookcase. Fine powder issuing from small holes in the shelves is a constantannoyance. Reply by Prof.c.V Riley.-Without having seen specimens of the author of he injury described by your correspondent, it is impossibie to definitely determine the insect which is injuring insects of the family Ptinidæ which are notorious as in festing the hard wood used in the manufacture of desks,
household furniture, the handles of varions implements, etc., and these are known as powder post beetles. Some of these belong to the genus Lyctus, of which L. striatu-
lus is known to do similar injury to that described. These beetles are, however, more often found working outdoors, and the damage may be done by another com
mon Ptinid beetle, the Sitodrepa panicea, which more mon Ptinid beetle, the Sitodrepa panicea, which more
often affects woods indoors and made into cabinets. The presence of these insects is always indicated by small circular holes, through which the beetles have entered th the burrowing larye. The beetles are small, of brownish color, and their larvæ are small, six-legged,
somewhat hairy, yellowish-white grubs, with their bodies somewhat hairy, yellowish-white grubs, with their bodies
more or less curved toward the extremity. Wood once horoughly infested by the beetles or lavæ is beyond re emption; but in the case of the beginning of the injury wood in kerosene will act as a preventive and also destroy the beetles and larvæ as far as the oil penetrates Where the wood is of such a nature that it can be sub
mitted to stove or kiln heat without damage, it may be thus disinfected.
(4791) C. G. writes : I notice in Scientific American of March 4 a cut of a storage battery pates used at all ? Is it simply sheet lead plates coated with red lead? Do I use same connections to charge battery as discharge it? Must the cell be air tight? How
shall I know when it is charged ? What book can I get 0 give me good knowledge on storage system complete A. There are several different types of storage batteries In many of the types both plates are formed of lead; no The same connections are used forcharging and discharging the battery. The cell should not be air tight, as gases For information on charging and using batteries, etc., we refer you
price $\$ 2$.
(4792) G. A. R. asks: What is meant by "ampere hour," so often referred toin battery circulars? ell) 50 amperes for 1 hour, 1 ampere for 50 hours, or 10 amperes for 5 hours, etc.? Where can I obtain directions for making gas out of coal on a small scale, and the puri-
fying of the same, storage, tanks, etc.? What power would a 6 foot windmill of the "air motor"patter
develop? A. One ampere hour is 1 ampere of cur flowing for 2 hours, one-tenth of an ampere fiowing for 10 hours. On the other hand, 10 ampere hours may be 1
ampere for 10 hours or 10 amperes for 1 hour. We think ampere for 10 hours or 10 amperes for 1 hour. We think of no small work on the manufacture of gas. We can refer you io "Gas Works : their Arrangement, Construc-
tion, Plant, and Machinery," by F. Colyer, price by mail, tion, Plant, and Machinery," by F. Colyer, price by mail,
$\$ 8$. The windmill to which you refer will probably averge about one-half horse power.
(4793) O. J. asks : 1. In making fluid o water the first thing and then the biche sulphuric acia or bichromate potash to water and then sulphuric acid ? A. The correct way to make the bichromate solution is to issolve the bichromate first and afterward slowly add the sulphuric acid. 2. A recipe for a good luminous
paint. A. For information on luminous paint, we refer paint. A. For information on luminous paint, we refer
you to Supplement 497. 3. Is there any action on the inc in a bichromate potash battery when the circuit is open? A. In the Fuller and Bunsen batteries there is
scarcely any action on the zinc when the battery is not in use ; but : In plunging batt
(4794) A. B. writes : I built the dynamo shown in Supplement 600 . Used it about three weeks
on an arc light, when it burned out. Tried resistance in circuit, butt it heated just the same and dimmed the light. Do arc light machines heat more than incandescent machines? Have a pair of field maguets like those shown in SUPPLEMENT 600. Can't I make a two horse power
mechine by making the following changes? Place a iece of iron one-half inch thick between the polar yoke (where the pole pieces are bolted together) and face of the bottom of the poles, and add an inch thickness to each one, and then bore out to about $43 / 8$ inches, taking
care to throw the hole as much down as possible. The object of the pieces is to save stock. I would then wind ten layers of No. 16 wire on each pole in five pieces, each piece forming two layers, and add a shunt of fine wire on
the outside, making a compound winding. Am sure the field could be made strong enough this way, even for three horse power machine. Whatsize wire should I use on armature say for about 60 volts? and how many coils
ought there to be? Would there be any advantage in ought there to be? Would there be any advantage in
makiug the rings with four holes on the sides for ventilation? A. In regard to your arc light, we would sug est that you adjust the lam of the circuit. If this doe not prevent the overheating of the armature, add 15 or 20 ohms resistance to the circuit and run the dynamo at a little higher speed. There is no reason why an arc light machine should heat more than an incandescent one if it
is constructed for arc lighting. You could arrange your is constructed for arc lighting. You could arrange your field magnet for a larger armature in the manner pro-
posed. We cannot, without considerable calculation,
furnish you the information you desire for the winding of four new armature. Probably your readiest way of get ting at the matter is to see a machine of about the size desired and get your measurements from that. There armature, providing you do not cut out too much metal.
(4795) F. B. asks whether England or now. A. The United States now produce the largest
amount of steel, to wit, for $1890,3,500,000$ tons, Great
(4796) H. A. asks: 1. What are the rules or finding the pitch of a propeller wheel? A. The pitch is obtained by multiplying the circumference in feet or center line. Or take the angle by opening a folding rule on the edge of the blade and in line with the shaft aft. Lay off two lines at right angles and place the angle of the rule on one line at a distance of the circumference on
the wheel from the line representing the center of the

The rule to meet the central line. This forms a righ
ngled triangle, of which the shaft line is the pitch in he same manner (feet or inches) that the circumference was taken in. 2. Does it require more power to run ooat at a certain rate of speed with a small propeller
wheel than with a larger one? A. Yes. Propeller wheel than with a larger one? A. Yes. Propeller
wheels should be as large as possible to run in solid water wheels should be as large as possible to run in solid water
for economy. 3. How much pitch should a propeller have which is 14 inches in diameter, and how many revolutions should it make a minute to give a speed of 6 mile an hour to a shell boat, 16 feet long, with a very shar or a boat with fine ling 230 pounds have 30 inch pitch a make 275 revolntions per minute for 6 miles per hour, a lowing 20 per cent slip. 4. When the pressure in oiler is up at a certain point, say 70 pounds, does it re quire more fuel to keep it there than at a lower point of
pressure? A. The amount of fuel required to beep the pressure? A. The amount of fuel required to weep the
steam at a specified pressure depends entirely upon the power used. It
lower pressure.
(4797) J. G. C. says: Will you please ive a recipe for a paste that I can use on the face of a photograph, so I can mount the print face down on glass,
something that will not discolor the face of the print and is not costly? A. To mount prints on glass follow the directions given by J. E. Dumont; that is, take 4 ounces gelatine and soak half an hour in cold water, then place n a glass jar, adding 16 ounces of water; put the jar in a large dish of warm water and dissolve the gelatine.
When dissolved pour into a shallow tray. Have your When dissolved pour into a shallow tray. Have your
prints rolled on a roller, albumen side out; take the print prints rolled on a roller, albumen side out; take the print
by the corners and pass rapidly through the gelatine, taking great care to avoid air bubbles. Hang gelatine, tak ing great care to avoid air bubbles. Hang up with clips
to dry ; when dry, squeeze carefully on to the glass. The Scientific Ameriean Cylopedia of Receipts, Notes and Queries."
(4798) A. S. writes : I would like to make a steam whistie, 12 inches dameter. What would for a whistle one octave higher in tone than the 12 inch ? A. A 12 inch whistle is usually made from 20 to 24 inches high. For an octave make the whistle about oue-half the
(4799) B. \& T. ask: What will take off the bes that is used in mortar and has got on the face of the brick? Our mason used muriatic acid and then
put on linseed oil. What will clean it, if anything? A. ub with a piece of pur
(4800) F. M. W. and others ask for a cenentfor use in making aquariums. A. Litharge, fine,
white, dry sand, and plaster of Paris, each 1 gill ; finely ulve, dry sand, and plaster of Paris, each 1 gill ; finely paste with boiled linseed oil to which drier has been added. Beat it well, and let it stand four or five hours before using it. After it has stood for fifteen hours, how-
ever, it loses its strength. Glass cemented into its frame with this cement is good for either salt or fresh water. It has boen used at the Zoological Gardens, London, with
great success. It might be useful for constrncting tanks for other purposes or for stopping leaks. Ortake linseed oil, 3 ounces; tar, 4 ounces; resin, 1 pound; melt to-
gether over a gentle fire. If too much oil is used, the cegether over a gentle fire. If too much oil is used, the ce-
ment will run down the angles of the aquarium. To obiate this it should be tested before using by allowing a antly quantity to cool under water. If not found snffici ently firm, allow it to simmer longer or add more tar and
resin. The cement should be poured in the corners of the aquarium while warm (not hot). This cement is pliable, and is not poisonous. Paraffine applied to the bottom, if it is of wood, will make it waterproof. Have the
wood dry and very hot; rub the paraffine in thoroughly. (4801) B. W. P. says : Will you inform ne whether any kind of grapes may be used to make
 other varieties. For many years Malaga, Spain, has produced the best fruit, and previous to the introduction of
Muscatel cuttings into Califoruia, our supplies were Muscatel cuttings into Califoruia, our supplies were
brought from that port. There is a difference of opinion brought from that port. There is a difference of opinion
in regard to the quality of the fruit produced in Malaga and California, the people in the far West claiming the and California, the people in the far West claiming the and larger fruit.
(4802) H. N. says : I want to know what ill be the pressure per square inch when air is comthe pressure when pressed to one-third of its natural bulk. Would there be any difference if the quantity were large or small? A. For ordinary practical purposes, if
the air is to be measured at a uniform temperature (isohermal compression), and calling the atmospheric pre sure equal to 15 pounds the formula, pressure \times volumes

- pressure $=$ the pressure of compression. Taking your iquiry, $15 \times 2=30-15=15$ pounds pressure and $15 \times$ $=45-15=30$ pounds pressure. This will not be the enerated by compression expands the air, and at the moment of leaving the cylinder it may have a pressure of 20 pounds in the first case and 50 pounds in the latter. With water-jacketed cylinders, much of the heat of compres-
ion is absorbed and the final pressure drops nearer to the sothermal line. See Scientific American Supplenve 799 on air compresio
(4803) N. G. writes : About twelve miles from here is a very large spring. I think it must be
about one thousand feet higher than this place. A mountain (or hill) higher than the level of the spring lies between us. Which do vou think would be the best and
cheapest means of conveying water to this city-by siphoning it from that spring, over the hill to a reservoir
here, or by pumping it with steam from a river that runs here, or by pumping it with steam from a river that runs
through this place to a reservoir about one mile distant? Also please tell me where would be the bestplace to send my son to get a thorough knowledge of machinery, both large enough for your city supply, it will be the best and cheapest water supply, coisidering the expense of pumping. A siphon of 10 or 15 feet lift might be made ing air. For siphon, any heightabove 15 feet could not be
give details enough for the best advice. It is worth your
while to have a surver made as to while to have a survey made as to the whole grade and ascertan whether a detour could be made for a gravit
flow. If the water in the river is good, a large ram with a fall of 4 or 5 feet would make an economical water supply. Steam is a constant expense. Perhaps windmills
could be used. The Rose Polytechnic Institute Terr could be used. The Rose Polytechnic Institute, Terre
Haute, Ind., is one of the best schools in mechanical and University, Nashville, Tenn
(4804) J. E. S. writes : 1. I have a well 140 feet to water, which is inexhaustible. By going 40 unless plugged below the water line, or we stop drilling before we get through a very hard rock that lies directly on top of the dry sand bed. Can I raise the water with a hydraulic ram? Give instructions for putting in. If not,
s there an automatic apparatus that will raise the water? A. You cannot raise water from bored well with a
ram, unless by enlarging it, you can sink a pipe through to the absorbing stratum below, to ccarry off the water used to work the ram and create the necessary pressure. or pumping water from wells. They all require care. A windmill willd be the best automatic machine why is it revolve ou an axis as the earth does? If so why is it the same spots face us all the time? A. The
moon makes one revolution on her axis in the same tim that she makes one revolution around the earth, and that is the reason why the same parts face us all the time. What shades the moon or causes ls different phases? It is the reflection of the sun's light on the moon that
makes her appear to vary in form. 4. How near has makes her appear to vary in form. 4. How near has
any of the heavenly bodies ever been to the earth, and what is the nearest to the earth at present? A. The moon is the nearest heavenly body. She is 240,000 miles disthe eclipse of the sun April 16 and October 9 , and their distance from the earth? A. The moon coming between
the sun and the earth produces an eclipse of the sun.
(4805) C. M. H. says: I have a steam inch pipe from a river 18 feet, below. My supply pipe as the pump is set some distance back from the edge, the supply pipe is necessarily 54 feet long. Will the lift of the water be less if I cut a ditch from the river to a poin directly underneath the pump and run my pipe vertically
down? If so, how much less will be the weight of the water? A. The weight of the water in the suction pipe is due
o its vertical height only. There will be no differencein he pull of the pump due to the two positions alone. Th vertical pipe will have less friction than the inclined pipe, as $w l l$ as less volume, and will require less pewe
o overcome its inertia at the change of stroke in the pump, unless the vacuum pump is of a kind that will seep the water in the long suction pipe under a constan
and equal velocity. As this is doubtful, and the poss bility that the friction may add a foot, more or less, to
(4806) E. J. A. writes: We have a buind ing 16 feetsquare, 16 feet posts, tight. We wish to plac rel heading. We would ask: Our boiler is 25 hors power. Engine uses (develops) but 5 or 8 horse power. plenty of steam for this size kiln? We have excellent fuel. Boiler and engine are about 60 feet from kiln
building. Will we lose much heat, piping this distance, iflaing. Will we lose much heat, piping this distance if we lay pipe in ground, using asbestos packing? What
size pipe, to use live steam, would we need, and how many feet, in building, to develop all the heat possible, as there is not much danger heating the material too fast or too tical to use steu don't burn it up? Do you thelop 150° o 160° of heat in kiln if we can. Boiler,pressure 80 pounds A. You can make a good drying room with the spare
steam that you have, without waste of heat. The steam pipe should be thickly felted and the line under ground laid in a box 8 inches clear inside, with $11 /$ inch
pipe well felted and supported in the center. Pip pipe well felted and supported in the center. Pipe
in the drying room should be in flat coils under a lattice floor, 2,000 feet of 1 inch pipe, laid in sections so piled in racks above the floor. The condensed steam should be led back, through a pipe in the box and returned
(4807) W. T. P. writes : I would like inormation how to build a breast or current water whee and to gear same to run centrifugal pump. I want to
raise anywhere from twelve hundred to twenty-four hun dred gallons per minute of time fifteen feet high for irriand diamposes. I want to kno the length of whee and diameter and how to gear wheel so it would adjus
itself to rise and fall in river and how to prevent drift rom injuring wheel in river. I have abundance of wate river to get the power, if I could get some way to
atilize the power in the river. A. You will require wheel of about 15 horse power. You will find the whee that you describe illustrated and described in Scientific
American, January $21,1893,10$ cents mailed. This form of wheel will have to be constructed to suit the velocity of current or the height of the breast. A millwright or
clever carpenter should be able to build a wheel to suit clever carpenter sho
(4808) L. W. S. asks : 1. When does the patent on the Bell telephone receiver expire? A. The No. 38;wire be better than 36 , when the telephoneis to be used on a line two or three miles in length? A. No 3 would be better for use than No. 36 , but it is more difficult to wind. 3. Is it the resistance in the line wire that causes telephones to fail on long distances? A. The
failure of the telephone on long distances is due to leak-

ages more than to resistance.

(4809) H. V. F. asks : 1. Does the telephon, described in Scientific American Supplement,
No. 142, need any battery? A. No. 2. Will the telephone work on a line 450 feet long? A. Yes. 3. What or the distance given. 4. Will the above suffice if I us the telephone call in Fig. 5 on page 2571 in Scien
tific Amrrican Suptiement, No. 162 \& An

Shall I use return wire or return through the earth \& A. Eitherreturn will answer.
(4810) M. J. B. asks the size of stack hat should be put on dry kiln, size of which is 82 feet by 7 feet_by 7 feet, and containing 5,000 feet of steam pipe. very ten minuto remove the air out of the room about ornear the minutes. A. Assuming the steam pipes are on
ore limber piled above the pipes, the ventilation in so large a floor space should be divided so as to make an even flow of air throughout the room. For this purpose at least six uptakes should be made
through the ceiling, 18 inches square, equally dividing the through the ceiling, 18 inches square, equally dividing the
areas of the ceiling. These uptakes need be no more han 8 or 10 feet high, with hoods to keep out rain, and

turned on.

(4811) A. F. writes: Are the numbers y which the different sizes of electric', wiressare`called ions of inches, etc.? Suppose that for: making a elephone you say that No. 18 wire is used, how can I convert that number in millimeters, as the diameter of wires is given in that measure? A. The numbers
of the American wire gauge are arbitrary. For this of the American wire gauge are arbitrary. For this
eason you will have to get the sizes in mills or circular ills from some of the existing tables. You will find price by mail $\$ 1$.
(4812) N. H. E. asks the cheapest and est way to color brass black. A. Dip the clean brass (4813) W. B. R. asks how lead pipes are joined together by the use of a blow pipe. A. For sol-
dering lead pipes with a blow pipe, a jump joint is made opening one end bell mouth and scarfing the other end fit in, when, by powdering the joint with resin and placing a piece-of strip solder around the joint, it can be he joint.
(4814) W. E. H. writes : Please give the rocess for etching brass signs. Also the japan or black painted all around the letters with asphalt varmish and a wall of putty or soft asphalt raised outside the lettering o keep the acid from fiowing away. Use nitric acid 1 part, water 2parts, mix and pour on the plate to a depth
of 1, isinch. When bitten deep enough, wash dry and fill

(4815) C. C. M. asks : Can you give us ny information about the use of aluminum for shoeing
ace horses? We have tried it, but find the metal too oft. Is there any way to harden it? A. As we assume hat your object is to make a light shoe, we recommend This will make the aluminum slightly heavier, but harder and tougher. Probably the 3 per cent alloy will be all s required
(4816) T. T. asks: In firing a cannon, at what point will its projectile attain its greatest velocity? Also, how is the velocity of projectiles imeasured? A.
The velocity of a shot is greatest at the muzzle of the
(4817) J. G. W. writes : I am making a uantity of very light castings with a core inside. The castings want to be very soft, so as to drilland tap easily. No strength is required. I find that while I have the the iron somewhat on the inside, thus making it hard on he tap. The core is made of boiled oil, resin, and
moulding sand in certain proportions. What I want to moulding sand in certain proportions. What I want to now is this: Is there any formula for making cores that ore? A. For cores try new mouldings and mixed with little paste as will allow the sand to hold together, and
(4818) M. B. writes : I have to arrange calendar for 1894, but have no tables from which I can very day and in different places. Can yon give me me information regarding such tables? A. The Nautihe year, with the necessary formulas. It is published by the government at Washington.
(4819) F. B. says : I want a receipt for paint to apply to a copper-lined bath tub from which the tin has been worn in patches. I would prefer some
(4820) J. H. H. asks: 1. How can I ix bronze powder in a liquid form? With what can I 2. What size and how many blades should a propeller
wheel be to propel a 13 foot canoe? A. A two-blade screw inces diameter for the canoe.
(4821) J. C. R. writes : I am building a mall non-condensing compound marine engine of the P. 11 in $16 \times 3-16$, exhaust $3-32 \times 3-16$, L. P. cylinder $1-16 \times 9-32$, xhaust 3 -32 $\times 9-32$. Are the cylinders and ports in the If the cranks are fixed at right angles to each other, give relative position of eccentrics to cranks. A. The cylinders are a good proportion, as are also the ports. The ders are a good proportion, as are also the ports. The of a line atright angles to the crank. See "Model En-
ine Making," by Pocock, $\$ 1$ mailed. (4822) J. H. R. writes: I wish to lay out my yard in walks. I do not care for brick, but a preparation to put on the gronnd. Now is there any cement ripreparation similar to cement that will stand freezing? ard? A. Probably hydraulic cement mixed with sand, 1 of cement to 2 of sand, makes as good walks as anything that you can handle. The cement is about $\$ 1.25$ per barrel, and 1 parrel should make about 4 square yards of
walk 1 inch to $1 / /$ inch thick. Mix dry, and wet and
(4823) S. Z. asks for a solution for platgg metal goods a jet black, that will not peel or crack when said goods are squeezed. A. The coloring of the
surface of metals black may be done by chloride of pla.
tinu mand other receipts in our "Cyclopedia of Receipts," but do not stand squeezing or pressing without marking
the surface. Such surface color should be done after finishing.
(4824) F. W. C. says : I am desirous of knowing how to make aluminum present a matted apthere is a better material to polish aluminum than rouge A. The matting of aluminum is done with polished matting tools or stippled with a broad lining or stipple, the same as silver plate. The tools can be obtained from dealers in jewelers' tools. For the bright finish on aluminum, use Vienna lime after the rouge.
(4825) J. T. asks how far a 124 ton gun will throw a projectile, the kind Krupp will exhibit at the World's Fair, also the quantity of explosives to fire each round. A. The 124 ton gun is intended to carry
solid shot of half a ton with a charge of 700 pounds of powder, with a range of 12 or 13 mile
(4826) C. E. E. asks: What can I use for the porous cup in a battery? What will do that I can find here without buying one? A. Porous flower pots may be used for the porous cells of batteries by stop-
ping the hole in the bottom of the pot. Such porous cells, however, are not as efficient as those made for the parpose.
(4827) S. B. write: We have two large iron columns, one on each side of boilers, in basement, voth essential supports to a six story building. They get contraction of same is any indication of danger? A. There is no danger from the influence of theqheat, if $\{$ the columns are outside of the brickwork of the boiler setting.

TO INVENTORS

An experience of forty-four years. a and the preparation tents at home and abroad, enable us to understand the laws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. A ynopsis of the patent laws of the United States and all
foreign countries may be had on application, and persons contemplating the securing of patents either at home or abroad, are invited to write to this office for prices which are low, in accordance with the times and our exMUNN \& CO MUNN \& CO., off
way, New York.

INDEX OF INVENTIONS

For which Letters Patent of the

 United States were GrantedMarch 21, 1893,
and EAOH BEARING THAT DATE.
[See note at end of list about coples of these patents.]

Adding machine, A. J. Brooks

Barrel washer, U. Eberharadit....
Battery See Secondary battery.
Bearingers, machire for maki

Bin. See Flour bin. Wheat.
Blacking box, .M. What.
Block signal ystem, JLat Burt.
Board. See Drawing or plotting board. See Wash boiler.
Boiler. Surnace, W. J. Richs

 Brake. See Car emergency brake. Pressure
brake. Sled brake. Vehicle brake.
Bread or cake pan, I. Seacol.

Canal digger, J, McMullen et at.
Cany mould, M. M. June......
Car coupling. R. Dore.....
Car couping, Harvey K Kane.

TRADE MARKS.

C．C．－H．CO．ELECTRIC HEATER
 A．Scientifically made，Economical，Efficient，Artistic，Safe，Durable，Tried Appliance；the result of six Regulated Electric Heat．
 4163 Cars already equipped with steam by the Consolidated，the leading Car－Heating Co．in the world； Sales over $\$ 1000$ a day． 432 Electric Heaters in use winter of 1892－93．Send for Illustrated Catalogue，with letters from users and record of service，mentioning this publication，to ALBANY，N．Y． CONSOLIDATED CAR－HEATING CO．

LATEST IMPROVEMENTS． NEW STYLE． NEW PRICES，

WHTER WOTOR
 GAS ENGINES \＆VENTILATING FANS
 CARBUTT＇S DRY PLATES ＂GELLULOD＂FILMS． Deseritio

THE ARMSTRONG MACHINES，

stationary and Poptable

＝PETROLEUM MOTORS

Shipped ready Oil Engine．
mounted． J．M．CROB \＆CO．，Mfrs．LEIPIICEUTRITZSCH（CERMANY）

MECHANICS＇TOOLS．

GATES ROCK \＆ORE BREAKER RALLWAY \＆SIEAM FIITERS SUPPLIES

A工IUMMINUMI In all shapes．Manufactured by
Cowles Electric Smelting and Aluminum Co．，
Correspondence solicited．LOCKPORT，N．Y．

WM．GRAVER TANK WORKS
 Manuraduruere of fro and 8 steel STORAGE TANKS
3d Floor，Rookery Bldg． chicago，ill．

SPECIAL NOTICE！

ROCK DRIIIS

 AIF COMPRESSORS \＆ Genteal machinery rog ghtyMininc．Tunnzine RUABD DRILLCO

BARNES

 UPRIGHT DRILLSComplete line，ranging from our New Friction Disk Drill，for light work to 42－inch Back Geared， Self Feed Drill．

W．F．\＆JOHN BARNES CO．， 1999 Ruby Street，Rockford，III． MPROVED ATMFO MODERN ENGINE H I $C O$ DESIGNS Sebastian Lathe Co．${ }^{120-122}$ Gulvert stree

AエエTMIINTMI In all shapes．Manufactured by Cowles Electric Smelting and Aluminnm Co．， Correspondence solicited．LOCKPORT，N．Y．

VANDUZEN STEAM PUMM
 ， 2000 12000 ghzes －THE VANDUZEN \＆TIFT CO

Rue＇s Little Giant Injector．
Screw Jacks，Portable Forges \＆Blowe

THE COPYING PAD－HOW TO MAKE

N IDEAL STUB PEN－Esterbrook＇s Jackson Stub，No． 442 1 A specially EASY WRITER，a GOOD INK HOLDER and a DELIGHT to \＄1．00 per gross．THE ESTERBROOK STEEL PEN CO．， 26 John St．，New York

STEEL，IRON，COPPER，ZINC，BRASS，TIN，

 THE HARRINGTON \＆KING PERFORATING CO．，Chicago，

MINIG

AND PROSPEGTIMG TAUGHT BY MAIL

FREE SITES TO SUBSTANTIAL MANUFACTURING ENTERPRISES in the rapidly growing towns of Virginia and West Vir－
zinia，situated along the lines of the Norfolk \＆Western Railroad，possessing chicap iron．cheap lumber． CHEAP FUEL，and RALLROAD FACILITIES Address J．H．DINGEE， 333 Walnut St．，Philadelphia．Pa．

Steel Type for Writing Machines，

Inventions and Novelties Developed．

Rubber Rolls and Wheels．

THE FONDA LATHE TOOL

MODEL $\mathbf{5 O E}=1$ WORK．

HENRY CAREYBAIRD \& CO. Indastrial Pablishers, Booksellers, and Importers

The Story of the Atlantic Telegraph.

By Henry M. Field, D.D., with portrait 12 mo , $\$ 1.50$.
"That it has the fasci-
nation of romance when the highest strain is on,
explains but a part of the explains but a part of the
secret of its spell. The secret of its spell. The
story of the Cable is one
of grand endeavor and
and of grand endeavor and
heroic constancy never
surpassed."-1ndependent.

MANUFACTURERS and INVENTORS ATTENTION:

The Oreutt fompry fecding dithoorny pherst

W

 REGISTER
Ausiness System. Enforcing Honesty
and Accuracy.
Chiego Autographic Register Co.
150 E. Monroe street,
CHICAGO, ILI.
PHOTO-SMOKE CIGAR HOLDER

\%u USE GRINDSTONES?

 The Cleveland stole co
ad Floor, Wilshire, Oleveland, o.
RIGHTS FOR SAALE in itiovaluable Natitai

BALLS OF FIRE

 MURRAY \$55.95 BUCGY :20 \$5.95 HARNESS have caused among the Buggy and Harness Manu-

The Griffin Mifirs
 A perfect pulverizer of all refractory substances by either
 INVENTIONS

 the wet or dry process. It works better and at less expense than an other Mill, and is conceded to be the only perfect pulverizing Mill manufactured.BRADLEY FERTLLIZER CO., 92 STATE ST, BOSTOH.

SCIENTIFIC AMERICAN SUPPLE-

2-Horse Eureka Boiler and Engine

B. W. PAYNE \& SONS,

Scienfific Book Cataloguie
RECENTLY PUBLISHED
 mailed tree to any address on application.
MUNN
$\mathbb{E} E$
CO.,
Publishers
Bcientific

361 Broadway, NewYork.
THE "GOLUMBIA" (3)
CRUDE OIL BURNER and AIR INJECTOR Shipman engine manufg coi, Rochester, N. Y.

BIT

Hatch Chlckens by Steam: IMPROVED EXCELSIOR INCUBATOR

TRADES UNIONS, THE TENDENCY

Columbian Desk Catalogue 1ro-
pages, postage 7 c .
Desks from \$6.0o to $\$$ Soo.o.
American Desk $\&$ Seating
Co.

CHAPMAN VALVE MANUFACTURING COMPANY

 Al work Guaranteed. Send for Oirculars and Prices.

STEEL TYPE FOR TYPEWRITERS

LOVELL DIAMOND CYCLES

highest grade. Lowest prices.
FOR LADIES OR GENTLEMEN

John P. Lovell Arms Co., Manufacturers BOSTON, MASS.

MCor H2) BICCLES
 GMAKE The Pace

Victor Bicycles are no experiments. They are tested and proved, and riders know what they are buying.

No other bicycle costs as much to manufacture as a Victor, and no other has as many improvements.

A. C. SPALDING \& BRECIALGENTS. CHICAGO. NEL YORK. PHI

KODAK FILMS.

Our New Films are giving perfect satisfaction They are highly sensitive, and repested test show that they retain this sensitiveness as wel as glass plates. No other films are so free from Our fllm doesn't frill.

Eastman Kodak Co.,

TUE WILMOT \& HOBBS MF C COMPANY

If your boy
isn't on time, the chances are it is no fault of his. Do you expect him to tell time by the sun? Has he a watch? If not, that is your fault. He mught have a first-class time-keeper as low as four dollars; up to ten, according to style-all the style anybody could ask.Gocd enough for you, too, if you need a watch.

FIRE-PROOF. Easily applied byanyone. Send forSamples and Descriptive Prico List H. W. JOHNS MANUFACTURING COMPANY,

ㅍ. W. Johns' Ashesto Fifre and Wator-Proof Sheathing, Bailling Foit, \& oam Packings, 87 MAIDEN LANE, NEW YORK,
jersey city, chicago, philadelphim, boston, atlanta, lomporh

Rochester, N. \mathbf{Y}
VELOCITY OF ICE BOATS. A COL

 AMERCAN SUPLEMENT No R14. Price 10 . 2 cent
To be had at this office snd from all newsdealers.

The Smith Premier Typewriter
tial Features Greatly Perfected.
Perfect and Permanent Alignme
Easiest Running, and Nearl
without Soiling the Hands.
ll type cleaned in Ten Seconas
The Smith Premier Typewriter Co., Syracuse, N. Y., U. S. A. We have 20 braneh offices in the principal citles throughout the United States.

No one ever wrote 1000 Letters an Hour, EDISON MIMEOGRAPH

Invented by Thos. A. Edison. For Daily Offee Use in duplicating both handwriting and typewriting

兰 EDISON INCANDESCENT LAMP
IS THE ONLY INCANDESCENT LAMP LAWFULLY MADE
RICHT OF THE EDISON COMPANY TO AN INJUNCTION ACAINS INFRINCERS HAS BEEN DETERMINED BY THE U. S. CIRCUIT COURT OF APPEALS. COPIES OF DECISIONS SENT ON APPLICATION.

${ }^{44}$ Broad Street........
2644 Wet Fourth
Gould Butldng
${ }^{\text {Gould Bullding }}$
…... New York OFFriches:

mamannawhimu

125 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent No. 186,787, granted to Alexander Graham Bell, January 30, 1877, the scope of which has been defined by the Supreme Court of "he United States in the following terms "The patent itself is for the mechanical structure of an electric telephone to be used to produce the electrical action on which the first patent rests. The third claim is for the use in such instruments of a diaphragm, made of a plate of iron or steel, or other material capable of inductive action; the fifth, of a permanent magnet constructed as described, with a coil upon the end or ends nearest the plate; the sixth, of a sounding box as described; the seventh, of a speaking or hearing tube as described for conveying the sounds; and the eighth, of a perma nent magnet and plate combined. The claim is not for these several things in and in the construction of which these phings or any of them are used."

This Company also owns Letters Pa ent No. 463,569, granted to Emile Ber iner, Nove and 1891, for a combined elegraph and Telephone; and controls Thomas A. Edison May 3, 1892 for a Speaking Telegraph, which cover fundamental inventions and embrace all forms f microphone transmitters and of car bon telephones.
1 Bmos NEW MAIL

Higbest Quality and Hundsomest Light Roadster of the Sear.
Men's and Ladies' pattern, Cushion Tires, $\$ 105$ Boys' High Grade New Mail,

