a WEEKIY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

One copy, one year, for the U. S., Canada or Mextco...
One copy, six months, for the U. S., Canada or Mexico
One copy, one year,to any foreign country belonging to Postal Union. 4 Remit by postal or express money order, or by bank draft or check.
MUNN \& CO., 351 Broadway, corner of Franklin Street, New York.

The Scientific American Supplement

NEW YORK, SATURDAY, MARCH 18, 1893.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
INO. 898.
For the Week Ending March 18, 1893. Price 10 cents. For saie by all newsdealers.
I. AGRICULTURE.-Cockle Seed.-The ill effects of cockleseed in cattle feed, and what animals are badly affected by it.
II. DECORATIVE ART.-The Theory of Storiation in Art.-By HCGH STANNDS.-A system of making decorative art tell a story. without the trouble of turn ng over the leaves.". III. ELECTRICAL ENGINEERING.-The Edison Multipolar Dy-
namos.-Different forms of maltipolar dynamo and the direct
coupled dynamos now running in this city.- -1 illustration coupled dynamos now running in this city. -1 illustration.
IV. ELECTRICITY.-Interesting Electrical Experiments.-A most interesting lecture by Lord Armstrong on dust figures and other electric phenomena.-By Lord Armstrong.
V. INVENTION.-An Age of Invention.-By DUANE Doty.-An elaborate analysis of the offfial report of the Commissioner of Patents made before the United States Senate, February 1, 1892.-
A most interesting presentation of the work done by inventors in A most interest
vi. medicine and hygiene.-The Correct Pronunciation of Medical Terms.-By William Dulaney Thomas.-Incorrect Medical Terms.-By WILLIAM DULANEY Thomas.- Incorrect
pronunciation common among medical men, with examples of correct pronunciation.... The New Hospital for Children in Leipzig. - A graphic description, with numerous illustrations, of a German hospital for childen. -9 illustrations..
vii. MISCELLANEOUS.-The Tour of Switzerland.-A second installment of this interesting description of the beauties of Switz
erland, touching on the Rigi, the Pilatus, the Matterhorn.erland, touching on the Rigi, the Pilatus, the Matterhorn.-8
illustrations........
viif. naval engineering.-The Chilean Armorclad Capitan Prat.-A new French ship, recently built for the Chilean govern-
ment.-1 illustration...................................... ment.- 1 illustration..
The Use of Oil at Sea.-A practical and graphic article on this most interesting subject, showing exactly how oil is applied and
different eases of its use. -5 illustrations.............................
18. TECRNOLOGY.-Animal Charcoal as a Decolorizer.-By T. R. of animal charcoal The Manufacture The Manufacture of Liquors and Preserves.-By J. DE BRE

THE NEW LAW FOR BRARES AND CAR COUPLERS.
Ats the recent session of Congress, a law was passed making compulsory the use of brakes controlled by the engineer, and also the use of self-acting couplers. It will be noticed that no special inventions are selected, but the field is left open for the introduction at any time of the latest and best improvements.
In respect to car couplers it may be well for inventons to bear in mind that, while the link and pin variety of couplers has many advocates, especially among the brakemen, who have to handle the cars, still the Master Car Builders' Association advise the throwing out of the link and pins and the substitution of the knuckle form of couplers. The recommendations of the association have made much progress among railway companies, and the knuckle couplers are now ex. tensively used on passenger cars.
The following is the text of the new law.

To promote the safety of employes and travelers upon railroads by compelling common carriers engaged in interstate commerof to equip their cars with automatic couplers and continuous brake and their locomotives with driving wheel brakes, and for other purposes.
Be it enacted by the Senate and House of Represent atives of the United States of America in Congress assembled :
Sec. 1. That from and after the first day of January, 1898, it shall be unlawful for any common carrier en gaged in interstate commerce by railroad to use on its line any locomotive engine in moving interstate traf fic not equipped with a power driving wheel brake and appliances for operating the train brake system, or to run any train in such traffic after said date that has not a sufficient number of cars in it so equipped with power or train brakes that the engineer on the loco motive drawing such train can control its speed without requiring brakemen to use the common hand brake for that purpose.
Sec. 2. That on and after the first day of January 1898, it shall be unlawful for any such common carrier to haul or permit to be hauled or used on its line any car used in moving interstate traffic not equipped with couplers coupling automatically by impact, and which can be uncoupled without the necessity of men going between the ends of the cars.
Sec. 3. That when any person, firm, company, or cor poration engaged in interstate commerce by railroad shall have equipped a sufficient number of its cars so as to comply with the provisions of section one of this act, it may lawfully refuse to receive from conn lines of road or shippers any cars not equipped suff ciently, in accordance with the first section of this act with such power or train brakes as will work and readily interchange with the brakes in use on its own cars as required by this act.
Sec. 4. That from and after the first day of July, 1895, until otherwise ordered by the Interstate Commerce Commission, it shall be unlawful for any railroad company to use any car in interstate commerce that is not provided with secure grab irons or hand holds in the ends and sides of each car for greater security to men in coupling and uncoupling cars.
Sec. 5. That within ninety days from the passage of this act the American Railway Association is authorized hereby to designate to the Interstate Commerce Commission the standard height of drawbars for freight cars, measured perpendicular from the level of the tops of the rails to the centers of the drawbars, for each of the several gauges of railroads in use in the United States, and shall fix a maximum variation from such standard height to be allowed between the drawbars of empty and loaded cars. Upon their determination being certified to the Interstate Commerce Commission, said commission shall at once give notice of the standard fixed upon to all common carriers, owners, or lessees engaged in interstate commerce in the United States by such means as the commission may deem proper. But should said association fail to determine a standard as above provided, it shall be the duty of the Interstate Commerce Commission to do so, before July 1, 1894, and immediately to give notice thereof as aforesaid. And after July 1, 1895, no cars, either loaded or unloaded, shall be used in interstate traffic which do not comply with the standard above provided for.
Sec. 6. That any such common carrier using any locomotive engine, running any train or hauling or permitting to be hauled or used on its line any car in violation of any of the provisions of this act, shall be liable to a penalty of one hundred dollars for each and every such violation, to be recovered in a suit or suits to be brought by the United States district attorney in the district court of the United States having jurisdiction in the locality where such violation shall have been committed, and it shall be the duty of such district attorney to bring such suits apon duly verified information being lodged with him of such violation having occurred. And it shall also be the duty of the having occurred. And it shall also be the duty of the
Interstate Commerce Commission to lodge with the
proper district attorneys information of any such vio tations as may come to its knowledge: provided, that nothing in this act contained shall apply to trains composed of four-wheel cars or to locomotives used in hauling such trains.
Sec. 7. That the Interstate Commerce Commission may from time to time upon full hearing and for good cause extend the period within which any common carrier shall comply with the provisions of this act.
Sec. 8. That any employe of any such common car rier who may be injured by any locomotive, car or rain contrary to the provision of this act shall not be deemed thereby to have assumed the risk thereby occasioned, although continuing in the employment of such carrier after the unlawful use of such locomotive, car or train had been brought to his knowledge.

THE TELEPHONE AND THE BERLINER PATENT.

As the federal administration changes, an interesting egacy to the incoming department of justice is the action commenced by the United States Attorney-General to annul what has become the famous Berliner patent for telephone transmitters. This is the patent issued on November 17, 1891, in pursuance of an application filed on June 4, 1877. A period of fourteen years was consumed in dilatory proceedings. The application was kept pending all this period, while the riginal Bell telephone patents were protecting the art of telephoning for the benefit of the assignees of the Berliner patent. The fifth claim of the first Bell telephone patent covered the method of transmitting sound by causing electrical undulations similar in form to the vibrations of air accompanying the sound. To this claim the courts awarded the broadest possible scope. The patent now has lapsed. On March 7, 1893, the undulatory current, as it has been called, became public property.
The apparatus for producing the undulatory current is the next question. By the expiration of the original Bell patent, just alluded to, the public acquires the right in general terms to an electro-magnetic telephone. On January 30, 1894, the second of the fundamental Bell patents will expire aud the permanent magnet telephone will be public property. It would seem that the field of telephony should now be open.
In its early days the telephone was recognized as a very imperfect appliance for the transmission of speech. The Bell telephone, whether magnetic or electro-mag netic, acted very imperfectly as a transmitter. It re quired the use of a loud voice to cause sufficient vibra tion in the diaphragm to induce operative current changes.
The microphone came next. What the microscope does for the eyes, the microphone in some sense does for the ears. It produces changes of resistance in an electric circuit by varying the closeness of contact between two loosely-touching portions of the circuit. It may be of the simplest description. A couple of round nails may be attached to the ends of a broken circuit, and the interval may be closed by a third nail laid across them. If the nails are subjected to disturbance or agitation of any kind, the resistance at the points of contact will change. Even so simple a con rivance as this constitutes a microphone. It gives no sound. But if in the circuit with it is included a Bell telephone, the latter, by producing sound, responds to every disturbance however slight of the microphone. As a matter of practice, carbon is universally used as one or all of the electrodes or contact surfaces of the microphone. The action of a microphone usually de pends on the changes of pressure between the faces of ts abutting electrodes. All telephone transmitters are microphones.
The delayed Berliner patent, which will not ex pire until November 17, 1908, virtually claims any microphone depending for its action on changes of pressure between abutting electrodes. The same thing as far as apparatus is concerned was shown in the Reiss telephones of many years ago: The Bell telephone was shown in the House patent, also ante dating the Bell patent by many years. And now the public are to be enjoined from possession of the art of telephony until the next century shall have nearly completed its first decade.
The protection of the last seventeen years has had ts effect in building up a powerful corporation. This corporation has introduced most extensive telephone plants in the cities of the United States, and recently has extended its long distance service by the erection of expensive metallic clrcuits between cities as distan as New York or Boston and Chicago. As its statutory monopoly seemed expiring, the company held a business tanding almost as good as a monopoly. But not content with this, the issuing of the Berliner patent has been brought about, which continues their statutory protection for fifteen years more.
In the bill of complaint presented by the AttorneyGeneral very serious allegations are made concerning the proceedings incident to the issuance of this patent. The specification was amended some three years after the date of application by the wholesale process of striking out the entire specification and claims, except the preamble and signature, by striking out all
the drawings and by substituting new specification, claims and drawings. This proceeding, it will be observed, was done when three years' experience had indicated what the art of telephony really was. The knowledge acquired in those three years had enabled the scope of the Berliner patent to be judiciously expanded. Just at this time an extra anchor seems to have been cast to windward by the securing of a second patent to Berliner on the same drawings for the same apparatus when used as a receiver. How all this is compatible with patent law does not appear.
It has been found that carbon contact microphones are the only practical ones. By an early amendment a carbon contact was introduced as an element of the Berliner invention. This brought about an interference with Edison, which was only dissolved on Octo ber 21, 1891, after some thirteen years' pendency. Both Edison's and Berliner's inventions during this period were the property of the American Bell Telephone Co., so that the company was keeping alive proceedings against itself.
The theory of telephony was imperfectly known in the early days when the Berliner patent was being manipulated. But in those times the great preponderance of knowledge was possessed by the telephone company's experts. Therefore they were at a great advantage in dealire with the Patent Office examiner. The government makes a strong point of this fact in its complaint.
It is out of the question for us to present even an outline of the many points brought forward to invalidate the Berliner patent. The above are merely samples. Equity is strongly against,it; but the equity of fixed by precedents until it is nearly as inelastic as law itself. In the past, rival telephone inventors have enitself. In the past, rival telephone inventors have en-
deavored to produce make-and-break current telephones so as to escape the fifth claim of the original Bell patent. Hereafter, if the Berliner patent is sustained, the effort must be to produce microphones of unvarying pressure, which will depend on varying area of contact for their action.
A suit to annul the original Bell patent was commenced by the federal government many years ago. This patent has now expired, but the suit is still alive. It is to be sincerely hoped that the suit to annul the Berliner patents will be pushed more energetically, and that the case will be brought to an issue before the patent dies a natural death in 1908.

The World's Columbian Exposition.

> SPECIAL NOTES.

It is unfortunate that such a great undertaking as that of preparing the buildings and installing the exhibits at the World's Columbian Exposition cannot be made one of the features of the Exposition itself. It is more inspiring and instructive to see men take swamp
and sandy waste and transform it into the present "White City" than to walk through a building filled with set exhibits and not be able to see any of the process of manufacturing or preliminary preparation. This preliminary preparation has been particularly instructive with this exposition, as the swamp has been transformed into lagoons, and the sandy wastes into
sward or building sites. In erecting the buildings sward or building sites. In erecting the buildings
some foundations were almost literally laid in the mud, some foundations were almost literally laid in the mud,
yet every building is firm and no trouble whatever has yet every building is firm and no trouble whatever has
been experienced from settling. The whole seven hundred acres of ground is now fully laid out and only needs the finishing touches of cleaning up, turfing, etc., to make it highly attractive. The whole area has been drained with a complete sewerage system. Water, compressed air and electricity are distributed to all parts of the grounds where needed, so that the "White City" is laid out with the completeness of a city that has required years to develop in.
Still another very instructive feature in the preliminary work is that of the variety of nationalities among the workmen and the characteristics peculiar to each in the manner of doing their work. Englishmen, Frenchmen, Germans, Japanese, Turks, and many other nationalities are busily engaged in preparing their several exhibits.
For months Jackson Park and the Exposition buildings have been referred to as the "White City," and when the Transportation Building was colored a fierce
red three months ago a cry of horror was raised. But this cry was uncalled for, as the "White City" will still be practically white when completed. All the buildings will remain as they are now, white, or only a
shade or two from it, except the Transportation Buildshade or two from it, except the Transportation Building, which is to be painted in the polychromatic style, but which will be very light in effect. On the exterior
of this building winged figures are to be stenciled on the panels which alternate with the flag staffs, while all the flat surfaces are to be quite elaborately decorated, one of the patterns being composed of conven tional thistles and foliated designs. All the color ef fect within the grounds will be given by flags, bunting, awnings and hangings. Large awnings of bright colors will be on the roof of the. Woman's Building, over the golden entrance to the Transportation Bu
and on many balconies and on other buildings.

The stability of the covering to the buildings-staffhas had a thorough test with the long cold winter, and the material has proved all that could have been asked for. The staff used in covering and decorating the Exposition buildings is composed of plaster of Paris and fiber, "New Zealand hemp" being used mostly. Each piece of staff is cast in a mould. If it is a plain flat surface, the mould is simply a box; butif the staff is ornamental the mould is of gelatin, so as to have elasticity. The process of making it is simple. A coating of plaster is thrown over the face of the mould to the plaster is thrown over the face of the mould to the
depth of about an eighth of an inch, to give a smooth, depth of about an eighth of an inch, to give a smooth,
clear surface. The fiber is then beaten until it is in a clear surface. The fiber is then beater until it is in a
feathery condition, dipped in liquid plaster, and pressed into the mould. When hardened, the staff stands considerable hard usage, and the slabs can be nailed in place like so many boards. In every instance where the laying has been properly done the staff has not been appreciably affected by the long, hard winter. In a few isolated instances flat surfaces have cracked off; a few isolated instances flat surfaces have cracked off ;
but this is only where water has found its way in. The lagoons are mostly walled in by what appear to be marble walls. These are simply wooden surfaces covered with staff : but in preparing the material for this use it is composed of one-fourth of best Portland cement. When the staff work is pointed up and given a coating of paint, it will not absorb moisture.
Some weeks ago it was announced that the Vanderbilt family had leased one of the largest and most commodious mansions on Michigan Avenue for the six months of the World's Fair for $\$ 20,000$. But this is only one of many similar leases. Another Michigan Avenue house has just been leased for four months at $\$ 4,500$ a month to a prominent New Yorker, while a well known Philadelphian has leased a commodious Prairie Avenue house for six months at $\$ 3,000$ a month. The highest price yet offered for a residence has been $\$ 50,000$ for the season of the Fair for the palatial residence of a Chicago millionaire, which has been only recently occupied. The offer was made by a Philadel.
phia street rail way magnate. Inquiry at the leading phia street railway magnate. Inquiry at the leading fact that forty or more leases have already been made of private houses in Chicago in which each lease has been for $\$ 1,000$ a month or over. Many negotiations are now being carried on, and from presentindications it would not be surprising if there were as many more leases made before May 1 of equal value. The number of leases of smalleramounts are quite without number, and include some of the best known names in the country in social, political, and financial circles. Many choice suites at the leading hotels have also been arranged or by well known people. The people to whom price is a minor consideration have very generally engaged accommodations ahead.
With the disappearing of the snow the working orees at the Exposition are increased; over six thousand men are now employed. Over five hundred car installing of these requires the services of many men, but in a week or two the daily arrival of exhibits should be about five hundred car loads a day, as it is estimated that there will be all told over twenty-five thousand car loads. A great demand for men as soon as the snow and ice are gone will be in clearing up and completing the work of beautifying the grounds. The work of hardening the paths was scarcely more
than begun when the cold weather interfered. Then debris as a result of pushing building operations with such vigor is scattered everywhere, and it will take several thousand men two or three weeks at least to clear away this. When the grounds are once cleaned they are to be kept so with much care, and during the holding of the Exposition it is proposed to have them cleaned from one end to the other every day. This work in itself will require a large number of men, as there are seven hundred acres inclosed in the park, and a few evenings each week the grounds will be open to
the public until ten o'clock.
Work is being pushed in all parts of the Exposition with restless energy. The weather has hampered progress in every way, but work has gone on in spite of it. The great passenger station has been completed trains on May 1 without difficulty. In all the buildings as many men are given employment as the amount of work will warrant. Foreign exhibitors are, as a rule, much more prompt than those of this country. The Palace of Mechanic Arts is particularly interesting just now with the work of installing such a vast
amount of machinery. The temporary power plant, which has been in service from the first, can be used only until the 15 th inst., so work is being pushed with special reference to putting part of the permanent plant into operation on that date. There are already about a dozen engines of the fifty or more to be installed on their foundations, and several batteries of
boilers are ready for firing. The plant for handling the fuel oil is ready for use, and only waiting for the Standard Oil Company to turn the oll into the tanks, as the pipe line connections are already made. The Westinghouse 4,000 light alternating dynamos are
connected and ready for operation, and the work o
putting two of the large dynamos, with a maximum capacity of 15,000 lights, is well under way. Parts of these enormous machines are seatterea about the building and attract much attention from electrical
men. The gallery in which is to be the switchboard for the incandescent plant is well on toward completion. In the center of the building the pit has been cemented preparazory to installing the fountain. An interesting sight in the Transportation Building is the little Pioneer, the first locomotive which ran out of Chicago, a mere speck of a machine, while a little distance away Englishmen are erecting a monster locomotive built years ago for a seven-foot gauge, the Lord of the Isles.
The foundations for the two electric fountains at the head of the basin have been put in under much difficulty, as the work has all been done during the cold weather, but the General Electric Company, which has a contract for constructing the fountains, has had a large force of men at work, and the superstructures are now being placed in position.
Work on the boiler plant has been much hampered by legal complications between two safety boiler companies, one of which claimed to hold a concession granting it the privilege to install all the boilers. After litigation for two months the courts have decided against this special concession. The day following the decision, workmen were on hand clearing away the ground ready for installing enough boilers to fill the main boiler house. Contracts have just been made for several hundred horse power to be installed in the boiler house annex.
The annual election of officers of the World's Columbian Exposition takes place April 1, and for weeks past a number of men who are anxious to help carry some of the honors that will go with an official position during the holding of the Exposition have been soliciting proxies, and in several instances buying up stock. But the present management has carried on the work so efficiently and with such evident satisfaction that there is little probability of any official being unwillingly retired. It is understood that more proxies than enough to re-elect the present board of directors have already been offered them unsolicited.
The last building to be contracted for is the Bureau of Public Comfort, which is to cost $\$ 28,000$. Although the contract was let only three weeks ago, the framework of the first story is nearly completed.
President Cleveland has been officially invited to be in Chicago on May 1, and open the Exposition to the public, and start the machinery.
Plans were partially perfected to install a complete till in miniature in the agricultural section for the manufacture of whisky, but the internal revenue officers were so strict in their requirements that this exhibit may be dispensed with.
Director-General Davis has issued an order calling upon all exhibitors to give definite information immediately as to their intentions in all detail. Not only must the work of installation be begun at once, but notice must also be given by those who wish electricity for purposes of lighting or power, or who want telephone or other services.
During the recent cold weather the trusses of the Manufactures and Arts Building are understood to have contracted five inches. In midsummer it is estimated that the building will expand to be about a foot wider than it is now.
Mr. Frederick Sargent, who has been engineer of the combined mechanical and electrical department, has been made general manager of the department, and his assistant engineers promoted, thus relieving him of much of the detail work of the department.
About the middle of February it was announced through the daily press that a large number of young men would be able to find service under the Exposition, either in the Columbian guards or as guides, and that college students would be given the preference. In two weeks a thousand applications for positions as guides were received. Only one hundred or two hundred men at the outside will be required for this service, but applications still continue to me in.
A post office has been established in the Administration Building for the convenience of Exposition em ployes, and a sub-station will probably be established ust outside the grounds for convenience of visitors during the holding of the Fair.
The foundation is being put in for the Ferris wheel. This wheel is to be 264 feet in diameter, with 36 cars, each as large or larger than a Pullman, attached to the circumference, and swinging from it.

A successful test of a Harveyized steel armor plate was recently carried out at the Indian Head proving grounds. The object of the test was to determine the trial of the plates representing 2,000 tons of armor for which bids have recently been received by the Navy Department. A 10 inch gun was used, placed at about 30 feet from the plate. In three successive shots the velocity was increased from 1,472 feet to 2,060 feet. The last shot penetrated deeply, but the excellent quality of the armor was fully demonstrated.

AN INEXPENSIVE WINDOW AWNING.

An improvement whereby the ordinary window shade may be used as a part of a window awning, serving when not so employed the ordinary purposes of a window shade, is illustrated in the accompanying engraving, and forms the subject of a patent which has been issued to Mr. Bernard Branner, of New York City. The ordinary spring roller shade, E, is shown extended outwardly as an awning, in which position it is supported by a keeper hook at each side in the outer ends of the stretcher rods, C, of the side wings, D. These stretcher rods are

BRANNER'S WINDOW SHADE AWNING.
each hinged on the lower end of an upright stay rod, secured one on each side of the window, the stay rods forming the upright supports for the wings, whose lower edges are connected with the horizontal stretcher rods. A cord, A, is passed through marginal rings in the wings, and by drawing on this cord the stretcher rods are folded upwardly, inclosing the attached wing material, a cord, B , facilitating the extension and securing of the awning in position. Different forms of side stay rods are contemplated by the invention, and the wings and their stretcher rods may readily be completely removed. When the shade is not to be used as an awning, it is released from the keeper hooks on the outer ends of the stretcher rods and drawn into the apartment, then becoming a pendent screen for the window. By a slight change in the location of the awning material the device may also be utilized as a screen for a door.

AN IMPROVED PHOSPHATE. WASHER.

A simple device for separating sand, clay, marl or other substance from the phosphates, at the same time preventing the balling of the clay or marl, is shown in the illustration, and has been patented by Mr. William A. Beaty, of Plant City, Fla. The washer is represented in perspective in Fig. 1, and, as shown in transverse section in Fig. 2, the trough consists of two longitudinal sections, connected with each other in the middle to form a longitudinal ridge. In the two sections are transverse partitions, set to form alternating pockets, each of the partitions being perforated by slots. Through the pockets pass agitating arms set spirally and radially on shafts journaled in the legs of the trough, the outer ends of the shafts being connected with each other by gear wheels, and one of the shafts being connected with a source of power. The lower end of the trough is closed, except that it has side sections covered by wire netting, permitting the discharge of muddy water at this, the feed end of the machine. There are also perforations in the sides of the trough leading to the pockets, permitting the discharge of fine sand, clay or other refuse, and near the upper or discharge end of the trough are wire screen sections, over which the phosphate is passed to the discharge chute, the remainder of the sand, clay and marl, etc., being separated from the phosphate by the screens. Water flows constantly into the open upper end of the trough from a suitable supply pipe, meeting and thoroughly washing the material as it is fed forward by the rotating arms, the material being moved first from one pocket of one section to the alternating pocket of the other section, then back to the next forwardly alternating pocket of the first section, and so on until the refuse and the phosphates are completely separated by the time the latter are passed out of the open upper end of the trough.

BRIDGES ON THE TRANSANDINE RAILWAY.

Of the new railway which completes the system across South America over the Andes range of mountains, connecting Buenos Ayres with Valparaiso, in Chile, 106 miles can now be traversed by trains, so that only 42 miles of the distance have to be traversed in carriages or on mules. These 42 miles involve the very laborious works of constructing the tunnels through the highest peaks of the Andes mountains. When completed the traveler will be able to cross the continent from shore to shore by railway in about 60 hours, whereas, by sea, round Cape Horn, the time taken is 12 days.
In the 109 miles of railway there are about sixty bridges and culverts, varying in span up to 246 feet. We give an engraving of the largest bridge, of 246 feet span. The larger bridges are of American construction. The reason for this is certainly interesting, as it raises an important point on the relative value of

American and British bridge building practice, and shows how that practice operates in the matter of securing foreign orders, or orders for foreign countries, which is not quite the same. Time was an important element in the matter; the railway was practically completed, but could not be opened until the bridges were constructed and in position. Several British bridge builders were therefore asked to state the time hey would require to build a bridge of 246 feet span and the shortest time asked was eight months. A cablegram to one or two American firms brought the reply from two that they would deliver all the four bridges of the size required alongside a vessel at New York in eight weeks, while a third asked twelve weeks.

BEATY'S PHOSPHATE WASHER.
There was no alternative. Cables were again sent to the three firms stating the load and the tests to be made when the bridge was in position, and offers were at once sent. The span we have given; the tensile strength of the steel used was to be from 26 to 30 English tons to the square inch, with an elongation of 20 per cent in 8 inches before fracture. The builders were to guarantee that the bridges satisfied the test requirements when in position. The main girders were to be 15 feet 1 inch between centers, to carry the single line of meter gauge (3 feet $33 / 8$ inches). Here are the offers :

Tenders for Bridge of one Span. 246 Feet.

Time, as we have said, was the consideration, and

weight was an important element in view of the distance the bridge had to be conveyed inland, so that the Phonix Company got the order, although their price was highest. It is interesting to note that the changing of the material from iron to steel only involved an increase of 5 per cent, the tests being as above, and it is further noteworthy that the Phœnix Company wished the truss to be 35 feet deep, and offered to make the price less with it than with a 32 foot truss.

The point suggests itself : How could the American firms offer to build the bridge in as few weeks as the English firm required months? The reply is simply hat their sys tem of bridge building enabled it to be

AMERICAN IMPROVED LOCOMOTIVE VALVE.

The accompanying cuts show two forms of locomo tive valves, one with muffler and one without muffler, which were designed and patented by A. P. Kinney, superintendent of the American Steam Gauge Co., of Boston. The superiority of this locomotive valve lies in the fact that it can be adjusted on top without removal from the dome of the locomotive. In order to adjust either the pressure or the blowdown, first remove the muffler, I; this exposes the compression screw, G, adjustable nut, M, crosshead, L, locking latch, O, and check nut, H. By loosening the check nut, H, and screwing down the compression screw, G, nut, H, and screwing down the compression screw, G,
the pressure is increased, and the reverse for lessening

outside view without muffler.

inside view with muffler.

THE RINNEY LOCOMOTIVE VALVE.

done. Here the builder gets his drawings from the railway engineer, who designs every rivet and bolt, if he does not specify how the rivet or bolt is to be driven. A. B. wishes one style, C. D. an entirely different type, so that the builder must be prepared for anything-the advocates of the American system might say for nothing. In America, on the other hand, the builder designs the bridge, or rather he has a standard type, and the engineer only needs to state requirements. The firm can therefore have special machinery for rolling their iron or steel to the standard.sections needed, and are thus independent of steel makers. They are, therefore, prepared in the fullest sense of the word. It may be urged that the British system admits of greater choice of design, and therefore suits British needs; but after all it is to the foreigner we, in large measure, have to look for orders, and as a rule he is satisfied with what he can get quickly and cheaply, provided it meets the desired conditions as to load and tension and compression tests. We do not enter into the relative value of American and English designs, or as to whether American or British prices are lowest. Our contention is that there are most convincing evidences that the American practice has its advantages. As to relative prices, it is to be regretted that in the case of the 246 foot span quotations were not got from English as well as American firms; but Messrs. Clark's business was not to collect proofs on economic points. Fortunately, however, the idea suggested itself, presumably for other reasons, to get an English firm to quote a price for a 197 foot span from sketch drawings supplied by an American firm who had tendered, so that we have in this case comparative prices :

Quotations for 197 Foot Span.

Pencoyd Bridge Company, America
British firm British firm $\begin{array}{cccc}1,679 & 13 & 0 & 11734 \\ 2,025 & 3 & 0 & 138\end{array}$ $\begin{array}{rrrr}14 & 5 & 0 \\ 14 & 13 & 6\end{array}$
It will be noticed that the British firm (which need not be named) assumed a greater weight-that is in accordance with practice-and that their price per ton was greater, notwithstanding that material and wages are said to be dearer in the States. Of course the American firm have special machinery. This, however, one may find in almost all concerns.
We are indebted to Engineering, London, for our engraving and the above particulars.

A SLIGHT earthquake shock was experienced in the northern part of New York City and Long Island City, N. Y., on March 8, at 12:40 A. M. The shock lasted thirty-two seconds, and was accompanied by rumbling noises, oscillations from east to west.
$1-6$ to $1 / 4$ turn will change the pressure of the valve five pounds either way. By raising the locking latch, O, and screwing down on the adjusting nut, M, one notch, you reduce the blowdown one pound, and the reverse increases it one pound.

Until the present styles of locomotive valves were placed on the market by this company, in order to adjust the blowdown, the valve had to be taken from the dome of the locomotive. It was also impossible to adjust while steam was on. The present styles do away with these objections and are a great advance over anything hitherto produced.
Although lately placed on the market, a number are in use on the largest railroads of the country. These are giving excellent satisfaction, and additional orders from the companies using them are the best evidence that a trial is all that is needed to secure their adoption.
The American Steam Gauge Company, 34 Chardon Street, Boston, who are the sole manufacturers, will be pleased to furnish additional information to any one making application.

A LOCOMOTIVE STONE BREAKER

With the improved means of stone ballasting a railway track shown in the illustration, nothing but clean stone, substantially free from dust, and with no admixfure of soil, is placed upon the roadbed. The improvement forms the subject of two patents issued to Mr. A. B. Austin, of Fort Wayne, Ind., the machine being in the form of a locomotive adapted to run thirty miles an hour, while it can be changed to a stone breaker in five seconds, by raising the drivers off the track. The machine is always ready for use, on the road or in the quarry, and will break from twenty-five to thirty cubic yards of stone per hour, while it will also haul one loaded car. The rock for ballasting can be handled in large lumps, being loaded on flat cars and drawn to the place of use, two-thirds of the rock being undisturbed as it is dropped from the car on to the roadbed, thus saving the handling of the ballast by shovels. The distance between the crushing jaws and the size of the crushed material is regulated by raising or lowering wedges by means of a rod and nut. The material is crushed by the machine to a more uniform size and in a more expeditious manner than the same can be effected by hand for a macadam or an or-

AUSTIN'S LOCOMOTIVE BALLAST CRUSHING MACHINE.
dinary roadway, as well as for a railroad, and is delivered with great facility at any desired point, its means of self-propulsion enabling it to be moved at a minimum of cost, and saving expense of handling.

AN IMPROVED WRENCH.

In this simple and durable wrench, which has been patented by Mr. William H. Kaltenbeck, the lower jaw may be made to slide up or down upon the shank of the body bar, and be locked at any desired position thereon, by means of an easily manipulated lock nut or sleeve. The small figures show different sections of the locking nut or sleeve, a cross section of the body bar for a portion of its length, as shown in one of these figures, having its forward edge cylindrical and threaded, while in its rear edge is a V-shaped groove, in which fits an arm or socket extension integral with the lower or movable jaw of the wrench, the exterior surface of the extension being cylindrical and provided with a

raltenbeck's wrench.
thread. The locking nut or sleeve is swiveled upon the upper end of the handle, from which it is readily detachable, and this nut is made in two diameters, one greater than the other; at the lower diameter the inner contour is circular and at the upper diameter it is somewhat elliptical, the opposite side walls of the smaller diameter of the nut having threads. To adjust the lower jaw to or from the upper one, a turn of the sleeve or nut permits the lower jaw to be moved freely upon the body bar, and when the jaw has been properly placed the sleeve is turned in the opposite direction, when its threads engage the threaded surfaces of the body bar and the socket extension of the movable jaw, firmly locking the latter in the desired position. The jaws of the wrench may be shaped for use either as a monkey wrench or as a pipe wrench.
Further information relative to this improvement may be obtained of Mr. W. F. Baker, Middlesborough, Ky.
Electricity is our authority that an electric railroad rom Main Street, Orange, N. J., to Montclair, with a branch running from West Orange to Eagle Rock, is to be built as soon as the weather will permit the work to be done. The terminus at Montclair will be at the Delaware, Lackawanna and Western Railroad station.

Snow Plows $\begin{gathered}\text { Needed in Roumania-A Chance for } \\ \text { American }\end{gathered}$

We take pleasure in publishing the following letter from Mr.Ch. Courgoulier, 60.Calea Victoriei, Bucharest, Roumania. The communication speaks for itself :
"Every year the snow stops the movement of trains in Roumania for a longer or shorter time. This year they were obstructed for more than three weeks. Having learned through La Nature and La Revue Generale des Chemins de Fer that rotary plows are used successfully on the lines of the United States, it occurred to me that I would propose a trial of them on the lines of Roumania. My proposition was accepted. So I write to ask you to give me assistance in carrying out my idea, by furnishing me with all the necessary information for the introduction of one of your plows into Roumania, and making experiments with it. If it works successfully, others will be needed.
"I will need to have drawings and detailed description of these plows, and the results obtained by experience. Also dimensions, weight, price, terms of payment, time required to deliver, expense of transportation, supposing that the apparatus can be delivered on a boat at Galatz, a port on the Danube."

We trust that numerous responses will be received by Mr. Courgoulier. Writehim direct.

HOW SUNKEN VESSELS ARE RAISED

On the morning of February 27 the United States revenue cutter Washington, Lieut. C. F. Shoemaker, U. S. R. M., was run down by the Brooklyn Annex boat No. 3, of the Pennsylvania Railroad Company, just opposite the Barge Office dock, at the southern extremity of this city, where the East and North Rivers unite. The cutter's port side was stove in amidships, and the vessel sank just inside her slip at the Barge Office.
The Custom House authorities appropriated $\$ 500$ to have her immediately raised, and the Chapman Derrick and Wrecking Co. began the work of raising her at 7 P. M. Feb. 28. The derrick boat Reliance was employed. With the aid of divers a sling of chains was passed under the boat and attached to the arm of the derrick, as shown in our photograph. The steam hoisting gear of the derrick was then set in motion, and at once the sunken vessel began to rise out of the water. The Washington was soon completely raised. The derrick and her burden were then towed to dock for repairs.
The Chapman derrick consists of a strong float or scow provided with several watertight compartments watertight compartments, on which a powerful crane is erected, worked by steam
power. The machine is capable power. The machine is capable of lifting weights of several hundred tons. The raising of a sunken boat like the Washington is considered a small affair for this machine to handle. This derrick was fully illustrated in the Scientific American of November 8, 1890.

The Sources of the Nile.

The report of Dr. Baumann's latest geographicar investigation of the Kagera River and the country lying between that stream and Lake Tanganyika affords an interesting and important contribution to the history of the sources of the Nile and a singular confirmation of the ancient myths concerning the Mountains of the Moun.
On September 5 last Dr. Baumann's expedition, after having crossed Stanley's route a week previously reached the Kagera River, ańd was received by the natives of Urundi with such demonstrations of joy and respect that he instituted inquiries as to the cause of their enthusiasm. He:'learnt that Urundi, from Ujiji to Rouanda, had been for ages ruled by kings who were supposed to be lineal descendants of the moon, and that the natives believed him to be the last king, who had died a generation'before and who had now come back to them from the moon.
On September 11 the expedition crossed the Akenyaru, which is not, as supposed, a lake, but a river, though the name "Nyanza" is often applied to it. Dr. Baumann also discovered that the so-called Lake Mworengo is in reality a river which flows into the Akenyaru, and came to the conclusion that there was no extensive sheet of water in Ruanda or North Urundi. On September 19 Dr. Baumann arrived at the
source of the Kagera, which rises at the foot of the precipitous and wooded hills which form the watershed between the basins of the Rufizi and the Kagera. This mountain chain is known to the natives by the name of the "Mountains of the Moon," and is held in peculiar reverence by them. Here Dr. Baumann maintains the real source of the Nile to be, for if "it be acknowledged that the Kagera is the chief feeder of the Victoria Nyanza, it follows that the headwaters of the Nile can be none other than those of the Kagera itself in the Mountains of the Moon in Urundi, within the bounda ries of German East Africa."

The Trap Door Spider.
Mr. D. Cleveland, of San Diego, Cal., contributes to Science an article in which he states some curiousfacts regarding the trap door spider (Mygale henzii, Girard), which is widely diffused in California. Behind San Diego there are many hillocks about a foot in height and three or four feet in diameter. These hillocks are selected by the spiders, Mr. Cleveland suggests, because they afford excellent drainage and cannot be washed away by the winter rains. A suitable spot, which always consists of clay, adobe, or stiff soil, having been chosen, the spider excavates a shaft varying from five to twelve inches in depth, and from one-half to one and a half inches in diameter. This is done by means of the sharp horns at the end of the spider's mandibles, which are its pick and shovel and mining tools. The earth is held between the mandibles and carried to the
surface. When the shaft is of the required size, the

Sparking of Dynamo Brushes.

The Elektrotechniker, of Vienna, contains some useul remarks on this subject which, we feel sure, will prove of interest to our readers. The sparking of dynamo brushes not only wastes the brushes and the commutator prematurely, but also gives rise to a considerable loss of energy, which might otherwise be properly utilized. This sparking formerly was one of the unavoidable defects of dynamos, while nowadays the commutators of small machines mostly run without sparking-provided no mistakes have been made in the construction and treatment of the machine-and the sparking of large machines has been reduced to a minimum.
The sparking may be due to various causes. It occurs when the armature becomes strongly heated, and is due to a faulty construction of the latter. If the pieces of sheet iron of the armature are not properly insulated from one another, Foucault currents are set up in the iron and strongly heat it. The armature, therefore, is tested, before being wound, by making it rotate for several hours between strong magnets. If it has been properly constructed, the increase of temperature will be very slight. The armature may also be heated by too heavy a load. This will occur when more lamps are switched on than the machine ought to feed. For regular working the armature wire must not be loaded with more than $41 / 2$ amperes per square millimeter (0.00155 square inch). Some manufacturers go as high as 6.4 amperes per square millimeter, but this is a very questionable practice. The E.M.F., too, must only be allowed to rise within cer tain limits, which are generally specified by the manufacturer for each ma chine. If the E.M.F. at constant current is unduly raised, a much larger number of revolutions is required, the armature iron is heated by the frequent changes of polarity, and the shaft runs hot in the bearings. Sparking also occurs when the brushes do not lie against the neutral points of the commutator. These neutral points, in consequence of the reaction of the armature current on the field magnets, are subject to displacement in the direction of rotation of the armature when the current increases, and in an opposite direction when the current decreases. When the brushes touch at the same time two segments of the commutator, the latter are short-circuited; this causes an overload of the respective convolutions of wire and gives rise to sparking. The commutator must not be rough or uneven, and must have no protruding sheets. By protracted

RAISING A SUNKEN REVENUE CUTTER.

 pider smooths and glazes the wall with a fluid which |use the sheets of the commutator are ground by the s secreted by itself. Then the whole shaft is covered pressure of the brushes, and in this case the commuwith a silken paper lining, spun from the animal's spinnarets. The door at the top of the shaft is made of several alternate layers of silk and earth, and is supplied with an elastic and ingenious hinge, and fits closely in a groove around the rim of the tube. This door simulates the surface on which it lies, and is distinguishable from it only by a careful scrutiny. The spider even glues earth and bits of small plants on the upper side of the trap door, thussmaking it closely resemble the surrounding surface. The spider generally stations itself at the bottom of the tube. When, by tapping on the door, or by other means, a gentle vibration is caused, the spider runs to the top of its nest, raises the lid, and ooks out and reconnoiters. If a small creature is seen, it is seized and devoured. If the invader is more formidable, the door is quickly closed, seized, and held down by the spider, so that much force is required to open it. Then the spider drops to the bottom of the shaft. When the door of the nest is removed, the spider can renew it five times-never more than that. From forty to fifty cream-colored spiderlings are hatched from the yellow eggs at the bottom of the nest.When these have attained only a fraction of their full size-before they are half grown-the mother drives hem out into the world to shift for themselves. After a brief period of uncertainty they begin active life by making nests, each for itself, generally close to "the old homestead,", \quad ometimes within a few inches of it. These nests are always shallow and slender, and are soon outgrown. When the spider attains its full size, it constructs a larger nest.
tator must be turned off, or new sheets must be inserted.
Sometimes, during the rotation of the armature, a sudden flaring up is noticed at the commutatrr ; this is frequently due to interruptions in the armature winding. A break of current in the field magnets can also give rise to strong sparking. In the present state of perfection to which dynamos have been brought the sparking of the brushes can be altogether avoided, or, in large machines, reduced to a minimum. In every case the constructor can ascertain and remove the cause of this defect.-Electricity, London.

A Varmish for Collodion Lantern slides.

A correspondent writes: I have been making a series of experiments to find out the best varnish for collodion lantern slides. I have tried nearly all the published formulæ, including Mr. Armstrong's acetic solution of gelatine, but the best one which I have used is as follows:

Tunny's impervious varnisb........................... 11/2 ounces. (This is a saturat
Pure benzol... 11/2 ".
fum dammar.................................... ounce.
When dissolved to be filtered through cotton wool.
This varnish runs on the plate as freely as collodion does, without the tendency to coat your fingers and backs of the plates like most other varnishes which I have tried. It dries hard with a gentle heat, and is not tacky, and it renders the fllm quite bright and glass-like.-Br. Jour,

IMPROVEMENTS IN BOSTON HARBOR.

On our front page we give a bird's eye view of Boston Harbor, showing the different channels which have been widened and dredged by the United States government, and some of the numerous islands which dot the harbor, showing also more in detail some points where the more important work has been done by the United States corps of engineers.
The objects of these improvements, which were commenced in 1825, is first to preserve the harbor by protecting the islands and headlands, and second to improve it by widening, deepening and straightening the channels.
The projects adopted for this purpose since 1866 have been mainly in accordance with the recommen dations of the United States commissioners, whose labors terminated during that year.
The works of preservation consist of sea walls, aprons, jetties, etc., which protect the shores of the islands and headlands, prevent additional wash into channels, control the tidal scour, and preserve the full height of anchorage shelter for vessels in the roadsteads.
Point Allerton, which is at left of bird's eye view, is at the southeasterly entrance of the harbor. Is protected by a granite sea wall 1,202 feet in length. Its concrete foundation for a distance of 1,005 feet is protected by an apron and eight short jetties of granite rubble stone.

The bluff protected by this wall is not fully covered fromstormaction, and the sea wall should be extended westward for a distance of at least 150 feet, and the foundation should be protected with rip-rap.
Lovell's Island, which is much nearer the city, is protected on the western shore by a rubble stone apron 975 feet long, the northern shore is covered by a granite sea wall 750 feet long and the eastern shore protected by a granite sea wall 800 feet long and by two rubble stone aprons, one between the northern and eastern sea walls 1,440 feet long and the other south of the east sea wall 1,330 feet long. The detail views of Lovell's Island at bottom of front page, showing the construction of the sea wall and the rubble stone apron, are madeffrom photographs taken especially for us at low tide.
Three prominent bluffs on Deer Island are protected by granite sea walls originally built about 1827 . The north head wall is 1,740 feet long, the middle head wall 840 feet, and the south head wall 380 feet long. These walls have been partly rebuilt and in the weakest places backed with concrete.
Long Island is protected on the north head by a granite sea wall 2,081 feet long. Part of the foundation of the sea wall and of the beach at both its ends is protected by a rubble stone apron, aggregating 1,375 feet in length. During the last year 1,100 tons of rubble stone were landed at the beach and used to form a rip-rap protection for the beach west of the sea wall. This work will be continued this year.
Boston Harbor consists essentially of an inner and outer harbor, united by a deep waterway, and each accessible by distinct channels from the sea, widening into a deep and spacious roadstead.
The inner harbor lies to the north and westward of Long Island and receives the discharge of four rivers, the Charles, Mystic, and Chelsea Rivers from the north and the Neponset from the south. The direct entrance from the sea is by Broad Sound.
The outer harbor lies to the southward of Long Island and has a fine anchorage in Nantasket Roads, as well as in Hingham Bay, a well sheltered harbor southeast of Peddock Island. It connects with the inner harbor by the main ship channel through the narrows and by secondary channels east and west of Long Island. It is reached from the sea by Nantasket Roads, which lie south of Georges and Great
Brewster Islands. Weymouth and Weir Rivers empty into the outer harbor. The range of tides at the navy yard is 9.8 feet and at the entrance to the outer harbor $9 \cdot 4$ feet.
The main ship channel before improvement had a least width of 100 feet and a least depth of 18 feet at mean low water. The general project for its improvement was submitted in 1867, and was to dredge the channel 23.feet depth at mean low water, 1,000 feet wide at the upper and lower middles and 685 at the narrows. At subsequent dates these figures were changed, and on June 30, 1892, the main ship channel was 23 feet deep at mean low water, 1,100 feet wide west of the upper middle, 800 feet wide at the upper middle, 1,000 feer wide at the lower middle, and at least 625 feet wide elsewhere.
The total amount of appropriations for Boston Harbor from 1825 to date are $\$ 2,304,276.10$.
It is now proposed to have a uniform width of the main channel of 1,000 feet and to increase the depth to 27 feet at mean low water. According to an estimate submitted by Lieut.-Col. S. M. Mansfield, of the corps of engineers, the improvement would cost $\$ 1,500,000$; but as the present inadequate depth of water in the channel causes nearly all of the deep draught vessels to anchor outside Boston Light and await the tide, so that delays of from three to nine hours in the delivery
of mails and passengers are not infrequent, it is hoped that Congress will take some action in the matter.
Our thanks are due to Lieut.-Col. S. M. Mansfield, U.S.A., who is in charge of this district and under whose supervision much of the work has been done, for many facilities afforded us and for much of the data for preparation of this article.

Prizes for Mule carts for india.

The Secretary for India has decided to offer five prizes, ranging from $\$ 3,750$ to $\$ 625$, for designs and models best adapted for mule carts for the transport use of the British army in India, after practical test in India of a full sized specimen. The competition is open to all nations. Intending competitors wishing for the fullest details as to the kind of cart required will be supplied with further instructions on application to the Di-rector-General of Stores, India Office, Westminster, London, or to the Secretary to the Government of India, Military Department, Calcutta, British India. Theidesigns and models, framedtin needful detail, should be sent direct to the Secretary to the Government of India, Military Department, Calcutta. No designs or models reaching Calcutta later than September 30, 1893, will be allowed to compete. The time of transit for parcel post from London to Calcutta may be taken at twenty-four days. The instructions for competitors state, among other things, that the object sought is a design for a military transport cart for a mountainous country, with absolutely no local resources in the way of skilled labor or constructive material. The few existing unmetaled roads are steep, narrow, and rough. Carts would further be largely employed on unbridged and unmetaled tracks newly opened along hill sides and stony river beds, to meet the exigencies of military operations. The roughest handling is unavoidable. The cart must be entirely made of metal or of combinations of metals. As the merits of a design will be largely judged from its prime cost, competitors will consider how far light and strong, but possibly very exconsider how far light and strong, but possibly very expensive, metals should be used in place of commoner
material, having a special regard to the importance, in material, having a special regard to the importance, in
the matter of durability, of the cart itself not being unduly light with reference to the load it has to carry. In this connection, 656 English pounds as a maximum, and 492 pounds as a minimum, are indicated as generally suitable limits of weight for an empty cart. This remark, however, in no sense need restrict designers' ingenuity in devising a lighter cart if of sufficient strength. The cart is to have only two wheels, to be provided with a brake or drag, and to be drawn by two mules. Each designer is to state in describing his cart whether he is willing to enter into a contract for its supply, and, if so, within what time and at what cost he is prepared to furnish a single specimen cart, 12 carts, 100 carts, or from 500 to 2,000 carts free on board in London, or delivered in Calcutta, Bombay, or Allahabad. The English language, although not obligatory, as German and French may be used, will necessarily have an advantage in the competition. English measures, weights, and prices are alone admissible in the specifications, drawings, and models.

A Beautiful Plece of Mechanism.

We have recently had the pleasure of seeing a remarkable model of a locomotive made by Mr. Henry Case, of Gloversville, N. Y., watchmaker. It runs by steam upon a track ten feet in diameter.
Weight of engine, $11 / 2$ pounds, with tender, 2 pounds $21 / 2$ ounces; length of engine, $81 / 2$ inches, with tender, 12 inches; height of engine, $31 / 2$ inches; gauge of track, $13 / 8$ inches; diameter of cylinders, $5-16$ of an inch ; stroke of piston, $1 / 2$ inch. The piston heads are fitted up with sectional or ring packing; stroke of valve, $1-16$ of an inch; length of main and parallel rods, $13 / 4$ inches, connected up with straps, bolts, keys, set screws and boxes around the pins: length of links, $7-16$ of an inch ; width of links, $1 / 8$ of an inch; diameter of eccentrics, $1 / 4$ of an inch : diameter of drive wheels,
$13 / 8$ inches; diameter of truck wheels, $1 / 2$ inch; length of whistle, $7-16$ of an inch ; diameter of whistle, $5-32$ of an inch. The reverse lever in the cab is arranged with thumb latch, click and quadron. Also in the cab there is a throttle lever, deck lamp, safety valve, glass water gauge, lazy plug, steam gauge, which registers the pressure of steam. Also a gong in the cab and 60 Coates' cotton thread is employed as wicks for cab lamp and head light. These lights burn about twenty minutes. The driving wheel boxes are loose in the frame, fitted up with wedges, springs, hangers and equalizing bars. The tender will be found as perfect as the engine.
The materials used in construction of this midget locomotive are solid gold, silver, steel and brass. There are 1,815 pieces, exclusive of screws, bolts and rivets;
668 serews and bolts, 353 rivets, making in all 2,836 pieces.
At the beginning of the eighteenth century all
European armies had pontoon trains.

Decisions Relating to Patents.
REISSUE OF LETTERS.
Letters patent No. 171,425, issued December 21, 1875, o John C. Reed, for a non-conducting covering for 'boilers, steam, water, and other pipes," claimed a covering composed of layers or wrappings of paper while bed with adhesive material, and compressed while being formed into tubular sections " of a thickness of one-half inch or more," substantially as described. A reissue of the patent-No. 8,752, granted August 10, 1879-omitted from the claims the quoted words. The Circuit Court of Appeals rules that this was an enlargement of the claim, rendering the reissue invalid, and that this effect could not be avoided on the theory that a covering of less than half an inch would not constitute the "thorough non-conductor" of the specifications; for, while a less thickness might not be sufficient for boilers and steam pipes, it manifestly would be for "water and other pipes." 1.

PATENTABILITY.

It is held by the Circuit Court of Appeals that in view of the prior state of the art, as shown by the patent of February 9, 1883, to Charles F. Woerd, and patent No. 206,674, to Hoyt, there was no invention in the mere introduction of springs in the mechanism for effecting the winding and hands setting engagement, in order to avoid liability of injuring the wheels by the force of the push or pull upon the short stem arbor, as claimed in letters patent No. 10,631, granted August 4, 1885, to Duane H. Church, for an improvement in stemwinding watches; but the claims are valid as covering a new and useful combination, the peculiar usefulness consisting principally in rendering watches and cases interchangeable. 2.
The United States Circuit Court lays it down that upon the idea of making an improvement, an adaptation of an old machine to the new purpose was proposed almost simultaneously by three distinct and independent parties, by an alteration of mechanism slightly different structurally, but the same in principle in each case, is evidence that such change was obvious, and did not involve invention. 3.

EXTENT OF CLAIM.

The Circuit Court of Appeals decides that if reissued letters patent No. 11,062, issued February 25, 1890, to William R. Fox, for an improvement in miter cutting machines, could be held to show patentable invention, it constitutes one of a series of improvements, all having the same general object and purpose, and the patent must, therefore, be limited to the precise form and arrangement of parts described in the specifications, and to the purpose indicated therein. 4.
Letters patent No. 261,054, issued July 11, 1882, to C. W. Siemens, as assignee of Frederick Siemens, cover "a tank for the continuous melting of glass, having gas and air ports, and of the depth herein described, for the purpose of forming, below the upper fluid portion of the metal, a layer of metal in a semi-fluidor partially solid condition, as and for the purposes described." In his specifications the applicant states that "in the fusion of window or other white glass there is a continuous descending and ascending movement of the particles throughout the mass, as is proved by the wearing away of the bottoms of shallow tanks. The advantage to be obtained from increasing the depth of the tanks will be the formation of a layer of chilled glass at the bottom, at which point the movement of particles ceases, whereby the bottom blocks will be protected from wear, the presence of stone in the glass avoided, and a larger proportion of first quality glass be produced." The Circuit Court holds that the increased depth of the tank was only for the purposes here specified, and did not, and was not intended to, provide for the alleged discovery of the so-called "vertical finding " of the glass. 5.
Letters patent No. 200,119 were issued February 12, 1878, to Henry G. Ashton, for an improvement in safety valves, consisting substantially of an ordinary spring valve with a pop valve chamber added, in combination with a valve seat, an inclosed spring chamber, and an inclosed discharge chamber. In his specifications he stated that his combination was very important "in all cases where the steam is prevented in any way from escaping freely from the hood or casing, as is often the case." In another place he stated that he provides holes or vents in the spring chamber for the escape of such steam as may enter it, but these vents were not mentioned in the claims, which covered merely the above combination, "arranged to operate as described." The Circuit Court of Appeals rules that the patent did not cover the use of the vent holes. 6.

1. Am. Heat Insulating Co. v. A. Johnston \& Co., 52

Federal Reporter, 228.
2. Illinois Wateh Co. v. Robbins, 52 Federal Reporter, 215.
3. Bromley Bros. Carpet Co. v. Stewart, 51 Federal Reporter, 912
4. Fox v. Perkins, 52 Federal Reporter, 205.
5. Siemens v. Chambers \& McKee Glass Co., 51 Federal Reporter 902.
6. Ashton Valve Co. v. Coale Muffer and Safety Valve Co., 52 Federal Reporter, 314.

THE GREAT EXPOSITION ENTRANCES TO THE with cat-tails, flags, and other foliated designs interFISHERIES AND THE MINING BUILDINGS.
The several entrances to the Fisheries Building at The lower plate shows the south entrance to the Minthe World's Columbian Exposition are of the design as ing Building. This entrance is nearly opposite the Adshown in our upper illustration; but the ornamental ministration Building. This building is painted with work is carried out in such detail and is so elaborate as a light, mild yellowish effect. Besides the frieze there to be quite impossible of reproduction on a small scale. is but little ornamentation on the south face or other Each piece of ornamentation is complete and distinct parts of the building. Directly over the main entrancein itself, and is a study in the lower forms of life. way arch is the word "Mining" in plain Gothic letters. Fishes, frogs, eels, lizards, and other creatures con- At either side is the shield of the United States in stitute the conception of each piece of ornamentation, $\left\lvert\, \begin{array}{ll}\text { At } \\ \text { strong relief, with the words "In God we trust" en-l March } 31\end{array}\right.$

THE WORLD'S COLUMBIAN EXPOSITION-ENTRANCES TO THE FISHERIES AND THE MINING BUILDINGS.

GOLD AND SILVER REFINING FROM JEWELER8' SWEEPINGS.
The illustrations of this subject were taken from the plant of J. Tunbridge \& Son, Newark, N. J. The sweepings from manufacturing jewelry establishments, consisting of paper, dust, old crucibles, etc., are packed in barrels and carted to a refinery, where the material is first put into furnaces and burned. These furnaces are about 3 feet square and hold 3 to 4 barrels. The fire is started with wood and continues to burn until the whole material becomes caked and brittle. Each furnace is provided with a flue which opens into a dust collector, and gold and silver dust carried through these flues by the draught drops down to the bottom of the collector. After each burning the caked material is taken out and broken up into small particles and placed with the dust from the collector in a grinding machine. The revolving pan in which the material is ground is 3 feet in diameter, $3 / 4$ of an inch thick and about 8 inches in depth. The two cast iron wheels which crush the material revolve loosely on the shaft running across the center of the pan; these wheels are 2 feet in diameter, 6 inches in width and weigh 700
greatly, averaging about $\$ 5$ per barrel, although it has been known to run up as high as $\$ 500$ per barrel.

Copper on Birds, Feathers.

At a recent lecture at the Royal Institution, London, Professor A. H. Church, after some preliminary re marks upon the obscurity which still shrouds so many natural coloring matters, and upon the difficulty experienced in isolating them, proceeded to give an ac count of turacin, its sources, mode of occurrence, pro perties, and derivatives.
Turacin appears to be peculiar to the plantain eaters, or Touracos, an African family of birds, which contains twenty-five species. Of these, eighteen species, namely, all those belonging to the three genera, Turacus, Gallirex, and Musophaga, contain this pigment in from eight to eighteen of the primary and secondary feathers of each wing. It occurs also in the head feathers and crests of some of these birds. It may be extracted by the most dilute alkaline liquids, producing a magnificent crimson solution. It has a perfectly well defined absorption spectrum. When a single red
of unique interest. It is extraordinary to find it occurring in a single family of birds, and in three genera of that family only, and not-so far as has been yet ascertained-in any other allied forms, such as the cuckoos, the woodpeckers, and the hoopoes, which all belong to the same natural order.
The percentage composition of turacin is carbon 53.69 , hydrogen 4.60 , copper 7.01 , nitrogen 6.96 , and oxygen $27 \% 74$.

Complicated Relationship the Cause of Suicide. One of our medical exchanges relates the following as a fact:
William Harman, a resident of Titusville, Pa., committed suicide a few days ago from a melancholy conviction that he was his own grandfather. Here is a singular letter that he left: "I married a widow who had a grown-up daughter. My father visited our house very of ten, fell in love with my stepdaughter, and married her. So my father became my son-in-law and my stepdaughter my mother, because she was my father's wife. Sometime afterward my wife had a son; he was my father's brother-in-law and my uncle, for he was

GOLD AND SILVER REFINING FROM JEWELERS' SWEEPINGS.
pounds each. Running through the center of the pan is a vertical shaft which passes through a large gear wheel connected to the bottom of the pan. This wheel connects with the main shafting, and when it is set in motion the pan revolves, causing the large wheels to revolve and crush the material. After grinding to a powder it is run through a 40 mesh sieve, the material not passing through being put back into the grinding machine. The fine powder, with a little lead and flux added, is then put into a crucible and smelted. On breaking the crucible after cooling, the lead button taken out contains the gold and silver. The button is put into a bone-ash cupel and placed in a muffle or assaying furnace. The cupels are from $11 / 2$ inches to 2 inches in diameter and from $3 / 4$ to 1 inch in height. The muffle in which the cupel is placed is made of fire clay and is about 14 inches in length, 7 inches in width and about 6 inches in height and oval shaped on top. The muffle is completely surrounded by fire when in the furnace, and when the fire becomes of a whitish red heat, the lead melts and is sucked up by the porous bone-ash cupel, leaving the gold and silver button. The gold and silver are afterward separated by what is called parting, which consists in boiling the alloy after rolling it out to a thin plate in strong nitric acid. The value of these sweepings varies
seen; indeed, the pigments when extracted by ammonia, precipitated by an acid, and then dried, contain seven per cent of copper. One other animal pigment containing this metal is known ; this is hæmocyanin, a respiratory pigment like the hæmoglobin of blood, not a mere decorative pigment like turacin. It contains, however, a very small proportion of copper. Mention was made of turacoverdin, a green pigment occurring in the feathers of some Touracos, and apparently formed also by the exposure to air and moisture of turacin, or by boiling that substance with caustic soda. When turacin is suddenly and strongly heated, it gives off a crimson vapor which condenses into a crystallic substance containing both copper and nitrogen and yet quite distinct in its properties from turacin. Sulphuric acid dissolves turacin, turning it into a new pigment, turaco-porphyrin, which presents striking analogies with the hæmato-porphyrin similarly derived from hæmatin.
The amount of copper in the turacin of a single bird is rather less than one-fifth of a grain. As this metal is certainly present in bananas, the chief food of many species of Touraco, and isgenerally distributed, though in traces only, in the vegetable kingdom, there does not seem to be any real difficulty in accounting for its
source. This pigment, turacin, presents some features
the brother of my stepmother. My father's wife-i.e., my stepdaughter-had also a son; he was, of course, my brother...and in the meantime my grandchild, for he was the son of my daughter. My wife was my grandmother, because she was my mother's mother. I was my wife's husband and grandchild at the same time. And as the husband of a person's grandmother is his grandfather, I was my own grandfather."

That is So.

Inventors, like most other men, are willing to make money out of their inventions, but many of them go about their work in just the wrong way. Instead of devoting their time to the invention of machines or processes, or parts that are sure to be valuable to large numbers of manufacturers or laborers, they stick to the idea that fame and fortune come only to the inventor who makes a revolution. If such men will only look over history carefully they will find that the great fortunes and fame made of "revolutionizing" inventions are few and far between, while the greater number of successful inventors have made their fortunes out of things that are small, simple, and capable of general use. The small things that perfect existing large things are what should receive most attention.-The Iron Industry Gazette。

Resistance to Cold.
The death of a centenarian Italian in a Norfolk town the other day, whose checkered life-history included service in Napoleon's "Grande Armee" during the disastrous Russian campaign of 1812, recalls attention to the fact that of all that host the Neapolitan contingent, 10,000 strong, withstood the cold and privation much better than the other divisions, recruited as these mainly were from North western and Central Europe. So interesting and unexpected was this phenomenon put on record by Baron Larrey, head of Napoleon's army medical staff, that the physiologists and hygienists of the time hazarded many explanations of it-explanations revived and checked during the Crimean campaign forty years ago, when again the Italian regiments of the allied forces were found to suffer less from the Russian winter than their French or even British comrades.

The view taken of the fact was this: That the Italians, born and reared in the sunny South, retained so much "caloric" in their systems that their supply of it continued long after their fellow soldiers from less favored climes had used up theirs. In support of this the experience of other Italians was invoked who, as teachers or artists, had settled in English or Scottish educational centers, and whose power of weathering the first northern winter wasmuch greater than during the second and third, by which time, it was contended, their supply of "caloric" was exhausted and they were fain to have recourse to the creature comforts for which at first they had a positive repugnance. Australian colonists and Anglo-Indian officers, on their return to the mother country, cited their experience in a similar sense, and Claude Bernard's "Chaleur Animale" (1876) came afterward to translate those popularinductions into scientific language. No doubt during those Russian campaigns the Italian troops, new to such a climate and to such winters, felt the keenly oxygenated air as a stimulating restorative influence rather than as a depressing one, and all through the several weeks of their subjection to the novel conditions the "systemic response" to these declared itself in a heat production considerably in excess of the heat loss. The question, of course, arises, Could that "systemic response" continue at its maximum of force the second winter? Experience answered in the negative, and the testimony of Italian civilians resident in the British Isles, as well as of the Australians and Anglo-Indians aforesaid, points to the same conclusion. One element in the explanation of the phenomenon, however, must not be overlooked, and that is the greater temperance of the \mid forming a counterbalance, so that the case may be southern as compared with the northern European. readily moved up and down by the attendant to bring To the former-and this was especially marked in the the exposure opening to the proper height for the picdisastrous retreat from Moscow-the abuse, or even ture to be taken. Below the exposure opening, in the sparing use, of alcohol was all but unknown. This the front of the case, is a delivery tray on which the abstinence put the Italian at a mighty advantage over finished pictures are thrown out, and at one of the the northern soldiery, who, as Sir Walter Scott has upper corners is a slot for the reception of the coin, placed on vivid record, flew to cognac or vodki whenever they could get at it, and considered themselves happy if they could purchase "some hours of insensibility" by intoxicating liquors.

Then, again, Italians in general, and Neapolitans in particular, inured to the scantiest meals of macaroni and salad, felt the starvation diet of the forced marches much less than their French or Teutonic comrades. The same must also be said in the matter of clothing-the Neapolitans, even in abnormally cold winters, contenting themselves with an artificial warmth in raiment and fuel much below that to which the northern races are accus-tomed.-Lancet.

Breaking Up Their old Ships.
The opinion, says the lronmonger, is gaining ground in the North of England that, with one million tons of shipping lying idle, much of which will never be used again because it is obsolete and cannot be worked successfully against the economical modern type of steamer, it is the duty of owners to break it up and put the old metal in the market. Much of this sort of work has already been done on the Clyde, the Mersey, at Belfast, and at Barrow, and it is probable that during 1893 a further number of old ships will share this fate. Many of the agents who have ships on sale strongly recommend this course. It has the merit of common sense in it, as, if the ships cannot in future find remunerative employment, they may as well be converted into money as soon as possible, and clear away a vast tonnage which is standing in the way of further legitimate developments in sailing ships and steamships of modern type.

AOTOMATIC PHOTOGRAPHY.
Of all the many uses to which the automatic selling machine has been put, that of taking photographs seems the most remarkable. And yet this is what is being done now in several public places in New York and
tional nickel, a stamped metal case for the finished picture.
The coin placed in the slot is carried by a chute to a

PHOTOGRAPH . MACHINE.-Fig
ed. The manufacture of these machines is now being carried on in a practical way by Mr. William F. Freeman, of No. 85 Beaver Street, New York City. The mechanism of the apparatus, as shown in the illustration, is inclosed in a case suspended by a cord in an
open frame, a weight on the other end of the cord

PECIMENS OF THE PHOTOGRAPHS

 means of a nickel-in-the-slot photo-graphmachinerecently patented by Mr. Pierre V. W. Welsh, of New York City. The operation, so far as relates to the exposure, development and fixing of the picture, is entirely automatic, and the little picture which the machine throws out, after a momentary washing, appears to be a marked success over previous efforts in this direction, as judged by the excellence of the work and the rapidity with which it is effect-

 soda, the receiver with its plate being afterward raised to horizontal position, as shown in dotted lines, when a pusher arm throws the plate, now a finished picture, forward upon the delivery tray, M.
The time required to take a picture is 45 seconds and the time of exposure is six or seven seconds, the lifting of the shutter and its dropping being plainly perceptible to the sitter. In this short period the plate is taken from the plate holder and held in position before the lens tube, then dropped into a developing tank, where the picture is brought out by the application of the developer, from thence being passed to a fixing bath and finally pushed out upon a receiving tray, where an attendant gives it a momentary washing. The accompanying half-tone pic tures are photographic reproductions of photographs made on the machine.
The construction of the machine is such that all the movements are simple, easy and positive, and there is little liability of the parts getting out of order. The plate magazine will hold 240 plates, and when emptied it may be refilled in three minutes.

Important Decision in England.-Ex-Congress man John S. Wise and O. T. Crosby went to London some weeks ago as experts in the suit of the National Telephone Company of Great Britain vs. the Leeds Tramway Company. The question at issue was whether the tramway company, whose wires worked injury to the wires of the telephone company, should not be restrained.

Electricity says: The English coun sel had collected a mass of evidence showing that the tramway wires did not seriously injure those of the telephone company. Mr. Wise advised that all this testimony was irrelevant, and that the proper position to take was to admit the serious injury, but to claim equal rights to the earth with the telephone company. His advice was taken, and the court, Mr. Justice Kekewick, sustained Mr. Wise's contention.

Charles H. Haswell.
The editor of the Engineer, speaking of him, says with truthfulness there is no more striking figure in any profession to-day than that of Charles H. Haswell, who at the age of $84+$ is still actively at work daily. Notwithstanding his years he is as erect as an athlete and apparently as tireless, he goes about, up and down long flights of stairs to offices where there are no elevators, transacts even trivial matters, and has, apparently, discovered the fountain Ponce de 'Leon sought for unavailingly. We think it would be hard to find anywhere in the world

WELSH'S NICKEL-IN-THE-SLOT PHOTOGRAPH MACHINE

 end slides vertically the shutter, D, as shown in the detail view, Fig. 2. A rack on the shutter engages a gear wheelconnected with a cable extending backward and downward to a connection with the main driving shaft, a cam on which causes the cord to be pulled to raise the shutter as the process commences with the dropping in of the coin, the shutter dropping back to place of its own weight after the exposure. At the nner end of the lens tube is a swinging fly, C, adapted to swing up in vertical position, the fly swinging in the lower end of a chute, B, through which drop the plates from the holder, A. Both the fly and the platedelivering devices are operated from the cam shaft, the plates being of the usual kind employed in taking tintypes, and each revolution of the shaft deposits a plate in the chute. Immediately below the fly is the developing bath tank, E, into which the plate is mechanically dropped after exposure, the tank being cut off diagonally at its lower end by a valve, F. The developing liquid is carried in a tank, G, in the upper portion of the machine, a tube leading therefrom to a bulb, H, which holds a charge for the bath tank, the liquid flowing through the funnel and tube, J. The bulb is charged and its contents delivered to the bath tank with each revolution of the driving shaft, the exhaust liquid being in each case conducted to a waste tank. When the plate drops from the bath tank after being developed, it passes into a grooved receiver, K, wich extends down into a fixing bath of hyposulphite sional man who is doing the work that
motion a clockwork mechanism, which drives a main shaft extending horizontally through the back part of the machine, this shaft carrying cams which effect the various operations of the several parts of the machine. The lens tube is of the ordinary style, and at its front Mr. Haswell does constantly, both physical and mental. We should be proud of the career of this veteran American engineer and honor him while he is still in American
the flesh.
recently patented inventions.

Engineering.

Boiler.-Harry A. R. Dietrich, South Bethlehem, Pa. This is a boiler which may be used for making steam or for heating purposes. It is constructed
of a series of sections capable of being connected and disof a series of sections capable of being connected and dis-
connected, each section complete in itself, the sections being hollowed to form water chambers, and having depressions in their side faces forming combustion chambers, communiciting with the fire pot, located between inner ribs around the sides of the sections. The ribs are and when the boilier sections are placed in upright posi-
tion, a cement or packing is used between the abutting tion, a ce
sections.

Electrical.

Armature for Dynamos and Mo-Toss.-George Hoare, Newark, N. J. This armature core is constructed in the usual manner, with the exception of ture, extending over the face of the core, and held in place by the winding, the wire being carried around the
armature in a continuous piece, while the number of armature in a continuous piece, while the number of commutator bars is reduced to a minimum by diminish-
ing the number of sections of the winding The various ing the number of sections of the winding. The various
portions of the winding are arranged so as to produce a portions of the winding are arranged so as to produce a
perfect electrical balance, avoiding sparking at the perfect electrical balance, avoiding sparkking at the
brushes, while the winding insures perfect mechanical balance and consequent smoothness in running.
Electric Railway.-Michelangelo Cattori, Rome, Italy. This invention relates to improve-
ments in that class of railways in which a conductor is divided into sections, and a series of circuit breakers are arranged, to connect the several sections, and operated by moving contacts carried by a car. The system may be used overhead as well as in a conduit if desired, the improvement relating principally to the circuit breakers and
the means of operating them, the operating contacts bethe means of operating them, the operating contacts being made to w
out sparking.

Vegetation Exterminator.-Albert A. Sharp, Memphis, Tenn. This is an apparatus, in cluding a dynamo and engine, or batteries, to be placed
on a car or other vehicle, to cause a strong current of on a car or other vehicle, to cause a strong current of
electricity to be sent through all the adjacent vegetation electricity to be sent through all the adjacent vegetation this way to kill the rank vegetation which grows along railroad bedsand highways in tropical countries. The current is applied to the vegetation by means of a brush, the same principle being
grasses of a cultivated field.

Stave Trimmer and Jointer.William J. Wright, Cooperstown, Pa. This invention proper width and then automatically fed into the ma chine. The billet in its course through the machine automatically controls and sets the bevel-cutting and the bilge-forming devices, which are operated to cut the bevel and form the bilge in exact proportionsrelative to the different widths of the billet. The machine is of simple and
durable construction, of great capacity, positive and durable construction, of great capacity, positive
effective in its operation, and easy to manipulate.
Brick or Tile Cutter.-James Cornelius and Edmund R. Collins, Brooklyn, N. Y This improvement covers more especially the arrange ment and operation of the wires for cutting a block of clay into bricks or tiles, there being combined with the
cutting table a series of cntters held to reciprocate in the direction of their length and arranged at an angle to the clay body, to be forced through and sever the clay. The clay body, to be forced through and sever the clay. The
cutting wires are generally held stationary and the clay is forced through them, but by having the wires move, the
clay may be more smoothly cut, making a nicer quality clay may be more
Rotary Stock Cutter.-Isaiah Handee, Burke, Texas. A disk having a fiange is formed on a hub adapted to be secured to a spindle, a set of cutmiddledisk on the first one contains a set of alternately arranged cutters, and a thind disk on the middle one also has sets of cutters. The several cutters are arranged in
seats arranged in a circle, the cutters for one section or disk being readily interchanged to permit of using the cutters of one head on that of another head, the cutters being used for right or left hand heads, and being espe cially adapted for use as matcher heads, ship lap heads, and ogee bats.
Tire Tightener.-Michael J. Fitzerald, Aravaipa, Arizona Ter. This tightener consist toggle bars bearing endwise on the plates and also on a central screw, with a nut for the screw, adapted to press on the bar ends and spread the plates and fellies, thereby
tightening the fellies on the tire at any time when the tire becomes loose. The improvement obviates the necessity of heating the tire to affix it in place by subsequent cool ing and contraction, and also permits a removal and re placement of the tire, or the substitution
Pump.-Elijah R. Hill, New Albany Miss. This is an improved double-acting pump, ver simple in construction and effective in operation, and ar
ranged to cause a steady fiow of water while the pump is in use. Its main piston is made hollow, with a valv seat at its bottom and fnlet openings at its upper reduce end, while a piston valve sliding in the hollow piston has
a valve adapted to be seated on the seat in the main piston, the piston valve being also provided with a pisto adapted to close the inlet openings in the reduced end o
the main piston.

Machine for Cleaning Currants ETC.-William Vickers, Jersey City, N. J. Combined
with a revolving screen cylinder and a reversely revolving interior spiral agitator or brush, is a shaking prepara tory cleaning sieve at the feed end of the cylinder, and a finishing, shaking, and cleaning sieve at its rear or de-
livery end. The machine is also adapted for cleaning
extra gummy, a perforated hot water or steam pipe may
be arranged to pass water into the currants in th cylinder.
Washer Cutter and Carriage TooL.--Thomas Thompson, New London, Wis. This is an implement which may be conveniently carried in a position when the adjusted to holdthe shafts in a raised vided with a handy form of wrench to apply to the axle nuts, and which has also a washer cutter at one end for cutting washers for the axles and other
Cable Sup
Cable Support.-Gustave P. Wern, Brooklyn, N. Y. This is a support for cables used fo propelling cars of carrying devices for moving coal to
furnaces or gas houses, etc., the support being arranged furnaces or gas houses, etc., the support being arrange either direction, returning automatically to its norma cable-supporting position as soon as the car has passed The arm supporting the cable swings on a fixed pivot, and has a hub with inclined surfaces adapted to travel on like surfaces on a sleeve tarning with the arm in one
direction, but held in a fixed position when the arm moves, in an opposite direction by a collar secured on the

Agricultural.

Harrow.-Wilber W. Hinkle, Hood's Mills, and Ira H. Gaither, Cockeysville, Md. This ha row consists of a metal plate having slots through which protrude curved teeth attached to rock shafts adapted to
raise and lower the teeth. The implement is capab'e of raise and lower tlie teeth. The implement is capab.e of
variety of accurate adjustments, the teeth being self to serve the purposes of both a cultivator and clod

Miscellaneous.

Photographic Registering Device. -Paul Tournachon, Paris, France. The rotatable cylinder over which the film passes is arranged in a suitable
casing in connection with the other parts of the appara tus, by means of which a ratchet wheel is tnrned the distance of one tooth every time the registering device actuated, the click of the pawl as it passes the toot giving notice that an impression has been made, while the pawl also serves to prevent the registering device from turning back. An alarm is sounded every time an impression is made, and the number of impressions made can at any time be
dow in the casing.
Bridle Bit.-James E. Driscoll, St paul, Minn. The cross bar of this bit has threaded ope ings in its ends, and the cheek pieces have sleeves sliding
toward and from each other on the ends of the bar, on toward and from each other on the ends of the bar, on
which they are held against rotation. By means of its which they are held against rotation. By means of
adjustable parts the bit may be made to fit the mouth of way that the can, and the the mouth of the animal fill up and clog with dirt.
Lamp Lighter.-Richard H. Jolly, Bughter for locomotive bead lighecially to an improve device that shall light the lamp without raising the chim-
dimple ney, one that can be operated while the locomotive is moving rapidly, and one which can be operated from the cab when desired. In a tube is held a spring-pressed plunger having a socket to receive the stick of a match,
there being a friction ring in the forward end of the tube there being a friction ring in the forward end of the tube
over which the match head rubs when the plunger is wer which the match head rubs when the plunger in that the lighted match will be projected close to the wick.
Cryptographic Instrument.-Richd Harte, Croydon, England. This is an instrument for translating communications into and out of cipher in accordance with an adopted key. It is constructed of parstrips working in grooves alternating with the fixed strips, normal and key alphabets being carried on the fixed strips, and a double index on each alternate sliding strip, with a double cipher alphabet on the remaining sliding
strips, and an index on each of the cipher alphabet with a d
strips,
strips.

Clothes Line Device.-James J. Kinman, Petersburg, Ind. This invention provides de-
vices to facilitate hanging out and taking in clothes from vices to facilitate hanging out and taking in clothes from
a fixed standpoint which may be under cover, the clothes a fixed standpoint which may be under cover, the clothes
line itself being afterward reeled up or taken in from the line itself being afterward reeled up or taken in from the
same standpoint. Pulleys are mounted on terminal posts, and the inner or operating pulley has an attached or connected drum with a hook or fastenin
Water Proof Suit.-Ottee Van Oosrum, Portland, Oregon. Thisis a close-fitting suit made of mackintosh or other suitable water proof material,
the coat having fastening flaps around the neck, the sleeveshaving elastic bands atthe wrists, while the boots are hermetically attached to the trousers.
Vehicle Axle.-John D.Wilson, Belle Plaine, Iowa. The wooden body of this axle has a central
longitudinal bore in which is held a metal tube through which extends a rod, whereby the wooden axle is strengthened against strain brought upon it in any direction. The rod has threaded ends on which are nuts
bearing against the outer ends of theskeins on the spindle portion of each axle end, and the improvement is deigned to be a great advance over wooden axles strength

Child's Carriage.-George B. Best Englewood, N. J. This is a device which may be readily attached to the running gear of any child's carriage, the
forward axle being pivotally connected with the side bars, a lever pivotally connected with the handle bar and ormally pressed upon by a spring, while chains or axle. The device facilitates the easy steering of the carriage, and when the device is release ${ }^{2}$, it automatically returns the wheels to normal position.
Thread Case.-Samuel H. Boone,
which will hold a great many spools of thread, holding it so that the thread cannot slide in any way, and that the
spools may be very easily removed when fwanted. The spools may be very easily removed when Iwanted. The
thread may be easily arrainged in assorted sizes and colors that it may be displayed to great advantage. The case is evoluble, and thus is easily turned to bring any desi color into the right position
Fan.-James H. Irving, Jersey City, . J. This is a hand fan in which a shaft is journaled in coss arms a spring and other features wherying pulling a cord, at the end of which is a ring, the fan may e rotated back and forth around the handle end, th ring being pulled by one o° the fingers of the hand carry ing the handle.
Loading Attachment for Carts.ustav Ch. Haag, New York City. This loader consist of a wheeled frame supporting an elevator and conveyor upporting wheels of the frame and the elevator while there is a spring-controlled brush capable of limited vertical movement near the bottom of the elevator The attachment may be readily applied to any cart, being perated entirely independent of the cart, from which it
Disinfecting Device.-John Pickerg, New York City. This is a cheap and simple device in which disinfecting material may be placed, to locate in tank used for fushing purposes, a sufficient quantity of of the tank to thoroughly disinfect the parts when the of the tank to tho
water is applied.

Designs.

Medal.-Joseph A. Yount, Laclede, Mo. This medal is thirteen-sided, corresponding to th umber of original States of the United States, and ha of the Chicago Exposition buildings.
Spoon.-Charles Osborne, New York City. The edges of the shank and of the flattened por ib-like figures broken by leaf-like figures, and at th rib-like figures, broken by leaf-like igures, and at the
top of the handle is a fiower-like figure in the shape of an open fan.
Note.-Copies of any of the above patents will be end name of the patentee, title of invention, and date of this paper.

NEW BOOKS AND PUBLICATIONS

GEOLOGICAL SURVEY OF MISSOURI. Vol. II. A report on the iron ores o Missouri, from field work prosecuted
during the years 1891 and 1892, with 62 illustrations and one map, By rank L. Nason, assistant geologist.
Published by the Geological Survey.
Jefferson City. 1892. Pp. xxvi, 366. Jefferson City. 1892. Pp. Xxvi, 366.
Vol. III. A report on the mineral waters of Missouri. By Paul Schweitof A. E. Woodward, assistant geolo gist, from field and laboratory work
conducted during the years 1890 to conducted during the years 1890 to
1892. With 45 illustrations and one map. Published by the Geological xxiv, 256
We note the receipt of the second and third volumes of Professor Winslow's report on the geology of Missouri The third volume is devoted to the mineral waters, and
with its numerous illustrations and analyses may be onsidered one of special value. The author, Dr_{r} School of Mines of Columbia College, speaks of the work as havingibeen largely a labor of love. Those who knew him of old will cheerfully give full belief to this. The photogravures of the different springs are exceedingly
picturesque, and the whole subject is linked together b picturesque, and the whole subject is linked together by
exceedingly clear and concise chapters on the origin of exceedingly clear and concise chapters on the origin of
mineral waters, their analysis and composition, thei DIassification and the therapeutics of the subject. MeASUREMENTS. By Silas W. Hol-
man, S.B. New York : John Wiley \& Sons. 1892. Pp. vii, 176. Price \$2. Electricity has been defined as a science of measure-
ment. This definition may now be extended to all phyment. This definition may now be extended to all phy-
sics. Just as chemistry is a science of weighing, so physics has now become a science in which the exact de termination of dimensions is all-important. In the pres
ent work, we find the measurements treated scientifically The personal equation, the law of deviations, direct an indirect measurements, and all the important features of modern practice are fully developed. It will be seen that the work covers a field of importance increasing daily,
and the book should be in the hands of all physical workers.
Drawing and Engraving: A Brief Exposition of Technical PrinciPLES AND Practice. By Philip
Gilbert Hamerton. London and Edinburgh: Adam and Charles Black. New York: Macmillan
1892. Pp. xvii, 172.
Mr. Hamerton has made up this book from matter co tributed to the 9th edion of the "Encyclopædia Brita nica "on the subjects of drawing and engraving, pre author has.revised it and added a little to it. The work is produced as a veritable edition de luxe. A number plates, in the present edition on drawing paper, illustratand on the thin paper guard leaf opposite each plate is given the description of the subject matter, in red letters. The text, on very large and heavy paper, is an elegant
example of the printer's art. The work treats not only example of the printer's art. The work treats not only
of the art aspect of the subject, but'also of the mechani-
done, and giving samples of unfinished engravings to
llustrate the processes. The characteristic binding in llustrate the processes. The characteristic binding in
full canvas is in accord with the beautiful descrip. tion of the work proper. We have said nothing about the text. Hamerton is well known as one of our most charming art writers, and any work of his requires no criticism in these columns. The introductory chapter is
of peculiar interest drawing, especially, using the ancient Egyptian and Japanese art for his examples. The two examples of Japanese figure drawing, one of angular type, the other
in gentle curves, are of special interest, as exemplifying in gentle curves, are of special interest, as exemplifying the analysis to which the author has subjected the sub-

Mineral Springs and Health Replete chemical analysis of every implete chemical analysis of every imillustrated. By Winslow Anderson. pany. 1892. Pp. xxx, 384 .
A discussion of the mineral springs of California, and prize essay to which the annual prize of the Society of prize essay to which the annual prize of the Society of
California was awarded on April 20, 1889. The work contains very numerous analyses, is quite profusely illustrated, and of course takes the form of a panegyric of the great State. There are several indexes, as well as a table
of contents and list of cuts, which add materially to its great State
of conte
value.

Atmospheric Resistance and its ReLATION TO THE SPEED OF RAILWAY
Trains. By Frederick U. Adams.
Chicago: Rand, McNally \& Co. 1892.
Pp. 89.
The author of this work is a great believer in the reduction of air friction in trains. His method of arriving
a a result involves a system of vestibuling trains and of at a result involves a system of vestibuling trains and of
shielding the moving parta, so as to offer a smooth surshielding the moving parts, so as to offer a smooth sur-
face to the air. His illustrations of the present system, with the draftscreated by the passage of the air all shown, s really a wonderfully graphic presentation of what canot but be considered defects in the existing system of things. He believes that he can so reduce ressistance as to greatly increase the speed of railroad trains, and he oldsthat atmospheric resistance, and nothing but atmospheric resistance, fixes the limit of speed. It is impossible to avoid being impressed by the autho
and his presentation of them is quite graphic.
Any of the above books may be purchased through this office. Send for new book catalogue just pub-
lished. MUNN \& Co., 361 Broadway, New York

SCIENTIFIC AMERICAN

BUILDING EDITION.

MARCH, 1893, NUMBER.-(No. 89.)

TABLE OF CONTENTS

Elegant plate in colors, showing an attractive dwelling at Springfield, Mass. Floor plans and perspec-
tive elevations. Cost $\$ 9,750$ complete. E. L. tive elevations. Cost $\$ 9,750$ comple
Chesebro, architect, Springfield, Mass.
2. Plate in colors showing the residence of the Hon. John J. Phelan, at Bridgeport, Conn. Two per-
spective views and floor plans. Mr. A. H. Beers spective views and floor plans. Mr. A. H. Beers,
architect, Bridgeport, Conn. An excellent design. Cost $\$ 6,000$ complete.
. A dwelling at Springfield, Mass., erected at a cost of plans. Messrs. Granger \& Morse, architects, Spring field, Mass. A model design.
4. A cottage erected near Brighton, Mass., at a cost of
$\$ 2,800$. Floor plans, perspective view, etc. A. W. Pease, architect.
. Engravings and fioor plans of a residence at Greenwich, Conn. A beautiful design in the Colonial
style of architecture. Mr. W. S. Knowles, archistyle of architect
tect, New York.
dwelling recently erected at Brookline Hills, Mass., at a cost of $\$ 5,300$ complete. A picturesque de-
sign. Perspective elevation and fioor plans. Messrs. Shepley, Ruton \& Coo idge, architects, Boston. sketch of a tasteful design for a three-family cottage,
to cost about $\$ 4,500$.
8. Plans and elvations of an English cottage of quaint
and pleasing design. and pleasing design.
9. View of the Fifth Avenue Theater, New York. A splendid example of modern architecture in the
style of the Italian Renaissance. Together with a portrait and biographical sketch of Francis H. Kimportrait and biographical sketch
ball, architect, New York City.
10. Misscellaneous contents: Paving estimates.-World's Fair items.--Painting the World's Fair buildings.Arawinginstruments for colieges, etc., illustrated.ed steel spring hinge, illustrated.-Vegetable growth in water mains.-American machinery in London. lustrated.-New tin plate plant.-Animproved furnace, illustrated.-Cincinnati woodworking ma-chinery.--An improved door hanger, illustrated.-
A big heater company.
The Scientific American Architects and Builders dition is issued monthly. $\$ 2.50$ a year. Single copies 5 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages; forming, practically, a large and splendid Magazine of ArchitecTrRE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting
examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenicnce of this work have won for it the Largest Circolation oll any Architectural Publication in the world. Sold by

MUNN \& CO., Publishers,
361 Broadway, New York

2Business and Personal. The crarpe for Insert ion under this head is one Dolar a line
for each insertion a about eioht words to a linea Adver.

Acme engine, 1 to 5 H. P. See adr. next tssue.
"U. S." metal polish. Indianapolis. Samples free.
Improved iron planers. W.A. Wilson, Rochester, N.Y.
provediron planers. W.A. Willon, Rochester,
Univerasal and Plain Milling Machines.
Pedrick $\&$ Ayer, Philadelphia Pa
Pedrick $\&$ A yer, Philadelphia, Pa

Handle t. port, N. \mathbf{Y}.

 Steam Hammers, 1 Improved Hydraulic Jacks, andT Screw machines, milling machines, and drill presses.
The Garvin Mach. Co., Laikht and Canal Sts., New York. Centrifugal Pumps. Capacity, 100 to 40,000 gals. per
minute. All sizes in stock. Irvin Van Wie, Syracuse, N.Y. Portable engines and boilers. Yacht engines and
boilera. B. W. Prayne $\&$ Sons, Eimira, N. Y., and 41 Dey
Stres street, New York.
To Det-A suite of desirable offces, adjacent to the
Scelentific American offces, to let at moderate terms. Sclentific American offces, to let at moderate
Apply to Munn $\&$ Co., 301 Broadway, New York. Hydrocarbon Burner (Mayer's patent) for burning
crude petroleum under low pressure. see adv. paze

 pany at par, if taken at once. Full particulars by maill
$\mathrm{L} y$ man, Paine $\&$ Co.. 1013
Tacoma Building, Chicago, III. For the original Bogardus Universal Eccentric Mill,
Foot and Power Presses, Drills, Shears, etc., address

 Canning machinery outtats complete, oil burners for soldering, air pumps, can wipers, can testers, labeling
machines. Presses and dies. Burt Mfg. Co., Rochester, m. Y .

Competent persons who desire agencies for a new
popplar book. of read sale, with handiome pront. may
apply to Munn $\&$ Co., Scientifc American offce, 361 apply to Munn \& Co.,
Broadmay, New York.
IE Send for new and complete catalogue of scientific and ot her Books for sale by Mu Mon
New York. Free on anplication.

Milesumpris

HINTS TO CORRESPONDENTS.

(4719) H. H. B. asks: What is it that makes telegraph wires hum on a cold stornny day when there is no apparent wind blowing? A. There is wind
blowing arross the wires somewhere in the neighorhoo
or the striking of the wires by the rain makes the humor the
ming.
(4720) W. H. T. writes : Please give rule for setting a carriage axle, and what receipt can you give
for heatingiron through in the shortest time for heating iron through in the shortest timee A. The
bottom of the taper axle should be horizontal or parallel
to to a straight line through both axles. For very light car-
rages
theme prefer to have the underside droopa
little, so that the wheels tend to ror toward the ehooulder. Iron We have no receipt but a forge fire for heating iron in the shortest time.
 pine floors be polished to look like hardwood, so that
rugs may be used instead of carpets, and how? A. Soft pugs eif freshis laid makes a goods surface for polishing,
pind according to the selection of the wood by its grain
and may be made quite ornamental. A floor that has been osed should be made perfectly clean, and if possible
planed. Then a coat bof boiled linseed oill well rubed
into nto the floor and dried, gives a good surface for wax pol Ishing, which may be made by dissolving a half pound of
beeswax in a quart of turpentine. With this rub the beeswax in a quart of turpentine. With this rub the
floor to a polish with a hard brush or a coarse fannel rubber.
(4722) M. B. asks where he can get
(4 . aluminum steel or nickel steel, also otate if it is adapted
or tune (musical instruments). Aluminum and for tune (musical instrumentst. A. Aluminumu and
nickel steel are not as yet regularly on sale. Their manufacture so far has been experimentall, and with stee works supplingng steel for ordnance and armor plate. A
few trials have been made for tools, bnt manufacturers few trials have been made for tools, hnt manufacturers
do not see enough in it it induce its introduction to the market as tool steel. Probably it will make good music
wire, as it is asid to be slightly harder than carbon steel
(4723) H. H. says : I would like to ask how large a boat an engine with a cylinder $2 \not 2 /$ by 3
inches stroke would move at the rate of about 8 or 9 mill s ger hour. I would dike to make the boat of shee metal if it will not be too heary. I expect to carry about
got sight for the sides of the boas. if it were would bre too
Please state what would be best for a boiler for such a boat. Woold 13 sheet copper be heary enough if I mak
copper tubes brazed into it? Would you recommend this
form of boiler for the purpose? A. Yourengine is suitable for a 16 foot boat with a 15 inch propeller, with which yon may make 7 miles per hour. \cdot You will find difflculty in making good lines for your boat with metal, unless you
have the proper dies to press the metal into form for a boat. No. 18 will be thick enough. Your boiler shoùld have 24 square feet of fire surface. You caunot make a
porcupine boiler by brazing in the tubes. It makes the metal goft and the joints will not be reliable. See screvtiric American Supplement,
description of small pipe boilers.
(4724) J. J. G. writes: If I fill a tub say half full of water and place it on the scales, and then put into the tub a fish weighing say twenty pounds, will
the tub, fish, and water weigh any more than the tub and water did before the fifh was put into it I mean
to take a live fish. A. The tub and water will weigh as and water did before the fish was put into it? Tmean
to take a live fish. A. The tub and water will weigh as
much m ore as the weght of the fish, whether it be alive much more as the weght of the fish, whether it be alive
or dea . Anything that has weight, if placed in the water, adds its own weight to the water. 2 Will a log o boat drifting in tide water go faster than the water that
propels it ? A. The boat or log may drift slighty faster propels it \& A. The boot or log may drift slilightly faster
tran the surface current, for running water does not
move with the same velocity throughout it depth moves faster just belo velocity throughout its depth, but and at the botom. With anything floating with some depth, the faster undercurrent will propel it faster than
the surface current. 3 . Will you please tell me how to teph, surface current. 3. Will you please tell me how to
thraze iron with brass or copper? A. For brazing iron, braze iron with brass or copper? A. For brazing iron,
cut small strips of sheet copper or brase, make the surfaces to be brazed clean, and rub the surfaces with borax or wet them with borax ground to paste in water. Wire
the parts together, apply a strip of the copper or brass to the edge of the joint on the upper side, and apply borax
to the solder. Heat slowly to the melting point of the to the solder. Heat slowly to the melting point of the
copper or brass, which will draw entirely through the joint.
(4725) C. A. R. asks: 1. How many A. The standard Edison lamp is 110 yolts.
2. Can you Aell me of somecheap book that tells how to make storage battery that will run a 16 candle power lampp A.
Any storage batery will run a 16 candle power lamp, Any storage battery will run a a 16 candee power lamp,
provided you have enough cells to produce the required provided you have enough cells to produce the required
electromotive force. It will require 26 cells to run one or two 50 volt 16 candle power lamp. You willind such a storage battery described in "Experimental Science,",
also in the SuPrimexmr. . Can you run a a lamp with bichromate of potash for any length of time, and how many cells would it take \& A. You can run a lamp by bichromate batteries, but it is an expensive and trouble
some method of making light. 4. Can an electroplat. some method of making ingh. 4. Can an electropiat.
ing dynamo of used foo running a lamp with uccess ?
A. The electromotive force of an electroplating dynamo A. The electromotive force of an electroplating dynamo
is too low for electric lighting purposes. 5 . Can you tell me of any cheap book that tells how to make and cast carbon plates ? A. You will ind a description of a,
method of making carbons in "Experimental Science."
(4726) W. O. S. asks how the windows of a store can be e evp clear from steam in cold weather.
A. In order to have clear class in show wmdows, the air behind the glass must be of about the same temperature as the outdoor air. The windows may be made com-
pletely clear by a second window to completely inclose pletely clear ba secona
the show window back of the goods. The inclosure to have small ventilators at botiom and top, which can
closed when necessary to prevent the entrance of dust.
(4727) T. B. P. writes: One night dur ng the recent cold spell, on going to my window, Inoticed Nearly opposite the house is an arc lamp. When I 1
truned my heas in its direction I was astonished to see truned my head in its direction, I was astopished to osee
three separate and distinct rainbowe, seemingly clustered around the light as a center. Each bow was clearly de. ned.and there was a clear space between each one. I hav- never seen or heard of a rainbow of this description,
and had never supposed that sach a formation was posand had never supposed that schech a formation was pog-
sible on a plane surface. A. If the moisture was frozen, the phenomenon to which you refer was taat of difraction. The colorsare caused by the pasage of thig over
the fine edges of the crystals. You will find this matter
described in the described in the Scirntific Amp
also in "Experimental Science."
(4728) I. H. L. asks how steel is blued. hech as watch and clock hands, rife barrels, etc. A. ing the surface and heating upon a hot iron plate and coling in water as soon as the proper color is obtained.
For the buing of rife barrels see Scirvsाiroo Aneat For the buing of rifie barrels see Scirntirio Aminri-
(4729) J. M. R.-The object you describe is a fungus known to science as Corynites Rave-
nolii. It belongs to an order which includes several genera, the species of which are popularly called "stink
(4730) H. J. D. asks if the electric motor in SUPPLEMENT, No. 641 , can be used as a dynamo.
How fast should it be driven 9 If so, what power of an engme would be required and what electromotive force, and how many amperes of current would it glve ρ A.
The electric motor to which you refer can be nsed as a The electric motor to which you refer can be esed as a
dynamo by substituting a cast iron field magnet for the wrought iron one, but we would advise you to follow me other forn of machine for a dynamo. No calcula. or current the motor would yield if used as a dynamo.
(4731) S. K. G. asks : What causes the o-calied "burning out" of an incandescent lamp? Is it
always the result of the burning and breaking of the filaways the result of the burning and breaking of the filament, caused by its ine limit being reachea, or is it
sometimes caused otherwise? Also, does this burning out destroy or partly destroy the vacuum in the glass
bulb, or does it remain as perfect as ever 9 A. The burnng out of incandescent lamps ig generally due to the asinintegration of the carbon by the current. It is, how-
ever, sometimes caused by a leak in the bulb and the ever, sometimes caused by a leak in the bulb and the
bramg out or actual consumption of the carbon due to the presence of oxygen. The failure of the
(4732) J. E. Q. asks : 1. What is the

On arc light carbons, withoot injury to the same ? nitric acid. After the copper is dissolved wash the cabons thoroughly with water. 2 How is insulated cop per wire wound on curved field magnets, the outside
being so much greater than the inside curve? A. The of wire ts allowed to spread on the outside
(473) J. B. D. asks: How can I con styprct an inexpensive telephone for communication be ween a couple of rooms 9 . A. Over two short tin tabes $11 / 2$ inches in diameter stretch moist diapprayms of
parchment and secure them by means of fine copper wire or strong thread. Pierce the diappragms at the senter, connect them
perforations and k k This will form an effective acoustic telephone.
(4734) Y. M. C. A.-Hard-drawn iron Tre has more reiistance than soft iron wire. Taking be a little more than 6 , and of German silver 13. We bean furnish copies of recent patents at 25 cents each. To become an electrical enginer, you should attend one of
the electrical schools, or the electrical dep antment of one the electrical schiools, or the electrical department of one of the colleges. A mixture of litharge and boiled oil
makes a cement in which there is no moisture. Oxide of zinc mixed with a solution of chloride of zinc makes a (4735) N. L. asks: What solution i best to preserve wood from warping ordrawing when es posed to raingand weather 9 A. Nothing better than
horough oiling with linseed oil to keep wood from warp ing.
(4736) F. J. O. asks: Which consumes themost power-a bevel gear or a mule stand ? They are
used to transmit power from one shaft to another acting at right angles. A. "Mule "oses more power than goo and creepare is the canse of hos of powe
(4737) J. R. W. asks how to make soft solder take to chilled castiron. And also how to soften chilled cast iron. A. Use pure tin, of 2 parts tin, 1 part
lead for solder; flux with muriate of zinc and ammonium lead for solder;, fux with muriate of zinc and ammonium fracture, with a brass wire brush, so as to give a cooting of brass. The soldering is apt to be very unsatisfactory. (Tinner's soldering acid.) Soften chilled iron by long an-
(4738) F L. S. says. We have a set bay scales and sometimes we have to weigh wagons that are too long to go on them. Can we get the correct
weight by weighing one end at a time and then adding the two weights ? A. Weighing a wagon as you propose will be.approxinately correct.
(4739) A. R. P. asks: Where can I learn something about the formation of dust balls in ol vioins ? A young friend of mine has found such a bal in his vioin, and tbinks he has heard they are not un scientific book or treatise ? A. We have no literature re ferring to dust balls in violins. One of the oldest dealer
in violing in New York thinks it a mere accident from in violins in New York thinks it a mere accident from
allowing the violin to be exposed to dust, and the vibra tion gathering the dust that accumulates on the inside in time forming a ball.
(4740) D. C. writes: We are located in the vast gently undulating prairie, and have fine spring
water, generally found in the sllghtdepressions. Often we need to locate the origin of these springs, but find it next toimpossible. Will you kindly instructus how to, withou extensive digging? Except for these gentle undulations, we must go one or several miles from the spring to find eepression in the land where springs occur are only th seepage points from the local surface water of the im mediate neighborhood. It is aldom that they have a
deep origin, although considerable elevation of land at a moderate distance will add to the flow of sprirgs along
(4741) S. T. writes: I have a house painted and sanded. It has at least 8 coats of paint and me know the best way to get the paint of the wood me know the best way to get the paint off the wood
work so thatI can repaits it and make itlook nice ? Some of our painters here say burning is best. Thatisa very slow process. Would it not be best to take it off with some
kind of acid 4 . Probably the burning process is best and quickest. The blowpipe burner with a broad dlame should be used, and with a broad scraper the paint will
be quickly removed. Potash lye may be used, but is
(4742) E. P. W. writes: I wish to know the exact horse power li will take to pump water in a
suitable sized cylinder, with an opening of one-half inch constantly open, and maintain a pressure in cylinder o one thousand pounds pressure per square inch. Will dynamo ono ne indred horse power P Suppose they wes tor of one hundred horse power ? Suppose they were
side by side, what loss would there be in horse power be tween dynamo and motor? A. You will require 12 horse power in maintsining the jet under the pressure named. The friction of a pump to od the work will require at least 4horse power more, or 16 horse power in the steam cylin
der of the pump. There will be from 10 to 15 per cen der of the pump. There will be from 10 to 15 per cent
difference in the horse power of the two motors as described.
(4743) F. G. S. asks: What capacity tave large steamers or vessels for pumping water out of water in gallons per minute? A. The large ocean steammin have pumping capacity for 3,000 to 8,000 gallons per
minute
(4744) W. H. C. says: In the South Kensington Museam, London, there are some old steam
engines over one hundred years old. Could you inform me in your columns how the cylinders were bored, as there were no slide rests nor boring machines in those days, and as they are quite large, they would be difficult to bore with a hand tool ? A. Cylinders for steam engines were made of considerable size nearly two hundred
yearr ago. The firt one used in America in the copper

troke. The cyilinders of the early-timers were bored and power. The reboring of cylinders with a boring bar is now accurately done by hand power. The men that in-
vented and built the frrst steam engines were equal to deifguing and building the necesesry tools for doing the
(4745) Machinist writes: Please advise of the result from using a boring bar under the following engine lathe and fed forward to the single cutting point of a fixed cutter in a boring bar, revolving on centers of norm of ten used in machine shops. The lathe to bel normal condition excepting the tail stock, lathe, ws provided for oy set over screws on tall stocks of lathes. Will hole bored under above conditions be cylindrical or otherwise? A. A ho.e bored under the conditions named
will not be a cylinder, and with the small angle attainable in lathes for variation in line from the center, the amount distortion will be mathematically small, yet it will be The plane of revolution of the cutter being at right angles vertically and at an angle horizontally, the difference in the two diameters may be readily computed from the elements of a right-angled triangle, or demonstrated geo metricaly by increasing the angle in a diagram. A deli-
cate calipers should show the difference with a considercate calipers should show the dif
(4746) L. H. asks how to temper springs or shotgun locks. A. For hardening and temperinggan le blast, so that the temperature of the fire will be low nough to prevent overheating the thin parts. Take the pring by its shank in a light tongs and dip it in a pan of ard oil, place h over the dire, heat gradually until the ofl eat to a fall cherry red evenls over the whole spring theu plunge edgewise in the pan of oil; remove beforc it quite cold and place over the fire and heat alowly until the oil takes fire, then plunge in the pan of oil.
(4747) W. P. S. asks how to cast lead ype. I want to set up a quantity of type and make a
nould and cast the metal so it will print as well as the yype. Let me know how to make type metal. A. You will find the process of stereotyping and the necessary machinery illustrated in Scientifie American Supple IENT, Nos. 191 and 310. A good metal for stereotyping
made of 9 parts lead, 2 parts antimony, and 2 parts bisThis makes very fuid metal 1 ar (4748) D. L. G. writes: I say that bichromate of potash batteries and gravity batteries are secondary batteries. B. says that they are primary batteries, nd that a Burnley dry battery is a secondary battery. ichromate of potash batteries, gravity batteries, and the Burnley battery are all primary batteries. It is stated,
however, that the Burnley battery may be recharged or wored by submitting it to a strong current for a time
(4749) J. E. E. writes: Please state hrough your paper what is best to use foractive material oput on the lead plates in a storage cell. Also what to ous colors. A. For your plates nse a paste of red lead ous colors. A. For your plates nse a paste of red lead
mixed with a dilute solution of sulphuric acid (acid 1 part, water 10 parts. Incandescent lamps can be colored for
temporary use by dipping them in colored lacquers or into temporary use
(4750) E. E. W.-The experiment with the dog conducted nt the Edison laboratory, to which you
refer, was made with magnets steadily excited from conrefer, was made with magnets steadily excited from con-
inuous current ; but experiments have been tried with tinuous current; but experiments have been tried with
alternating current and with alternating magnets on the of a person, without marked results.
(4751) H. H. N.-T become a first-class f mathematics. Without this you cannot expect to proal knowledgar. Of course, the better way to gain a practial knowledge of electricity is to take a course in one of tudy electrical works and at the same time demonstrate ary problem as you proceed by an experiment.
(4752) L. H. D. asks: 1. How is oak awed to be quartered ? A. Quarter-sawed oak is made sawing across the center at right angles, cutting the at 45° to the quarter cuts and across the rings. 2. Does the process incur much waste? A. There is greatertwaste than by the ordinary cuts. 3. Is oak 30 inches in diameter better than 12 inch or 15 inch for that purpose? A. nake the best quarter-cut lumber. 4. Is sound, large white oak less hard in the heart than near the outside of the tree? A. The heart wood is harder and more dur-
able. 5. Is there any objection in forcing water up hill o. 5. Ts there any objection in forcing water up hill uust it be a gradual rise to the highest point, a distance of 1,500 feet: A. There is no objection to following the round grade in laying 2 water pipe, provided it is well acilitate drainage if required.
(4753) N. B. T. asks : How large a meter hall I want for thirteen 3 foot burners and a gas stove arge enough ? A. You would do better to use a 10 light meter. If all your burners, stove, and broiler were going (4).
(4754) E. S. asks : Is there any way to prevent the soft water from condensed steam dissolving the iron of steam heating pipes? I.am having tronble with
my pipes seaking from thls cause. A. The waterof condenmy pipes leaking from thls cause. A. The waterof condensation is to a considerabie degree a solvent of iron of the
quality used tor making pipe. Such iron is not pure, conaming slag and particles of some unknown substance that seems to have a galvanic action, producing pock five years. Agam, where the water runs along the bottom on wrought.íron pipes, channels are cut partly by soron and partly by attrition, which are known to cut trong a plpe in tour or five years; while, on the other
hand, the vast bulk of steam heating pipes are in use alt he way up to twik of steam heating pipes are in use all leak srom Internas causes. The canse 18 largely in the
of homogeneous or steel pipe is probably the only remedy. The same pitting and cuttirg is known to affect
iron boiler tubes, and is a source of much trouble with iron boiler tubes, and is a source of much trouble with
vertical tubes with internal circulation, although the water is not pure and soft as from condensed steam.
(4755) Z. asks : How can I remove the acid from beef tallow so that it willnot corrode iron when ased as a lubricator? A. Boil or melt and stir into very ot water a small quantity. Test the water with litmus paper to see if it contains acid. If so, then treat the tallow of caustic soda to the water, and heating and atirring of caustic soda to the water, and heating and stirring
(4756) J. S. asks: Is water absolutely non-compressible? Or can its bulk be reduced by any known method? A. Water is slightly compressible. No
substance is non-compressible at existing temperatures substance is non-compressible at existing temperatures. The following replies relate to enquiries published in he Scientific American, and to the numbers therein
(4655) In query No. 4655, where X. Y. asks for an acid or spirit that will soften glass so he can bore holes in it with an awl, "well, hardly;" but your adBut please allow me, for the beneit of \mathbf{X}. Y. and others, to give a cheap and simple receipt (if we may call it such) of drilling holes in glass with a common steel drill by using turpentine, the same as you would oil in drilling iron or steel. I have bored some holes as large as $3 / 8 \mathrm{inch}$
by this process and have never had any trouble when my drills were hard and speeded high.-J. T. Prettyman,
M.E., Portland, Ore. M.E., Portland, Ore.

TO INVENTORS

An experience of forty-four years, and the preparation of more than one hundred thousand applications for pa-
tents at home and abroad, enable us to understand the aws and practice on both continents, and to possess unynopsis of the patent laws of the United States and all forelgn countries may be had on application, and persons contemplating the securing of patents, ether at home or abroad, are invited to write to this office for prices ensive facllities for conductıng the business. Address mUNN \& CO., office Screntific American, 361 Broadway. New York.

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted

March 7, 1893,
AND EACH BEARING THAT DATE. [See note at end of list about coples of these patents.]

Animal shears, A. Meicionor...............

Christmas tree can
Cuck, A. Muir
Churn,
Curn. Alpa
Pbegh

Combs see curry comb. Eglin............................

 Cuitivator, B. T. Scott........
Coe Telescoping cup.
Cury comb, G. M. Hubard.
 table cutter.

Dentar pugger, A. e. Peck:. articles and means therefor, producing ralsed
metallic, J. H. charling bined writing book and
Desk, school, A. Maucbainulin
Display stand, W. E. Stow Door check, J. S. Patten.......
Draunht equalizer. W. Lew.is.
Draght evener, W. .
Draw bar, G. D. Wadith.

2,868	Eyeglasses, A. J. Landry........................... 493
3,036	Fabric
	Feed
92,915	Feed
	Feeder, time stock, D. McQu
	Feuce, W. Commeans......
	Fence,
	File, letter or bill, W.
	Filter, oil, A. C. D
	Fire engine, chemical
	Fire escape, J.
3.012	Fireprootng composition for wail coverings, F .
	Flour boit,
	Flour compounds.
	wer po
	e scrape
	te, rub,
	ntain.
	Fruit gatherer, S. E. Ball
	Fruit gatherer, A. . . M M MLe

Gla
Gr
Cra

\qquad

\qquad

Had
Hat
Hat
Hob
Hob
Hoon

-

\section*{| M |
| :--- |
| \mathbf{M} |
| \mathbf{M} |
| \mathbf{M} |}

 \section*{5
 \section*{5
 25}

Nuts on boits, means for ocking, t. Thick Paimer.: seed, E. Schaal Organs, solo attachment for reed, J. P. Caulfeid	

$$
\begin{array}{r}
492,84 \\
\because \\
\because 499,87
\end{array}
$$

TRADE MARKS.

Dfoverfisements．

ORDINARY RATES．

OIL WELL SUPPLY CO．

IMPROVED ATHES MODERN REGINE $4 A 1 / 20$ DESIGNS Sebastian Lathe Co．Poinein cilvit orice
 TRADES UNIONS，THE TENDENCY

VANDUZEN STEAM PUMP THE BEST M THE WORLD．
Pumps An Kind of L iquid

AエリMMエINTMI

 Comles Electric Smelting and Aluminum Co．，WM，GRAVER TANK WORKS，
 Handiaturere of Iro and Steel STORAGE TANKS． 3d Floor，Rookery Bldg \triangle

 PLATING
 woke \＆Electro－plating Suppulisk polishnguatrilis OUTFITS．

PERFORATORS OF ALL METALS

Steal Hype for Writing Maccines，

SPECIAL NOTICE！

THE ARMSTRONG MACHINES，

MECHANICS＇TOOLS．
 MODEL $\mathbf{5 O \oplus O}$ WORK －3．3． mise

（1）

FOOT POWER LATHES叐 Trath
 Highine Shop Worork

$\mathrm{A}_{\mathrm{N}}^{\mathrm{N}}$
IDEAL STUB PEN－Esterbrook＇s Jackson Stub，No． 442 A specially EASY WRITER，a GOOD INK HOLDER and a DELICHT to $\mathbf{\$ 1 , 0 0}$ per gross．THE ESTERBROOK STEEL PEN CO ${ }_{1,} 26$ John S t_{1} ，New York

BERエIN BエUヨ

VITRIFIED BRIGK．

NEW YORK BRICK AND PAVING CO．

SCIENTIFIC EXPERIMENTS．－DE－

Scientific Book Caaloguie Our new catalokue containing orer 100 pages，includ
ink works on more than fifty different subjects． muNN \＆CO

The AUTOGRAPHIC REGISTER． Business System． Enforcing Honesty
and Accuracy． Chieggo Attographic Register Co．
$\mathbf{1 5 0}$ E．Ionroe street， 150 E．Monroe street，
C HICAG（，IL1．t
end for catalogue \＆price liet．

 CENTSS

FREE SITES TO SUBSTANTIAL MANUFACTURING ENTERPRISES

ESTABIISHED 1845.
The Most Popular Scientific Paper in the World Only 83.00 a Year，Including Postage
Weeldy-52 Numbers a Year.

This widely circulared and splendidly illustrated paper is published weekly．Every number contains six－ teen pages of useful information and a large number of orisinal engravings of new inventions and discoveries， Chemistry，Flectrictty Telegraphy，Photography，Archi－ ecture，Agriculture，Horticulture，Natural History， Terms of Subscription．－One copy of the Scien－ ostage prepaid，to any subscriber in the United States Canada，or Mexico，on receipt of three dollars by the publishers；six months，81．50；three months，81．00． Clubs．－Special rates for several names，and to Post
Express Money Order．Money carefully placed inside of envelopes．securely sealed，and correctly addressed， seldom goes astray，but is at the sender＇s risk．Address ill letters and make all orders．rafts，etc．，payable to
MUNN \＆CO．， $\mathbf{3 6 1}$ Broadway，New York．

Scientitic Americat Supplement This is a separate and distinct publication from THE
SCIENTIFIC AMERICAN，but is uniform therewith in size， very number containing sixteen large pages ful of en－ and accompanied with translated descriptions．Tre SCIENTIFIC AMERICAN SUPPLEMENT is published week－ ly，and includes a very wide range of contents．It pre－
sents the most recent papers by eminent writers in all the principal departments of Science and the Useful Arts，embracing Biology，Geology，Mineralogy，Natural History，Geography，Archæology，Astronomy Chemis－
try，Flectricty，Light，Heat，Mechanical Enninealing try，Electricity，Light，Heat，Mechanical Engineering，
Steam and Railway Engineering，Mining，Ship Building， Marine Engineering，Photography，Technology，Manu－ facturing Industries，Sanitary Engineering，Agricniture， Horticulture，Domestic Economy，Biography，Medicine，
etc．A vast amount of fresh and valuable information obtainable in no other publication．Wrors，Mechanisms，
The most iniportant Engineering Wrand and Manvfactures at home and abroad are illustrated and described in the SOPPLEMENT．
Price for the SUPPLEment for the United States，
Canada，and Mexico， 85.00 a year；or one copy of the SCIENTIFIC AMERICAN and one copy of the SUPPLE－
MENT，both mailed for one year to one address for $\$ 7.00$ ． ingle copies， 10 cents．Address and press money order，or check，
MUN \＆CO

Guilding Edition．
The Scientific American Architects＇and
BUILDers＇EDition is issued monthly． 82.50 a Single copies， 25 cents．Forty large quarto pages，equa to about two hundred ordinary book pages：forming a large and splendid Magazine of Architecture，richly
adorned with elegant plates in colors，and with other fine engravings；illustrating the most interesting examples
of modern architectural construction and allied subjects． A special feature is the presentation in each number of a variety of the latest and best plans for private resi－
dences，city and country，including those of very mod－ erate cost as well as the more expensive．Drawings in
perspective and in color are given，together with full Plans，Specifications，Sheets of Details，Estimates，etc．
The elegance and cheapness of this magnificent work have won for it the Largest Circulation of any
Architectural publication in the world．Sold by all news－ architectural publication in the world．Sold by all news－
dealers．$\$ 2.50$ a year．Remit to

J. M. CROB \& CO.; Mfrs. LEIPZIC-EUTRITZSECH (GERMANY):

W HENRYCAREFBAIRD \& CO.

 ROPER'S PRACTICAL HAND -BOOKS By STEPHEN ROPER, Engineer. A Catechism of
Stieam rosine
nngineer's

 The Steam Boiler; Its Care and Ma
The Young Enginer's
Use and Abuse of the Steam Boiler.

The Story of the

Atlantic

Telegraph.

Hatch Chickens by Steam:

 IMPROVED EXCELSIOR INCUBATOR| | W0ODEN TANKS |
| :---: | :---: | THE COPYING PAD-HOW TO MAKE

 THE PEARY EXPEDITION: AN IN

 28 IM. ŇA Adig Chins.

ARLES SCRIBNER'S SONS

O은 USE GRINDSTONES?
 he CLEVELAND STONE CO.
2d Floor, Wilshire, Cleveland, 0 .

THE DENSMORE

SCRPASSES THE OLDER MACHINES in many ways,
THE FAMOUS CARNEGIF STEEL CO., Pittsburgh, are among the Treir chief stenoorrapher, after subjecting a number of these machines to
The months of hard work, says: "The alignment is still perfect." Our operators \bullet THE WORLD'S GREATEST TYPEWRITER." Densmore Typewriter Co., 202 Broadway, New York

PHOTO-SMOKE CIGAR HOLDER Most wonderful novelity of the day. Takes your pic-
ure while
you smoke

Useful Books!
Manufacturers, Agriculturists, Chemists, Engineers, men, of all classes, need good books in the line of their respective callings. Our post office department
permits the transmission of books through the mails at very small cost. A comprehensive catalogue of
useful books by different authors, on more than fifty different subjects, has recently been published for free circulation a he office of this paper. Subjects
classifled with names of authors. Persons desiring a copy have only to ask forit. and it will be mailed to
them. Address, MUNN \& CO., 361 Broadway, New York.

CANE CONTRIVANCES. - TWENTY-

	CHAPMAN VALVE MANUFACTURING COMPANY, MANUFACTURERS OF Valves and Gates		
	STEAM, WATEL, GAS, AMMONIA, OIL, ACID, Etc.; also		
	makea Specialty of Valves for Superheated and High Pressure		

INVENTIONS

 ORDANCE OFFICES WAR DEPARTMENT

PROPOSALS.

 Moodie's Gold Mining and Exploration Company, Limited.
Transmission of Electrical Power. TO CONTRACTORS.
 Generating and Transmitting 250 horsépower, by Electricity, to
various Sub-companies. various Sub-companies Specifleation and Conditions of Contract, etc., can be
obtained from, and Plans seen, at the following places: OFFICES OF THE COMPANY: Mietermaitzburg, Natal;
Modient itar Barberton, south African Republic
No. ©, Oid Jewry, London, E. C.: Johannesbnrg (Messrs. Red wood \& Watson) Capetown (E. R. Syfret, Esq.),
 Tenders, together with Specifleation and Conditions
of Contract, ete, duly simned, attached thereto, must be
 Office, 8, Old Jewry, E. C. C. by the same time.
A Fee of Three Guineas will becharged for Copies of
Specifcation, Conition oon Contractetc., and inpec.
Hon of Plans, which will be retarned on receiptof a Hon of Plans, which will be returned on receipt of a
bon fide Tender. The Iowestor any Tender not nete
sarily accepted. By Order of the Board of Directork, C. J. MACFARLANE, Secretar'Y. Petermaritzburg. Natal, January, 1893.

Perfect Newspaper File

WATER ${ }^{\text {mams lefia }}$ WHEELS have you read Experimental Stiencer This new book, by Geo. M. Hopkins, is just what
vou need to give you a good general knowledge of You need to give you a good general knowledge of
Physical cience. No one having the spirit of the
timescan aiford to be without the kind of scien.
tific information to butained in this book. It is not
only instructive, but entertaining.

Over 700 pages: 680 fine cuts; substantially and
beautifully bound. Price by mail, $\mathbf{\$ 4 . 0 0}$. MUNN \& CO Publishers Office of the SCIENTIFIC AMERICAN
361 BROADWAY, NEW YORK.

OLD CMCMEN
FOR LADIES OR GENTLEMEN

John P. Lovell Arms Co., Manufacturers BOSTON, MASS.
 The Griffin Milst

A perfect pulverizer of all refractory substances by either the wet or dry process. It works better and at less expense than any other Mill, and is conceded to be the only perfect pulverizing Mill manufactured.

For FREE illustrated Pamphlet addres
bradley fertilizer co., 92 state st, boston. SCIENTIFIC AMERICAN SUPPLE-
 10 eenss. Als.
the 0 ountry.
ZOSTON, DENVEA. A. C. SPALDLIC \& BROS., Special Agents,
"SpurPPinited" Wood diceres.
 PROVIDENCE, R. I.

TUF WILMOT \& HOBBS MFG. COMPANY GOLD ROLLED SHITT ANB STIP STEL \% $70 \%{ }^{2} 9$

The Risk

of carrying fine goods is part of the cost. Every time you bump a high-priced watch it costs youfour dollars. Don't you realize that you would be better off with an everyday watch for the wear and tear? -as an accurate jeweled timepiece, and equal in looks with the other, can be bought for $\$ 15$ down to $\$ 4$: the new, quick-winding Waterbury, winds in five seconds. Don't forget the name.

all jemelers keep lt, In all styles Gilver, ect, Both ladies and

5 ATENTS!

 MUNN \& CO. Solicitors of Patenta,

S \boldsymbol{A} \mathbf{W}

 SA WS Wantea gand Suyerg SAWSS
 A GENTLEMAN'S LAUNCH

 YOUR OWN RNGINRER.

No one ever wrote 1000 Letters an Hour, EDISON MIMEOGRAPH

LIFE SAVING DEVICES.- A COL

The Greutt fompry fexding Pithooirsupherst

LATEST IMPROVEMENTS.
 NEW STYLE.
 NEW PRICES.
 GROWING RAPIDLY in FAVOR

EDISON INCANDESCENT LAMP
is the only incandescent lamp lawfully made.
THE RICHT OF THE EDISON COMPANY TO AN INJUNCTION AOAINST INFRINOERS HAS BEEN DETERMINED BYY THE U. S. CIRCYIT COURT O
APPEALS. COPIES OF DECISIONS SENT ON APPLICATION APPEALS. COPIES OF DECIBIONS SENT ON APPLICATION.

 Otorli Buliding.

Oo Know Columbias? To know Columbias are other good bicycles, but the Columia guarantee is olid as the mint.

TO BUSINESS MEN

tising medium cannot be overestimated. Its circulation is many times greater than that of any similar journal
now published. It goes into all the States and Territories, and is read in all the principal librar es and reading rooms of the world. A business man wants something more than to see his advertisement in a printed news. paper. He wants circulation. This he has when he ad-
vertises in the Scientiric American. And do not let vertises in the SCIENTIFIC AMERICAN. And do not let the ad vertising agent influence you to substitute somi
other paper for the SCIENTIFIC AMERICAN, when so lecting a list of publications in which you decide it is for your interest to advertise. This is frequently done for
the reason that the agent gets a arger commission from the reason that the agent gets a arger commission from
the papers having a small circulation than is allowed on the Scientific American.
For rates see top of first column of this page or ad. For rates see top of first column of
dress MUNN \& CO., Publishers.

> O61 Broadwav, New York 361

THE COMET CRUSNER

 Greatio balas two g imasfrghtichersMa makan Bill Mapam hamaty I25 HILK ST., BOSTON, MASS.
This Company owns the Letters Patent No. 186,787, granted to Alexander Graham Bell, January 30, 1877, the scope of which has been defined by the Supreme Court of he United States in the following terms:
"The patent itself is for the mechanical structure of an electric telephone to be used to produce the electrical action which the first patent rests. The third claim is for the use in such instruments
of a diaphragm, made of a plate of iron or steel, or other material capable of inductive action; the fifth of a permanent magnet constructed as described, with a coil upon the end or ends nearest the plate; the sixth, of a sounding box as described; the seventh. of a speaking or hearing tube as described for conveying the sounds; and the eighth, of a permanent magnet and plate combined. The and is not for these several things in ephone in the construction of which these ephone in the construction of whin of them are used."
This Company also owns Letters Pa iner No. 463,569, granted to Emile Beriner, November 11, 1891, for a Combined elegraph and Telephone; and controls Thomas A Edison May 3, 1892 for a Speaking Telegraph, which cover fundamental inventions and embrace all forms f microphone tranmitters and of bon telephones.

MANUFACTURE OF GLASSWARE.-

PRTNTHING TINKEA

