A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SEIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

NEW METHOD OF GAS SUPPLY FOR NEW YORK CITY. SHOWING. TUNNEL UITDER THE EAST RIVER.-[See page 119.]

ダnutifir American.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
\qquad
TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, for the U. S., Canada or Mexico...
One copy, six months, for the U. S., Canada or Mexico................. $\mathbf{1} 5 \mathbf{5 0}$
One copy, one year,to any foreign country belonging to Postal Union. 480
Remit by postal or express money order, or by bank draft or check.
MUNN \& CO., 361 Broadway, corner of Frauklin Street, New York.
The Scientific American supplement
Is a distinct paper from the ScIENTIFIC AMERGINN. THE SUPPLLEMENT
is issued weekly. Every number contains 16 octavo pages, uniform in

trift The safest way to remit is by postal order, express money order,
draft or bank check. Make all remittances payable to order of MUNN Ry failure delay, or irregularity in receipt of papers.

NEW YORK, SATURDAY, FEBRUARY 25, 1893.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT NO. 895.
For the Week Ending February 25, 1893.

the two great ship canals.

We give in another column an account, by an officer of the navy, of a recent visit to the Panama and the Nicaragua canal works. The descriptions given of the present condition of these great enterprises are especially interesting, coming as they do from the pen of a careful, disinterested observer. The U. S. S. Kearsarge, which conveyed our correspondent, lately reache Havana, from Greytown, Nicaragua.

the berliner microphone patent.

The famous Bell telephone patent, to which the courts have a warded an unexampled scope, will on March 7, 1893, reach its last limit of life. The invention of the telephone, as far as covered by that patent, will after that day be public property. The claims of this patent, it will be remembered, were held by the courts to cover the use of the so-called undulatory current for telephoning. Next, in the practical application of this decision in numerous cases the courts held that no operative telephone was ever shown them which did not employ this current. Finally, no alleged anticipating device was ever allowed by the courts to show the transmission of articulate speech seemed as if thry current of electricity. Sometimes sion of prior devices. The old House telegraph patent showed a perfectly operative telephone, although the inventor had no idea that it could transmit articulate speech. The doctrine that a device when patented is patented for all possible uses was not allowed to apply to the anticipation of the Bell telephone. The courts seemed gradually to adopt the principle that the Bell telephone was entitled to the broadest possible scope. They protected it by their action as no patent has ever yet been protected. The public to a certain extent felt that special tribute was due to so wonderful an invention. Now the original patent lapses. Next year another fundamental patent expires, but the field is not yet to be open.
The Bell telephone, working by the currents induced by the motion of an armature in front of the poles of a magnet, is, when used as transmitter, of but little value. As a receiver it is of high utility. Right on its track came the microphone, which supplied the missing element. The microphone is an excellent transmitter, but is not a practical receiver. The two form a complete system, and all telephoning is now executed by the use in one circuit of both instruments.
The telephone used as transmitter is, properly speaking, a species of dynamo or generator. It produces electric impulses by the currents induced in a coil of wire surrounding a magnet coil. These currents are induced by the motions of a diaphragm of soft iron acting as armature of the magnet. The voice causes this to vibrate and so changes the field of force. Used as a receiver, the action is reversed. Varying currents passing through the coil throw the diaphragm into vibration. If these currents are of proper quality, articulate speech results.
The microphone operates by changing the resistance of the circuit. The apparatus includes in general terms two surfaces in contact. Against one of the contact pieces a diaphragm of iron rests. On speaking against the diaphragm it vibrates, alters the pressure between the contact pieces, and so changes the resistance. A battery being in the circuit, this causes changes in intensity of current, which operating on the telephone reproduce sound.
Thie fundamental microphone patents, which were applied for in the early days of telephony, and were granted to Blake and Edison, have all lapsed by the expiration of foreign patents. It would seem that this should end the regime of the telephone monopoly. But within the last few years a good deal has been published concerning an application for patent by Emil Berliner which dated back to 1877, which became the property of the Bell Telephone Co. in 1878, and which was very lately granted. By statutory action this application, it was alleged, was kept alive by the Bell Co. These assertions were confirmed on Nov. 17, 1891, when the Berliner patent was issued to Emil Berliner, assignor to the American Bell Telephone Co.
The patent shows and describes a microphone, such as might be used on a telephone circuit to-day. Aided by the apprenticeship of many years litigation, and by the many undulatory current decisions of the courts, six claims have been written for the patent, and have been allowed by the Patent Office. The first claim is for the method of producing in a circuit electrical undulatious similar in form to sound waves by causing the sound waves to vary the pressure between electrodes in constant contact, so as to strengthen and weaken the contact, and thereby increase and diminish the resistance of the circuit.
This is the main claim of the patent. It covers the present form of transmitters. The only escape from it for any particular transmitter would seem to be in denying variation of pressure, and in holding that simple motion of the electrodes upon each other effects the result.
The other claims are for structures. They claim transmitters with vibrating plate and electrodes in
constant contact. The force in law of this "constant contact" will be seen when it is noted that the telephone decisions have virtually been based on the assumed inability to telephone by the make and break current; the assertion that constant contact is essential to the transmission of speech by electricity has now the force of law.
Private corporations are very chary of attacking the Bell Telephone Co. The limitless pecuniary re sources of the great company enable it to sustain liti gation with great vigor. But in the matter of the Berliner patent the Federal authorities have taken the matter in hand. A brief has been filed in the United States Circuit Court by United States Attorney-General Miller, which marks the beginning of a proceed ing to annul the patent. It is perfectly obvious that for the Patent Office to receive applications for two fundamental patents, to grant one of the patents outright and to permit the other application to be kept alive for fourteen years by dilatory motions is clearly inequitable. If the present law provides no way of preventing such proceedings, a new law should be enacted. On its face the Berliner patent continues the elephone monopoly up to 1908.
In his brief the Attorney-General holds that the Ber iner patent, on various grounds, should be annulled. The delay of fourteen years in taking out the patent is alleged as contrary to equity and to the plain spirit and intent of the patent law. It is on such a ground as. this that success in annulling the patent would be most acceptable. A decision to this effect would be a most valuable precedent. In this aspect the case seems to be a conflict between law and equity. Patent cases are tried in equity proceedings. It is to be hoped that the full powers of an equity tribunal will be exer cised by the court.
Various other allegations are contained in the complaint. It is charged that the specifications and drawings were all struck out and new ones were sub stituted. The Patent Office objected to the turn the proceedings were taking, and eventually an affidavit by Berliner was filed, stating that the matter in the substituted application was invented by him prior to filing the original and formed part of that invention. The filing of the affidavit is claimed to be fraudulent and to give sufficient ground for annulling the patent Another very curious basis of attack is furnished by the Berliner patent of 1880 . In this a microphone identical with the one of the 1891 patent is described, but although a microphone, it is .claimed both as transmitter and receiver. This is cited as a prior patent, and seems to be for the same invention, and hence destroys the validity of the disputed patent. The law holds that two patents for the same invention cannot both be valid. One or the other patent must apse.
The proceedings will be watched with much interest, as the points of law involved are very interesting. The case may lead to the enactment of new laws to prevent the recurrence of such proceedings as those complained of in this action.

Progress of Electric Railways.

We are now, says Mr. Bonnett, using much larger and heavier cars and more powerful motors, and the mprovements due to the great advance of the electric power industry tend to increase the efficiency of the motors and gearing employed. The development of the low speed motor will lead to one in which, for or dinary speed of street traffic, the armature can be placed directly on the driving wheel, thus dispensing with all outside losses. When this result is arrived at, which time is not far off, and either a light storage battery or a practical system of power transmission to do away with overhead wires and their attendan damages is developed, the electric street car will stand at the head of methods of surface rapid transit. As an instance of modern practice, I would quote one of the St. Louis suburban electric roads where, with modern cars and equipment, a run of 8 miles out from the city is made in 30 minutes schedule time.
Probably the largest electric locomotives yet con structed are those now being built by the Thomson Houston Company for the Baltimore and Ohio Railroad Company to transfer passenger and freight trains through the city of Baltimore. These motors have the armatures directly on the driving axles and at a speed of 30 miles per hour make about 170 revolutions per minute.
Their principal dimensions are as follows:

The Victoria railroad bridge over the St. Lawrence at Montreal is two miles long, cost over $\$ 5,000,000$, and contains 10,500 tons of iron and $3,000,000$ cubic feet of masonry.
[Special Editorial Correspondence of the Scientific American.] Interesting Facts and Particulars.
When the World's Columbian Exposition is open to the public, visitors will find it difficult to realize what an active factor in completing the great Exposition women have been. From the inception of the Fair the rights of women to be represented have been fully recognized, and women have been regarded as part of the official organization, and not considered as a side show. Mrs. Potter Palmer, president of the board of lady managers, has now made a formal and official report to the board of control, in which she reviews the work done by the board of lady managers from its organization. Your correspondent has been permitted to see this report and make the following abstract :
The board of lady managers was formally organized on October 21, 1890, and Mrs. Potter Palmer chosen president. Rules and by-laws were adopted to govern the board, and a formal communication was sent to the executive committee stating the desires of the ladies asisto what they considered best to do. Plans of work were immediately formulated and appropriations for a building for official and other purposes secured, and the plans of a Woman's Building, drawn by Miss Hayden, of Boston, accepted. The work of finishing and decorating the building was left to the board, and $\$ 6,000$ was voted by the directors to be used for two large mural paintings for the tympans at the ends of the main gallery. These paintings are 14 feet high and 58 feet long, and their execution was awarded to Miss Casset and Mrs. MacMonnies. Since the building was completed the caryatides of Miss Yandell and the pediments and groups of Miss Ridout have been placed in position.
Women from various parts of the country and world have taken part in decorating the building. Cincinnati has donated wood carving and pottery, and furnished the main parlor. Other Ohio women have furnished and decorated a parlor. California women another room. Artists from New West Virginia, Kentucky and Texas have done much toward furnishing and decorating. Colorado women send Navajo blankets enough to cover the walls of the hall in which is the ethnological display. Iowa women furnish a corn palace. From the Illinois board comes $\$ 6,000$ for the equipinent and maintenance of an emergency hospital and exhibit of work of trained nurses. Women in France and Great Britain also have a share in decorating the building. Women from thirtyseven States, two Territories, Alaska, and the District of Columbia are interested in the work of the board of lady managers, while co-operation in the work is had by women in Italy, Germany, Austria, Russia, Algeria, Cape Colony, Cuba, Mexico, Nicaragua, Argentine Re public, Jamaica, Ceylon, and Brazil. Queen Margherita of Italy will send her choice collection of laces, containing specimens dating back 1000 B. C., while typical specimens of woman's handiwork will be exhibited from each of the countries named. Madam Diaz, of Mexico, will send an orchestra of Mexican girls in rich cos tumes, and they will play Mexican national airs.
The whole control and management of the Woman's Building is in the hands of women, as will also be the awarding of prizes.
Another important work that this board has undertaken is the building and maintaining of a children's building. The funds for this building and exhibit were raised by the women themselves. This will be pri marily an educational exhibit. Provisions have also
been made with ample facilities for caring for children been made with ample facilities for caring for children
while their mothers are visiting the exposition buildwhile their mothers are visiting the exposition build-
ings. A complete list is now being compiled of the charitable, philanthropic, literary, artistic, and other organizations of women. A salesroom will also be established for the sale of woman's work of all kinds. Many exhibits will be made by women in the various State and other buildings. Another important part that
women will play will be in the several congresses that women will play will be in the several congresses that
are to be held. All the formal meetings of these congresses are to be held in the new permanent Art Building, now building on the lake front in the heart of the city, so it ís understood, and women hold not only several congresses of their own, but also take importan part in the proceedings of nearly all the congresses.
The number of fake schemes that are being worked in connection with the Exposition seems to be almost limitless, and their variety shows that a great amount of ingenuity is baing expended in this direction. These schemes boldly proclaim themselves as "official." One direction in which much harm may be done by these fakirs is in the line of boarding and lodging directories and bureaus. As was stated in a recent letter, there is but one "official" bureau of public comfort, and that one is under the immediate management of the Exposition authorities. It is organized for the comfort of visitors, not for gain, and it has secured the handling of the most desirable rooms to be had in all parts of the city. Visitors are cautioned not to pay for rooms in advance, except through the advice of this bureau, because of the many fraudulent
schemes which are fiooding the country with enticing
promises. The greatest trouble yet encountered by the Exposition authorities in connection with fake schemes has been in the matter of guides and catalogues. Any number of so-called "official" publications of this nature are being worked, much to the injury of the Exposition's legitimate publications, and more to the disgust of Chicago business men. The catalogue, for which a concession was recently granted and for which a bonus of $\$ 100,000$ was put up, is permitted to take advertisements under limited conditions, and a host of advertising solicitors has been turned loose upon the advertising public all over the country. But prospects for the success of this part of the venture are not encouraging, as solicitors for the fake publications have already pretty thoroughly solicited the field of advertisers. Hardly work enough has been done on this official catalogue to make it worth mentioning, and unless exhibitors report promptly exactly as to the nature of their exhibits, the catalogue cannot possibly be completed until long after the exposition is opened.
It would appear as though coffee drinking were to be nounimportant feature of the Exposition, as a contract is just reported as closed for 700,000 pounds of coffee to be delivered as wanted for the restaurant service. In connection with this restaurant service it will be welcome news to intending visitors at the Fair to learn that all varieties of epicurean tastes and all sizes of purses are to be provided for. The company that holds the concession for the restaurant service announces that in all the important buildings will be restaurants where a wholesome lunch can be had at a counter for a small sum, or a somewhat more pretentious meal had for a somewhat larger price, while there will be more luxurious accommodations, where expensive meals as elaborate as first-class hotel service can be had with wines and other extras. The restaurant service as now planned has seating capacity for 15,000 people at a time.
Director-General Davis proposes to take steps to put an end to all attempts to get up a cholera scare in connection with the Exposition. To begin with, the drainage of the Fair grounds and the method of disposing of the sewage have been made as complete as possible -in fact, are among the most instructive of exhibits, and will be considered as important features of the Exposition. But with all this perfect outfit, Colonel Davis proposes to take no risks whatever, and he has just made an official report in which he recommends the appointment of a special corps of sanitary police of twenty-five or so men, who shall examine the entire sewerage and drainage system of the grounds twice a day and enforce rigid observance of the rules. In connection with the efforts of the Exposition authorities a citizens' committee and representatives of the city government are planning a rigorous campaign to clean the city. It is fortunate for the Exposition that the grounds are in one of the most healthy parts of the city and several miles from the most dangerous pest-breeding localities in case there were an epidemic. The present indications are that nothing will be left undone to provide every precaution for the health of the city next summer.
The damage wrought by snowslides on the roofs of the larger buildings amounts to a few thousand dollars, but makes no appreciable interference with the progress of installing exhibits. As soon as the present accumulations of snow on the roofs are disposed of, the damage can be readily repaired. The big slide on the oof of the Manufactures and Arts Building is supposed to have been started by the motion and jar caused by running a train of cars into the building. The snow had gone a distance of nearly one hundred feet before it reached the roof of the annex, and the momentum it had obtained was quite irresistible with such light work as the glass framework of the roof. The struc tural part of the roof was in no way injured.
A committee of insurance men has just made an official inspection of all the work done on the buildings and of the facilities at hand for fighting fire. The engineering department took the precaution at the inception of work to be in harmony with the insurance interests, and the work of construction, the installation of the electric plant and wiring and all other sources of possible danger have been carefully watched. This strictness has caused some differences with contractors, but in no respect whatever has work been intentionally slighted. In every instance the question has been security, not cheapness. The fire department has grown as work has progressed and now comprises three steam engines, four chemical engines, forty hose carts, with an abundance of hose, over 1,000 fire extinguish ers, and a powerful fire tug. This tug was constructed with special reference to service on the lagoons. So far as water is concerned, the pumping facilities will be ample for a city of thousands of inhabitants when com pleted.
A dozen or two carriages have been doing a thriving business for several months in carrying visitors about the grounds. But these and all other vehicles are now shut out of the grounds, so that there shall be no hinderance from them to the rush of installing exhibits that
been used by the carriages cross the railway tracks in several places and would interfere more or less with the running of trains. The many trucks which handle exhibits will now have full use of the driveways at each of the buildings. This order also prohibits visitors in the grounds from entering any of the buildings, both as a protection to exhibits and to prevent intererence in the work of placing the exhibits.
The cold weather and heavy snow storms during the first half of the month very materially affected the progress of the work at the park. Very little out-door work could be done, and the force of men employed was less than 5,000 . Many car loads of exhibits got delayed on the road, still further hampering progress. These belated exhibits are now coming into the park by trains, and the number of men employed is being rapidly increased. It is expected that they will aggregate about 15,000 men by March 1 . A customs department has been established, with a force of inspectors that will soon aggregate 20 men.
An occasional threat comes from "organized labor" to boycott the Fair because it cannot dictate as to how thingsshall be run. Cigar makers are aggrieved because the authorities would not rule that only union-made cigars should be sold in the grounds. In this connection, it should be said that smoking will be closely restricted because of possible dangers by fire. Another threatened labor trouble has been with the painters. They are aggrieved because of the use of a small machine for painting. Two men, with one of these ma chines, can do as much work as 25 or 30 men with brushes. There are not painters enough in Chicago to complete the work without the use of these machines, so that the excuse for a strike is very slim.
Auditor Ackerman has made a statement of the finances of the Exposition, in which he shows that finances of the Exposition, in which he shows that
$\$ 14,593,317.14$ have been spent. Of this amount, construction alone has cost $\$ 12,649,072.59$. The expenses for the month of January were $\$ 1,131,284.30$.
The work of construction is now practically done, except in the case of some minor structures. The great passenger station at the railway terminal still has much staff work to be done, as the intensely cold weather came at a time when this work was scarcely begun. The staff, however, has been made ready, and it is only a questton of two weeks or so in putting it in place. Music Hall is only in the frame as yet.

Dr. Norvin Green.

On February 12, at 7 A. M., Dr. Norvin Green, president of the Western Union Telegraph Company, died at his home in Louisville, Ky. He was born in New Albany, Indiana, April 17, 1818. Early in life he was taken by his parents to Kentucky. There he received his early education. In 1840 he graduated with honors from the University of Louisville, as a doctor of medicine. He soon became physician to the Western Military Academy, Drennon Springs, Ky. James G. Blaine was then one of the junior instructors there. For a number of terms he was a member of the State legislature, and in 1853 he was United States commissioner in charge of the construction of the national building in Louisville. While holding this position he became one of the lessees of the United Morse and People's Telegraph wires, connecting Louisville and New Orleans. The companies were united under the title of the Southwestern Telegraph Company. This marks the beginning of his connection with the telegraph interests of the country. In 1866, when the graph interests of the country. In 1866, when the
Western Union, United States, and American lines consolidated, he was chosen vice-president. With some intermission he held this and a similar position until on April 23,1878 , he was elected president of the Western Union Telegraph Company. This position he held to his death. He was a man of high executive ability, having the art of doing a great deal without exhausting himself under the great responsibilities of his position.

Esparto Grass.

Esparto grass has recently been recommended for introduction into the United States as a fiber plant. It is a native of Spain, Portugal, Greece, and Northern Africa, thriving upon sand and gravel in arid situations, and growing especially well on limestone and gypseous soils. It is not cut, but pulled, sometimes twice a year. It can be grown either from seeds or divisions of the roots. Ten tons of dry esparto, worth from $\$ 20$ to $\$ 25$ per ton, can, under favorable circumstances, be obtained from an acre. In Spain, where now the product amounts to from 70,000 to 80,000 tons annually, it formerly ran to waste or was used only as fuel. Now, such is the demand for it, that land considered valueless a few years ago is worth thousands of dollars. About 60,000 tons are sent to Great Britain annually from Spain. In the latter country it is used in the manufacture of ropes, baskets, sandals, matting, etc., while in England it is largely used in making ropes and paper. Good writing paper is made from it without the admixture of any other material, and the price of this paper varies from $\$ 200$ to $\$ 250$ per ton. There is certainly an opening in this country for some There is certainly an opening in this country for some
enterprising individuals to grow this grass.-J. F. J.

SINGULAR ACCCIDENT TO A STEAMER AT SEA. The steamship Elrie left St. Vincent, Cape Verde Islands, December 27, 1892, for this port. When in the Gulf Stream at 3 A. M., January 11, Captain Creeden was startled by a tremendous pounding between decks under after hatch No. 3. Upon investigation he found that the spare propeller had broken loose from its lashings, and.was rolling from side to side, striking the sides of the vessel with great force, breaking two of its blades close to the hub. Striking the starboard with greater force than usual, it made a hole about six feet square, in which it stuck. The captain with his men quickly threw chains around it, and secured it there. In the mean time the propeller shaft threatened to break its lashings to the side of the vessel. Captain Creeden seized a scantling, and using it as a lever, held the shaft in place while his men lashed it firmly. Attention was then given to the broken blades, which were flying around like cannon balls. With difficulty they were lassoed with chains. When all was secured the holes in the sides of the vessel were stuffed with dunnage, and the vessel proceeded on her way to this port, which she reached January 17, 1893.
Propeller weighs about 12,000 pounds; width of blade, 3 feet 6 inches; length of blade, 7 feet; hub, 2 feet 8 inches thick; diameter of shaft, 16 inches.

Our illustrations are from photographs taken from the ship after her arrival at New York. One of our views shows the exterior of the side of the ship with the propeller projecting partly through the side of the vessel. The other is an interior view, between decks, showing the propeller as finally secured.

Colorado Climates.

At the annual meeting of the Royal Meteorological Society, held recently in London, Dr. C. Theodore Williams, president, delivered an address on "The High Altitudes of Colorado and their Climates," which was illustrated by a number of lantern slides.
Dr. Williams first noticed the geography of the plateaux of these regions, culminating step by step in the heights of the Rocky Mountains, and described the lofty peaks, the great parks, the rugged and grand canyons, and the rolling prairie, dividing them into four classes of elevations between 5,000 feet and 14,500 feet above sea level. He then dwelt on the meteorology of each of these divisions, giving the rainfall and relative humidity, and accounting for its very small percentage by the moisture being condensed on the mountain ranges of the Sierras lying to the west of the Rockies, also noticing the amount of sunshine and of cloudless weather, the maxima and minima temperatures, the wind force, and the barometric pressure.

Dr. Williams quoted some striking examples of electrical phenomena witnessed on Pike's Peak (14,147 feet) by the observer of the United States Weather Bureau, when, during a violent thunderstorm, flashes of fire and loud reports, with heavy showers of sleet, surrounded the summit in all directions, and brilliant jets of flame of a rose-white color jumped from point a rose-white color jumped from point
to point on the electric wire, while the to point on the electric wire, while the
cups of the anemometer, which were revolving rapidly, appeared as one solid ring of fire, from which issued a loud rushing and hissing sound. During another storm the observer was lifted off his feet by the electric fluid, while the wristband of his woolen shirt, as soon as it became damp, formed a fiery ring around his arm. The climate of the parks is, however, Dr. Williams considered, of more practical interest, and in these magnificent basins of park like country interspersed with pines, and backed by gigantic mountains, are resorts replete with interest for the artist, the sportswith interest for the artist, the sportsman the man of science, and the seeker Most of them lie at heights of from 7,000 fer health. $\begin{aligned} & \text { the greater part of the State does not fall below } 5,000\end{aligned}$ eet, and so good is the shelter that usuollet to $9,00 \mid$ feet. 2. Great atmospheric dryness, especially in winot long remain on the ground ; cattle in excellent condition are able to f ferefordshire good herbage, and to lie out all the winter without ant sunshine all the year round, but especially in winshed or stable. Dr. Williams predicted for these parks \mid ter and autumn. 5. Marked diathermancy of atmo-

ACCIDENT TO THE STEAMER ELRIE-EXTERIOR VIEW.

other health stations, which can be inhabited all the year round, and where most of the comforts and luxuries of American civilization are attainable in a climate where not more than half a day a week in winter is clouded over, where the rainfall is only about 14 inches annually, most of which falls during summer thunder storms, where the sun shines brightly for 330 days each year, and where the air is so transparent that objects 20 miles off appear close at hand, and high peaks are calculated to be visible at a distance of 120 miles. Dr. Williams summed up thus: The chief features of the climate of Colorado appear to be: 1. Diminished barometric pressure, owing to altitude, which throughout ter and autumn, as shown by the small rainfall and low percentage of relative humidity. 3. Clearness of atmosphere and absence of fog or cloud. 4. Abund-
sphere, producing ancincrease in the difference of sun and shade temperatures varying with the elevation in the proportion of 1 degree for every rise of 235 feet. 6. Considerable air movement, even in the middle of summer, which promotes evaporation and tempers the solar heat. 7. The presence of a large amount of at solar heat. electricity. Thus the climate of this State
mospheric el is dry and sunny, with bracing and energizing qualities, permitting outdoor exercise all the year round, the favorable results of which may be seen in the large number of former consumptives whom it has rescued from the life of invalidism and converted into healthy, active workers, and its stimulating and exhilarating influence may also be traced in the wonderful enterprise and unceasing labor which the Colorado people have shown in developing the riches, agricultural and mineral, of their country.

Commitment of Lunatics.
Dr. Carlos F. Macdonald, State Commissioner in Lunacy, points out some popular errors in a recent letter to the New York Times bearing upon the commitment of an insane person to the Hudson River State Hospital, on an alleged false representation. He says among other things :
"It will be seen that under the present regulations it is practically impossible to secure the continuous detention in any institution for the insane in this State of any person who is not a fit and proper subject for commitment. Even in the Rappaport case, where it appears that the certify ing physicians had failed to qualify with the commission, there was evidenty no wrongful intent, the case being a proper one for commitment and the physicians having acted in entire good faith, but in ignorance of the law of 1889. In re futation of the popular delusion respecting the ease and frequency with which sane persons are committed to asylums for the insane, the assertion so of ten flippantly made that almost any two doctors can be induced for a consideration to certify to the insanity of a sane person, in order to enable his relatives to get him out of the way, does the medical profession a great injustice. During the more than twenty years that I have been professionally connected with hospitals for the insane, also in my official capacity as the medical member of the Commission in Lunacy, I have had occasion to examine thousands of cases in custody-either at the request of others who thought them sane, or frequently at the solicitation of patients themselves-and I have yet to find a single case of whose insanity I had any reasonable doubt, except in certain convalescent patients who were about ready to be discharged as re covered. I have, however, known of cases in which the commitment pawers were defective, and also, though very rarely, instances of mistaken diagnosis, in which the delirium of fever, alcohol, etc., has been mistaken for insanity proper, and the case sent to an asylum. But, to the credit and honor of the medical profession be it said, 1 have yet to find an authenticated instance of a sane person being certified as insane, and incarcerated in an asylum through fraud, corrupt collusion, conspiracy, or wrongful intent on the part of medical men."

Artificial Maple Sugar.
Decoctions or extracts of the wood or bark of trees are frequently used for flavoring sirups or sugars. Different extracts differ in taste. The hickory tree it is said yields an extract that will impart the flavor of the maple, and Daily's method of producing artificial maple sirup or sugar is as follows :
Make an extract of hickory bark or wood by allowing water to percolate through the same. The bark or wood may be ground, or sawdust therefrom used. Hot water may be used, or the material boiled in water. The strength of the extract may be increased by he greater part of the State does not fall below 5,000 increase of the quantity of the wood or bark.

To one gallon of hot or boiling sugar sirup add say three tablespoonfuls of the hickory extract. It is said the effect of the extract is to produce a flavor that renders the sirup indistinguishable from genuine maple ugar. If the sirup is boiled down, a sugar resembling maple sugar in taste is produced.

AN IMPROVED WRENCH.

The illustration represents a simple and durable wrench, patented by Mr. Charles H. F. Kraft, in which the jaws may be quickly and conveniently adjusted for different sized work. Fig. 1 shows the tool in perspective and Fig. 2 is a side sectional view. The fixed jaw on the outer end of the handle consists of a U -shaped removable piece held in position by a pin, and the movable jaw is mounted to slide on an inclined tongue of a head held longitudinally adjustable on the wrench handle, and adapted to be locked on it. The jaw is wedge-shaped, and in moving it in or out in its guideways it moves nearer to or farther from the fixed jaw.

rrafts wrenci.

The movable jaw is held in place by a pin held transversely in its sides and engaging a slot in the tongue of the head. In the front face of the tongue of the head and in the under side of the jaw are recesses containing a spring to hold the jaw in an innermost position, as shown in Fig. 2. The movable head is locked in place on the handle by a toothed dog having a tongue engaging a slot in the lower end of the head, while on the opposite edge of the handle, is an eccentric cam mounted on a pin supported in lugs projecting from the head, and when the handle on the eccentric is swung away from the wrench handle, the head carrying the movable jaw can be readily moved along the handle. This wrench, while being a superior tool for pipe work, is also designed to have great efficiency for general use. The jaws being parallel allows it to grip any square nut or-bolt head, and when once adjusted to the size required it cannot be changed by being moved on the bench. It is a strong wrench, and its quick and easy release from a pipe makes it very convenient in use. Further information relative to the improvement may be obtained of the Kraft Ideal Pipe Wrench Co., Bat tle Creek, Mich.

AN IMPROVED TRACTION ENGINE.

The machine shown in the illustration, patented by Mr. James A. Stout, can be propelled at a high or low rate of speed, and readily changed by the engineer from one speed to the other without removing or rearranging any of the parts. Fig. 1 shows the engine in
tudinal keyway, is a second driving pinion, B , adapted to slide longitudinally on the hub, such movement being effected by a shifting segment by means of a handle in ready reach of the operator. The gear wheel, A, forming part of the gearing for the traction mechanism, is in alignment with the first small driving pinion, C , but is adapted to be engaged by the larger driving pinion, B, when the latter is shifted transversely. For this purpose the gear wheel, A, is mounted on a stud held on a bearing sliding in a segmental guideway formed on a pillow block, a pin on the bearing being connected with an upwardly extending lever, as shown in Fig. 3, by moving which the bearing can be shifted so that the gear wheel, A, is moved in or out of mesh with thesmall driving pinion, C. The gear wheel, A, does not move out of mesh with the traction gearing when the lever shifts the bearing, and the friction pulley in its normal position is always in contact with the belt pulley, being pressed thereon by springs in line with the driving shaft. When the engine is used as a power for thrashing machines, the belt can be readily tightened or loosened by running the traction engine a short distance forward or backward at a slow speed.
Further information relative to this improvement may be obtained of the Harrison Machine Works, Belleville, Ill.

The '6 New Mesmerism."

Within the past few months most wonderful tales have appeared from time to time in the dailypress concerning certain mesmeric performances in the Paris hospitals. It was gravely stated that Dr. Luys, of La Charité Hospital, had obtained such a development of hypnotic suggestion as to bring about a transference of sensibility to inanimate objects. For example, a person in the hypnotic state would receive a suggestion that a glass of water was part of himself and was capable of sensation. Then the glass would be taken out of his sight, and when the contained water was agitated the patient would be visibly disturbed or even give evidence of acute suffering. Other inanimate objects were capable of receiving like impressions, and there was apparent danger that this "externalization of the sensations," as it was called, would come to be regarded as an accepted fact by not a few prominent scienfific men with more imagination and credulity than sound common sense.
Mr. Ernest Hart, when in Paris recently, had his attention drawn to these seemingly astounding manifestations of occult force, and was so impressed with what he saw that he determined to seek out the cause. It took him but a very short fime to see that the subjects of these hypnotic experiments were impudent impostors, and that Dr. Luys was the victim of gross fraud. He suggested to the doctor the employment of certain simple tests, such as the substitution of inert substances for the drugs in sealed tubes which were supposed to act upon the subjects when brought near the body. Dr. Luys, however, declined to act upon this suggestion, saying that he could perform the experiments only in his own way, and if they failed to convince he could only express his regret. Mr. Hart then procured the attendance of five of these subjects in his own apartments and repeated the experiments in the presence of a number of Parisian and foreign medical men. The same phenomena, he says, in a communication to the London Times, "were reproduced with sham magnets, with substituted figures, with minnamed medicinal substances, and with distilled water, and with sham 'suggestion,' opposite suggestion, or none at all. Every one was able to convince himself that all the results so shown were, without exception, simulated, fictitious, and fraudulent. That some of the patients were hypnotic and hysterical in a high degree does not alter the fact that from beginning to end they all showed themselves to be tricksters of the most barefaced kind; some of them very clever actors, possessing dramatic powers which might have been turned to better purposes, most of them utterly venal and some of them confessing that they played upon the credulity of Dr. Luys for their own purposes."
It is strange to think
that men of scientific me-
perspective, Figs. 2 and 3 being partial plan and side dical training can be so thoroughly duped in this closviews. On the main driving shaft is a small driving ing decade of the nineteenth century, and we may well pinion, \mathbf{C}, bolted to the hub of the belt pulley, and on the inner surface of the rim of the belt pulley acts a friction pulley having a hub turning loosely on the hub of the belt pulley. On the outside of the hub of the friction pulley, and secured by a key in a longi-
pause to ask ourselves whether, after all, the world is any less credulous than it was in the good old days of witchcraft and diabolism. There may be a greater number of hard-headed skeptics abroad, but a large portion of mankind is still hungry for the incompre-
hensible and the supernatural, and as religious faith wanes superstition seems but to take a firmer hold on certain minds.-Medical Record.

A SHIFTING DEVICE FOR ELEVATORS.

The illustration represents a device more especially designed for grain elevators used to load or unload vessels, being adapted.to conveniently shift the elevatorleg to hold it in contact with the grain. The improvement is in practical service in a Buffalo, N. Y., elevator, where it is said to be giving good satisfaction. It has been patented by Mr. James Flemming, of No. 290 Perry Street, Buffalo, N. Y. The elevator leg slides in Perry Street, Buffalo, N. Y. The elevator leg slides in
a frame extending horizontally from a post, and on the upper end of the leg are trunnions which extend through slots in braces connecting the front end of the frame with the upper end of the post. The outer ends of the trunnions are engaged by a bail connected with a rope extending over a pulley, the rope being connected with a suitable device for pulling the leg up or

FLEMMING'S ELEVATOR SHIFTING DEVICE.
letting it down. The back of the leg is supported by a friction roller journaled in the free end of a pusher arm pivoted on the frame, this arm being also connected with a rope extending forwardly and upwardly over a pulley in the outer end of the frame, thence to and around a drum turning on a stud on the vertical post, the rope then passing upward over a sheave, and supporting at its lower end a weight designed to counterbalance the weight of the elevator leg. At one end of the drum is a pulley over which passes an endless chain or rope, which passes also over a-pulley provided with a hand wheel near the ground, and by manipulating this chain or rope the drum is turned to wind up or unwind the rope connected with the forward end of the pusher arm, giving the latter a forward or backward swinging motion, whereby the lower end of the leg can always be held in contact with the grain.

THE LOVELL DIAMOND CYCLE.

The new Lovell Diamond cycles, one of which is shown in the accompanying cut, are constructed much the same as the 1892 model, but with a few improvements, among which is a new Diamond frame of the Humber pattern. Lightness and strength are attained by the use of the best English seamless steel tubing, combined with American steel drop forgings. The patent adjustable ball bearings are supplied to all

STOUT'S TRACTION ENGINE.

THE LOVELL DIAMOND CYCLE.
running parts, and are fitted to both wheels, crank shaft pedals and head. These bearings are constructed alike. The balls are adjusted by an adjustable cone on one side and a stationary cone on the other, the bearings adjusted by the former. Removable hardened steel ball cups and ball-retaining washers are used. A leading feature in these bearings is that, in the
event of an accident, the cup can be replaced at a very small cost.

In the two small cuts we show a peculiar feature of construction of the saddle. By turning a screw at the end, any slack in the leather covering can be taken up at once. The other view shows how by turning a screw the position of the saddle can be in-

stantly changed on the bar, as well as the tilt of the saddle arranged to suit the rider.
The Lovell Diamond cycles have been in the market for several years. All the parts are thoroughly tested before entering into the machine and extreme care is taken in the fitting. The John P. Lovell Arms Co., of Boston, make a large variety of Diamond cycles suited

for ladies and children as well as gentlemen, and will be pleased to mail their new catalogue on application.

A Peculiar Fire

In the Ladies' Home Journal for January is an account of a fire from gasoline ${ }^{-t}$ that originated in a rather peculiar manner. A lady was cleaning a Brussels carpet with gasoline. She had cleaned about one-third of the carpet when she noticed one spot that looked a little dull and which must have a little more rubbing. She says, "I gave one quick, hard rub, the cloth in my hand ignited. There was a sort of a puff, and the flames went creeping all over the carpet I had cleaned." The explanation suggested was that the friction ignited the gasoline, but no suggestion is made as to whether that was caused by raising the temperature to a high degree, as might ordinarily happen by friction or whether it was otherwise.
Professor G. D. Shepardson, of the University of Minnesota, writing to Science in respect to the above, says: Some of my experience in the cold, dry climate of Minnesota has suggested a very plausible explanation for this accident, which seems surprising that such accidents are not more frequent. Our sleeping room has an ingrain carpet, from which we get marked electrical experiences. On a cold morning one can hardly take a step without being strongly electrified. By shuffling across the carpet, taking only two steps, I have many times drawn a spark one-eighth of an inch long. By taking a dozen shuffling steps and touching the water faucet I have several times drawn a spark nearly one-half of an inch long. Indeed it is so common and so excessive that it is quite uncomfortable. I have several times thought seriously of getting up some arrangement for gradually dissipating the charge on one's body, so that we can avoid the unpleasant shock when using the water. It should be stated that this high degree of electrification is not an every day experience, but it is very common when the thermometer in the room goes below 50 or 40 degrees Fah.

A similar experience is very common here when one is putting on a fur overcoat or one simply with a fur collar. The simple rubbing of the fur in putting on the coat will so electrify it that one gets a prickly sensation from the charge from the collar when it is turned up against one's neck. Quite frequently simply pick ing up a flannel undergarment will so electrify it that one hears a decided crackling. These experiences are very common here in Mínnesota with the dry atmo sphere, and are quite surprising to one accustomed to the more moist climate of New York of the seacoast.
This experience suggests at once that the gasoline in the case above noted was ignited by an electric spark caused by rubbing the carpet.

An Unusual Foundry Experience

A singular accident occurred recently in the foundry of the A. L. Swett Iron Works, Medina, N. Y., which seemed very mysterious.
Mr. Albert L. Swett, the proprietor of the works named, has a communication in the American $M a$ chinist relative to the matter.
We were melting a fifteen ton heat in a newly lined cupola, says Mr. Swatt, and soon after the blast went on a number of our men were affected by gas. Out of about fifty employed in the room, seventeen were so overcome that it required prompt medical aid to restore them. They seemed to become paralyzed to a certain extent, and unable to help themselves. Some of them seemed to suffer intense agony, while others seemed
more in a paralyzed condition. And from the statement of the doctors who handled the cases, it seemed to paralyze the lungs to such an extent that it was necessary to work rapidly in order to restore the action of the blood through the system. In about two hours or more, with the assistance of four physicians and what other help we could get, all were restored sufficiently to be taken to their homes, and the most severe cases were kept away from their work only four to five days.

As to what caused the gas to affect so many at this time is unaccountable. From actual experience of over twenty-five years in the business, I have never seen nor heard of anything like it before, and in conversation with old moulders they claim they never had. The moulding shop had been idle for two days. All ventilators were closed, and the gas, after putting on the blast, seemed to settle to the earth instead of going to the chimney. It was not our custom to open the ventilators until the room was warmed somewhat from the melted iron; doubtless the gas was all retained in the room.

What Constitutes Good Vulcanized India Rubber
An investigation has recently been conducted by Lieut. L. Vladimiroff, at the St. Petersburg Technical Institute, with a view to establishing rules or tests whereby the quality of vulcanized India rubber may be efficiently judged. It is a notorious fact that no method of chemical analysis gives reliable results for this substance. Hence the tests applied were chiefly of a physical nature. From a lengthy series of experiments the following conclusions were deduced, namely :

1. India rubber should not give the least sign of superficial cracking when bent to an angle of 180° after five hours of exposure in a closed air bath to a tem perature of 125° Centigrade. The test pieces should be 6 centimeters thick.
2. Rubber that does not contain more than half its weight of metallic oxides should stretch to five times its length without breaking.
3. Caoutchouc, free from all foreign matter except the sulphur used in vulcanizing it, should stretch at least seven times its length before rupture.
4. The extension measured immediately after rupture has taken place should not exceed 12 per cent of the original length of the test piece of rubber. The test piece should be from 3 to 12 millimeters long, 3 centimeters wide, and not more than 6 millimeters thick.
5. Softness maybe determined by measuring the percentage of ash formed on incineration; it may form the basis for deciding between different grades of rubber for certain purposes.
6. The vulcanized rubber should not harden under the influence of cold temperature
These conclusions are to serve in the establishment of rules governing the introduction of vulcanized rubber in the Russian navy.-The Electrician.

A LABOR-SAVING SCREW DRIVER.

The "Howard-Allard" spiral, clutch, triple bit screw river has recently been offered to the trade in new designs, though retaining all the original valuable features of the old Allard. This tool is especially adapted for light and rapid work, and is invaluable for mechanics having large quantities of small screws to drive. There is no turning of the hand and twisting of the wrist to drive a screw, which is effected by simply pushing the handle. The tool may be used as a spiral, ratchet, or ordinary screw driver. If it is found that a screw cannot be driven to its place by use of the spiral, it is readily done by using it as a ratchet or ordinary screw driver. It is provided with three bits nicely finished, of different sizes, to enable the operator to select one to fit any size screw he may wish to use. These bits can be instantly interchanged and secured in the chuck or clutch provided for the purpose. The knurled nut of the clutch is made of steel, and the socket of steel, as is also the spindle, which is provided with four spiral grooves, which are cut deep and have square sides, and grooves in the extra long nut through which it passes into the handle. This gives it nearly four times the bearing surface to wear usually found in this class of nuts. The handle is made of thoroughly seasoned hard wood, nicely finished. The whole tool is not only attractive, but also very strong and durable.
This implement is manufactured solely for the Alford Berkele Co., 77 Chambers Street, New York City.

According to Wieck's Illustrivte Gewerbeblatt, the steam power at the disposal of the civilized nations was, in 1888, as follows :

	Horse powers pe 100 inhabi-	
Great Britain.	Horse powers.	
France.	4,520,000	11
German Empire.	6,200,000	13
Russia..	2,240,000	3
Austria	2,150,000	5
Italy...	830,000	3
Spain	\%40,000	4
Portagal.	80,000	2
Sweden..	300,000	7
Norway.	180,000	9
Denmark.	150,000	8
Holland..	340000	8
Belgium..	810,000	14
Switzerland	290,000	10
Other European countries.	600,000	6
United States of N. A.	.. 14,400,000	24
Colonies.	. 7,120,000	-

According to the above table there were, in 1888, a total of $50,015,000$ horse powers at the disposal of the civilized nations. The steam horse power is considered equal to three animal horse powers, and the latter to seven man powers. Hence every round million of horse powers represents not less than a thousand millions of man powers. Now, if we suppose a horse power to work, on an average, as long as a man, 1,000 millions of "man powers" are equal to 1,000 million men.
However, the civilized nations have only during the last few decennials come into the possession of these thousand millions auxiliary workmen. Although the steam engine was invented in the last century, there were, in 1840, only $1,650,000$ steam horse powers in the same territory which now has over 50 millions at its disposal. Even in 1860 there were not more than $9,380,000$ steam horse powers.
Now, as regards the distribution of the steam horse powers over the different countries, Great Britain lead with 25 horse powers per every 100 inhabitants, but is closely followed by the United States, with 24 horse powers per every 100 inhabitants. Next of importance, as industrial countries, are Belgium and Germany, then France and Switzerland, which are followed by the Scandinavian countries and Holland. By way of Austria are reached the countries of inferior industrial importance, of which Spain is the most prominent, while Italy ranks with Russia. However, it would be wrong to think of the greater portion of the above mentioned horse powers as being used for actually "industrial" purposes. Of the 50 millions steam horse power, only 10 millions belong to "stationary" steam engines, the remainder being divided between railroads (32 millions) and steamboats (8 millions). Hence, of the 1,000 millions auxiliary workmen who, in the form of steam engines, to-day perform service for us, not less than 800 millions are especially employed in the carrying of passengers and goods, and only 200 millions remain for industrial and agricultural purposes. It is estimated that, in 1888, the railroads of the world transported 1,430 millions tons, while $146,400,000$ tons were carried by vessels, including both steam and sailing vessels. Among the articles transported by sea, coal, with 26.2 per cent, occupies the first place. Next follows wood, with $17 \% 3$ per cent ; then grain, with 9.3 per cent. All other articles are of comparatively smaller importance, iron forming only 3.2 per cent of the entire transport ; fabrics for clothing, $2 \cdot 1$ per cent; sugar, 18 per cent ; and cotton, 1 per cent.

Radiation Through Vacua.

The experiments of Professor Dewar upon the effect of high vacua on the radiation of heat, undertaken in the course of his researches with liquid oxygen, lead to some interesting considerations that may cause us to modify entirely our conception of radiation of the sun's heat. It has been usually taken that the long heat waves, as well the short light waves, came direct by radiation from the sun, and that consequently an enormous amount of energy was continually being dissipated. But Professor Dewar's experiment tends to show that an absolute vacuum is entirely impervious to low waves of heat radiation. Interstellar space, therefore, though transparent to light radiation, does not presumably convey heat radiation at all, and the heat waves manifest in the atmospbere are created there. We see in this the necessity for remodeling our theories upon the time required to cool the earth down; for, if space is impervious to heat radiation-as is Professor Dewar's vacuum-we need not fear cooling on this account. The interstellar space has lost one of its properties, and at a stroke, by a simple experiment, a huge proportion of the supposed available energy of the solar system disappears.

Tunneling the Simplon.-Work on the new Simplon tunnel has been commenced. When completed it will be the longest tunnel in the world. It will extend from Brieg, in Switzerland, to Isella, in Italy, and its total length will be $121 / 2$ miles. It is expected that from eight to nine years will be occupied in the con. struction of the tunnel.

NEW METHOD OF GAS SUPPLY FOR NEW YORK CITY.
The city of New York, at the present time, is supplied with gas from works situated within its limits, not merely inside of the corporate lines, but in close proximity to the most thickly settled districts. In old times, when gas was made from bituminous coal, and of course on a far smaller scale than at present, gas works gave but little annoyance to those living near them. Almost the only source of annoyance was the disposal of the foul lime from the purifiers.

The increase in extent of the petroleum industry has brought about the introduction, on an enormous scale, of naphtha into the gas manufacturing industry. At
the present time not far from $1,000,000$ barrels measthe present time not far from $1,000,000$ barrels meas-
urement of naphtha are delivered in this city annually. The use of such large quantities of naphtha not only involves production of more or less disagreeable odors, but is attended by great danger of conflagration, whatever precautions are taken. There is always a chance of the naphtha breaking loose, and if it once catches fire, there is no telling where the damage will end. The naphtha tanks are generally situated close to the river fronts, so that the escaping fluid might find its way to the river, and, if so, by burning and floating, would carry the flames far and wide.
At present there are three companies in practical operation supplying the city with gas. The great consolidation brought about some years ago omitted one company, and since then a second has been put in operation, thus completing the three.
We illustrate in this issue the work that is now being carried on with a view to the introduction of gas into the city from across the East River. The East River Gas Company is a corporation that possesses rights of the most liberal description. Its charter authorizes it to make and supply gas and electric power, and to condemn property if necessary for its purposes, with full power to lay pipes throughout the city. It also is organized to consolidate or purchase the property of present gas companies. Its present works are in Long Island City, opposite 71st Street,
New York. They have hitherto comprised a small Low New York. They have hitherto comprised a small Low plying gas to the district and its vicinity.

Plans have been made for the construction of an enormous plant for carrying out the Low process under the methods of the United States Gas Improvement. Company. These plans provide for a works of a capacity of $24,000,000$ cubic feet per day. Work is at present in progress on what may be termed a $6,000,000$ cubic feet block of these works. A three-lift gas holder of 650,000 cubic feet capacity is now in process of erection. The old holder capacity is 200,000 cubic feet. Contracts for a four-lift holder of either $3,500,000$ or $4,000,000$ cubic feet capacity will be awarded at once.
The company own in fee simple an area of 250,000 square feet and they hold an option on several acres additional. Land in their vicinity is so cheap that they are virtually unrestricted in their powers of expansion. In this city, for the purpose of carrying out their work, they have purchased seven lots at the their work, they have purchased seven lots at the
foot of 71 st Street. By May 1st the new plant will be making gas for local supply.
The gas is to reach New York by a tunnel under
he East River, to the details of whose construction the East River, to the details of whose construction
our illustrations are more particularly devoted. It runs in a straight line across the East River from the foot of 71st Street to the site of the works on the banks of the East River, nearly opposite thereto. In its course it goes under Blackwell's Island. The rock penetrated has been exceedingly solid, consisting of gneiss, of a most excellent description for tunneling.
The section of the tunnel shows a straight-sided structure 8 feet high and 10 feet in diameter, with arched roof, whose general contour is shown with dimensions quoted. The tunnel is to accommodate three lines of cast iron pipe, one of 48 inches and two of 36 inches each, arranged as shown. Taking the length 36 inches each, arranged as shown. Taking the length
of the tunnel as 2,400 feet, this, by the ordinary approximate rules of the gas engineer, gives a carrying capacity of 286,000 cubic feet per hour at $1 / 2$ inch pressure.
Our sectional illustration of the tunnel route gives an excellent idea of the general distribution and level thereof. The drainage, it will be seen, runs all to one end, where a sump is placed to collect any inflowing water. But the use of the tunnel is not only for three lines of gas mains. The company have already been offered $\$ 10,000$ a year, for a period of twenty years, for the privilege of a pneumatic tube. It is also among
the immediate possibilities that the East River Gas Company may, in accordance with its charter, develop into a great generating company for gas and power of all kinds, notably for illuminating gas and electric power. The immediate idea is, if possible, to sell gas to existing companies in the city or to acquire the property of those companies. The effects of such operations would be that the storage and use of naphtha within the city limits would be stopped. This in itself is a consideration of great importance.
The city gas companies own a great quantity of real estate. All of this now used by the gas generatreal estate. All of this now used by the gas generat-
ing works could be sold. As it happens, this part of
the property is the most valuable, as it fronts on the water, and the less valuable portion of the property, remote from the water front and containing the gas holders alone, would have to be retained. The concentration of gas manufacture in a single place would, of course, cheapen its production by reducing the salary list. The proximity of the works to the works of the Standard Oil Company enables them to receive their naphtha by a pipe line, and presumably to make very advantageous terms for its supply.

The Panama and Nicaragua Canals.
While the papers have been publishing full accounts of the Panama Canal scandal, and friends at home have been suffering from the bitter cold weather, we have been visiting the Panama Canal and also the Nicaragua Canal and have been uncomfortably warm. Landing at Aspinwall, or Colon as it is more frequently called, one finds more activity than was to be expected under the present state of affairs. The sun pected under the present state of affairs. The sun
beats down with never-ending energy, and the frightful heat is only partially relieved by the cooling effect of the northeast trade wind.
The influence of this wind is felt only in the northern end of the town, and is completely lost on arriving at the central and southern portions of the level plain on which the city is built.
Work on the canal being at a standstill, the city derives little support from it. Most of the inhabitants get their living by handling the freight that arrives here for shipment across the isthmus to Panama and the return freight. The railroad connecting Colon and
Panama is running, but not with the energy it had Panama is running, but not with the energy it had one passenger train per day, and few are the freight trains.

Colon has been twice nearly destroyed by fire, and these fires have had a cleansing and improving effect. The city is cleaner, healthier, better built, and in every way more habitable than formerly, and a citizen remarked that he thought it would be a good thing if the city would burn down about once in five years. There is no street-cleaning commission and no health board, and little is done to keep the health of the people. The arrangements for the care of the sick, however, seem to be very complete. The railroad company has a well-built, well-equipped, and well-managed hospital in the healthiest and most salubrious place on the north shore.
All along the route of the canal quiet reigns. A few years ago there was no Sunday there, but now every day seems a Sunday. It is not true, however, as some would have us believe, that everything has been neglected and allowed to go the dogs. Allowances must be made for the effects of climate and the peculiar condition of affairs, and when that is done it is surprising how successfully cared for have been the houses, the the canal company. To be sure, one sees much rusty iron, but the important machinery is protected and preserved by careful keepers or watchmen in the employ of the canal company. The tow boats, launches, lighters, etc., are housed in and protected from the
weather, their machinery white-leaded and oiled, and periodically overhauled, turned over, and kept in such good order that I doubt not that ninety per cent of these boats could be put into service inside of a week. The houses are in good condition, though the hot and damp atmosphere has caused the usual decay of wood work, notably of the porches and exposed parts. The excavated portions of the canal are filling in, but
not to an extraordinary degree. The heavy fall of water during the rainy season has washed down the banks and there have been numerous land slides, but not even to the extent that was expected by the projecting engineers. The receiver in whose hands the canal property now rests is expending about thirtyfive thousand dollars a month in preserving the plant. Much interest is manifested by all classes at Colon in the development of the Paris scandals. The Colombians believe in the ultimate success of the canal, and, as they derive a large revenue from the building of the canal and from those employed by the canal company, they are anxious to have work recommence, and it is safe to say that the government authorities of the republic of Colombia will do everything in their power to help the canal company to its feet. It will be some time before the fate of the Panama Canal is decided. In case work is resumed, it will be on the plan of a lock canal.
The original plan was a failure because of inadequate knowledge of the country, incomplete surveys, wrong estimates and ruin but not least, corruption.
The engineering difficulties of the new plan may be mentioned as the Culebra cut, the Gamboa dam and the control of the Chagres River. The most important one of the above is the dam, which is to contain 3,000 ,000 cubic yards of filling.
Those in position to know, and well-informed men generally, place the probable cost of completion at not less than $\$ 125,000,000$ and the time at not less than

Leaving Colon, a couple of days' sail put us at Greytown, Nicaragua, the eastern terminus of the Nicaragua Canal. The advantages claimed for this canal over its rival at Panama are, first, the greater ease of construction ; second, its more northern position; and third, the climate and prevailing winds are more favorable. The mechanical details are simpler and its position makes a material saving in distance between New York and San Francisco.
A great deal has been said about the harbor of Greytown being better than that at Colon or Panama. On visiting these places one fails to find it true. It is true, visiting these places one fails to find it true. It is true,
however, that Greytown has had a fine large harbor, but the sea has built a ridge of sand which incloses the harbor, thus forming a large lagoon. A pier or breakwater has been built, running out normal to the coast, and to the westward a channel or entrance to the lagoon has been dredged. The breakwater is now about one thousand feet long and is composed of creosoted piles. This, however, is only a framework, temporary on account of the destructive tered.o, and is to be filled in with natural and artificial rock, part of which is already in place. To the eastward of the pier the shore line has made out about seven hundred feet. The channel to the westward does not get as much scouring out as was hoped for. There is ordinarily about eight feet of water on the bar. The breakwater will probably have to be continually extended, water will probably have to be continually extended,
and constant dredging will be necessary to keep the ent constant dredging will be necessary
Work was commenced on the Nicaragua route about five years ago, and the progress has been good. Necessary buildings have been built in the most economical style, stores for material established, machine shops started, dredges, tow boats, and barges bought and put to work, and a short line of railroad constructed.
On a hand car we took a run over the railroad, which is now nine miles long. One is struck with wonder while looking at this piece of work, and cannot help admiring the pluck and perseverance of the builders. The road runs parallel and close to the canal line. It runs through a swamp land, and, when they started to build it, there was nothing but a dense forest of trees and undergrowth, the ground being covered to a depth of four or five feet with stagnant water, saturated with decayed vegetation. Men stood in this water up to their shoulders and laboriously chopped and felled the trees. Many of these trees were of wood as hard and unimpressionable as iron. A strip of swamp land was cleared to a width of about eighty feet and for a distance of six miles. The trees were trimmed and then formed into a cribwork along the line of the road, and on this cribwork stringers, ties, and rails were laid. Sand from the dredges was dumped on this, packing down through and around the timber, thus forming an embankment. . Where the embankment sank down into the mire of the swamp, more timber and sand was added. Thus was made the roadbed that many engineers said was impossible of construction. The cost was forty per cent less per mile than the original esti. mate. This road is to be used in transmitting material, tools, equipments, etc., to different points along the line of the canal.
The two large dredges, the City of Paris and the City of New York, have started on the work of dredging, and have cut since January, 1891, a channel 1,500 feet long, 280 feet wide, and 20 feet deep. The track of the canal has been cleared of trees and underbrush for eleven miles. The manner in which one of these dredges eats into the earth is astonishing, and perhaps the reader can form an idea when I say that in each minute fourteen buckets full are scooped out, each bucket holding a cubic meter. Imagine a block of earth nearly as large as the room in which you are sitting being removed in a minute, and then imagine that operation being repeated every-moment of the day and night.
A telegraph line has been constructed, so that there is communication all along the line of the canal, through to Brito, on the Pacific coast.
The total length of the canal route is 169.5 miles, of which 142 miles are free river and lake navigation. Lake Nicaragua, the highest level, is 110 feet above tide water.
Estimates made by reliable disinterested men and engineers put the cost of completing the Nicaragua Canal at $\$ 100,000,000$. The route has been very horoughly surveyed, and the above estimate is thus based on comparatively reliable data.
The present outlook for the completion of the Nicaragua Canal is far better than for the Panama, but they both seem to be hipped in the same way. It is simply a question as to which company can first get the necessary funds. F. R. Brainard, U. S. Navy.

Elixir of Cascara Sagrada.

Dujardin-Beaumetz (Gaz. Gynecologique) recommends the following as a remedy for constipation: Fluid extract of cascara sagrada, 90 gm .; pure glycerine, 90 gm .; alcohol of 90 per cent, 200 gm .; simple sirup, 400 gm ; oil of orange, 6 drops; oil of cinnamon, 2 drops; and sufficient distilled water for 1 liter. Dose 2 drops; and sufficient distilled water for 1 liter. Dos.
-a wineglassful after meals.-Am. Pharm. Jour.

DISTRIBUTION OF HOT WATER AT PARIS The distribution of cold water to houses in large cities has now become a necessity. How convenient and even useful would it not be to have hot water also under the same conditions. We have constant need of it for many purposes. In certain cities of the United States it is distributed by pipes, and perhaps it will be so distributed in France some day, but up to the present there has been no question of it. In the meanwhile, a company has just installed in Paris a series of small structures similar to newspaper kiosks (Fig. 1), where, for a cent, one can at once procure from 8 to 10 quarts of water at a temperature of 60 or 80 degrees. These apparatus are automatic. The customer has only to place a coin in a slot and then push a button, when the flow will begin. How this is done we shall endeavor to explain by means of the details in Fig. 2.
The water is not, as might be supposed, heated in advance and kept in this state in a reservoir, but is heated at the moment that it flows, and the apparatus is connected with the city mains that lead the water through the conduit, A, to the meter, 0 . Thence it is led by the tube, a, to a bifurcation, b. Through one of the branches, E, it enters a reservoir, R, provided with an outlet, h, and a float valve, m, limits its entrance. Through the other branch, F, controlled by a
the customer's receptacle. The funnel, D, has a nozzle provided with a cock, and the opening is so calculated that it shall take about a minute to empty itself, the length of time necessary for the passage of 8 or 10 quarts of water into the coil. As soon as it is empty the counterpoise, p, lifts the rod, f, and closes the cock, r. Then everything stops.
We have said that the row of gas jets burns only at the moment desired. In fact, the pipe that supplies it traverses a box, V, with a valve, and it is the pressure of the water that opens the latter as soon as the cock, r, is itself open. A small gas jet, x, which is constantly burning, lights the row of burners. As for the coin, as soon as the pressure exerted upon the button is sufficient, it comes opposite a slot, whither it has been pushed by a spring, H , and falls into a box. The rod and the valve, as well as the button, resume their position and all is arranged for a second opera tion.
It will be seen that this system, which was devised by Mr. Robin, is most ingenious. It will render many services to the Parisian population. A cent is a small affair, but if one has not always need of 10 quarts of water he can make an agreement with a neighbor to divide, and each put in in his turn the coin necessary the company, the city operation. In its concession to

How Modern Cremation is Conducted.
Miss Mary B. Comyns, of Boston, a member of the Massachusetts Cremation Society, has issued "A Plea for Cremation," in which the ceremony of incineration is described as follows:
"The body, simply clad and placed in a coffin, is not put into the fire, as many persons suppose, but into a so-called chamber of clay, little larger than itself, which is wholly closed except for a few small perforations in the top, for the escape of the gases, which are conducted through the fire and consumed. This chamber is heated to a temperature of about $2,000 \mathrm{de}-$ grees. Nothing but heated air touches the body. It fies absolutely undisturbed, maintaining its perfect shape until the last moment, when the beautiful rosy color it has gradually assumed changes to white, and it instantly falls together in the form of pure ashes. Sad, yes, heartbreaking it would be to watch the process, because anything which takes from us forever the forms of those we love is sad and heartbreaking; but, when our dear ones have been buried, is there ever a moment during those years and years of terrible changes through which they pass, when we could bring ourselves to look upon them?
${ }^{6}$ The crematory which contains tho heated chamber may be as beautiful as money and refined taste can make it. The room in which the religious services ar

Fig. 1.-A PENNY-IN-THE-SLOT HOT WATER DISTRIBUTER

Fig. 2.-DETAILS OF THE MECHANISM. at Paris.
cock, r, it reaches the apparatus, CC, seen at the upper part of the figure. It is here that it is heated in traversing a copper coil 328 feet in length, under which burns a row of gas jets supplied by a pipe, U, that starts from a meter, G.
It is clear that the flow of the water, like that of the gas, is arrested while nothing is being drawn from the apparatus, which consumes only when it produces.
Let us now examine its working. It is set in operation by a pressure upon the button, B, represented apart upon a larger scale at the top of the engraving (Fig. 1). This button is connected with a rod which presents a gap that is filled by the coin that has been introduced into the slot, M. Before the coin is introduced the rod meets only with empty space, and the machine does not operate; but as soon as this space is filled, a second rod, t (Fig. 2), forming a continuation of the first, is likewise pushed and lifts a valve, S, which closes the orifice of a siphon, i, through which the water of the reservoir, R, flows to the exterior. This water flows rapidly into a funnel, D , mounted upon a lever and balanced by a counterpoise, p. As soon as it enters, it destroys the equilibrium in favor of the funnel, and the lever tilts and carries along the rod, f, which opens the cock, r, and permits the water to enter the copper coil. Herein it is immediately heated and escapes through the pipe, P, which extends to the exterior, and under which is
supply the carriage stations. In this way, the coachmen will be able, very easily and at slight expense, to renew the water of their foot warmers. It will be possible then to forbid the use of charcoal heaters, which have several times occasioned accidents. The laboring classes especially will very quickly see the advantages that they can derive from the hot water fountain. The copper coil that we have spoken of above is nothing else than a boiler of great heating surface. It is applicable to domestic uses, and Mr. Robin has for sereral years been constructing models which are adapted, in apartments, to the delivery pipes of the city water. This arrangement is very convenient for hair dressing saloons, bath halls, etc. It suffices to turn the supply cock by hand in order to obtain hot and even boiling water in an instant. A varying degree of heat may be easily obtained by regulating the velocity of the flow. It will be understood, in fact, that the more rapidly the water circulates in the coil, the less it becomes heated, and reciprocally. As for the operation of the system, that is the same as that which we have described above. There is a small burner always lighted, and it is the difference of pressure of the water at the moment that it flows that opens the gas inlet. If the apparatus has not to be used often, one can extinguish the burner and do the lighting by hand, either with a flame or electrically.La Nature.
held may be as quiet and peaceful as the chapels in our cemeteries. As the service is solemn and reverential, so is there neither carelessness nor levity when the body is removed to its final resting place. All is tenderly done for the moment, and we know that no harm can ever again come to the forms of those we have loved. Is it so with inhumation ?"

Boric Acid in Beer.

On the evidence of J. Brand, boric acid should be egarded as a normal constituent of beer. He has detected borates in the ash of Munich, other Bavarian, German, Austrian, and Brazilian beers, by the turmeric paper test, applied both to the ash itself and to the product obtained by distilling the ash with methyl alcohol and sulphuric acid, after Gooch. A search for the source of the boric acid resulted in the discovery that every variety of hops examined contained boric acid, not only in the strobiles, but in leaves, stalks, and tendrils. Barley and malt were found to be entirely free from this acid. No attempt appears to have been made at quantitative determinations; 100 cubic centimeters of beer sufficed for the detection of the boric acid and 5 grammes of hops always gave a certain reaction. It is a pity that such an excellent indication of the presence of genuine hop bitters in beer should be of a nature so easily imitated by the brewer.-Zeits. fur das ges. Braw.

Natural oyster grounds of south carolina. Mr. Bashford Dean, a specialist in regard to oyster culture, and at present engaged in the biological department of Columbia College, is the author of a report, recently published by the U. S. Fish Commission, on the natural oyster grounds of South Carolina, pointing out the advantages offered by the State for successful oyster culture. It is based upon observations made from December, 1890, to March, 1891. The entire coast margin of the State, excepting the immediate ocean shores, is shown to be well provided mediate ocean shores, is
with natural beds, but they differ strangely from the beds occurring further northward, since they skirt the shore in the fringing tidal reefs in such manner that the oysters live as much of their life in air as in water. At low tide the oyster ledges appear like hedges of frosted herbage, branching clusters or clumps of oysters being so densely packed together that individuals become modified or distorted according to their position on the cluster. The individuals that cap the cluster, projecting upward like flat-tipped fingers, have given them the local name of "raccoons," and these raccoon ledges, as they are called, form vast oyster flats, sometimes miles in extent, but the oysters are never found below the lowwater mark except as they have fallen from the neighboring ledges. Our illustration shows the zone for the attachment of these oysters between the levels of high and low water upon stakes and piling everywhere, as represented by a photograph taken March 12, 1891. The maximum size and abundance of the oysters is midway between the tide marks.
As a simple method of oyster culture, to transmute the tasteless raccoon into a table oyster, it is suggested that the raccoons, raked from ledges, be scattered in marginal waters about a fathom deep, where the bottom is suitably firm, when the time required for the raccoons to acquire the features of single oysters will vary according to season and locality, the period of conditioning being shortened by separating the clustered oysters before planting. The table oysters of the State, in many instances especially well flavored, are said to be almost entirely of this character.

THE VOLCANO MAUNA LOA.

A new interest attaches to this great volcano since the island in which it is situated is now likely to become practically one of our possessions. All of the twelve islands of the group are of volcanic origin, and are entirely composed of the products of eruption, although volcanic forces are still in operation in the island of Hawaii only. Mauna Loa is 13,760 feet high, and it has slight eruptions, or displays some form of activity, almost every year. There have been several years in which the eruptions were remarkably violent, viz., in 1851, 1855, 1859, 1868, 1881, and in 1887. In the latter year the first eruptions took place in January, when great streams of fiery lava, mixed with smoke and gases, rushed out of a newly opened crater, and during thirty-six hours there was an almost unceasing series of earthquakes, accompanied by tidal waves that were very destructive of life and property alongshore. The lava did not flow over the brim of the crater, but seemed to make its way downward by underground passages or through clefts in the mountain side, forming new reservoirs out of which the overflow
of lava poured down upon the plain. A correspondent who visited the scene at the time says :
"The writer in ascending the mountain came on one of these clefts, three-quarters of a mile long, and about 25 feet wide, apparently very deep, out of which the lava was pouring. A quarter of a mile higher up was a cone, the side of which next the sea had fallen in, disclosing a boiling caldron of molten materials. This liquid mass must have found a way underground to the great cleft just mentioned, and discharged its contents by it. Just a little above this cone another great

tidal zone of oyster distribution in south carolina, indicated dpon piling of wharf.
of the eruption immediately after the series of subterranean shocks, the island escaped the horrors of a regular earthquake, and the mischief was confined to rreat destruction of the plantations. Several days after the first outflow of lava (which lasted a fortnight) a fresh outburst occurred about 1,000 feet below the Mokuaweoweo, and a new outflow established itself, following the direction of the stream of 1859 , when the discharge continued with little interruption for 15 months. Explosions were being frequently heard, caüsed, no doubt, by expanding gases, which were followed by the projection into the air of columns of fire to a height of 500 feet."

Cobalt Plating.

The cobalt for plating is now bought up in bulk by two or three chemical manufacturers, and is al most entirely used at pre sent for blue coloring of glass and pottery and blue glaze. Its cost in reality is not more than that of nickel, but it is retailed at something about five times this cost. If cobalt plating, as suggested by Dr. Silvanus Thompson, were to come in, cobalt, being used more largely, would soon become as cheap as nickel. The process was patented, but the patent has now dropped through, and is therefore open to the world. The chief ingredient of the most practical process is Epsom salts, through which the silvery metal is deposited. The polishing is done with scratch brushes, and the resultant white coating is almost indestructible by damp or smoky air. Cobalt plat cleft opened, which proceeded up the mountain in zig- ing, in place of nickel, should be invaluable.
zag fashion to the crater Mokuaweoweo, the chief seat of the lava manufacture. For twelve days it sent down its river of fire fully 20 miles in length. The picture presented to the spectator at the spot was most re-markable-the snow-capped mountain discharging its glowing flood, at its foot the blue Pacific Ocean, with its.world of islands. Fifteen pillars of flame shot up from the crater to a height from 150 feet to 200 feet, while lower down the other lava reservoir sent up columns over 40 feet high. The crater at the top of the lava river was about 40 feet or 50 feet across, and it was sometimes girdled by a sort of nimbus of fire.
"In the 53 hours between 2 P. M. on January 16 and 7 P. M. on January 18, 618 distinct shocks of earthquake were noted. The lava stream was much more copious and energetic than in 1868. Then it was accompanied by an incessant rain of ashes, which covered the land

THE 1887 ERUPTION OF MAUNA LOA, HAWAIIAN ISLANDS.
or miles around; but this time it was clear, thick lava. The upper portion of the mountain seemed for miles wide to be a sea of fire, which swept away in its course $\left.\begin{aligned} & \text { wideat blocks of stone. Owing to the rapid development }\end{aligned}\right|_{\text {transmission of electric force in the world. }}$

The Electric Lighting of Rome.

One can hardly imagine, says the American Architect, what Julius Cæsár, or, let us say, Cato the Censor would have said, if he had read in the Sibylline books that a company of Scythians would, two thousand years after his death, install an apparatus through which the streets of Rome would be illuminated every night by a cascade at Tibur, twenty miles off in the Alban Hills; yet that is just what has come to pass. Several years ago an Italian company undertook the utilization of the Tibur, or Tivoli, water power, by means of turbine wheels and dynamos, for the pur pose of lighting the little town of Tivoli. Soon afterward, the establishment passing under the control of the Roman Gas Company, the plant was increased, until it now collects and transmits a force

©arrespondence.

The Bicycle.

To the Editor of the Scientific American:
I have often wondered why some of the manufacturers don't make one for older riders or ones too heavy to be athletic enough for the common safety bicycle. Why can't one be made with two rear wheels, about five or six inches apart, with the sprocket wheel and chain between them? The crankshaft would not need to be much longer than the regular safety, and the power would be applied directly in the middle, instead of one side, as in the safety.

Ceylon Vipers.

To the Editor of the Scientific American:
Order Ophidia and sub-order Viperiform
We are thus introduced to the serpents whose lethal power is next to that of the cobra.
Sub-order viperiform is subdivided into two families:

1. Viperidae, with two genera.
2. Crotalidae, with four genera

In this article I propose to speak only of the Viperidae.
The general characteristics of the vipers are :
(a) Short, thick bodies and wedge-like tails.
(b) Diamond markings.
(c) Laterally protruding cheeks.

The poison of vipers has been found to be charged with venom globulin, which produces fluidity of the blood and thus destructive hemorrhages. Also a general paralysis attends the introduction of viperine poison to the system.
It is primarily local, in distinction from cobra poison, which at once attacks nerve centers.
Antidotal Treatment.-Tourniquet, incision, and cauterization. Potassium permanganate (ammonia and alcohol) internally.
indian.
Genera.-First, Scientific.
(a) Daboia Russelli.- $21 / 2$ to 4 feet in length. Color, dark to light brown, in diamonds and marbled markings. Viviparous. 3 to 6 inches circumference. Fatally venomous.
(b) Echis carinata.-20 to 25 inches by 3 inches circumference. Color grayish-brown, and marked with quadrangular spots, white, edged with chocolate.

Scales are keeled. Hence the name-carinata.
A viviparous, vicious viper, active and offensive.
Venom-globulinic, like daboian.

Second, Local Genera.

In Ceylon the natives distinguish five varieties of vipers:

1. Blood Viper.--3 feet long, and marked with dark green diamonds.
2. Black and White Viper.-2 to $21 / 2$ feet. A common variety.
3. Brown Viper. -3 to 4 feet. Large and sluggish.
4. Tumefacient Viper.
5. Grass Adder.-2 $1 / 2$ feet.

I have killed specimens of 1,2 , and 3 in Ceylon.
Amherst, Mass.
W. D. MARSH.

Wire Shafts tor Steamers.

To the Editor of the Scientific American :
In view of the frequent and especially the several quite recent instances of the breakage of steamship shafts, it may be of interest to the general public, particularly to sea-going travelers, to know the results of some experiments recently made with an elastic shaft constructed of steel wires of small diameter, massed and bound together so as to secure all required strength, and to possess elasticity, both torsional and transverse, to a degree not possible in a rigid shaft.
Rigid shafts are broken, mainly because it is not possible to maintain exact and true lines of shaft bearings in ships of great length, and frequently because of undiscoverable flaws and imperfections in the shaft metal. Ships bend when sailing in rough and boisterous seas, and variations of atmospheric and water temperature expand and contract the metal of the hull, causing powerful bending strains which crystallize the metal of the shaft, weaken and ultimately destroy its vitality, until rupture and possibly serious disaster is realized.
In the construction of a wire shaft, every part, from the center to the circumference, comes under the observation of the expert in charge.
The experiments referred to show that when the shaft is in position, and when rotating stress is applied, a tensile force is exerted upon the individual wires and their several fastenings. Each is a unit of strength and sustains its pro rata of the total amount of stress. The law of action and reaction determines the amount. It eannot be greater than the available power of the engines of the ship in any given case.
The strength of the individual wires and of the fast-
tential strength of the shaft as a whole. Suppose it to be made in five sections, its total length one hundred feet, and its diameter fifteen inches. The shaft will have twenty-five thousand No. 7 steel wires, each twenty feet long, with their fifty thousand fastenings. Each wire and each fastening will sustain a load of five hundred pounds without rupture or injury, making a total inherent strength of $37,500,000$ pounds, twentyfive times greater in amount than the continuous force of an engine of 5,000 horse power. A stress of twentyfive pounds only upon each unit of strength, each point of resistance existing in a wire shaft as named, will more than equal the force of such an engine.
The wires of each section are welded together at their ends, making a solid mass of steel upon which couplings are fixed for bolting the several sections together. The spaces between the couplings are inclosed in short metal bands holding the body of the wires of each section in their normal cylindrical form, at the same time permitting a transverse elastic or bending movement when the ship bends, also elasticity of torsion when powerful waves strike the propeller wheel, lessening, or altogether eliminating all risk of injury to the crank and engines.
An additional inherent element of strength becomes active when torsional stress is applied to the shaft, viz., the friction of the individual wires pressing one upon another. The greater the stress, the greater will be the amount of friction.
If built with reasonable care and skill, such a shaft cannot be broken in any emergency or under the severest conditions.
The cost of building a wire shaft will also be very much less than that of a rigid shaft.
New York, February 17, 1893
,

PATENTABILITY.

Letters patent No. 272,554, issued February 20, 1883, to Tom L. Johnson for a street railroad rail, combining the principal features of the tram and T-reils, but with a different disposition of metal and combination of parts, so as to allow the advantage of even fish plating, are void for want of patentable invention, as the
change in form was merely the result of mechanical skill. 1.
Letters patent No. 340,135, issued April 20, 1886, to Howard T. Marshall for improvements in boots and shoes designed more particularly for playing lawn tennis, claim substantially (1) a continuous rubber sole with projections at the heel and tread, all moulded from a single blank; and (2) the same features, with the addition that the projections shall be conoidal and arranged in regular order. The Circuit Court holds that the improvement is of a trivial and unpatentable character. 2.
Letters patent No. 307,049, granted October 21, 1884, to John Hunt for an improvement in pneumatic conductors for elevator signals, are invalid, for there is no patentable novelty in inclosing a number of rubber tubes, each individually communicating with the signal mechanism in an elevator and with one of the floors of a building, in a jacket to keep them from kinking, stretching, and breaking, when wires used for electric signaling in elevators had been inclosed in the same way, and for the same purposes, and tubes had previously been used for operating the signaling mechanism in elevators. 3.

INFRINGEMENT.

The Circuit Court decides that in letters patent No. 167,400, issued September 7, 1875, to James P. Gordon for an improvement in packers for shutting off water from oil wells, consisting of (1) a tubular casing, (2) an expansible packer and cone for expanding it, and (3) a set of slips or wedge arms, and a wedge cone to force the arms against the wall of the well, to form a resistance base to the packer, so that when the casing is moved lengthwise the cone within the packer will expand it, the third element is novel, and is the basis of the entire device, and the patent is infringed by a device making use of the same idea by mechanical equivalents, their position merely being reversed, although in such device the wedge arms, besides serving to place the packer in position, as in the combination patented, have the additional function of aiding in sustaining he casing. 4.
Claim 1 of letters patent No. 397,766, issued February 12, 1889, to Lyman W. Welch for a folding bed, covers a combination whereby the head of the bed is carried in suspension by means of cords running over pulleys attached to the upright casing, each cord being fastened at one end to a lever crank, which is pivoted to the bed rail and attached at its lower end to a rod running to the leg of the bed, whereby the legs are folded downward as the bed is raised, the head of the bed meanwhile swinging inward and downward as the frame is folded up. The Circuit Court rules that, as this method of transmitting an eccentric motion to the legs is common in the arts, and as there is little novelty in suspending instead of supporting the head of the bed, the claim must be strictly limited to the combination in detail, and is not infringed by a bed which is supported
at the head by rods fastened at their upper ends to the upright casings, pivoted below to the bed rail, and prejecting downward and, connected at their lower ends to the legs of the bed, so that the resultant motion is like that described in the patent. 5 .
The Circuit Court of Appeals lays it down that letters patent No. 330,916, issued November 24, 1885, to Albert Northrop for an improvement in metallic ceilings, if valid at all, must, in view of the prior state of the art, be limited to a ceiling made of panels, in which the chief characteristics are (1) the formation on two or more sides of the panels, by means of moulded edges which fitinto each other, of a channel along which leakage water may flow and be discharged at orifices made by cutting away the corners of the panels, the orifices being concealed by rosettes so constructed as to aid in discharging the water; and (2) the widening of alternate sides of each panel into flanged edges, which lie loosely upon each other, so as to allow expansion and contraction by heat and cold; and hence it is not infringed by ceilings made of metallic panels generally having partially raised surfaces surrounded by mouldings gradually flattening out into flat edges, which are nailed rigidly to the furring strips, such mouldings forming no continuous channel for the discharge of water, and each panel having rosettes at the corners, which serve the purpose of ornaments only. 6.
In letters patent No. 230, 590, issued July 27, 1886, to George F. Pinkham, as assignee of Jacob P. Tirrell, the claim is for, "in an electric lighting gas burner, a magnet for turning the gas cock by one electric impulse, combined with a fixed electrode, a^{\prime}, and a movable electrode, c^{\prime}, normally in contact, and mechanism connecting the armature with the movable electrode, to break the contact between a^{\prime} and c^{\prime} the instant after the gas is turned on, and create a spark for ignition, substantially as described." It is held by the Circuit Court of Appeals that a mechanism otherwise sub stantially the same as the one patented is none the less an infringement because it has a horizontal armature, which moves in a vertical direction, while the patented apparatus has a vertical armature which moves in a horizontal direction. 7.
Letters patent No. 205,816, issued July 9, 1878, to Henry Tibbe, claiming "a smoking pipe made of corn cob, in which the interstices are filled with a plastic, self-hardening cement," are not limited to the use of plaster of Paris for the filling material, and it is an infringement to use either a mixture of finely pulverized corncob mixed with cornstarch, and moistened in the act of putting on by saturating the cob in alcohol, or a mixture of pulverized corncob and shellac. 8.
Letters patent No. 188,079, issued March 6, 1877, to Henry W. Smith, for an improvement in sheet metal roofing, comprises a means for making a watertight joint, and for securing the sheets firmly to the roof boards by means of an anchor piece of sheet metal, rectangular in form and bent at right angles, so that when one part is nailed to the roof the other stands upright. The adjoining sheets of roofing have upright flanges of unequal height, the anchor piece being between them. The vertical portion of the anchor piece is split centrally, and one leg is folded down over the shorter flange. On the higher flange a hem is turned down so as to embrace the top of the other leg, and then these parts are folded down over the shorter flange and anchor piece, thus completing a joint of six or seven thicknesses of metal. The Circuit Court decides that the patent is infringed by the device made under letters patent No. 403,844, issued May 21, 1889, in which a tongue is punched out of the central portion of the anchor and bent over in such manner as to embrace the lower flange, while the entire top of the anchor is embraced by the hem of the higher flange, and is then folded over the lower flange. 9.

1. Johnson Co. v. Pacific Rolling Mills Co., 51 Federal Reporter, 762.
2. Marshall v. Packard, 51 Federal Reporter, 755.
3. Hunt v. Garsed, 51 Federal Reporter, 678.
4. Masseth v. Palm, 51 Federal Reporter, 824.
5. Standard Folding Bed Co. v. Osgood, 51 Federal Reporter, 675.
6. Northrop's Ex'ers v. Rasner, 51 Federal Reporter, 685.
7. Hauzel v. California Electrical Works, 51 Federal Reporter, 754.
8. H. Tibbe \& Sons Mfg. Co. v. Lamparter, 51 Federal Reporter, 763.
9. Canton Steel Roofing Co. v. Kanneberg, 51 Federal Reporter, 599.

Labels on Glass, Porcelain, and Iron.
The following is recommended in Nouveaux Remedes : 120 grm . of gum arabic and 30 grm . of gum tragacanth are macerated separately in a little water; the latter mixture is agitated until a viscous emulsion is formed, when the gum arabic solution is added and the whole filtered through fine linen. With this liquid are then incorporated 120 grm . of glycerine, in which 2.5 grm. oil of thyme have been dissolved. The volume is then made up to one liter by the addition of distilled water. This paste is said to possess remarkable adheciveness, and to keep well in sealed flasks.
[Writtien for the Scientific Amerioan.]
STRANGE HYBRIDS.
by F. Li. oswand.
The proverbial admixture of mishaps in the luckiest events has often been experienced by the discoverers of happy theories, and Darwin's "Origin of Species" seemed at first as irreconcilable with the phenomena of hybridism as Lucian's "slow and steady sunrise of culture" with the midnight of the middle ages.
Recent experiments seem, however, to prove that the alleged permanence of species has been considerably overrated. Prof. H. D. Karsen, of Riga, reports that the deer and the roe can be crossed to any desired extent, and a correspondent of the Journal de la Physiologie (vol. ii., p. 374) describes a "rabbit farm" in the neighborhood of Angouleme, where Mons. Charles Roux succeeded in crossbreeding hares and conies. The hybrids again could be crossed as readily as black and white rats, and in several cases proved more fertile than the parent species. The post trader of Fort San Gabriel, in southern Mexico, told me a few years ago that he was one night awakened by the rabid barking of a pet spaniel, and on searching the yard with a lantern found that a large wolf had crossed the ditches and forced his acquaintance upon a mastiff bitch. The offspring of the mesalliance were killed; but a similar occurrence in the Russian Caucasus was reported in time to save the curious hybrids, which last year were exhibited in Tiflis, and sold at a considerable advance over the average price of pet wolves. A litter of wolf puppies in the Zoological Garden of Cincinnati, O., now attracts more sightseers than the baby jaguars, and will probably remain in their present quarters. They are the progeny of a gray wolf and a female Esquimau dog, and strangely combine the characteristics of their shaggy parents. At the approach of a visitor they will at first retreat with a wolfish leer, but presently crouch down, wagging their bush tails and whin ing, after the manner of a penitent poodle dog. Their snarls and yelps in a scramble for tidbits likewise resemble the dinner concerts of a dog kennel, but they do not bark. Their nearest approach to the alarm signal of a watch dog is a coughing whoop, followed by a longdrawn howl.
The menagerie of the Englische Garten, of Munich, boasts a similar at traction: a pair of lynx kittens romping about in charge of their mother, who seems rather puzzled at the premature savage ness of their scrimmages, and sometimes hides in a corner, as if ashamed to own her relationship to the vindictive youngsters. Two of their sisters died before they had opened their eyes, but the sur vivors have passed the perils of the teething period, and it would be interesting to know if they will prove as sterile as th ocelot-leopards in the Hamburg Zoo.
A few years ago a farme of Polk County, Tennes see, found a woolly fawn on a plateau of the Chil howee Range, where sheep had been permitted to run half wild all summer. The curious little waif was adopted by a neighbor but died from overpetting,

SIBERIAN FOX-DOGS.
and the contradictory accounts of its appearance left \mid existence of bull-headed colts, owing their paterthe current explanation of its origin rather doubtful. nity to the union of a stallion and a cow. ColuAnalogous cases have, however, been recorded in Italy mella, the Roman Humboldt, indorses that belief, to and Switzerland, and rams have been known to breed gether with a number of such evident myths, that with goats and female roes. The Alpine ibex or stein- Buffon undertook a long journey to investigate a test bok (Capra ibex) visits goat herds wherever the raids case, which, however, left the controversy undecided, of pot hunters result in an excessive competition for since the problematic foal turned out to be a young hinny-half horse and half donkey. Zebras, quaggas, and horses, on the other hand, interbreed as freely as Mr. Roux's rabbits, and the same may be said of several species of African antelopes, such as the koodoo and the gemsbok
Lion-tigers have been born in several menage ries, but the most interest ng hybrids seen in the second half of this century were a litter of Siberian ox-dogs. Their mothe had been a spitz and their male progenitor a black fox, and there was, withal, something strangely raccoonish in their appear ance that would have war ranted the suspicion of riple mesalliance if the Procyon lotor were not a the few remaining females of its own species, and the total stranger to the fauna of the eastern continent oolocical Garden of Cologne procured a pair of ibex The protty little pets had been born in the Amoor dis kids that were nursed by a common goat (not their trict, where the mercury of the Fahrenheit thermome mother), who at first appeared to have taken a liking ter sinks to sixty degrees below zero, and were accordto the curious hybrids, but neglected them as their ingly well equipped with Siberian furs, so much so uncongenial temper became more apparent, and they indeed, that their appearance suggested a plan of oth died in the course of the next winter.
The editor of The Field mentioned a case of a pro- varpetuating the breed for the sake of its peltry ific union having taken place between a mastiff and a till an agent of the Regent's Park Roo Thiergarte lioness who oness who had been kept in the same cage, but sub sequent investigations justified a doubt in the possi bility of that unique instance of hybridity between Cases of spontaneous hybridism (between animals in animals of different genera, though as eminent a natu- a state of nature) have been rarely observed, but their $\left.\right|_{\text {ralist as Louis Buffon seems to have believed in the }} \left\lvert\, \begin{aligned} & \text { assibility is suggested by the existence of animals }\end{aligned}\right.$

IBEX KIDS.
that appear to form a connecting link between diferent species, or even genera, as the big horn of our Rocky Mountains, which seems to unite the head of a moufflon sheep with the body and the color of a deer. There are birds that hold the exact middle between the tit mouse and the woodpecker, and between the woodpecker and the thrush, as the dormouse bridges the gap between the rats and the squirrels and the horned toad be ween the lizards and the frogs.
The classification of such intermedium creatures has indeed, often puzzled natu ralists, as in the interesting case of the Persian dove partridge, a gregariou bird that haunts the steppes of Central Asia and rears a brood of chicks resembling young quails, but whose flight and general appearance differ so much from those of a prai rie grouse that in our zoo logical gardens it is often mistaken for a true pigeon

Antiseptic Paper.

An antiseptic paper, which, it is stated, may be applied over wounds and fixed in position with a bandage, can be prepared by impregnating sheets of unsized paper with mercu ric chloride. This is dis solved in the proportion of two and a half drachms to a pint of distilled water (previously sterilized by boiling, and six drachms of pure glycerin added. After thoroughly soaking, the paper is allowed to dry, and is then ready for use.-Therapeutic $G a$. zette.

RECENTLY PATENTED INVENTIONS. Engineering.

Rotary Engine.-Albert D. Bellinger Black River Falls, Wis. This engine has a cylinder with a ring lining having annolar shoulders, a wheel turning in the cylinder comprising a rim carried by a spider, a lining held on the rim and packing plates extending from it
and its lining to the shoulders on the lining of the cylinand its lining to the shoulders on the lining of the cylin-
der, rings being securad to the outer edges of the rim to der, rings being securad to the outer edges of the rim to
hold the packing rings in place. The invention also embraces various other novel features, designed to form a simple and durable engine which will utilize the motive agent to its fullest extent while reducing friction to a mimimum and compensating for any endwise thrust or
movement of the shaft, so as not to disturb the relative movement of the shaft, so as not to
position of the piston and cylinder.

Spark Arrester.-Harry B. Maxwell, Stromsburg, Neb. The exhaust chamber, according to this improvement, has a reducing nozzle, and an exhaust nozzle is held to deliver into the nozzle of the chamber, while a longitudinally adjustable petticoat pipe is held in the chamber nozzle, the arrangement, instead of interfering with the draught of the engine, being deany live sparks from being thrown from the stack, which is provided with a convenient carrier to receive and carry the sparks to any desired point.
Flue Cleaner.-Perry A. Burgess, Steamboat Springs, Col. This device comprises a blade to which is hinged a handle and an adjusting rod, the
other end of the latter being detachably secured to the handle, while the rod also works through a guide secured to the handle. The device may be inserted through a small aperture and adjusted after being entered to extend ransversely to the pipe or flue, the guide serving to hold
the adjusting rod in the correct position, and also stiffenthe adjusting rod in the correct position,
ing the rod to act as an efficient brace.

Electrical.

Railway Signaling Circuit.-Louis Thaler, New York City. Combined with non-insulated
track rails are connected insulated bars in parallel with track rails are connected insulated bars in parallel with
and sustained on the rails slightly above their top faces, there being a battery and an electric indicator in open circuit with the bars, the circuit to be closed by the car ple mechanism for the automatic electric operation of a eignal at a station when the block is occupied, the circuit
being completed through the ground as part of the circuit being completed through the ground as part of the circuit at any
Street Electric Lamps.-Charles R. Eddy, Springfield, Mo. This invention provides a simstreet electric lamps, for cleaning and supplying new car bons, etc. The device has a detachable crank member, having unlocking means by which the shaft-locking de when the crank is applied, the shaft of the windlass be ing normally held locked. Only a single crank is neces ary for operating a number of windlasses, which automatically lock themselves as soon as the crank is re-
Insulator.-Augustus R. Lane, New York City. This device consists essentially of a some-
what C-shaped metal frame, with ascrew projecting from what C-shaped metal frame, with ascrew projecting from
its bottom portion, whereby the frame may be attached o a pole or other support, and a set screw passing through its upper portion, to bear upon and hold in posi-
tion in the frame the insulator, consisting preferably of ion in the frame the insulator, consisting preferably of twe conductor is held when the sections are placed to gether and held in position by the set screw. Several of these clamp frames may be formed upon asingleskeleto attachment to a support.

Mechanical

Anti-Friction Bearing.-Peter ing in which a vertical shaft is held to torn in a suppor having horizontal bearing portions, there being on the shaft a bearing disk rolling ou balls traveling in annula grooves in the lower face of the disk and the upper face of the bearing portion. To prevent lateral thrust or
novement and farther decrease friction, similar balls are movement and further decrease friction, similar balls are
arranged in annular grooves in the bearing portions and arranged in annu
around the shaft.
Hand Power Attachment.-Finley M. Foster, New York City. This is a simple and inexpensive device whereby sewing machines, etc., may be
run by lever power actuated by hand, or in conjunction with foot power applied in the usual way. Clamp plates to be firmly screwed on the machine supporta shouldered end is connected with a pitman adapted for connection end is connected with a pitman adapted for connection
with the treadle, so that by operating the hand lever the machine may be run without pressing upon the pedal.
LUBRICATOR.-Charles Tregoning New York City. This is a device especially adapted fo a shaft may be simultaneously and constantly oiled, the amount of oil used being under ready control. The shaft on which the pulleys to be oiled are mounted has an
exterior longitudinal channel in which is fitted a tubula exterior longitudinal channel in which is itted a tabular
valve, each pulley covering an aperture in the valve casing. At the open end of the valve casing is a head with which is connected an oil cup and an adjusting device, open or close the apertares in the
the flow of oil is readily controlled.

Agricultural.

Harrow.-Niels L. Beck, Brayton, Iowa. According to this improvement, the constraction
of the body of the harrow is such that the body may con of the body of the harrow is such that the body may con-
veniently be made as long or as wide as may be desired, and be readily put together in a short time. A principal feature of the invention is the construction of the harrow adapted to carry a tooth, and the manner in which the adapted to carry a tooth, and the manner in which the
only as carriers for the teeth, but as binding or connect
ing devices for the frame. Corn Planter Attachment.-Andrew W. Trotter, Petersville, Ind. This is a furrowclosing or covering attachment located at the rear of the
seed drop tube, and consists of a standard secured to fixed support on the planter, and carrying a covering wheel at the rear of the lower end of the seed drop tube, the wheel standing at angle to the path of this tube and
diagonally across the furrow made by the plow. The dediagonally across the furrow made by the plow. The de-
vice closes the furrow and distributes the soil vice closes the furrow and di
Seed Planter.-Alexander Lear mend Pla N TER.-Alexander Learfurrowing wheels mounted in elastic or spring bearing furrowing wheels mounted in elastic or spring bearinge
These wheels are made as light as may be desirable, and These wheels are made as light as may be desirable,
each wheel has an independent bearing, so arranged that the wheel is normally held down with considerable force by a spring-pressed plunger, but should the wheels en-
counter any obstacle, they are free to rise and pass over counter any obstacle, they are free to rise and pass over it, at once resuming again
inue the trough or furrow.
SPrinkling Device.-Henry I. Schanck, Holmdel, and Charles B. Ellis, Freehold, N. J. The frame of this device is carried upon wheels, to
be drawn by an animal, and supports a cask or other liquid-holding vessel, for the mixing and distribution of liquid preparations upon growing plants. The devic forms an efficient poison distributor, the liquid being projected out upon the plants from a jet nozzle.

Miscellaneous.

Violin Supporter.-Giorgio Narberti, 318 Second Avenue, New York City. This is a
device to hold the violin in correct and artistic position on the body of the performer, enabling the latter to play and lead at the same time. The invention consists principally of an arm having a limited swinging motion
on the end of the violin body, a breast plate pivotally connected at one end to the free end of the arm, and locking device for locking the breast plate to the arm in either a vertical or horizontal and folded position. A
curved collar or neck plate is also secured by a set screw in a socket on the free end of the arm, and the collar and breast plate both engage the body of the performer to hold the violin in proper place, facilitating the execution of any desired passage of musi
full, rich sounds are produced.
Piano.-William P. Haines, New York City. According to this improvement, brackets form with guideways support the action, and a rail sliding in be moved into or out of the path of the hammers, so tha the player can, without changing his position, instantly change the piano from loud to mute, or vice ver Grand Stand. - Pascal P. Cuplin, West Bend, Iowa. This is a stand which may be revolved, either having a revoluble base held to float in a reser
voir or being mounted to be turned on a post by gear voir or being mounted to be turned on a post by gear
teeth on the flange of the base, the usual superstrueture teeth on the flange of the base, the usual superstrueture
of such a stand being carried by the base. It is more esof such a stand being carried by the base. It is more es-
pecially adapted for use in connection with race tracks, pecially adapted for use in connection with race track
as may be placed inside the track, thus being nearer placed outside the track, while the revolving of the stand during the progress of the race keeps the competitors all during the progr
the time in view.
Culvert.-Charles B.Davis, Savona, N. Y. This invention consists of two series of curved metallic plates placed one on top of the other to break joints,
and riveted together to form a double-walled arch, flanges being formed on the ends of the sets of plates and bent in opposite directions to form a foot for the arch. The construction forms a simple and durable culvert, readily
set up in place and cheaply manufactured, stones or other set up in place and cheaply manufactured, stones or other
material being placed on the top of the metallic arch to finish the culvert as desired.
FAN.-Theodore F. Davis, Marshallown, Iowa. This invention provides an improvement in the class of fans used upon grain separators to blow the the fan having an air opening the entire width of the fan blades and parallel with the axis of the fan, so that there a perfectly equal and even current of air generated, enabling the grain to be perfectly cleaned. The opening has a cap or damper which may be nicely controlled
to admit just the desired amount of air to the fan casing. Fire Escape.-Perry A. Burgess, Steamboat Springs, Col. This device has a frame to be
ung where convenient on the building, and a harness for ang where convenient on the building, and a harness for causing a sprocket wheel and ratchet wheel in the frame o be turned, actuating an escapement which takes the round. The escape permits one to descend safely to fo round. The escape also forms a convenient means for onstructed that it may be conveniently carried in a per son's luggage.
D E N TA
Dental Appliance.-Samuel P. Sharp, Knoxville, Tenn. This is an improvement in the lass of angled tool holders for dental engines. The imof dental engines, or it may have a handle of its own especially adapted to it.
Making Extracts.-John E. McCarty, Elkins, West Va., deceased (Ella M. McCarty, administratrix). This invention covers a process and apparatus, a according to which the material to be acted on is submerged in hot water in a closed vessel, under regulated pressure and temperature, while simultaneously and mechanically there is produced a vertical circu-
lation of hot liquid through the mass. The invention is designed to effect economy in the extraction of tannin from barks and wood, reducing the time and obtaining
Bag or Pouch.
BAG OR Pouch.-Frederick M. Turck, New York City. This invention provides a fastening for mailing purposes, or for the transportation of merchandise, when the receptacles are of paper, fabric, or ther pliable material. The means of attaching the flap

APPARATUS FOR MANUFACTURING
paratus comprises an annular evaporating pan, within which and sloping upward and inward is arranged a drying table having an outlet at the center, in connection ing table and wot transfer salt from the pan to the dry let or discharge. The salt is made from brine, and the drying of the salt and making it ready for grading an Watch Chain Cbapm
Watch Chain Charm, etc.-Samuel . Stahl and Benjamin Klipper, Knoxville, Tenn. Thi Is a charm or piece of jewelry of globe form, representing
the land and water of the earth, with holes through it at places of historical or national importance, in combina tion with a microscope inserted at such places and containing views illustrative of the events which give otoriety to the places.
Bicycle Gear.-William Mahoney New York City. This is a speed-multiplying gear, for ase in connection with safety bicycles, so that a person feet move very fast.
Fire Kindler.-Albert Johnson, Haverhill, Mass. A cheaply formed wire handle has a one end a loop to which is fastened a swabmade of leaves wab is kept immersed in oil until required for use when the absorbed oil adapts it for burning a long time The device may also be advantageously used for thaw-
ing pipes, burning insects off trees, and for other purposes.
this office of the above books may be purchased through his office. Send for new book catalogue just pub
ished. MUNN \& Co., 361 Broadway, New York

NEW BOOKS AND PUBLICATIONS

Finite Homogeneous Strain, Flow AND RUPTURE OF ROCKS. By Geo
F. Becker. Bulletin of the Geological Society of America. Vol. iv.
$13-90$. Rochester, N. Y. 1893.
The author uses mathematics freely in support of his views. The subject is a difficult one, and the presen pamphlet will be a welcome addition to the literature of

SCIENTIFIC AMERICAN

bUILDING EDITION
FEBRUARY, 1893, NUMBER.-(No. 88.

TABLE OF CONTENTS.

. Elegant plate in colors, showing a very picturesque dwelling at St. David's, Pa. Floor plans and per spective elevations. An admirable desig.
N. Trumbauer, architect, Philadelphia, Pa.
2. Plate in colors showing a residence at Bridgeport, Conn. Two perspective views, one interior view
and floor plans. Messrs. Longstaff \& Hurd, archit
sign.
3. A model dwelling at Holyoke, Mass., erected at cost of $\$ 6,000$ complete. Perspective views and
floor plans. H. W. Coolidge, architect, Holyoke. A pleasing design. $\$ 5,000$. Floor plans, two perspective views, etc F. W. Beall, architect, New York.
5. The First Baptist Church recently erected at War berth Park, Pa., at a cost of $\$ 6,000$.
design in the Gothic style
A residence recently erected at Bridgeport, Conn
A residence recently erected at Bridgeport, Conn.,
at a cost of $\$ 5,900$ complete. A picturesque deC. S. Beardsley, architect, Bridgeport.

An elegant residence recently erected at Newto
Highlands, Mass. Perspective view and flo plans. Cost complete $\$ 6,472$.
An attractive design for a suburban dwelling
Holyoke, Mass. Perspective elevation Holyoke, Mass. Perspective elevation and floor
plans. Messrs. Gardner, Pyne \& Gardner, archi plans. Messrs. Gardner,
tects, Springield, Mass.
A row of model dwelling houses on West Sixtyeighth Street, New York City. An exquisite de
A cottage at St. David's, Pa, recently erected at a cost of $\$ 5,100$ complete. Floor plans and per-
spective elevation. Messrs. F. L. \& W. L. Price, architects, Philadelphia.
11. Views of the extensive red sandstone quarries at Potsdam, N. Y., together with views of various
public and private residences built of Potsdam red sandstone.
red sandstone.
12. Perspective and floor plan
dence at Buffalo, N. Y.
13. Miscellaneous contents:
Architecture and the phonetic arts.-The housin of workers.-Concrete roofs.-Roman temples.An automatic perspective machine, illustrated. Drake's Columbus drinking fountain.-Sleigh bellss--A planing machine requiring little room,
illustrated.-An improved side and roofing tile, illustrated-An improved side and roofing tile,
illustrated.-An improved spring hinge, illustrat ed.-An improved hand planer and jointer, illus matic water gate, illustrated.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 250$ a year. Single copies 25 cents. Forty large quarto pages, equal to abou cally, a large and splendid Magazine of Architro wre, richly adorned with elegant plates in colors and examples of Modern Architectural Construction and

The Follness, Richness, Cheapness, and Convenienc of this work have won for it the Lararst Circulation all newsdealers.

③usiness and Personal.
The charge for Insertion under this head is One Dollar a line
for each insertion; about eight words to a line. Advertisements must be received at publication office as early as
Thursday morning to appear in the following week's issue
"U. S." metal polish. Indianapolis. Samples free. Cheap 2d-hand lathes \& planers. S. M. York, Clev'd, o.
Heading machinery. Trevor Mfg. Co., Lockport, N. y.

Universal and Centrifugal Grinding Machines
Pedrick \& Ayer, Philadelphia. Pa.
For Sale-Protected exhibits. Address S. E. Bach-
mann, Chicago. Eight-light dynamo for sale very cheap. A. Kirsch,
60 Lexington Ave., Brooklyn, N. Y. The Improved Hydraulic Jacks, Punches, and Tube Stow flexible shaft. Invented and manufactured by
tow Mfg. Co., Binghamton, N. Y. See adv., page 46 . Screw machines, milling machines, and drill presses.
The Garvin Mach. Co., Laight and Canal Sts., New York. Centrifugal Pumps for paper and pulp mills. Irrigating
and sand pumpingplants. Irvin Van Wie, Syracuse, N. Y. Patent for Sale-No. 485,931, spring plow clevis. Is Portable engines and boilers. Yacht engines and
P. treet, New York. Guild \& Garrison, Brooklyn, N. Y., m\& cid blowers, filter press pumps, etc.
Split Pulleys at Low prices, and of same strength and
apearance as Whole Pulleys. Yocom \& Son's Shafting ppearance as Whole Pulleys. Yocom
Works, Drinker St., Philadelphia, Pa.
Perforated Metals of all kinds and for all purposes, general or special. Address, stating require
Harrington \& King Perforating Co., Chicago. To Let-A suite of desirable offlces, adjacent to the
Scientifc American offices, to let at moderate terms.
Apply to Munn \& Co., 361 Broadway, New York. Fine Castings in Brass, Bronze, Composition (Gun Metal), German Silver. Unequaled facilities. Jas. J. Hydrocarbon Burner (Meyer's patent) for burning 81. Standard Oil Fuel Burner Co., Fort Plain, N. y. The best book for electricians and beginners in elec-
tricity is "Experimental Science," by Geo. M. Hopkins. By mail. \$4; Munn \& Co., publishers, 361 Broad way, N. Y.
tricity in "Experimental Scen Kennedy Valve Mfg. Co., manuf'rs of brass, iron gate
valves, patent indicator valves, fre hydrants, globe, an valves, patent indicator valves, fire hydrants, globe, an2
le, check, radiator, and safety valves, 52 Cliff St., N. Y. Competent persons who desire agencies for a new apular book. of ready sale, with handsome proft, may
apply to Munn \& Co., Scientific American office, 361 Broadway, New York.
Chief engineer wanted for large plant. Must be good
achinist and draughtsman, experienced in extraction machinist and draughtsman, experienced in extraction and evaporation. State experience
pected. "T.," box 73 , New York.

S-Send for new and complete catalogue of Scientifl

 Send for new and complete catalogue of Scientiffcnd other Books for sale by Munn \& Co., 361 Broadway,

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our
information aud not for publication.
References to former articles or answers should
give date of paper and page or number of question.
give date of paper and pare or number of question,
Inquiries not answered ge reasonable time should
be repeated; correppondents will beear in mind that
some answers require no a litle research, and,
though we endeavor to reply to all either by letter

expected without remuneration.
cientific American. Supplements referred
to may be had at the office. Price 10 cents each. Books referred to promptly supplied on receipt of
price.
Miner sent for examination should be distinctly
marked or labeled
(4684) D. G. E. asks : How many pounds of coal will be required to heat one ton of sand
rom 40° Fah. to 212° Fah., the sand being -contained in n iron cylinder 12 inches in diameter and surrounded by the fire, and bituminous coal being used. A. It will require 61 pounds of good coal, provided no heat is lost;
practically 100 pounds of coal is near the quantity repractice.
(4685) F. W. T. writes: I have "Experimental Science," and there are a few things I would like to ask you with reference to the simple motor on
page 499. 1. In Fig. 486, should the wire used in making he core of the armature be insulated or should it just be covered with adhesive tape when it is finished? A. It is of some advantage to varnish the iron wire used in
making the armature core before it is wound on the spool, unless the wire is sufficiently oxidized to practipool, unless the wire is sufficiently oxidized to practi
cally insulate it. 2. Should it be iron or copper wire? A. By referring to the description of the motor given in "Experimental Science" you will notice that copper wire will not do. The core should be made of soft iron wire. 3. About how near should the armature come to
touching the wider part of the field magnet when the notor is in position? A. As near as possible without coming into actual contact with the field magnet. 4. Should the armature revolve on the steel shaft like a wagon wheel on the axle or should it be stationary in rmature should bevolve in the journal boxes? A. The shaft with it. 5. How are the commutator brushes made? A. The commutator brushes are simply bundles of very thin spring copper. 6. Wouldn't it be cheaper to
buy them? A. No. 7. Is the current from the battery buy them? A. No. 7. Is the current from the battery
sent through the same binding posts as those to which
(4686) G. E. H. asks: 1. What is the

Size has no connection with voltage. 2. What is the
E. M. F. of an ordinary phonograph cell ? A. Two E. M. F. of an ordinary phonograph cell ? A. Two mate cell, giving 1.75 to 2 volts. The other is the Lalande-Edison cell, giving 0.5 to 075 volt. 3. Will you name a treatment for tartar on the teeth? A. Let a dentist clean them once a year. Use best quality of tooth powder. It is an excellent practice to rub the teeth with a stick
chewed to a brush.
(4687) L. G. asks: What changes will be necessary in the 8 light dynamo described in Scientific American Supplement, No. 600, to change it to a motor of atleas $1 / 4$ horse power, to run on a 110 volt circuit? How are spherical armatares wound ? Have you
a Supplement describing same? A. We think the dynamo to which you refer is too small for $11 / 4$ horse power. In the construction of a machine to run on a 110 volt circuit, we advise you to consult Supplement, No. 844, containing a description of the small Edison dynamo and motor. We believe spherical armatures are wound on the open circuit plan. Nearly all the books on
(4688) W. E. P. \& A. F. K. ask : Do rivers which flow toward the equator, by reason of the centrifugal force, of a necessity flow up hill? and why
the Nile runs north and the Mississippi runs south ? A. All rivers run down hill by the force of gravity. The pheroidal form of the earth is due to gravity, modified ocean is the fixed datum or level. All streams, whether running north or south, that are above the datum of the ea level run by virtue of theses two forces to a lowe level. The fact of streams running farther from the earth's center is no paradox, when the true relations of the forces that hold the earth's surface to its spheroidal fugal force apply equally to running water and to the eneal form of the solid auface of the earth
(4689) L. B.. says : I wish to put a stern paddle wheel in a flat bottom boat,15 feet long, $31 / 2$ wide, diameter water. Yave a 50 pound ty wheel, 30 inches of wheel, and how many revolutions per minute would be best? What is limit of speed in such a boat power same manner as in bicycle? A. Make your wheel 2 feet wide, per minate. Will give you a speed of about 5 miles per hour. Doubtful if you can get this speed in the way you propose to work the wheel.
(4690) F. T. R. asks: What would probably be the result if a channel were cut into the crater to it? A. Probably it would become an extinct volcano if the quantity of water were sufficient.
(4691) E. A.-For information on elecroplating machines we refer you to the Scientific American Supplement. Glass after being ground to a
mooth surface is polished by means of rouge or putty powder. Coffee grows on bushes to a height of from 9
(4692) C. S. J.-Tabby is a shell conrete, made of equal parts of lime, broken shells and and. The old tabby buildings along the Southern coast erive their strenglu from good work and age. Have no
(4693) J. G. asks: \dot{W} as the subject, "The Human Body as a Maguet," ever discussed in the
Scientific American? A. We do not call to mind any scientific American? A. We do not call to mind any cientific articles on the human body as a magnet. We
do not think magnetism was ever discovered in the human body.
(4694) R. L.-You can use four cells of ing. Gravity batteries, which are not expensive can be purchased from any of the dealers in this city.
(4695) P. \& D. ask : Does the upper part of a wheel move faster than the lower in rotating ? he ground moves much faster than the lower part of the wheels. It has several times been explained in Scr entific Auerican.
(4696) S. A. C.-The best single book for the study of armature winding is Thompson's "Dyfor $\$ 9$.
(4697) M. J. K. writes : My brother is going to start a brass foundry. What I wish to know is, what height and width (or area) will the stack or chim
ney require to be for two or three fires for melting brass ney requre to be for two or three fires for melting brass.
We have the furnace for small.crucibles which has a grate urface of 14×14 inches $=196$ inches or $1 / 3$ square fee nearly. We want the other fires to be larger, say 2 feet
square for large crucibles. If you can furnish or give paper on the same would be very thankful. A. You will seldom run more than two furnaces at once, which will in dicate a good sized business. A chimney 16 inches square inside and 50 feet high should give ample draught for your furnaces.' We have no paper on brass foundry
plant, but have an excellent book, "Brass Founders plant, but have an excellent book, "Brass Founders
Manual," by Graham, $\$ 1$ mailed. Larkin's "Brass and ron Founders' Guide," $\$ 2.25$ mailed.
(4698) W. C. M. writes: Kindly tell me of a preparation that I can use, not to be costly, that I can form or press in a plaster flask like accompanying sample. Also tell me if you know of any attempts to make locomotive boilers return tubular and what was the
objection to them. About what is the difference in saving of fuel between a straight flue boiler and a triple re torn tube? Would not half the number of fues that are in a locomotive boiler be sufficient to carry off the moke and gases? A. The sample appears to be blotting and a little oil to soften the mixture we know o nothing cheaper that has the properties you require The area of the tabes of a locomotive is not large emough in the present construction to move slow enough to have their heat ab sorbed. There will be no gain by returning the tube less the shell is made larger.
(4699) C. C. P. asks : Can very hot air
do one-third of the work? Will it not all be condensed? steam? Is it safe to use air mixed with steam? Is it steam boiler for useful work. There is no danger nor is there any profit. It condenses according to the pressure and does not give out as much work as it costs to put
tupure jone
(4700) H. A. G. asks how to tempe twist drills uniformly, that is to temper the whole drill a once. A. Twist drills should be packed in sand in an vertically in water Brighten the ery rea, then dipped drills evenly till. Brighten the surface and heat the bright surface.
(4701) H. H. B. asks : 1. Is a coil of a magnet the same resistance as the wire before it is wound on the coile? A. The resistance of the wire after it ha the original coil, on account of the hardenter than it is in by origning. The difference howe hardening of the wire negligible. 2. Would it release a building from dange of being struck by lightning if it were well insulated from the earth? A. No. 3. What can you putin sorghum so that it won't melt down in warm weather? 'The taffy for making popcorn balls. A. Boil it for a longer time not put in anything additional.
(4702) D. B. says : The purpose for which the answer is required is for a system of water espectively; height in fall from inlet to outlet 100 and 125 feet respectively; size of pipe 4 and 6 -inches. Question Number of gallons that would flow through the outlet of inch pipe with a fall of 100 feet ? Also from a 6 inch 100 feet head, will deliver 63 gallons per minute. The 6 inch pipe, 10 miles, 125 feet head, will deliver 151 gal lons per minute.
(4703) C. E. H.-Aluminum weighs 163 pounds per cubic foot, pure, casting. Muchthatis called pounds per cubic foo
(4704) L. C. asks : 1. What is the pro per oil to use in coloring hard pine floors? A. Use matter which you can put in the oil which will mak matter which you can put in the oil which will make
them darker? A. A little burnt umber in the oil for darker shade. 3. What is the best method to apply the oil? A. Apply by rubbing the oil stain on the floor with a coarse woolen cloth. As little excess of oil as possible, so that it will dry quickly. For a new pine floor nothing better than shellac varnish.
(4705) Constant Reader.-For a general description of the process of zinc etching, see SUPplestanter's "Photo Engraving," price $\$ 3$. We can alssupply Wood's " Modern Methods of Illustrating Books," by mail for $\$ 1.50$.
(4706) H. P. R. asks: Why are coil pipes used on some steam gauges and not on others? A.
Every steam gauge should have an inverted siphon in the connecting pipe to prevent the steam reaching the ir-terior of the gauge to its injury. This may be a small coil ing to the boiler and the stem prevent ing to the boile TO INVENTORS.
An experience of forty years, and the preparation of ents at home and abroad, enable us to understand the
than laws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. A foreign countries may be had on application, and persons contemplating the securing of patents, either at home or abroad, are invited to rite to this office for prices Which are low, in accordance with the tomes and our exMUNN \& CO., office SCIENTIFIC AMERICAN, 361 BroadMUNN \& CO., of
way, New York.

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted

February 14, 1893,
AND EACH BEARING THAT DATE.
[See note at end of list about copies of these patents.]

attery. See Secondary battery.

 Boit,
Boot
Bott
Botul
Brat
Brace
Brake
Breas
Breae
Brick
Brick
Brick

${ }^{\mathrm{Fl}}$

${ }^{\text {Exi }}$

$\frac{\text { Exa }}{\text { Fe }}$
$\stackrel{\mid}{\mathrm{F}}$

Cars, dimectity conneenson

ซञञक్

TRADE MARKS.

 Laxation Steien e viriai.

 Publicatonono, R.J. Biachanan.....
Remedies, certain named, Turner-sìaiker Mè
 Medicine Co or miviliment, and............ salves. pills, vermaluge, hament, and cough balm,

 \qquad
DESIGNS.

22,210
\cdots

A printed copy of the specifcation and drawing of

New Full Mounted Lightning Screw Piate

$\frac{\text { Wiley \& Russell Mfr. Co., Greenfela, Mass, U.S.A. }}{\text { TRADES UNIONS. THE TENDENCY }}$

OIL WELI SUPPLY CO.

A In UTMIIMNTIMX
Cowles Eiectric Smelting and Aluminum Oo

Steel Tjpe for Writing Machines,

CHAPMAN VALVE MANUFACTURING COMPANY,

For steam, water, and fates
We make a

HARRISON CONVETOR!

 $\underset{\text { Handing Grain, Coal, Sand, Clay, Tan Bark, Cinders, Ores, Seeds, \&C. }}{\text { Fon }}$

Scientific Rook Gatalogue RECENTLY PUBLISHED.
Our new catalogue containing over 1100 pages, includ-
InR works on more than ifty different subjects.

FLOURING MILL MACHINERY.
ROLLER or BUNR SYSTEM
FRENCH BUHR MILLS

T. A. C. 겨․

MUD: A MATERIAL IN PERSIAN

PHONOGRAPHS for sale. ${ }^{\text {ADDREss, }}$
North American Phonograph Co edison building
Masonic Templímlag.. Chicago

米 THE "MUNSON" TYPEWRITER. 淇
This machine is an "evolution", the outgrowth of years of experience and the

ALUMINUM: ITS USES AND AP-

A Machine Shop and Laboratory Where inventors may be helped out of
their mechanical troubles. Will send a primer that is itself a help.

THE STIRLING BOILER
 Practically self-cleeaning. THE STIRLING COMPANY, PULLMAN BUTLDING, OHICAGO

TO BUSINESS MEN

The value of the SCIENTIFIC AMERICAN as an adver-
tising medium cannot be overestimated. Its circulation is many times greater than that of any similar journal
now published. Jt goes into all the States and Territories, and is read in all the princ pal libraries and reading rooms of the world. A busincos man wants something
more than to see his advertisement in a printed niws more than to see his advertisement in a printed news-
paper. He wants circulation. This he has when he advertises in the Scientific Ambrican. And do not let the advertising agent influence you to substitute some other paper for the SCIENTIFIC AMERICAN, when se-
lecting a list of publications in which you de lecting a list of publications in which you decide it is for
your interest to advertise. This is frequently done for the reason that the agent gets a larger commission from the papers having a small circulation than is allowed on the Scientific American.
For rates see top
For rates see top of frrst column of this page or ad-
dress MUNN \& CO. Publishers, dress MUNN \& CO., Publishers, $\begin{gathered}361 \text { Broadwav, New York }\end{gathered}$

WM. GRAVER TANK WORKS,

STORAGE TANKS. 3d Floor, Rookery Bldg. CHICAGO, ILL.

Model \& Experimental Work

BEATTY Culkitio.

ROSE'S ROMPLETE $\Psi ~ \Psi ~$ ※ Practical Machinist

 by the same author.
 tical Mechanicanents, wramementary Instruction in Prac

 NEARLY READY.
 jiving full explanations of the construction of Monderi

of aill the llastrated circulars, viving the funt tables of feontents sent free to any one who will apply.

 HENRY CAREY BAIRD \& CO., 810 Walnut St., Philadelphin, Pa., U. S. A.

ARTESIAN

Rubber Rolls and Wheels.

STEEL TYPE FOR TYPEWRITERS

 FOR SALE Patent for Kpanding Milk Can Corerg

have you read
Experimental

- Pience?

Physical Science. No one having the spirit of the the
tines an afford to be without the kind of sientinc information contained in this bacturne but entertaining.
only

Over 790 pages; 680 fine cuts; substantially and
beautifully bound.
Price by mail
s4.00.
MUNN \& CO., Publishers.
Office of the SCIENTIFIC AMERICAN

UNRIVALED
Excellence of
Design and
Construction,
Simplicity,
Easy Operation,
Speed,
Durability.
Send for Catalogue.

Remington

 TYPEWRITERAdopted as the official Writing Machine of the World's Columbian Exposition.

Wyckoff, Seamans \& Benedict, 327 BROADWAY, NEW YORK

No one ever wrote 1000 Letters an Hour, EDISON MIMEOGRAPH

 SCIENTIFIC AMERICAN DYNAMO.

After being on the Market Seven Years THE AGME AUTOMATIC ENGINE AND BOILER EPITGTEPEDE:

1 INO SKILLIWD ENGINEHR. THE SHIPMAN AUTOMATIC STEAM ENGINE. KEROSENE OIL FUEL. $\quad 1,2,4,6$ and 8 HORSE
No extra Insurance. Efficient, Economical, Durable. No extra Insurance. Efficient, Economical, Durable. SHIPMANENGINECOMPANY, 200 SUMMER STREET, BOSTON MASS.

VOLNEY W. MASON \& CO. FRICTION PULLEZS, CLDTCHES, and ELEVATORS

ONE HALF INTEREST in a valuable Patent
 Wnnted-Partner with capital to introduce a patented
boiler furnace. Adaress Hurdiev, Box 41 , Youngsitn, 0.

 THE COPYING PAD-HOW TO MAKK

DRAWING TAUGHT BY MAIL
Also, Mscranics, Mining, Prospecting, Arithmettic, etc.

INVENTIONS

PROPOSALS.

 GATES ROCK \& ORE BREAKER Capaity up to 200 tons per horr. Machinery, send for catalogine.
CATES IRON WORKS
 SCIENTIFIC EXPERIMENTS. - DE-

Jfents wanted for the Life and pablioeservices of

only complete mork pabicampleteoutft mailed for

VELOCITY OF ICE BOATS. A COL-

最SPRING KEY HOLE CALIPERS

REFLECTING TEESCOPES HIGH POWER. superior to Refractors in defining
 THE PEARY EXPEDITION: AN IN-

A complete Directory of the
STEAM USERS IN CONNEOTICUT FOR 1893
 WE SEND FREE

FUELS AND THEIR USE-A PRESIdential address before the Soclety of chemical Industry,

The Monitor INCUBATOR.

> To Invematore
E. K onigsiaw, manutacturer or Fine Minchinery

Useful Books!
Manufacturers, Agriculturists, Chemists, Engineers, men, of all classes, need good books in the line of their respective callings. Our post office department
permits the transmission of books through the maits at very small cost. A comprehensive catalogue of useful books by different authors, on morelished for freecirculation at the office of this paper. Subjects classifed with names of authors. Persons desiring a them. Address,
MUNV CU, 361 Broadway, New York.
1 E. TNES\& \& HEAD NDISES CURED

James Smith Woolen Machinery Co, THE HUB FRIGTION GLUTCH.

LUNKENHEIMER'S LOOSE PULLEY OILER

THE STATE for 1 Manufactures is OD

A Great Field for Manufacturers and Factories. Portland is its great industrial
center. Her perfect water power unequalcenter. Her perfect water power unequalfor Mills and Factories. Is situated on tide water at the terminal connecting point of Railroad and Sea and River navigation. Full information furnished free by the Oregon State Board of Immigration, Portland, Oregon.

FIRE-PROOF. Easily applied by anyone. Send for Samples and Descriptive Prico Listo H. W. JOHNS MANUFACTURING COMPANY,
H. W. Johns" Asbestos Fire and Water-Proof Sheathing, Bnilding Felt, Steaim Packings.

87 MAIDEN LANE, NEW YORK,
Jerser city, CHICAGO, PHLLADELPHIA, BOSTON, ATLANTA, LONDDM,

The Smith Premier Typewriter
ind Featuras Greatlyncepriected.
Perfect and Permanent Alignme

95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Grabam Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephnnes infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licẹnsees responsible for such unlawful use. and all the consequences thereof, and liable to suit therefor.

ELECTRO VAPOR ENGINE.
gas or gasoline for fuel.
NO boller. no file. no danger.
no engineer.
Engine operated by spark
from small batery.

You turn the Switch,

THOMAS KANE \& CO., CHICACO, ILL.
THE SIMPLEX TYPEWRITER stamp for catalogue " V " \$2 50 F 2 SOCUARANTEED

SCIENTIFIG AMERICAN SUPPLE-

KODAKS
 or Snap-Shots Out-Doors,

 For Flash-Lights at Night. The Junior are the most compact - Kodaks. - adapted to hand or tripod films or glass plates. Fisted with focusing index$\$ 40$ and $\$ 50$.

$\left.\begin{array}{l}\text { Send For } \\ \text { Catalogue. }\end{array}\right\} \quad \begin{array}{c}\text { EASTHAN KODAK } \\ \text { Rochester, N. } \mathbf{Y} .\end{array}$
CO.,

The Most Popular Scientific Paper in the World
Only 83.00 a Year, Including Postag
Weekly-52 Numbers a Year.
This widely circulated and splendidy illustrated teen pages of useful information and a large number of original engravings of new inventions and discoveries,
representing Engineering Works, Steam Machinery representing Engineering Works, Steam Machinery.
New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity Telegraphy, Photography, Architecture, Agriculture, Horticulture, Natural History, etc. Complete list of patents each week.
Terms of Subscription. -One copy of the Scienpostage prepaid, to any subscriber in the United States, Canada, or Mexico, on receipt of three dollars by the publishers; six months, 81.50 ; three months, $\$ 1.00$. Clnbs.- Special rates for several names, and to Post
Masters. Write for particulars. Masters. Write for particulars.
The safest way to remit is by Postal Order, Draft, or
Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed.
seldom goes astray, but is at the sender's risk. Address seldom goes astray, but is at the sender's risk. Address
all letters and make all orders. drafts, etc.. payable to MUNN \& CO., 361 Broadway, New York.
MUS

Fcientitic Amperican Supplement This is a separate and distinct publication from THE SCIENTIFIC AMERICAN, but is uniform therewith in size,
every number containing sixteen large pages full of engravings, many of which are taken from foreign papers
and accompanied with translated descriptions. THE SCIENTIFIC AMERICAN SUPPLEMENT is published weeksents the most recent papers by emincnt writers in all the principal departments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural History, Geography, Archæology, Astronomy ChemisSteam and Railway Engineering, Mining, Skip Building, Marine Engineering, Photography, Technology, Manufacturing Industries, Sanitary Engineering, Agriculture. Horticulture, Domestic Economy, Biography, Medicine. The most important Engineering Works, Mechanisms. and Manufactures at home and abroad are illustrated
and described in the SUPPLEMENT and described in the SUPPLEMENT.
Price for the SUPPLINT
Price for the SUPPLEmint for the United States, Canada, and Mexico, 85.00 a yotar; or one copy of the
SCIENTIFIC AMRICAN and one copy of the SUPLEMENT, both mailed for one year to one address for $\$ 7.00$. Single copies, 10 cents. Address and remit by postal order. MUNN \& CO., 361 B.

Building CUditiou.

The Scientific American Architects' and BUILDERS' EDITION is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equa
to about two hundred ordinary book pages: forming a large and splendid Magazine of Architecture, richly
adorned with elegant plates in colors, and with other fline engravings; illustrating the most interesting examples or modern architectural construction and allied subjects. of a variety of the latest and best plans for private residences, city and country, incluaing those or
erate cost as well as the more expensive. Drawings in perspective and in color are given, together with full Plans, Specifications, Sheets of Details, Estimates, etc. The elegance and cheapness of this magniffcent work have won for it tho Largest Circulation of any
Architectural publication in the world. Sold by all newsdealers. 82.50 a year. I. دmit to

MUNN \& CO., Publishers,
361 Broadway, New York.
PRINTMINC INTKE,

