
a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.


NEW YORK, DECEMBER 10, 1892 [\$3.00 $\underset{\text { WEELEAR }}{ }$


MANUFACTURE OF RUBBER SHOES-INTERIOR VIEWS OF FACTORY OF BOSTON RUBBER SHOE CO., MALDEN, MASS.-[See p. 374.]

# ₹rientific Ammeriam. 

ESTABLISHED 1845.
MUNN \& CO. Editors and Proprietors PUBLISHED WEEKLY AT
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, for the U. S., Canada or Mexico.
One copy, six months, for the U.S., Canada or Mexico................ 1500
One copy,one year,to any foreign country helonging to Postal Union. 400 Remit by postal or express money order, or by bank draft or check.
MUNN \& CO., 361 Broadway, corner of Franklin Street, New York.

## The Scientific American


oreign countries


The safest way to remit is by postal order Bropresway, Now York


NEW YORK, SATURDAY, DECEMBER 10, 1892.


TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT No. 884.

For the Week Ending December 10, 1892.
I. ARCHEOLOGF.-The Old Stone Mill at Newport.-By J. P.
MACLEAN--The origin of the old stone mill.-A probable solu-
tion of the problem of its origin.............................
II. ASTRONOMY.-Some Additional Points Relating to Comets.-
By GEORGE W. CoAkLY.
lev, giving his conclusions conn intereresting paper by Prof Coak-

III. BACTERIOLOGY.-Recent Contributions to the Chemistry and


IV. BOTANY.-Cycads at Kew.-An unrivaled collection of cycads,
now cultivated in England.-1 illustration...........................
V. CHEMISTRY.-Oleomargarin.-By Prof. G. C. CALDWELL.-The
chemistry of ol oleomargarin, its action on on the sysem and its
availability as a food material from a scientific standpoint........
 VII. ENTOMOLOG Y- - Relable Remedies Against Insect Pests.- A
valuable paper on economice entomology.-The destruction of in-
sects injurious to plants and trees.......................... vIII. HYGIENE.-Safe sid Perilous Occupations. - Popular resumn
of the chances of life in different occupations... IX. MISCELLANEOUS.-Small Optical Theater.-A very pretty toy

 competition, recently reproduced in these columns, with illustra-

Danforth was an assistant engineer on the U. S. S. Philadelphia on a recent voyage. On the morning of November 5 , he was in charge of the engine room and engaged in testing the capstan steam pipe with steam up. While his men were distributed at their stations here and there among the machinery, the master-at arms, a subaltern in the marines or police of the ship, suddenly appeared, and, without a word to Engineer Danforth, forthwith arrested one of his machinists under orders from the deck, when Danforth interposed, insisting that an engineer in charge should be informed that one of his men was to be taken from his post, so that he could put another man in his place. The master-at arms quitted the engine room to report that Danforth, having relieved the machinist that was wanted, sent him on deck to obey the order of arrest. Then came an order for Engineer Danforth to appear on deck forthwith. Engaged as he was in superin tending a test with steam up, so he testified, he could not leave at once. "I dared not leave my post at once," he says, "knowing that the chief engineer, my superior, would hold me to a strict accountability if mishap should come, and believing that the officer-of-the-deck only wanted to see me in reference to the case of the arrested machinist and was not aware that I was seriously engaged.
"I sent him word that I was testing the capstan steam pipe and would come just as soon as I could find some one to relieve me. Then a peremptory order came and, leaving everything, I went on deck. Within an hour after I had, with perfectly honest inten tions and a conscientious belief that I was doing my duty, sent the message to the officer-of-the-deck, I had been reported in writing and had been refused any opportunity to make an explanation to any one of the three officers who were to make and forward the re ports against me."

This testimony was not impeached before the court martial nor was it denied that Danforth is a faithfu and efficient officer, his record being, up to now, with out blemish. Notwithstanding this, the jury, composed it should be said for the most part of line officers brought in a verdict against him; the Secretary of the Navy approving the same and condemning the engineer to a year's suspension on half pay.
The case has excited much interest throughout the service; the engineer officers, or at least those who have expressed their opinions in the public prints, looking upon the verdict as unjust and unmerited though only what might have been expected from a strict application of the old cast iron rules to what must be regarded as altogether new conditions.
It is time this kind of thing was put a stop to, or, if the old rules must stand, that a little common sens be mixed with them.

## GOOD ROADS

The subject of good roads is now occupying a great deal of attention on the part of the public. The American nation appears to be gradually awakening to the fact that the bad roads of this country are un worthy of its position among the nations. We learn what bad roads bring about when we read of mud blockades. Large districts of country are rendered im passable by mud. Almost an entire State is brought into a condition of siege by the muddy roads. The farmers cannot transport their produce, the railroads
lose freight, and the speculators seize the opportunit lose freight, and the speculat
to advance prices of produce.
This is what a mud blockade may mean. The State or region directly affected, the railroads traversing it, and the country at large may all suffer for it. To avoid such occurrences we need no lessons from modern times. It is true that the nations of Europe put us to the blush. But we may go back two thousand years for our instructors. The Roman engineers won their
fame largely as road makers. The roads which they built are to-day their monuments.
Thus we find ourselves very archaic in the matter of community from bad roads last year was as much a $\$ 16,000,000$. If this ratio were taken for the whole country, it would give a loss of $\$ 300,000,000$. At three per cent such loss would represent a capitalization of ten thousand millions of dollars. This is one-sixth of the total wealth of the country
The subject of deserted farms has been a subject of concern in the New England States. A farm whose outlets in the spring and fall months are but canals of mud and cobblestones is justly unattractive to the But replace the bad roads by macadamized or telfordized surfaces, which do not feel the spring thawing and which are always passable, and which are dry a few hours after a rainstorm, and the country will take on a new aspect.
The agitation for good roads was originally under taken by the League of American Wheelmen. This is an association of bicyclists. On bad roads the bieycle rider is at a great disadvantage. Doing his own pro-
pelling, he quickly appreciates a change in the road
surface. The agitation began to spread. The carriage builders have justly felt that good roads would give them an enlarged market, and have joined the move ment. The subject has been lifted up from the limited bicyclist's platform to a national one. A bill has been presented before Congress looking to the establishment of a national highway commission. Special laws have been passed by States for the construction of roads. The effect of such laws has already been widely felt The formation of a national association for the en couragement of the building of good roads has been effected. The probabilities are that the next ten year will see a great change-almost a revolution. The era of bad roads is certainly approaching its close.

## A CARRIAGE BUILDERS' SCHOOL.

The National Association of Carriage Builders held their 20th anniversary recently in Buffalo, New York Among the subjects treated a particularly important one, and interesting in view of the general movemen for the advance of technical education, relatad to th establishment of a carriage builders' technical school For some time past a school has been maintained in New York City for the education of young men em ployed in the carriage factories, apprentices and me chanics who work during the day. These young men gave three nights each week in the carriage builders school to learn carriage drawing. This is the work that has been done. The Carriage Builders' Associa tion, however, felt that more was required, and advo cated the establishment of a true technical school.
As the representative of practical technics in this vi cinity the Stevens Institute at Hoboken afforded an obvious opening for the foundation of such a course The Institute for many years has graduated from it curriculum engineers in the true, practical sense of the term. Its graduates are not only familiar with the mathematics of the subject, with the theory and scien tific aspect of their work, but are also practical workmen when they leave it. Special provision is made fo giving them a course in practical mechanics, so that hey may learn the absolute use of tools. After they leave the college there is no need for them to spend year or more in the shop. This part of their education is included in their college course.
The faculty of the college have taken a special in terest in the carriage builders' school, such as it is. It seems very natural, therefore, that by a slight addition to its force, the Stevens Institute of Technology might supply the needed college for carriage builders. Eve ning classes in drawing and designing should be kept up for the benefit of workmen and apprentices. In struction in connection with the regular course in drawing and descriptive geometry would be included in such lines as are required in carriage building. Un der applied mechanics the application of the principle of statics and dynamics to suitable problems in car riage building would be given. In shop work the joints used in carriage construction and the tempering of springs are two suggested topics. In the experi mental course special examples in testing the strength of springs, joints, and frames would be introduced. Such in general, with added lectures by specialists, is the programme as suggested by Dr. Henry Morton, the President of the Institute. To carry it out, money is equired, and the collection of such money is now bein attended to by the association, and they seem to be lieve that they will succeed in raising sufficient capi talization to enable the Stevens Institute of Tech ology to establish the special course designed
The situation of the Stevens Institute of Technology is particularly available, being so readily reached by erries both up and down town in this city. Its pe culiar fitness as a center of such instruction has been lready explained. A carriage builders' school estab ished there will have the advantage of a score of year preceding work done at the Institute, for into th work of the course will enter the experience of the en tire faculty. The work done by a regular student in that department will to a great extent be the same a hat done by all, so that he will receive the full benefi of the plant of the Institute and of the long years of work of its faculty.
Carriage building is rapidly developing and biäs fai to become a true profession. The past year has wit nessed remarkable results obtained by the introduc ion of ball bearings and pneumatic tires on racing wagons, and it is hard to believe that the day is not near at hand when vehicles of luxury will be thus equipped. In the structural department electricity is already playing a part in the welding of tires and in the welding and brazing of joints in general. All this indicates the invasion of the old field of handiwork and apprenticeship by the highly trained neechanic and technologist. The carriage factory may yet be called upon to supply electrically propelled vehicles Many experimental vehicles of this type have indicated the possibility of future success. In the use of oil fuel and of naphtha engines there is also a possi bility for the future. In carrying out these and many ther impending changes the educated technologis will find in carriage building full scope for an engl neer's education.

## the nicaragua canal convention.

At the recent New Orleans convention, which was attended by prominent business men from many sections of the country, the main effort was to bring to bear upon Congress sufficient influence to secure government aid in building the Nicaragua Canal,* such aid to be extended in such way as to give the government almost sovereign power over the work. Senator Morgan, of the Committee on Foreign Affairs of the United States Senate, made the principal speech, in which he insisted that the bill now before the Senate, providing for the indorsement of $\$ 100,000,000$ canal bonḍs, ought to be passed, and receive the hearty approval of all intelligent citizens. He said the canal company was willing to give to the government $\$ 70,000$, 000 of the bonds, in order to lodge the control of the canal in Washington, and thought that the concession of a neutral strip of land along the canal by Nicaragua would prove to be really the cession of so much territory to the United States. A strong committee was appointed to urge upon Congress "to take such steps and give such financial aid as will insure the speedy completion of the canal at the minimum cost thereof, taking proper security for any credit pledged or money advanced for this purpose, and retaining such control and supervision of the same as will insure the peaceful world the towest possible rat

## To Darken Oak.

Oak for decorative wood work is produced by fumigating the material with ammoniacal vapor, which effectively produces the dark coloring so much desired. In accomplishing this, the method consists in placing the material to be darkened in an approximately airtight room in which no light enters; or for small work a packing box will suffice, the joints or cracks to be well pasted over with paper. In this room or receptacle for depositing the furniture or other articles is placed a flat porcelain or earthen vessel filled with ammonia the vessel containing the liquid being, of course, se on the ground or floor, that the fumes or vapor may strike to advantage the articles to be darkened; if the apartment is large, two or more vessels containing am monia may be employed and allowed to remain until the desired effect is secured. The ammonia does not touch the oak, but the gas that proceeds from it act in a peculiar manner upon the tannic acid contained in oak, browning it so deeply that a shaving or two may actually be taken off without removing the color. The depth of shade depends upon the quantity of ammonia used and the duration of exposure

A Demonstration of the Cholera Bacillus.
At a recent meeting of the Section in General Medi cine of the New York Academy of Medicine, Dr. E. K Dunham gave a most interesting demonstration of the comma bacillus of Asiatic cholera. Tube cultures and plate colonies of the organism were projected upon the screen, and their morphological and biological charac ters pointed out. The bacilli themselves were shown under the microscope, both alive in a drop of the cul ture fluid and also stained by the ordinary methods Photomicrographs of the latter were also shown by means of the dark lantern. The cultures had been made in the usual way from the dejecta obtained from the nine cases of cholera recently observed in New York. In two of the cases cover glasses, prepared directly from the intestinal contents, showed the charac teristic germ. In the seven other cases cultures had been required before the bacillus was found. Culture from some of these cases had been sent to Dr. Petri director of the bacteriological department of the Im perial Board of Health at Berlin, and a letter in reply had been received from Dr. Petri stating that he could detect no difference between Dr. Dunham's culture
and those made from the cases in Hamburg.-N. $\boldsymbol{Y}$ and those
Med. Jour.

## Oil of Sweet Almonds.

The United States consul in Liverpool recently re ceived orders from government to inquire into the manufacture of oil of sweet almonds in England. He reports that two London firms, whom he names, seem to be the principal, if not the only, firms in England engaged in this business. Therrernels are crushed by hydraulic pressure, and from the cake thus formed the oil is distilled. The same process is carried on in Havre; but it is said that there the kernel of the peach is used instead of the almond, and that, consequently the oil is cheaper in price and not so good.

The use of rubber tires on private carriages ha become quite common in this city. For invalids and nervous persons our physicians recommend their use But the rubber tire is not only expensive, but last only a little while, owing to our rough pavements ani street railway tracks. Why will not some one invent a cheaper substance than rubber, which will be more enduring, cost less, and be sufficiently elastic to meet the requirements?

* Mastrational and

The medicinal use of menthol in China and Japan oes back into the dateless ages. Isolated references to its application in the East are met with here and there in the records of western travelers in those parts, but says the Chemist and Druggist, we shall probably never know the name of its discoverer or the early history of its introduction. We do not even know with absolute certainty when, and by whom, menthol crystals were first brought to the notice of European pharmacologists. It is said that they have been used pharmaceutically on the Continent as long ago as the end of the last century, but if that statement is capa ble of proof, the drug must have fallen into oblivion shortly after its introduction, for it was certainly utterly unknown, even by repute, to most persons in the drug trade twenty-five years ago. Somewhere about 1864 a consignment of the drug was received in London under the name of Chinese peppermint oil, and passingly commented upon for its curious property of solidifying with a fall in the temperature. To the late Mr. John Mackay, of Edinburgh, belongs the dis tinction of first having called the attention of British pharmacists to the valuable properties of menthol. Mr. Mackay is believed to have brought "Po-Ho oil with him from Paris, where it was then sold, in the small red-labeled Chinese bottles familiar to eastern travelers, as a kind of proprietary article. Had menthol been an utterly valueless quack medicine, it would, perhaps, have taken Europe by storm then, and reigned for a season, just long enough to gather a fortune for its first exploiter. But as the drug happened to have a solid therapeutic value, it had to
wrestle through the familiar stages of contumely, ridiwrestle through the familiar stages of contumely, ridi cule, animosity, and unreasoning popularity, just like any new creed or reformer. The commercial history of menthol practically dates from 1878, when an Eng ish firm in Yokohama made a small shipment of it to London, determined not to rest until they had suc eeded in securing for the remedy a footing upon the arket. After many months their shipment went back, with a note from the agents, announcing that the stuff "could not be sold here, as no one knew what to do with it. But the Yokohama firm perse vered, and they reaped their reward. Four years late menthol crystals were the rage of the season, selling a 60s. per lb. wholesale, and carried about in cone shap by all persons with any pretense to the possession of ivilized nervous system.

Lysol.
Attention having been drawn by the recent cholera "scare" to the popularity of carbolic acid as a disin fectant, notice is being taken in medical circles of th even superior advantages for many purposes of the cre sols as disinfectants. It was discovered that crude car bolic acid made soluble by the action of sulphuric acid surpassed in germicidal power an equally strong solution of pure phenol, besides which creolin, although ree from carbolic acid, was proved to be of unmistak ably superior disinfecting activity to the latter. Being insoluble in water, however, these cresols were neg lected until the idea was hit upon of combining them with resin soap. Although very efficacious, these pre parations were only emulsions; and it remained for th resols to be made soluble, as now in the form of lysol in order that what can be called the ideal soluble dis infectant should be made generally available. Lysol is produced by dissolving in fat, and subsequently saponi ying, with the addition of alcohol, the fraction of ta oil which boils between $190^{\circ}$ and $200^{\circ}$ Cent. It is a brown, oily-looking, clear liquid, with a feebly aromatic reosote-like odor. It contains 50 per cent of cresols and it is miscible with water to a clear, saponaceous, frothing fluid. It shows turbidity when mixed with hard water; but its disinfectant quality is not impaired thereby. It acts, to all intents and purposes, as a soap and it is admirably adapted for use in surgical opera tions. According to German testimony, lysol is one of the most precious products of coal tar which chemistr has given to the service of mankind.

## Waterproof and Fireproof Cement.

Herr Alwin Nieske, of Altherzberg, suggests a method or the preparation of an absolutely waterproof ce ment, consisting in the addition to ordinary cement of acetate or palmitate of alumina. By further adding chromate of magnesia to this mixture, the cement is made refractory as well as moisture-repelling. The idea is that cement of this character would be advan tageous for use in very damp situations, or for tanks, etc., underground. The proportion of palmitate of alumina to be employed will vary according to circum stances, the nature of the mortar or cement, and the character of the work to be done; but 10 per cent of the palmitate would be a good proportion for any kind of hydraulic mortar. If the cement is needed to resist humidity, and be at the same time refractory to fire, a mixture is made in about equal parts of the cement mortar with the palmitate and a chromic magnesia prepared with oxide of chromium, 32 to 42 parts alumina, 18 to 22 parts; magnesia, 18 to 20 parts. The mixture of these earths, wetted with water, is formed
into briquettes, which are calcined, pulverized, and kept ready for use

## Method of Capturing Mosquitoes

An ingenious method of capturing adult mosquitoes in the house is in extensive use in some localities in New Jersey. We have not seen it described in print and mention it here in the hope that it may be new to some of our readers. It consists in nailing to the end or rather the top, of a stick the lid of a small tin box uch as a yeast powder box. The stick must be lon nough to enable the operator to reach the ceiling, and he tin cover of the box is nailed to it in an inverted position. Into this receptacle is then poured a table poonful of kerosene, and the mosquitoes at rest upon the ceiling are easily trapped by simply placing this kerosene cup under them and close up to the ceiling In their endeavor to escape they fall at once into the kerosene and are killed. On the morning of Septem ber 25 the writer captured in this way seventy-fiv mosquitoes on theceiling of the room which he had oc upied during the night. Most of the seventy-five were filled with blood, which, we think, is a sufficien argument in favor of performing the operation befor oing to bed rather than after arising !-Insect Life

## Gigantic Steel Works

The Carnegie Steel Company, limited, was organized ast July with a capital of $\$ 25,000,000$. Record ha recently been filed at Pittsburg. The Bulletin has the ollowing list of stockholders in the new company Andrew Carnegie heads the list with $\$ 13,833,333$, o $\$ 1,333,000$ more than the controlling interest. The other large stockholders are: Henry Phipps, Jr., who holds $\$ 2,750,000$; H. C. Frick, $\$ 2,750,000$; G. Lauder, $\$ 1,000$ 000 W H Singer $\$ 500,000$ - H. M. Curry $\$ 500,000 \cdot$ H W. Borntraenger, $\$ 500,000$ - J. G. A Leishman, $\$ 500,000$ Wm. L. Abbott, $\$ 250,000$; Otis H. Childs, $\$ 250,000$; and . W. Vandervort, $\$ 200,000$. There are twenty-thre tockholders in all. The works included in the re rganization are the Edgar Thomson, Homestead, Duquesne, Upper and Lower Union Mills, the Luc urnaces, Keystone Bridge Works, Beaver Falls Mills the Scotia Ore Mines, the Larimer Coke Works, and the Youghiogheny Coke Works.

## Drake's Columbus Drinking Fountain

At a cost of fifteen thousand dollars, John B. Drake proprietor of the Grand Pacific Hotel, and one of Chicago's leading citizens, is just completing in that city a public drinking fountain, which is regarded a ne of the most ornamental creations of its kind in the world. The design is Gothic instyle, and the materia is a fine warm-tinted coral granite from Italy. The tructure occupies a space on the north side of Wash ngton Street, between the city and county buildings, and is 32 feet in height. Below the platform is a cham ber which will hold three tons of ice, effectually cooling the water, which flows through coils of pipe below and around the ice.
Mr. Drake has long felt that public drinking fountains in the populous parts of great cities would pro mote the cause of temperance in the best possible way Let Mr. Drake's good example be followed by citizen f other cities and towns.

## Where Canary Birds Come From

When the North German Lloyd steamer Herrmann unloaded at New York lately, twenty large bundles hrouded in white cloth were carefully lifted from the hold and placed on the dock. From each bundle came chorus of angry twitterings and chirpings and much luttering of wings. Each bundle contained 252 little wooden bird cages, each with a canary bird in it. Immediately every one of the 5,040 birds stretched its ittle yellow throat in an effort to outsing his neighbor They carolled and trilled as merrily as if they were ooking out on green heath and a blue sky.
The canaries are of three grades; the $\$ 2.50$ birds, the $\$ 5$ birds, and the $\$ 10$ birds. The ordinary birds are worth $\$ 2.50$. A large, fine bird, or one of particularly handsome coloring, brings twice that price, while a distinguished vocalist will bring $\$ 10$. All the birds are males and singers. They come from Germany where they are bred in large numbers. It is probable that all of the 5,040 birds will be sold within a few weeks. This is the busy time in the canary market and within the past week more than 10,000 of these birds have arrived, classed as live stock.

## A Large Hydraulic Ram.

Rife's Hydraulic Engine Manufacturing Company Roanoke, Va., has recently built a hydraulic ram which yields remarkable results. It is attached to an 18 inch drive pipe with a 4 inch discharge pipe, and weighs a ton. This ram, under a head of 7 feet, elevated agallon of water per second to a height of 34 feet. It is said that during the experiment the ram took in the requisite quantity of air and worked very steadily and atisfactorily. It has thus been demonstrated that it quite within the range of possibilities to make larger hydraulic rams than have heretofore been thought of.

## AN IMPROVED DISH WASHER.

A simple and inexpensive device for speedily cleansing dishes or other soiled table ware, in a very convenient manner and with small chance of breakage, is shown in the accompanying illustration, the improvement being the invention of Eliza A. H. Wood (deceased) and Mrs. Minni Wood Gordon. The dish holder has a closely-fitting removable cover, and a faucet near the bottom at one end, for freely draining off the water, while within the holder freely slides a comparatively heavy loose lid, designed to rest on the dishes and hold them in place after the hot soapy water has been poured upon them. The holder rests in a cradle, on the lower side of which are rockers, the cradle having a low border wall and flat bottom, and a slot in each end of the border wall of the cradle accommodating the faucet. When the unwashed dishes have been packed in the holder, the hot soapy water


THE WOOD-GORDON DISH WASHER.
poured over them, and the heavy inner lid placed on them, the outside cover is put on and the entire device rocked, to cause a thorough and rapid circulation of the soapy water through the dishes, after which the first water is drawn off and rinsing water used, as desired, in the same way.
Further particulars with reference to this invention may be obtained of Mrs. Minnie Wood Gordon, Bloomfield, Fla.

## AN IMPROVED FIRE ESCAPE.

The fire escape shown in the illustration is operated automatically by the weight of the persons escaping from a building to which it is attached, the improvement being designed to supersede the employment of cumbersome and dangerous iron ladders, ropes, cables, etc. The invention forms the subject of a patent recent ly issued to Mr. William J. McCollum, of No. 182 Van Houten Street, Paterson, N. J. At a suitable point near the windows in the outside wall of the building, near the ceiling of the upper story, is secured a tube, whose inner end is integral with a cast iron bracket


MCCOLLOM'S FIRE ESCAPE.
carrying the regulating mechanism of the device. The tube forms a bearing for a freely revolving horizonta shaft on whose outer end are two sprocket wheels, at a suitable distance apart to represent the width of a Ladder, the notches in the wheels being spaced to cor-
respond with the distance between two of the rungs of the ladder, the rungs being attached to endless sire ropes. On the inner end of the upper shaft is a miter wheel in gear with a pinion, by means of which a governor is operated to control the speed of revolution of the shaft, as it is rotated by the weight of one or more persons stepping on the ladder. By the operation of the governor a steel brake band is made to bear upon a brake wheel with a pressure corresponding to the weight which may be placed upon the ladder, enabling persons to descend at a safe and uniform speed, and insuring perfect control, whatever the load. The gov ernor may be regulated to run at any speed desired. When the occupants of the ladder alight the mechanism ceases revolution, a pawl preventing the descent of the other side of the ladder at any time, and enabling it to be used when desired to gain access to the building. To prevent the ladder from becoming slack by wear or changes in temperature, the shaft carrying the lower notched sprocket wheels forming the bottom of the ladder has its bearing in a hollow tube, to which are secured eccentrics with enlarged collars adapted to be clamped by lock nuts, whereby the distance between the top and bottom wheels may be regulated. The rungs of the ladder are tubular, and the entire apparatus is incombustible. The wire rope ladder and the sprocket wheels are galvanized, and therefore will not rust. The regulating device being inside of the building and the main shaft bearings in the wall, these parts are entirely protected from the weather. The wire rope forming the sides of the ladder is passed through bored apertures in the ends of each rung, and firmly fastened by means of a wedge, whereby a very strong ladder is made at a minimum expense, and, being very light, is not in any way a detriment to the appearance of the building. A basket may be hooked on to the ladder for children, or in other cases when desired, and the apparatus may also be used with grea advantage
mills, etc.

## Nose and Throat.

In a recent lecture before the Chemists' Assistants Association, London, by William Hill, M.D., London, the throat was described in detail, and the pharynx and the larynx pointed out as the two most import ant parts. The nose has a very important connection with the throat and its disorders. It contains a series of bones called the turbinated bones, which expose a large surface of warm blood, and cause the air inhaled to be warmed ready for the lungs; moreover, the cilia of the nose cause the secretions to move and reject the solid particlesithas collected. The nose is the proper organ for breathing, not the mouth. The larynx which is the air passage, is bounded at its upper extremity by the vocal cords, and has, therefore, the double function of breathing and of phonation. The epiglottis, by altering its form, causes the food to pas down the pharynx, and keeps it from the larynx. In speaking of proper breathing, the author pointed out that diaphragmatic breathing was the proper method, and not clavicular. It was reported that Rubini had broken his clavicle during singing, by persisting in this method of breathing. Throat diseases are often caused by germs, by inhalation of sewer gas, etc. For tunately, there are other organisms in the throat always ready to attack these germs. The throat wa well provided with tonsils, both faucial and lingual The tonsils produce phagocytes, or leucocytes, amoboid corpuscles which actually swallow up the germs. Why, then, should tonsils be cut out? Because, when they become enlarged and horny, they lose this function, and by removing the horny surface, the newly exposed portion can go on producing the corpuscles. The decay of teeth is largely due to germs This shows the importance of keeping the teeth in order. Obstruction in the nose is the cause of many throat disorders. Care must be exercised in the use of both alcohol and tobacco ; many people can use these luxuries with impunity in moderation, others cannot. People liable to throat disorders should be very chary of eating piquant or hot dishes. Irritating remedies, too, such as cayenne and (except in special cases) tan nin lozenges or nitrate of silver, should be avoided. Hot tea, too, is bad.

## Painting the World's Fair Buildings.

The painting and decorating of the vast interiors of the great exhibition halls at Chicago is an enormous undertaking. Frank Millet is the artist in charge. A recent estimate of the area to be covered with paint developed the fact that it would be impossible to set enough men at work with brushes to complete the task in time for the opening of the fair. Mr. Millet there upon contrived a machine for doing the work. It consists of a piece of gas pipe flattened at one end to make a "spray." From this a rubber hose connects with an air pump driven by an electric motor, and beyond this is a barrel of paint. The pump sucks paint from the barrel and the air jet sprays the paint with force upon me surface to be coated. Four workmen wa army of painters could in a week.

## AN IMPROVED WOODEN VESSEL.

Ordinary buckets and tubs are being replaced in the outh and West by the more expensive but more durable fiber ware and galvanized iron vessels; but the difficulty heretofore experienced with wooden bucket is designed to be obviated by the improvement shown in the illustration, as the staves are thereby prevented rom warping in dry seasons, and are securely held in place and tightened when carrying a heavy load in the ressel. The invention has been patented by Mr. Ed win M. Reese, of Santa Paula, Cal. On opposite sides


REESE'S IMPROVED BUCKET.
of the upper hoop, a bolt extends through an opening in a stave, and engages at its inner end a brace or segmental hoop, fitted in a recess on the inside of several adjoining staves, the bolt at its outer end engaging ar eye on the lower end of a vertically sliding link, which has a hook at its upper end to which one side of the bail is connected. The opening in the stave through which the bolt is passed is of a form to allow room for an up and down movement of the outer end of the bolt, and when the bucket is manufactured the upper hoop is located near the lower edge of the opening, the bolts then being inclined downwardly, as shown in one of the small sectional views. The opening in which the bolt moves is filled with asphaltum, putty, or other suitable material, and when the staves dry up, or there is a heavy load in the bucket, the lifting of it by the bail tends to draw the hoop and the bolts to an upper position, as shown in the other of the small views, thereby closing and tightening the upper ends of the staves to take up possible shrinkage.

A COIN-TAKING AND TICKET-DELIVERING BOX.
By means of the improvement shown in the accom panying illustration, when a coin is pushed into the box, a bell rings and a numbered ticket is delivered, an indicator at the same time recording the number of tickets issued. The invention has been patented by


Mr. John Williams, of Patricroft, Manchester, England. Within the casing are spring-controlled locking devices, extending into the slideways of the coin receiving opening, so that the coin, when placed in the mouth of the device, cannot be removed, but causes a drum to be revolved to deliver the ticket. Only one ticket at a time can be removed or automatically delivered from the box.
Further information relative to this invention may be obtained of Mr. Edward Haynes, No. 128 Pearl Street, New York City.

## Bouillie Bordelaise.

This preparation has been proved to be a specific for the potato blight caused in Europe by the Phytoph hora infestans, and the following formula for its pre paration appears in the Kew Bulletin for October : Copper sulphate.
Quicklime.... $\qquad$


Quicklime.
Water.....
The sulphate is dissolved by suspending it in a coarse cloth, in a wooden vessel containing the water. Slake the quicklime in a separate vessel, and after stirring thoroughly with added water, pass it through a sieve into the copper solution, stir well, and add the remain ing water. The quantity specified is sufficient for one acre of land,

ENGLISH MACHINE TOOLS FOR AMERICA. $\quad$ their advantage to apply to the English tool makers $\mid$ ways, and is fitted with a cross breast slide, also to Under this head our London contemporary, the when they want thorough excellence. We illustrate a plane both ways. The table is actuated by two strong Engineer, gives illustrations, which we reproduce, of planing machine and a slotting machine, supplied this steel screws with long gun metal nuts, ample thrust some new machines, lately made in England for the year to Messrs. Carnegie, Phipps \& Co., of Pittsburg, bearings, and intermediate supports. The driving is lows: "Our friends in the United States cannot as yet Foundry, Leeds. The former is to plane armor plates pulleys for the forward and backward motions, and wholly dispense with English assistance, and find it to to 30 feet long by 10 feet by 5 feet, and to plane both self-acting belt guides. There are four strong stand-


IMPROVED ARMOR PLATE PLANING AND SLOTTING MACHINES.
ards securely fixed to the bed and to each other, and placed face to face. The two cross slides, also placed face to face, are raised and lowered by power for adjustment, and each is fitted with two independent self-acting adjustable tool boxes for all angles. The weight of this machine is over 120 tons.
"Last year Messrs. Smith, Beacock \& Tannett made for Messrs. Carnegie, along with other machine tools for cutting armor plates, the double-headed armor plate slotting machine which we illustrate, with a bed 35 feet long. There are two strong cross slides, each with standards cast thereto, admitting in width 6 feet 6 inches and 20 inches thickness of armor plate. The machine has strong carriages and slotting rams, with adjustable strokes up to 20 inches, with quick return double-purchase driving gear, and balance weights slightly in excess of that of the rams. There are selfacting motions for feeding longitudinally on the bed by racks and pinions and worms and wheels, and transversely on the cross slides by screws. There is a quick motion for running the slotting heads to and fro on the bed to position required."

## American Earthquakes. <br> ralph s. tarr.

The Japanese count upon an average of one violent earthquake shock in twenty years, although prior to that of October 28, 1891, there had been no alarming shock for about thirty-two years. Scarcely a day passes without a tremor in some part of the kingdom, and every year records more than one shock which in our country would be the cause of alarm. The people
of Japan have become accustomed to quakings of the earth, and it requires some very violent shaking up accompanied by the destruction of much life and property to attract universal attention. Since 1633 there have been twelve such shocks, including that of last year, which destroyed in the neighborhood of 8,000 lives, wounded 10,000 more and wrecked not far from 90,000 houses.
In certain parts of Italy, as well as in Japan, the constant trembling and quaking of the earth has taught the inhabitants, through centuries of experience, that an effort to counteract the effects of earth quakings is well worth undertaking. By far the greater loss of iife in an earthquake shock comes directly or indirectly from the falling of buildings; and we find accordingly an effort in regions subject to this evil to construct buildings which are calculated to withstand all but the most violent shocks. In our own country no thought is given to this matter, and our buildings, instead of being calculated to withstand earthquakes, are peculiarly well fitted to become death-dealing instruments in the hands of instable nature.
It is this thought which has induced me to write this article, in which it is proposed to review the points which bear upon the possibility of earthquake shocks
in our densely populated Eastern States and to call in our densely populated Eastern States and to call
attention to the widespread disaster which would result if our land should be visited by a violent earth quake, or even by one of slight violence.
In considering the possibility of an earthquake shock in any given region there are two sources to which one may go for facts. These are the historical recora and the study of geological conditions. Both of these promise us comparative immunity from earthquakes, yet both point out clearly that we are liable at any
moment to find ourselves violently shaken, though moment to find ourselves violently shaken, though
when this may come, or where, no one can tell. I wish when this may come, or where, no one can tell. I wish detail and to place before the readers of this journal the facts as we know them, and to do this it seems well to inquire a little into the cause of earthquake shocks.
The proximate cause of an earthquake is the arrival upon the earth's surface of a series of waves resulting from a jar. An explosion of dynamite will serve as well as any other cause to start these waves in motion, and this is what actually did happen when Hell Gate was blown up a few years ago. The waves start out in all directions, tending to move as successive spheres, rocks of different densities. They reach the surface in a more or less circular form, and places approximately at the same distance on either side of the epicentrum or point directly above the center or focus feel the shock at about the same instant. The shock is most violent directly above the focus and diminishes as you recede from this point. At the epicentrum the motion is vertical, and tends to cause the roof of a house to fall to the cellar and leave the walls standing; but away from the epicentrum the waves emerge at an angle, and the effect is to overthrow houses, chimneys and mon
Whatev
Whatever the cause of the earth jar, these are the universal effects. It is much less easy to state the cause
of the jar. Probably, however, nine-tenths of the of the jar. Probably, however, nine-tenths of the
earthquake shocks are directly or indirectly connected earthquake shocks are directly or indirectly connected
with volcanic action or at least with the passage of molten rocks through the more solid strata of the earth's crust. It is as nearly certain as a thing can well be
without actual ocular demonstration that this is the
cause of very nearly all the earthquakes of volcanic cause of very nearly all the earthquakes of volcanic
regions, and these constitute the vast majority of earth quakes. Many such shocks can be connected with eruptions, and some, such as that of Krakatoa, in 1882, are the direct result of the blowing up of a crater by the pent-up lava. In other cases these earth jars are less easily assigned to volcanic activity, even though they occur in volcanic regions. Still it is a fair infer ence that this is their cause, for there must be a fre quent passage of the liquid lava at great depths in the vicinity of volcanoes, even though no eruption results therefrom. Every time this molten rock, in struggling to reach the surface, forces a passage upward, even for but a small distance, its success in rending the rocks is telegraphed to the surface as a wave of motion and is recorded there as a trembling of the earth.
From this cause we in eastern America are happily free, and it is for this reason, in part, that we have more confidence in the stability of the earth than dwellers in lands of volcanic activity. There is good evidence, however, that the subterranean activity of molten rock is not confined exclusively to volcanic regions. Where one volcano is established there are probably many unsuccessful attempts to establish a vent or safety valve to the surface. Dikes of eruptive rocks intruded into the rocks in Central New York, for instance, where, since those rocks were formed, no volcano has existed, are proof of this. The intrusion of such dikes causes the rocks to be rent asunder, and each one must have caused at least one jar of greater or less violence upon the surface of the earth. How many of the earthquakes which have occurred far a way from any volcano can be attributed to this cause cannot, of course, be said, but it is a possible cause
and probably an actual cause of many. There is some and probably an actual cause of many. There is some of the shock at Charleston, S. C., in 1886.
In mountainous regions, where the rocks are bent and folded, the strain under which they are placed is liable at any moment to be relieved by breaking and the slipping of the rocks past one another in the plane of fracture, or the fault plane. In this event a single shock or many successive shocks of greater or
less violence will result. The violent earthquake shock in New Zealand, in 1855, was due to this cause, as we know by the fact that the plane of fracture was visible upon the surface.
Such shocks have undoubtedly occurred in many parts of the Cordilleras, notably in the vicinity of Salt Lake City, where the fault scarps are still visible and there is every reason to prophesy that they will cur again.
Nor are these faults confined to mountain regions. It is now known to geologists that there is such a fracture plane extending from near New York to the Carolinas, and marked where it crosses the larger rivers by waterfalls or rapids just above tidewater. If the slipping is still in progress along this plane there may at any time be an earth jar sent out from some point in the fault. Still, although there is danger from this cause, it is much less menacing east of the Rockies than in the Cordilleras. The reason for this is that our Eastern mountains are old and no longer growing,
but, on the contrary, being worn away, while the but, on the contrary, being worn away, while the
Rockies and Sierras are still growing. In South America this growth of mountains is so rapid that it has been recorded within the last century by a considerable change in the relation of land to sea. The Cordilleras do not seem to be growing so rapidly, although it must be borne in mind that we have not in this case the datum plane of sea level at hand fo comparison, as in the case of the Chilean Andes.
Another possible cause of earthquake shocks is the collapse of caverns, and to this cause it is probable that many shocks of minor importance in limeston regions may be referred. It is hardly probable that any violent earthquakes can be referred to this cause.
It is not at all unlikely, also, that imprisoned gases attempting to escape may serve to jar the surface, per haps even violently. How far this is a vera causa 1 cannot say, but it may perhaps have been the origin of some of the earthquakes in delta regions, and there re some facts connected with the earthquake of 1812 in the
sion.
Stud

Studied from the standpoint of cause and effect, w of the Eastern States are justified in feeling a certain degree of confidence in the stability of the earth, but there are possibilities which tend to disturb this feeling of security. That the rocks in many parts, as, for in stance, in New England, are in a state of strain is undoubted. In the granite quarries of Cape Ann, in Massachusetts, blocks which are blasted out expand so that they cannot be placed back again, and there have been cases where the granite has bulged up and snapped, sending a miniature earthquake shock through the quarry. Moreover, in our confidence, we should not forget that regions which have for years been free from earthquake shocks are liable to be visited at any time. The frightful earthquake at Lisbon in 1755 is to the point. Without the slightest warning and without the least reason to expect danger, this city was
visited by one of the most terrible earthquakes on record-a shock which was felt in Scandinavia, in Algiers and on the shores of our great lakes, and
which in Lisbon alone killed not far from 60,000 people.
It has been urged that our Eastern States have been for many centuries, perhaps for thousands of years, practically free from earthquake shocks of any considerable magnitude. The basis for this argument is that there are in many places perched bowlders, and rocking stones and instable columns of rocks which could not have withstood any very severe earth jar. Even if we should grant this deduction it would not of course promise us immunity from such shocks in the future. These facts certainly do not prove that there have been no shocks of sufficient magnitude to cause: great destruction to our poorly constructed buildings; for, although the perched stones have the appearance of instability, they are often much more stable than even a well constructed building of five or six or more stories. While this argument certainly has much force, it is of less value than might at first sight appear; fo earthquakes are peculiar in their action, and often produce much destruction in one place and leave a neigh boring spot comparatively undisturbed, since the character of the rock has much to do with the vioence of the shock.* Besides this, there are in the Rocky Mountains many instances of poised bowlders, rock pillars, etc., in regions where it seems almost cer tain that there have been earthquake shocks of coniderable violence in recent times.
While the evidence from geology leads us to believe that our Eastern States and, in a much greater degree, our Western States are at any time liable to be severe y shaken, though without stating definitely whether they have been or not, the record of history in the two hundred and fifty years more or less of occupancy by Europeans gives us a much more hopeful view of the case. Even history, however, does not leave us entirely free from fear, and, if it did, it could not in this instance be thoroughly trustworthy, for the reason that two centuries and a half is but a short time upon which to base an opinion upon the behavior of nature
Leaving out of consideration the Mexican and West Indian earthquake shocks, there have been in the region east of the Rockies only three really notable earthquakes in the last two hundred and fifty years, and neither of these, unless it be that of New Madrid, was a really violent shock, although either would today produce much destruction if it were to occur in the neighborhood of our large cities.
The first of these shocks was the Newburg earth quake, which shook up the region about Boston in the early part of the 18th century, but apparently caused more alarm because of the remarkable bellowing noise which accompanied it than by reason of its destructive ness. While very little damage was done to life and property, it nevertheless served to convince the good Puritans of the instability of the earth and to give to the devout ministers of the Gospel very telling texts, which, however, were not very scientific, since thc devil himself was supposed to be the cause of all the uproar and disturbance; and upon this premise the arguments for reform were based. It is probable that arguments for reform were based. It is probable very repetition of this earthquake to-day would be very houses of our forefathers are now replaced by high edifices of brick and very weak mortar.
In 1812 there occurred at New Madrid, in the Mississippi valley, an earthquake the effects of which are still to be seen in a large area of country which became transformed into a shallow lake and which is called in consequence the "Sunk County." Only a few frontiersmen occupied the region at the time, so that we have very little record of the actual condition of af fairs; but enough was learned from these and by sub sequent studies to show that the region was very badly shaken. The inhabitants state that the earth rose and fell in great waves, the trees rocked to and ro, and were entangled and broken, the earth opened and closed, and it is stated that the inhabitants were forced to fell trees and stand upon them to avoid being swallowed in the crevices. There was an incessa nt quaking of the ground for several successive months, and in this respect the earthquake is remarkable as an instance of this phenomenon which is common in vol canic regions, but rare far away from volcanoes.
The third earthquake, that of Charleston, in 1886, is too recent to call for any description. It is to be noted, however, that there have been other shocks in this region, notably in 1812; but neither of these is to be considered as a violent earthquake, although the character of the buildings in Charleston was such as to give to the last shock trail which tended to make the effect disastrous. The shock was sufficiently violent
*It is usually the case that the greatest destruction occurs on alluvial ground, probably chiefly
ractured and compacted.

+ The earthquakes of the Cordilleras and of California will not be conturies and a half we have had no record of events in the Missisisippi valley.
to throw an engine from the track, and to throw down many buildings and destroy some lives; but every year records more violent shocks than this one, in some parts of the earth.
What would happen in New York City if one of ใhese shocks, or, perchance, a more severe one, should be repeated there? It is enough to fill one with alarm to think of the possibilities. Huge, top-heavy church steeples, mammoth buildings with projecting cornices, vumble-down structures, which even now, without the
uid of an earth jarring, collapse and destroy human ife-all of these stand ready to be used as death-dealing instruments whenever capricious nature causes a slight movement of the rock in that neighborhood. The occurrence of an earthquake in New York like that which occurred in the prefecture of Gifu, in Japan, a little over a year ago, or like that of Lisbon, in 1755, would remove the city from the face of the earth. This may never come-but, again, it may. Are we doing right in defying nature? We take our chances, and the chances are, it may be said, against any such dire calamity; but, if it should come, and it may, what then ?
If one will examine photographs of the Charleston earthquake, he will notice that the effects of the shock were very different upon adjoining buildings. Some buildings were completely wrecked, while their neighbors were scarcely strained; and, if one will examine the reasons for this, he will find that in most cases it was a question of mortar. Moreover, the buildings which were oldest were apt to be least disturbed-our predecessors used better mortar than we do. The same thing is noticed in the recent earthquake in Japan. The modern pottery and tile buildings were badly wrecked and destroyed, but the old temple of Na goya stood, and was only slightly damaged.
Our engineering schools instruct their students in the difference between good and bad mortar, and our architects and builders know full well which is good and which is bad; but the all-powerful dollar is the thing striven for, and immediate utility is sought after at the expense of strength and permanency. State and national laws are enacted and private rights set aside to prevent the landing of a cholera germ, which might be the means of killing a few thousand peoplemostly undesirable citizens; but there is practically no protection from falling buildings. A building is condemned, it is repaired, perhaps by painting and the placing of a few timbers; it collapses, an investigation follows, some one is to blame, but no one is found guilty, and so we are any of us liable to walk into a death trap. The man who first built the building is to blame; those who allow it to remain standing are almost as much to blame; but they reap the reward; some innocent persons suffer loss of life or limb. An earthquake shock would effectually raze these to the ground, and with an effect, reckoned in loss of life, compared with which a plague of cholera would be but nothing. I sincerely trust that we shall not have the lesson of proper and sensible methods of construction forced upon us in this disastrous manner; but we may.

The Schuylkill Valley
At the recent meeting of the American Institute of Mining Engi ^eers, at Reading, Pa., the president, Mr. John Birkink ine, took for his subject "The Industrial Progress of the Schuylkill Valley Region." Iron was
first made in Pennsylvania in 1692, and the first sucfirst made in Pennsylvania in 1692, and the first suc and the Coalbrookdale blast furnace, 1720. In 1731 pig iron was sold at the latter furnace for $£ 510$ s. per ton. From 1720 to 1740 a number of furnaces and forges were established in this district. The Warwick fur nace was built in 1738, and remained active for 130 years. It was 32 ft . high, with a bosh $71 / 2 \mathrm{ft}$. to 9 ft . diameter, blown with wooden bellows, and producing twenty-five to thirty or even forty tons of iron per week.
The present Warwick furnace-referred to later onis 70 ft . high, 16 ft . diameter at the bosh, and averages 750 tons-maximum, 875 tons-of pig iron per week. With the remodeled furnace, powerful blowing engines, and new hot blast stoves, still better results are antici pated. None of the present industries are over fifty years old. The Pottstown Iron Co.'s works have grown from a small plant, employing 200 men, to one which now requires 2,000 men to operate its blast furnaces, steel works, rolling mills, etc., and turns out about 1,000 tons of product daily. These works were pioneers in commercially manufacturing fertilizers from slag. At Birdsboro a forge was established in 1740, and one of the first rolling mills in the country, and a nail fac tory, were in operation before the revolutionary war In this neighborhood is the Cornwall charcoal furnace 150 years old, the oldest now standing in the country,
and near it is the Cornwall bed of soft, magnetic iron and near it is the Cornwall bed of soft, magnetic iron
ore, from which $12,000,000$ tons have been taken out. Near Pottsville was the furnace which first introduced the hot blast, and first successfully produced anthracite pig iron, and also the first American blast furnace in continual operation on anthracite fuel alone for three months.

The practicability of the use of anthracite coal in
place of charcoal was proved in 1840 by Mr. David Thomas, the first president of the Institute, and the use of bituminous coal naturally followed. Anthracite coal was not shipped in any quantity until 1820, but the output of the Pennsylvania anthracite fields ha now grown to exceed $40,000,000$ gross tons per annum, for the mining of which $\$ 40,000,000$ per year are paid in wages. The Pottsville shaft is $1,586 \mathrm{ft}$ deep, but
this is kept in reserve, and no mining is done. The this is kept in reserve, and no mining is done. The
collieries now at work go as deep as 900 ft ., and some produce 375,000 to 450,000 tons of coal per annum, hav ing coal breakers which cost $\$ 75,000$ each, and can handle 2,000 tons of coal. There are nine veins of coal, six of which are persistent, and have a thickness of 6 ft. to 33 ft ., while the Mammoth vein occasionally ex ceeds 100 ft . in thickness. The resources of the Schuyl kill Valley appear to be far from exhaustion. The an nual production approximates $15,000,000$ tons of an thracite coal, 600,000 tons of pig metal, and an equal amount of rolled iron and steel, much of which is con verted into bridges, roofs, machinery, stoves, hardware, etc., and to these must be added the glass, paper, textile, and other industries, which render this one of the most important mining, manufacturing and industrial districts of the United States.

## Statistics of the Running of a Watch.

Watches were formerly highly esteemed, and the greatest care was taken of them, but since they have become cheap, they are ruthlessly submitted to all causes of destruction (falls, dust, sudden changes of temperature, magnetism, etc.), and the owners are sometimes astonished at their refusal to run. Yet, as compared with any sort of a machine, an ordinary watch is a marvel. A few figures will make this un derstood. The spring actuates the barrel, the motion of which is transmitted through three wheels to the escapement, whose wheel strikes the anchor or the cylinder of the balance wheel at an average rate of 8,000 blows per hour (with differences of from 3,000 to 4,000,
according to the system). Another gearing retards the motion transmitted to the hour hand in the ratio of 12 to 1. All the motions of the watch are discontinuous, and are effected in little equal jumps, the number of which exceeds two hundred million a year in certain watches. Those, who are careful about preserving their watches have them cleaned every two years, that is to say, after 300 or 400 million impacts. At the end of twenty years a well made watch, and one that has not been destroyed prematurely, must undergo a change of a few pinions, but it is after several thousand million of the little jumps that we have spoken of, and after the escapement wheel has made tens of nillions of revolutions. If to this we add complications such as the chronograph and watches giving the date and repeating the minutes, we remain as tounded at their possibility. As for the distance traveled by the exterior of the balance, that is so unexpected that all our readers, we think, will admit the result only after having verified the calculation The balance of a 19 line watch measures on an aver age 0.66 of an inch in diameter upon the regulating screws. It makes 5 oscillations of one revolution and a half per second, say a travel of 15.5 inches per second 20 miles per day and 7,500 miles per year in round num bers. Now watches that give the perpetual date are
provided with a wheel that makes one revolution in provided with a wheel that makes one revolution in four years. During this time the balance will have made the tour of the world. The small amount of
power utilized for the running of a watch is no less ex traordinary. According to the Journal Suisse d'Hor logerie, a watch spring weighing 30 grains is capable of running a watch forty hours. At the rate of $72^{\circ} 5$ of running a watch forty hours. At the rate of 725
foot poundsavailable per pound of steel we shall have 0.29 foot pound for forty hours, or 0.00725 foot pound per hour. One horse power develops in one hour $543 \cdot 75 \times 3,600=1,957,500$ f. p. A watch requires then $0.00725 \quad 7: 25$ $-\overline{1,957,500}=\frac{-1}{1,957,500,000}$ f. p.
in other words, a one horse power would suffice to run 270 million watches, or probably all the watches that exist on the globe. And, again, it is the escapement that consumes the greater part of such power. In fact, the escapement wheel sets itself rapidly in mo-
tion and undergoes an abrupt stoppage, which, according to the principle enunciated by Lazare Carnot, always occasions a loss of live power, or, as we would say to-day, a waste of energy. The resistance of the air to the motion of the balance and the coiling and uncoiling of the hair spring also occasion losses. What remains for the gearing and the arbors? Not much, assuredly. And all this mechanism, placed under various conditions of position, temperature and air pres sure, manages to run at less than a second variation about, per day.-La Nature.

In August last the planet Venus was visible in the day time at San Diego, Cal. A California correspond ent writes that he was one of many who witnessed the phenomenon, and says it was especially noticeable, as the planet could be seen with the sun almost shining

## Sorrespondence.

## Another Brooks Comet.

## o the Editor of the Scientific American

On the morning of November 19 I discovered a ew comet, in the constellation Virgo. The discovery position was right ascension, 12 hours 56 minutes 40 seconds; declination, north, $12^{\circ} 59^{\prime}$. Motion, slowly ortheast. The comet can be seen in telescopes of oderate size.

William R. Brooks
Smith Observatory, Geneva, N. Y., Nov. 25, 1892.

## Fog Lighting in London

A good deal of silly talk has been heard of late from various quarters respecting the imminent decadence of the metropolitan gas industry; and some of the trade nion leaders in particular have tried to make out that there is less employment to be had in gasworks than eretofore, on account of the imaginary falling off in the consumption of gas. All this airy nonsense disap pears at the first touch of such a reality as that which recent meteorological influences have put in evidence A downright dingy, dirty, wretched week of weather such as we seem to get in London more frequently than ever, makes everybody fly to gas forlight and comfort. Not only in the streets, but in the railway stations, when it becomes a question of carrying on business under the worst conditions, the "light of luxury" is left alone; and the reliable friend of the townsman is brought forward as though nothing else had ever been heard of. Although the experience is not a very enjoy able one, it is instructive to make a pilgrimage through a mile or two of the most frequented of the London horoughfares when at midday it is impossible to see cross the street. Here and there a huge industrial or commercial establishment-a printing house or factory for the manufacture of fancy goods-looms grandly through the thickened atmosphere, radiating light rom roof to basement.
The best effect, however, is produced by the shop wherein high power recuperative lamps are hung ver the doors, or along the front, or where clustered Argands or flat-flame burners strongly illuminate the goods exposed in the windows. These places irradiat the neighborhood in a style unapproachable by other means. As for the wider street crossings and the rail way yards, one longs, in the absence of a sufficiency of high-power gas lamps, for a few good "flares" of the Lucigen type. The sparse electric arcs are utterly in effective at such times. They seem lost in the upper air; and a curious effect is produced by the unusual prominence of the glowing carbon spark, which gives the most powerful arc the aspect of a rather poor in candescent lamp. As to the latter, their lower ton helps them to penetrate the air that enwraps them rike a dirty blanket; but the pleasant fiction about a nominal 8 -candle lamp being to all intents and pur poses equal to a flat-flame gas burner is utterly demol ished by the inconsiderate atmosphere. All these are old truths; but it is just as well to keep them in the front when occasion serves.-Jour. of Gas Lighting.

## Railroads of the world

The Census Office has issued a bulletin giving statis tics of the railway mileage of the world in 1890 . I shows that out of a total railway mileage for the world of 370,281 miles the United States have no less than 163,597 miles, or $44 \cdot 18$ per cent of the whole, and that the railway mileage of the United States exceeds by 3,493 miles the entire mileage of the Old World Europe's 136,865 miles, Asia's 18,793 miles, and Africa's 3,992 miles making an aggregate of but 159,655 miles. t is interesting to note the astonishing growth of the railway mileage of the United States from the census year of 1830, when there were less than 40 miles of rail ways, up to 1890 . In 1840 the figures were 2,755 miles in 1850 they had risen to 8,571 miles; in 1860 the tota had swelled to 28,919 miles. The census of 1870 showed the mileage to be 49,168 miles; that of 1880 placed the figues at 87,724 miles; while the eleventh census figure give the astonishing total of 163,597 miles.
The following shows the mileage of the world by countries: Germany, 25,969 miles; Austria and Hun cary, including Bosnia, 16,467; Great Britain and Ire land, 19,939 ; France, 22,586 ; Russia, including Finland 18,728; Italy, 8,117; Belgium, 3,218; Netherlands, 1,887 Switzerland, 1,929 ; Spain, 6,127 ; Portugal, 1,280 ; Den mark, 1,223 ; Norway, 971 ; Sweden, 4,915 ; Roumania 1,580; Servia, 327; Greece, 440 ; Turkey in Europe Bulgaria, and Roumelia, 1,097; Malta, Jersey, and Man, 68: United States, 163,597; British America (Canada), 13,322; Newfoundland, 115 ; Central America (Guatemala, Salvador, Costa Rica, Nicaragua, and Honduras), 559 ; Mexico, 5,344 ; United States of Co lombia, 231; Cuba, 1,056; Venezuela, 441 ; Republic of San Domingo (eastern part of the island of Hayti), 71 ; Puerto Rico, 11; Brazil, 5,779; Argentine Republic 5,129; Paraguay, 149; Uruguay, 470 ; Chile, 1,926 Peru, 994 ; Bolivia, 106; Ecuador, 167 ; British Guiana 22 ; Asia, 18,798, of which British India supplied 15,837 Japan, 907 ; China proper, 124; Africa, 3,992; Aus tralia, 11,13\%.

## MANUFACTURE OF RUBBER SHOES.

## y b. g. underwood

The orders received by this company from its customers run into very large figures. Orders for 15,000 cases of goods are common, and to-day they have several orders on their books for 25,000 cases and one order for 30,000 cases. When it is understood that a freight car will hold 500 cases and a case averages twenty pairs of rubbers, the magnitude of these orders will be appreciated, and they have shipped in single orders at one time twenty freight cars to one party in San Francisco and one to Minneapolis, and filled one order recently which filled thirty two freight cars and con tained 320,000 pairs of rubber goods.
There is enough interesting machinery used in the preparation and manufacture of rubber into boots and shoes to fill this entire paper, and it has been difficult for our artist, in the limited space at his disposal, to select material, but we think the illustrations will fairly represent some of the many processes employed in the manufactur of these articles.
The crude rubber as re ceived from Para, which furnishes the finest grades, is packed in large wooden boxes $4 \times 2 \times 11 / 2$ feet, containing about 350 pounds each, and the second grade in boxes
have led to any practical results. In 1813 a patent was issued in this country to J. F. Hummel, of Philadel phia, for a varnish of gum elastic. In 1831, George H. Richards, of Washington, D. C., received a patent for a fluid caoutchouc and soon afterward Edwin M. Chaffee, of Roxbury, Mass., and others established the Roxbury India Rubber Company, which was chartered in 1833 and was the first company organized in the United States to manufacture caoutchouc into waterproof clothing.
Charles Goodyear, in 1835, after devoting much time to experiments, took out his first patent. In 1839 he took out a patent for the sulphuring process, which would have been of little value without the subsequent improvements which he made. The sulphur imparted an offensive odor and did not prevent the rubber from hardening in cold weather. Experiments convinced him that the application of considerable heat would cause the sulphured article to be pliant in cold weather and to increase its elasticity in all temperatures, and the result was his patent issued in June, 1844, which was reissued in 1849, extended in 1858, and again reissued in 1860.
The history of the Boston Rubber Shoe Company, whose plant furnishes us with the accompanying illustrations, is a remarkable one. The company was or ganized in 1853 and Elisha S. Converse was chosen treasurer and manager, a position which he has occu pied ever since; and to his foresight and ability the company owes its present position, having the largest plant for the manufacture of rubber boots and shoes in the world. The two factories in Malden and Melrose give employment to 3,000 people and turn out 45,000 pairs daily. The Malden factory was burned in 1875, rebuilt in 1876, and in 1882 the Melrose factory was constructed. The number of employes in each is about the same, but in the Malden factory, which is known as factory No. 1, all of the odd sizes are made, the machine shops are located, new designs are perfected, steel rolls engraved and all the miscellaneous work done.


MANUFACTURE OF RUBBER SHOES.
ness, or the right thickness for the uppers of rubbers o largely used.
The cloth-calendering machine, which is shown on this page, backs the large roll of cloth, which is seen in the engraving, with rubber. This material is used for lining rubber shoes. The machine has great power and turns out about ten yards a minute from a rol hich is $11 / 4$ yards in width
For rolling sheet rubber for boot vamps, it is neces sary to run in several thicknesses. This work is done in another rolling machine, which we have not space to show, and the finished rubber sheets are carried by an endless beltinto the story above. The this shects of rubber are stamped by circular steel rolls, on which the pattern is engraved so as to mark the sheets fo cutting uppers, which is done in another room.
Rubber boots and shoes could not be made without piping, which is used to hold the different pieces in place. This is cut in strips 18 inches long by 1 inch in width, and 42 of these strips are placed so as to lap over each other, making a width of 10 inches, by an automatic machine. There is nothing that piping will not hold, and we meet this indispensable necessity at all stages of rubber boot and shoe making.
The heel-cutting machine shown on front page takes in solid rubber sheets about one yard square, one inch in thickness, weighing about 90 pounds to the sheet and from each sheet can be cut from 100 to 230 pairs of heels. The heel-pressing machine shown on front page works by hydraulic pressure of 1,000 pounds to quare inch and holds 25 heels. They are subjected to this pressure from 7 to 8 minutes, with from 85 to 90 pounds of steam, and leave the press with the name and number stamped on the bottom, and so nearly fin ished that only a little trimming is needed about the pper edge before being attached to rubber boots
The rubber sheets for cutting soles (see first page) vary from $1 / 8$ to $1 / 3$ of an inch in thickness and are a little over a yard in length. It will be noticed that pile of thin wooden boards are shown in nearly every illus tration. This is necessary, as the rubber sheet mus Before going to the washing machine, or cracker, which
is shown in the cut at the top of the page, the original very possible shin Before going to the washing machine, or cracker, which ieces are cut by a circular knife to sizes suitable for the cracking ma chine. It pass es a number of times through these washers water and steam being sprayed in the ubber durin he operation, until it is heeted in sheets of about 1-16 of an inch thick, first passing through a machine with corrugated rolls, and final y through one with smooth rolls, which leaves the sheet smoother and thinner.

The grinding machines have a capacity of about 1,00 pounds a day, and will handle from 10,000 to 14,000 pounds of fine Para rubber a day, or from 8,000 to 10,000 pounds of the coarser grades.
From the grinding room the sheets of rubber are taken to the mixing room, where they are mixed with lamp black, whiting, sulphur, and other ingredi ents. Passing through a number of rolls many times, which are heateditleaves this depart ment in sheet about $1 / 2$ inch thick. This process is clear ly shown at the top of our first page. From this room it passes through the refining machines, which turn it out less than 1-32 of an
inch in thick
in contact. The soles are nearly all cut by hand. This equires skilled labor, as they are all beveled. A man will cut from 900 to 1,000 pairs a day
Sole rolling is done by a machine shown on front page. This stamps, at the same time, the pattern shown in the bottom of rubbers. The strips each con tain soles for ten rubbers, and are placed on thin wooden boards, and are then carried on trucks to the sole-cutting room. There are about thirty differen patterns, and sixteen sizes are made from each pattern but the same pattern can be used for all the different sizes. The uppers are cut by hand, with a die and mallet, as shown on front page. The average daily capacity of the cutters is from 600 to 700 pairs.
We have only space to show in our illustrations one branch of the actual manufacture of rubber boots and shoes, and we have selected that known as storm slip pers, which have recently come into such general use This slipper was designed by Mr. E. F. Bickford, general superintendent of the company, and the number made of this one brand in 1891 was 800,000 pairs We also give the patterns used in making these slip pers. The shoemakers, as the girls are called, mak rom thirty to thirty-six pairs a day
Iron cars for carrying rubber goods hold from 210 to 500 pairs, depending upon the size of the manufactured goods. The slats holding the rubbers after varnishing (see illustration) are placed in these cars, which are run into the vulcanizing ovens, where they remain in a temperature of from 140 to 180 degrees for a period of six to seven hours, when the goods are finished, and after a thorough inspection, are carefully boxed and
packed, and can be purchased not only in every village and city of this country, but in most of the cities of Europe.

## THE SOUTHERN COTTON HARVESTER

One of the subjects of invention which seem to have baffied inventors for many years is a practical cotton harvester. The cotton crop is a peculiar one, presenting the necessity of dealing with the delicate fiber and at the same time with twigs, and green and ripe bolls. In harvesting cotton by hand labor, the harvest time is subdivided into three different periods, the first of the crop being gathered from the lower portions of the plant, the second part of the crop being gathered from the central portion, and the third part from the upper
portion of the plant. It will thus be seen that the portion of the plant. It will and it is not strange that there should be many failures before cotton harvesting by machinery becomes a commercial success.
To a large extent, cotton planters in the South have been hampered by the difficulty in obtaining labor at the right time, and, as a result, serious losses have followed; but at length a machine has been perfected which reduces cotton harvesting to a certainty. To run this machine, two men and a single team are required. It will harvest from 5,000 to 6,000 pounds of

## Stick to a Legitimate Business.

Well directed energy and enterprise are the life of American progress, and safety lies in sticking to a legitimate business. No man-manufacturer, trader, or banker-has any moral right to be so energetic and enterprising as to take from his legitimate business the capital which it requires to meet an emergency.
Apologies are sometimes made for firms who have failed, by recurring to the important experiments they have aided, and the unnumbered fields of en terprise where they have freely scattered their money. We are told that individual losses sustained by those failures will be as nothing compared with the benefits conferred on the community by their liberality in contributing to every public work. There is little force in such reasoning. A man's relations to a creditor are vastly different from his relations to what is called the public. The demands of the one are definite, the claims of the other are just what the ambition of the man may make them.
The histories of honorably successful business men unite to exalt the importance of sticking to a legiti mate business; and it is most instructive to see that, in the greater portion of the failures, the real cause of disaster was the branching out beyond a legitimate business, in the taking hold of this and that tempting
ing through a Virginia, or Ohio, or Indiana, or Kansas highway after a rain, or when the frost is coming ou of the ground. Indeed, it is not necessary to make any invidious distinction in favor of any of the States, for the mud of Connecticut or New York, or the sand of Southern Massachusetts or New Jersey, have little to fear, as regards capacity for retarding locomotion, by comparison with the loam of the Mississippi Valley. Amer. Architect.

## Trip to a Fixed Star

Dr. David Gill, lecturing recently on "Fixed Stars," hit upon the following adroit method to illustrate the distance to Centauri. The doctor said, as reported in the Boston Globe:
"We shall suppose that some wealthy directors, for want of outlet for their energy and capital, construct a railway to Centauri. We shall neglect, for the present, the engineering difficulties-a mere detail-and suppose them overcome and the railway open for traffic. We shall go further, and suppose that the directors have found the construction of such a railway to have been peculiarly easy, and that the proprietor of interstellar space had not been exorbitant in their terms for right of way. Therefore, with a view to encourage traffic, the directors had made the fare ex-


A NEW COTTON HARVESTER.
cotton per day at a cost of $\$ 3$ to $\$ 4$, as against forty men picking not over 150 pounds each per day at a cost of $\$ 30$. This machine, which is the subject of our en graving, is so simple as to hardly require an explanation. A general description will render its construc tion and operation clear.

The machine consists of a frame suspended on ordinary wagon gear and inclosed in wire cloth. Within the frame are journaled two series of vertical shafts, upon which are placed beaters having spring arms Through the bottom of the frame extends a slot through which the stalks of the cotton plants pass In the bottom of the frame are arranged conveyors which carry the cotton beaten from the plant rearwardly and upwardly, and deliver it to bags attached to the elevators at the rear of the machine. The slot through which the stalks pass is furnished with series of swinging plates which open only as the stalks pass, thereby keeping the bottom of the machine closed and retaining all of the cotton detached from the plants. The beaters are made adjustable, so that they can be placed at a suitable height to engage the ripe bolls as the machine passes along. One of these machines has been in operation this season in Alabama yielding the results we have described above.
The New York office of the Southern Cotton Har vesting Company is located at 319 Broadway.
Mr. Isaac Blum is president of the company, and we are informed that Mr. L. R. Turner has been largely instrumental in bringing the machine to perfection.
offer, and, for the sake of some great gain, venturing where they did not know the ground, and could not foresee the pitfall.

## Let Us Have Good Roads.

Colonel Albert A. Pope deserves the thanks of the present generation, and will undoubtedly receive those of posterity, for his untiring efforts in favor of the improvement of American roads. We need not repeat what has been often said here and elsewhere, that the crying need of our country is decent ordinary roads, over which the farmer can haul his produce to market and the city merchant can distribute his goods to his circle of rural or suburban customers with economy speed, and convenience. As with all inveterate evils, it is hard for us, accustomed to the old system, to realize the difference which a better one would make in our condition. The number of horses and mules owned in the United States is about sixteen million, and the cost of keeping them is probably not less than two hundred million dollars a year. It is found, by hundreds of experiments, that one horse, working all day and day after day, can do as much work on a good macadamized road as eight horses can on a road covered with gravel from four to six inches deep, as is usually the case with suburban roads after the annual repairing. Now, bad as are these repaired suburban roads, every person of experience will acknowledge that the labor of pulling a vehicle over them is as
nothing in comparison with that involved in wallow
eedingly moderate, viz., first-class at two cents per 100 miles. Desiring to take advantage of these facilities, a gentleman, by way of providing himself with small change for the journey, buys up the national debt of England and a few other countries, and, presenting himself at the office, demands a first-class single to Centauri. For this he tenders in payment the scrip of the national debt of England, which just covers the cost of his ticket; but at this time the national debt rom little wars had been run up from $\$ 3,500,000,000$ to $\$ 5,500,000,000$. Having taken his seat, it occurred to him to ask: 'At what rate do you travel?' 'Sixty miles an hour, sir, including stoppages,' is the answer. 'Then when shall we reach Centauri?' 'In $48,663,000$ years, sir.'"

## Manufacture of Cod Liver oil.

The process of manufacturing cod liver oil at Portugal Cove, Newfoundland, is as follows: It requires, as a rule, $21 / 2$ gallons of liver to produce a gallon of oil. The livers are first carefully washed, and must then be "cooked" at once. For this process they are first put into a large tin boiler, which is plunged into a large iron boiler filled with hot water, the water not being allowed to touch the livers, which are thus gently steamed till a quantity of oil is floating on the surface. This is dipped out and filtered through bags of moleskin. The last filtration leaves the oil perfectly transparent, and without any unpleasant taste or smell. The oil is exported in 60 gallon casks.

Trees in French oities.
One of the chief beauties of the larger French cities, and second only to their magnificent edifices and monuments, are the trees.
The almost interminable vistas of chestnuts and acacias stretching along the broad and superbly paved avenues as far as the eye can reach, their bending branches almost touching one another in one endless arch of verdure, form not only a delightful perspective for the eye of resident and visitor alike, but serve to add beauty to cities already beautiful, and grace and symmetry to whatever might be harsh and forbidding.
It must not be presumed, however, that the existence of this veritable rus in urbe is the result of Nature's handiwork alone, for science and art have each in turn lent their aid in converting these great centers into tremendous forest gardens.
In short, the planting as well as the maintenance of the trees in French cities is an item of no little import in the annual budget prepared by the municipal council. Nor does this body look upon their preservation as a matter of less consequence than the repairing of its roadways or the lighting of its streets.
The climate and soil of France are not suited to the nurture and growth of every sort of tree: so that those chosen to line the avenues and boulevards of her cities must be selected with no little judgment.
Chestnuts thrive wondrously. They grow well on a not too rich or generous soil, but require at the same time frequent watering at the roots. The elm is also a favorite tree with the professional landscape gardeners, though they are, unfortunately, extremely susceptible to the destructive work of worms and insects. Maples grow slowly, but they are hardy and strong in the end. Add to these the acacia, the linden, the sycamore, the oak and the buttonwood, and the list of trees that live and thrive to advantage in the great Continental cities approaches completion.
France imports a great many of her fruit as well as shade trees, and the utmost precaution is taken as to where these shall be planted. Handfuls of earth from each and every spot where a tree is to be placed are carefully examined and analyzed. Upon ground rich and moist the trees from the United States grow best. A sandy soil is most favorable to resinous trunks, and so on in proportion to the teachings of science and
arboriculture. arboriculture.
In squares and parks, though more especially along the principal thoroughfares, where the trees are planted about twenty feet apart, particular attention is given to the replacing of the dead or dying by healthy trees tive is never broken, nor is the vision repelled by the absence of a single trunk.
It would seem that a great many American cities, It would seem that a great many American cities,
with their tremendous expanse of stone, brick and iron with their tremendous expanse of stone, brick and iron
facades, might profit in the provision of shade and facades, might profit in the provision of shade and
verdure by the example set by the cities of France. Sidewalk locomotion would be facilitated in the summer months by equal protection from the sun's rays on both sides of the street, while grace combined with genuine utility would serve to make the avenues as ding.
Charles Kingsley, the great essayist, if I mistake not, is authority for the statement that verdure is just as is authority for the statement that verdure is just as
essential to life as air itself, and that the kitchen garden of the laborer goes as much to add a touch of sunshine to his moral being as a bunch of roses to an invalid or the royal park to the Queen of England. The proof of the theory, which is a truer one than may at first appear, is in the witnessing of the crowds of poor that flock in summer time to any spot where grass and foliage exist. The French know this. They corner within their cities' boundaries, while the benefit wrought thereby is too self-evident to demand infit wrought thereby is too self-evident to demand in
terpretation.
Horace G. Knowles. United St

Horace
Bordeaux.

## Iron Cinder Paint.

According to a memoir recently published by Mr. A. Sahlin, the cinder from puddling and excandescent iron furnaces can be converted into red paint of more or less body. The difficulty consists in reducing the cinder to a sufficiently fine powder; this is effected by means of a Blake crusher and a Cyclone pulverizer. The result of the operation would be to obtain 40 per cent of cinder in a state in which it can be put into fine paint, simply mixed with the ordinary oil mixture. The remaining 60 per cent can still be utilized as a coarser dark red paint, such as is used by the railway companies to preserve iron and steel from oxidizing. The treatment of the cinder is as follows: To 1,000 kilogs. of cinder crushed so as to enable it to pass through a sieve of 100 perforations to the square centimeter add 170 to 200 kilogs. of sulphuric acid of $66^{\circ}$ B.,
the quantity of acid being in proportion to the lighter or darker shades of paint required. This mixture is worked first by hand, and then in a mechanical mixer; when the compound is thoroughly well mixed, it is put
into a bin and there allowed to sweat. This chemical
action manifests itself by a rise in temperature to $150^{\circ}$ or $155^{\circ}$. The cinder consists principally of silicate of
protoxide of iron, and the sulphuric acid eliminates the protoxide of iron, and the sulphuric acid eliminates the
weak silicic acid, and a sulphate of protoxide of iron is weak silicic acid, and a sulphate of protoxide of iron is
formed. If this is calcined by the admission of air, it formed. If this is calcined by the admission of air, it ous acid, into free sesquioxide of iron and sulph lasts about four days, and then shows itself accompanied by exhalations of steam and a greenish discoloration of the powdered cinder. As soon as the reaction ceases each of the retorts of the calcination oven is filled with 220 kilogs. of the mass. The fire of the oven is fed with raw petroleum and compressed air. The retorts are raised to a cherry red heat, and the cinder during the calcination is removed in order to bring it as much as possible into contact with the air, so that the oxidation may be rapid. In three or four hours the dark and heavy cinder is converted into a red, light and somewhat doughy mass. If, after being analyzed with reactive paper, the acid is found to be completely volatilized, the cinder is allowed to get cold and is then pulverized in a Cyclone pulverizer. The only difference in the pulverization is that all it produces is now reduced to a powder sufficiently fine for the most delicate paint without leaving any residuum. The pulverizer reduces 360 kilogs. of calcined cinder per hour, and produces an excellent paint, the graduation of color of which rests with the operator, according to the quantity of sulphuric acid used in the preliminary opera.

## Rubber Varnish.

The varnish business, like the manufacture of rub ber goods, is what is known as a secret business. There are in the United States about a hundred factories devoted to the manufacture of varnishes for furniture, carriage, and house work, with a few that devote their energies to manufacturing fine goods for artists. The use of varnish primarily is to give luster and durability to whatever it covers. In India rubber work the varnish is put on not alone to add durability, but to prevent the efflorescence of the sulphur. The bases of most varnishes are linseed oil and spirits of turpen tine, but to those that are to be used on hard surfaces where a special luster is required, certain gums are added to give brilliancy and hardness. These gums are all of the resin families, the best being the hard fossil gums known as Kauri and Zanzibar gums. Certain varnishes are made from amber and a fine var-
nish is also made from celluloid. The more elastic a nish is also made from celluloid. The more elastic a that is put into it it maller the percentage of gum ing rubber varnishes little or no gum is used.
As the bulk of rubber varnish is made of linseed oil, the secret of the business would naturally lie in its preparation. Many of the rubber factories have in connection with their plant a small brick building
where is set a large caldron in which the oil is boiled. where is set a large caldron in which the oil is boiled.
The operation is more or less attended with danger from fire, and it is therefore conducted at some distance from the main building. Considerable skill is acquired by the men who have charge of manufacturing the varnish, and as a rule those who are expert in this line do nothing else, and they receive good wages. This is just, as they incur considerable peril, many accidents having occurred in which the laborers have been badly injured.
The oil, after having been boiled to the proper con sistency, either with or without the addition of a certain percentage of sulphur, Prussian blue, or resin, is taken in the light, clear pasty mass to the varnish ing rooms, where it is thinned with spirits of turpen tine and applied to the goods by means of brushes. There are no special tests for the quality of varnish, the ordinary way of examining it being to spread a thin film upon a piece of glass and to look through it toward the light, with a view of examining its clear ness. Often the piece of glass is put in the sunlight where the film will dry, and allowed to stand for a year. A first class varnish during this period should
not shrink largely, nor should it crack. Linseed oil, however, is capable of absorbing a great quantity o oxygen, and unless carefully and skillfully boiled, will continue the process and crack.
Chemically, very little is known concerning the drying of linseed oil, but it is likely that the subject will be investigated thoroughly before long, with the means that are now within reach of the modern chemist. As linseed oil itself is a powerful oxidizer,
those who purchase it for use in varnish are very particular in getting exactly the kind they need, and will not take chances on any brands, even if the price be considerably to their advantage. A piece of canvas spread with a linseed oil varnish that has not finished its oxidization will in the course of time be thoroughly destroyed, and the same effect will be produced upon a thin rubber surface. Hence it is quite important that this fluid be carefully tested before use. Some manufacturers make a varnish for rubber boots and shoes of the oil alone boiled to the proper consistency
is a question if it would not be wise for these same manufacturers to examine carefully the various gums used in the regular varnishes to see if a certain per centage of them added to the linseed oil would not give an added brilliancy and a better durability. Of course this amount would naturally be very small, as Kauri, for instance, if added in too great proportions would have a tendency to crack when the goods are stretched.
In an experiment recently tried in a large rubber factory, ten per cent of Kauri gum was added to the varnish and found to be altogether too much; three per cent, however, gave a very pleasing result and seemed to have a luster that was not shown in the regular oil varnish. Varnish for rubber work, as a rule is applied before the goods are heated; therefore, it has the chance of additional drying during that operation. Many of the goods when they come out of the heater are quite sticky, but a very little airing remedies this. To-day on almost all rubber goods that are put on the market there is found to be a very fair quality of oil varnish. A good grade of rubber when covered with varnish gives a far better result than a poorer grade as the solvent often strikes through the shoddy or poor grade rubber and appears on the cloth itself giving a stained effect and, furthermore, materially weakening the body of the rubber. In experimenting with varnishes a variety of solvents have been tried for the purpose of cutting the boiled oil. Of these any of the hydrocarbons will answer, because they are indifferent to atmospheric action and possess great solvent power. Oil of turpentine, however, is the best, and benzine the cheapest, of the various solv best, and benzine the cheapest, of
ents in use.-India Rubber World.

Hot Water for Hemorrhage.
Dr. Julius Scheff, Jr., of Vienna, according to the current number of Ash's Quarterly Circular, recom mends strongly the use of hot water for arresting hemorrhage after tooth extraction. "We are accus tomed," he writes, " to stop hemorrhage by the method that has been used for generations, viz., by the direct application of cold water to the wound. Practitioners started with the idea that heat caused expansion of and induced increased bleeding from the vessels; but on the other hand, cold caused contraction. In an ordinary case of extraction hemorrhage from the arte ria dentalis, or from the gums and periosteum, soon ceases: but it frequently happens, even when the pa tient does not suffer from hemophilia, that there i difficulty in arresting the flow of blood." Dr. Schef mentions three cases occurring in his practice in each of which there was a history of profuse hemorrhage after extractions. "I allowed one patient," he says, "to take a great quantity of cold water, and yet there appeared not the slightest diminution in the bleeding. I then took a glass syringe and continuously applied hot water, in drops, to the wound, from which the hot water, in drops, to the wound, from which the
blood previously trickled without cessation. After a few seconds the bleeding diminished, a coagulum was formed, and the bleeding finally ceased. With the second patient, I used hot water at once, and the flow of blood was arrested. In the third case the wound had been bleeding freely for a long time; I plugged the alveolus with iodoform gauze, and on removing the plug the wound bled afresh. I then employed hot wa ter; the hemorrhage ceased and did not recur." Dr Scheff applies the hot water by means of a syringe, in jecting it by drops into the socket of the tooth. The arrest of hemorrhage in surgical operations by the ap plication of heat is a recognized resource, and it would therefore seem that this principle might with advan tage be applied in cases of tooth extraction, especially as the mouth is able to bear a very high temperature without inconvenience. In fact, water so hot that it causes pain when the finger is inserted in it will in many cases be tolerated in the mouth.-Lancet.

## A Three 'Thousand Foot Well

An artesian well over 3,000 feet deep has recently been bored at Galveston, Texas. The water supply of that city is furnished by thirteen artesian wells varyng in depth from 825 to 1,350 feet. The water ob tained from this source, while being of good enough quality for fire and manufacturing purposes, is totally unfit for drinking and domestic uses. In view of this fact, it was decided that the city was justified in the investment of $\$ 75,000$ in an attempt to obtain a good water supply, and therefore the artesian well was water supply, and therefore well consists of a 22 inch casing. Inside of this a 15 inch pipe extends to a depth of 870 feet. Next a 12 inch pipe extends to a depth of 870 feet. Next a 12 inch pipe extends to a
depth of 1,200 feet. A 9 inch pipe was then inserted depth of 1,200 feet. A 9 inch pipe was then inserted
to a depth of 2,363 feet, and from this depth a 5 inch to a depth of 2,363 feet, and from this depth a 5 inch
pipe extends to a depth of 3,070 feet 9 inches. No pipe extends to a depth of 3,070 feet 9 inches. No
rock whatever was penetrated in reaching this depth and the water supply sought for was not obtained Further work has been abandoned, and the hope of obtaining a flow of fresh water on the island given up. Wells will be sunk on the mainland fourteen miles from the city, and water brought across the bay by means of iron pipes. The estimated cost for this wor means of
is $\$ 800,000$

JAY GOULD's TOMB.
Perhaps the most noted financier and railway speculator of the past twenty-five years was Mr. Jay Gould, who died at his home in New York City, on December 2. The tomb erected for him several years since is shown in the accompanying illustration. It is copied after the famous Maison Carre, at Nimes, France, built some two thousand years ago, and perhaps the best preserved and most beautiful specimen of Grecian architecture in existence. Reared as it is upon a grasscovered knoll, where it commands a striking view of the surrounding country, the full beauty of the handsome marble structure, with its graceful Ionic columns, is appreciated by a beholder approaching it from any direction.
The design of the mausoleum was made by Mr. F. T. Fitz Mahony, and it cost $\$ 80,000$. It is built throughout of Westerly granite. It is 33 feet long, 22 feet wide, and 20 feet high to the apex of the roof. The technical name of the building would be a Greek hexastyle, peripteral temple. It has six columns in front and eleven columns on each side in single rows. (This is counting the corner columns twice.) Three rows of steps run up to the temple on all sides and form its base. Between the columns and the walls of the tem-
stained glass window in the back. This window, which is 6 feet high and 3 feet wide, pictures a choir of angels. The roof of the mausoleum consists of granite slabs 32 feet long, each weighing fifteen tons, and so placed together that they overlap, making the roof waterproof. The whole temple weighs about 300 tons, and rests on a solid concrete foundation 8 feet thick.
Mr. Gould was born at Roxbury, Delaware County, N. Y., on May 27,1836 , his father being a small farmer, who kept a dairy of twenty cows. As a boy it was Jay Gould's duty to drive these cows and to help his sisters in milking them. He went barefooted and got thistles in his feet. He did not like it, and one day he told his father that he would like to go to school. He was then 14 years old, and his father was keeping a small store in the village. The elder Gould thought his son was too young to go to school, but the son gained his consent by persistence. He soon learned to write a good hand, and by writing up the books of the village blacksmith at night he earned enough to take him through a small select school. After that he got a clerkship in a country store. He made himself generally useful, sweeping it out and looking after business, working from 6 o'clock in the morning until

## $97 \cdot 3$ Miles an Hour

On Friday, November 18, engine 385 of the Central of New Jersey, the Vauclain four-cylinder compound which several months ago made a record of 91 miles an hour, traveled a mile in 37 seconds, and two consecutive miles in 75 seconds, thus beating its own record as well as all others. This was done with a regular train of four cars, going east, between Fanwood, N. J., and Westfield, the grade being 32 feet per mile, descending On the same trip a distance of five miles was traversed in 3 minutes 25 seconds, thus making the best record for that distance ( $87 \cdot 8$ miles an hour). This was between Somerton and Parkland, Pa., on the Reading, which is the same portion of the road where so much fast running has been done heretofore. The grade here is partly descending at 11 and at 37 feet per mile and partly level. This engine, No. 385, has four 78 -inch driving wheels, weighs 62 tons, with $44 \frac{1}{5}$ tons on the drivers.-Railroad Gazette.

A Manual Training school in Louisville.
The city of Louisville, Kentucky, is to have a fully equipped manual training high school for whites, which will be an adjunct to the regular public schools,


THE TOMB OF JAY GOULD, WOODLAWN CEMETERY, NEW YORK CITY.
ple is a considerable space. Columns and walls are bare, without the faintest attempt at ornamentation. In the center of the row of columns facing the south it looks as if a column had been removed to make a broad passageway. Facing this opening is the double door of the tomb. Each section of this door is 8 feet high and 2 feet wide, and weighs a ton. The doors are of heavy bronze, and the lower part is paneled and ornamented on the outside with two dragons' heads, a big iron ring swinging in the mouth of each dragon. The upper part of the doors is a fretwork of cherubs and vines, through the opening of which the interior of the crypt can be seen. The interior is 20 feet long, 7 feet wide, and 13 feet high. Its roof is a solid slab of granite, which weighs six tons. The border of the ceiling is paneled with egg and dart moulding. The floor is one plain marble slab. Along the sides of the interior are the catacombs. Of these there are twenty, ten on each side, in double rows. The rows are separated from each other by granite slabs. Each catacomb is $71 / 2$ feet long and $21 / 2$ feet wide. Between the lower end of the catacombs and the outside of the wall of the tomb is a thickness of 18 inches. The outer part of this thickness is, of course, granite, but facing the interior the walls are of light pink and cream-colored Tennessee marble, highly polished. The light enters the crypt through a

10 at night. He had a taste for mathematics, and got up at 3 o'clock in the morning to study until it was time to sweep out the store.
In a year or so he started out as a surveyor, and was employed to make a survey for a map of Ulster county. By odd pieces of luck through the summer that fol owed he made $\$ 500$ out of his work as a surveyor Afterward he made similar surveys and maps of Al bany and Delaware counties, and by that time was worth $\$ 5,000$. This he invested in the tanning business, his interest in which he afterward sold, and with all his capital in cash in his pocket bought the entire issue of the first mortgage bonds of the Rutland and Washington road to Troy. They were offered in the market at ten cents on the dollar, and the investment proved exceedingly profitable. It was the commence ment with him of a life of dealing in railroad securimen.
The history of Mr. Gould's railroad deals and tinancial enterprises would fill a volume. But they are merely incidents now, and can only be accepted as a part of the great movements which went to develop his characteristics and renown. He is perhaps most widely known by his connection with the Erie Rail road from 1868 to 1872, and his participation in the Black Friday gold excitement of September 24, 1869. He left a fortune estimated at about $\$ 75,000,000$.
and will be controlled by the school board. The school and its equipment is to be the gift of Mr. A. V. Du Pont. In the prospectus some interesting details of the proposed work are given. All teachers in the manual raining department are to be graduates of some repu table manual training school. No special trade will be taught in the school; neither will any articles be manufactured for sale. The shop building will be 132 feet long by 60 feet wide and the school building 122 feet long by 58 feet wide, each being three stories in height. The shops are to be run by independent electric motors, driven by a dynamo actuated by an 80 horse power Ball-Wood engine. The cost of the school will probably be $\$ 120,000$.

## Artificial Gum Arabic.

For the preparation of a so-called artificial gum arabic the Rev. de Chem. Indust.-through Nouv Remedes, 1892, No. 13 supplem.-gives the following process : 10 kilogrammes linseed are boiled with 80 kilogrammes sulphuric acid and 100 liters of water for three or four hours. The liquid is then filtered and four times its volume of alcohol is added. The precipitate is collected, washed, and dried. The product is amor phous, colorless, insipid, and gives, with water, a thick mucilage.

## Essence of Lemon.*

A few notes on the manufacture of essence of lemon will, I hope, be acceptable. In the first place, we all learn in England that essence of lemon is made with an ecuelle. Every book I can find says so, and on coming out here I was not a little surprised when I could not find a single one. The principle on which the extraction of the essence is carried on may be illustrated in this way: If you hold a piece of lemon peel up to the light and turn it inside out, a fine shower of mist will be seen to be forcibly ejected. This is not all oil, but a mixture of oil and water. Most people are unpleasantly acquainted with this phenomenon, though many have not actually seen it, for in peeling a lemon or orange with the fingers a little of the oil is often ejected into the eye, causing a considerable amount of pain. By turning the lemon peel inside out, almost the pain. By turning the lemon peel inside out, almost the
whole of the essence is removed from the peel, for each whole of the essence is removed from the peel, for each
little globule of oil appears to be surrounded by water, ittle globule of oil appears to be surrounded by water,
and the liquid which remains adherent to the peel consists principally of water. As it is impossible to turn every piece of peel actually inside out, the following method is adopted :
One man takes a lemon in his hand, and with three rapid strokes with a large knife cuts off nearly all the peel in three slices. The central portion, which is left, consists of most of the pulp with a little of the peeltop and bottom. This is simply pressed for making lemon juice. The slices pass to a second workman, who sits on a low chair, with an ordinary common quality bath sponge, worth about 6d., in one hand. With the other he presses the slice of peel against the sponge, pressing the edges of the peel only with his fingers, the object being to press the convex piece of
lemon peel as nearly flat as possible. The amount of lemon peel as nearly flat as possible. The amount of
pressure used is very slight, and at first sight it seems incredible that the oil globules can have been broken, but if you try the experiment of turning this exhausted peel inside out, nothing more can be extracted. The sponge is periodically squeezed. One man working in this way can extract about $11 / 2$ pounds (English) essence of lemon per day. To insure the cells being fully charged with moisture, it is usual to allow the lemons to stand in water for a short time; and I myself propose washing the lemons in a stream of running water. A second method, which, so far as I know, has not yet been published in England, originated in a clever derstood business.

* Pharmaceatical Conference Proceedings.

A large trade has already been done here in lemon peel packed in brine, which has been exported for the manufacture of candied peel. Formerly the peels were sent in the natural state. They are now exported with about three-fourths of the essence removed. This is accomplished as follows : The lemon, instead of being cut as before described, is cut in two, lengthwise. Should there be any defect in the lemon, the workman contrives to cut it in such a way that, by removing a hin slice, the defect is cut away and two half lemons remain, both free from blemish, and only a thin piece wasted. The pulp and a little of the white is then cut out with a kind of spoon, care being taken not to rupture the oil vessels of the peel. Another workman then presses the half lemon in various directions against a sponge, and, though it is evident that the sponge process is rather at a disadvantage, he manages to extract about three-fourths of the total amount. The quantity of essence obtained in this way is considerable. As a consumer of candied peel, I should be inclined to condemn this process ; though, as I have not seen the product and compared it with that made with the oil, I cannot say that it is inferior. It is stoutly maintained that if the essence were not removed it would be destroyed by the brine; and it is possible in this way is of superior quality, being made from the finest fruit, I hope it may be so.
This brings me to another point. It is generally as sumed in England that all pure essence of lemon is good. This is far from being the case, and I have myself seen essence of lemon containing 15 per cent of turpentine which was really superior to essence of lemon made the same day in my presence, and absolutely pure. This results from the extraordinary variation in the quality of the essence made in the various months. This difference is not noticed much in England, even the best exporters having to make an average sample which they can supply all the year round. Turpentine is in large use, and is purified in a peculiar way, which I have not discovered, so as to have very little smell. One exporter is said to use ten tons per annum. Strange to say, the worst qualities of essence all go to London, Manchester, and Glasgow. English wholesale druggists in particular have an unenviable reputation here for buying low qualities. One Sicilian dealer thinks that the climate has something to do with the inability of Englishmen to distinguish between turpentine and the season, the product of different districts varies. Experienced buyers claim to be able to distinguish the
district and village in which an essence has been made simply by smell and inspection.
Testing is carried out as follows: A sample is poured out into a tumbler and shaken up after placing the hand on top. Great attention is then paid to the duration and size of the bubbles and froth, the color is noted, and one smell is taken with the glass full and another after emptying it. Turpentine will certainly be detected in this way if over five per cent is present. Conducted in this way the purchase of essence of lemon is a matter requiring great judgment, and most of it being sold by peasants in small quantities, dealers cannot avoid sometimes buying a bad lot. If you make essence in your own works, the difficulties are not removed, only changed the substitution of turpentine for essence by the workmen being frequent and so contrived as to be very difficult to detect. A favorite means of bringing turpentine into the works is by means of a bladder and tube, which is carried as near as possible to the bladder with which we all are provided. It is a very easy matter to empty this and at tend to the calls of nature without exciting suspicion.

The following inferior qualities of essence of lemon are distinguished here
Sacotte.-As soon as the essence is made it is allowed to deposit and the clear portion poured off. There remains a deposit in the bottom which is pressed in a small bag (sac). The essence thus obtained is considerably inferior to the bulk, and in those places where only small quantities of essence are made, and the deposits are left for some time to accumulate, the quality is extraordinarily bad. The cake which is left after expression is distilled in a very rough way, yielding lambicato or distilled oil of lemon. The whole of the distilled essence of lemon which was made in Sicily is now made in this way. Often enough the dregs have commenced to ferment, and in some cases have lost tho whole of the lemon smell before being distilled.
Essence of lemon made from the rejected fruit from the warehouses.-In November and December a large amount of fruit is cut and packed, but instead of being at once sent abroad, it is stored in warehouses-fruit gathered at this season having qualities which enable it to be kept longer than any other. Before sending it abroad it is all repacked, the bad and doubtful fruit being used for essence making. This essence never has the fine flavor of its own, described as the sinell of the wood (di legno), which is easily recognized.

According to the last census there are 33,163 lawyers in the United States.

## RECENTLY PATENTED INVENTIONS

## Railway Appliances.

Car Coupling.-Thomas Courser, Lake City, Fla. This device has a knuckle with a also with an auxiliary pivoted coupling hook, the latter being concealed when the main hook is in use. The knuckle is adapted to be emp.oyed in the same manner as such con pling devices are ordinarily used, while the auxiliary device may be used in connection wilh an opposing drawhead of the link and pin type, or it will the knuckle. The device is very simple and easily the knuck
Snow Plow.-Patrick H. Craddock, Leadville, Col. This is a plow adapted to be secured such that it will automatically adjust itself vertically or laterally should an obstruction be met with on the track. By an operative mechanism connected with a storage reservoir of compressed air the engineer
may elevate or lower the plow as desired. The plow may elevate or lower the plow as desired. The plow
consists or a clearing board or fender in the shape of consists or a clearing board or fender in two sides of a triangle, a cutter being centrally formed to engage with the treads of the rails.

Mechanical.
Balance Wheel.-Hiram Bouck and Julius H. Lovendale, Salt Lake City, Utah Ter. This is a wheel having radial and circumferential slots, holes
extending through the wall of the wheel being connected with the slote, while screws and nuts may be en whereby an adjustment may be readily made without removing the wheel from the shaft, the weight being adjusted to come more or less on one side of the cener as desired.
Saw Handle Attachment.-Mitchell Pyper, New York City. Secured to the blade of a
handsaw, immediately in front of the handle, are sidepieces forming abutments for a swinging square arm and bevel arms, whereby the saw may be conveniently used as a square and bevel. The swinging arm is pivoted and held by a thamb screw in any desired position,
or may be detached at will, it being split longitudinally and held to straddle the saw blade.

## Miscellaneous.

Treating Gold Ores.-Louis C. Daumas, Paris, France. This invention covers a pro-
cess and apparatus for extracting gold from the ore. cess and apparatus for extracting gold from the ore.
Protochloride of sulphur saturated with dry chlorine is used to dissolve gold at about $130^{\circ}$ Centigrade, a
double chloride of gold and sulphur being formed double chloride of gold and sulphur being formed, Pormed into oxide by roasting. The apparatus com-
coil, cross pipes extending through the receptacle and filtering material being held in its lower portion.
SATURATING ARTICLIES.-John A Titzel, Glenshaw, Pa. This invention relates to a
improved process of coating or saturating electric mproved process of coating or saturating electric hard and soft wood, terra cotta, etc, , rendering the ar hard and soft wood, terra cotta, erc., rendering the ar-
ticles treated waterproof and preventing decay. The articles are first subjected to heat, to expand the air and fluids in the pores, and then immersed in a coating or saturating liquid, at a lower temperature, causing the liquid
article.
Centrifugal Honey Extractor. Charles W. Metcalf, Santa Paula, Cal. This is a device in which a rotating frame sapports swinging holders or baskets, the centrifugal force of the frame causing the ones in the outer half of the combs to be ejected, thers
baskets then being reversed so that the comb holder change their position and the remainder of the honey is extracted, after which the comb-holding baskets ca be readily removed and the holders refilled.
Window Washer.-David Mendelson, New York City. This is a simple and cheap apparatus with which a person may stand in a room and
readily wash the outside of a window, the apparatu readily wash the outside of a window, the apparatus
also facilitating the cleaning of the inside of the window, or the washing of a wall or ceiling. It consists of a telescopic main handle in hinged sections, fastening devices fixing the position of the sections, and a fixed jaw and a spring-pressed jaw being carried at the upper
end of the handle. The jaws carry a wet swab at one end of the handle. The jaws ca
end and a dry cloth at the other.
Window Sash Jack.-Valentine Schirner, New York City. This is an improvement on a for mer patented invention of the same inventor, providthem. The improved jack is light and cheap, and is ad justable to engage fixtures on different windows. The mprovement was ou exhibition at the late fair of the American Institute, New York City, its simple construc-
tion admitting of the window sashes being swung intion admitting of the window sashes being swung intiondy, either right or left, for the purpose of ventia-
tion or cleaning. One swinging jack or skeleton bracket is sufficien for a building, its weight not ex ceeding fonr
Coin Wrapper.-Ferdinand A. Jaekel, Memphis, Tenn. This improvement provides
an oblong wrapper, properly marked for different values, and gummed at one end, and having also a central longltudinal line of perforations, in which coin may
be neat':y wrapped in specific amounts, and the package quickly separated Teasing the coin.
Twine Holder.-Walter T. Hanson, Macon, Ga. This device has a base plate provided with a conical priction plug or spindle to enter the core of a
bali of twine, in connection with a stationary angled arm having a suspension eye and guide eyes through
which the cord is passed. The holder may be conwhich the cord is passed. The holder may be con-
veniently attached to an overhead support, to a coun-
ter, or be suspended in any position, holding the ball
in such manner that the cord may be readily unwound
Bag Holder.-Michael Fortin, Still water, Minn. This holder is provided with a fram with a board held in inclined position on which the bag rests, and the holder, made of a single piece of wire
bent to form connected loops engaging staples in the board, has curved arms at right angles to the loops, nd having a sliding conuection at their ends. The de ing, and arranged to expand and open the bag wh Elling it.
Lock for Bags, Purses, etc.-Fredrick R. Deck, Brooklyn, N. Y. This lock comprise wo leaves placed back to back and having interlocking
knuckles, the outer edges of the leaves being flanged and knuckles, the onter edges of the leaves being flanged and
a pivot pin passing through the knuckles of both leaves, a pivot pin passing throngh the knuck les of both leaves,
while a spring coiled on the pivot pin exerts tension upon the flunges of the leaves. The improvement is designed especially for double frames for double pockets, to lock both sections of the frame, both leaves being controlled by the same spindle and spring, but each leaf being operated independently.
Cash and Parcel Carrier.-Samuel J. Besthoff, New York City. This improvement provides a car which may be placed upon a cable and car ries its own driving mechanism, of a simple, durable,
and inexpensive character. The car has a simple aut maticlocking device to hold it upou the cable, and the opening of the door of the cash compartment winds up he propelling mechanism. A parcel carrier, to trans port goods with the cash, may or may not
desired, in connection with the cash car.
Pick.-Kenneth J. Morrison and Michael McLellan, Stellarton, Canada. This patent is
for a pick head having transverse slots to hold removable points, air passages leading from the slots into the eye, this improvement preventing the broken or " cracked " sound so often made in using picks having
Design for Book Rest and Umbrella Holder.-Charles Pegler, Elgin. ill. This is combined hook rest and cane and mbrella holder ex-
hibiting a novel configuration or parts of bracket-fike ends supporting a connecting ooard or shelf placed at an angle.
Drawing Instrument.-Charles L. pass designed 1 spiral lines, ova:s, ellipses, and other curvillnear geometrical lines and figures. The improvement is included in a simple and duranle construction, and the invention consists principany of a cord connected with one of the eegs of the compass and adapted to wind on
a drui mounted to rotate-oosely on a spindle held op the other leg at the joint of bots regs.
Note.-Copies of any of the above patents will be end name of the patentee, title of Invention, and date send name or
of this paper.

## NEW BOOKS AND PUBLICATIONS

 Metal Coloring and Bronzing. By ArthurNew York
Pp. xv
Macmillan \& Co.
Mrice $\$ 11092$. Pp. xv, 328. Price \$1.10.
The coloring of metals for the production of bronzes帾 the different aspects of the question and how to treat different metals. Numeroas formulæ are given.
A Practical Treatise on the Manu FaCTURE of PERFUMERY. Com-
prising directions for making all prising directions for making all umigating materials, dentifrices, cosmetics, etc. By Dr. C. Deite, as Kugler and H. Toeffner. Translated
by W. T. Brannt. Philadelphia:
H. C. Baird \& Co. 858. Illustrated. Co. Cloth. Price $\$ 3$. ${ }^{1892}$

This work also contains a full account of the volatile oils, balsame, resins, and other materials used in the
manufacture of perfumes. This book gives more details manufacture of perfumes. This book gives more detalls commercial scale than any work on the subject which has come under our notice. The section relating to hair preparations 18 excellent and the chapter on coshair preparations is excellent and the chapter on cos-
metics seems to be well up to date. Fruit ethers receive a fair share of attention. The number of receipts The Practical Brass and Iron Founder's Guide. By James Lar-
kin. Philadelphia: H. C. Baird \& Co. 1892. 12 mo. Pp. ${ }^{\text {Ploth. }}$ Price $\$ 2.50$.

This is a new and enlarged edition of Larkin's well known work. The work has been revised and brought up to date, 80 as to include Mitis castings,steel castings, bell founding, bronze casting, chill casting, casting
without a core, casting on other metals, casting upon without a core, casting on other metals, casting upon
nflammable marerials, etc. Many sections of the old inflammable materials, etc. Many
work have been entirely rewritten.
The Manufacture of Ink. Comprising the raw materials, and the preparation of writing, copying, and poktograp, colored inks, solid inks,
lithographic inks and crayons, etc. By Sigmund Lehner. Translated by 229. Illustrated. Co. 1892. ${ }^{\text {12mo. }}$ Pp. The present work is founded on "Die Tinten-Fabrikation." A carefis, their selection and preparation. A large
material number of receipts is given, embracing nearly every kind of ink, and the author states that most of the re-
cerpts have been tested. Great attention is paid to
ink specialtion aud unusual forms and kinds of ink,
such as safety ink, sympathetic ink, stamp inks, etc. while the important subject of printing ink is fully treated. Preserving agents for ink, the change of color in old documents and the meuvus of making faded
writing ink lesible come in for their full share of at writing ink legible come in for their full share of at
tention. This is the only treatise devoted entirely to the sabject in print in the English language and is a important addition to technical literature
The Hardwood Finisher. With rules and directions for finishing in na tural colors and in antique, ma ash, redwood, sycamore, pine, and all other domestic woods. Compiled and edited by Fred T. Hodgson. tion Company. 1892. Pp. 94. Price $\$ 1$.
Tems to colent work, with its very practical aspect neglected. It is exceedingly practical, and with numer ous formule for all kinds of stains and wood dyee, a many operatives.
Le Chauffage et les Application de la Chaleur dans L'Industrie ET L'ECONOMIE DOMESTIQUE. Par Julien Leferre, Professeur suppleant fesseur a l'Ecole des Sciences. Avec 188 figures intercalees dans le texte. Paris : Librairie J.
The French aspect of this book is evident in the title and the very large ground which it undertakes to cover
is largely devoted to domestic heating. although other heating finds a place in it, and its numerous other heating finds a place in it, and its numerous il
lustrations and excellent arrangement of pictures indi cate good judgment on the part of the editor and publishers.
PF'Any of the above books may be purchased through this ofice. Send for new book catalogue just pub-
liehed. MUNN \& Co., 361 Brondway, New York.

## SCIENTIFIC AMERICAN

BUILDINGEDITION DECEMBER NUMBER.-(No. 86.)

## table of contents.

1. Elegant plate in colors, showing a very attractive welling at Warberth Park, Pa., erected at a co ive elevations. John Robinson, architect, Ger mantown, Pa.
2. Plate in colors showing a residence at Springfiel Mass. Perspective views and floor plans. Cos
$\$ 12,000$ complete. Mr. Guy Kirkham architect $\$ 12,000$ complete. Mr. Guy Kirkham, architec pringfield, Mass. An excellent design,
3. A colonial residence at Newton Highlands, Mass, Perspective vew and hoor plans. J .
architect, Boston. A picturesque design.
4. A pretty cottage erected at Bridgeport, Conn., a cost of $\$ 1,600$. Floor plans, perspectia
A. M. Jenks, architect, Bridgeport, Conn.
5. A dwelling house erected at Warberth Park, Pa a lane, architect, same por plans and perspective.
6. A "Queen Anne" cottage erected at St. David" Pa., at a cost of $\$ 5,500$ complete. A unique design Perspective elevation and fioor plan.
w. L. Price, arcnitects, Philadelphia.
7. A reeidence in the "Colonial " style of architecture erected ans. David, Pa. Perspective view an
floor plans. Cost complete $\$ 5.500$. F. L. \& W. hoor plans. Coet complete $\$ 5.800$.
L. Price, philadelphia, architects.
8. A residence on Golden Hill, at Bridgeport, Conn. erspective elevation ard floor plans. D. B Brown, architect, New H lent design
9. A residence recently erected at Springfield, Mass. loor plans and perspective elevation. Cos
20,490 complete. Mr. A. B. Root, architect, sam place. A pleasing design.
Picture of Aldworth, Sussex the home of Lor Tennyson. Portrait of Lord Tennyson.
10. Sketch for a cottage at Saucelito, Cal
11. Design for a thirty-story building.
12. Sketch of residence of Mr. Howard Bell, Atlanta, atch
Ga.
13. Miscellaneous contents: Some of the merits.-Water tight cellars.-Read this with care.-Improve our property.-How to catch contracts.-The buildinge.-Concave sounding boards.-A high ailway bridge.-A complete steel house froṇt, illustrated.-An improved woodworking ma-chine.-Finely carved woodwork, illustrated.Steam and hot water radiators, illustrated. Plaster of Paris.-Disinfection by means of sulceling in an art gallery
The Scientific American Architects and Builders 5 cents. Forty large $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to aboui
two hundred ordinary book pages ; forming, practically, a large and splendid Magazine of architec TURE. richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting examples of
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largest circulatio of any Architectural publication in the world. Sold by all newsdealer

UUNN \& CO., Publishers,
301 Broadway, New York

ƏBusiness and Personal.

## for charge for Insertion under this head is one Dollar a lin

 Acme engine, 1 to 5 .H. P. See adr. next 1ssue. "U. S." metal polish. Indianapolis. Samples free. Presses \& Dies. Ferracute Mach. Co., Bridgetoni, n. Shingle machinery. Trevor Mfg. Co, Lockport, N. Patent Open-Side Planing and Shaping Machine Wm. Jessop \& S erve the centennial of their firm next year.
Steam Hammers, Improved Hydraulic Jacks, and Tup
Expanders. R. Dudgeon, 24 Columbia St., New York. Sto Stow Mfg. Co., Binghamton, N. Y. See adv., page 254 $\$ 200$ buys outright a patent on a novel kitchen devic
ddress C. A. B., $\mathbf{~ P . ~ O . ~ b o x ~ N o . ~} 495$, Wakefeld, Mass. Screw mabies, miling mill The Garvin Mach. Co., Laight and Canal Sts., New York Centrifugal Pumps for paper and pulp mills. Irrigati nd sand pumping plants. Irvin Van Wie, Syracuse, N. Portable engines and boilers. Yacht engines and Piliers. B. W. Pa
treet, New York.
Wanted-A frm to undertake sale of well-sellin box 773 , New York.
To Let-A suite of desirable offices, adjacent to the cientiftc American offices, to let at moderate term pply to Mun \& Co., Fine Castings in Brass, Bronze, Composition (Gun
Metal), German Silver. Unequaled facilities McKenna \& Bro., 424 and 426 East 23 S St., New York. For the original Bogardus Universal Eccentric Mill, oot and Power Presses, Drills, Shears, etc., address
.S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y. The best book for electricians and beginners in elec Sricity is "Experimental Science," by Geo. M. Hopkin. Canning macher soldering, air pumps, can wipers, can testers, labelin machines. Presses and dies. Burt Mfg. Co., Rochester Competent persons who desire agencies for a new opular book. of ready sale, with handsome proft, may
pply to Munn $\&$ Co., Scientific American office, 361 Broadway, New York.
Wanted-Engineers and pilots. Twenty licensed en-
gineers and pilots to run small passenger steamers for the summer months or 1893, in connection witb the
World's Fair. Sober, steady men are invited to write World's Fair. Sober, steady men are invited to write us
for further information. Chas. P. Willard \& Co., Clybourn and Southport Aves., Chicago, ill.
nd other Books for sale by Munn \& Co., 361 Broadway Vew York. Free on application.

## 

HINTS TO CORRESPONDENT
Names and A ddress must accompany all letters,
or no attention will be paid thereto. This is for our or no attention will be paid thereto.
information and not for publication.
Reterences to former articlese or answers should
give date of paper and puge or number of question give date of paper and puge or number of question.
In quiries not answered in reasonable time should
be repeated; correspondents will bear in mind some answers require not a little research, and
though we endeavorto reply to all either by letter
or in or in this department. each must take his turn.
special W riten IViformation on matters of
personal rather than general interest cannot be expected without remuneration.
cienuilic American Supplements referr
tomay be had at the office. Price 10 cents each. to may be had ar the office. Price 10 cents reach.
Boks referred to promptly supplied on receipt Minera sent for examination should be distinctly
marked or labeled.
(4604) O. C. asks: 1. What speed can be had with a 1 h foot boat, 4 feet beam, using an engine
$11 / 2$ inches bore, 3 inches stroke at about 60 pound team pressure? A. You should be able to run the boat 6 miles per hour. 2. What should be the diameter, pitch, and speed of the propeller to give best re ter, 36 inches pitch and make 250 turns per minute. 3 . Should the propeller have two or three blades ? A. would be required and would the pipe boiler described in the Scientific american Supplement be suitables A. A vertical tubular boiler having 20 square feet of actual heating surface with shell 22 inches diameter by 36 inches in height, 33 tubes $11 / 2$ inch, will give all the steam required. The No. 3 pipe boiler described in Sientific Ambrican Supplement, No. 702, with ncher addition to the length, will make a safe boile
in which you carry 100 pounds steam pressure if deird, and
(4605) R. T. McK. writes: Will you lease answer me through your columns why it is that pressure hy the gange on a double acting air pump, the team and air cylinders being of the same diameter and the pistons operating on the same piston rod? A The difference between the initial pressure in the steam cylinder and final pressure in the air-com pressing cylinder is due to the difference in the mean pressure for the expansion of steam and the mean pressure for
the compression of air. This is at once apparent to he eye when examining the indicator cards of equal sized steam and air compressing cylinders. The mean engine pressure for 70 pounds at $3 / 8$ cut-off is theoretically 52 ponnds per square inch. The mean adiabatic cunds prese a cylinder for delivery of air at 10 mal pressure is bat 30 pounds. The absorption of the ing of compression by water injection or jacket cool sorbed, will make the mean pressure of the air cylinder about 43 pounds per square inch, with 9 pounds as the margin for compressor friction.
(4606) R. M. asks: 1. Is smoke a wet (watery) or dry vapor? A. Smoke is more or less mixed the the vapor of water, part of which is derived from sidation of the hydrogen forming part of the fuel. What weight would a ball 100 pounds indicate on alance if dropped from a height of 100 feet? ounds. If the balance arrests the fall of the ball in inches after contact, the average impact force is 20,000 pounde. See Scientific American Supplement, No 82, on impact or the force of percussion.
(4607) G. C. W. asks how to bleach the hair of an animal. A. Gaseous chlorine and hydre gen peroxide are effectual agents in bleaching hair The hair shonld be thoroughly cleaned, with a war olution of soda, then washed with water. While mois is put into a jar and chlorise gas introduced, unt air in the jar looks greenis. Allow it to stand for
(4608) T. H. says : 1. It is proposed to eliver water in an inch pipe one mile distant ove n elevation 120 feet high, the point of delivery is 2
eet lower than the starting point. It is asserted that it would require 75 per cent more force power to deliver the summit and let it go down by gravity thanto connue the pipe the whole distance. Can you throw ight on it? A. It will require 52 pounds pressure and he additional pressure due to friction to deliver the water athe summir of hie siphon. The down leg can only relieve the pump pressure to the amount of
vacuum, or $14 \cdot 7$ pounds, which may be offset by the riction in the down leg of the siphon. The difference in length of the two legs of the siphon may make rifling difference only, whether delivery is through the whole length or discharged at the top. 2. Suppose hat a shell made of strong steel $11 / 2$ feet in diameter, with a cavity in the center large enough to hold 2 ances of powder ( $11 / 2$ inches), with a vent of a size
admit the smallest possible wire that wonld conduct electric fluid, had electricity applied, would the powder ignite? Would there be an explosion, or what would here be? A. The powder would explode and create a pressure of probably 40,000 pounds per square inch, which would fizzle out through the vent and burn out he wire.

## TO INVENTORS.

An experience of forty years, and the preparation of more than one hundred thousand applications for pa-
tents at home and abroad, enable us to understand the laws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. A oreign countries may be had on upplication contemplating the securing of patents, either at home or abroad, are invited to write to this office for prices which are low, in accordance with the times and our exensive facilities for conducting the AMERICAN, 361 Broad MUNN \& CO.,

INDEX OF INVENTIONS

## For which Letters Patent of the

 nited states were GrantedNovember 29, 1892,

## and EACH BEARING THAT DATE.

 [See note at end of list about copies of these patents.]





|  |  |
| :---: | :---: |
|  |  |
|  |  |
| rse |  |
| ${ }^{\text {mac }}$ |  |
| e, Ј. йar |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
| see |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
| pp, gas. Lid A.coid |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
| er box house door, C |  |
|  |  |
| Lemele |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |




ing rack.
Rait Ite, G. H. Sellers.
Railway rail, F. I. Smith
Rail way rail joint plate, E. Samuel................
Rail way spike,
Railway tracel tie and fastening, metaliic, I...... Ken-
 kecorder. See Time recorder.
Reefrier wire reel.
Refator



Rof, sher met. mil. Hi. Britton.
Rosin, package for bleaching and
Rotary engine, B ,
Sadade, harness, . Taber.
Bash holder, w, Puron
Sash holder, I. A. Shaw...
Separator. Seo Magnetic separator




hagen............iote.....
Shutter wrker ash, C. F. Abbott...

Soap bubile pipe, W. Fickeet



team boilier, upright tubuilar, $\boldsymbol{T} . \mathrm{S}$. Lia Franc
team engine,
Steam engine, C. D. Mosher.........
Steam menerator, Mcride \& Fisher


too, milk, M. N. Sevier


Surgical pump, , .....Truäx.
uspenders, C. C. Krouse et ai..i.
Swing Alexander \& Martindale
Switc. See Electric switch.

Telegraphic apparatus, Parker $\&$ Summers.






Typewriter, electric, Neai \& Eaton.
…........
t, Neai \&
…..487.047,
$\ldots . . . . . . . . . .$.
Ypewriting machine, A. David.
Urrnal attachment, G. Chonoen
Urn, coffee or tea, $T$. Miller







## 

DESIGNS.


| TRADE MARKS. <br> Apparel, certain under and outer weari Norcross <br> Beer, lager, C. Schmidit \& Sons <br> Beer, lager, G. Walter <br> Boots and shoes, leather, $\underset{F}{ }$. Bryant |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

Caned oysters. Foit \& Ẅinebrenner.




ARTESIAN






MECHANICS' TOOLS.






Steel Iype for Writing Madines, OIL WELL SUPPLY CO.

$\bar{T} \bar{H} E$ SECRET OF THE HEAVENS.By J. Ellard Gore, F.R.A.S. A discussion of the great
mystery of astronomy. The eonstruction of the starry
heavens; embraciog an inquiry into the relation of the
milky way the syin
midnu



OPTICAL CONSTRUCTION OF THE




PROMOTION OF NAVAL ENGIN-



BEATTY Pianos. Organs. \$33 up. Want agents:

DUNCAN'S PRACTICAL SURVEYOR'S GUIDE.
 Containing the necessary information to make any
person of common capacity a fnished land surveyor,
without the aid of a
 In one volume, $12 m o, 214$ pages, price $\$ 1.50$
 plane surface, Map of a surveg; scales according to
phich maps df survers are rawnin Intruments for
measuring distances and their use; Instruments forset-

 lW A circular showing the full table of contents of the
above book sent free to any one who will apply.
 the whole covering every branch of Science applea eot
Atrstsent fre and freof postage oto any one in any part of
the world who will furnish his adaress. HENRY CAREY BAIRD \& CO. Industrial Publishers, Boorsellers \& Importers
810 Waluut it., Philadelphin, Pa., U. S. A.




ALUMINUM: ITS USES AND AP-


STEEL TYPE FOR TYPEWRITERS



FOR RUNNING LAUNCHES. heapest and Best Engine.
J. M. GROB \& CO., Leipzig-Eutritzsch (Germany).

Improved Screw Cutting Foot and Power

Lathes
 SEBASTIAN LATHE COMIPANY,

## 

CHUCKS


THE SIMPLEX PRINTER,


Refictiva TELESCOPES

PRISON REFORM.-AN INTEREST ing paper by Tancred Canonico, in which the author
followswitha synthetical and rapid phance the gradial
change of ideas that aftord a key to the present prison



MAN'S UPWARD STRUGGLE. - A


THIS WIRE STRAIGHTENER




## PROPDSALS









CIMARIE:S
 POWER WRINGERS EOR HOSIERY AND

 OU USE GRINDSTONES?

 The cleveland stone co
2d Floor, Wilshire, Olereland, 0 . BALING and PACKING PRESSES
for all purposes. RYTHER MFG. CO.,


HAVE YOU READ Experimental Science?
This now boot, hy Go.... Hoplins. in .just what




MUNN \& CO., Publishers,

free sites TOO SUBSTANTIAL MANUFACTURING ENTERPRISES


CASTIINGS


 PALMER for new Catalogue
BIOS.,
THE MISSING WAR LINK, Out of sizht from 1861 to 1865, Fownd in
THREE EMANCIPATORS. Saluable friformation that everybody should have.
Sent bymain on reeeip of one Dimens
JNO. L. SCHILLNG, BELLARE, OHIO.


INVENTORS and Rxerimentors can ontain val






VANDUZEN STEAM PUMP





"ECONOMY IS WEALTH."




PERFORATORS OF ALL METALS




## GATES ROCK \& ORE BREAKER <br> Capacity pto 2000 tors per loor



 GATES IRN WORS,
 Scienticic Book Catalogule RECENTLY PUBLISHED.
 361 Broadway, New York.


1EAFNESS \& HEAD NOISES CURED


AMERICAN SCREW COMPANY, PROVIDENCE, R. I.

## Heneunter 30 <br> 

 186 R. C. DAYIS, Counsellor at Law,
 THE HUB FRICTION CLUTCH,

Before you know it you will be sorry you did not decide earlier "What to give them." It is so simple; the one thing that everybody wants and would be made happy by-and you can afford it-a new, quick=winding Waterbury. $\$ 4$ to $\$ 15$.
Elegant and accurate; the gem for a lady's belt ; the man's everyday watch-to save a costlier one, perhaps-a pocket guardian for youngsters, teaching them timevalue, and saving worry for the elders. All jewelers keep it in all styles. "See it."


4ATENTS!
MEsSR MUN \& Co. in connection






 MUNN \& CO., Solicitors of Patents,



Asbestos Sectional Pipe Coverings.
Non-Conducting Coverings for Steam and Hot Water Pipes, Boilers, etc. AEBEADILY ATTACHED OR REMOVED BY ANY ONE.
We are prepared to take contracts for applying Steam Pipe and Boiler Coverings in any
 et maiden lane, n. r. Jensery Citry. Cricacoo. Priluotlphia, Boston, Atlanta, Londoon.

 THE MODERN MARINE BOILERR-




STATIONARY and PORTABLE. All Sizes. STATIONARY and PORTABLE. All Sizes.
Dwarfs in Size, but


Dwarfs in Size, but
Giants in Strenth.



MAN DUZEN

##  <br> The Smith Premier Typewriter <br>   The Smith Premier Typewriter Co., Syracuse, N. Y., U. S. A.





LATEST IMPROVEMENTS, NEW STYLE. NEW PRICES GROWING RAPIDLY in FAVOR

THEAMERHCANBELUTHMEHONE CO.
95 MILK ST., BOSTON, MASS.

This Company owns the Letters Patent granted to Alexander Graham Bell, March 7tb, 1876, No. 174,465, and January 30tb, 7tb, 1876, No. 17
1877, No. 186,787.
1877, No. 186,787.
The transmission of Speech by all known
forms of Electric Speaking Telepbones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor


VELOCLTYY OF ICE BOATS. A COL-




ICE-HOUSE AND COLD ROOM.-BY R


THE ARMSTRONG MACHINES,


The Most Popular Scientific Paper in the World Only $\$ 3.00$ a Year, Including Posta
Weekly-52 Numbers a Year

This widely circulated and splendidy illustrated
paper is published weekly. Every number contains sixpaper is published weekly. Every number contains six-
teen pages of useful information and a large number of original engravings of new inventions and discoveries,
representing Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures,
Chemistry, Electricity, Telegraphy, Photography, ArchiChemistry, Electricity, Telegraphy, Photography, Archi-
tecture, Agriculture, Horticulture, Natural History, etc. Complete list of patents each week.
Terms of Subscription.-One copy of the ScienTIFIC AMERICAN will be sent for one 讠ear- 52 numberspostage prepaid, to any subscriber in the United States,
Canada, or Mexico, on receipt of three dollars by the Canada, or Mexico, on receipt of three downes by
publishers; six months, 81.50 ; three months, 81.00 . Clubs.-Special rates for several names, and to Post
Masters. Write for particulars. Masters. Write for particulars. The safest way to remit is by Postal Order, Draft, or
Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed. seldom goes astray, but is at the sender's risk. Address
all letters and make all orders, drafts, etc., payable to MUNN \&

Scientific ${ }^{-3}$ mericat §upplement This is a separate and distinct publication from THE
SCIENTIFIC AMERICAN, but is uniform therewith in size. everynumber containich sixteen large pages fun of en-
gravings, many of which are tam foreign papers
and accompanied with translated descriptions. THE and accompanied with translated descriptions. THE
SCIENTIFIC AMERICAN SUPPEMENT is published weekIy, and includes a very wide range of contents. It pre-
sents the most recent papers by eminent writers in all
the principal departments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural
History, Geography, Archæology, Astronomy ChemisHistory, Geography, Archæology, Astronomy Chemis-
try, Electricity, Light, Heat, Mechanical Engineering, try, Electricity, Light, Heat, Mechanical Eng Building,
Steam and Railway Engineering, Mining, Ship Build Marine Engineering, Photography, Technology, Manufacturing Industries, Sanitary Engineering, Agriculture. Horticulture, Domestic Economy, Biography, Medicine,
etc. A vast amount of fresh and valuable information obtainable in no other publication. Works, Mechanisms,
The most important Engineering Wor and Manufactures at home and abroad are illustrated and des
Price for the SUPPLEMENT for the United States and Canada, $\Phi .00$ a year; or one copy of the SCIENTIFIC AM-
ERICAN and one copy of the SUPPLEMENT, both mailed for one year for 87.00 . Single copies, 10 cents. Address and
remit by postal order, express money order, or check MUNN \& CO., 361 Broadway, New York.

## guilding Cenition.

The Scientific American Architects' and BULDERS' EDITION is issued monthly. $\$ 2.50$ a year.
Single copies, 25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages: forming a
large and splendid Magazine of Architecture, richly large and splendia Magazine of Arcntecture, richly
adorned with elegant plates in conlors, and with other fine engravings; illustrating the most interesting examples of modern architectural construction and allied subjects. A special feature is the presentation in each number of a variett of the latest and best plans for private resi-
dences, city and country, including those of very moderate cost as well as the more expensive. Drawings in Plans, Speciffcations, Sheets of Details, Estimates, etc. The elegancee and cheapness of this magniffcent work nave won for it the Largest Circulation of any Architectural publication in the
dealers. $\$ 2.50$ a year. Remit to

MUNN \&CO., Publishers.
31 Broadway, New York


PRINTING INKG:


