
(Entered at the Post ofice of New York, N. … as seconic Clases mater. Copyrighed, 1892, by Munn $\&$ co.
A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW YORK, NOVEMBER 5, 1892.	

THE MANUFACTURE OF WIRE GLASS AT TACONY,

PHILADELPHIA GL

The subject of protecting glazed skylights is one which of late years has acquired additional importance. The construction of large railroad depots illustrates the tendency of the day. In such structures as the Grand Central Depot in this city, light is given to the interior by large skylights. These are placed in the roof of the building and are of very large area. At a height of nearly a hundred feet above the floor they are a constant menace to life. The glass used in their construction is necessarily of considerable thickness. If it breaks and falls, the heavy sharp-edged pieces are perfectly capable of inflicting a fatal blow. If a piece were to fall upon a car roof it would very probably cut its way through, and embed itself in the bottom of the car if it did not go through that also. The force of the blow of course depends on the size of the piece. Some extraordinary accounts have been given of the penetrative power of glass which has actually fallen from such a skylight.
To prevent accidents of this kind a copper wire network is often stretched over the framework of the skylight directly under the glass, or in some equivalent position, with a view of catching any pieces which may be detached or broken loose. This is a partial solution be detached or broken loose. This is a partial solution
of the difficulty only. The wire gauze is liable to cor-
rode, or its fastenings may become loosened, so that it may be quite useless. Corrosion is especially to be feared in railroad stations and train sheds. The gases from the locomotive smokestacks is a source of corrosion, as the sulphurous fumes attack both copper and iron. In such situations also it is found that large heets of glass tend to crack.
We illustrate an experimental plant for the production of wire glass, a substance designed to overcome these difficulties. The product consists of rolled giass, with iron wire netting embedded in its own substance. Thus the wire is hermetically inclosed, and is secure the wire is hermetically inclosed, and is secure the rell of wire gauze is heated, and an is ready for from corrosion for any length of time. The machine poured out upon the table, the hot sheet of wire gauze and process is the invention of Mr. Frank Shumann, of is placed in its carrier, and the roller carriage is Philadelphia, Pa. At the works illustrated in our cut, started. As the carriage progresses a little, the wire is as much as ten tons of the material was produced. The dropped. The first roller has rolled out the glass. glass made under the conditions incident to experi- The wire gauze strikes the partly fluid glass, and is mental appliances was so perfect, and of such obvious drawn under the corrugated roller. This seizes it, and merit, that it obtained the fullest appreciation from by its corrugations forces it into the pasty glass to the the architects and engineers of the country. Work is required depth. The compound mass then goes under now in active progress on extensive plant and build- the third roller, where it is rolled smooth, and the ings for the production of the new material in com- peration is completed. The sheet is now annealed in ings for the production of the new material in com-
mercial quantities.

The general principle of operation is as follows:
By modifications in the apparatus various products A glass rolling table with side ledges is provided. A may be obtained. The wire gauze may be heated so three-roller carriage moves over it, running on the side hot as to receive a corrugated contour, which it retains three-roller carriage moves over it, running on the side
ledges. The glass is rolled out upon this table, the

THE MANUFACTURE OF WIRE GLASS AT TACONY, PHILADELPHIA, PA.
so low a temperature as to lie quite flat in the finished product. The corrugated roller may be adjusted to give it any desired depth in the glass.
Sheets of wire glass six feet long, two feet wide and three-eighths of an inch thick have been rolled at the experimental plant in thirty-five seconds.
The American Wire Glass Co., of Tacony, Phila delphia, Pa., has been formed to exploit this invention. By the beginning of next year they expect to have in active operation their factory already alluded to, with a daily capacity of about 5,000 square feet of wire glass. The most improved appliances are to be used, so as to render the operations as nearly automatic as possible. Gas fuel will be used and the rollers will be heated by the same.
The new product has other uses than those mentioned. It is to some extent burglar proof. It is not known what is the heaviest wire which can be used, but it is obvious that glass several inches thick with one or two sheets of heavy steel wire gauze embedded in its center would be very resistent to any attacks by burglars. For pavement lights it is also applicable, as it has great weight-sustaining power. A heavy man can walk and jump on one of the sheets made in the experimental works. Last not least is its power of resisting projectiles. It can be made so that a pistol ball will not penetrate it, thus affording a material for windows and other lights which will be secure from all ordinary missiles.

Science in Medicine

The recent address at St. George's, London, was de livered by Dr. Bowles, of Folkestone. The lecturer commenced by welcoming the new students, and urging them all to preserve the tradition that "a St. George's man is expected at all times and under all circumstances to be a gentleman." The apprenticeship system was announced to be dead-defeated by the rapid march of science. This led to the main subject of the address, "the application of physics to physic." It was pointed out that all changes occurring in physiological and pathological processes, formerly supposed to depend on that unknown quantity, "vital force," were really nothing more than the action of the recognized forces of nature on the organs and structures of the body. Coughing, sneezing, snoring, etc., were all shown to have immediate origin in physical conditions. Surgery is the proper application of the laws of physics; injured parts and broken limbs are kept at rest, dislocated parts are placed in their natural positions, redundancies are removed, and natural deficiencies often well supplied; crooked paths are made straight and blocked and narrowed ones made patent; stiffened joints are made to move, crooked limbs putinto shape eyes are made to see that would not, and ears to hea that could not.
Surgery is a department of physics-a physical art. Medicine, formerly the region of the unknown and the happy hunting ground of quacks, is rapidly following in the same lines. The so-called practical man and the believer in dogmas and nostrums are rapidly giving way to minds trained in the laws of physics. Physi ology, Medicine's forerunner and its handmaid, is steadily, step by step, and without prejudice, elucidat ing the ways and doings of animal life. By instruments of the most elaborate and delicate nature, by patient and continuous observation, by anatomical and histological searchings, and by the application of the laws of gravitation, chemistry, heat, light and electricity, always by ways and means connected with physics, we are getting to understand better and more surely the movements and functions of respiration, of circulation and digestion, of secretion and excretion, and finally we hope to understand the most subtile and mysterious of all functions-the operation of the nervous system.
The lecturer then reviewed the rapid progress made in late years in the studies on which the medical art is based. Schroeder in Germany and Pasteur in France by their investigations on fermentation and putrefac tion, and Chauveau on the particular nature of con tagia, have opened up an entirely new world. We have now not only to study the causes as well as th changes of the disease in the body, but also the doing of the bacteria outside the body and within it. In view of the more scientific methods of modern phar macology and therapeutics, students were cautioned against long and complicated prescriptions. Not a sin gle drug ought to enter the body except under clearin tention of what object it is to fulfill there. Compound may be good cookery, but do not form scientific medicine. Finally, students were warned against mistaken views of materialism. The students of the physical and biological sciences are emphatically the servants of nature. The man of science interprets the physical laws, and equally with the teacher of religion tells us of the greatness and grandeur of the Creator. Every discovery of the scientist can only tend to increase our wonder at the omniscience and perfection of the ways of God.

Professor C. A. Young announces that the fifth satellite of Jupiter has been seen by his assistant, Mr Reed, with the 23 inch equatorial, at Princeton

Srumtifir ammoriam

HS'CABLISHED 1845.
MUNN \& CO. Editors and Proprietors published weekly at

No. 361 BROADWAY, NEW YORE.

O. D. MUNN.
A. E. BEACH.

TELMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, for the U. S., Canada or Mexico...
One copy, six months, for the U.S., Canada or Mexico.
One copy,one year, to any foreign country belonging to Postal......... $15 \mathbf{~} 15$
Remit by postal, or express money order, or by bank draft
4 Remit by postal or express money order, or by bank draft or check.
MUNN \& CO., 361 Broadway, corner of Frauklin Street, New York.

The scientific American supplement

The safest way to remit is by postal order, express money order
taft tor bank check. Make all remittances payable to order of MUNN

NEW YORK, SATURDAY, NOVEMBER 5. 1892.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No. 879.
For the Week Ending November 5, 1892.

ELECTRICAL.-Portable Accumulators for Stage Effects. -3 en- PAG gravings ...
engineering.--Aberration Problems.-A lecture on "The Motion of the Ether near the Earth."-By Dr. OLIVER LoDGE, at Compound Express Engine.--Paris, Lyons, and Meditteranean Roberval's Metwings.

iII. HORTICULTURE.-The Tall Flowers of Autumn.
V. medical and surgical.- Vertigo.-A paper read before

Removing the Vermiform Append
Removing the Vermiform Appendix.
Salophen. - A new remedy for rheuma
metallurg y. -The Cohesive Property of G old Vaiue, and Availability.-By S. H. GUILFORD, D.D.S. Ph.D Philadelphia, Pa.-A paper read before the joint union meeting of the Pennsylvania and New Jersey State Dental Societies.
vi. Miscellaneous.-Genoa-The Birthplace of Columbus.Crypt of the Royal Chapel, Granada. - 1 engraving of the sepulchers of Ferdinand and Isabella
erdllas..................................... The Days o
af Given Date.-For 60 centuries.Training of Horses. 11 engravings.......................................
The Determination of Carbon Dioxide in the Air of Buildings. -by augustus h. Gill, Ph.D.
Peroxide of Sodium.-An interesting article.-By M. PRUD'.
II. TECHNOLOGY.-Paper Testing.-An exhaustive article, giving tests of tensile strength of papers.-Calculation of the "breaking
strength."-Resistance to rumpling and rubbing.-Mineral residue of papers, ash.-Microscopical examination of papers.-Qualitative tests for wood pulp in paper.-Quantitative determination of ground wood in paper.-Determination of the kind of sizing.-Determination of the amount of sizing....
Frame for Singeing Cotton Thread.-

NEW YORK AND BROOKLYN BRIDGE CABLE RAILWAY OPERATIONS DURING THE WEEK OF THE COLUM BUS FESTIVAL.
Never was the bridge so crowded with people as during the gala days of the Columbian anniversary. Com mencing on Sunday, October 9, 453 trains were dis patched, 392 of which had a headway of from 3 to 2 minutes.
On Monday 549 trains were dispatched, 120 of which had but $11 / 2$ minutes' headway. Tuesday, 558 trains, 212 at $11 / 2$ minutes' headway. Wednesday, the rus? day, 697 trains were dispatched, of which 346 were on $11 / 2$ minutes' headway. The number of passen gers carried was, on Sunday 99,309 , Monday 188,677 , Tuesday 158,085, and on Wednesday 223,625, gradually falling off to the normal number at the end of the week. The whole number for the week was $1,091,5: 39$ The greatest rush was from Wednesday, 8:15 A. M. until Thursday, 8:15 A. M., 24 hours' continuous run of the cars carrying 258,593 passengers

The speed of the cable is $101 / 3$ miles per hour ; it is $11 / 2$ inches diameter, and 12,000 feet long. It wears out in about 15 months, having a haulage service of abou $20,000,000$ ton miles. The greatest recorded work of the cable engines is 1,093 horse power. Cars weigh from 17 to 19 tons, and there are 60 in service, 48 running during rush hours. The above enumera tion only includes rail way passengers riding by ticket The immense throng by the foot and roadway can only be estimated, and probably reached the numbe of 200,000 or more, making the total travel over the bridge on Wednesday, October 12, nearly half a mil lion people. Not the slightest accident is known to have occurred. When we consider that one-half of the immense train service of Weảnesday was run on $11 / 2$ minutes' headway, without a break, we cannot but ac cord the highest praise to its management.

PHOTOGRAPHY AT THE WORLD'S FAIR

When the question of granting photographers the right to photograph, for a small fee, at the World's Fair grounds was submitted to the Ways and Means Committee last spring, it was announced that no such privilege would be permitted, as it would interfere with the parties who might secure the sole right to photograph, from whom large payments were ex pected.
As soon as this announcement was made, a move $m \in n t$ was inaugurated by the editor of the American Amateur Photographer to obtain the sentiments of the various photographic clubs and societies on the proposition to exclude the camera of the amateur photographer, which resulted in nearly every organization disapproving the idea and urging the authorities, through special petitions, to reconsider their decision on the ground that more money would be raised by admitting the camera at a small fee than could be derived by restricting the privilege to a few at a higher charge
We are gratified to be able to state that the desire of the amateur photographers have been substantially acceded to. It was officially announced on the 25 th of October by the official photographer of the World's Columbian Exposition, Mr. C. D. Arnold, that on and after that date "Hand cameras using plates up to and including 4×5 inches, without tripods, will be allowed within the grounds of the World's Columbian Exposi tion, on payment of a fee of two dollars in addition to the regular price of admission for each day. Cameras using stereoscopic lenses will not be admitted, howeve small the plate may be."
This decision practically opens the grounds to photo graphers and will enable those desiring to secure pho tographs for themselves from their own point of view to do so. It is we think very creditable to the Wc ${ }^{\text {-ld }}$ Fair authorities that they have decided to grant sume concessions to the amateur photographers, and wil undoubtedly be the means of greatly increasing the amount of free advertising the fair will get, while the manufacturers and dealers in photographic material will also greatly profit by the increased demand for their goods

Photographing the Sound of Vowels.

At the recent International Congress of Physiology at Liege, Professor Hermann demonstrated his method of photographing the sound of vowels. The vowel were sung out before one of Edison's phonographs. Immediately afterward they were reproduced very slowly, and the vibrations recorded by a microphone The latter was furnished with a mirror, which reflected the light of an electric lamp upon a registering cylin der, covered with sensitized paper and protected by another cylinder with a small opening which gave pas sage to the rays of light from the reflector. By thi means was obtained very distinct photographic traces and the constancy was remarkable for the differen letters.

A Mine on Fire since 1858.-The burning mine at Summit Hill, near Mauch Chunk, Pa., has been on fire 1041 since 1858.

The worldss Fair after the Dedication
After the great success which attended the dedifair seems to have ensued. This, however, is but an appearance. After the celebration was over, and after the troops from all parts of the country had returned or were en route to their respective homes, the public attention has been directed to other channels. But the impressiveness of the recent ceremonies grows as they are thought over. The great building, with the thousands of spectators, the band and chorus, the presence of so many eminent civilians, army and navy representatives, members of diplomatic corps, and the like, was a worthy step in the way of progress of the great work. After the interruption caused by the proceedings the operations are again actively under way. The prospect is that America will produce not only an unequaled exposition of arts and industries, but that it will be conceived and executed in a period of time unequaled in brevity for such an affair.
The location of the site for the buildings is a very recent event. Even the chosen city was an object of speculation until within a few months, and already the city of the lakes has shown that her enterprise and energy are more than a matter of reputation. The buildings are nearly complete. Probably the greatest assemblage of spectators ever gathered under similar conditions under one roof were witnesses of the progress already made. They found many of the great structures practically ready for occupancy. The participants and spectators in general saw a great part of a veritable city of industry rising from the plain.
The buildings harmonized well with the mass of humanity surrounding them. The route of the military procession, as it wound through the grounds, was overshadowed by the buildings. These formed a fitting background for the military parade. The water and bridges and other features of the grounds added to the picturesque effect.
Another element of interest was incident to the occasion. For the first time the grounds and buildings appeared with their proper concomitants of a great assemblage. The effect of the structures is not to be judged of as they stand isolated and untenanted. But when the isolation is destroyed by surrounding crowds, and when their interiors are filled with an immense concourse of people, some judgment can be reached as to what the final effect will be. In this aspect the celebration possessed peculiar interest. The suitability of the edifices for human occupancy was tested. Their adaptability and power of harmonizing with a mass of humanity seemed perfect. The sense of desolation that the enormous empty structures
have hitherto inspired was done away with. The have hitherto inspired was done away with. The
hum of life gave a new and, as yet, unseen aspect to hum of life gave a new and, as yet, unseen aspect to
the scene; for, until the celebration, so great an audience had never tenanted the great hall, and so many people had not yet visited the grounds in one day.

We have alluded to the scope of the celebration. The exposition commemorates an event in the world's history. It is no national or municipal event that has called forth the fair. America felt that her turn had come in the family of nations to hold an exposition. The lapse of four hur_..ied years has produced the anniversary it celebrates. Unequaled in this feature, it is to be hoped that all will progress to a favorable issue. That such will be the case it is hard to doubt. So much has been done that the future is secure. The fair will be in fact as in its origin a celebration worthy of its historical anniversary.

Amidol-a New Photographic Developer.
When, in the fall of 1889 , we found that eikonogen was what may be termed a universal developer, working equally as well in the development of negatives and positives either on plates or paper, we were certain that further improvements would be made, as the introduction of hydroquinone and eikonogen opened a new field in developing agents. Previous to that time the ferrous oxalate and pyro developers were used almost excilusively. Last year the para-amidophenol developer was introduced, and was accelerated in its action by the use of a caustic alkali or a carbonate, particularly carbonate of potash.

The claims for these improved developers were that they possessed unusual oxidizing power on the gelatine bromide film, but would not, even in prolonged development, cause it to stain.
The newest chemical of the same class is called "amidol," which is a diamidophenol. It has lately been introduced into this country, and possesses unusual characteristics as a photographic developer. It is supplied in minute grayish white crystals, resembling those of hydroquinone. It is almost as soluble in cold water as pyro, and requires no other accelerator
to produce developing action than the sodium sulphite, to produce developing action than the sodium sulphite, so long used as a preservative in other developers. A plain solution of amidol dissolved in distilled water tests acid with blue litmus paper. By itself, poured on a plate having had a time exposure, after five minutes' action no image is discernible; but by adding a solution of sodium sulphite until there is an equivalent
of three grains of sulphite to one of amidol, develop- men, or for every pound of albumen there were about ment at once gradually begins and continues steadily $3 \cdot 3$ pounds of casein.
until the negative is completed. The solution made The proportion of fat in the cheese increased, as a in these proportions also tested slightly acid. These facts were ascertained after several experiments.
It is advisable to use only rain, melted ice water or distilled water, as water containing a lime or a similar alkali produces a turbidity and a precipitate. The strength of the solution recommended by the manufacturers is, in our opinion, too great for convenient working, and instead of mixing the amidol and sulphite in one solution we prefer to mix the amidol fresh each time it is desired to develop a batch of plates the following method may be recommended : First prepare a stock solution of neutral sodium sulphite:

Sodium sulphite.
To make a two ounce developer, dis To make a two ounce developer, dissolve eight grain of amidol in one and three-quarter ounces of water then add two drachms and a half of the sodium sulphite solution, pour this combined solution on the plate.
If no action is observed after a minute's time add half If no action is observed after a minute's time add half a drachm more of the stock solution; continue these additions ad libitum until the developer works up to the rapidity desired. By operating gradually in this way, an overtimed plate may be developed perfectly without the addition of a bromide.
Amidol dissolved in distilled water changes from a colorless solution in three hours to a dark clear ruby red. The sulphite acts as a preserver and as an ac celerator. A solution having 100 grains of sulphite to 10 grains of amidol in distilled water changes in an open graduate exposed to the air from a colorless so
lution to a deep orange in a week's time. In either lution to a deep orange in a week's tim
case the sulphite keeps the solution clear.
The formula recommended by the makers is:

To form the developer the above is diluted from To form the developer the above is diluted from
three to four times and a few drops of bromide may b three to four times and a few drops of b
added if desired to check development.
Taking two ounces of the above strong solution, w added thereto in a graduatesix ounces of water, which gave a solution of amidol equivalent to about three grains to the ounce. With this eight ounces we de veloped perfectly in a few minutes ten 10×12 bromide prints.
The rapidity of this developer, as well as its absolute freedom from stain, are its remarkable features, and bring it up to an equal with the iron developer used in the wet plate process. It acts as rapidly on a shut-ter-exposed plate as one having a time exposure, and builds up the density with equal rapidity, thereby producing easily brilliant negatives. For all kinds of plates or bromide paper it appears to be the most sim ple and perfact developer yet devised. For lantern slides it is admirable, giving high lights in clearness equal to the wet plate, while the density is regulated by the amount of amidol in the developer
We developed a shutter-exposed plate in less than two minutes to full density where usually it takes ten. It will be seen also that no alkali is required, in fact an alkali added to a plain solution of amidol, after being on a plate for five minutes, produces no result except to oxidize the solution and turn it quickly to a
deep ruby red. The new developer is one of the best deep ruby red. The new developer
improvements that has been made.

Cheese.

Experiments have been made at the New York Agricultural Experimental Station in conjunction with the New York State Dairy Commission.

The details of these experinents are given in the Bulletin No. 43, published at the Geneva Station, N Y., from which we cull the following summary

Fat.- The amount of fat lost in the whey increased in some cases and decreased in others, when the amount of fat in the milk increased.
The average amount of fat lost in the whey in all the experiments was 0.29 pounds (about $41 / 2$ ounces) for 100 pounds of milk, which was about 7.5 per cent of the fat in the milk. In the factory experiments, the average loss of fat was about 9 per cent of the fat in the milk while, in the station experiments, the average loss was bout 7 per cent of the fat in the milk.
Casein and Albumen.-The amount of casein and albumen lost in the whey increased quite uniformly when the casein and albumen in the milk increased.
The average amount of casein and albumen lost in the whey in all the experiments was 0.74 pound (about 2 ounces) for 100 pounds of milk, averaging 0.64 pound in the factory and 0.81 pound in the station experi ments. From $23 \cdot 5$ to 24 per cent of the casein and albu men in the milk was lost, the proportion of loss being quite uniform in all the experiments
Of the 0.74 pound (or 12 ounces) of casein and albumen lost, 0.15 pound (about $21 / 2$ ounces) consisted of casein and 0.59 pound (about $91 / 2$ ounces) of albumen. About 6 per cent of the casein and 82 per cent of the albumen in the milk was lost, on an average.
In the various lots of milk used there were, on an
rule, when the amount of fat in the milk increased, bu the increase of fat in the cheese was not uniform with the increase of fat in the milk Green cheese mad from factory milk that contained about 3 pounds of fat in 100 pounds of milk, contained about 33 pounds of fat in 100 pounds of cream. Cheese made from whole milk, to which cream had been added, and which con tained 6 pounds of fat in one hundred pounds of milk, contained 42 pounds of fat in 100 pounds of cheese. Cheese made from milk containing about 3.35 pounds of fat in 100 pounds of milk contained about 35 pounds of fat in 100 pounds of cheese. When the milk contained about 4.25 pounds of fat in 100 pounds of milk, the cheese contained from 36 to 36.5 pounds of fat in 100 pounds of cheese. In case of milk, partially skimmed, containing 3.56 pounds of fat in 100 pounds of milk, the cheese contained nearly 32 pounds of fat in 100 pounds of cheese
Basing a comparison of results upon the water-free cheese, instead of green cheese, we obtain results that are quite similar in their relations.
In general, the fat exercised a greater influence upon the composition of the cheese than any other constituent of the milk.
In the cheese made from the normal milks, the mount of casein and albumen in one hundred pounds of cheese was a fairly uniform quantity, varying in the green cheese from 22 to 24 pounds and in the water-free cheese varying from 36 to 38 pounds. The milks containing least fat made cheese containing little more casein and albumen. Skimming the milk partially increased largely the amount of casein and albumen in the cheese, while adding cream to whole milk diminished the amount of casein and albumen in the cheese.
The results appear to indicate that in cheese made form normal milk containing from 3 to $4 \cdot 25$ pounds of fat in one hundred pounds of milk, there should be about 1.4 pounds to 1.5 of fat for one pound of casein and albumen in the water-free cheese. Partial skim ming reduced this ratio to $1 \cdot 22$ pounds, while addition of cream raised it to over 2 pounds.
Of the increased yield of cheese obtained in the various experiments, nearly one-half of the increase, on an average, was due to an increase of fat in the milk from which the cheese was made.
The amount of fat retained in the cheese made from one hundred pounds of milk increased when the amount of fat in the milk increased, but not with exact uniformity.
On an average, the increase of casein and albumen in the milk produced a little over one-fifth of the in creased yield of cheese observed in the various experi ments.
The amount of casein and albumen retained in the cheese made from one hundred pounds of milk increased quite uniformly when the amount of casein nd albumen in the milk increased.
Water.-About one-third of the increased yield of cheese was due to an increased amount of water re tained in the cheese.
The amount of water retained in the cheese made from one hundred pounds of milk was quite variable and increased when either the fat or casein and albu men in the milk increased.
Pounds of Cheese Made from Milk.-Of the factory milk, there were required, on an average, 11.4 pounds to make one pound of cheese.
Of the station milk, 8.8 pounds sufficed to make one pound of cheese
The low yield of cheese from the factory milk wa mainly due to the small amount of fat, casein, and albumen contained in it, that is, to the poor quality of the milk; and, in addition, the loss in manufacture was a little greater. The poor quality of the milk was probably due to the fact that the cows were in the earlier stage of their period of lactation.
Variation in Amount of Rennet Used.-In two sets of comparisons, only one case showed any difference in loss of fat, casein, and albumen, and this was when the amount of rennet used was much less than the usual amount. No difference of yield was ishown that could be attributed to variation in the amount of ren net used.
Cutting Curd in Hard and Soft Condition. -In two sets of comparisons, one case of soft cutting gave a little larger loss of fat and casein. In one case the soft cut curd gave a little larger yield, owing mainly to the retention of more moisture.
The loss of weight varied, for the first month, from 5.5 to 8.87 pounds, and averaged 6.95 pounds for each hūiulred pounds of green cheese.

Ordinary grated horse-radish, eaten at frequent intervals during the day and in connection with food at the table, if food is eaten at all, has been found remarkably efficacious in banishing the distressing cough that frequently lingers after all the other symptoms of the grip have gone. It can do no harm to try it, at all events.

PLAINFIELD, N. J., WATER WORKS.
An underground river, with the clearest and purest of water, has been discovered near the city of Plainfield, N. J. A few months ago the water company began to drive wells, and, after going over about five square miles of country and striking inferior qualities of water, they struck pure water at Netherwood Station, on a line with the Central Railroad, two miles this side of the city, at the depth of fifty feet. Here they sunk a number of wells, and then made a test. After pumping seven days and nights, drawing out of
to it by a 6 in. pipe. At the center of the 12 in . pipe falling down into the stand pipe. This 20 in . pipe is are three large valves which turn the water on or off securely braced to the sides of stand pipe with angle from the pumping station, a small valve being also at- iron braces bolted to the sides, and has two valves, one tached to each well. Each well has at its bottom a at 50 ft . and the other at 100 ft from the ground, which 12 ft . strainer. The earth through which these wells can be opened and closed from the outside of stand are driven is a hard shale, running down to a depth of pipe. The foundation for the stand pipe is 10 ft . in 27 ft . It is so compact that no drainage or surface depth and 33 ft . in diameter, and is made of cracked water can get through it, and below it is a bed of sand stone and cement, 10 ft . bolts, 2 in . in diameter, secure and gravel, through which the pure and clear water ly fastening the stand pipe to the foundation. This $\left.\begin{aligned} & \text { flows. The wells run down to the depth of } 20 \mathrm{ft} \text {. into } \\ & \text { this bed, the gravel in which is smooth and polished, }\end{aligned} \right\rvert\, \begin{aligned} & \text { pottom of } 621 / 2 \mathrm{lb} \text {. There is a fall of } 25 \mathrm{ft} \text {. from the }\end{aligned}$

NEW WATER WORKS AT PLAINFIELD, N. J.
the earth $2,000,000$ gallons of pure water every twenty- showing that the water is constantly moving. The station to the city of Plainfield. There are twenty four hours, and their test tubes showing no decided natural force of this underground river brings the seven miles of pipe laid in the city. Water is also fall, it was concluded that they had an inexhaustible water up to within 18 ft . of the surface. Two Worth- furnished to the city of Elizabeth, N. J., to the extent supply. Twenty six-inch wells were then sunk to the ington compound condensing pumps with 18 in. stroke of $1,500,000$ gallons daily. The water analysis is: depth of 50 ft ., the wells being about 50 ft . apart and are used for drawing water from the wells and forcing Total solid, 8.86 ; chlorine, 0.44 ; free ammonia, 0.001 sunk in a zigzag manner for a distance of $1,000 \mathrm{ft}$. it up into the stand pipe. The pumping capacity of albumenoid, 0.0058 ; and the temperature of the water Running between these wells is a pipe, which is at- these pumps is $5,000,000$ gallons every 24 hours, as it comes from the wells is 52 degrees. tached to the end wells. This pipe is 6 in . at the ends, and the pumps are run with 80 lb . pressure of steam. The cost of the water works is about $\$ 450,000$. increasing in size as it runs toward the center up to The stand pipe is 25 ft . in diameter and 140 ft . in 12 in ., changing in size about every 125 ft . Each sec- height, and is made of wrought iron plates of four tion of pipe rests on two saddles, the saddles fitting different sizes $3 / 4,5 / 8,1 / 2$, and $3 / 8$ in., in twenty-eight tiers sprinkling powdered felt of any color over rubber over the top of a post 5 ft . in length, which rests on a and double bolted. The water is forced up through a cloth while the latter is hot and soft; the result looks foundation of lumber 3 ft . square. The wells are 20 in . pipe, running up the center of stand pipe, to a like felt cloth, but is elastic, waterproof and exceed about 8 ft . from this pipe on each side and connected height of 144 ft ., the water flowing over the top and ingly light.

Lake Steamers.

The Owego is the fastest steamer on the lakes, having made the run from Buffalo to Chicago, 889 miles, in 54 hours and 15 minutes -16.4 miles per hour. With her sister ship, the Chemung, she has the finest coefficient of displacement of any steamer on the lakes, and on her regular runs develops more power than any other lake vessel. At 80 revolutions and with 160 pounds of steam the Owego's engines, the largest on the lakes, developed 2,606 horse power. Her engines are $28,421 / 2$, and 72 by 54 inches stroke. Sinaller steamers make 12 and 14 miles an hour with from 1,200 to 1,400 horse power and carry almost twice as much. This is only an example showing the great amount of power required to add a mile to the normal speed.Marine Review.

NEW BROAD STREET STATION AT PHILADELPHIA.
We show in this issue a perspective view, reproduced from the architect's drawing, of the new passenger station of the Pennsylvania railroad at Broad Street, Philadelphia. The drawing explains itself and little description is necessary. It will be observed that the existing station, which appears at the extreme right of the cut will remain of the same height as at present. The most novel feature of the completed building will be the arcade, extending over a portion of the sidewalk throughout the entire front and a part of the sides. At th extreme left of this arcade is a platform extending out to the curb line. This platform is on the track level and affords a convenient means of transferring baggage from the sta tion to wagons without lifting it. The currents of arriving and departing passenger are entirely separated, the main exit being on the Market Street side. The east front has a large number of entrances. The prin cipal entrance for the offices in the uppe stories will be at the main entrance, corne of Broad and Market, and at the corner of Fifteenth and Filbert. Definite plans for mated that there will be about 200 offices, so as is esti- cotton crop, and is designed in its operation to simu commodate all the officers and clerks now housed at Fourth and Walnut Streets.

The train shed is 307 feet by 707 feet, and will be 140 feet high at the center. The main arches have a clear span of 294 feet and a clear height of $1041 / 2$ feet. The structure will require 3,000 tons of iron, and there will be about $13 / 4$ acres of glass in the roof. The officers of the road, who have made careful comparisons, state that this train shed will be the largest in the world, larger even than those of the Midland, the London, Chatham \& Dover, and others in London.-Raitroad Gazette.

AN IMPROVED COTTON PICKER.
The cotton picking machine shown in the illustra tion is of simple and inexpensive construction, as com-

HYDE'S COTTON PICKER.
also be delivered into the wagon, 6. An electric or other motor may be employed, if desired, in which power may be stored to operate the fan while the wagon is at a standstill long enough to permit the picking of all the cotton within reach. It is designed that four or more of the pickers shall be connected with the tubular conveyers on each side, each operator holding in each hand a picker, which is held succes sively to the different heads of the cotton plants in reach. The picker is inclosed in a shell having a han dle to be grasped by the operator, a sleeve in this shel having a slot in each side, in which work oppositely arranged fans. The shafts of these fans carry pinions, which operate cranks attached to reciprocating arms on the sides of the sleeve, the front ends of these arm being bent inwardly and terminating in claws o fingers. The small fan wheels in the pickers are ro tated by the suction caused in the conveyers as the main fan is revolved, and a rapid reciprocating motion is thus communicated to the picker arms, the toothed jaws of which detach the cotton from the boll and throw it back, the wings of the small fan wheels aiding in taking the cotton from the picker jaws, and the suc tion carrying the picked cotton through the flexible tubes to the receiver. The inventor of this machin has lived in the cotton country all his life and the improvement is the result of much experimenting. It is said that by the use of this apparatus one man can pick 1,000 pounds of seed cotton in a day of ten hours.

Varnish for Celluloid Negatives
We are often asked for a formula for a varnish for negatives on celluloid films that will not attack the celluloid. Here is one that answers well in our hands: White lac, or pale orange lac, four ounces; methy lated spirit, eight ounces. When dis solved, add liquor ammonix, six ounces, and boiling water half a pint, and after ward a drachm and a half of glycerine This solution may be filtered, or it may be allowed to stand and settle and the clearer portion decanted. It will generally have a somewhat opalescent or turbid appearance, but that may be disregarded, as it will not affect the negative. The mode of using is this After the negrative has been fixed and washed, it i thoroughly drained. The varnish is then poured into dish and the negative immersed and allowed to soak for a few minutes. It is then taken out and pinned by one corner to the edge of a shelf or other convenien article to dry. This varnish will also answer for nega tives on glass, and it may be applied while the film is stil moist; but, on the whole, for glass negatives good spirit varnish is to be preferred.

Mistakes in a Boiler Room

The Locomotive fells the following story, and the editor vouches for its accuracy :
A short time ago our attention was called to some most remarkable doings in a boiler room, which we proceed to relate. The boiler was originally built to furnish power, and was good for about 75 pounds steam pressure; but it is now used only for heating purposes. Some of the steam and return valves to the large coils leaked about the stems, and the owner of the boiler, instead of sending for a steam fitter to repack them, called in a plumber. The plumber, being busy, sent his boy helper. The boy began work on some of the valves that were within sight of the boiler front, but being troubled by the steam that escaped, he shut off the steam valves, leaving the return valves open. The coils were large, and when the steam in them had condensed, water began to back up from the boiler, for there was no check valve on the returns. As the boy worked away he noticed that the water in the gauge glass was going down somewhat rapidly, and also that the steam pressure was rising. He did not know where the water was going to, nor did he know how to feed it more; but he thought that if he opened the furnace door, and so checked the fires, the evaporation and the rise of pressure would proceed much more slowly. Jumping down into the pit in front of the boiler, he opened what he thought, in the darkness, were the fire doors, but it appeared subsequently that he did open the ash-pit doors, this making matters worse instead of better. The fire brightened up and the pressure began to rise rapidly and the water level to go down. The boy was greatly troubled at this, and when the rubber diaphragm in the damper regulator burst from the increasing pressure, he "went all to pieces," as the saying is, and ran for his boss.
The boiler being originally intended for furnishing power, the safety valve could not be set to blow at less than about twenty pounds, while the damper regulator was designed to carry not more than six pounds or seven pounds, so that its diaphragm burst, naturally enough, before the blowing-off point of the safety valve was reached. The plumber came in haste and found the people in the building overhead badly frightened, and the boiler room filled with steam, so that he could not make out precisely what had happened. He told the boy how to turn on the feed, however, and that wellmeaning but badly "rattled" individual went to the back end of the setting, and, instead of opening the plug-cock in the feed pipe, he opened the plug-cock in the blow-off pipe, which only added to the noise and confusion. Meanwhile, the plumber hauled the fire out onto some pine boards that the regular attendant had laid in the damp pit. The boards took fire, and smoke was soon added to the escaping steam, to the intense horror of the occupants of the building, who by this time were on the other side of the street. When the fire had been hauled and the danger averted, the plumber soon learned the cause of the disturbance, and quiet was speedily restored by shutting off the damper regulator and the blow-off, and throwing a few buckets of water on the burning boards. It seems hardly possible that such a succession of mistakescould follow one after another in so orderly a manner, but we can testify, from personal observation, that they did. And we may add that not long afterward, when the boiler was out of use, a coal dealer put 100 tons or so of coal into the same boiler room, piling it up in such a manner that some of it ran down into the open manhole, and the rest of it covered up the blow-off pipe and the rear door of the setting, which were both open, so that there was plenty of trouble digging them out before the boiler could be started again.

The Art of Thinking.

Did you ever notice how bunglingly some men think? There is as much or more difference in the way men use their mental faculties as there is in the way they use their tools. Just as one man will proceed deftly and systematically to the accomplishment of a piece of work with everything conveniently at hand, every motion intelligently directed to the furtherance of the main purpose, and an expedient ready for every irregu larity or difficulty which presents itself, so the ready thinker proceeds at once in a right line to the pith of a subject, sifting out the extraneous matter, defining the main point, and bringing to bear upon it all his available information. On the other hand, a clumsy thinker will chase a question up one side and down the other, without getting anywhere or arriving at any re levant conclusion.
The mental like the manual faculties are susceptible and require cultivation. It is only by practice and continual use that the dexterity and skill of the expert machinist or other manipulator are acquired. No matter how naturally ingenious and handy a man may be, he will lack deftness when placed upon work to which he is entirely unaccustomed. In order to think with facility a man must be accustomed to thinking. It is one thing to let the mind roam about among the things one knows, and another to put it hard at work and keep it there, grinding at something
taining to read an article which tells you something which you knew before and which you can indorse, but you learn nothing by reading it. It requires an effort to read an article which contains real information, however plainly expressed. It has to be studied, applied, digested, criticised, the suggestions raised by its perusal have to be followed out to their conclusions, and to conscientiously read an article of this character is a task which a man is inclined to shirk just as a lazy man might shirk a physical task. But compare the man who shirks with the man who reads, and you will find in the first a mental bungler, in the second the acute and able thinker, the man whose head saves his hands and who is valued, respected, and trusted with the conduct of work and the administration of affairs, and rewarded accordingly. Always read a little ahead of yourself. Read matter which requires an effort upon your part to understand. The effort will not only place you upon a higher intellectual plane, but the mental exercise will develop a habit of accurate thinking which will be of more value to you than volumes of average matter read only to be forgotten.-Power.

AN ADJUSTABLE CORNER SHELF.

The illustration represents a corner bracket she having simple attachments adapting it for a secur but removable connection with the walls of a room, without the use of tools. In the picture the shelf itself is shown as made of glass, through which may be seen the locking devices on its under side, whereby the shelf is secured in position in the corner of a room. The shelf, however, may be made of wood or other

LegG's CORNER bracket shelf.

material, and in several pieces hinged together, so as to be collapsible, that it may be packed in small space. The locking mechanism for engagement with the side walls consists of pivoted D-shaped pieces, A A, on one member of each of which is a prong adapted to enter the wall, while the other member has a toothed surface to be engaged by a pawl, B, after the prong is forced into the wall, a thumb-piece forming the end of this member, and facilitating the forcing of the prong into the wall. Near the rear angle of the shelf a slotted pin C , is secured in position to be conveniently projected or withdrawn, by means of a screw passing through the slot. The ornamental front edge of the shelf is removably secured in position by pins engaging slots in the upper border. It will be seen that this shelf can be quickly put up or taken down, being placed where it will afford the best position for displaying bric-a-brac, etc., thus also utilizing and ornamenting unused cor ners. The improvement has been patented by Mr. J D. Legg, of Long Eddy, N. Y., of whom further particulars may be obtained, and the shelf is being manufactured by the Joy \& Seliger Co., of Newark, N. J.

Tripe.

We have been challenged to pronounce an opinion on the dietetic virtues of tripe, an article of food which is largely consumed in certain parts of the country, es pecially during the winter months. Tripe consists of he soft muscular walls and mucous membrane of th omach of ruminant animals, with a small proportio of delicate omental fat adhering, from which, however
all fibrous portions of the serous covering, or perito neum, have been removed. From frequent experiment it has been proved that tripe stands high in the list of albuminous substances that are quickly acted on and has, therefore, acquired a reputation for digest bility. But plain boiled tripe in itself is a very insipid
art of the cook has to be invoked, which, while making it more "savory," causes it often, when so served, to be an offense to the stomach. The usual mode of serv ing tripe in this country is to boil it with milk and onions, and there can be little doubt that such a combination is not particularly digestible. Tripe is also sometimes fried in batter, but unless very carefully cooked it is apt to become leathery. If only plainly boiled in water it requires a considerable amount of condiments in the shape of salt, pepper, and mustard to make it acceptable to the palate. Therefore tripe, as usually cooked, though an excellent dish for strong stomachs, is, owing to the ingredients added to it, not always so suitable for persons of weak digestion as has been supposed.-Lancet.

Something About Paper Making.

A handsomely illustrated pamphlet on paper mak ing has lately been issued by Messrs. Vernon Brothers \& Co., the well known paper dealers of this city, from which we take the following:
For many centuries the stalks of the papyrus were used by the nations living about the Mediterranean in the manufacture of a material which served them for writing upon, and for wrapping purposes.

The papyrus is an aquatic plant having a soft cellu ar flower stem. This stem, of a triangular shape grew from ten to twenty feet in height, and from its thin coats or pellicles the paper was made. These were separated by means of pins, or pointed mussel shells, and spread on a table sprinkled with water. On the first layer of these slips a second was placed crosswise so as to form a sheet of convenient thickness, which after being pressed and dried in the sun, was polished with a shell or other hard and smooth substance Twenty sheets was the utmost that could be separated from one stalk, and those nearest the pith made the finest paper.

The principal manufacture of papyrus was carried on for a long time in Alexandria, and Europe and Asia were supplied therefrom during several centuries.
The art of making paper from fibrous matter reduced to a pulp in water appears to have been first discover ed by the Chinese about eighteen hundred years ago Chinese paper is made from the inner bark of the bam boo and mulberry trees, hempen rags, etc.
One description of the bark paper of China is as follows:
"The small branches of a tree resembling the mulberry (Broussonesia) are boiled in lye to loosen the bark ; this is then macerated in water for several days, the outer part scraped off, and the inner part boiled and agitated in lye until it separates into fibers. It is then washed in a pan or sieve and worked by the hands into a pulp, which is afterward spread upon a table, and beaten fine with a mallet. The pulp is next placed in a tub containing an infusion of rice and a root called oveni, and thoroughly stirred to mix the materials. The sheets are formed by dipping a mould made of strips of bulrushes confined in a frame into the vat containing the pulp, and are, after moulding, laid one on another, with strips of reed between. A board and weights are laid on the pile to express the water, and hey are then separated and dried in the sun."
The Saracens are supposed by their conquests in Bucharia, about the year 704, to have acquired the ar of making cotton paper, and substituted it for the pa pyrus. In the eighth century the Saracens conquered pain, and through that peninsula the art of making paper reached the rest of Europe.
The oldest manuscript written on cotton paper in England is in the Bodleian Collection of the British Museum, and bears date 1049. The most ancient manu cript on the same material in the Library of Paris is dated 1050. In 1085 A.D. the Christian successors of the Spanish Saracens made paper of rags instead of raw cotton, which is recognized by its yellowness and brittleness. A very early specimen of linen paper is found in a manuscript bearing date 1100 A.D.
In 1390 Ulman Strother established a paper mill at Nuremberg, inBavaria, operated by two rollers, which set in motion eighteen stampers. This indicated the process of pulping the fiber by beating, which continu ed in use for nearly four centuries.
In 1690 the first paper mill was established in America by one William Rittinghuysen, now spelled Ritten house, a native of Broich, in Holland, who emigrated to Germantown, Pa., being one of its first settlers. He in company with William Bradford, established the mill at Roxborough, near Philadelphia, on a small stream called Paper Mill Run. The paper was made from linen rags, the product of flax which was raised in the vicinity and manufactured into wearing apparel The second mill was erected in 1710, in that part of Germantown, Pa., called Crefeld, on a small stream that emptied into the Wissahickon Creek, near the manor of Springfield, by William De Wees, a brother-in-law of Nicholas Rittenhouse, son of the first paper maker.
In 1729 a paper mill was erected upon Chester Creek, Delaware County, Pa., by Thomas Wilcox. In 1870 paper was still made there by hand. The first paper mill of Massachusetts with legislative aid was erected

1730, at Milton. Daniel Henchman, an enterprising bookseller of Boston, was the probable owner. these early stages of the paper development rags were scarce, the importation not being thought of, and people were exhorted in all ways to save their rags.
In 1769 it was announced in the Boston News Letter that "the bell cart will go through Boston before the that " the bell cart will go through Boston before the Milton, when all people that will encourage the paper manufactory may dispose of them!" The following lines were appended to stir the public zeal:

```
Rags are as beauties which concealed lie,
But when in paper how it charms the eye;
Pray save your rags, and beauties to
For paper truly every one's a lover.
```

By the pen and press such knowledge is displayed As wouldn't exist if paper were not made of thinge mysterious, divine,
Illustriously doth on paper shine."
At the beginning of the revolution there were three mall mills in Massachusetts and one ("out of repair") in Rhode Island. The amount of paper turned out, of course, fell far short of the demand, and the quality was poor. The people had not acquired the habit of saving rags, and, therefore, stock for the manufacturer of paper was obtained with great difficulty. Everything that could possibly be used for the purpose was ground up with the rags, and the result, both in color and texture, was sometimes peculiar, to say the least. The Massachusetts House of Representatives, in view of the scarcity of paper, resolved that the Committees of Correspondence, Inspection, and Safety of the several towns be required to appoint some suitable person in each town to receive rags for the paper mills, and the inhabitants were desired to be very careful in saving even the smallest quantity of rags proper for paper making. During the war the paper makers were exempted from military duty.
In Pennsylvania the Council of Safety took measures to prevent the paper makers from joining the volunteers about to march to New Jersey, Congress having resolved that they should be detained, the demand for paper money having then come into existence.
Paper was so scarce when the American army entered Philadelphia, upon the evacuation of the British troops, that there was a want of paper fitted for the construction of cartridges. It was advertised for, and but a small quantity procured. An order was then issued demanding its instant production by all people in that city who had it. This produced but little more very probably on account of its scarcity. A file of sol diers was then ordered to make search for it in every
place where any was likely to be found. Among other places visited in July was a garret in the house in which Benjamin Franklin had previously had his printing office. Here were discovered about five hundred copies of a sermon which the Rev. Gilbert Tenant had written (printed by Franklin) upon "Defensive War," to arouse the colonists during the French trou ket cartridges, and at once sent to the armory. Most of them were used at the battle of Monmouth.

The cylinder machine is believed to have been firs used by Thomas Gilpen \& Co., at Wilmington, Dela ware. This was put in operation on the Brandywine, and was an American invention.
It was stated the machine would do the work of ten paper vats and deliver a sheet of greater width than any other made in America, and of any length required manufacturing by the introduction of machinery, and changes in the mode of manufacture as well as in the ma terials used. Rope, hemp, tow, bagging, raw cotton, cot ton waste, colored and filthy rags and other material, which had been previously used only in the manufac ture of coarse papers, were gradually brought into use for the finest grades, by the introduction of chlorine and other means of cleansing and bleaching.

The modern improvements, such as drying cylinders, Springfield, Mass. At the time of his death, machinery was in general use, there being but two vat mills of any note engaged in making paper by hand, and those were employed in producing peculiar sorts requiring grea strength and firmness.

In 1856 it was estimated that the United States produced 200,000 tons of paper, against 66,000 tons in Great Britain and 70,000 tons in France. It was also estimated in the same year that if all the paper consumed in one year by the newspapers in the city of New York was put upon wagons containing two tons each, they would form a procession thirty miles in length, requir ing six thousand wagons.
The industry up to the time of the rebellion had ex tended marvelously. The war coming on increased the consumption largely.
Paper which had actually been sold for nine cents a pound was gradually increased to twenty-two of the ordinary news quality, notwithstanding a vast quantity of old paper was procured from all quarters for stock.
During the war, 1861-1864, prices were so high that enormous profits were made, and all those owning mills

As a consequence, many people went into the manufacturing: mills were multiplied amazingly at every available water power; all sorts of enterprises for the manufacture were started-wood pulp, straw pulp, bamboo, side flags, etc.
In 1800 a reward of 8,000 francs was granted by the French government to Robert for the invention of what is known as the Fourdrinier machine. Donkin completed his first machine, acting on the ideas of Robert, in 1803 ; and in the succeeding year Henry and Sealy Fourdrinier (wealthy stationers of London) purchased the patents of Didot and Gamble. These gentlemen may be considered the great introducers of ma-chine-made paper, and, like many other projectors, were rewarded by impoverishment.
It was Mr. Thomas Barrett, of St. Mary's, England, who obtained a patent for inserting the water mark who obtained a patent for inserting the water mark and maker's name to a continuous paper, so as this
semble in every respect paper made by hand. This in genious man also invented a mode of making iron rolls for finishing paper.
The methods of producing paper have been revolutionized within a few years by the invention of wood pulp. There are three kinds used-ground wood, sodater are not wood in either physical or chemical properties, but cellulose, similar to cotton in appearance and nature.

Ground wood was first invented in Germany in 1847 perfected by Voelter to a certain extent. It was pro duced by shredding the fibers from blocks of wood held against a sharp grindstone by hydraulic pressure, a stream of water pouring down upon these stones carry
ing away the pulp. Spruce, poplar, and other white woods are used. The process was introduced into thi country by A. Pagenstecher, about 1861, when Senator Warner Miller and Wm. A. Russell commenced its use at their mills.
Very little could be used, as made by the German process. Messrs. Geo. E. Marshall, Wm. A. Russell, and Chas. W. Wheelwright in experimenting found
that by using a coarse grinding stone and doubling the power, a pulp was produced that could be worked into news to the extent of seventy-five per cent. The cost of pulp has been reduced from 7 cents per pound to $11 / 2$ cents at the present time. This improved the quality of the paper made, besides cheapening the cost of production; and without wood pulp it would be impossible to supply the demand for paper at the present day The introduction of ground wood has lowered the price of news paper from 15 cents to $33 / 4$ cents for such pape as is used by the New York Evening Post, and such pa per as is used by the New York Sun to 3 cents, giving an
almost opaque paper, soft for rapid printing. The almost opaque paper, soft for rapid printing. Th
production of ground wood is enormous in this coun try and in Canada, Germany, Norway, and Sweden Nearly every stream in the forest regions has a pulp Nearl.
mill
Sod

Soda-process wood makes the best papers-they cannot be distinguished from those made from fine cotton. Nearly all the best book papers contain a large propor tion of this wood, as do most writing papers. The soda process was invented in France by M. Meliner,
about 1865 . White, resinous woods are used; spruce and poplar most extensively. The blocks of wood are cut into large chips, boiled in a strong solution of caus tic soda under pressure, which leaves a fine, soft fibrous cellulose. Small quantities of this pulp cannot
be detected in paper except by the polarization of light be detected in paper except by the polarization of light
in a microscope. It is now made in all the Eastern States. The manufacture of soda wood pulp was not a profitable one until the Yaryan system of evaporation was developed by Col. A. G. Paine, in 1886, by which the recovery of alkali was accomplished at a very low cost. Some of the most extensively used paper are made entirely of soda wood pulp, those suitable for weekly trade and religious newspapers selling from to 6 cents per pound.
Sulphite wood pulp is made by the acid sulphite of lime process. Its manufacture was first attempted and invented by Tihlman, the celebrated chemist of Philadelphia, who made extensive experiments and then abandoned it. It was next made in Europe, by Franke, in Norway, about 1873. Eckman invented a process of bisulphate of magnesia, but this process is not used in this country. The experiments were taken up again wood pulp was extensively made by them. It was first introduced into this country by Chas. W. Wheelwright of Providence, R. I.
It is sometimes said by those not posted that English papers are better; this is not so. American book, news, and writing papers are in the higher grades the best that are made. Our wise protective policy has stimulated invention and production until we have now the best paid operatives and we make the best quality. It takes the best quality of brains to make uniformly good paper.
We now export news paper to various parts of the world and at the prices ruling here, the foreigners pay ing the freight. Large quantities of paper are now ex West Indies.

Scientific Research in Medicine.

Numerous plants which had once a most evil reputation, and were shunned on account of their virulen poisonous properties, have of recent years been made subservient to the wants of man. The umbsuli, a species of strophanthus which yielded the well known South African arrow poison, has been found of incal culable benefit in cardiac disease. Urari, another arrow poison, obtained from Strychnos toxifera, a na tive of the Orinoco and Amazonian forests, probably mixed with the juice of other species, is one of the most valuable of the drugs used in physiological ex periment. The celebrated ordeal bean of Old Calabar, Physostigma venenosum, a plant so deadly as to be ordered to be destroyed by a thoughtless government, has yielded under careful research a powerful sedative to the spinal cord and valuable agent in ophthalmic cases. Another African ordeal poison was yielded by Erythrophlaum guineense, the sassy of the Gambia and casa of the Congo. The bark on infusion yields "red water," the material used in the ordeal. In medicine casa is useful in the treatment of cardiac dropsy and hemorrhage. One of the most deadly plants of the West Indies, formerly a stock poison of the Obeahs, and probably still in use in Hayti, is Urechites suberecta. Now this plant is recognized as a cure for yellow fever. Jamaica dogwood (Piscidia erythrina) used by natives as a fish poison, appears in erythrina) used by natives as a fish poison, appears in the United States Pharmacopœia as an anodyne and
hypnotic. These are only a few of many instances in hypnotic. These are only a few of many instances in
which plants formerly used destructively against which plants formerly used destructively against
human life have now become subservient to its preservation and resuscitation. Then again, to glance at the counter side of the poison question, consider the number of plants from which we may now obtain an tidotes to both vegetable and animal poisons. A cucurbitaceous plant of the West Indies (Fevillea cordifolia) will expel the poison of the cacoon. The juice of Oxalis corniculata relieves the intoxication produced by datura seeds. Even Calabar bean is said to be an ntidote to strychnine poisoning. The machionee tree, more deadly than the famous upas, grows side by ide with its antidote-white wood cedar, a species of tecoma. Not content with extracting and analyzing natural simplicia, we actually venture to compete with nature, and enter the lists against her as manu acturers. Indeed, chemists confidently look for the day when all alkaloids will be artificially synthesized, and anticipate the time when medical diagnosis will have only to tell us just what is the matter, and have only to tell us just what is the matter, and
chemistry will straightway answer, "Here is the re quisite cure manufactured to suit the case."-Prof quisite cure manufact
R. J. Harvey Gibson.

Removing Ornamental Tree

In lifting and removing large ornamental trees, great care is requisite not to cut, bark, or otherwise injure the roots in course of the operation; and in order to uard against such a contingency, I have been in the habit of using digging forks for this purpose in prefernce to spades, by which means the risk of damage is lessened to a considerable extent. In planting the rees, should the soil be poor and exhausted, some rich riable loam should be brought and mixed with the oil. This will have a beneficial effect in promoting he growth of the trees. The roots should be wel spread out in all directions from the base of the stem and care should be taken to see that they do not cros or in any way overlap each other. Stake, tie, and fence the trees according to their requirements, and apply a good mulching to prevent a too sudden evapo ration; and, if thought necessary, finish by erecting a screen cage of branches around the tree to shelter and break the force of the wind until such time as the root ake to the soil and get established. A very efficient helter may be erected for this purpose by placing four pright posts in the ground at right angles, and at reasonable distance from the tree; then, by nailing on say three or four horizontal rails, and warping in a few branches, a useful screen can be formed at small cost and on exposed situations will be found highly bene ficial to the trees -The Garden.

Physiological Experiments with Great Magnets. At the Edison Laboratory Dr. Fred. Peterson and A. E. Kennelly have sought to prove that no thera peutic effects are resultant from the application of magnetism to the human system. For the purpose of experiment the armature was taken from a dynamo and in the cylinder formed by the inner ends of the se of powerful converging field magnets a dog was con fined and kept for a period of five hours. The inten sity of these magnets was from 1,000 to 2,000 c. g. s ines to the square centimeter. At the end of the time mentioned the dog was set at liberty, and beyond his apparent joy at thus being set loose the operation did not seem to affect him in the least.
A boy was also confined for a short time in the same position and was also uninfluenced. Several other experiments of like nature were made. Dr. Peterson and Mr. Kennelly conclude from their experiments that the human organism is in nowise affected by the most pówerful magnets known to modern science.

HERON HUNTING.

Heron hunting is a sport which has almost sunk into oblivion, but now seems likely to be brought into vogue again, for the Emperor William has declared his intention of using falcons in hunting the herons that are so numerous in the neighborhood of Konigs-Wusterhausen. This species of chase, which is not to be confounded with hawking, is conducted as follows: A number of ladies and gentlemen, who are to accompany the chase as spectators, assemble on a large heath or plain over which the herons pass daily, with a certain regularity, in going from their fishing grounds to the heronry. A few steps from them are the falconers, usually two or three, each one carrying on his gloved hand a hooded and fettered falcon. Near the falconers are servants who carry light wooden frames on which are reserve falcons, also hooded and fettered. On an elevation in the distance is a single rider who acts as a sentinel and whose duty it is to signal to the falconers the approach of a heron. He does this by alighting from his horse as soon as he discerns the bird coming from the fishing place or the woods, and turning his horse's head in toward the
swoop until the heron gives up all resistance and with outstretched legs and raised head lets itself fall per-
pendicularly. Sometimes one or both of the falcons cling to the heron, and then all fall together in a confused mass. At some distance from the ground the falcons release their hold on their victim so as to avoid the shock of the fall, but the next minute they are hanging on him again. During flight the heron does not use his sharp pointed beak, but as soon as he feel firm ground under him he uses it in a vigorous defense. Formerly a rough-coated greyhound was taken on heron hunts which was trained to catch and hold the heron by the neck as soon as it fell. If the heron is not severely wounded in this fight, he is given his freedom after a ring bearing the date and the names of the huntsmen has been fastened on one leg.
In the middle ages falconry was a favorite sport in all the European courts, but it was given up in France during the reign of Louis XIV. and in Prussia in the time of Frederick the Great. In the smaller German courts, however, it was practiced until the end of the ast century
Falconry (called by the French la haute volerie)
was called to a large rat taking the berries off with his mouth and dropping them to other rats below. Pre sently another climbed the tree and helped to gather the berries. In a little time both came down each with a berry in its mouth, having a curious appear ance. Mr. Reade saw the performance several times repeated. Then he placed a wire cage under the tree, and in three days caught nine of the intruders.

Kerite.

At certain intervals solutions of rubber in paraffine wax are brought out as insulators, and a substance of this kind has been called "kerite." Rubber dissolves slowly in paraffine wax and forms a compound combin ing the properties of paraffine wax and the original rubber. It will be found that very little rubber goes a long way in this compound. Some time ago one of our staff experimented on the vulcanization of this sub stance. Paraffine wax does not dissolve sulphur, so a little was dissolved in anthracene, which dissolves it easily and mixes with paraffine without precipitating the sulphur. The solution was thus vulcanized into a gray substance. This does not melt properly, but one

HERON HUNTING-ORIGINAL DRAWING BY LUDWIG BECKMANN.
heron. The falconers then move slowly from two sides in the direction indicated and allow the heron to pass quietly above and between them, then the hoods are removed from the falcons' heads, and as soon as they have descried the prey, their fetters are taken off and they are "thrown." The falcon seldom flies directly toward the heron, but generally moves rapidly at a moderate height above the ground until near its prey and then mounts. As soon as the heron notices that he is pursued, he tries, in case he is coming from fishing, with a full crop, to lighten himself by stretching out his neck and throwing out the fish that he has swallowed, and then as he knows by instinct or experience that the falcon will fall on him as soon as it succeeds in reaching a higher point, he uses all his strength to fly higher than his pursuer. Sometimes the heron succeeds in doing this, and then he van ishes in the clouds, but he is generally overtaken by the falcon, which then, quick as an arrow, rushes on the heron and tries to seize him by the neck or wing The first attempt is often unsuccessful, because the heron skillfully avoids the falcon at the critical moment. This gives him an advantage, for the falcon ${ }^{\circ}$ s frequently carried far below him by the force of its movement, but now a second falcon comes to the assistance of the first one, and then follows swoop upon
should not be confused with the ordinary hawking ($l a$ basse volerie). For the latter, low-flying birds, such
as hawks, are used, and also a dog toact as a retriever, the prey being grouse, hares, and water fowl. In England there are many "hawking clubs."
The terminology of falconry and hawking is extremely complicated, especially in regard to the names given to the birds, which depend not only on their species, but also on their age, the time of catching and iterature relating to the subject is very rich. James C. Harting's illustrated "Bibliotheca Accipitraria," which was published in London last year, brings the number of works on falconry up to 378. The first book published in Europe on the subject (1245) wa the celebrated work of the Emperor Frederick II. "De Arte Vendandi cum Avibus." "The beautifu work of Schlegel and Wouwerholt, "Irate -lllustrirte Zeitung.

Gooseberry Rats

Mr. G. Reade, in the Zoologist, says that the ripe ooseberries in his garden were disappearing very rapidly this year, and he supposed that the mischief wa being done by blackbirds. However, his attention
of its most curious properties is its adherence to glass The beaker in which the vulcanization was carried ou fell, but the glass did not separate from the compound. The beaker was then battered into little pieces pur posely, but they adhered strongly to the compound As pacer and waxed paper are now so much thought of as insulators, it is likely that paper saturated with kerite may become of considerable use. Its properties are, no doubt, very well known to those who make it but, unfortunately, such matters are generally kept secret for commercial reasons.-Industries.

Interesting Gun Trials.

According to the Reading (Pa.) Times, some rather surprising results were lately obtained with a new multicharge gun, of Haskell's pattern, half-inch bore The trial took place at the Kurtz House proving ground. A solid hammered wrought iron target, 7 inches thick, was penetrated entirely through, backed by a boiler plate $3 / 8$ of an inch thick, which was aiso penetrated through, making a penetration of $77 / 8$ inches The shot was made of Carpenter steel, and the charge f powder were 10 ounces.
This penetration is nearly sixteen times the diame ter of the projectile, or more than four times greate than has ever been obtained by any other gun.

TALKING BETWEEN NEW YORK AND CHICAGO. contrary, the rates are higher, owing to increased cos In the account of the opening of the telephone line of running such steamers.
between New York and Chicago as given in our last The large steamers that are being built will prob number, we mentioned the interesting fact that Prof. ably mark the limit to profitable advance in size and Bell was photographed by flashlight while talking with Mr. William H. Hubbard, at Chicago, a distance of nearlv 1.000 miles Our illustrphotograph ${ }_{\mathrm{n}}$ from the Electrical Review, is reproduced from the flashlight photograph and is interesting histori cally as showing the advances made in both sciences, telephony and photography. Directly back of Prof. Bell stands President John E. Hud son, of the American Tele phone and Telegraph Com pany, and at his right i Mr. E J. Hall, the Vice President and General Manager.
It happened that at the time of the great Milwaukee fire on the 28th ult. the long distance lines were completed between Chica go and Milwaukee, which enabled the general super intendent, Mr. A. S. Hib bard, in his office at New York the next morning after the fire to give direc tions verbally by telephone in regard to the necessary repairs to the superintendent located in the suburbs of Milwaukee.

PROPOSED DESIGN FOR AN atlantic passenger STEAMER.
by james graham.
The question of transat lantic passenger traffic is one assuming greater importance from year to year with the rapidly increasing travel from America to Europe.
A large proportion of the seventy millions of peopl fort and less expense.
The great steamship companies have attempted the increase of tonnage, propelling power, and cost is to meet the demand by putting on larger and faster at a much higher ratio than that of the passenger steamers, but they have not reduced the rates; on the capacity.

PROFESSOR BELL TALKING BY TELEPHONE FROM NEW YORK TO CHICAGO解 cross the ocean if they could do so with greater com- breadth, depth and draught. The limit of draught pairs of paddle wheels of 52 and 56 feet diameter, 6 and

Ten years ago $\$ 750,000$ was about the cost of the large ships, then the cost rapidly advanced with the rivalry in speed, till now they cost $\$ 2,000,000$, and the atest Cunarders will cost half a million more, while speed with the present model of Atlantic passenger $|$| lase of the White Star line will be at least $\$ 3,000,000$ |
| :--- | :--- | The passenger area of 700 foot steamer is no much greater than that o one of 580 feet, and the speed will be only abou two knots faster.

Our engraving illustrate a new design for an Atlan tic passenger steamer in which greatly increased length is secured without proportional increase of draught and beam.
The proposition is to construct a system of nine hulls of special model connected in three trains of three hulls each, the center train being the principa part of the craft, and ex tending 225 feet forward and 200 feet abaft of the other two trains, the whole forming an outline similar to that of an ordinary ship The total length would be 1,440 feet, breadth over three trains 142 feet, to outside of floats 180 feet.
Midship draught of cen ter train, 18 feet; midship beam at water line, 45 feet midship beam at main deck, 60 feet; midship draught of outer trains, 12 feet; midship beam a water line, 27 feet; mid ship beam at main deck, 35 feet; displacement of center train, 15,000 tons of outer trains, each, 5,250 tons: total displacement about 26,000 tons. The propelling power would consist of seven engines, three in center train of 10,000 horse power each two in forward sections of outer trains, 4,000 each two in stern sections, 6,000 8 feet wide, and having a dip of 8 feet.
This steamer would carry no cargo, and, owing to the system of construction, would require no ballast, so that the entire tonnage capacity would be

available for engines and fuel. She would be intended for only first and second class passengers, and have accommodation for 2,000 of each.
The sections would be held in position by a system of flexible connectors, consisting of massive steel transverse girders, 10 feet deep, having rockerends bearing against uprights connecting the upper and lower decks. The ends of the rockers would bear against a series of heavy half elliptic springs, having a flexible strength of 50 and 75 tons each. These springs would extend along the upper and lower decks, and would stiffen and check the motion of the rockers. A strong wire cable would be fastened in the end of the rocker, then pass over a roller secured in the upper deck, thence down under a similar roller in lower deck and connect with the other end of the rocker. A second cable would be fastened to the inner side of the spring, pass around the roller and connect with the rocker, so as to act reciprocatingly. The beams connecting with the girders would be braced transversely and run diagonally throughout the sections. The longitudinal connectors of the sections would be a single massive coupler in center of each section, placed on a level with the center of the lateral connectors and 12 feet above the water line. The longitudinal frames of the sections would converge at the point of connecwould, of course have to be of immense strength and capable of sustaining a strain of one or two thousand tons. The space between the ends of the connecting hulls would gradually widen from the connector down to the keel plate, where it would be about 5 or 6 feet on
a level keel, which would admit of a depression of the stem of the center train of 120 feet. This space would be occupied by a metal and rubber water-tight chamber that would expand and compress with the vertical motion of the ends of the hulls, and prevent the water from filling in between the ends.
There would be hinged to the bottom of the forward ${ }^{\prime}$ section sliding plates that would extend under the bottom of the adjoining section, thus forming an even and continuous bottom from stem to stern of each train.
It is estimated that 5,000 tons of steel would be used in the construction of the connectors and in the strengthening of the parts of the sections where the greatest strain would occur. The hulls would be entirely of steel.
It is thought that a steamer of this design could be built sufficiently strong to withstand a much greater strain than she would ever encounter in the waves of the Atlantic.
The design would admit of the different sections conforming to the angle or elevation of any size of waves she would meet without straining.
One of the important advantages that a steamer of the proposed plan and proportions would have is the immunity from the horrors of seasickness that the passengers would enjoy, as there would be scarcely any rolling motion, and the vertical motion would be con fined chiefly to the forward ends of the forward sections and would diminish toward the stern, where it would hardly be perceptible even in the roughest sea, as the forward sections would break the force and form of the waves they would pass over.

The steel floats on the outside might retard the speed a knot or two, but they are not a necessary part of the plan and may be detached. They furnish berths for four or five hundred of the crew, also help to steady the outer trains, and would be useful for collision fenders.
It is proposed to use paddle wheels for the propelling medium. Of course, 3,4 or 5 screws could be used at the stern, but would not be so suitable for the high speed as the paddles. which, working in protected water, and having a diameter of 56 feet, with engines to drive them at 35 revolutions, should make about 35 knots.

To many no doubt it may seem impossible to control the motion of such heavy structures in a seaway. As a matter of fact there is only one motion in a seaway that is not preventable, and that is the vertical motion, which it is not necessary to control.
The system of connection (as shown in the smaller view) allows playroom for that to a much greater ex tent than is necessary. The tendency, however, in a steamer of this design would be to lessen it. It is the lateral motion that could be easily diminished or pre vented.
The proposed steamer would have accommodation for 4,000 passengers, giving a greater number of cubic feet for each passenger than the present steamers, and, as it would carry no freight, would remain a shorter time in port. So that at the speed that would be at forty during a season of nine months. Carrying 160,000 passengers at present rates for corresponding class of accommodation, 80,000 first class would pay $\$ 6,400,000 ; 80,000$ second class, $\$ 3,200,000$; total, $\$ 9,600,000$; which ought to pay a very handsome dividend after paying operating expenses of one steamer.
It will be seen from the above figures that such
It will be seen from the above figures that such a steamer as has been deseribed rates.

A $\$ 5,000,000$ hotel with accommodation for 1,000 guests at $\$ 5$ per day would pay well. There is no reason why a steamship (costing $\$ 8,000,000$ with ro
for 4,000) should not pay better at the same rates.

There are several reasons why cargo and passenger should be carried in separate vessels, and among them is the fact that it does not pay to carry cargo in a high priced passenger boat. A special cargo steamer (like a "whaleback," for example) can be built at a cost of $\$ 200,000$ that will carry more cargo than the Majestic, that cost $\$ 2,000,000$. But these steamers do not carry cargo for the money there is in it, but because
they must have several thousand tons of cargo or ballast in their holds to give them the necessary stability and draught for effective working of screw. As the new design would require no ballast, she would run much lighter.

Natural History Notes.

Oysters and Mussels as Water Filters.-It has been observed that sea water, which always holds solid particles in suspension, becomes clear with surprising rapidity when an oyster or a mussel is placed in a vessel that contains it. These animals, in fact, as soon as they are immersed in their natural element, establish a rapid current of water between their separated valves. Of the particles that such current carries along, some are agglutinated into large lumps by a mucous secretion of the mantel and are then immediately rejected, while others traverse the digestive tube ately rejected, while others traverse the digestive tube
to be afterward expelled in the form of solid excreto be afterward expelled in the form of solid excre-
ment. It results that after the lapse of a very short time, the mollusk has filtered the surrounding water, but the amount of filtered water is not the same with all oysters and mussels. The researches of Mr. H. Viallanes shows in fact, that mussels, in the same period of time, filter three times as much as the French oyster, and that the Portuguese oyster filters five and a half times as much.
From the standpoint of oyster culture, these results explain the cause of that dying off of oysters that culturists have been complaining of for some years, and indicate the remedy for it, that is, the suppression of the mussels and the proscription of Portuguese oysters
from the parks in which the French oysters develop.
Mr. Vaillanes' researches permit also of comprehend ing the importance of the role that these mollusks have played and are still playing in the economy of the seas and the building up of the continents. These animals, which endure changes of saltness better than others, constitute colonies that are often immense and elevated as barriers at the confines of marine and fluvial waters. They are powerful filters charged with freeing the latter of the solid materials that they ar carrying to the ocean.
Self-Mutilation in Orthoptera.-It has often been ob served that many animals, when kept in captivity, develop certain unnatural traits. One of these is a tend ency to self-mutilation-an instinct on the part of the animal which impels it to devour the extremities of its own body.
Dr. Franz Werner, of Vienna, Austria, has recently published some interesting observations in this direc tion on European orthoptera. From a number of pecies kept under observation Dr. Werner concludes that a tendency to self-mutilation does not prevail in
the truly phytophagous families, such as the Acridiidæ and Gryllidæ, but that it seems to be confined to the raptatorial species and that it is most strongly developed in certain predaceous Locustidæ with poorly de veloped wings. In all observations ample nourish ment was provided, but this did not prevent the speci mens from eating first their tarsi, especially those of the anterior pairs of legs, then the tibiæ, and finally the females commenced to eat their own ovipositors mong the species observed the rare Saga serrata ex elled all others in its avidity to devour its entire legs, while Mantis religiosa was contented wîh chewing up
its tarsal joints. Of Barbitistes serricauda Dr. Wer ner was not able to collect perfect examples, for as soon as a captured specimen is held between the fingers it bites off its own front legs with great rapidity. In most instances the chewing is deliberate and evidently without sensation of pain.-Insect Life.
The Giant Birds of New Zealand.-The discovery of the Dinornis by the illustrious zoologist Richard Owen famous as one of the most notable feats in the his tory of science. From a single imperfect bone-a an enormous bird of the struthious order, but far ex ceeding the ostrich in size, formerly inhabited New Zealand. This discovery, published in 1839, aroused much interest and led to further inquiry. Four years later, Mr. Owen was able to show, from a comparison of many fragments of skeletons that had reached him, that there had been at least six species of these gigan tic birds. With additional materials, he, in 1850, had ncreased the number of species to eleven, classed in three genera, and varying in size from a kind no larger than the great bustard (or about five feet high) to one -the Diornis giganteus-at least ten feet in height. Stilllater researches haveshown that even this stature
was in some instances surpassed, and that birds must
have existed in New Zealand whose height attained ourteen feet, or twice that of the largest ostrich.
The Succession of Teeth in the Mammalia.-It is a familiar fact that, whereas nearly all the lower verte brates-fishes, batrachians, and reptiles-have an almost unlimited power of reproducing their teeth as occasion requires, the higher vertebrates, or mammals, are never provided with more than one change of teeth during their lifetime It has also been for a long time well ascertained, that the lower mammals (Marsupialia) a a rule exhibit even less change of teeth than the higher (or placental) mammals. There has thus been great difficulty hitherto in explaining the manner in which the mammalian type of dentition became evolved from the primitive constantly reproduced type such as we observe, for instance, in the croco diles. Numerous theories have been proposed to account for the apparent anomaly that the lower mammals exhibit less tooth change than the higher mammals, while, contrary to the teaching of the great pioneers in comparative anatomy, such as Cuvier and Owen, the majority of the modern school has long held the belief that mammals originally possessed but one set of teeth and gradually acquired the power of eproducing part of this set once in a lifetime.
The remarkable investigations of Dr. Willy Kukenhal have now afforded a definite solution of the problem. It appears from an examination of some mbryos of opossums that the replacing set of teeth is actually present in the jaw, although only one of these teeth ever completely develops and becomes functional It is also proved from a study of the embryos of cer tain armadillos and toothed whales in which no tooth replacement has been observed, that the replacing set is actually formed though absorbed without us in the adult. In short, we may definitely conclude that mammals originally inherited two sets of teeth from their cold-blooded ancestry, that in some groups, such as the toothed whales, some armadillos, and mar supials, the second set of teeth is almost or quite abort ed, while in the majority of the higher mammals this set is functional and partly replaces the first set. As a atter of fact, the two series of teeth in the jaw of the embryo always originate by the division of a single series of germs, and in this respect the mammalian dentition presents some difference from that of the rep tiles and batrachians. There are, moreover, other points still awaiting elucidation, as remarked in a criti cal article by Mr. Oldfield Thomas in the Annals and Magazine of Natural History.
Paleontology as usual may be expected sooner or later to assist in the solution of the remaining difficulties, and it is interesting to notice in the May number of the American Journal of Science that Professo Marsh has already a small contribution to the subject In describing the primitive Eocene mammals, $H y$ racops and Meniscotherium, the professor remark that the replaceable first set of teeth remains in use long after the appearance of the three permanent molars, thus suggesting that the latter are actually a retarded portion of this first set, and not part of the second series.

Lender's Paint.

The paint it is stated preserves metals from rust and is unaffected either by heat or cold. When applied to sheet iron it was found that the coating was unaffected by warm water or steam, and also to be unaffected by the action of acid and alkaline liquids, ammonia gas, hydrochloric acid gas, and sulphureted hydrogen gas The principal ingredient in this paint is a silicate of ron which is found in the neighborhood of natural de posits of iron ores, and also occurs in veins, in deposit of granite, which have become decomposed by con tact with the air. This deposit, which is employed in the form of a finely ground powder, is found to have the following composition :

Silicic acid..	$5 \cdot 4$
Phosphoric aci	$0 \cdot 5$
Oxide of iron.	88.65
Alumina.	0.5
Lime.	175
Magneeia.	135
Undetermined.	23

The silicate of iron in a very finely divided state is mixed with oxidized linseed oil, and varnish, to form paste. When required in the form of paint, it is thinned down with good linseed oil, to which, if deemed desirable, a drier, such as litharge, is added, at the same time mineral colors to produce the required hade are likewise added.

Artificial India Rubber

Dr. W. A. Tilden discovered some months ago that soprene, which can be prepared from turpentine, under certain circumstances changes into what appears to be renuine India rubber. Bouchardat had also found hat the same change could be brought about by heat The material so produced resembles pure Para rubber in every way, and, whether it is genuine rubber or not it may be equally good for all practical purposes. It is said to be capable of vulcanization.

WHY ARE STEREOSCOPIC PRINTS TRANSPOSED? Mr. Emil Kurtz asks this question of the Scientific American. This problem, although very simple, is somewhat puzzling. The stereoscopic prints are transposed to bring them into the position the object occupies when seen with the eyes. The two pictures numbered 1 and 2 represent the view as seen with the two eyes, the one marked " L " showing the view as it ppears to the left eye, and the one marked " R " appears to the left eye, and the
showing the view as it appears showing the view as it appears
to the right eye. Each tube of to the right eye. Each tube of
the stereoscopic camera inverts its own view ; therefore, when these pictures are turned a half revolution in their own planes, as shown in the second engraving, they represent the image formed in the camera, and consequently the negative as seen from the glass side, also the print irom the negative.
By placing this double picture right side up, it will be seen that the images have been transposed in the camera in being inverted, and, as the letters L and R now adjoin each other, the left hand view appears in front of the right eye, while the right hand view appears in front of the left eye, as shown in Fig. 2. It is, therefore, obvious that to place these two pictures in position to correctly represent the views as seen by the eyes, they must be cut apart and transposed, when they will appear as in the first engraving.

The Heating of Cars by Steam

A paper on this subject was read lately at the meeting of the Western Railway Club, by Mr. A. M. Waitt assistant master car builder of the Lake Shore and Michigan Southern. The author believes that for some years to come steam is destined to be the working medium for car heating.
On the railroad with which the writer is connected we have had in use in coaches both the direct and indirect systems of heating, and with the indirect have tried four different kinds. We have had weekly, and some times daily, complaints of freezing traps, lack of circulation, cold cars, burst pipes, etc.; while from the direct system generaliy only one complaint has been heard, that of occasionally too much heat in mild weather. The result of the above experience after three or four years' repetition, has been to cause the adoption by the Lake Shore and Michigan Southern R R of the
coaches, baggage and mail cars.
On sleepers the experiment has been tried with both systems of heating, resulting in the almost immediate abandonment of the direct system; for, when the berths were made up for the night and circulation of air was arrested behind the curtains, the heat became too oppressive for sleeping; and the porters were too apt to neglect the regulation of the heat, if, indeed, it were possible to properly regulate it. This result, of course, left the indirect system alone in the field for this class of cars. As there were many indirect systems proposed and used, it became a study to see which was the best, and to remedy, as far as possible, all existing defects.
It must be said of the writer's experience with indirect steam in sleepers on the rear end of from twelve to fourteen car trains, that in zero weather the complaints of cold cars, with temperature not above 60 deg ., were very numerous, and this, with a pressure from the locomotive of 80 lb . It has also been found in such cars in zero weather that with cars cool when leaving a division terminal, and from 2 to 10 lb . of steam on the gauge, it would take from one to three hours before a temperature of 70 deg . was reached, and in many cases but little rise in temperature was obtained even in that time.
Taking up separately the different parts of steam heating apparatus, Mr. Waitt said that for the train pipe the general practice was to use $1 \frac{1}{2} \mathrm{in}$. pipe well covered with asbestos lagging. He saw no advantages in carrying the train pipe overhead as practiced on a few roads. For connections a flexible wire-bound rub-
ber connection is cheaper and freer from leakage than shown that there has been a lack of the requisite radi any flexible metallic connection. A well made rubber ating surface, and it is being gradually increased hose, five-ply, wire-bound, made of not pure rubber, will stand at least one season's service without failure, and such hose is now made and guaranteed for such a time. It can also be said truthfully that there are in the market steam couplers, free from leaking, simple in manipulation, and highly satisfactory that have in manipulation, and highly satisfactory,
now successfully stood the test for years. The prevailing practice has been to use $11 / 4 \mathrm{in}$. pipe and the same amount of it as with the simple Baker heater. In the writer's opinion much better results would be obtained in long cars by using not less than $11 / 2$ in. pipe, thereby allowing freer circulation and increasing considerably the radiating surface.
The radiating pipes on each side of the car in the direct system should, for proper regulation of heat and adjust ment, have a separate steam controlling valve and a drip valve, also a separate pressure gauge.

Steam Admission Valves.-In this feature of steam heating lies much of the secret of successful results in the direct system of car heating. Most cars at present are equipped with an orclinary cheap globe valve to control the admission of steam to the radiat ing pipes. With such valves in good order, if the valve is just started from its seat by a smal fraction of a turn of the spindle, there is an opening made for the steam admission as large, if not larger, than the supply opening
Inside the car the method of controlling the steam from the locomotive boiler. This admission of steam by a single three-way valve near the middle of the car is enough to keep the car well heated in freezing is preferable to two single valves on each side of the weather, after it has once been warmed up. If the
branch pipe or two cocks in the train pipe at each end of the car under the platform. The three-way valve is simpler to understand and manipulate, is less work to apply, and is less liable to collect condensation and freeze. The cocks under the platform are objectionable, because the cocks can only be opened or closed when the car is standing still. The three-way valve should have the water from the drip pass in contact

Fig. 2.-THE INVERTED IMAGES AS THEY APPEAR IN THE CAMERA AND NEGATIVE. weather is mild, and only enough heat wanted to take the chill off the air, it is impossible to graduate the valve sufficiently fine, but an approximate result must be obtained by alternate turning on and shutting off the steam, which, of course, results in great dissatis faction.
Another difficulty with the common globe valve for n admission
 kept in onder but a short time After a few months' use they After a few months use they
become so warped that few of them can be closed absolutely tight, and many times it becomes impossible to cool the cars off except by shutting steam out of the car at the three-way valve. To overcome these difficulties, and to put it within the power of a reasonably intelligent trainman to regulate the amount of admission of steam to the amount passing through an aperture of 1-100 in. in diameter if desired, a committee was some months ago appointed by the heads of the mechanical depart ments of some of the Vanderbilt lines, to prepare specifications for a suitable valve. The result with it to prevent the drip from freezing. We quote has been that two reputable companies are now pre-
further as follows
When the use of direct steam for car heating was first adopted, there was a fear of insufficient heating, and a mistake was made by the use of altogether too much radiating pipe. One of the first plans consisted of two lengths of 2 in . pipe on each side of the car: and in addition a spur of 2 in . pipe from 12 to 30 in . long under each seat. This resulted in putting steam heating into bad repute by making cars perfect sweat boxes, and making it very uncomfortable to sit on the

Fig. 3.- TRANSPOSED PRINTS.
cushions with a hot steam pipe directly under the entire length of each one. Gradually the use of spurs and return bends has been curtailed, until now the most approved arrangement consists of two lines of 2 in . pipe on each side of the car, without any spurs or radiators under the seat. In some cases it has been deemed best to use $11 / 2 \mathrm{in}$. pipe, and in addition a short 0 in . spur under alternate seats.
With the indirect system of heating, experience has
pared to furnish at a reasonable figure a valve having pared to furnish at a reasonable figure a valve having all parts subject to wear renewable at small cost, leav-
ing the shell of the valve intact; the valve is capable of an adjustment such that one full revolution of the spindle will give an area of opening of only about 1-100 in., the valve being capable of opening to full area of a 1 in. pipe. The valves are so constructed as to be especially free from cutting out by wire drawing of steam. With a durable valve of this kind it becomes possible for a trainman to be able to readily regulate the admission of steam to so small an amount that it will not even heat the entire length of pipe in the car, and, with properly instructed trainmen, good results can be obtained.
Traps.-If the inspectors and trainmen on our roads are carefully questioned, it will be found that traps are a source of constant trouble, sometimes from freezing up or choking with water, and sometimes from allowing too much steam to waste. Of all the traps examined by the writer, after they have been in practical operation for any great length of time, none have been found but what need constant readjustment to suit any material changes of outside temperature. It of ten happens that on starting on a long run a trap may be all right for the present temperature, but after a 400 or 500 mile run the thermometer stands 20 or 30 deg . lower; under these circumstances, many traps become choked with water and frozen, causing delays for thawing out and readjusting.
In view of these facts, many companies have abandoned the use of traps, and have substituted a much
tion, namely, the use of a globe valve at the end of the radiating pipes on each side of the cars. In some cases it has been deemed wise to file a small groove in the valve seat, so that it can never be entirely closed. Such a groove is intended to be large enough to take care of all condensation in mild weather, and in cold weather the trainmen are expected to adjust the opening of the drip valve to suit the amount of condensa tion. By others it has been thought best to leave the drip valve intact, and to allow trainmen to regulate it for all conditions. This arrangement permits of allowing the condensation in mild weather to partially fill the radiating pipes, and the heat can be then controlled by the amount of condensation allowed to pass off. It can be readily seen that by this arrangement, if half the pipes were filled with water, the steam would only reach and heat the other half of the pipes.
With the present state of invention in relation to traps, I think the plain drip valves have decided advantages. In this connection I would recommend that, where possible, the steam admission and drip pipes should be kept in contact, and covered in the same jacket, and the outlet of the drip be in contact with the three-way valve, or pass through it as is arranged for in one style of three-way valve now on the market. It may be of interest to know that since last spring a committee, representing several of the Vanderbilt roads have had in hand an investigation of the matter of steam heating for cars, and a summary of the re sults of their work is contained in the following recommendations for adoption :

1. That the "direct" system of steam heating be used for heating coaches.
2. That the "indirect" system of steam heating be used in sleeping cars.
3. That in the "indirect" system, salt water or a non-freezing mixture be used in the circulating pipes. 4. That a three-way valve be uniformly used for controlling the steam in the main train pipe, the parts located inside the car to be uniform, the valve to take a solid (male) wrench, and the marking on the floo plate to be uniform, and to indicate the direction of the main train pipe and the branch supply pipe, and to be similar in size and style to the Martin floor plates, now in general use on the roads represented.
4. That we approve and adopt for general use the style of steam controlling valves as designed and made for our committee by Fairbanks \& Co., of Boston,
and by the Safety Car Heating and Lighting Co., of New York.
5. That the use of traps for taking care of the drip be dispensed with.
6. That we use a globe valve for the drip valve, with a small slot filed in the seat of the valve, so it can never be entirely shut off.
7. That two lengths of 2 in . pipe on each side of the ar with no spurs under the seats are sufficient for 9atisfactory heating.
8. That for "indirect" heating, all pipes and connections, except train pipe, shall be maintained inside the car. That the system be limited to one steam valve and one drip valve, placed uniformly in all cars. 10. That at all terminal and junction points, where passenger trains are made up, or cars are likely to be set off, facilities be provided for heating cars by steam, when not in trains. This we consider very essential to when not in trains. This we consider ve
the successful heating of cars by steam.

ea Sickness.

Most of those who have experienced the miseries of sea sickness, however they might differ in minor details of statement, would agree in ascribing this most dispiriting malady to one main cause-the motion of concur in their decision. This, then, is the central fact which confers upon the disorder its unique position. It is really not a pathological, but a physiological disturbance. It has no natural connection with dyspepsia. The robust and healthy, by a strange contradiction, suffer from it for the time hardly less than the weak and ill. Its variations of intensity are felt to be counterparts of mere bodily oscillation. Some find relief from it in change of posture, others in active occupation, all more or less when their storm-tossed
vessel sails under the lee of land. Custom and use commonly secure immunity. These are circumstances which one and all point to mechanical causation as the source of thə discomfort. It is the unaccustomed rise and fall, the jerk and relaxation of loosely attached abdominal viscera, mainly, perhaps, but not alone, of the stomach, acting upon the central nervous connections, which must bear the brunt of accusation.
It follows that successful treatment cannot be guaranteed by any one method or panacea. Recumbency pure deck air, moderately firm bandaging of the body, are all useful. Drugs have their place and their par-
tial utility; but, as we have already suggested, there is no remedy equal to a lee shore. Nothing can be much more depressing than sea sickness, and for this reason we should strongly advise all weak persons not to encounter if possible the risk of its occurrence. It is astonishing how soon and how completely those who are favored with a fair measure of constitutional elasticity ecover from its depression. In their case the benefit of a sea trip may thus, with compensations of air diet and appetite, be even enhanced by a few hours of mechanical nausea. It is, in truth, for such person only that tours of this kind are advisable.-Lancet.

The Fastest steam Launch.

The steam launch Yankee Doodle, probably the fast est boat of its class in the world, was unfortunately estroyed by fire, at Philadelphia, in September last. The boat was originally called the Buzz, built by Mosher, of Amesbury, Mass., but as her speed did not prove satisfactory her original boiler and wheel were removed and new ones substituted by her new owners, Messrs. McBride Brothers, of Philadelphia, Pa. The new boiler was quite remarkable. It had 410 one inch steel tubes, tested to 1,900 pounds to the square inch hydrostatic pressure; 360 feet tubular heating surface; weight, 2,000 pounds; grate surface, 8 feet; steam dome, a peculiar feature, 2 by 4 feet; usual boiler pressure, 150 pounds.
Screw, 34 inches, 5 feet 10 inch pitch; two blades 550 revolutions per minute.
Engine, 160 horse power; two 8 by 8 inch cylinders.
The hull was 50 feet long, $61 / 2$ feet beam ; displacement, 4 tons; draught, 15 inches.
Her speediest record was made on the fourth of July last, when, according to the report of the official imers, Messrs. G. S. Carrigan, Dr. G. F. Root, and H. E. McPerson, she ran a mile on the Schuylkill River, on the National Course, in 2 minutes $1 \frac{8}{5}$ secondsalmost thirty miles an hour. The timers were not on the boat, and their record is believed to be reliable. We understand the Messrs. McBride intend, during the coming year, to build another boat equal or superior in speed.
Creosoted wood has been found to have such excellent lasting qualities that its economical properties have suggested its use for permanent haulage, roads, shaftways, etc., in collieries.

RECENTLY PATENTED inventions.

Engineering.

Hydraulic Propeller. - John T. Carstuirs, Wellington, Canada. Two cylinders con-
taining pistons are, according to this invention, operated simultaneously to alternately draw in and discharge water from either the stern or bow of a veseel, thus propelling it forward or backward as desired. A set of pipes alao leads from the gate boxes connected he vessel may be steered by manipulating the ghees in the boxes.

Mechanical.

Lathe Dog.-Richmond Parsons, Philadelphia, Pa. This dog is made in two parts, the body
part being of U-shape, with teeth on its inner faces, and the bridge piece being adapted to be passed laterlilly into and out of the body. It can be readily adjusted to different sized work, and applied without removing the centers of the work from the lathe, a
clamping screw firmly holding the work after adjust clamp
ment.
machine for Napping Cloth. George W. Burr and Michael Malony, Webster, Mass. this machne is especially designed for use with the
ordinary shearing machine to raise the nap on woolen or worsted goods, and consists of an attachment having oppositely rotating napping cylinders, with needles o raise the nap both ways at the same time, in connection with a teusion device to regulate the pressure of
the cloth upon the cylinders, The invention also covers the cloth npon the cylinders. The invention
a novel construction of the cylinder needles.
Screw Driver.-William E. Daily, Morristown, Tenn. This invention provides a tool of to place or withdrawn, by means of a crank handle and gearing. The construction is such that the bit may be held to turn only with the shank of the screw driver, of which it constitutes a tixture, while one of the bits may be ueed with large screws and its other end with small-
er ones.
Coupling. - Irvin P. Doolittle, Redlands, Cal. A means for speedily and firmly connect.
ing sections of pipes, hose, or solid rods, at theirends ing sections of pipes, hose, or solid rods, at their ends,
and so they may be detached as desired, is provided by his invention. A spiral cam-locking lever is pivoted in a slot on a female coupling section, and has an adjustable interlocking connection, with a channel lhoul.
der on a male coupling section der on a male coupling section. By means of a joint
washer an air tight or water-tiont joyt ie washer an air tight or water-tight joint is made between
the joined coupling sections.

Miscellaneous.

Gun Cleaner.-Charles W. Wunderlich, Washington. Mo. This device has a stock portion with internaliy threaded socket, forwardly exteud-
ing spring arms being connected to the peripheral face Ing spring arms being connected to the peripheral face
of the stock, their forward enass contracted and bent to form radial scraper firgers, while a conical expander,
having a threaded shank, operates in the threaded having a threaded shank, operates in the threaded
socket of the stock. In use the cleaner is attuched to the
ramrod of a gun, in the chamber of which it is moved
back and forth. Its construction is such back and forth. Its construction is such that, if any
of the parts be broken or injured, they may be readily of the parts be brok
repaired or replaced.
Watchmaker's Tool. - Charles Smith, Mount Carmel, Ill. This invention relates parthe hands to the center post, providing a solid anvil support for the post, by means of which the hands can be securely riveted thereto without danger of breaking
the center jewel. Means are also provided for holding movements of various sizes by using readily attachable nd detachable spacing rings in the box or case Construction of Bureaus, Etc. Edward P. Lurker, Evansville, Ind. This invention
provides a manner of constructing bureaus, dressing rovides a manner of constructing bureaus, dressing cases, chiffoniers, etc., with sliding drawers, in such a way that the entire article may be finished at one hand-
ling, the goods being thus turned out rapidly and the ling, the goods being thus turned out rapidly and the
manufacture requiring but little room. With this conmanufacture requiring but little room. With this con-
struction the parting rails are adjustable vertically and laterally, and may be adjusted to the drawers when the bureau is bullt, to insure a perfect fit, the bottom being attached after the drawers are fitted, and being djustable up or down
Cuff Button and Fastener. ames F. Poage, Kirksville, Mo. This device has a long flat shank on one end of which the button is held and made integral with the shank, while on the other ment to the sleeve, whereby the cuff may be held in he exact position required and an expensive cuff button may be used without danger of losing it.
Envelope.-Hugo Roberts y Fernandez, Havara, Cuba. This envelope is made of but glue or cement is not needed in fastening the parts together, but when the parts are united the envelope cannot be opened without tearing some of the parts. The bottom and end flaps each have slots which register when the blauk is folded, while the top flap has a cruciform tongue, the vertical member of which passes through the three pairs of slots, the transverse member being wider than the slots, and being folded to pass through
drawal.
Fishway. - William H. Rogers, Amon a former patented invention of the same inventor, he fishway being so constructed that it may be built curing an entrance for the fish close to the dam, at a point where they will readily find the opening. The apper flume and upper end of the fishway leading into it are constructed to extend any desired distance above the dam, the flume and upper fishway being pro-
tected from ice and floods by a suitable covering. The ected from ice and floods by a suitable covering. The dam or one with considerable batter, .he ivhole structure being firmly anchored to the dam, and the entire lower portion of the cribwork being ordinarily loaded down with stone ballast.

Wagon Brake. - Vardiman t. Sweeney, Springtield, Ky. A brake mechanisw by
which the brake may be applied directly and positively to both the front and the rear wheels of a vehicle, or to the rear wheels only by simply backing the team, is provided by this invention. The device may also be so operated that the team may be backed without aping device in ready reach of the driver. The construction is very simple, and this brake may be readily applied to any form of running gear.
Photographic Dark Chamber. Isaac Bryner, Callaway, Neb. A box containing collapsible parts of a dark room is formed of a base board, hinged side boards and top pieces, with end pieces, the inner surface of the side pieces having attached receptacles to receive and hold bottles with chemicals for holding box is held in place by a spring. A compact and simple portable dark room is thus formed for photographic work, one which may be quickly set up and readily taken do

Curtain Stretcher and Clothes Horse.-Edward N. Kenworthy, Oldham, England This is a combination device comprising standards adjustably secured to a top bar, with two stretcher ba on opposite sides of the standards. The structure is
readily adjustable to various sizes and patterns of curtains, facilitating their stretching and drying and en abling the curtains to be secured without the permanent pins or hooks, while it may also be used as a clothes rack or clothes harse, or to support draught

Lace Fasnimer - Justus W King Helena, Mont. This is a device adapted for ment to a corset, to shoes, or any article in connectio with which a lace is employed, automatically locking and holding any portion of a lace brought in engage ment with it, and being also capable of adjustment laces of different thicknesses. The device consists of surface, loosely carrying a spring-controlled locking button, the frictional engagement between the cylindric portion of the base, the lace and the button effectually preventing the lace from slipping.
Note.-Copies of any of the above patents will be
furnished by Munn \& Co, for 25 cents send name of the patentee, title of invention, and date of this paper.

SCIENTIFIC AMERICAN

BUILDING EDITION

OCTOBER NUMBER.-(NO. 84.)

TABLE OF CONTENTS

1. Elegant plate in colors, showing a handsome residence at Belle Haven Park, Greenwich, Conn.,
recently erected at a cost of $\$ 18,000$ complete.

F'loor plans and two perspective elevations. Messrs. Lamb \& Rich, architects, New York. Plate in colors showing an elegant residence at Montclair, N. J. Perspective view ard floor
plans. Cost $\$ 7,000$ complete. Mr. E. T. Happlans. Cost $\$ 7,000$ complete. Mr. E. T. Hap-
good, architect, New York. An excellent deplans.
good,
sign.
A house a
3. A house at Montclair, N. J. Two perspective views
and floor plans, Cost $\$ 4,750$ complete. and floor plans. Cost $\$ 4,750$
Hapgood, architect, New York.
Queen Anne cottage recently erected on Chester Hill, Mount Vernon, N. Y., at a cost of $\$ 5,000$.
Floor plans, perspective elevation, ett. A house for two families erected on Armory Hill at Springfield, Mass., at a cost of $\$ 7,000$ complete.
Mr. F. R. Richmond, architect. Springfield, Mass. An excellent design. Floor plans and perspective.
6. A model dwelling at Holyoke, Mass. A unique de-
sign. Perspective televation and floor plans. sign. Perspective elevation and floor plans.
A small cottage aud separate summer kitchen. Per-
spective views and floor plan. Cost for both spective views and floo
buildings, about $\$ 1,600$.
8. The parsonage at Montclair, N. J., built for the Congregational Church. Cost complete $\$ 15,000$.
J. C. Cady \& Co., architects, New Yorl tive view and floor plaus.

9. A plans and perspective elevation

10. A cottage at Fanwood, Nation. cottage at Fanwood, N. J., erected at a cost of
$\$ 5,166$ complete. Perspective elevation and floor $\$$
11. Portal of the church of Moret-sur-Loing, France.
12. Illustrations of two handsome English country houses.
13. Miscellaneous contents : The coming age of mar-ble.-White brick.-How to keep out the heat it summer and to keep it in in the winter.-House
moving.-Tempering tools.-Closet door fasten-ings.-A right-of-way may be built over.-Stanley plumbs and levels, illustrated.-Safety crane,
illustrated.-An improved range and heater, il-illustrated.-An improved range and heater, il-
lustrated.-Railway window sashes.-A great lustrated.-Railway window sashes.-A great
tunnel.-Inside sliding blinds, illustrated.A hout floors.-A fine steel ceiling, illustrated.A_{n} improved door hanger, illustrated.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages; forming, practically, a large and splendid Magazine of architectURE. richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting
examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Lareess Circulation
In of any Architectu

MUNN \& CO., PUBLIBHERs,
361 Broadway, New York.

PBusiness and ゆersonal.

 The charge for Insertion under this head is ome Dollar a linefor each insertion : about eight words to a line. Adver for each insertion: about euht woris to a line. Aaver-
tisements must be rececired at pubtication office as eerly as
Thursday morning to appear in the following week's issue
"U. S." metal polish. Indianapolis. Samples free. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Best baling presses. Ryther Mfg. Count, Watertown, N. G.D. Hiscox, 361 Broadway, N.Y., Consulting Engineer

Pedrick \& Ayer. Philadelphia, Pa.
Skilled workmen and best materials are the basis fo deserved popularity of Jessop's steel.
Glass grinding and polishing Imachinery wanted. Ap
aty Tacony Iron and Metal Co., Tacony, Pa The Improved Hydraultc Jacks, Punches, and Tub
Expanders. R. Dudgeon, 24 Columbia St., New York. Tools for sheet metal goods, presses, lathes, dies, etc

Stow fiexible shaft. Invented and manufactured b m , , Y. Screw machines, milling machines, and drill presses
The Garvin Mach. Co., Lalght and Canal Sts., New York Centrifugal Pumps. Capacity, 100 to 40,000 gals. per Guild \& Garrison, Brooklyn, N. Y., manufacture steam acld blowers, filter press pumps, etc.
Split Pulleys at Low prices, and of same strength and appearance as Whole Pulleys. Yocom \& Son's Shafting Forks, Driker At, Pblaaelpha,
For best hoisting engine. J. S. Mundy, Newark, N. J. Perforated Metals of all kinds and for all purposes,
general or special. Address, stating requirements, The Harrington \& King Perforating Co., Chicago.
To Let-A suite of desirable offices, adjacent to the Apply to Munn \& Co., 361 Broadway, New York.
Fine castings in brass, bronze, composition (gun
metal), German silver. Unequaled facilities. Jas. J. metal), German silver. Unequaled facilities. Jas.
McKenna \& Bro., 424 and 426 East 23 d St., New York.
The best book for electricians and beginners in elec-
tricity is "Experimental Science," by Geo. M. Hopkins. By mail. 84 : Munn \& Co., publishers, 661 Broadway, N. Y. Canning machinery outfits complete, oil burners for
soldering, air pumps, can wipers, can testers, labeling machines. Presses and dies. Burt Mfg. Co., Rochester,

Competent persons who dessre agencies for a new apply to Munn \& Co., Scientific American office. 361 - Send for new and complete catalogue of Scientific nd other Books for sale by Munn \& Co., 361 Broadwa
New York. Free on application.

HINTS TO CORRESPONDENTS. Names and A ddress must accompany all letters,
or no attention will be paid thereto. This 18 for our information and not for publication
References to former articles or answers should Inive date of paper and page or number of question. be repeated; correspondents will bear in mind that
some anewers require not a little research, and,
thongh we endeavor to reply to all either by letter
 expected with than general in
Scientitic American Supplements referre
to may be had at the oftice. Price 10 cents each.
to may he had at the ottice. Price 10 cents each.
Minerals sent for examination should be distinctly
marked or labeled.
(4581) W. P. C. asks (1) what the Harden hand grenade for extinguishing fires are made of. A ng thin spherical glass bottles with a solution of ca cium chloride, salammoniac or borax. 2. A good in sulating material that I can mould out for insulating torage hatery plates. A. Use gutta percha. 3. Ar here any two acids mixed together that will cause a explosion? A. Yes. 4. Whll suiphuric acid set fire to ood? A. Anlphuric ack will char wood by extract torage batteries set fire to wood? A. We do not think it would set fire to wood.
(4582) O. S. asks: What is the chemical gency of ammontum chloride in the microphone bat $2 \mathrm{NH}_{4} \mathrm{Cl}+2 \mathrm{MnO}_{2}+\mathrm{Zn}=\mathrm{ZnCl}_{2}+2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Mn}_{2} \mathrm{O}$ The ammonium chloride acts on the metallic zinc, forming zinc chloride and liberating ammonia

NEW BOOKS AND PUBLICATIONS

The Standard Electrical Diction-
ARY. A popular dictionary of words and terms used in the practice of Sloane, A.M., E.M. Ph.D New York: N. W.: Henley \& Co. 1892. York: N. W. Henley ${ }^{\text {\& }}$ \& Co. 189 In the Standard Electrical Dictionary we have an important add ition to the working library of the amateur and professional electrician. The definitions are illustrated whenever necessary by well executed illustrations, which number in all over three hundred. The work has a very complete index, which renders the use of cross references unnecessary. The author has evi-
dently done his work in a very thorough manner. Take Electricity for example. Here the author has modestly given no definition of his own, but he does not hesi ate to give the opinions of seventeen of the best anfhorties, includting many of the foremoat electricians of
the
the world. Many words are given which, owing to the
raptd strides of electrical science, are bere deflned for raptd strides of electrical science, are bere defined f which recommends the book particularly to the be inner, while the advanced electrician will find such iojects as the theory of dimensions and the dimen
ions of electrical units fully treated. The work is a nvaluable addition to even the smallest of electrica ibraries.

INDEX OF INVENTIONS

t of the

October 25, 1892,
a
[See note at end of list about copies of these patents.

Alcohol from liquor casks, apparatus for and
method of recovering waste, M. Hickey........

Bay See Nurs
Baker' and con
R. Megson

Batteries, flishing grids for secondary, A. \because.
Batteries, standard celi for eleetric, H. s . Car-

Searing, roller, S. B. Bartlett

in. See Flour bin.
Bit. See Bridle bit.
 ${ }^{B} \mathrm{O}$

 Brick and tile machine, J.J. Küage...
Brick press, J. J. Kulage.

 Button, H. M. Newter......
Button, At Newombent machines,
Buton

Button sething machine, A. G
Cikins
Cable crossing,
Calculating ma, minine, Benedict.......
aliners. inside, R. C.
Can. S,

Carbonating liquids, art of and apparatus for, Carburetor, J. Clingman,
Carding engne, W. P. Canning $\%$ or..............
Carriages, ock for the wheels of children's, J. A.
Carrier, See Egg carrier Hose piope carrie
Castrige crimping machine, , M. A. Twitche
Cash indicator and recorder, G. Burt...

Core box, M. A. Minles.
Corn husking machine, S . E. Morral et al
ootton gin, roller Montague \&. Morral et al.........
Coupling. see Car coupling. Whiffetree coup

Decanting botties, apparatus for,
Dental instrument, C . W. Jones.
Differential block, H. W. Rusgrove.
Digger. See Potato digger.
Diving dress and teliget.
Dor spring and checke J. W oif. Stove.

Drier. See Clothes drier. Garbage drier.
Drying apparatus, H. W. Rappleye......

Dhdertisements．

Improved Screw Cutting
Foot and Power

T．A．G．皶

8

 THE EVOLUTION OF COMMERCEE－－

OIL WEII SUPPIY CO．

Teach Yourself Music

Stee Type for Writing Machines，

8
0
0
ARTISTS WHO GET RICH
 AIR BRUSH MFC．CO． 67 Nassaun Streer．

BEATTY Pianos．Organg，\＄33 up．Want agents

SLEEP ONAIR．The Hygienic Aif Mattres

AエUMMINUMI In all shapes．Manufactured by Cowles Electric Smelting and Aluminum Co．， Correspondence solicited．LOCK PORT，N． \mathbf{y} ．

1 A fripat Alivaribiing Madilin．
\qquad

This superb architectural work has by far the largest
oirculution of any periodical of its class．It gaos di－
rectly into the hands of those who have the ordering of the
 the Architects，Builders，Constructing a，
Engineers，Contrators，and House Owners．
The Building Editio The Building Edition of the ScIevir－id Ambrican
is unquestionally the very best advertising
manut manufacturers and dearers in in building Materials，Car－
penters＇Tools，Woodworking Machinery Heat penters，
tilating，Plumbing and Sanitary Appliances，Rooofng
Architetural Arehitectural Wood and Metal Work，Builders＇Hard－
ware，Doors，Sash，Blinds，Paints，and in fact all goods which enters into，or are suan in the the construction and
maintenance of Buildings or works of any tind． The rates for advertising are moderate．For te
address MUNN \＆Co．Publishers， 381 Broadway， N ．

Steam！Steam！ | $\left.\begin{array}{c}\text { Complete Fixtures excent Stack．} \\ \text { 2－Horse Eurea Boiler and Engine，}\end{array}\right) \$ 175$ |
| :---: |

 B．W．PAYNE \＆SONS，

THE UNITED STATES LIFE SAV－

VOLNEY W．MASON \＆CO．， FRICTION POLLETS，CLUTCEES，and ELEVATORS

Perfect Newspaper File

The Koch Patent File，for preserving Newspapers，Mag－
azines，and Pamphlets，has been recently improved and

 office of this paper．Heavy board sides；inseription
SCIENTIFIC AMERICAN ，in git．Neessary for SCIENTIFIC AMERICAN＂in gili．Necessary fo
every one who wishes to preserve the paper．Address

Wiley \＆Russell Mfg．Co．，Greenfeld，Mass．，U．S．S．A． WHAT ELECTRICITY IS．－BY W．W．

BARNES＇WATER EMERY
 TOOL GRINDER Has no pumps， piping required to supply it with water．Always
ready for use． ready for use．
Simplest in con－ Simplest in con－
struction，most
most efficient in oper－
ation．Send for Catalogue and

W．F．\＆JOHN BARNES CO． 1999 Ruby Street，Rockford，III．

> DUsT: DUBT:
 bos Patent Dust Protecto

 ibbs R Reysirator thic．

After being on the Market Seven Years THE AGME AUTOMATIC ENGINE AND BOILER ETIT工 TREADE：

थMMAIC air

BORE Wewaw WELLS Horse Powers， DRILL Pumps engines WELLS Pumps \＆Valves，
Iron Pipeand Fittings．Well sup．
plies．Honest and reliable worl

WELLS LOOMS NYM，
Who An Inventor Who has a bright thought to be worked
out can get mechanical help by writing to us．We send a primer first．
 This splendid work contains a careful compila－
tion of the most useful Receipts sind Replies 8 iven in the Notes and Queries of correspondents sas pub－
ished lished in the scientitic American during the
past fifty years together with many valuable and important additions．Thousand selected receipts
 comprehensive volume of the kind ever paceed be－
fore the entbili．
The work may be regarded as the product of the studies and practical experience of the ablest chem－

 relating to formula used in the various manufac－
turing ind
Instristies，will here be found dinsered
Inor cesses in the arts are e iven．
It is ive imossible within the iimits of a prospectus
more than an outhine of a few features of so extensive a work．paper we have nearly 250 re－
ceipte the hbead of oing how to make papier maché；how make sandoaper，emery paper，tracing paper， colored papers，razor strop paper，paper for ooing
up cutlery，silverware；how to make luminous

 taded inks，etc．
Under the head of Allors over 700 receipts are
givene covering a vast amount of valuable infor－ mation Cements we have sorae 600 receipts，which
include almost every known adhesive preparatich， and the modes of use
Ho to to make fumps forms the subbect
of a most valuabie practical article，in which the complete process is described in such clear and ex－
plicit terms that any miteligent person may readily learn the art．．
 Ueceips．the head of Etching tnere are 55 receipts，
embracing practical directions for the production

 and the restoration and preservation of all kinds
of objectand material．s．
are （iven．tics and Perfumery some 500 receipts are given．
Sone nearly 30 receipts．

 excellent suggestions．
MUNN \＆CO．，Publishers， soientifio ameridan office，

LARKIN'S BRASSAND IRON THE PRACTICAL

 CONTENTS.-Among the most important and entirel Contents.-Aming the most important and entirel
new sections of this edition of this avalable and popula
book are the following Behavior of Metals and Alloy
bot
 on to other Metals; Casting rron and other Meoterals uppo
Lace, Emorroideries, Fern Leaves and other Combustibl
Materials; Some Modern Bronzes. Descroptive circuluar, grovzes. fing ful table of contents of
the above pook, sent free to any one who will send his Sar new revised Descriptive Catalogue of Practica
and Scienticic Books. 88 papes, 8vo, and our Catalogue o
not

 HENRY CAREY BAIRD \& CO., industrial Publishers, booksellers \& Importer

POPULAR AND INSTRUCTIVE BOOKS FOR ENGINEERS AND FIREMEN.
By STEPHEN ROPER, Engineer. Embracing all branches of Steam Engineering. The country, and are so plain that any engineer or firema can easily understand them.

Descriptive Catalogue mailea free.
EDWARDMEEKS, Publisher, $\frac{\text { No. } 1012 \text { Walnut Stree }}{}$

FIREMEN STUDY MECHANICS AT HOME
Send for FREEE Cireular to
The Corespondence shatol
of Mechanics, Scranton, Pa.

GUITARS | MANDOLINS

 HOW TO MAKE A DYNAMO.
 SEWING MACHINE MOTOR FOR AMA-

DEAFNESS \& HEAD NDISES CURED

TO BUSINESS MEN

[^0]
me 1892
 vode Remington

Typewriter
For Ease and Convenience of Operation, Simplicity of Design and Durability of Construction, is
UNTEQTASIED SEND FOR CATALOGUE.

WYCKOFF, SEAMANS \& BENEDICT, 327 Broadway, N. Y.

GYMNASTICS FOR GIRLS - AN IN at the Berkeley Athletic Club for of indiestruction given

 Capacity apt 0200 tons per hour.
 Builerers of High Grade hining Machinery. Send for Catalogues
CATES IRON WORKS, 136 C, Liberty Street, New York.
237 C , 'ranklin St., Boston, Mass

Stenclls, steel
 New York Stenci, Wks. 100 Nassau St, N.

ARTESIAN

ELECTRIC POWER APPARATUS,

EOR EVERY VARIETY OF MECHANICAL WORK.
SAFE, SURE, FELIABLE.

estimates fernished.

THOMSON-HOUSTON MOTOR CO.,
620 ATLANTIC AVENUE, BOSTON, MASS.

HARRISON CONVEYOR! Handiling Grain, Coal, Sand, Clay, Tan Bark, Cinders, Ores, Seeds, \&C. 	

BOOKS.

 MIUNIN de CO. Publishers "Scientific American, No. 361 GROADWAY, NEW YORK.

STEVENS PATENT
SPRING INSIDE CALIPERS

FOR SALE E-45 volumes of the Scientific Americinil

THE BEST LOOSE PULLEY OILER VANDUZEN PAT. L. PUL, OILER

WANTED-Manufatarer's Agent to handie new

A NEW EDITION OF

The Scianying Amanican Refarange Book
This attractive little book, of 150 pages, embraces a
great variety of information useful for reference in the house and workshop. It contains the last Censesu of the
U. S. by states and counties, and has the area of square U. S. by states and counties, and has the area of square
miles in anch state and territorr, with tabeses of the oc--
cupations and the number engaed in cepations and thene number rengaged in each kind of busi-
nesss i lists of cities having 10.00 inhabitants; all the
ces statistics being compiled from the 1890 census; the United States patent laws, with directions oww o o otain
patents seure caveats, trade marks, design patent and coprights.
The
The book contains tables for calculating the horse
power of steam engines, and other information useful power of steam engines, and other information useful
and varied. The matter crowded between the covers

$$
\text { MUNIN de } \mathbf{C O}
$$

LIFE SAVING DEVICES.-A COL

 \qquad

PROPOSALS.

URTMSTATES ENGINEER, OFFICE, NO,

OTARERES

WARP DYEINGAND SIZINGMACHINES POWER WRINGERY FOR HOSIERY AND DRYiNG AND VENGLATiNG ifans,
WOOL AND COTTON DRYERS, CEO. P. CLARK
Box L GED. WIndsor Locks, conn.

HOW TO MAKE A STORAGE BAT-

RAILWAY \& STEAM FITTERS SUPPLIES Rue's LitIle Giant Injector. screw jaces, sturtevant blowers. \&c. JOHN S. URQUhart. 46 Cortlandt St., N. y.

WE SEND FREE

ALUMINUM. AN INTERESTING DE-

BOX TOOL POST WFENCHES,

The BILLINGS \& SPENCER CO., Hartford, Conn.
have you read Experimental

Science?
This new book, by Geo. M. Hopkins. is is ust what
ou need to give you a good reneral knowled You need to give you a good general knowled e of
Physical science. No one having the spirit oof the

Over foo pages: 680 ine cuts: substantally and
beautifully bound. Price by mail, $\$ 4.00$.
MUNN \& CO., Publishers MUN \& COIT, Publishers.
Office of the SCIENTICIC AMERICAN
361 BKOADWAY, NEW YORK.

The Pivot of Fortune: To possess that single instant when it comes, to command it deliberatey with sheer purpose, and turn it to your gain-that is power: it lies in baving time; carrying it in your pocket, keeping an eye uponit. In short, the pivot of fortune is a watch pivot
It turns against a tiny jewel-a garnet or sapphire. There are several of them in every good watch. All the new, quick=winding Waterburys have jeweled movement.This, and remarkably close adjustment, are what make it an accurate time-keeper.
All jewelers sell it in $\$ 4$ to $\$ 15$.

FATENTS!
 MUNN \& CO., Solicitors of Patents,

KODAKS
For Time Exposures In-Doors, The Junior are the most $\begin{gathered}\text { camera made. } \\ \text { Perfectly }\end{gathered}$
 films or glass oplates. Hese. Can be used ithith roll
and counter for exposures.
with focusing index

$\$ 40$ and $\$ 50$.

$\left\{\begin{array}{l}\text { Send For } \\ \text { Catalogue. }\end{array}\right\} \quad \begin{gathered}\text { EASTTAN KODAK } \\ \text { Rochester, N. } \mathbf{Y} .\end{gathered}$
PATENT JACKET KETTLES *

MECHANICS' TOOLS.

THE SMITH PREMIER TYPEWRITER

Important Improvements
 The Smith remier Tyyewriter Co, ysuracuse, N. Y, Y. S. S . A.

VANDUZEN STEAM PUMP THE BEST N NHE WORLO.
Pumps Any Kind of Liquid.

WACIGLANTERNS WANTED ANORER SARE

Asbestos Sectional Pipe Coverings.
Non-Conducting Coverings for Steam and Hot Water Pipes, Boilers, etc.

We are prepared to take contracts for applying Steam Pipe and Boiler Coverings in any
 et maiden lane, n. y.

Crocker-Wheeler Flectric Con ELECTRIC MOTORS

ACKNOWLEDCED TO BE THE STANDARD FOR ALL HIGH-CLASS WORK WHERE POWER IS REQUIRED.
430 WEST FOURTEENTH STREET, NEW YORK

THEAMERTCANBLLTTHPPHONE CO 1877, No. 186,787. forms of Electric Speaking Telephones inby the above patents, and renders eac thereof, and liable to suit therefor.

GENERAL ELECTRIC COMPANY. 3 EDISON and THOMSON-HOUSTON SYSTEMS. INCANDESCENT and ARC LIGHTING. TRATREET RAILWAYS. ANSIMISSION OFPOWER.
MININC BY ELECTRICITY

95 MILK ST., BOSTON, MASS.

This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th,

The transmission of Speech by all known fringes the right secured to this Company individual user of telephones not furnish ed by it or its licensees responsible for such unlawful use, and all the consequence

THE HUB FRICTION CLUTCH,

THOMAS KANE \& CO. CHICACO, ILL.

Motor of I $^{\text {th }}$ Century

ELECTRO VAPOR ENGINE. GAS OR GASOLINE FOR FUEL.
NO BOIILER. NO FILE. NO DANGER
 ineer.
 The James smith
W11-421 M Mace st., Phillu., Pa.,

3
0
0
0
0
0

 Industrial, Manufacturing, and Uncurrent WORDEN \& FANSHAWE,
GALVANIZED
GEARED AERMOTOR RUUMB, GRIIDD, CUT FEED, and SAW WOOD.

Fancult Mreat

ESTABLISHED 1846.
The Most Popular Scientific Paper in the World Only $\$ 3.00$ a Year, Including Postage Weekly-52 Numbers a Year.

This widely circulated and splendidy illustrated paper is published weekly. Every number contains six-
teen pages of useful information and a large number of original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity, Telegraphy,
tecture, Agriculture, Horticulture, Natural History, etc. Complete list of patents each week. Terms of Subscription.-One copy of the Scien-
TIFIC AMERICAN will be sent for one year- 52 numbersTIFIC AMERICAN will be sent for one year-52 numbers
postage prepaid, to any subscriber in the United States,
Conada, or Mexico, on receipt of three dollars by the Canada, or Mexico, on receipt of three dollars by
publishers; six months, $\$ 1.50$; three months, $\$ 1.00$. Clubs.-Special rates for several names, and to Post Masters. Write for particulars.
Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Address
all letters and make all orders. drafts, etc., payable to MUNN \& CO., 361 Broadway, New Yorls.
§rientific gatrican §upplement SCIENTIFIC AMERICAN, but is uniform therewith in size. gravings, many of which are taken from foreign papers and accompanied with translated descriptions. 'The SIIENTIFIC AMERICAN SUPPLEMENT is published week-
I, and includes a very wide range of contents. It presents the most recent papers by eminent writers in all
the principal departments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural
History, Geography, Archæology, Astronomy Chemistry, Electricity, Light, Heat, Mechanical Engineering,
Steam and Railway Engineering, Mining, Ship Building. Marine Engineering, Photography, Technology, Manuacturing Industries, Sanitary Engineering, Agriculture.
Horticulture, Domestic Economy, Biography, Medicine etc. A vast amount of fresh and valuable information
et obtainable in no other publication.
The most im portant
and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT.
Price for the SUPPLEMENT for the United States and
Canada, $\$ 5.00$ a year; or one copy of the SCIENTIFIC AMERICAN and one copy of the SUPPLEMENT, both mailed
for one y ear for $\$ 7.00$. Single copies, 10 cents. Address and MUNN \& CO.. 361 Broadway, New York.

Guilding © Elition.

The Scientific American Architects' and
Butiders' Edition is issued monthly. $\$ 2.50$ a year. Single copies, \mathfrak{z} cents. Forty large quarto pages, equal large and sondided ordinary book pages: forming a large and splendid Magazine of Architecture, richly engravings; illustrating the most interesting examples
of modern architectural construction and allied subjects. A special feature is the presentationin each number
of a variety of the latest and best plans for dences, city and country, including those of very moderate cost as well as the more expensive. Drawings in
perspective and in color are given, together with full Plans, Specifications, Sheets of Details, Estimates, etc.
The elegance and cheapness of this magnificent woris have won for in the Largest Circulation of any
Architectural publication in the world. Sold by all newsdealers. \$2.50 a year. Remit to

MUNN \& CO., Publishers,
361 Broadway, New York.

PRINTING INKS,

[^0]: The value of the SCIENTIFIC American as an adver-
 tising medium cannot be overestimated. Its circulation is many times greater than that of anysimilar journal now published. It goes into all the States and Territorooms of the world. A busincss man wants something more than to see his advertisement in a printed news-
 paper. He wants circulation. This he has when he advertises in the Scientific American. And do not let
 the advertising agent influence you to substitute some other paper for the Scientific American, when selecting a list of publications in which you decide it is for your interest to advertise. This is frequently done for
 the reason that the agent gets a larger commission from the papers having a small circulation than is allowed on the Scientific American.
 For rates see top For rates see top of first column o
 dress MUNN \& CO., Publishers.

 361 Broadway, New York.

