\bar{A} स
$\underset{\text { EgTABLISHED }}{\text { Vol. L845. }}{ }^{\text {LXVII }}$]
NEW YORK, OCTOBER 1, 1892.

GERMAN MILITARY BALLOON APPARATUS,-[See page 213.]

¥rintific Americam.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors pUblished weekly at
NO. 361 BROADWAY, NEW YORK.
O. D. MUNN.

TERMS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year, for the U. S., Canada or Mexico..One copy, six months, for the U.S., Canada or Mexico
One copy, one year,to any foreign country belonging to Postal Union. 150 Remit by postal or express money order, or by bank draft or check.
MUNN $\&$ CO., 361 Broadway, corner of Frauklin Street, New York.

The Scientific American Supplemen

 Spanish Edition of the Scientific American

abil Broadway, New York

NEW YORK, SATURDAY, OCTOBER $1,1892$.

TABLE OF CONTENTS OF

SCIENTIFIC AMERICAN SUPPLEMENT
No. 874
For the week Ending October 1, 1892.

 IV. ELECTRRCITY.-Human Humectricity. -The electricity of the
 galvanometer for tracenp the eurve of magnetization of different
samples of ron ron- 1 ilustration

XII. TECHNOLOGY- A Apparatus for Coning Water of Condensation

PROGRESS OF THE CHOLERA

In Asia and Russia the cholera has carried off many thousands of poor people, chiefly by reason of the filth in which the victims lived and the lack of proper medical treatment. In Europe the disease made no alarming progress, except in Hamburg, where it was brought from Russia, and, owing to the dirty condition of the town and the supineness of the authorities in adopting proper sanitary measures, the advance of the diseas became rapid and ominous. The tenement house dwellers especially suffered, and it is said upward of
ten thousand of them succumbed. Hamburg is noten thousand of them succumbed. Hambu
torious for its crowded and filthy tenements.
As soon as the disease appeared in Hamburg prompt precautions were taken at nearly all other European seaports and principal cities to prevent the spread of the disease. These efforts were successful, and the progress of the pest appears to have been effectually stopped. Such great cities as London, Paris, Berlin, Vienna, although in direct communication with Ham burg and Antwerp, suffered but little. The few case that occurred were immediately isolated, and suitable preventives extensively used.
It is a peculiarity of this disease that its spread may be readily checked and controlled by the early adoption of intelligent precautionary means and regulations. In New York due notice was received of the probable ap proach of the pest, and vessels arriving from infected ports were promptly quarantined. Steamers from Hamburg were rigidly guarded; the passengers were transferred to salubrious landing places, and wherever any sign of the disease appeared the case was at once
isolated and skillfully treated. The result was the disease did not pass the quarantine grounds, and the great city remained exempt. New York at the present time is the healthiest large city in the country.

CHOLERA AND SOME INDICATIONS FOR ITS
 MANAGEMENT.

Considered in detail, the chief symptoms of this mal ady may be outlined as follows :
(1) Purging of a peculiar flocculent, rice water kind
(2) Copious vomiting, at first with tinges of bile, per haps, but later of thin, colorless and odorless fluid.
(3) Severe cramps in the lower extremities and abdomen, rendering the muscles hard and tense.
(4) Sometimes, in the early stage, albuminuria fol lowed by complete suppression of urine.
(5) Diminished circulation and impeded respiration, causing intense prostration, with icy coldness of sur face of the body, of the hands, the tongue and even the breath; perhaps, also, oppression and pain in the region of the heart.
(6) Frequently, noises in the ears, dimness of sight and deafness.
(7) Marked depression of temperature, notwithstanding which the sufferer usually complains of oppression and prefers to lie uncovered; generally, too both during collapse and reaction, the thermometer in rectum registers three or four degrees higher than in the axilla, and the latter is at least one degree lower than in the mouth
The lividity and blueness of the lips and surface of the body generally is remarkable; at the same time the skin becomes shriveled and bedewed with deathlike dampness. The sharp pinched appearance of the features, the muddy complexion, and the sinking of the eyeballs, with flattening of the corneæ, are so char acteristic as to give rise to the designation facies choleratica. There is also alteration of the voice, which becomes whispering, hollow, and unnatural, owing to diminished volume of air in the lungs.
As the malady progresses, there is a gradual lessen ing of respiration, and, coincidentally (or nearly so) diminution or absolute disappearance of the pulse the action of the heart being almost or quite in-
audible. Finally, there is complete arrest of circulation. Death may occur any time from three to twenty four hours after the first inception of the malady, depending upon the nature and severity of the attack, 61 etc. But those that survive to the latter period frequently recover, often mending with wonderful rapidity.
An attack may be ushered in or preceded by a slight attack of diarrhœa; consequently, during an epidemi any looseness of the bowels is sure to be regarded with suspicion. Nevertheless, the disease not infrequently asserts itself without any form of premonition or warning. It may be borne in mind, however, that all diarrhœic or dysenteric discharges that occur during an epidemic are not necessarily choleraic. At such time there is always prevalent an intestinal flux that is distinct from cholera, and presents characteristics varied from simple diarrhœa up to cholerine; and it is of importance to discriminate between the two. The less formidable complaint presents alvine evacuations possessed of more or less consistency and tendency to formation, and, moreover, have in greater or less de gree the characteristic odor of fæcal matter; the dis charges of cholera, on the contrary, are odorless and colorless, chiefly made up of large quantities of watery fluid holding in suspension flocculent matters (flakes of mucus), hence the likening to rice water-water in
which rice has been boiled, colorless, with,shreds of albuminous matter derived from the cereal.
What the poison of cholera may be is still a moot question, and Koch's assertion it depends upon or resides in the comma bacillus is far from being conclusive The symptoms that usher in a seizure indicate a form f poisoning so obviously, that the chief upholders of the bacillar theory have been compelled to hesitate and even inquire whether, after all, some ptomaine or other alkaloid may not be the specific virus. Finally, Drs. Lewis and Cunningham, of the army medical school at Netley, England, have shown the bacillus of Koch is constant in the mouth and throat of healthy persons; and though Koch rejoined his bacillus differed in size and shape, the accurate measurements undertaken by these gentlemen, in conjunction with Arthur E. Brown (and verified by Sir William Aitkin) and the reaction of the same to staining fluids, prove the precise contrary ; again, though cholera fluid may be boiled and disinfected to the complete extermination of all bacilli, yet it fails to lose its characteris tic infectious and toxic properties (Aitkin, Lewis Cantani, Klebs). It is evident, then, the bacillus of Koch is not per se a cause; and time has only confirmed the utterance of Trichum, a propos of this microbe, that the purported discovery no more definitely settled the question of cholera than knowledge of the bacillus of tuberculosis will terminate pulmonary conumption.
It is certainly folly to prate of curing cholera when the very principles which should be a guide to treat ment are undecided, antagonistic, and devoid of physiological basis. To this hour, among many-the ma jority, in fact-the question is mooted whether re covery depends upon persistence of the intestinal evacuation, or upon its suppression. That patients have recovered and do recover, under all kinds of treatment, often widely different and aggressively antagonistic, must be universally acknowledged. In nineteen cases out of twenty the remedies prescribed by mouth or by enema are returned unaltered in the vomit or the stool, else mingle with the fluids in stomach or bowels without being absorbed until the crisis is over, when they are very apt to prove mischievous.
Prior to the last epidemic in England, there were few practitioners who did not believe it a duty to check the so-called premonitory diarrhœa with as tringents and opiates, and reports of thousands of cases might be collected wherein medical men believed that by this method they prevented the development of the stage of collapse, though it is development of the stage of collapse, though it is
plainly apparent the theory upon which such practice is based is very far from infallible. Further, the whole subject has been so complicated by the publication of mmature hypotheses and extravagant conceits, and the views held by different individuals seeing the ame class of cases in the same institution are so opposite, it seems difficult to form any trustworthy opinion. Physicians only after each epidemic learn the lessons they taught and the principles they incul cated with so great care and energy were possessed of no real value-in reality had a mischievous tendency Taking these circumstances into consideration, the bewildered practitioner may well ask, "What shall be done?"
It is strongly advised to scout all extravagant plans oi treatment and not worry the sufferer with nauseou emedies that, to say the least, have time and again proved utterly useless. First. isolate him, as far a possible, securing at the same time a plentiful supply of fresh air. Next, see that his drinking water is pure, particularly that it has not been drawn from or poluted by any sewer, or sink, or river that is or has been used as a cesspool. For obvious reasons, the rain barrel is safer than the well. Empty the sick room of all superfluous furniture, of curtains, carpets, etc., covering the floor and neighboring passages with saw dust or sand, wet with some disinfectant fluid, such as dilute solution of aluminum acetate or Labarraque's solution; and when removed, the same should be wholly burned or purified by fire. Sulphurous acid gas may also be used for fumigation purposes. All excreta invariably must be received in earthen pans containing strong disinfectant fluid, and at once cre mated or buried-certainly not thrown into drains sewers or stream. Finally, the soiled body and bed inen should be soaked in an antiseptic solution (solu ion of corrosive sublimate, if desired), or in boilin water containing some disinfecting powder and after ward washed with carbolic soap. Better if they, too should be burned.
It need scarcely be added, the importance to the community of the preventive methods just outlined against infection can scarcely be exaggerated.
An attack of diarrhœa must on no account be ne lected. The sufferer should at once be sent to bed kept quiet, carefully nursed, and allowed to drink freely of soda water, plain, pure ice water, cold coffee, or milk and water, as often as thirsty; either cold or warm tea is quite prone to provoke or increase nausea when there is a choleraic tendency. Farinaceous foods, with well salted beef or mutton broth, may be taken as demanded or desired. Poultices may be ap-
plied to abdomen for relief of pain, or, better still, half a dozen thicknesses of flannel saturated with a mixture of chloroform and alcohol (one to twelve) and covered by oiled silk or rubber cloth to prevent evaporation.
Any suggestion of sinking or faintness may be controlled by gentle stimulation, but all drugs having a tendency to either encourage or repress looseness of bowels are best avoided. In the stage of collapse efforts are to be directed toward the restoration of animal heat; friction, turpentine stupes, sinapisms, dry and hot flannels and blankets. hot bottles to feet and sides, etc., here may find useful places; likewise recourse may be had to enemata of hot water containing small quảntities of potassium chlorate or of common salt. While there seems to be a prejudice on the part of medical men against warm baths, Dr. Tanner states as a fact that in 1866, at the London Hospital, prolonged immersion at temperature from 98 to 104 degrees Fah. certainly did no harm, while it "frequently proved so grateful it was difficult to get the patient out of the water.
To relieve the thirst, weak saline lemonade containing chlorate of potash and other salts has often been preferred to plain water, and if the arguments which at first sight seem strong in favor of allowing such drinks are unsound, still nothing can be alleged against the practice. During the whole of the third stage, the recumbent posture is strictly to be maintained, the patient being lifted on a sheet and blanket into the bath, if one be given.
With reference to other medication, it may be fairly said that the chances of recovery are probably lessened by the use of astringents, opiates and alcoholic drinks ingeneral, and the evidence in favor of the opposite course-use of emetics, purgatives, etc.-is very far from being satisfactory.
Be the origin of cholera what it may, miasmatic, ptomainic, bacillar, telluric or meteorologic, its neurotic character is most plainly manifest. As far back as the time of Cullen, the malady was classed in the "order Neuroses, class Spasms." Sir Henry Macor mac, who had extended experience in the epidemic of 1834 in Ireland, regarded it as provoked by a lesion of the abdominal sympathetic system, a view ably cor roborated by Charles Lever, and subsequently upheld by Sedgwick, Johnson, Claude Bernard, D'Arsonval, the elder Chirmac, Pisani, Cannatacci, Michael Foster, and especially Alexander Hackin. The influence of the nervous system is most clear, both in subjective and objective symptoms. The vomitings and numer ous stools evidently result from either a paralyzed or hyperæsthetic abdominal sympathetic, two conditions that, apparently antagonistic, are physiologically the same, differing only in degree, the latter depending upon the intensity of the poisoning; the crises, cramps, vertigo, anxiety, spasms and tremblings, also are of neural origin. Further, the entire series of symptom are precisely parallel in the toxic manifestations of certain cadaveric alkaloids, and also of muscarin (both a cadaveric and vegetable derivative), one of the most powerful nerve poisons known. Finally, the rapid deaths due to so-called cholera sicca (dry cholera),
which are observed during epidemics and in patients which are observed during epidemics and in patients
which have previously enjoyed good health, can only result from powerful influences brought to bear upon certain nerve centers, since they are for the most part preventable by the use of remedies that have direct influence upon the solar plexus, notably hydro
The practical application of an admitted physiologi cal and pathological principle, and the discovery of the constant relation of cause and effect, suggest the idea of a well defined law in this affection. It is, more over, to the sympathetic system that must be referred the depression of the functions of respiration and circulation, which constitute the gravest factors in cholera; therefore, in antagonism of the sympathetic is afforded a key to rational, physiological treatment.
The fact may be recalled that the pneumogastric (vagus) is an inhibitory nerve, and possesses an action antagonistic to that of the sympathetic on the heart that it unites with the latter in forming three plexuse -pharyngeal, cardiac, and solar. By stimulating the sympathetic part of the heart, its contractions are
augmented, but by acting thus on the vagus, it is posaugmented, but by acting thus on the vagus, it is pos
sible to arrest the heart in full diastole. The stimusible to arrest the heart in full diastole. The stimu-
lation of the vagus then gives rise to an important lation of the vagus then gives rise to an important
indication, namely, the re-establishment of the cardioinhibitory functions of this nerve, which are evidently absent in cholera. By so doing, the violent contractions and palpitations will cease; the energies of the heart cavities, especially those of the left side, are restored, and the congestion of the pulmonary and cutaneous systems disappears. Simon and others have shown that in cholera the left side of the heart is generally emptied, while the right side is distended and filled with blood; Sieluna and Bruce, performing autopsies on patients who succumbed at Malta during the epidemic of 1877 , always discovered the cavities of the left heart empty, and those of the right filled with blood; and George Budd (in Medical Chronicle, vol. den death from cholera, and, moreover, cites the expe
rience of M. Jackson, who, in 1832, observed the heart
of persons who succumbed to this disease often pre of persons who succumbed to this dise
sented hypertrophy of the left ventricle.
In all attacks of cholera, then, regardless of stage, the first indications are to stimulate the vaso-inhibitory apparatus and antagonize the sympathetic, especially its solar plexus, by sedation, by reflex, or both. The remedies most available for such purposes are, in order 1, hydrocyanic acid; 2, chloroform; 3, Indian hemp 4, morphine. Happily we have these all, with capsi cum added, in the combination entitled chlor-anodyne, a preparation that is not alone an improvement upon the old proprietary chlorodyne, but by the dropping of certain inert and nauseous ingredients is likewise far less antagonistic to a sensitive or irritated stomach. The action of this fluid is in a measure dual, in that it allays the irritation induced by poisoning of the sym pathetic, and at the same time stimulates the vaso-in hibitory apparatus, thereby relieving the spasmodic congestion of the arterioles that leads to oppression
and depression of both cardiac and pulmonary functions. The preparation is still further available, in that it is intensified by the powerful revulsive effect of the contained capsicum.
Next, if chlor-anodyne is insufficient, the sympathetic may be further and more powerfully antagonized by stimulation of the pneumogastric as advocated by Dr Alexander Hackin, and so successfully employed in Malta during the epidemic of 1887 . Three preparation are available for this purpose : one, an essence of mus tard oil; another, equal parts of saturated tinctures of ginger and capsicum ; finally, the epispastic liquor of the British Pharmacopœia (percolation of five parts cantharides with twenty parts acetic ether); and these should be applied freely over the branches of the pneumogastric in the neck-in front, beneath and behind the ear, covering three inches of surface, preferably on the right side (Coleman having demonstrated the right vagus commands the smaller intestines). If the case be one of extreme urgency, the liquid may be applied anderneath the eye, and, if desired, both right and left
vagi excited. The effect is almost instantane vagi excited. The effect is almost instantaneous, and
all morbid phenomena, if mitigated at all, are usually annihilated before vesication can take place. With the first two preparations vesication may generally be avoided ; but in cases of extreme collapse the epispas tic liquid should receive entire preference, chlor-anodyne being at the same time given by the mouth in sirup or on sugar, in full doses of 30 minims. By de veloping the inhibitory power of the vagus, vomiting purging, and cramps are rapidly arrested, the pulse regains its power, bodily temperature is increased, and the patient speedily falls asleep.
According to Prof. Pisani, Chief of the Health Ser vice of Malta, cholera made its appearance in tha island on the 25th of July, 1887, and the mode of treat ment outlined above was begun on the 31st of the following August. In his report to the government he remarks: "The amelioration was very rapid."
Dr. Inglott, Surgeon of Zabbor Hospital, says: "It has often succeeded in the gravest cases where other treatment had proved futile, not only in my hands but also in those of my friend Dr. Cannatacci, of Zeitum Hospital. We worked together, and every day ex-
changed observations on this important subject. This treatment often gave us astonishing results, and my sincere conviction is that thereby we were enabled to save many patients from death. I recall, among others, that of a poor child of eight years, who was so cold there seemed to be no hope ; all tried remedies had proved useless, and when I saw him in the morning he was dying ; in the afternoon he was convalescent, and all this had been accomplished by profound anta These obseryationsthetic."
These observations require no special comment, and it would be useless to dwell on the importance of rapidity of treatment in an affection where moments are so precious. The sleep which the revulsive fluid (externally) secures in connection with chlor-anodyne (internally) and there-establishment of a balance between circulation and respiration, tend not only rapidly to abort the malady, but also to oppose the typhic condition or secondary fever that frequently is a convalescent sequel
After all, the treatment of maladies is part of their pathology; the nature, the power of the remedy, and the modifications that follow its action are the surest guarantees of the character and tendency of the dis ease.

Novel Geological Ideas.

The presidential address before the British Association, Section C, of Prof. C. Lapworth, LL.D., concludes as follows :
The account of the simple rock-fold I have already given you is of the most elementary kind. It presupposes merely the yielding to tangential pressure from front and back, combined with effectual resistance to sliding. But in the layers of the earth crust there is always, in addition, a set of tangential pressures theoretically at right angles to this. The simple fold be
comes a folded fold, and the compound septum twists not only vertically but laterally. On the surface of
the globe this double set of longitudinal and transverse waves is everywhere apparent. They account for the detailed disposition of our lands and our waters, for our present coastal forms, for the direction, length, and disposition of our mountain ranges, our seas, our plains, and lakes. The compound arch becomes a dome, its complementary trough becomes a basin. The eleva tions and depressions, major and minor, are usually twinned, like the twins of the mineralogist, the com plementary parts being often inverted, and turned through 180° (compare Italy with the Po-Adriatic depression). Every upward swirl and eddy has its answer ing downward swirl. The whole surface of our globe is thus broken up into fairly continuous and paired masses, divided from each other by moving areas and lines of mountain making and crust movement, so that the surface of the earth of the present day seems to stand midway in its structure and appearance between those of the sun and the moon, its eddies wanting the mobility of those of the one and the symmetry of those of the other. In the geology of the earth crust, also, the intercrossing of the two sets of folds, theoretically at right angles to each other, gives rise to effects equally startling. It lies at the origin of the thrust plane or overfault, where the septal region of contrary motion in the fold becomes reduced to, or is represented by, a plane of contrary motion. It allows us to connect together under one set of homologies folds and faults. The downthrow side of the fault answers to the trough the upthrow side to the arch, of our longitudinal fold while the fault plane itself represents the septal area reduced to zero. The node of the fault, and the alter nation and alteration of throw, are due to the effect of the transverse folding.
These transverse folds of different grades, which af fect different layers of the earth crust differentially, ac count also for the formation of laccolites, of granitic cores, and of petrological provinces; and they enable us also to understand many of the phenomena of meta morphism.
Of the folds of the third order I shall here say no thing; but I must frankly admit that the primal cause of all this tangential movement and folding stress is still as mysterious to me as ever. I incline to think that it is due to many causes-tidal action, sedimenta tion, and many others. I cannot deny, however, that it may be mainly the result of the contraction in diameter of our earth, due to the loss of its original heat into outer space. For everywhere we find evidences of symmetrical crushing of the earth crust by tangentia tresses. Everywhere we find proofs that different lay ers of that crust have been affected differentially, and the outer layers have been folded the most. We seem to be dealing not so much with a solid globe as with a globular shell composed of many layers.
Is it not just possible after all that, as others have uggested, our earth is such a hollow shell, or series of concentric shells, on the surface of which gravity is at a maximum, and in whose deepest interior it is nonexistent? May this not be so also in the case of the un, through whose spot-eddies we possibly look into a hollow interior? If so, perhaps our present nebulæ nay also be hollow shells formed of meteorites. On the surfaces of these shells the fiery spirals we see would be the swirls which answer to the many twisting crustal septa of the earth. Our comets, too, in this case might be elongated ellipsoids, whose visible parts would be merely interference phenomena or sheets of differential movement.
In this case we have represented before us to-day all the past of our earth as well as its present. Uniformity and evolution are one.
Thus from the microscopic septa of the laminæ of the geological formations we pass outward in fact to these moving septa of our globe, marked on land by our new mountain chains, and on our shores by our active vol canoes. Thence we sweep, in imagination, to the fiery eddies of the sun, and thence to the glowing swirls of the nebulæ; and so outward and upward to that most glorious septum of all the visible creation, the radiant ring of the Milky Way.

Snow Sheds Burned.

There were four fires in the Central Pacific snow heds at Summit on the night of September 9. The Summit fire train while fighting flames became sur rounded by fire and had to be abandoned. The engine and water cars were wrecked by the flames. The Blue Cañon water train was hurried to the scene, but a new fire started west of the train, and for a time there was imminent danger that this train would also be destroyed. The water train from Rocklin was sent up early next morning and the flames got under control. Twenty-one hundred feet of sheds and track were de wenty-one hundred feet of sheds and track were de stroyed and four passenger trains blockaded. The
press dispatches reporting these facts state that the press dispatches repor
fires were incendiary.

A correspondent of the Confectioners' Journal says that banana juice makes a first-class indelible ink. A spot on a white shirt from a dead ripe banana is marked forever, and the juice from bananas thorough ly decayed is a bright, clear carmine.

BAKU.*
The accompanying illustration, from a recent photograph, shows the most important business portion of the principal seat of the Russian petroleum industry, on the Caspian Sea. The town has but lately had a very severe visitation of cholera. The house on the extreme left is that of the Governor of Baku, and the roadway for about fifty yards in front on each side is asphalted. All tramcars must proceed at a walking pace, and not stop to take up or set down passengers while on this stretch of road. Further to the right is the Customs House, beyond which is the "Virgin's tower," an ancient structure now used as one of the harbor lights for ships coming into the portTo the extreme right may be seen the warehouses and works of the Kaucus and Mercurie Company, the largest ship-owners on the Caspian Sea and the Volga. This company has a fleet of nineteen steamers-i.e., thirteen screw steamers, with a total of 5,670 horse power, the largest, the Jandr, being of 1,200 horse power, and six paddle steamers, of 4,656 total horse power. The largest paddle steamer is the Admiral Karnelov, whose dimensions are length, 248 feet, breadth, 30 feet, and depth, 16 feet 8 inches, and fitted with engines of 950 horse power. This company has the contract for conveying the mails over the Caspian Sea. At the opposite end of the bay, the distance being about two miles, are the government dockyards of Bielof. In the old town, which is inclosed by a wall from 12 feet to 16 feet in thickness, some of the streets are very narrow. The artificers may be seen sitting at the front of their shops making shoes, Persian slippers, Astra khan and Bokhara caps, and articles in gold and ing deeper contains more volatile oil. At a depth of silver. The population of Baku at the end of 1890 from 500 to 600 feet inflammable gas comes up through was about 104,000 . Ourillustration is from Industries, the bore. The only use to which the mineral is London.

The supply of crude petroleum at Baku is apparently inexhaustible, but until within the last ten years the town has been practically isolated from the rest of Europe, a long and troublesome journey being required to get to it. This has now been changed, and Baku at present has steam communication with all parts of Europe. The Nobel Brothers have borne a prominent part in developing the petroleum industry here, laying the first pipe lines, employing tank steamers for conveying the product, and taking the lead in employing petroleum as fuel for the steamers. There is now not a vessel on the Caspian using wood or coal, liquid fuel being employed exclusively.

Baku," see Scientific American Supplement, No. 439

THE HARBOR OF BAKU.
machinery for the purpose, also the necessary experience in such work. There can now be no doubt about oil existing at a certain depth ; it comes up already on the surface of the water. There is an opportunity for experienced capital to test these deposits of bitumen, which, it is believed, would yield good returns for the investment.

Russia the Headquarters of Famine and Disease
One of the most engrossing things of late in New York has been the cholera and what they are doing at Quarantine to prevent its entrance into the city With this dread disease knock ing so urgently at our gates, it may be interesting to learn what men known for careful scientific research are disposed to say as to its origin.

Mr. Geo. W. Dunn, president of the Standard Chemical Works says: "The principal cause of this appalling disease is the failure of the Russian crops last year. Our minister at St.Peters burg, the Hon. Charles Emory Smith, states that there are from fourteen to sixteen millions of people in absolute want of the necessaries of life and dependent upon measures of relief for continued existence." He also says "The area over which the fa mine prevails is ten times as large as the State of New York It contains a population of more than thirty millions. More than one-half are in utter helpless destitution, without food and without means of getting it. There are other millions who are reduced to abject penury and who can sustain themselves only in the most precarious way, and when to this reign of gaunt hun ger we add the ravages of dis ease, the epidemic of typhus, the suffering from the severities of a specially rigorous winter, the decimation of stock and destruction of the bore. The only use to which the mineral is material, and the consequent difficulties of recuperaturned, at present, is for the manufacture of paving blocks. The bituminous limestone is used for this purpose ; it is crushed into powder, a small quantity of liquid bitumen and sand added, and then the mixture is put into moulds and submitted to very high hydraulic pressure, and the blocks thus turned out are in the form of bricks or tiles as required. They resist perfectly well the action of heat; the trials made in different towns where they have been employed for paving the streets have turned out most satisfactorily. The work is very neat, and it costs less than the ordinary paving stones. The boring in search of petroleum continues very slowly, on account of the pressure of the gas, which drives up the sand and soil into the tubes to a height of 100 meters and prevents the work-
ing of the bores. It is thought they lack the proper
material, and the consequent difficulties of recupera ion, we have a picture of widespread distress which With such overdrawn."
With such a state of things existing in Russia, and added to this the brutal efforts of the Czar to drive those of Jewish religion out of his domains, it is no wonder, says Architecture and Building, that this disease is scattered through the ports of Europe and that itois threatening the whole civilized world.

Inasmuch as sewage does not constitute a well-balanced manure, but is relatively deficient in phosphoric acid, sewage farms, unless their soils are specially rich in phosphoric acid, should be manured with bone meal or Thomas slag meal, otherwise the crops raised on them will not be of normal and perfectly sound growth. $-N$. A. Pearson.

BAKU, THE HEADQUARTERS OF THE RUSSIAN PETROLEUM INDUSTRY.

AN IMPROVED NUT LOCK.

The accompanying illustration represents a simple, very efficient, and inexpensive form of nut lock, designed, when properly set, to prevent any turning or loosening of the nut, a key holding the lock from any possibility of loosening. This improvement has been patented by Mr. William Schauweker, of No. 201 Colwell Street, Pittsburg, Pa. Fig. 1 shows the lock plate and the seat for the lock, Fig. 2 representing the

SCHAUWEKER'S NUT LOCK.
blank of the lock plate as it is punched out and before being bent into form, while Fig. 3 shows the application of the improvement, the key being in place in the lock. The grooves at the sides of the bolt hole in the lock seat are adapted to receive the feathers bent downward from the sides of the central opening of the lock plate, and the two ears at the ends of the lock plate, when bent upward as shown in Fig. 1, form a groove in which slides a wedge-shaped key, the key being kept from coming out by a wire pin or loop. In applying the lock the nut is to be screwed down until, when the key is placed in position, it will fit snugly against a flat side of the nut, the plate being placed so that its feathers will engage the proper notches in the lock seat to enable this to be effected.

A SIMPLE AND EFFICIENT TYPEWRITER.

The small, compact, and very inexpensive typewriting machine shown in the illustration, which with its box weighs only one pound, has been patented by Mr. Analdo M. English. The carriage way is attached to a light wood base, and is of sheet metal, having at one edge a vertical flange with rack teeth for engaging the feed devices, and grooves forming a guide for the carriage, on which all the operative parts of the printing and carriage-feeding devices are mounted. A printing disk and index wheel are pivoted for horizontal movement in unisoi: in either direction in a casing secured to the carriage, and the index wheel has radi al spring fingers on which are characters correspond ing to those on the under side of the printing disk, each of these fingers also having a projection to be pressed upon by the finger of the operator in rotating the disk. As the index wheel is thus rotated the de-
 sired character is brought into align
ment with and its finger is depressed into a notch in the casing on the side next the operator, a corresponding character on the rubber printing disk being at the same time brought be neath the type-impressing devices, the letter being thus locked when the im pression is made. The impression frame is of wire, and from it extends an operating key, a spacing frame being also operated on by the key in its downward movement, whereby

the carriage is moved along the space of a letter each time the key is depressed, the depression of the wire spacing frame, under the key, moving the carriage for spacing when the key is not depressed. In order to return the carriage when it reaches the end of a line, it is only necessary to press upon a small finger piece controlling a spring detent and pawl, when the carriage and its appurtenances may be moved backward to begin another line. The length of line, as the machine is at present made, is eight inches. The paper is shifted by hand for line spacing, being held therefor in a paper holder in the form of an elongated clip, as shown in a separate view. The clip has a ver tical member sliding in a guide groove in the base. The inking is effected in a simple manner by inking pads at each side of an opening in the casing near the impression frame. The machine is readily and rapidly oper-
rubbed on a betel leaf, chewed, and swallowed. But the tea planters of Matale took no heed of this warning, till at last people in England began to make inquiries egarding the laxative quality of certain brands of tea ent from Ceylon, by the use of which several persons had been taken ill. Shortly after this almost all the roton trees on the tea estates disappeared. Planter who did not go in for tea and allowed their crotons to emain are now making some profit, as of late ther has been a demand for the seed

NEW MATHEMATICAL INSTRUMENT

The engraving illustrates a new instrument for the use of engineers and architects, to be used as a section liner and scale divider. The base of the instrument consists of a bar having a longitudinal rack with twenty-four teeth to the inch. To the bar is nicely
 appear in plain view as fast as they are made. It will go into a box 5 inches wide, 9 inches long, and $11 / 2$ inches deep, so that it may be carried in the pocket. It is a typewriter evidently intended for use in the various proed for use in the various pro-
fessions and for private correspondence.

BOTH'S SECTION LINER AND SCALE DIVIDER.
Further information rela-
tive to this improvement may be obtained of the fitted a carriage provided with a central post, the up Simplex Typewriter Co., No. 32 Great Jones Street, New York City.

AN IMPROVED SPEED INDICATOR.

The neat and well finished device, shown full size in back and front views in the illustration, has some de cided advantages which will at once commend it to all who have occasion to test the speed of running ma chines. It does not matter whether the shaft is turn ing to the right or to the left, the indicator is always in proper position to be applied, and requires no turn ing to zero. The distinctive merit of this device con sists in its alarm bell attachment, the bell ringing at every hundred revolutions of the spindle, so that it is only necessary to place the indicator in position and count the strokes upon the bell as the eye follows th hands upon the watch dial. The friction caused by
per end of which is threaded and provided with an ad justing nut. On the post below the nut is a collar which is pressed upwardly against the nut by a spira spring. The collar carries a steel pawl which engages the rack, so that when the collar is pushed down, the carriage is forced to advance along the rack bar from one to six teeth at a time, according to the adjustment of the take-up. To the carriage is attached a semi circular protractor graduated to degrees. A ruler arm is pivoted to the protractor and is adjustable so that it may be placed at any desired angle.
The use of the instrument as a section liner is obvi vious, the step-by-step motion being adjusted so as to move the ruler through the desired space after each line has been made. When the ruler arm is set at right angles to the rack bar, it will move with each pressure of the knob a distance equal to the number

the weiss double speed alarm indicator.
the pressure against the shaft is reduced to a minimum by the use of a hardened stub steel socket in which the hardened spindle rests and turns. No especial care need be taken to hold the indicator exactly true. When the speed is wanted of a shaft running in a dark corner, or in a position not easily accessible, the many advantages of this convenient de vice will be readily understood. It is nickel plated, and may be readily carried in the vest pocket. It has been patented and is manufactured by Messrs. Weiss Bros., machinists, Nos. 855 and 857 DeKalb Avenue, Brooklyn, N. Y.

Croton Trees in Tea Plantations.
Some time ago a writer in the Times of Ceylon called attention to the danger in planting croton oil trees mong tea bushes, as was then done on many places in the Matale district, since it wasfeared that, while gath ering the tea leaves, some croton leaves might acci dentally fall into the baskets and be man ufactured into tea. Natives have a dread of the croton tree, as its poisonous proper ties are so wel known to them that they fear even to pass under its sha dow. Even native medical practition ers, in prescribing the oil obtained fron the seed as a purgative, give only one drop as a dose for an adult. This is
of teeth for which the take-up has been set, thus per mitting of drawing lines $\frac{1}{24}, T^{\frac{1}{2}}, \frac{1}{8}, \frac{1}{6}, \frac{1}{4}$ of an inch apart When the arm is arijusted at any other angle, the space between the lines will be diminished as the an gle becomes more acute. By taking advantage of this fact, lines may be spaced in any desired ratio to the paces of the rack bar. This ratio is the natural sine of the angle formed by the ruler and the rack bar. For example, if it be required to draw a scale of 12 to the inch, then we have $\frac{12}{24}=0 \cdot 5$, which is the sine of 30°, or the angle to which the ruler arm must be set.
By means of this instrument any desired scale may be quickly constructed and accurately spaced. It is manufactured and sold by the Keuffel \& Esser Co. 127 Fulton Street, N. Y.

Edison's New Jersey Village.

The village of Ogden, N. J., now known as Edison, has been built up within the last two years. The site is an old iron mine, known as the Ogden mine. It was abandoned many years ago, and until two years ago the vicinity was entirely deserted, and had grown up with shrub oaks and bushes. When Mr. Edison in vented the magnetic ore separator, he organized the New Jersey and Pennsylvania Concentration Com pany and a plant was established at Ogden the nam f which was then to Edion. The name fre is run the ore a and ing machines, and then passed through the Edison sep arator, where powerful magnets attract all the metal which is afterward run into pigs.

New Remedy for Cabbage Insects.

The cabbage plants are sprinkled with ordinary corn neal while they are wet with dew or immediately after rain, so the meal will cling to the leaves at all points.

POSITION OF THE PLANETS IN OCTOBER JUPITER

is morning star until the 12 th , and then evening star. He is foremost on October planetary annals, reaching the culmination of his course as far as terrestrial observers are concerned. This epoch is his opposition with the sun, on the $12 t h$, at 1 h .14 m. P. M. Several features give to the event a more than usual significance. The planet is in northern declination, which lengthens his stay above the horizon, and increases his meridian altitude, and, as he is only about two months beyond perihelion, he is nearer to the earth than he will be until he comes round to perihelion again in 1904. Jupiter, in opposition, is opposite the sun, rising at sunset, looking down from the meridian near midnight, and setting at sunrise. The synodic period of Jupiter, or the time it seems to take him to pass from opposition to opposition again, is 399 days, or a year and a little more than a month, a number easily remembered. The time for succeeding oppositions may be readily calculated. His opposition took place last year on September 5, this year it is on October 12, and next year November 15 will be the date. He passes at this time from the sun's western side to his eastern and is ranked as evening star. He reigns without a rival until Venus rises, and well deserves the name of prince of planets, for he is the largest and brightest of the clustering throngs that people the celestial vault. It is no wonder that ancient astronomers named him for their great god, that astrologers welcomed his ascendancy in the horoscopes they cast as a benignant influence, or that modern observers have a sincere admiration for the star that is the embodiment of strength and majesty. He is at his best in October, and a fine study for the telescope when possibly some new light may be thrown upon the famous red spot that has puzzled scientific brains since 1878.

The moon, on the day of the full, is in conjunction with Jupiter on the 6th, at 0 h .45 m. P. M., being 3^{\prime} north. The conjunction occurs when moon and planet are below the horizon, but the two heavenly bodies will be near neighbors when Jupiter rises about 6 o'clock on the evening of the 5th, and form a celestial picture that will be pleasant to behold. The moon will occult Jupiter to observers who see her in her geocentric position. She will also occult Saturn Uranus, and Mercury under the same conditions.

The right ascension of Jupiter on the 1st is 1 h .21 m . his declination is $6^{\circ} 49^{\prime}$ north, his diameter is $47^{\prime \prime} .2$, and he is in the constellation Pisces.
Jupiter rises on the 1st at 6 h .8 m. P. M. On the 31st he sets at 4 h .42 m . A. M.

venus

is morning star, rising in the small hours, and fulfilling her mission as herald of the dawn with queenly dig nity. When she rises on the 1st at 2 h .8 m . A. M. Jupiter is near the meridian, and the two rivals make a spectacle of surpassing beauty, the one, near her greatest distance from the sun, oscillating toward him, and the other beaming from the zenith, and rapidly drawing near that portion of his course where his luster is greatest. Venus, an inferior planet, oscillates east and west from the sun. Jupiter, a superior planet makes the circuit of the heavens, and looks down from the zenith, amid the midnight darkness of the sky, a point beyond the reach of his fair rival.

The moon, four days before her change, is in con junction with Venus, on the 16th, at 10 h .8 m . A. M being $4^{\circ} 27^{\prime}$ north.

The right ascension of Venus on the 1st is 9 h .41 m her declination is $13^{\circ} 3^{\prime}$ north, her diameter is $21^{\prime \prime} .4$ and she is in the constellation Leo.

Venus rises on the 1 st at 2 h .8 m . A. M. On th 31st she rises at 2 h .56 m. A. M.

MARS

is evening star. He was watched at opposition a planet was never watched before; but he has had his day and is receding from the earth, lessening in size and ruddy light, while October closes the season when he is of much importance. His diameter at the close of the month is only one half as great as it was at opposition. He makes his transit on the 1st at 8 h . $17 \mathrm{~m} . \mathrm{P}$. M., and sets at 0 h .59 m. A. M., so that he is below the horizon when Venus rises, and has to yield the precedence to Jupiter until he disappears from view. Mars is in conjunction with the third magni tude star, Delta Capricorni, on the 25 th at $6 \mathrm{~h} . \mathrm{A} . \mathrm{M}$., being 1^{\prime} north of the star. The planet is below the horizon at the time of conjunction, but will be near the star on the night preceding.
The moon makes two conjunctions with Mars dur ing the month. The first conjunction takes place on the 25th at $6 \mathrm{~h} . \mathrm{P} . \mathrm{M}$. , the moon being $1^{\circ} 21^{\prime}$ south. The second conjunction takes place on the 30th at 0 h . 19 m. A. M., the moon being $2^{\circ} 57^{\prime}$ south. It will thus be seen that the paths of the moon and the ruddy planet do not lie very near in October.
The right ascension of Mars on the 1st is 21 h .2 m ., his declination is $21^{\circ} 6^{\prime}$ south, his diameter is $18^{\prime \prime} .2$, and he is in the constellation Capricornus.

Mars sets on the 1 st at $0 \mathrm{~h} .59 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 31st he sets at 0 h .14 m . A. M.

MERCURY

is morning star until the 8th, and then evening star He is in superior conjunction with the sun on the 8 th when, passing beyond the sun, he appears on the sun's eastern side and ranks as evening star. Mercury is in conjunction with Saturn on the 1st at 4 h .35 m. P. M. being 34^{\prime} south. He is conjunction with Uranus on the 20 th , at $1 \mathrm{~h} .29 \mathrm{~m} . \mathrm{P}$. M., being 46^{\prime} south
The moon, the day after her change, is in conjunc tion with Mercury on the 21st, at $8 \mathrm{~h} .29 \mathrm{~m} . \mathrm{A}$. M., being 29 north.
The right ascension of Mercury on the 1st is 12 h .1 m ., his declination is $0^{\circ} 3^{\prime}$ south, his diameter is $5^{\prime \prime} .0$ and he is in the constellation Virgo.
Mercury rises on the 1st at $5 \mathrm{~h} .29 \mathrm{~m} . \mathrm{A}$. M. On th 31st he sets at $5 \mathrm{~h} .22 \mathrm{~m} . \mathrm{P}$. M.

SATURN

is morning star. The incidents of interest in his October course are his conjunction with Mercury on the 1st and he is also one of the three planets that are to be found in Virgo during the first part of the month, Uranus being the third member of the trio
The moon, two days before her change, is in conjunc tion with Saturn on the 18 th, at 4 h .58 m. P. M., being 42' south.
The right ascension of Saturn on the first is 12 h . 8 m ., his declination is $0^{\circ} 25^{\prime}$ north, his diameter is $14^{\prime \prime} .8$, and he is in the constellation Virgo
Saturn rises on the 1st at 5 h .29 m .
31st he rises at 3 h .49 m. A. M

URANUS

is evening staruntil the 29th, and then morning star. He is in conjunction with the sun on the 29th, when he enters the ranks of the morning stars, because he is on the sun's western side. His conjunction with Mer cury has been referred to.

The moon, the day after her change, is in conjunction with Uranus, on the 21st, at 6 h .2 m. A. M., being 17' south.
The right ascension of Uranus on the 1st is 14 h .10 m ., his declination is $12^{\circ} 41^{\prime}$ south, his diameter is $3^{\prime \prime}$. and he is in the constellation Virgo.
Uranus sets on the 1 st at $6 \mathrm{~h} .38 \mathrm{~m} . \mathrm{P}$. M. On the 31st he rises at 6 h .19 m. A. M.

NEPTUNE
is morning star. His right ascension on the 1st is 4 h . 40 m ., his declination is $20^{\circ} 34^{\prime}$ north, his diameter is $2^{\prime \prime} .6$, and he is in the constellation Taurus.
Neptune rises on the 1st at $8 \mathrm{~h} .34 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31st he rises at $6 \mathrm{~h} .34 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.
Venus, Jupiter, Saturn, Mercury and Neptune are morning stars at the beginning of the month. Mars and Uranus are evening stars.

THE FIFTH SATELLITE OF JUPITER
A new member of the sun's family has made its advent since the position of the pianets was last chroni cled. The new corner was as unexpected as is usually the case with celestial events of momentous import ance. The fifth satellite of Jupiter has, however
come to stay. Barnard, who found the prize, has won come to stay. Barnard, who found the prize, has won
immortal fame, and the Lick Observatory has at last done something worthy of the largest telescope in the world, and its fine location. There is not much to record concerning the new satellite. It was discovered on September 10, is 100 miles in diameter, shining as a star of the thirteenth magnitude, and revolving around its giant primary in about twelve hours, at a distance 112,000 miles from his center. It is difficult to tell whether the new moon is a blessing or a burden Astronomers are puzzled to find a name for it, as Num ber 1 is already appropriated for the first satellite be yond it. Text books will have to be remodeled to re cognize its presence in the sky. There is also•a widespread popular disappointment that some important discovery about Mars, so ardently hoped for, could not have been made instead of this tiny moon that " flies swiftly round" the vast mass of Jupiter. At least, th citement that attended the discovery of the Martian moons in 1877.

About Sound.

Sound is transmitted to the ear by the vibrations of the air. When one particle of air is made to vibrat it sets the adjacent particles vibrating, and so a sound wave, if not obstructed, passes in all directions from the sounding body. The calculated velocity of sound in the air, when the temperature is at the freez gents formed in 1823 , Vaubeek, and Kuytenbre feet, showed the velocity to be $1,089 \cdot 42$ feet per second. Laplace explained why it was that the actual velocity was greater than the calculated velocity, by showing that the sound vibrations increase the temperature of the air, and hence the sound travels faster than the calcu lated rate. This leads us to note the fact that an in by 1.11 feet per second for each degree of rise of Fah
renheit's thermometer. Hence sounds travel faster in summer than in winter, and in warm than in cold climates. It might be thought that sound would travel more slowly through a dense atmosphere, but the elasticity increases as rapidly as the density, and therefore the velocity of sound is not affected by varying density.

The velocity of sound in water, when at the greatest

 density, is $4,707 \cdot 4$ feet per second. The experiments by which this velocity was determined were made by M. Colladon in 1826, across the Lake of Geneva, from Rolle to Thonon, a distance of about nine miles. Water, therefore, transmits sound about four times as fast as air does. Still, water is not as good a medium for transmitting sound as the air. If a bell is rung under water and the sound transmitted through that medium for more than six hundred yards, the tones are not heard, but only a short, sharp sound, "like two knife blades struck together." Our atmosphere seems to be of just the rightnature and density to give to sound its mellow tones and musical cadences. Nor is sound in water diffused around intervening objects as it is in the air. In the air a noise is carried with considerable intensity around a building or wall, bu in water an intervening wall intercepts the sound almost entirely.Here we turn aside to consider a question which perhaps, has not often suggested itself, but which is, nevertheless, quite interesting. Why can we hear, but not see, around a corner? Some may think that this question can be answered by saying that light moves in a straiopht line, while sound does not. But this answer is .ot satisfactory. It is known that light this answer is .ot satisfactory. It is sound are similar in character; each is due to the and sound are similar in character; each is due to the
vibrations of a medium, and each is transmitted in waves. Why, then, may not light spread around a corner as well as sound? The answer is to be found in the different lengths of sound and light waves. Sound waves themselves are of different lengths, the graver sounds having waves of greater length than the more acute. Now it can be shown mathematically that the greater length of sound waves will cause the sound to be diffused around the obstruction. Hence the bass notes f a band of music are heard more distinctly far behind a wall than the higher notes, and as the person moves out of the "acoustic shadow," the more acute notes increase in distinctness. So, also, when sound is transmitted through water the sound waves are shorte than in the air, and the "acoustic shadow" is fully formed. As the length of sound waves in the air is sometimes many feet, while the length of the longest light wave is not more than 0000266 of an inch, it is no longer a mystery why we can hear, but cannot see around a corner
It is easily demonstrated that the intensity of sound varies inversely as the square of the distance from the origin of the sound. Generally speaking, a sound wil be heard farther the greater its original intensity and the denser the medium in which it is propagated. The greatest known distance to which sound has been car ried through the atmosphere is 345 miles, as it is as serted that the very violent explosions of the volcan at St. Vincent have been heard at Demerara. Sound ravels farther and loses less of its intensity in passing through the earth than through the air. In 1806 the cannonading at the battle of Jena was heard in the pen fields near Dresden, a distance of 92 miles, though but feebly; while in the casements of the fortifications it was heard with great distinctness. It is also said that the cannonading of the citadel of Antwerp in 1832 was heard in the mines of Saxony, which are about 370 miles distant.-J. A. Moore, in Popular Science News.

Preservation of India Rubber Goods

In an article (India Rubber World) on "The De terioration of Druggists' Rubber Goods," Mr. J. A Sherman mentions a few of the causes which go to spoil this class of stock, and criticises the means which are taken to prevent deterioration. Fine surface cracks are taken as evidence that the goods are going wrong and this may be due to (1) being kept in warm, dry air, as on top shelves in the shop ; (2) exposure to sunlight; thus all goods shown in the window rapidly become bad. These are really the chief sources of trouble. As to the means of preservation, a New York manufacturer claims that small articles like catheters and tubes keep well immersed in water, but Mr. Sherman says that this is an impracticable method when generally applied. It has also been claimed that keeping the goods in air-tight boxes preserves, but this again is denied, and so is the statement that a coating of paraffin is beneficial. Paraffin mixed with unvulcanized rubber will destroy the latter in a short time, and it is very problematical whether it would not have the same effect on vulcanized goods. Exposure to the air is not considered to be detrimental, although a jet of oxygen directed upon an India rubber ball causes it to soften. On the whole, proper vulcanization is the only security that India rubber goods will keep well, and as long as they are stored in a part of the shop where the temperature is equable and moderate, the most is done that can be to prevent deterioration.

MILITARY BALLOONING.

In Europe, the principal governments now have bal looning corps attached to their armies, by means of which observing balloons may be readily transported and quickly inflated on the field. In Germany, much attention has been directed of late to a new process of ballooning invented jointly by Herr Richter, a lieutenant of artillery, and Herr Majert, a scientific chemist, for depriving gas of the moisture it contains, and so lessening its specific gravity, to augment its power of raising and sustaining a balloon, with regard to the size of the balloon and the volume of gas. This process is deemed likely to supersede both the use of the special gas manufactured by the Yon system and that of the condensed gas which is supplied by English and Italian companies. The German military balloon car, also, as shown in our illustration, is suspended from a trapeze, which lessens its oscillation. We are indebted to the lllustrated London News for our engraving.
The rope-winding mechanism, by which the height of the balloon is regulated, is arranged upon a strong wagon, and is operated by a steam engine, the whole presenting the general appearance of a steam fire engine. The hydrogen gas for inflating the balloon is carried to the field in highly condensed form in separate steel cylinders. In operation a central steel cylinder of larger size than the others, is laid upon the ground and the smaller cylinders are then attachedj to its sides. A flexible pipe at one end of the large cylinder conducts the gas to the balloon. Each cylinder has a stop cock by which the gas is allowed to escape into the balloon.

Soda Foam.

With soda water, as with stocks, "der brofit ist in de pubbles," and it is consequently not surprising that special foaming preparations are so often added to the sirups to produce the light and attractive head of foam with which the devotees of the soda water counter are so familiar. Of course it is not only to increase the dispenser's profits that foam is added, but also, as is the case with coloring matters, to please the eye of the customer, for what is more suggestive of cold than the snowy white froth on the brimming tumbler of soda?
Foam is a natural product, being caused by the escape of air or gas from a viscid liquid. In the case of soda water, it is the escape of the carbonic acid gas from the sweetened keverage that causes the attractive sparkling appearance; but the sweetened water alone would give rise to but a small quantity of foam, as the gas would too easily escape. In order to prevent this some mucilaginous substance is usually added to the
sirup, which renders the mass more viscous, so preventing the gas from escaping and producing theattractive head of foam so familiar to all.
The question as to why all foam is white is not an easy one to understand, but the fact is that foam is always white, whatever may be the color of the beverage itself. The froth produced on a bottle of the blackest ink is white, and would be perfectly so were it not tinged to a certain extent by particles of the beverage which the bubbles hold in mechanical suspension. As to the cause of this whiteness it is sufficient to say that it is due to the large number of reflecting surfaces formed by the foam, for it is these surfaces which, by reflecting the light, produce upon our eyes the impression of white.
If we remember that all bodies owe their colors to the rays of light which they cannot absorb, and that all bodies which reflect all the light they receive, without absorbing any, appear perfectly white, we shall be prepared to understand how the multitude of reflecting surfaces formed by the foam, and which do not absorb any light, must necessarily give the froth a white appearance. It is for the same reason that any very fine powder appears white, even the blackest marble when ground to dust, losing every trace of its original color.
Some people deplore the use of foaming preparations in soda water, claiming that such additions are totally uncalled for and unwarranted, but it must, nevertheless, be conceded that soda foam can bring forward several valid arguments in its own favor. In the first place, it aids greatly in keeping the gas from escaping too rapidly from the tumbler. In the second place, as before mentioned, it undoubtedly adds greatly to the dispenser's profits, for it is claimed that, by adding two ounces of foaming preparation to a gallon of sirup, the confectioner can draw fifty more glasses than without the foam. Thirdly, we must remember that the appearance of any article of food or drink plays fully as important a part as its taste in increasing the appetite and stimulating the gastric secretions, and when we bear all these facts in mind, we shall be inclined to look upon the snowy foam with more leniency. And, indeed, however we may look at it, there is no denying the fact that it has come to stay, and to stay probably for a considerable period of time, so we must make the best we can of the matter.
For producing a foam on beverages, three substances are in general use. These are soap bark, gum arabic,
and the whites of eggs. Of the three, soap bark is the one usually preferred, as it is more stable than either the others, and it is at the same time cheaper
Soap bark is the inner bark of the Quillaia saponaria, a South American tree, and is shipped to this country in large quantities. It has a bitter taste, and its dust is most irritating to the eyes and nostrils. The bark is first crushed or ground, and its mucilaginous portions are extracted by percolating a mixture of alco hol, glycerine, and water through the bark, thus producing a foaming preparation which possesses many good qualities.
Gum arabic is seldom used for producing foam, owing chiefly to its high cost, but also to the fact that it is liable to fermentation and inversion, and is hence not suitable for bottled beverages or those which have to be kept for any length of time. Nevertheless many of the foaming preparations on the market go under such names as gum foam, foaming gum, Blank's gum etc., although in most of them no gum whatever is used.

As regards the whites of eggs, I have mentioned them merely to condemn their use, for these are so un stable that, unless the sirup be used immediately, the eggs will decompose and give the beverage the disgusting odor of sulphureted hydrogen. Hence white of eggs should never be employed in making the sirup, not even for the dispensing counter. The only way in which eggs may be used at the soda fountain is in the shell, for the preparation of such drinks as eggnog egg phosphate, etc., in which cases the egg is broken, directly into the tumbler in the presence of the cus tomer
Hence, everything considered, soap bark must be ac corded the palm for foaming purposes, although other substances are occasionally used, such as soap root, senega root, isinglass, glue, and a host of other mucil aginous bodies, but none of these possesses all the ad vantages of soap bark.
This point being decided, we come to the question as to whether it is better for the confectioner to make his own foaming preparations or buy them ready-made. While home-made extracts are bad enough as a rule, home-made foaming preparations "take the cake" for causing trouble in the shop. Simple as the process of manufacture appears, there are yet numerous points to be looked after in the preparation of the soda foam which none but an experienced chemist can hope to contend with successfully. For drinks that are dis pensed the disadvantages are not so great, the sirups not being kept long enough to give much trouble, but those confectioners who bottle soda water should beware of using home-made foam, as to this may be traced a large number of standard soda water diseases such as ropiness, cloudiness, precipitation, bitterness, etc.

In using foaming preparations it is well to deal them out with a parsimonious hand. Not only is it most vexatious for the thirsty customer to obtain a glass of "sweetened wind" instead of the refreshing beverage he desires, butjthe drink acquires a bitter taste, which does not in any way add to its attractiveness. Soap bark is naturally bitter, and, while it is imperceptible to the taste when present in small quantities, it yet becomes unpleasant when used in excess. In addition to this there is also the danger that if too much be used it may not all be held in solution, and cloudiness and precipitation will then inevitably result.
Moreover, in all dark colored beverages there is another point which must be taken into consideration. It is that the sugar coloring used to produce the dark color will by itself produce a certain amount of froth even without the addition of any special foaming pre paration. In fact, in some beverages, such as root bee and sarsaparilla, this frothing is so great as to be a con siderable impediment to the proper drawing of the beverage, so that in these cases some kind of an anti foam would be a great desideratum. Numerous at tempts have been made to reduce this foam by me chanical devices attached to the draught arm, such for instance, as filters or relief chambers for the escape of the gas from the beverage. None of these device seems, however, perfectly satisfactory, and the man who would invent a harmless preparation to add to the sirup that would reduce the amount of foam withou in any way impairing the quality of the beverage would confer a lasting benefit upon humanity, and perhap upon himself as well. In an article published some twelve years ago in an English bottling paper, the author claimed to have discovered this very secret. He held that all oily matters tend to destroy foam, and he duce the frothing of such drinks as root beer and sar saparilla was merely to add to the beverage a smal quantity of oil of lemon dissolved in spirits of wine in the proportion of one part of oil to five parts of spirit One fluid drachm of this mixture, or even less, was to be added to every gallon of sirup.
The theory that oil would prevent foam seems plausi ble, for it is precisely for this purpose that oil is used on shipboard, to break up the small waves into one large, uniform sheet, and it would, therefore, seem a first sight as though the sameeffect should be produced
in the soda water tumbler; but not having made any experiments myself in this direction, I give the state ment for what it is worth.
When buying foaming preparations, the principal points to consider are : First, cheapness; second, lack of taste ; third, keeping properties ; fourth, convenience for use. A simple method of testing soda foam is to put a few drops of the sample to be tested in a tumble and draw plain soda water upon it. You can thus as certain how perceptible the taste of the foam will be and can readily compare which of two preparation produces the densest and most lasting foam. Of course it must be remembered that in siruped beverages the taste will be less pronounced, and the foam will be denser and more lasting than in the plain soda; but this, nevertheless, forms a very convenient rough-and ready test.
Another test which is sometimes recommended for comparing two samples of gum foam is to put a smal amount of each in a bottle full of ordinary drinking water (without carbonic acid gas). The bottles should then be well shaken, and afterward allowed to stand. The foam produced will last several hours, and wil serve as a fair test of the comparative value of the two preparations.-Confectioners' Journal.

The Young Men's Institute

An institution that is doing good service for young men is the institute on the Bowery, New York, founded a few years ago by several philanthropic New Yorkers.
It follows more extensively the plan of work introduced by the Young Men's Christian Associations, and has courses of instruction in several branches of science. Among those that have been very successful has been the course on the "Theory and Practice of Steam Engineering," under the management of a practical engineer, Mr. William H. Weightman, M.E. At a small fee per month, instruction is given to those desiring to become engineers, in the practical operation of engines, boilers and machinery, and in the theory, rules and practice of the steamengine, boiler and trans mission of power. Special information, not attainable in shop practice, is given pertaining to such matters as are required by examining boards, and particularly essential to the engineer, fireman, machinist, boiler maker and others, in the proper performance their duties.
A new course on "Practical Electricity," under the charge of Mr. H. A. Benedict, of Cornell University, is to be inaugurated this winter.
It will include the imparting of a practical knowledge of the rules essential to the proper understanding of the principles of operation of the apparatus employed in the modern application of electricity.
The study of a text book on electrical arithmetic, illustrated lectures; the consideration of units of measurements, apparatus and methods of measurement, primary and storage batteries, incandescent lighting by direct and alternating currents, are lighting, electric plating, 『direct current motors, electric traction, telephones and telegraphs.
There are departments in free hand and mechanical drawing and stenography. Located in one of New York's densely populated sections, the Young Men's Institute is doing a work which is greatly needed, and supplies instruction not readily obtained at the common schools. The institute also owns a good library, with a capacious reading room.

A Novel Fabric.

This invention consists of a novel frieze-like fabric and of the process or method of making it. For this purpose the well known knitted fabric or web is used, such as is produced on the circular, fiat, or on any of the frames working with open, tongue, or ledge needles, and which has a backing of threads of wool, cotton, silk, or other fibrous material. This fabric, which is known as stockinet, shows on the one side the ordinary regular knitted meshes and on the other or rough side the threads of wool, cotton, silk, etc. bound by the finer threads of the knitted web. The fabric is first subjected to a nap-raising process, in any suitable napping machine, so as to convert the rough side into a fleecy state, and, for the purpose, a knitted fabric is used in which wool is the material that forms the threads of the rough side. The fleece produced by the napping machine, on the backing of the knitted web, is next submitted to the action of a friezing ma chine of suitable construction, in order to convert the fleece into a frieze-like surface, resembling lambskin ratteen, or petersham. The fabric thus obtained is well suited for wearing apparel, or for decorative o other purposes. It may be dyed before the nap-rais ing process, in order to obtain the finished frieze-like fabric in any desired color. Or the wool threads, before being bound into the knitted web threads, may be colored or dyed so as to obtain any desired color in the frieze side of the finished fabric.

MANY of the explosions in flour mills have been traced to electricity generated by belts.
a Long distance transmission plant between TIVOLI AND ROME.

interesting plant for the trans-

 mission of electricity for lighting and power is that recently opened at Tivoli, where the electric cur rent, generated by water power, is used for arc and incandescent light ing in the city of Rome, some 17 miles distant. This plant was erected by the Roman Gas Company as a supplementary source of electricity to the central station at Rome. This company has been operating its station at Rome for six years, the source of power being steam engines having a total capacity of 2,700 horse power. This plant, together with the new station now in operation at Tivoli, is expected to supply the city of Rome with electric lights for public and private use, and with electric power wherever it is demanded for industrial purposes.Tivoli abounds in cataracts as beautiful as they are useful, which have served for centuries as a source of power for various industrial enterprises. In 1887 an electric plant was established at Tivoli which is still in operation, but this is only of small size. It was constructed by the firm of Gaulard \& Gibbs for supplying Tivoli with electric lights, the system used being the alternate current with transformers in series. Some years ago a company was organized for the purpose a company was organized for the purpose at Tivoli for the generation of electricity at Tivoli for the generation of electricity
to be transmitted to Rome, but for various reasons the project was never completed. In 1888 the director of the Roman Gas Works, Mr. C. Panchain, took the matter in hand, and to him belongs the credit for having carried the enterprise to its present successful completion. The old and incomplete plant was purchased and the construction of the new station undertaken. This station is erected on the site of the old villa Mecen ate, where a waterfall of $33 / 4$ cubic meter per second, 110 meters in height, fur-
nishes the necessary power. The water is carried through a canal on an old Roman viaduct to $/$ supplies a current of 42 amperes, at a potential of $5,100 \mid$ the wheel house. The canal terminates in a tower in which there is a stand pipe of sheet iron, 125 feet high and 50 feet in diameter. From the bottom end of the stand pipe a sheet iron pipe of the same width projects 150 feet further on and carries water to the level of the ceiling of the wheel house.
ceiling of the wheel house
The station stands half way up the side of a mountain as shown in one of our illustrations. The main room in which the dynamos and turbines are placed is 80 by $\dot{5} 0$ feet. The main pipe for conveying the water into the machine room is divided into three cross pipes, from each of which three vertical pipes lead out. These nine vertical pipes conduct the water to the nine turbines. A complete system of valves, which can be regulated by hydraulic pressure from the machine room, makes it possible to close each of the three cross pipes whenever necessary within a very few seconds. Corresponding with the three sets of pipes nineturbines form three groups, each group consisting of two 300 horse power turtwo 300 horse power tur-
bines and one 50 horse bines and one 50 horse
power turbine. Each turpower turbine. Each tur-
bine is coupled direct to its corresponding dynamo. The turbines are of the Giraud type, the 300 horse power wheels having six inlets and valves, and the 50 horse power wheel having one inlet and a throttle ng one ine former valve. The fore constructed for 170 and the
latter for 370 revolutions latter for 370 revolutions per minute. Each turbine is provided with a self-acting regulator of the Ganz system, which, by regulating the water supply, keeps

INTERIOR VIEW OF THE TIVOLI CENTRAL STATION. volts. The armature of each of these machines is 22 meters in diameter, and each generator has 30 poles pole exciter smanler turbines is coupled dir minute, and furnishing a current of 150 amperes at 180 volts electro motive force. Both the exciters and the large alter nators are arranged in parallel. The exciters hav hand rheostats. The regulation is effected by two au omatic rheostats of the Blathy type in the field circuit of the exciting machines. These are so arranged that
kept constant at the distributing station in Rome, The breaking of the circuit is effected by means of a dead resistance of iron wire.
The conductors from Tivoli to Rome are carried through the deserted and forlorn Campagna Romana for a distance of nearly 17 miles. The leads consist of four copper cables, of 19 wires each, the entire system of conductors containing 100 tons of copper. These

EXTERIOR VIEW OF THE TIVOLI CENTRAL STATION. will in that they can be exchanged a will in case of accidents or when repairs
are necessary. Of the existing four cables, three are sufficient for running the entire plant, while two are sufficient for two-thirds of the load. The loss in trans mission amounts to 20 per cent of the total pressure, that is 1,020 volts, the initial pressure being 5,100 volts. The cables are attached to very strong oil insulators placed upon poles or iron col umns set from 115 to 130 feet apart. These poles consist of two parallel T-irons connected together by bolts, at the upper end of which are wooden uprights 10 feet in length, to which the oil insulators are fastened. The same line of poles carries silicon bronze wires for telegraph and telephone purposes, the lowest wire being 25 feet above the ground.
The conductors from Tivoli terminate at the old Roman wall, near the Porta Pia, in a small building, where the neces sary transformers and other apparatus are placed. As the central station in Rome is operated at a pressure of 2,000 volts, and as the Tivoli plant, as stated above, is intended as a supplementary station for the plant in Rome, the curren from the Tivoli station must necessarily be reduced from 4,000 to 2,000 volts. For this purpose $32 \backslash$ transformers, each of 25,000 watts capacity, are placed in the transformer building. Of these 32 trans formers, 16 arranged in parallel form a group which transforms the 4,000 volt group which transforms the 4,000 volt
current into a current at 2,000 volts, and transfers the current from the Tivol aerial conductors to the underground network of concentric cables that dis tribute it over the streets of Rome. In the summer, when the demand is at a minimum, and also during the daytime at other seasons of the year, it is intended to operate entirely from the Tivoli plant and to make use of the Rome central station only when greater demand makes it necessary
At present 250 arc lights are in use, but this number can be increased at any time to 600 . These lights are in series of 45 each, and have aerial lines of copper wire 4 millimeters in diameter. The use of aerial lines was necessary, from the fact that the lamps are widely dis tributed over the city, quite a number being at a con siderable distance from the underground network of cables.
Each of the large transformers in the transformer house is able to furnish 14 amperes at 2,000 volts for supplying 45 arc lamps; 14 such transformers are able to feed the 14 are light circuits, or over 600 lamps, the oth two transformers being kept in reserve. In each of these circuits an auto matic rheostat keeps the intensity of the curren constant at 14 amperes.
The entire outfit of the central station and of the transformer house, as well as the arc lamps, was fur nished by Ganz \& Co., o Budapest. The conduct ors and their supports were furnished by the Societ Anglo-Romana, according to the specifications furnished under the direction of Ganz \& Co. The entire plant is modeled on the Zipernowsky-Deri - Blathy system, and represents one of the most advanced types of European practice in the distribution of alternating currents over long distances for ligheing and power purposes. It is interesting to know that this plant was planned as far back as 1888 , a time when the application of a 5,000 volt current for any purpose was considered trical World.

Glycerine in Wine

The usual method of determining glycerine in wine is that officially recognized by the Berlin committee of 1884 , although it is far from ideal. The residue which is obtained by evaporating the wine together with quartz sand and milk of lime nearly to dryness is difficult to remove from the dish in which the evaporation has been performed, and a certain quantity of glycerine is apt to be left in the residue after extraction. The following are the modifications proposed by the author: $10 \mathrm{c} . \mathrm{c}$. of the wine are well mixed with 0.1 of a gramme of powdered calcium hydrate, 10 grammes of quartz sand added, and the whole evaporated almost to dryness on the water bath. The residue is extracted four or five times with hot absolute alco hol, and the extract, amounting to $40-50 \mathrm{c}$. c. is filtered into a flask holding about 100 c. c., then evaporated on the water bath, sirupy residue dis solved in 5 c. c. of alcohol 7.5 c. c. of ether added the flask well corked, al lowed to stand some hours, and the clear solution poured into a weighed flask (previously filtering if ne(previously filtering if ne-
cessary), the alcoholic cessary), the alcoholic
liquid evaporated off, and the residue dried for one hour in the water oven and weighed. This method, when tried on seven sam ples of Servian wine, con taining from 0.7 to 1.0 per cent of glycerine, gave re sults ranging from 0.1 to 0.36 per cent higher than the old method; while, at the same time, closely con cordant results were ob tained by repetitions of the new method, and also when it was carried out on a scale ten times as great as that prescribed above. In order to ascertain whether the compound formed of lime and glycerine by evapora and glycerine by evapora tion to complete dryness resisted the solvent action of the alcohol, further experiments were made in which this condition obtained, with the result that the percentage of glycerine found was not diminished, but slightly increased. Should this observation be confirmed, the need for special precaution in the evaporation will be obviated. The author also states that he has obtained good results by evaporating an aliquot portion of the alcoholic extract, by which means previous filtration and washing necessary to the original process are avoided. He has yet to prove the purity of the glycerine thus isolated.-M.T. Lecco, in Chem. Zeit.

REYNAUD'S OPTICAL THEATER.

We have several times spoken of the apparatus constructed by Mr. Reynaud with the object of improving the methods of projections and that permit of obtaining the illusion of movement and life through optical processes.
The apparatus that produce the synthesis of the suc cessive phases of an action have, up to the present, al (from Plateau's phenakisticope to Reynaud's praxinoscope) been limited by their very nature to the reproduction of a motion or, at the most, of a very simple action, every rotation of the apparatus evidently being capable only of repeating the effect produced by the preceding rotation.

The object of the optical theater is to extend the illusion to the reproduction of a large series of actions, and of thus realizing the reconstruction of anentirescene through optical synthesis.
To this effect a band of great length carrying a large number of poses replaces the crown of the old apparatus. In order to present the animated scenic illusion to a great number of spectators it was necessary to give it large dimensions, which is something that can be done only by projection upon a screen.
But, in order to obtain such iliusionunder good conditions

REYNAUD'S OPTICAL THEATER.
pass before the lantern, B, and are projected through
for the operators, it is necessary that the postures shall succeed each other on the screen without a break; in other words, that there shall be no extinction or eclipse This two successive postures.
This continuity of the image, obtained already by the praxinoscope, invented in 1877 by Mr. Reynaud, has not, up to the present, been realized by any projecting apparatus.

The optical theater, by its very construction, realizes it in such a way that the succession of the postures may be interrupted at every instant without the image ceasing to be illuminated and visible upon the screen. This property permits, in the representation of the animated stage, of reposes and repetitions which, at the same the intermedium of a lens, C, upon an inclined mirror, M, which projects them upon the transparent screen, E. Another projection lantern, D, causes the appear ance upon the stage of the scenery amid which appear the characters changing postures painted upon the band, A
Mr. Reynaud has got up some very amusing scenes, especially the three-character pantomime entitled Pauvre Pierrot."-La Nature.

The New York State Canal Convention.
It is proposed to hold a convention this fall for the purpose of promoting the improvement of the canal of the State of New York. In paralleling the through railroad routes from Lake

INTERIOR VIEW OF THE TIVOLI CENTRAL STATION. Erie to tidewater the Erie Canal figures as the connecting link in a complete water service, covering all the great lakes. In this connection its enormous mportance as a competito for freights with the railroads cannot well be over estimated. The other can als perform similar service and their value in keeping down the freight charge on railroads is of the ut most importance also. This is a service directly affecting the producer. Anything done to promote the efficiency of the canal is a service to the farme and lumberman, as well a to the consumer of thei products. It is even claim ed that New York would have never attained her relative importance among the States but for the canals.
From 1871 to 1891 the total tonnage of the New York canals was $106,844,75$ tons, whose value is est mated at over three thou sand millions of dollars and the duration of the scene represented. The opti- \mid During the year 1891, one-third of all the grain brought cal theater thus allows spectators to witness complete to this port came through the canals. scenes (pantomimes, interludes, etc.), lasting from 15 to It should be enough to remember that railroad 20 minutes, with a number of postures and a length of rates are pool rates; that in 1891, on the opening of the band that remain within practical limits. It thus pro duces a spectacle both interesting and amusing.
Moreover, the optical theater seems as if it will here after constitute the typical apparatus for the synthesis of the photographic series of successive postures, and it is doubtless in this direction that it will in the future find its principal application, when the improvements in instantaneous apparatus and the reduction in the cost price of photogenic films will have permitted of easily and cheaply obtaining very numerous series of such postures.
Our illustration represents the arrangement of Mr . Reynaud's new optical theater. The crystalloid band
upon which the images are painted is represented at A. The operator can revolve it in one direction or the other by means of two handles. The images, reproduced by means of two handles. The images, re Erie Canal, in May, the railroad rate for grain was 74 cents per bushel, when the canal at once offered trans portation for less than one-half this figure, $25 / 8$ to 3 cents a bushel. These figures show the value of the Erie Canal.
Again, when the canals are opened, New York re ceives nearly double the quantity of grain that Philadelphia, Baltimore and Boston combined can show When the canals close, the New York receipts drop off to about thesame as those of the three ports mentioned Canal navigation is closed for five months. During their seven months of operation their value to the port of New York is immeasurable.
What is needed now is the improvement of the canals. They need to be deepened, the locks should be enlarged, and everything possible done to increase their efficiency The present tendency seems to be to let them alone. This policy will be a very bad one for the port of New York.
The affairs of the convention are in the hands of the Union for the Improvement of the Canals of the State of New York, 55 Liberty Street, New York, N. Y. It is to be hoped that the encis in view will be speedily attained.

Laxative Lemonade

The Pharmaceutical Record says that a preparation known as laxative lemonade is prepared in Germany by dissolving 30 to 50 grammes tartrate of soda in 500 grammes of hot water allowing the solution to cool, and adding to it 50 to 100 grammes of flavored simple sirup. This mixture is then transferred to strong glass bottles and charged with the weight of several atmospheres of carbonic acid gas. This is said to furnish a cheap and effective substitute for citrate of magnesia.

Sorrespondence.

Preservation of Hard wood Handles.

To the Editor of the Scientific American:
I handle a great many hard wood handles for hammers, axes, etc., and I find that I lose a great many annually from the ravages of a little insect or wood borer, which thoroughly honeycombs a handle in a very short space of time, leaving the handle a mere shell with innumerable small holes on the outside, and grinding the inside into a powder as fine as flour. I have found it a very difficult matter to find specimens of this insect. The few that we have examined with a magnifying glass are smaller than a flea and of a milk white color, with long antennæ, although one was discovered considerably larger, about the size of a flea, and dark colored, but was the only one. I would like to ask you, 1st, the scientific name and common name of the insect; 2 d , a remedy, if there is any, to prevent the destructive work of this little pest.

Los Angeles, Sept. 7, 1892.

C. Ducommun.

Dr. C. V. Riley, to whom we referred our corre spondent's letter for reply, writes as follows:

1. There are several coleopterous insects of the family Ptinidde known to infest dry hard wood that is used for handles of various implements. Since Mr. Ducommun does not send any specimens, it is impossible to name the particular species which does the damage. It is, however, in all probability, one of the powder post beetles, genus Lyctus, of which L. striatulus and L. parallelopipedus have been observed under conditions similar to those described by Mr. Ducommun. They are small, elongate brownish beetles, and their larve small, six-legged yellowish white grubs, with their bodies always curved near the tail end.
2. The beetles and their larvæ may be destroyed by inmersing the infested handles in kerosene for a short time. It is quite important, however, to thoroughly disinfect in this manner all handles which show the least trace of the presence of the beetle. The entire stock of handles kept in the store should be carefully inspected from time to time. The presence of the beetles may be easily detected from the small circular holes through which the beetles have entered the wood, or from the little heaps of fine sawdust which accumulate beneath the infested handles.

The Electric Cars in Boston.

To the Editor of the Scientific American:
I have been a constant reader of your paper for over thirty years, and have never yet discovered what I thought to be an article published with a view to promote any unworthy scheme, or misrepresenting facts for the benefit of any individual or corporation.
There appears, however, in your issue of Septem ber 17 an article headed "The Trolley Electric Car," which was copied from an electrical paper, and in which the trolley system of Boston is very highly spoken of. The article speaks of the "great success" and the "enormous profits" realized by the system in Boston, and refers to the sale of the company's stock as proof of the fact. The facts in the case are that electric cars have been the greatest nuisance that was ever put into the streets of Boston. So far as improving the surface travel of the city, it has impeded it very much, and the accommodations are not as good as the former horse car service, except to parties who are rid ing to the suburbs or country. In the center and more immediate circles of business and travel it has block aded our streets, with great hazard to life and pro perty. It is impossible to calculate with any degree of accuracy when you can reach a certain point; some
thing happens, the trolley is out of order, the fuse is thing happens, the trolley is out of order, the fuse is
burned out, or the car is off the track; so that we burned out, or the car is off the track; so that we
often find a mile of heavy cars in line, with not enough power on a single trolley wire to move but a few at a time.
Horses and men have been killed and injured by falling trolley wires, and one of the worst fires in Boston, where three or four million dollars' worth of property and several lives were lost, was set by an electric wire, which was supposed to have come in contact with the trolley system.
The telephone system has been greatly impaired by the trolley wires, and accidents have been fearful From the last official report of the railroad commis sioners, for one year, it appears there were 281 accidents resulting in 20 deaths. The amount of damages paid by the railroad company for the last fiscal year was $\$ 149,592.42$, with, perhaps, full as many more unsettled claims-an average of $\$ 407$ for each day in the year It is believed by those most familiar with the receipts and expenditures of this company, with their accident account, cost of repairs, increased capitalization, etc., that they can never earn a dividend.
The capital stock, etc., of this company has been increased from $\$ 6,400,000$ to $\$ 16,400,000$, with debts and liabilities amounting to $\$ 20,000,000$, in four years. Although they have paid eight and ten per cent divi dends on their common and preferred stock, which, o course, has carried their stock somewhat above par
$\left\lvert\, \begin{aligned} & \text { yet, when you consider that in Massachusetts divi- } \\ & \text { dends can be paid out of capital stock or borrowed }\end{aligned}\right.$ dends can be paid out of capital stock or borrowed
money it is easy to see how stocks can be sold above mor.
Outside of those who live a long distance from the center of the city, and get cheap fares and extra speed in the suburbs, and those who have personal interest at stake, I think the electric road would be voted out of Boston. I have no personal or private interest in this or any other company, but am simply a careful observer, with some knowledge of the cost and profits of street railway traffic.
J. V. M.

Boston, September, 1892.

High Speed Photography.

Professor C. V. Boys recently gave a British Associa tion lecture to artisans at the Synod Hall, Edinburgh, at which Lord McLaren presided.
Professor Boys explained that in the observation of moving things a so-called instantaneous view is neces sary, but that, according to the nature of the subject, different degrees of instantaneity are sufficient or necessary. Thus for portraiture the magnesium flash is so sudden that an eye with the pupil wide open, as it is in the dark, has not time to contract during the time that the light lasts : while, on the other hand, a large clock face made to rotate so fast that the outside of it was traveling at forty miles an hour appeared side of it was traveling at
a mere blur by this light.
In contrast to this the same rotating clock face wa illuminated by a brilliant electric spark, and appeared absolutely at rest, the finest marks being clear and sharp. Therefore, in dealing with such slow speeds as forty or one hundred miles an hour, the particular electric spark made use of would last a sufficiently short time. In illustration of the application of an ordinary electric spark to the photography of bodies moving at speeds less than sixty miles an hour, Mr. F J. Smith's experiments with intermittent sparks wer referred to, and one of Lord Rayleigh's photograph of a breaking bubble was exhibited.
In illustration of the perfection to which mechanica methods may be brought, a very perfect photograph of a broad gauge express train, which passed Mr. F. J. Smith at one hundred miles an hour, was exhibited. The camera was in a train traveling at forty miles an hour, and the other train was meeting it at sixty miles an hour. The lecturer had to deal with speeds which were very much greater, so that it was by no means evident that the spark, which to such tests seemed perfectly instantaneous, lasted in reality so short a time that a bullet, for instance, would not move visible amount before the light had ceased.
In order to investigate the duration of sparks made under different circumstances, the revolving mirror had been employed, and the method of using it was shown. It was placed about twenty feet from the screen, where a beam of light from an electric lamp was focused. If the mirror were made to turn once a second, the image was shown to travel at the rate of 240 feet a second on the screen. The electro-magnetic driving apparatus was then allowed to rotate until the mirror was turning 1,000 times a second, when the image traveled on the screen 240,000 feet a second, or about 160,000 miles an hour-nearly 200 times as fast as the bullet from a Martini-Henry rifle, the bullet travel ing only thirteen times as fast as an express train.
It was thus possible to observe easily to the $1-100,000$, 000th of a second how long any spark actually lasted. Photographs of three sparks taken with the apparatu were exhibited, showing that such a spark as tha which had just seemed to be instantaneous really lasted as much as the $1-100,000$ th of a second, which was far too long for the purpose of photographing ifle bullets; whereas a spark made with other appa ratus was practically extinct in $1-10,000,000$ th of a
second, and the last light died away in less than $1-1,000,000$ th of a second. The third spark lasted les than half of this. The second spark is the one which the lecturer had employed in his experiments.
Professor Boys then referred to the experiments of Professor Mach, of Prague, who was the first to pho tograph bullets successfully, and showed a diagram of his apparatus and one of the photographs which Pro fessor Mach had sent him. He then showed and explained a diagram of his own apparatus, and a photograph of it in position in the laboratory. The apparatus itself, to the uninitiated, seeming to be of the packing case, but it was in reality more carefully designed than was apparent.
This had been brought and set up in a position as for taking a photograph, but, as was explained, owing to the moisture-saturated state of the air in the room the glass plate could not be properly electrified. How ever, a bullet was sent through it from a magazine
rifle on the chance that the spark would pass, and if it had, the plate would have been developed and shown in the lantern. A series of photographs of bullets, shot, and so on, taken in the last few weeks, were then exhibited, and their features explained.
A pistol bullet (750 feet a second) was the first o
shown. This and the wad were clear and sharp, but
no atmospheric waves were visible. A Martini-Henry rifle bullet (1,295 feet a second) was perfectly defined, and waves similar to those seen on water through the still surface of which a point is dragged were clearly defined. A magazine rifle bullet (2,000 feet a second) left a conspicuous trail like that behind a steamer, and the head and tail waves were more conspicuous than those last seen, and were more inclined to the perpendicular. The connection between the speed and the inclination of the waves, both in the case of water waves and air waves, was shortly explained, and it wa shown that when the body is moving at a speed which is less than a particular speed, in each case none are found.

In illustration of this point, an aluminum bullet of 3,000 feet a second showed still more inclined waves, while the inclination was greater still in another photograph when the bullet had been fired through a mixture of carbonic acid gas and ether vapors, in which sound-that is waves-can only travel at about half the speed that it does in air.
Mr. Scott Russell's experiments on the reflection of water waves, published in the journal of the British Association of 1844, were then referred to, and it was shown that air waves may behave in precisely the same manner, being either perfectly reflected or wholly unreflected, in which case they gather strength and form a breaker, and that this depended on the in clination. 'Thus at a grazing incidence there is no reflection. This is the case of the whispering gallery. The lecturer also showed that the deflection of bullet near walls was likely to be less in the case of high speeds, for then the air wave, being more inclined would be reflected instead of running ahead and in creasing the resistance on one side of the bullet, as photographs showed was the case.
Three photographs of shot, fired from an ordinary fowling piece were next shown, the first from a chokebore, the second from a cylindrical barrel, and the third from the same barrel, but with a few drops of oil among the shot. These were of interest in connection with the discussion as to the longitudinal and the lateral spreading of the shot. The last series of slides showed what happened when a bullet pierced a glas plate. A series of views were taken as it gradually went through and escaped from the cloud of glass it had created. It was shown that here again the air waves about the glass plate gave information as to what the glass had been doing from the moment of the first collision to the time-in one case, 1-100th second ater-when the photograph was taken. The lecture concluded by expressing his obligation to those who had helped him in the experiments.

Cobalt Toning.

M. Alexis Redares, in a communication to La Pho tographie, relates his experience in regard to cobalt toning. He says, in place of cobalt depositing itself on albumenized paper in a metallic state, it deposits brown oxide of cobalt, and the proofs obtained are of reddish color, and leave much to be desired. He ased the following solutions.

00 cm .3 of A mixed with 130 cm .3 of B, leaving this mixture three or four days before filtering. Test by sunflower paper to find if solution is acid or basic. If acid, add drops of a 10 per cent solution of bicarbonate of lime. If basic, saturate with a 10 per cent solution of hydrochloric acid. The bath should be absolutely neuter, otherwise it will not tone. From two to hree days are required to tone by this process on ordinary paper. Fix with hyposulphite as usual.
M. Redares has used in the bath acetate of lime in place of acetate of soda, which he finds has no reducing power on the salts of cobalt. He expresses hopes of perfecting the cobalt toning, and regrets he cannot yet give a formula which will tone in a couple of hours.

Apyrite, a New smokeless Powder.

Although full information of the composition of this powder is not obtainable, it is known that nitro-cellulose enters largely into it. It is claimed that this powders burns without flame or smoke, that it can be handled and transported without danger, and that it is not affected by moisture or heat. According to the Revue Scientifique experiments recently made at Stockholm showed that twenty shots with apyrite did not heat the gun as much as fifteen shots with ordinary Swedish powder, or ten shots of nitro-glycerine powder. Neither does it foul the gun, 800 shots with $1 t$ leaving the gun clean. The same authority states that with the new magazine gun used in Sweden, 3.5 grammes, or about one-eighth of an ounce, will give an initial velocity of 640 meters, or 2,080 feet, with a pressure of 2,260 atmospheres. The manufacture of this powder requires, it is said, neither special appliances nor buildings.

Electrolytic Process for Antimony

According to the Moniteur Scientifique, Koepp, of Rheingau, Austria, has invented the following process for obtaining antimony from its ores. It consists in treating sulphide of antimony with certain salts of oxide of iron alone or in connection with haloid salts in an apparatus from which the antimony is deposited electrolytically. The trisulphide of antimony is decomposed in contact with ferric salts, sulphur is liberated, and the ferric oxide passes to the state of ferrous oxide, and at the same time antimonious oxide passes into solution. The reaction is rapid, and is complete when it takes place in the presence of free hydrochloric acid, or, better, in the presence of a haloid salt, such as common salt. The following reaction is explanatory: $2 \mathrm{Fe}_{2} \mathrm{Cl}_{6}+\mathrm{Sb}_{2} \mathrm{~S}_{3}=2 \mathrm{Fe}_{2} \mathrm{Cl}_{4}+\mathrm{Sb}_{2} \mathrm{Cl}_{4}+\mathrm{S}_{3}$. The antimonial solution freed from the sulphur by filtration is submitted to electrolytic action, and the antimony is precipitated at the negative pole, the iron being oxidized at the positive pole, giving a solution of ferric chloride which can be used for the treatment of fresh quantities of sulphides of antimony. The anode and cathode are composed of lead plate. The bath is heated to about 50° and maintained in constant movement. In order to obtain a compact deposit of antimony, it is necessary to employ a current of 40 amperes or thereabout for each square meter of surface of the cathode.

the pipa americana.

This animal raises its young in a very peculiar manner. The male pipa places the eggs on the back manner. The male pipa places the eggs on the back
of the female, where they are held by a secretion from the skin until each one is inclosed in a little hexagonal case shaped like the cells of the honeycomb, and developed in the skin of the mother frog. Each casing is closed by a little cover. In these little cases the sixty or seventy young of every pipa pass the eighty-two days which constitute their period of develop ment
The engraving is copied by the lllustrirte Zeitung from the seventh volume of Brehm's "Thierleben,' which has lately been completely revised by Dr. Böttger.

The Washington and Georgetown ashington and Geor
New Cable Plant.
The Washington and Georgetown Street Railway Company has just equipped the Pennsylvania avenue and Fourteenth street branches of its road with a new cable plant at a cost of $\$ 3,000,000$. This, together with the Seventh street road owned by this company, and already using the cable system, makes the most complete and one of the largest cable systems in the country. The company's tracks cross the entire length of the city, from east to west over Pennsylvania avenue, and across the width of town, north and south, by double tracks on Seventh and Fourteenth streets. The entire system contains twenty-two miles o single track, all Johnson's girder rail, eighty pounds to struction was carried out under the supervision of the yard. The track gauge is 4 feet $81 / 2$ inches, and the maximum grade is 6 per cent, occurring on a stretch of about 1,000 feet, on what is known as Capitol Hill. The entire system has a capacity of four hundred cars, but only two hundred and ten in regular daily use.
The power house of the new plant is at Fourteenth and D streets, N. W. It is in the center of the business section of town, and the site, which is 141×241 feet in extent, cost alone $\$ 556,000$. The ground, however, was insecure, which necessitated the sinking of two thousand one hundred piles, from 25 to 30 feet long, on which the masonry foundation was laid. The build ing, while plain in outline, is a handsome structure of selected red pressed brick; with red Seneca sandstone trimmings. It covers the whole of the square of ground bought by the company. It has a height of 98 feet in three stories. The ground floor and a part of the second floor will be occupied by the company for the cable plant and offices, and the remainder will be let for offices and manufacturing purposes.
The engines of the new plant are of the Reynolds Corliss type, and are furnished by the Edward P. Allis Company, of Milwaukee. They are 36×72 inches cyl inders, and 750 nominal horse power. The fly wheel is 30 feet in diameter, and weighs 100,000 pounds, and has a normal speed of fifty revolutions per minute. The 15 inch line shaft is 66 feet between the engines. Steam is furnished to the engines from a battery of eight Babcock \& Wilcox boilers, of 184 horse power each. The fuel is fed to the furnace by the Rooney mechanical stokers, and the ashes are disposed of in the same way. The Berryman feed water heater is
used, and all the steam connections of the building are by Blake \& Williams, of New York. The driving plant was furnished by Robert Poole \& Son Company, Balti-

Three cables are operated from the house, one known as the West avenue section, containing 23,760 feet, the Fourteenth street section, containing 27,900 feet, and the East avenue section of 31,660 feet. An auxiliary cable of 4,000 feet carries a line of cars from the main line of the road, at the foot of the Capitol, to the Baltimore and Ohio depot, by an ingenious device, the design of Mr. Upton, chief engineer of the road, and it is as simple as it is ingenious. It is practically a small driving plant on the plan of those at the power house, but minus the engine. The East avenue cable, on its way to the navy yard, is passed by a turn round the drum of this secondary driving plant, which is sunk in a vault 14 feet deep, beneath the pavement, and in this way the 4,000 feet of auxiliary cable is kept going at a rate of six miles per hour, without interfering with the rest of the line.

Besides the power house, in the center of the city, there are two new car barns, one at Mount Pleasant, the terminus of the Fourteenth street road, J. L. Parsons, Washington, D. C., contractor, and the other at the navy yard, the eastern terminus of the Pennsyl vania avenue line, S. H. \& J. F. Adams, Baltimore, contractors. Both these buildings are of pressed brick, with red sandstone trimmin
The road was designed by W. B. Upton, chief engi The road was designed by W. B. Upton, chief engi-
neer of the road, in consultation with Daniel Bonte-
with it. The tension carriage is also Mr. Upton's de sign.
the principle of the device is a weight, suspended between lever arms, in such a way as to bring the tension heavier or lighter on the levers, as the tension is heavier or lighter on the cable
The cable speed will be nine miles per hour
Work on the road was begun in May of 1891, and finished in July, 1892, but the construction was not pushed during the whole time

The cars are operated with a grip and single trailer, or with two trailers in the crowded hours of the day The seventy grip cars were manufactured by the John Stephenson Company. They are 14 feet long, and have a seating capacity of twenty. The one hundred and eighty passenger cars are from the American Car Company, St. Louis. The closed cars have a seating capacity of thirty-two, and the open cars will carry forty. Cars are switched at the ends of the line, no turntables being used
The power house was designed by W. C. Root, of Kansas City, and was placed in the hands of J. E. \& A. L. Pennock, contractors, of Philadelphia. All of the architectural iron work was furnished by the Champion Iron Company, of Ohio. The work was greatly delayed by the insecure ground, which neces sitated the sinking of piles for the masonry foundation, and by bad weather during the winter, which hindered the brick workers
The Washington and Georgetown Street Railway Company was organized in May of 1862, using a very poor quality of horse power on bob-tailed cars. It has grown constantly with the growth of the city, its im provements keeping well abreast o the times, in spite of occasional adverse Congressional criticisms to the contrary. The Congressiona provision for the change in motive power was made just two years ago from the 6 th of the present month and was a very short time for the accomplishment of such an undertaking ; but, by constant, steady work, the change was made and the first car was run over the lin on the last day of the two year time limit allowed by Congress. The present officers of the road are Henry Hurt, president; C. M Koomes, secretary and treasurer and C. C. Sailer, superintendent -Street Railway Review.

California Beer Seed.
A correspondent sends a small package containing some "Cali fornia beer seed." He says: "It is used with sugar and water for mak ing domestic beer. This sample was dried the present summer When in its best condition it cause brisk alcoholic fermentation about the same as commontation, about the same common yeast This may not be as active as th best, but it is the freshest I can procure now, and is enough for a pint of water, with $11 / 2$ ounces of sugar dissolved in it and kept at a proper temperature for alcoholic ermentation. The beer that this came from wa made with sorghum molasses, from which it derived its dark color. In its normal purity and wet it is perfectly white. It is self-propagating, that is, it perfectly white. It is self-propagating, that is, it
increases in quantity while fermenting sweetened increas
Answer by Dr. C. V. Riley.-I have had this sub stance before and have watched the interesting fer mentation of water and sugar under its influence The action is due to a bacterium and a fungus the species of which in our American substance have not as Prof. Galloway, the micologist of the department nforms me, been settled definitely. It is similar, i not identical, to the so-called "ginger beer plant" of Europe, and in this case Marshall Ward, in the Pro ceedings of the Royal Society, Volume L., No. 304 London, 1891, determines the organisms involved a Bacterium vermiforme and Saccharomyces pyriformis. Mr. Charles L. Mix, in the Proceedings of the Ameri can Academy of Arts and Sciences, Volume XXVI. speaks of this subject under the following title: "On Kephir-like Yeast found in the United States." He summarizes the European literature concerning the milk ferment of the Caucasus, and concludes that the American ferment is almost if not quite identical with the European kephir, in which the bacterium is Dis pora caucasica, and the fungus is Saccharomyces cere visiae. Beyerinck, in the "Centralblatt fur Bakteri ologie," Volume VI., p. 44, describes the Saccharomyce as a new species, making it distinct from cerevisiae and giving it the name of kefyr. This name Mix adopt for the American fungus, although this adoption seems to be provisional. For the present we can d no better than to accept Mix's conclusions.

RECENTLY PATENTED INVENTIONS.

Rallway Appliances.

Car Coupling.-Freeman Thompson Dover, N. H. This invention provides a device hy whic cars may be automatically coupled together so that they
cannot become accidentally uncoupled, the coupling being conveniently and eafely operated from the top o he sides of the car. The invention covers a novel construction and combination of parts; the device may, if necessary, be coupled to an old-fashioned coupling

Car Coupling.-George W. Wilkinson, Chicago, Ill. This invention relates to devices having a movable knuckle and hooking with one another when coupling. The drawheads or couplers of adjacent cars alike have the hook form to engage with posed of two parts, a stationary, partly hook-shaped ing hook-shaped knuckle of arc shape working through corresponding hoch This knuckle part, and a lever which engages and eleases it, are the only two movable parts of each

Railway Time Signal.-Walter Scott, Hot Springs, South Dakota. A time clock is provide y this inventor with a stopping mechanism for an aux liary clock adapted to be released by an electro-magng a time signel manism of special construction, ery effective and automatic in operation, and arrange to positively and accurately record the time when the

Folding Step for Car Berths.Harry C. Stanley, New York City. A hight, strong adder is, according to this invention, made to fold secured to an upper berth of a car or steamer, being hen awng laterally out it will of berth, so tha step ladder, reaching to the fioor, thus affording con-路
Movable Step.-Frank Forster, Etiwanda, Cal. This is a simple form of step, adapted to be easily secured to. the usual steps of a car, where
it may be readily operated to drop beneath the lower it may be readily operated to drop beneath the lower
stationary step, while it may be conveniently pushed up and held out of the way when not in use, so that
there will be no danger of its coming in contact with ny obstre be no danger of
Tank Feeder. - Merritt Burt and John W. Skilton, Jacksonville, Fla. This is an inventon especially applicable for use along railroad lines,
or it may be employed for other purposes. Into a well or or it may be employed for other parposes. Into a well or
other water reservoir extends a pipe open at its lower end, near which are lateral openings for the ingress of water, while just above the water level is an air inlet, therebeing at the upper erd of the pipe a discharge to work in the pipe, descending by gravity, and being lifted by a wire rope passing over adrumandconifted by a wire rope passing over a drumand conpiston on its upward movement lifting and discharging
into the tank the body of water in the pipe above it.

Mechanical.

Hollow Mandrel Chuck. - Frederick A. Buck, Urbana, \mathbf{O}. This is a chuck more espe-
cially intended for holding broom and like handles cially intended for holding broom and like handles
while the broom material is being tied, though also while the broom material is being tied, though also
applicable for other purposes. Its main feature is a applicable for other purposes. Its main feature is a
loose arrangement of the dies, which will turn in the cone whenever the handle held by the dies offers sufficient resistance, when, as the pressure at both ends
overcomes the friction, all will turn together. The handles are thus firmly grasped while being revolved to secure the broom material on them, without that
marring likely to occur when employing stationary marring likely to occur when employing stati
dies in the hollow mandrel to hold the handles.
Device for Converting Motion. George E. Morrison and William A. Dye, Jr., Edgerton, Kansas. This is a device for converting rotary
into reciprocating motion, especially where the reciprocating parts are not intended to move rapidly, being designed for use in connection with vibrating sieves and shake.feeds of roller mills, and with the shakers
of wheat separators, middlings purifiers, sieve scalpers, thrashing machines, etc. It consists of a revoluble cam wheel and rollers journaled on a movable body on opposite sides of the cam wheel to press against it, one
of the rollers having a eliding bearing and a spring for of the rollers havng a sliding bearing and a spring for

Agricultural.

Plow Fender.-Gaston N. Spencer, Ouachita City, La. This fender is readily applied to an ordinary plow or other implement used for cultivat-
ing between rows of growing plants, and has spring ing between rows of growing plants, and has spring
fingers to catch the heavy clods and large pieces which might be thrown upon and injure the plants, while causing the dirt to be partially sifted, so that only fine dirt and the requisite quantity will be thrown around he roots of the plants.
Plow Attachment.-Curtis H. Warrington, West Chester, Pa. This is a device for pre-
venting the share and mould board from becoming clogged with weeds and rubbish, the attachment being applicable to either right hand or left hand plows. A traction wheel journaled in a yoke frame adjustably attached to the front end of the plow beam actuates a bevel gear by which are operated sprocket wheele, car-
rying an endless chain belt and carriers, hy means of rying an endless chain belt and carriers, hy means of which, as the plow is advanced, any trash in the path
of its share is taken up and delivered into the furrow, whe
earth.

Miscellaneous.

Ice Machine. - Magnus J. Palson, Gloucester, Mass. This invention relates to absorption ice machines, in which aqua ammonas is treated to form nhydrous ammonia gas, which is condensed and then
expanded into gaseous form in a refrigerator, the gas expanded into gaseous form in a refrigerator, the gas
afterward being absorbed by weak ammonia liquor from the still, and the aqua ammonia thus formed being again utilized to produce ammonia gas the process be ing continuous. The invention covers several features of the apparatus, which is designed to utilize to the highest degree the heat generated, the; resultant economy being gauged by the proportion which the ice made ears to the fuel consumed.

Ore Washing Machines.-Carl A. E. Meedicke, Clausthal, Germany. A device for regularly by this invention, of pulp to the machine is provided pally of a knife adapted to cut on the surface of the material held in a vessel or a tank, in conjunction with wash away the material cut by the knife.

Oil Extracting Apparatus.-Charles Mann. New York City. This improvement includes steam- jacketed extracing tank wha a strainer in it bottom and a rotary stirrer, connected at its bottom with the top of a steam-jacketed evaporator at a lower
level, there being a centrifugal spraying mechanism in the evaporator, from the top of which a vapor pipe leads into the top of the extractor, so that the vaporized extracting fluid will be conducted back to the extractor. The apparatus is adapted for. nse in extracting oil from cotton seed, linseed, and similar sub-
Oil Purifier and Reservoir.-Rudolph Metz, Pbiladelphia, Pa. The main tank of this combination device has a lower water inletand outlet, a central well with outlets near the top, a hopper above
the well having an outlet tube extending down into the he well having an outlet tube extending down into the
well, in the lower portion of which is a steam coil,while well, in the lower portion of which is a steam coil,while ery tubes extending into the lower portion of the tank The oil accumulating in waste material etc may this device be easily strained ard filtered, the dirty oil being boiled in a separate receptacle from that in which $i t$ is finally stored.
Pump. - William Peterson, Genesee, Minn. A pump
wells is provid wellis is provided by this invention, the pump having
wo pistons actuated from a single lever reciprocated simultaneously in opposite directions, the lever being operated by a hand, a wind wheel, or other power. The construction is simple, durable, and inexpensive, and
he pump affords a continuous stream.

Steaming or Tempering Grain.Rollin L. Rodman, Kingman, Kansas. This device is so constructed that if the supply of grain to the grind-
ing machine or bin should be stopped, the aupply of ing machine or bin should be stopped, the supply of
steam and material will both be automatically cut off, steam and material will both be automatically cut off,
and when the supply is continued the grain and steam will both be admitted automatically. Within a suitable casing is a counterbalanced hopper, in which is a zigzag neath the grain supply opening, there being another valved steam supply pipe and connection between the valves at the grain supply opening, whereby the move-

Tilting Device for Barrels or Casks.-William Fullard, Brooklyn, N. Y. Combined with the barrel rack or stand is a transverse centrally-
pivoted vertically and transversely tilting pillow block with a spring mechanism for forcing the block upward The device is simple, thoroughly automatic, and can be applied to any form of rack, its action being, as the
liquid is drawn from the barrel, to raise the rear end of the barrel, so that the liquid always lies at the fron end, near the faucet, permitting all the contents to be

Wire Stretcher.- Judson N. Hatcher, Montgomery, Mo. This invention is for an
improvement in devices used for stretching fence wire mproviding for the purpose a cheap, strong, and effective providing for the purpose a cheap, mtrong , and effective
machine, which may be quickly fastened to a wire and easily operated to give the desired tension, while having
no side draught, and enabling all the power used to be no side draught, and enabling all the power used to be
applied directly to the wire. The machine has a double applied directly to the wire. The machine has a double
ratchet bar, between the members of which moves the ratchet bar, between the members of which moves the
draw-bar, operated by a lever, there being pivoted on draw-bar, operated by a lever, there being pivoted on
the draw-bar a wire clamp with a fixed jaw on one

Balance Staff Bearing for Time-eces.-George Newton, New York City. This imrovement provides a means whereby the pivots of the balance staffs of watches or chronometers, and the
jewels, stones or bearings in which they work will be jewels, stones or bearings in which they work will be
protected from breakage or injury when the watch or According to this invention the rings, beds, or band in which the jewels, stones, or bearings are set are each mounted in the end of a reciprocating spring, so
that they maylrecede or give way, to some extent, a pecuiar form of balance staff being also employed, which is so adjusted as to take the shock from its pivots by

Gas Burner Attachment.-George Le Vesconte, Minneapolis, Minn. The burner is car-
ried by the upper end of a vertical key, and a metallic band secured at one end to the gaspipe is curved upward over the burner and downward, there being ope-
rating connections between the lower end of the band rating connections between the lower end of the band
and the key. The device is very simple and inespensive and operates to automatically turn foff the gas when and noerates to automatically turn loff the gas wh
the gaslight is blown out by ignorance or accident.
Lighting Device.-Bradford H. Pen dleton, Evanston, Ill. By this device, lamps, lanterns,
gas jets, etc., may be conveniently lighted without re gas jets, etc., may be conveniently lighted without removne de chimney or globe, no matches being needed
and the device being ready at all times for immediate
ase. A small box, carrying a scratcher, is secured to
extend from near the burner down and outwardly, 'and
in a circular casing, pivoted in the box, is a etrip arin a circular casing, pivoted in the box, is a strip ar
ranged in a roll and pivoted with igniting points, ranged in a roll and pivoted with igniting points, a
shaft turning in the box winding up the igniting strip. The shaft is rotated by turning a knob, by means o which the ignition points are successively
against the scratcher to light the wick or jet.
Book Index.-William B. Devin, Syr tachment especially designed for indexes to lette books, providing a device by which an index may be flexibly connected with one of the leaves of the book,
independently of the back. The index is flexibly conindependently of the back. The index is flexibly con-
nected, so that when the book is closed the index may nected, so that when the book is closed the index may
be drawn out to lie flat in frout of it, the leaves of the be drawn out to lie flat in frout of
index being then readily turned.

Rubber Dam Clamp.-Asher I. F. Buxbaum, Walnut Hills, O. This invention provides dental cervix clamp having arms with teeth or spurs
adapted to embrace a portion of the neck of the tooth adapted to embrace a portion of the neck of the tooth,
the arms being pivotally connected to the clamp and the arms being pivotally connected to the clamp and
made adjustable. The clamp is used for pushing and made adjustable. The clamp is used for pushing and
holding back the gum and rubber dam from the neck o the tooth, to permit of the treatment of decay cavities

Flour Sifter.-Ida M. Ingram, Se dalia, Mo. This sifter has a cylindrical body with being passed downward into the body and reat sieve collectively therefrom, while a central shaft extending down through the connected sieves has an agitator for each of them and one for the lower sieve. A crank operation practically sifts the flour several times, thorotghly mixing it with baking powder aud other ingre

Cushion Felly and Tire.-Charles Stein, Meadville, Pa. This felly may be a tube, crushed to the desired shape, and is preferably of spring mate-
rial, while it has side sockets and a central bent portion rial, while it has side sockets and a centralbent portion
shaped to fit against the main part, in connection with shaped, to fit against the main part, in connection with
a hollow tire having a concaved innerportion, and with a hollow tire having a concaved innerportion, and with
shoulders to fit in the sockets of the felly. The cushion felly and tire together are designed to have a double spring action, thus rendering the wheel as easy as on provided with a pneumatic tire.
Draught Device for Whiffle trees.-Quintis V. P. Day, Dinuba. Cal. This is a ness, etc. of the jerk or jar of sudden starting, or from the vehicle striking a stone or other obstruction. The draught bar is arranged between springs located in a
casing, lateral arms of the bar engaging the springs. casing, lateral arms of the bar engaging the springs.
The device is applicable to plows, etc., as well as to all inds of vehicles drawn by horses
Hub-attaching Device.-Michael F eininger, Brooklyn, N. Y. The hub box has a notch in its outer end, and a nut screwing into this end has a spring-pressed locking pin projecting through a flange into the notch, there being an operating finger piece to
retract the pin. The device is simple and durable, and is more especially designed for securely locking the wheel nut in place, and
removal when desired.
Road Cart.-Jesse Kimball, New Madrid, Mo. The box of this vehicle is freely suspended on the running gear, which is carried by a shaft journaled beneath the box, crank arms secured to the shaf beiug connected with the box, in connection with a
lever mechanism for turning and adjusting the crank lever mechanism for turning and ad justing the crank
shaft by which the body may be held so as to be properly balanced to enable it to ride nicely. A vehicle so bnil free to swing in any direction, and is designed to ride very easily.
Vehicle Running Gear.-James W Taylor, Vermillion, South Dakota. This is an improvement whereby the front and rear axles are conveniently king bolt or bolsters, the axles being strengthened and arranged to permit of removing a worn-out thimble to
replace it by a new one. The axle is formed of two replace it by a new one. The axle is formed of two
independent side plates having their ends rounded to form spindles, a top plate fitting on the side plates, fianged nut screws on the outer thrended end of each spindle to abut against the end of the thimble.
Case Cleaner.-Peter Trips, Lebaon, Ind. This is a simple and inexpensive machine sausage cases. The machine frame has horizonta sausage cases.
grooves in its inner wall in which slides a cross bar to
which a case may be attached, rollers causing the case which a case may be attached, rollers causing the case
to be drawn through the machine while brushes scrape off its fat and filth, and spring-pressed toothed scraper
Bucksaw.-Peter Woodring, Kansas City, Mo. Combined with the side or end pieces of the frame are centrally in terlapping and crossing diagona set screw, adjuetable from the exterior of the braces or operation in connection with an adjustable rigid rigid support to the saw frame, preventing it from get-
ting out of shape or becoming racked, and largely re

Steam Mangle.-Frank Baldwin New York City. A plurality of stationary horizontally aligned irons are mounted on the frame of this machine with a space between their adjacent edges, and with common circle, there being marme segments of and an endless belt carried by rollers running against the lower convex faces of the irons. The belt serves as a carrier and also as a compressing agent, maintaining
the clothes in positive and close engagement with the convered faces of the irons.
Extension Table.-Henry Cobham Jr., Warren, Pa. In connection with sliding rails the
top of this table is formed of a central fixed section, to
which are hinged end sections formed of a series of
slats hinged together, depending brackets carrying the end legs and receiving the slats of the end sections, The improvement relates especially to "roll top" ex tenion tables, providing means whereby the ends of the table is designed to be very durable and of economical

Barrel.-Emerson Cole, Brooklyn N. Y. This invention provides a barrel or packing case made from pasteboard or thin wood sheets, with
light and strong hoops. A novel method and mera are provided for the removable attachment of the heads to the cylindrical or bilged body, to secure
strength and lightness, and by the peculiar construction of the body, a variation in diameter at the ends is af forded by lap joints that remain tight if the diamete

Game Counter.-William B. Herbert,
 petty cash, etc., consisting of a card, slate, or tablet,
ruled to form horizontal rows of counting squares, and perpendicular columns numbered to form multiple. The counter may be inclosed in a frame and covered in part or in whole with a clate of ground glass, or other
transparent or translucent material adapted to be

Design for Printed Fabric.Samuel M. Schwab, Jr., New York City. This is a pattern design, consisting of figures simulating dog ulating the lower body and leg portions of the animals epresented on the fabric.
Note.-Copies of any of the above patents will be send name of the patentee, title of invention, and date of this paper

NEW BOOKS AND PUBLICATIONS
Temperament, Disease and Health. By French Ensor Chadwick. G. P.
Putnam's Sons. 18£2. Pp. vi, 85. Price 75 cents. No index.
The author has produced this work, as he states
primarily, to put forward two ideas. The first one that there is associated with temperament a specific rate of change : the second one is that the failure to keep up that rate, which is a failure to have elimina tion keep pace with accession of material, is the prin-
cipal cause of organic disease. Commander Chadwick treats this subject in a most practical and readable way and we believe that his work will be found of consider able popular interest.
Photography Annual for 1892. Edited by Henry Sturmey. London : Iliffe
\& Son. 12 mo Pp. 898, 280. Price 2 shillings and 6 pence.
This annual, in addition to articles on the progres and practice of photography, contains a careful clasei-
fied list of novelties and improvements in photographic apparatus and materials. This section of the work is finely illustrated and forms in fact a complete cyclo pedia of photographic apparatus up to date, when taken in connection with "Photography Annual for 1891 " and "The Photographer's Indispensable Handbook." The plates illustrating the improvements in
photo-mechanical processes are admirably executed and the subjects are well chosen. The.list of English pho tographic societies, with their officers, is very complete tographic societies, with their officers, is very compl
The advertisements render the work rather bulky.
Die Anwendungen der Photogra PHIE DARGESTELLT FUR AMategure
UND Touristen. Von G. Pizzighelli.
Halle Germany. Wiher Halle, Germany: Wilhelm Knapp,
publisher. 1892. Pp. 496. 8vo, paper. Price 8 marks.
This work on the applications of photography, for 284 well executed cuts students, is accompanied by Pizzighelli's great work have treated respectively of the apparatus and the processes of photography, while the present work treats of the application of photography to science and art. Great attention is given to
the selection and composition of subjects, new poontsare brought out in regard to such subject as moonlight views, panoramaphotography, views from mountain heights, views in winter, views from the water, etc. Aeronautic photngraphy occupies an im-
portant place in this work. The application of phoportant place in this work. The application of pho
tography to physics, meteorology, microscopy, and tography to physics, meteorology, microscopy, and ner. Probably the most novel chapter is that relat ing to judicial photography, which contans a de scription of the method of photographing and measur ing criminals as used by the police of Paris. Chror photography, though comparatively a new branch, assomed large proportions, and the section devotea
is very complete. The work is accompanied by a full bibliography and shows the marks of care which ar usually found in German scientific works. The book man.
Рнoto-Engraving. A practical treat ise on the production of printing blocks by modern photographic $\mathrm{Jr} . \mathrm{St}$.
Price $\$ 3$.
This new work is a welcome addition to the literatare of photo-engraving. The book treats of the ar rangement, equipment and maintenance of a photoxty ongravings and contains chapters on zinc etching alf-tone work, single and double washout and swelled elatinc processes.

CoPY FOR Photo-Engraving. By Carl
Schraubstadter
Jr_ Pamphlot. Price 25 cents.
Treats of copy and itspreparation and forms a neces
ary companion to "Photo-Engraving."

ƏBusiness and Personal.

The charge for Insertion under this head is one Dollar a line

 tisements must te received at pubicication office as early a For Sale-A
class order. Price low.
low. Otto gas engine. Strictly firs
Immediate delivery. W. Davis, Rochester, N. Y.
Acme engine, 1 to 5 H. P. See adv. next issu
U. S." metal polish. Indianapolis. Samples free. Drop presses a specialty. Am. Tool Works, Clev., O. 6Spindle Turret Drill Presses. A.D.Quint, Hartford,Ct Best baling presses. Ryther Mfg. Co., Watertown, N.Y Universal and Plain Milling Machines
Pedrick \& Ayer, Philadelphia, Pa. Steam Hammers, Improved Hydraulic Jacks, and Tube Screw machines, milling machines, and drill The Garvin Mach. Co., Laight and Canal Sts., New York. Centrifugal Pumps for paper and pulp mills. Irrigating
and sand pumping plants. Irvin Van Wie, Syracuse, N. Y. Special machinery for cutting, spinning, and drawing sheet metal. Empire Machine and Tool Co., New
Brunswick, N. J. Wanted-One Bliss double action press, about No. $33 /$ Carrier, No. 9, Black Rock, Buffalo, N. Y.
To Let-A suite of desirable offices, adjacent to the
Scientifc American offices, to let at moderate terms Apply to Munn \& Co., 361 Broadway, New York.
Machinery Wanted-Hydraulic press of at least 500
tons pressure, and suitable for jewelers or silversmiths tons pressure, and suitable for jewelers or silversmi
Full particulars to Hydraulic, box 773, New York.
For the original Bogardus Universal Eccentric Mill Foot and Power Presses, Drills, Shears, etc., addres
J. S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y The best book for electricians and beginners in elec tricity is "Experimental Science," by Geo. M. Hopkins
By mail, 44 ; Munn \& Co., publishers, 361 Broadway, N. \mathbf{Y}. Canning machinery outfts complete, oil burners fo machines. Presses and dies. Burt Mfg. Co., Rochester N. Y.

Competent persons who desire agencies for a new
popular book. of ready sale, with handsome profte, ma popular book, of ready sale, with handsome proftt, ma
apply to Munn \& Co., Scientific American office, Broadway, New York.
Foreman Moulder Wanted-Accustomed to dry sand
castings, for foundry within 60 miles of New York. Goo wages to a suitable man. Apply, stating experience River, care of Scientific American.
Wanted-A successful inventor and efficient designe and practical mechanic. Alsowant a athoroughly compe tent patternmaker. Both for our new works at Minne Give references. Address Esterly Harvesting Machine Co., Whitewater, Wis.
CTV Send for new and complete catalogue of scientifc and other Books for sale by Mun
New York. Free on application.

HINTS TO CORRESPONDENTS
Names and A ddress must accompany all letters,
or no attention will be paid thereto.
This is for our or no attention will be paid thereto.
information and not for pubbication.
References to former articles or answers should
give date of paper and page or number of question give date of paper and page or number of question.
Inquirles not answered in reasonable time shound
be repeated; correspondents will bear in mind that though we endeavor to reply to all all eithearch, by lett
or in this department. each must tale his tur let or in this department. ach must talie his turn.
Special $\left.\begin{array}{c}\text { riten 1iformation on maters } \\ \text { personal rather than general interest cannot b }\end{array}\right)$ expected without remuneration.
cientific Americaun
to may be had at the office. Price 10 cents each. Scientinc americant supplements referred
to may be adad at the office. Price 10 cents each.
Books referred to promptly supplied on receipt of
Winerals sent for examination should be distinctly
marked or labeled. marked or labeled.
(4537) W. B. R. asks: Why does the air end of an air pump such as is used on locomotive en gines sometimes get hot when pumping air? What ine exhausts in the stack? A. The a locomotive en comotive is an air compressor. The compression of air and gases develops heat. Any volume of air contains a certain amount of heat, the exponent of which is the temperature. When the volume is suddenly compressed into a part only of its original volume, the whe quantity of heat remanns, but in a smaller space, mount of comperature to rise in proportion to e moke stack is from the vibration of the exhaust he suddenness of the operation, the exhaust actiug
(4538) W. E. K. asks (1) how to obtain A. In various ways; the dry distillation ion of gum and other organic substances by mixin part of organic matter with 3 parts of manganese hoxide and 2 parts or water; 3 parts of sulphuric aci 50 per cent are added and ma short time the mixture distilled. 2. How to take grease stains from the hande
off the piano keys. A. Cover with glass and expose to the sun. 3. A care for pimples. A. Consult a physi cian. Try washing the face with solution of Rochelle
(4539) W. P. asks (1) for the best nethod to fasten rubber to steel without using rivets or similar devices. A. Use bicycle tire cement or marine glue. 2. Is there any difference between a same proportion as near as possi ble to construct them he same size and run at the samespeed. A. The serie dynamo gives the highest E. M. F. on open circuit, the shant on closed circuit. As regards maximum E.M.F. they may be considered identical.

INDEX OF INVENTIONS

For which Letters Patent of the

September 20, 1892

and Each bearing that date.

[See noteatend of list about copies of these patents.]
Advertising apparatus for cash repisters, \mathbf{H}
 Arricultural machine, J. F. Thompson.......
Air compresor, ocion-operated automatic
draulic, R. F. Avery
 R. Eickemener...
Axle
xle cottor, Jollins.

Axle cutter, J. Swe ilie.......... Axle lubriator, J. L . Finceaver

Bear
Bear

Building block, C. Grun.....
Bungeig. Anthonyisaze
Bung, J. Baeume.........
Bur

Ca
Ca
Ca
Ca

Fands...
Krehbie

Ca
Cat
Cba

ta

thorpe \& Burrows i...........
Conformator, A. S. Aide.
Convering apparaus. . N. Rowe
Cooker, J. H. Gardner.

rusher. See Clod crusher. Rök.crusier
Cutce, R. M. Lamp............
Cultivator, JGedeoin
Cultivar, Mallery
Cultouns.:.:.
Cultotor, J. A. Martin........

Derrick drum, A. C. Hrench
Dilitransmitter, F. Pearce
Disinfecting and dedor

lectrolytic apparatus, 'T. Craney
nd gate, wagon, G. S. Sneer. A. A. Stoltzen
ngine. see Rotary engin.
xcavat

and

$\substack{\text { sprin } \\ \text { sita } \\ \text { tien } \\ \hline}$
 cize

topper. See Can or vessel stopper. torage rooms, construction of, w. Whriessër M. A. Wilcox cooking and hot water hea ve for brick etc., drying, A. Schaaf.

21.772
${ }_{217,763}^{21,79}$
21,73

ƏోDvertisements．

Inside Page，each insertion－－ 95 cents a line Back Page，each insertion－$-\mathbf{\$ 1 . 0 0}$ a line The above are charges per agate line－about elight words per line．This notice shows the width of the ine and is set in agate type．Engravings may head adver－ morning to appear in the following week＇s issue．

ACENTS WANTED

 LATHE上ater THE SIMPLEX TYPEWRITER

Improved Screw Cutting Foot and Power
－ill Presses，Shapers，Band，Circular，and Scroll Sa SEBASTIAN LATHE COMPANY，
RAINMAKERS IN THE UNITED

TO BUSINESS MEN

tising medium cannot be overestimated．Its circulation Is many times greater than that of any similar journal
now published．It goes into all the States and Territo－ ries，and is read in all the principal libraries and reading
rooms of the world．A business man wants something more than to see his advertisement in a printed news－
paper．He wants circulation．This he has when he ad－ the advertising agent influence roun．And do not let other paper for the Scientific American，when se－
lecting a list of publications in which you decide it is for vour interest to advertise．This is frequently done for the papers having a small circulation than is allowed on the Scientific American．
For rates see top of first column of this page or ad 361 Broadwa

ELECTRIC MINING APPARATUS， ELECTRIC MINE LOCOMOTIVES ELECTRIC VENTILATING FANS

ELECTRIC HOISTS \＆ELEVATORS ELECTRIC COAL CUTTERS．
THOMSON－HOUSTON ELECTRIC COMPANY，MINING DEPARTMENT 622 ATLANTIC AVENUE，BOSTON，MASS．

173－175 ADAMS STREET，CHICAGO，ILL．
FOR RENT，WATER POWER，

RAND DRILLCMINUM．AN INTERESTING DE

OLDS＇GASOLINE ENGINE．

THE COMPASS．－BY CAPT．D．WIL

PATENTEES．－We int in radece goodsto mbole

 Mrata Con

Incubators，Only $\$ \mathbf{\$} \mathbf{2 . 0 0}$
The Belknap Little Giant Water Motor

 BELKNAP MOTOR CO．， 23 Plum St．Porthand，Maine ©．＇S．A

Industrial，Manufacturing， and Uncurrent

SPECIAL NOTICE！

ALUMINUM：ITS USES AND AP

Steel Type for Writing Machines，

TO INVENTORS and manufacturers
 Sixty－first Grand National Exhibition

 American Institute of the Oity of New York Will open October 10 and close December 10． 1892 ．In－tending exhibitors must make early application to se－

TRADES UNIONS．THE TENDENCY of－By Herbert Spencer．An abe paper，pointink out
the rreat difficulties of dealing with cimplex sicial
question

A NEW EDITION OF

Tha sciantific Amerianan defarence Bools

This attractive little book，of 150 pages，embraces a
great variety of information useful for reference in the great variety of information useful for reference in the
house and workshop．It contains the last Census of the U．S．by states and countles，and has the area of square
miles in each state and territory with table miles in each state and territory，with tables of the oc
cupations and the number engaged in each kind of busi－ cupations and the number engaged in each kind of busi－
ness；lists of cities having 10.000 inhabitants；all the ness；hists of cittes having 10．00 inhabitants；all the
statistics being complied from the 1890 census；the
United States patent laws，writh directions how ot obtain patents secure
and copyrights．
and copyrights．
The book contains tables for calculating the hors
power of steam engines，and other information usefu of this little 150 page volume cannot be obtained from any other source．P
newsmen or by mail．

MIUINIV de 0 ．
Publishers of Scientific America
361 Broadway，New York

BOOKS．

 Preciong stones nad iems．By E．W．stroeteri

『卫『『。

Our entirely new Catalogu of Sclentita and Teenni－

MUNN \＆CO．，
Publishers of the＂Scientific American，＂ 361 Broadway，New York．

ROSE'S Mechanical Drawing 8ELF-TAUGHT.
Eourth Edition, thoroughly revised and corrected.

RECENTIY PUBLISHED.

STEEL TYPE FOR TYPEWRITERS

WHAT ELECTRICITY IS.-BY W. W.

Vandoven Pat. Li Pul. OILER

DEAF NESS \& HEAD NOISES CURED

A MODERN BATH. ES
 INVENTORS' IDEAS put into practic

DUBT: DU®T:

dotectatent Dust Protector

~AMPAIGN BADGES

 Which Will It Be? Cold Plate and Finely Finished.With correct Photoeraphs of the With correct Photographs of the
Previent and Viiee Fresident of
either part
 ourcolors sample by mail 10c
 W ETTIT Wholesale Jewelera,
Chicago., ill
207 State St.

Crocker-Wheeler Wlectric Co. ELECTRIC MOTORS
ACKNO WLEDCED TO BE THE STANDARD FOR
ACKNOWLEDCED TO BE THE STANDARD FOR ALL HICH-CLASS
WORK WHERE POWER IS REQUIRED.

CHUCKS.

AITUMYXINTIMI

\}

BARNES

NetricictiondiskDrill FOR LIGHT WORK Has these Great Adrantages: The
speed can be instantly changed from 0 to 1600 without stopping or
shiftingbelts. Power applied can
he trad be graduated to drive with equal
sarety the smallest or largest drills within imalis range or largest
ful economy in time and
saving in trill bread great
I) W. F. \& JNO. BARNES CO., 999 Ruby St., Rockford, 111 .

SECONDARY BATTERIES.-BY G. H

Cap ORE BREAKER Capatity yt 2 200 toros per bour.

 GATES IRON WORKS,

CIARIE'S

 Power wrisgerotion hosiery and
 GEO. P. CLARK

POu USE GRINDSTONES

 The clevelind stone co

ROCK BREAKERS AND ORE CRUSHERS

 STEEL, IRON, COPPER, ZINC, BRASS, TIN,
 STEEL, IRON,
d all other Metals Per and Malt Howses, Distilleries,
Tile $\begin{aligned} & \text { Works, Filter, spark Arr } \\ & \text { Coffee Machinery, etc., etc. }\end{aligned}$. en machinery, etc., etc. Standard Sizes Parforated Tin and Brass alwayin Stock THE HARRINGTON \& KING PERFORATING CO., Chicago,

BOOKS.

MIUININ eco.,
Publishers "Scientific American, No. 361 BROADWAY, NEW YORK.

MAKING THE VINEYARD.-A VALUable article on the propagation and culture of the grape
vine. How to make cutting. planting of cutt ins, sys

"ECONOMY IS WEALTH."

HOW TO MAKE A STORAGE BAT

NEW YORK TRADE SCHOOLS.-DE

 anan 1 G Griad Alivaribinin Indilim. The Architects and Builders Edition the Scientific American. (Established 1885.)
This superb architectural work has by far the largest circulation of any periodical of its class. It goos di
rectly into the hands of those who have the ordering of the
great luulk nf Juiliding Materials and Appliances, namely great Architects, Builders, Constructing and Sanitary
the Angineers, Contractors, and House Owners.
Engine Engineers, Contractors, and House Owners.
The Building Edition of the ScIENTIFIC is unquestionally the very best advertising medium for
manufacturers and dealers in Building Materials Cor manufacturers and dealers in Building Materials, Car
penters' Tools, Woodworking Machinery. Heating. Ven
tilating, Plumbing and Sanitary Aples. tilating, Plumbing and Sanitary Appliances, Roofing
Architectural Wood and Metal Work, Builders' Hard Architectural Wood and Metal Work, Builders' Hard
ware, Doors, Sash, Blinds, Paints, and in fact all good
ghich which enter into or are used in the construction
maintenance of Buildings or works of any kind. The rates for advertising are moderate. For term
address MUNN \& Co. Publishers, 361 Broadway, N. Y .

ARTISTS WHO GET RICH

PROPDSALS.

U NITED STAATES ENGINEER OFFICE, NO. 73
 material and labor necessary to complete the presen
project for improvink cannal at the cascades of the C

 Rue's Little Giant Injector. SCREW JACKS, STURTEVANT BLOWERS. \&c.
 DEFAANE WOUSA ${ }^{\text {B BULDERS }}$ or WHEEL,BENDING WAGON, GARRIAGE AND HOOP MACHINERY
free sites TO SUBSTANTIAL MANUFACTURING ENTERPRISES
 GEE. 333 Walnut street. Philadelphia, Pa., President
and General Manazer of numerous L.and (Copanies
situted alonk the lines of the Nortolk \& Western
Railroad.

Steam! Steam!

2-Horse Eureka Boiler and Engine, - $\$ 175$
B. W. PAYNE \& SONS,
simina. n. s.

have you read
Experimental
Soience?
This new book, by Geo. M. Hopkins. is just what
Ou need to give you a good general knowledge of
 tinses an alience. to be without the kind or sciene.
tific intormation contained in this bonk. It is not

Over T70 pages: 660 fine cuts; sulstantially and
veautifulls bound. Price by mail, \$4.00. UN Send for ilustrated circular.
MUNN \& CO., Publishers, ffice of the SCIENTIFIC AMERICAN
361 BROADWAY, NEW YORK.

ねぇoertisements.
 80

OVERMAN WHEEL CCO.

"smar Pointod" Wood sficivis.

95 MILK ST,, BOSTON, MASS.
This Company owns the Letters Patent granted to Alesander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephnnes infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such
unlawful use, and all the consequences unlawtul use, and all the conse
thereof, and liable to suit therefor.

> Obstinacy is becoming in a mule; but a man ought to reason. Consider that American brains and machinery having made a good thing, will better it. An example is the new, perfected quickwinding Waterbury watch. Gold filled and coin-silver cases make it rich and elegant. It is stem-set, winds in a few seconds; a perifect timekeeper; and stili a lowpriced watch.
> What more can you ask ?
> nllaboutit.

WANTED-A responsible party to manu facture

Regular
Junior Daylight Daylight
Ordinary

I4 $\underset{\substack{\text { styles } \\ \text { for the } \\ \text { and } \\ \text { season of } \\ \text { sizes }}}{\text { s. }}$ $\stackrel{1892,}{ }$ $\$ 6.00$ to $\$ 65.00$

THE SMITH PREMIER TYPEWRITER

Latest improvements, registers for exposures; glass plate attachments; daylight the eastman company,

MAGGGANERNS

V Re What

Composed of Asbestos, combined with Water and Acid Proof Materiais, Compressed and Vulcanized

 FOR ELECTRICA L PUR POSESwitch Boards, Armature Sleeves, Battery Cells, Insulating Washers, Insulating Parts for Arc Lights, Incandes cent Lights, Motors, Chandeliers, Dynamos, etc. Special styles and shapes to order. Prices on applic

Edison General Electric Company

 Incandescent Lighting, Street Railways and Transmission of PowerSAFEST-MOST RELIABLE-BEST.
oUk ELECTRIC LAMP SIGNS ARE A GREAT COMMERCIAL INNOVATION.

BRANOIT OFPIOME:

\qquad

Regren

 LIAMS BROTHERS, ITHACA, N. Y. deep or shallow wells, with steam or horse adderss
Williams Brothers

ESTABLISHED 1846.
The Most Popular Scientific Paper in the World Only 83.00 a Year, Including Postage.
This widely circulated and splendidly Illustrated This widely circulated and splendidy illustrated
paper is published weekly. Every number contains six-
teen pages of useful information and a large number of teen pages of useful information and a large number of
original engravings of new inventions and discoveries, original engravings of new inventions and discoveries,
representing Engineering Works, Steam Machinery, representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures,
Chemistry, ITectricity, Telegraphy, Photography, ArchiCew Inventions, Novelties in Mecha,
Chemistry, EElectricity, Telerpaphy, Phoography, Archl-
tecture, Agriculture, Horticulture, Natural History. tecture, Agriculture, Horticulture, Natural History,
etc. Complete list of patents each week. Terms of Subscription. -One copy of the SCIEN-
TIFIC AMERICAN will be sent for one year- 52 numbers-postage prepaid, to any subscriber in the United States, Canada, or Mexico, on receipt of three dollars sy the
Cublishers ; six months, 81.50; three months, 81.00. panadishers ; six months, 81.50; three months, 81.00. Clubs. - Special rates for several names, and to Post The safest way to remit is by Postal Order, Draft, or
Express Money Order. Money carefully placed inside Express Money Order. Money carefully placed inside
of envelopes, securely sealed, and correctly addressed, of envelopes, securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk. Address seldom goes astray,
all letters and make all orderss. . rafats, etc... payabie to
MUNN \& CO., $\mathbf{3 6 1}$ Broadway, New York.

Scientitic Amprican §upplement This is a separate and distinct publication from THE
SCIENTIFIC AMERICAN, but is uniform therewith in size, every number containing sixteen large pages full of engravings, many of which are taken from foreign papers
and accompanied with translated descriptions. SCIENTIFIC AMERICAN SUPPLEMENT is published weekly, and includes a very wide range of contents. It presents the most recent papers by eminent writers in all
the principal departments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural History, Geography, Archæology, Astronomy Chemistry, Electricity, Light, Heat, Mechanical Engineering,
Steam and Railway Engineering, Mining, Ship Building, Steam and Railway Engineering, Mining, Ship Building,
Marine Engineering, Photography, Technology, Manufacturing Industries, Sanitary Engineering, Agriculture. Horticulture, Domestic Economy, Biography, Medicine, etc. A vast amount of fresh and
obtainable in no other publication.
obtainable in no other publication.
The most important Engineering Works, Mechanisms and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT.
Price for the SUPPLEMENT for th
Price for the SUPPLEMENT for the United States and
Canada, 85.00 a year; or one copy of the SIENTIFIC AMKRICAN and one copy of the SUPPLLEMENT, both mailed
for one year for $\$ 7.00$. Single copies, 10 cents. Address and remit by postal order, express money order, or check,

Building Edition.

The Scientific american architects' and Builders' Edition is issued monthly. 82.50 a year Single coples, 25 cents. Forty large quarto pages, equal
to about two hundred ordinary book pages; forming a large and splendid Magazine of Architecture, richly adorned with elegant palates in coflors, and with other fine
engravings; illustrating the most interesting example of modern architectural construction and allied subjeets. A special feature is the presentation in each number of a variety of the latest and best plans for private resi-
dences, city and country, including those of very mod erate cost as well as the more expensive. Drawings in
perspective and in color are given, together with full perspective and in color are given, together with full
Plann, Speciflcations, Sheets of Details, Estimates, ete.
The elegance and ches The elegance and cheapness of Cor it the Largest Circulation of any Architectural publication in the world. Sold by all news.
dealers. $\$ 2.50 \mathrm{a}$ year. Remit to Architectural pubication in the wora.
dealers. $\begin{aligned} & \text { \$2.50 a year. Remit to } \\ & \text { MUNN } \& \text { CO., Publishers, }\end{aligned}$

PRINTING INKE

