

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

HIGH-SERVICE WATER TOWER, BROOKLYN.

A large section of the city of Brooklyn, near the main entrance to and along the southwestern boundary of Prospect Park, is on pretty high ground, and on this account an important distributing reservoir was located here many years ago. The water level of this reservoir is 198 feet above tide water, and its service has been of an entirely satisfactory character for section of the city was so much lower that a good value is greatly enhanced by the fact that a large
the area it was intended to supply with water, for at The site is aremmanding one, as from "Reservoir Hill" to flow above the first or second stories in building the time the reservoir was constructed the high the view takes in the larger portion of the two cities of occupying the highest sites. The tower is located at ground in the neighborhood of the park was almost New York and Brooklyn, as well as New York Bay one corner of the old reservoir, and is built of Con entirely unoccupied, and the level of the built-up and the Narrows, out to the Atlantic Ocean, and its necticut red granite. It has an extreme height of 166
portion of this high land borders upon one of the most

water pressure for house service was easily maintained. portion of this high land borders upon one of the most | In but few large cities, however, has there been such | beautiful parks in the world, the main e |
| :--- | :--- |
| a steady and substantial growth as has been character- | which forms the subject of our illustration. |

which forms the subject of our illustration.
The new high-service water tower now being com-
pleted, and which forms a prominent feature of the pleted, and which forms a prominent feature of the
picture, is designed to supply the water for house service for this neighborhood, the pressure afforded b the old reservoir being insufficient to cause the wate (Continued on page 149.)

Šientific Ammericam.

ESTABLISHED 1845

MUNN \& CO., Editors and Proprietors. PUBLISHED WEEKLY AT

No. 361 BROADWAY, NEW YORK.

O. D. MUNN.	A. E. BEACH.
TERMS FOR THE SCIENTIFIC AMERICAN.	
One copy, one year for the U. S., Canada or Mexico................. $83 \mathbf{0} 90$One copy, six months, for the U.s., Canada or Merio. One copy, one year,t, any foreign country belongingto pootajuinion:Remitty postal or express money order, or by bank draft or check. MUNN \& CO., 361 Broadway, corner of Frauklin Street, New York.	
The Scientific American Supplement	
is a distinct pape from the SciENTI is issued weekly. Every number con $\$ 5.00$ a year, for the U. S., Canada countries belonging to the Postal co bionlbined lRates.-The ScIEN will be sent for one year, to any ad receipt of seven dollars. To foreign	FIC AMERICAN. THE SUPPLEMENT tains 16 octavo pages, uniform in size or mexico. $\$ 6.00$ a year to foreign Union. Single copies, 10 cents. Sold See prospectus, last page. TIFIC AMERICAN and SUPPLEMENT countries withln Postal Union, nine
Wars Vear. Building	Edition
THE ARCHITECTS AND BUILDERS pertaining to mons, merspective architecture tectura: work in, great variety. To b ing this work is invaluable. Has the ing this worm is in in the world. or Mexico, 82.50 a year. To foreign anmear; combined rate for BuIDI and SUPPLEMENT, $\$ 9.00$ a year. To for	
nish Edition	e Scientific American.
LA America Cientifica e Ind Sraphy with the SCIENTIFIC AMER profusely illustrated. It is the Indies, Mexico Central and Sout sions-wherever the Spanish langu any part of the world. Single copi	STRIAL (Spanish trade edition of the monthly, uniform in size and typoent scientitic, industrial trade paper America, Spain and Spanish possese is spoken. 83.00 a year, post paid to UNN \& CO., Publishers, 361 Broadway, New York.
	able to order of MUNN he publishers in case of ers.
NEW YORK, SATURDAY, SEPTEMBER 3, 1892.	
Contents. (Hlustrated articles are marked with an asterisk.)	
Aluminum, Soldering Metal for 147	
Sxite, American 152	Paving Estimates..........
	Ph
	${ }_{\text {Pra }}$
	${ }_{\text {Pla }}$
Dating stamp, the	
ineering inventions, recent	
Industry, discour	
ther and Shoes at the Fair.: 122	We
Liocomotive Per	
of by Cersus.................. 145	${ }_{\mathbf{W}}^{\mathbf{W}}$
orra	

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No. 870 .
For the Week Ending September 3, 1892.
I. ARCHITECTURAL.-The Imperial Institute, London.- 1 large Page
 I. BIOGRAPHY.-Hiram Sibley.-An address delivered by R. H.

 VI. ELECTRICAL.-Oakland, San Leandro and Haywards Electric VII. MARINE ENGINEERING.-The Modern Marine Boiler.-By

x. PHOTOGRAPHY.-Electric Lighting of Photographic Labora-
 xil woupro

THE ROCHESTER MEETING OF THE AMERICAN

 ASSOCIATION.In one respect the transactions of the American Association for the Advancement of Science might be made more available, if not more valuable, by following the example set by the American Society of Civil Engineers. The latter issues in advance, strictly for private use, official abstracts of all papers to be read. The result is to shut off much desultory discussion, to embody in more definite shape the work done, to make accessible the substance of papers that one fails to hear, and finally to facilitate the work of conscientious reporters trying to gather crumbs from the intellectual feast for the general public. The present plan is bewildering. Every morning a printed programme is distributed with lists of topics for the eight sections, and a definite time allotted to each topic Practically the programme is trifled with. A paper may get an hour for which only fifteen minutes had been allowed, or the whole order may be set aside to suit some whim. We went to a certain section anxious to hear certain papers that had been announced, but not one of which was read. We were treated instead to a rambling discussion, not on the programme, that wasted should stick to their programme.
Among the many papers that were presented, 182 in Among the many papers that were presented, 182 in
all, we can only notice a few. In the chemical section, all, we can only notice a few. In the chemical section,
an important topic discussed was "The Post-mortem Imbibition of Arsenic." The paper was by Dr. W. P. Mason, of Troy. He asserted that in some cases, where an autopsy had showed arsenic in the stomach and other organs, its presence might possibly be accounted
for by imbibition after death. In proof of this he cited for by imbibition after death. In proof of this he cited been poisoned, because arsenic had been found in the stomach. It was testified, however, that cloths saturated with an embalming fluid had been laid on the face and other parts of the body. This fluid contained zinc as well as arsenic. Tests were applied and both metals were detected. In the discussion on this paper several similar cases were described, all going to show that metallic poisons may be absorbed through the pores of the skin after death so as to be found in bearing of this on medical jurisprudence is obvious.
Professor George E. Hale explained to the astronom ical section the working of the spectroheliograph, and the results of the study of the sun by its means at the Kenwood Astro-physical Observatory, at Chicago. The lantern illustrations were admirable, being un doubtedly the most accurate photographs yet taken of the sun. A series of slides showed the rapidly succeeding phenomena of an enormous solar eruption. First was shown a large black spot shaped quite like a terrestrial volcano. Next was seen the same, only a vast fiery cloud rolled up from the crater, by which the spot was entirely concealed from view. The shape of the fiery m ; 3 s changed incessantly, marked differences being - sible even in photographs taken only one minute apart. The entire activity lasted but an hour and forty minutes; at the end of which time the original black spot reappeared hardly modified in either shape or magnitude.
Professor R. T. Hill, of Texas, read an extended paper on "The Volcanoes of the United States." Tropical America presents some of the most superb volcanic spectacles in the world. In Ecuador are twenty volcanoes from 16,000 to 22,500 feet high, eigh teen of them being crowned with eternal snow, and eleven had never been scaled by any living creature Fifty more exist in the Central American region, and
twenty-one in Mexico, chief of which is the lordly Popocatapetl. The peninsula of Southern California is a mass of ancient volcanic debris, with many craters still smoking. Only in April, 1892, the earthquake shocks from one of these shook the whole State of California. The volcanic field of the United States extends from California through Arizona and New Mexico, and northward through Idaho, Oregon and Washington. Hundreds of lava flows can be traced, and vast piles of ashes rise above the plains higher than the combined heights of the Eiffel Tower and Washington Monument. Should Mount Capulin become active again, its flames would be visible from Denver to Galveston. Scores of extinct volcanoes are visible in the vicinity. Around the San Francisco mountains extends a lava field covering 20,000
miles and including over three hundred peaks.
In Southern Utah stands Mount Filmore and othe volcanic cones of still more recent date, and farther to the north are the lava beds of the Modocs. Skirting the east front of the Sierras are volcanic openings whose forces seem to be only slumbering. The great range terminates in Northern California with Mount Shasta, Mount Hood, Mount Adams, Mount Rainier and Mount Baker. We must go further north to see the most interesting volcanic features of our country, in Alaska and its islands, whose sixty-one volcanoes have been in eruption more than fifty times during the last three hundred years. Outside of Alaska it is impossible to say when the last eruption took place in
the United States; but many believe it to have been within the last two hundred years.

Some problems of the iron ore found in the Mesab range in Minnesota were discussed by Professor N. H Winchell. He claimed that the theory of the substi tution of iron for limestone was opposed by the non existence of any limestone in the region. Also that the idea of a change from carbonate of iron to the ox ide of iron was opposed by the non-discovery of any spathic iron in the formation, even in any of the deep borings passing through the ore horizon. The decay of ferriferous schists is negatived because of the absence of any schists contiguous to the ore. Accumu lation in troughs formed by dikes cutting tilted strata is impossible, because no such dikes occur in the region. The geological relations of these ores and their kinds were described. There is but one known cause acting with sufficient force on sufficiently wide geo graphic area to explain the distribution of this ore and that is oceanic sedimentation. It is evident that there has been a profound change; but whether it took place before or after consolidation, and whether in Taconic or in recent time, is unknown. There seems to have been something peculiar either in the nature of the sediments of this horizon or in the influences to which they have been subjected, and this peculiarity is expressed on both sides of the Lake Superior basin. A paper was read by Professor E. D. Cope, on the Cenozoic Beds of the Staked Plains of Texas." This vast plain, covering 50,000 square miles, has a gentle synclinal structure, depressed to the east, overlying beds of the Triassic and Permian, and was once occu pied by a fresh lake with changeable boundaries There are no springs, but the underlying clays are watertight and can be reached anywhere in two or three hundred feet. The northern and eastern edges are cut by canyons resembling in color and strati graphy the features of the Grand Canyon of the Col orado. The edge of the plain is marked generally by a steep palisade. Professor Cope found three hori zons of the Cenozoic. The Equus beds are considered dentical with the Lafayette formation. No maxine fossils were found anywhere. In the Equus beds were the remains of two species of horses and also elephants. In the Blanco beds occur three species of mastodons, and one of megalonyx. In the Loop Fork beds occur three-toed horses along with mastodons.

The Lafayette formation referred to above was more fully described as to its continental distribution by Mr W. J. McGee. It is one of the most recent and also extensive formations known. It extends from Balti more to Florida, thence across to the Mississippi, and up the valley of that river as far as Southern Illinois, and across to New Mexico. The formation exposes about 100,000 square miles, with about twice as much more overlaid by the Columbia and other formations Its thickness varies from fifty to three hundred feet, and its color changes from a dark red loam to a whit ish marl. The poverty in fossils makes its determinaion difficult, but it is thought to be in general a littora deposit. The lessons which it has to teach have an mportant bearing on the subject of continental evolu tion.
Professor McGee also read an important paper on comparative chronology. He considered the subject First, with reference to natural time limits-the day month, year, chang, narus, and Platonic year. Second historical eras, as determined by rhythmic and cyclic motions, the conjunction of cosmic bodies, and also by artificial eras, dating from catastrophes, the found ing of nations or from great religious events. Third biologic periods, indicated by the introduction of dif ferent forms of life, from its faintest signs up to man which cannot be reduced directly to cosmic or histori terms. Fourth, the geologic periods, which can onl be approximately correlated with historic or cosmi terms. This portion of the paper was illustrated by ingenious diagrams, without which it might be diffi cult to make the author's meaning clear. He dis cussed in a spirit of fairness the controversy between the geologist and the physicist-the former demand ing a hundred times as much as the latter is willing to grant. He believed it to be the office of anthro pology to mediate between the two extremes. In re ply to an inquiry, he said that the antiquity of man probably extended only about ten thousand years into the past, and that of his anthropoid progenitor about forty thousand years.
Appropriately following the above was a highly original and valuable article by Prof. W. H. Holmes, on the aboriginal quarries of flakable stone, and thei bearing upon the question of palæolithic man. The conclusion reached by the author, and generally con curred in by others, was that in view of ascertained acts, the matter needed thorough revision, and that every case arising should be decided on its own merits.
An illustrated lecture was given in Music Hall by Prof. G. K. Gilbert, of the United States Geological Survey, on "Coon Butte, and Theories of its Origin." This is the locality to which attention was called in con nection with the last annual meeting, since when Pro Gilbert and Mr. Marcus Baker had visited it, in order to
determine its origin. The impression which had previ- ${ }^{\prime}$ western elongation on the 19 th , at $1 \mathrm{~h} . \mathrm{A} . \mathrm{M}$., when ously prevailed that this remarkable butte, found in she is $46^{\circ} 5^{\prime}$ west of the sun. Henceforth, she will ap Arizona near to the Canyon Diablo, was caused by the fall of a meteorite, gave way before a volcanic theory which was established as correct.
The next annual meeting of the A. A. A. S, will be held in August, 1893, at Madison, Wis. Prof. William Harkness, of Washington, D. C., was elected president Prof. F. W. Putnam, of Cambridge, Mass., permanent secretary; T. H. Norton, of Cincinnati, general secre tary ; and H. L. Fairchild, of Rochester, secretary of the council. Officers were also chosen for the various sections. It was announced that an anthropologicalcongress would be held at the Columbian Exposition during the week following the next annual meeting of the A. A. A.S., with representatives of every American tribe, from Terra del Fuego to the Esquimaux of the Arctic zone. As an outgrowth of this congress, it is meant to found a museum of ethnology at Chicago, materials for which are now being collected by the ship load in for which are now being collected by the ship load in
Yucatan, Ecuador, Peru, Chile and elsewhere. A comYucatan, Ecuador, Peru, Chile and elsewhere. A com-
mittee was appointed to secure rooms for the various mittee was appointed to secure rooms for the various
sections of the A. A. A. S. to be used as headquarters during the entire period of the exposition, each room to be in the building the contents of which are most closely allied to the branch of science represented.
In connection with, and at the close of, the Roches ter meeting. delightful excursions were made to Ni agara Falls, Watkins Glen, Stony Brook Glen, the State Fish Hatchery near Mumford, to Mount Morris, State Fish Hatchery near Mumford, to Mount Morris,
Portage, and other localities. At the closing session Portage, and other localities. At the closing session
Secretary Putnam announced that 65 members had Secretary Putnam announced that 65 members had
been made fellows at this meeting ; that 175 new mem been made fellows at this meeting: that 175 new mem-
bers had been elected, and that 456 members and fellows had been registered as in attendance.
In our Supplement this week will be found an interesting paper read before the association on explorations at Copan, Honduras, by Mr. M. H. Saville, and also a paper on mineralogical exhibits at the World' Fair, by Mr. Geo. F. Kunz.

POSITIONS OF THE PLANETS IN SEPTEMBER.

 MARSis evening star. His great work is accomplished, for the opposition of 1892 is an event of the past. He made his neighborly call, nearly a month since, and is now speeding his course away from the earth, while his ruddy luster is fading, and his marvelous size is diminishing. We place him first on the September diminishing. We place him first on the September annals on account of the widespread popular interest that full reports may speedily be received from all the observatories that have made a specialty of the study of the Martian planet, and that thus all unreasonable expectations may be laid to rest. There are two points among the problems concerning Mars that are of spe cial interest. One is the solution of the question regarding the nature of the so-called canals and their doubling. The other is the displacement of Mars among the stars at the time of opposition, in order to determine the solar parallax. When the observatorie on both sides of the Atlantic have made full reports,
and when these reports have been corrected, compared, and made into maps, we may hope to learn something of what was really seen on the face of Mars in the opposition of 1892. The earliest time to look for reliable tidings is in October, and the addition to our knowledge of the Martian planet will probably be small.
Mars contributes an important event to the record of the month. He is in perihelion, or nearest the sun, on the 7 th at $3 \mathrm{~h} .53 \mathrm{~m} . \mathrm{P}$. M., when he is $13,000,000$ miles nearer the sun than when he is in aphelion or most distant from the sun. If perihelion and opposition had occurred together, Mars would have been a more distinguished object, but the most perfect conditions united are rare in celestial phenomena. The war god was satisfactory, though not arrayed in his most gorgeous garments.
Mars is stationary on the 4th, and then changes his course, moving eastward or in direct motion for th rest of the year.
occultation of mars.
The moon, two days before the full, occults Mars on the 4th, the planet disappearing on the dark edge of the moon. The phenomenon will be visible in Washington and vicinity. The immersion in Washington mean time takes place, on the 4 th, at 1 h .22 m. A. M., and the emersion at 2 h .6 m. A. M., the occultation continuing 44 m .
The moon is in conjunction with Mars on the 4 th at $0 \mathrm{~h} .50 \mathrm{~m} . \mathrm{A} . \mathrm{M}$., being 44^{\prime} north.
The right ascension of Mars on the 1st is $20^{\circ} 45^{\prime}$, his declination is $24^{\circ} 17^{\prime}$ south, his diameter is $24^{\prime \prime} .0$, and he is in the constellation Capricornus.
Mars sets on the 1st at 2 h .26 m. A. M. On the 30th he sets at 1 h .1 m. A. M.

vends

is morning star. She will be superb in the September morning sky, rising about four hours before the sun. Her luster is, bowever, fading, though it will take bright eyes to perceive it. She reaches her greatest
proach him, rise later, change from retrograde to direct motion, and slowly make her way toward the sun, until she is lost in his brilliant beams. When the year closes, she is still morning star.

The moon, four days before her change, is in conjunction with Ven
The right ascension of Venus on the 1st is 7 h 44 m The right ascension of Venus on the 1st is 7 h .44 m. , her declination is $17^{\circ} 25^{\prime}$ north, her d
and she is in the constellation Gemini.
Venus rises on the 1st at 1 h .53 m. A. M. On the 30 th she rises at 2 h .7 m . A. M.

JUPITER

is morning star. If Mars takes the first place on ac count of the great expectations aroused in the popular mind that important discoveries were obtained during his recent opposition, and Venus wins the second place from her exceeding beauty as morning star, Jupiter merits the third place, for he is lord of the ascendant in the solar community. He shines with increasing luster every night as he looms grandly above the horizon, appearing on the middle of the month at 7 o'clock, outshining Mars in his decadence, and reigning supreme over the star-lit sky, until Venus rises to bear him company. September is the month preceding his opposition, which occurs on October 12. The month before and the month after culmination include the best conditions for the observation of planets. This is eminently true of Mars, but in the case of Jupiter needs to be modified, for this giant planet is bright as long as he can be seen, shin ing with a radiant luster that seems never to grow dim. Jupiter will be the starry gem of the Septembe nights, as, rising with majestic grace, he makes his way to the zenith, and slowly descends in the western ky until his light is lost beneath the western hills.
The moon makes a close conjunction with Jupite on the 9 th, at 7 h .57 m. A. M., being 15^{\prime} north. The conjunction is invisible, occurring in the daytime, but moon and planet will be near together on the evening of the 8th, and the celestial exhibition will be passing fair. The conjunction will be an occultation for observers who see the moon in her geocentric position, and who are within the limiting parallels of 56° north and 30° south latitude.
The right ascension of Jupiter on the 1 st is 1 h . 32 m ., his declination is $8^{\circ} 0^{\prime}$ north, his diameter is $45^{\prime \prime} .2$ and he is in the constellation Pisces.
Jupiter rises on the 1st at $8 \mathrm{~h} .2 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 30th he rises at $6 \mathrm{~h} .12 \mathrm{~m} . \mathrm{P}$. M.

> SATURN
is evening star until the 25th, and then morning star He is in conjunction with the sun on the 25th, at 5 h $5 \mathrm{~m} . \mathrm{P}$. M., when he passes from the eastern side of the sun to the western. This, according to astronomical calculation, ranks him as morning star. The law is that planets on the western side of the sun rise before him and are called morning stars, while planets on the eastern side of the sun set after the sun, and are called evening stars.
The moon the day after her change is in conjunction with Saturn, on the 21st, at 3 h .48 m . A. M., being 1° 1 north.
The right ascension of Saturn on the 1st is 12 h . 5 m ., bis declination is $1^{\circ} 49^{\prime}$ north, his diameter is $5^{\prime \prime} .0$, and he is in the constellation Virgo.
Saturn sets on the 1st at $7 \mathrm{~h} .21 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 30th he rises at $5 \mathrm{~h} .32 \mathrm{~m} . \mathrm{A}$. M.

MERCURY
is morning star. He reaches his greatest western elongation on the 11 th, at 8 h. A. M., when he is 17° 55^{\prime} west of the sun, and may be visible to the naked eye under favoring weather conditions.
The right ascension of Mercury on the 1st is 9 h .59 m ., his declination is $9^{\circ} \mathbf{4 6}^{\prime}$ north, his diameter is $9^{\prime \prime} .6$, and he is in the constellation Leo.
Mercury rises on the 1 st at 4 h .36 m . A. M. On the 30th he rises at $5 \mathrm{~h} .24 \mathrm{~m} . \mathrm{A}$. M.

NEPTUNE
is morning star. He is in quadrature with the sun on the 3d, at $5 \mathrm{~h} . \mathrm{A}$. M., being 90° west of the sun. His right ascension on the 1st is 4 h .40 m ., his declination is $20^{\circ} 36^{\prime}$ north, his diameter is $2^{\prime \prime} .6$, and he is in the onstellation Taurus.
Neptune rises on the 1st at 10 h .32 m. P. M. On the 30th he rises at $8 \mathrm{~h} .38 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.

URANUS
is evening star. The moon makes a very close conjunction with Uranus on the 23d. at 8 h .10 m. P. M., being 5 ' south. The moon occults the planet for observers who see her in her geocentric position. Jupiter is occulted under the same conditions. The moon therefore occults four planets, Mars, Jupiter, Saturn, and Uranus, during the month.
The right ascension of Uranus on the 1 st is 14 h .4 m ., his declination is $12^{\circ} 8^{\prime}$ south, his diameter is $3^{\prime \prime} .5$, and he is in the constellation Virgo.
Uranus sets on the 1st at $8 \mathrm{~h} .32 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the

Venus, Jupiter, Mercury and Neptune are morning tars or on the sun's western side at the beginning of the month. Mars, Saturn and Uranus are evening stars or on the sun's eastern side.

A New Hybrid Oak.

A glance at the last edition of Gray's "Manual of Botany" will show a list of hybrid oaks, and it will be observed that Quercus nigra, the black jack oak, has given rise, as one of the parents, to two forms, and that Quercus ilicifolia, the black scrub oak, has given rise to one. Thus nigra crosses with the shingle and the willow oaks and ilicifolia probably with the scar let oak. These forms are recognizable, particularly the first two, which have in consequence received names. The fact that nigra crosses with ilicifolia, however, has not been recorded, but a number of interesting trees of this parentage may be seen on the sandy soil at Watchogue, on Staten Island.
Quercus nigra is plentiful there, and so is Quercus ilicifolia, and among these trees, which are easily separated, stand a number of forms that have in part he characters of each. They resemble nigra in being erect in growth, in the abruptly tapering branches, and in having the leaves rusty-pubescent beneath They resemble ilicifolia in being small, in their mooth, light-colored bark, and in the retention of their catkins throughout the summer. Occasionally a Q. nigra will retain its catkins late into the year, but it is not a usual feature of the tree, as with ilicifolia
These trees vary considerably individually, and are as interesting in this respect as the hybrid oaks re ported from Richmond Valley, Staten Island, in the Scientific American of November 10, 1888. A more extended account is being prepared, but this will serve to give an idea of this interesting hybrid. As it is a recognizable form, I wish to propose for it the name of Quercus brittoni, after Dr. N. L. Britton, who wa born on the island, and who, with Mr. Arthur Hollick has done so much in making known its flora.

William T. Davis.
A Mountain Search Light.
A splendid electrical search light has lately been installed at the little hotel on the summit of Mt Washington, N. H., and several very interesting ex periments have been tried with it recently. By throwing the light toward the sky at an angle of about 45° the reflection was seen in the air above Portland, Me., a distance, air line, of 85 miles ; but the angle transversed by the light flashes was 110 miles. Telegraphic messages by means of these flashes were sent from Mt. Washington to the Western Union Office in Portland, and answers returned by wire.
It would be an interesting experiment to loca It would be an interesting experiment to locate
another flash light of equal power on some elevated another flash light of equal power on some elevated
point far distant from Mt. Washington, and thus establish flash light communication in both directions. Long distance signaling by sunlight by means of mirrors has been practiced for military purposes. But this requires the signaling stations shall both be in the line of vision. Moreover, the system can only be worked during sunshine. With the electric system it is not necessary the stations shall be in the direct line of vision, as the sky above the objective station receives the illumination.

Precautions Against Cholera.

Official information having been received of an epide mic of cholera in Russia, and in view of the large immigration into the United States from said country, and of the danger that exists of the introduction of cholera into the United States through the medium of personal effects and baggage of said immigrants, it is by the Treasury Department ordered that on and after September 18, 1892, no vessel having on board personal baggage, bedding, clothing, etc., belonging to immigrants from Russia or belonging to immigrants from any cholera-infected district, shall be admitted entry into the United States unless accompanied by a certificate from the consular officer at the port of embarkation to the effect that said personal effects, baggage, etc., have been disinfected in accordance with the methods hereinafter described.
For the disinfection of said articles one or more of the following methods will be used, all articles to be unpacked and freely exposed for disinfection

1. Boiling in water not less than one hour.
2. Exposure to steam not less than one hour, the steam to be of a temperature not less than 100 degrees Centigrade (212 degrees Fah.), nor greater than 115 degrees Centigrade (239 degrees Fah.), and unmixed with air.
3. Solution of carbolic acid of a 2 per cent strength. This method (No. 3) may be applied only to leather goods, such as trunks, satchels, boots, shoes, to rubber goods, etc., the articles to be saturated with the solution.

According to the Street Railway Review, there are now nearly 1,000 street railway companies in the United States, of which fully 400 are electrically operated, in whole or in part.

A MULTIPLE FUSE IGNITER.

The device shown in the illustration is designed to promote safety in blasting, providing for such pur pose a simple and very efficient means of safely bolding and simultaneously firing any number of fuses. The improvement has been patented by Mr. William J. C. Doyle, (box 874) of Aspen, Col. It consists of two blocklike pieces, hinged together, so as to be folded one upon the other, and firmly secured in such position by a

doyle's fose igniter.

simple form of fastening. On each side of the inner faces of the blocks are short semi-cylindrical grooves, which, when the parts are closed, register and fit closely upon the fuse, and these several grooves are connected by a small branch groove in one of the blocks, this groove being adapted to contain fine powder, by which fire may be communicated to the severalfuses. The fuse by which the others are fired may be located in the registering grooves in the hinged end of the block. If desired, ordinary black powder may be mixed damp to form a paste and moulded into the small branch grooves to dry there in position. For wet blasting, the edges of the blocks may be first smeared with cartridge soap, to make a water-tight joint.

A COFFIN-LOWERING APPARATUS

The accompanying illustration represents an improved apparatus for the use of undertakers, the small view showing the device folded for transport. It has been patented by Mr. John B. Beugler, of Dayton, Tenn. Upon a beam supported by four legs travels a carriage having friction rollers and a lock lever by which the carriage may be locked in a desired position. Near the center of the carriage are depending ears in which is pivoted a grooved pulley in side recesses of which are coiled springs, one end of each spring secured to the wheel hub and the other end to the ears. A chain attached to this wheel passes over a sprocket wheel on a shaft, which also carries a large loosely mounted grooved wheel outside of the carriage, a ratchet wheel on the shaft being engaged by a pawl on the loose wheel, the latter being surrounded by a brake strap and acting as a brake wheel, for which a brake lever is held in convenient position. The lower end of the chain is attached to a bar, to each end of which one end of a strap is secured, the opposite ends of the straps being also connected by a shorter bar. A locking,device of novel character is employed, by which the proper adjustment is effected when the casket has been placed upon the straps. This adjustment is readily made with the coffin either at the foot or side of the grave, when, by turning the large wheel, the coffin is sufficiently raised to be readily guided to the proper place in the grave or vault. The operator, by means of the brake lever, has full control of the speed of descent, and should the coffin catch or lodge
on any projection, the locking device would not cause its release. When, however, the coffin comes to rest the chain is slightly slackened, and the locking device then disengages itself, and the chains with the straps onstituting the sling are automatically carried up legs being the way, the chain being rewo to on a side hill as well as upon level ground.

"THE EXPERT" RUBBER BAND DATING STAMP

The R. H. Smith Manufacturing Company, of Springfield, Mass., who have been for over twenty years leaders in the manufacture of rubber stamp goods and who are the sole owners of the metal-bodied rubber type so widely used, have recently placed on the market a new dating stamp called "The Expert," that has a number of valuable and novel features. The illustrations which we give in this connection show the construction of this stamp very clearly.
The dates and other shiftable printing characters are upon three endless belts, which are mounted to revolve around a central core, the lower end of which forms the backing for the characters while in position to print. From the upper side of this core block rise three standards, the center one for the day belt being highest, as that belt has thirty-one characters and the other two but nineteen each ; central on each standard rises a thin blade-like support having a crotched or open bearing at its top end, and upon each of which freely revolves a steel wheel having a central axis. The belts run over these wheels and are shifted by a very novel device which clamps the belt firmly to the wheel, moving both along just the distance from one printing face to another. Between each wheel and the flat shoulder of its standard is interposed an ellipti cal sheet steel spring, having a slot through it allowing it to pass on over the blade; the lower edge of the wheels resting upon the crowned side of the springs, which, by the tension of the belts, are compressed nearly straight, thereby imparting to each band a gentle tension of about four ounces, and as the belts are so made as to bend only in squares, each square of printing characters is thus effectually held in line while printing-an important advantage never before attained.
The case or shell is cast all in one piece, of hard, white metal, with partitions running through the center, forming a compartment for each band, making it impossible for the bands or their wheels to interfere with each other or become displaced. The core, with its mounted printing belts, slides into the case on substantial guides, and is adjusted to the height of the fixed die by screws passing through ears at each end of the core block, drawing it against a spiral spring in a manner admitting of ready adjustment to the thickest or thinnest die, or even a die thicker at one end than the other.
All of these parts are clearly shown
in the accompanying engravings. The finger piece of each shifting clamp projects through a slot in the case. The whole is well made and nickel plated. It will also print the day of the week in connection with any hour of the day, and the side of the stamp on which the year is given has a number of words not found on any other stamp, such as "Received," "Ans'd," "Ent'd," "Paid," "Filed," "Sent," etc. This stamp is an important advance in dating stamps. The manufac turers will be pleased to give additional information to those interested

Experience in electrical welding shows that the metal is strengthened at the point of welding.

NEW RUBBER BAND DATING STAMP.
This improved engine, which has been patented by Mr. Hermann Betten, is designed to utilize the steam or other motive agent to the fullest advantage. The cylinder and its base preferably con-

BETTEN'S ROTARY ENGINE

sist of two parts bolted together, and the piston, secured on the main shaft, has a circular head traveling in the outer circular space of the cylinder. Below the steam inlet pipe a gate is arranged to slide into or out of the cylinder, a spring-pressed arm connected by a link with the gate holding the latter in its inner posi tion. as shown in the illustration, during the most of the revolution of the piston. As the revolution is nearly completed, the piston head strikes the arm, whereby the gate is drawn outward until the head has passed. The gate is also pivotally connected by a link with a The
valve in the steam chest, so that the steam is shut off during the time the gate is withdrawn as the head is traversing this portion of the cylinder. The steam chest has a transverse partition dividing it into two compartments, one of which is connected with the source of steam supply and the other with the pipe leading to the cylinder. In the latter compart ment slides the cut-off valve controlling the amount of steam admitted to the cylinder, this valve being connected with one arm of a bell crank lever, and the other arm of the lever being adjustably connected with an eccentric rod operated from the main driv ing shaft. This form of engine may be arranged with two cylinders attached to a main driving shaft if de sired.
For further information relative to this improvemen address Messrs. Naber \& Betten, New Vienna, Iowa

World's Fair Notes. a whaler at the fair.

The old whaling bark Progress, which has now reached Detroit on her way from New Bedford, Mass., to Chicago, where she and her contents will constitute for the benefit of World's Fair visitors a complete ex hibit of the whale-catching industry, has a remarkable history. She has made 17 trips around Cape Horn, all of them successful. Forty times has she crossed the Arctic Ocean in search of the whale and his valuable blubber. In 1869 she set sail and joined the Arctic fleet. In 1871 terrific storms scattered the fleet and all met disaster except the Progress, which came back to New Bedford with 300 sailors, seven captains, five women, and three children, the survivors of the wreck. She carries six whaleboats, which have all seen actual service, and each one is provided with a complete equipment of paraphernalia. These boats are sharp at both ends, and can be driven at great speed by six good oarsmen.

Plaster of Paris.
The Berlin Bautechnische Zeitschrift gives some cu-
rious particulars in regard to the use of plaster of Paris. rious particulars in regard to the use of plaster of Paris.
The employment of this material is much less general with us than it is abroad, but there are still many mechanics and artists here who would like to know enough of its properties to handle it to advantage. In the first place, a great deal of plaster of Paris is spoiled in the calcination by the notion that it is necessary to raise it, like quicklime, to a high temperature. The consequence is that the commercial plaster is burned very much at random in kilns, which deliver one portion overburned, and, therefore, inert, a second portion underburned, and also inert, and the rest calcined to the proper degrees, but, if coal is used for burning, often contaminated with sulphide of calcium, and, therefore, unsuited for use. Before delivery, all these qualities are ground up together, the mixture thus depending for its setting quality entirely on the comparatively small percentage of properly burned and pure plaster which it contains. In consequence of this irregularity of the commercial material, sculptors abroad usually prefer to calcine their own plaster. They buy, when they can, powdered gypsum from a deposit known to be granular, rather than stratified, and heat it on a sheet iron plate over a gentle fire to about the temperature of boiling water. If there is good access of air to the mass of gypsum, the heat may be somewhat less than that of boiling water, and it should never much exceed it, or the resulting plaster should never much exceed it, or the resulting plaster
we overburned and inert. As the heating of the gypsum powder proceeds, steam, or watery vapor, disengages itself from the mass, at first first freely, and then locally, from little craters, which form themselves for a moment and then disappear. When this phenomenon is observed, the powder should be stirred until the craters cease to form, and a cold piece of glass held over the heap of powder is not dimmed by the vapor. The operation is then complete, and the plaster should be removed from the fire and allowed to cool. So prepared, plaster can be used over and over again. After it has been mixed with water, hardened and used for moulds, it is still plaster, with nothing added but water, which can be driven off by pulverizing and heating the powder exactly as before, when the plaster is recovered in as good condition for use as ever.-Am. Architect.

Soldering Metal for Aluminum

This is the invention of Alexius Rader, of Christiania, Norway. It consists in combining cadmium, zinc and tin mixed in substantially the following proportions, viz.: cadmium, fifty parts; zinc, twenty parts; tin, the remainder. The zinc is first melted in any suitable vessel, then the cadmium is added, and then the tin in pieces. The mass must be well heated, stirred and then poured.
This soldering metal can be used for a variety of different metals, but is especially adapted to aluminum.
The proportions of the various ingredients may be varied in accordance with the use to which the article is to be put. For instance, where a strong and tenacious soldering is required, a larger proportion of cadmium can be used; where great adhesion is desired, a larger proportion of zinc would be used; and where a nice and durable polish is desired, a greater per cent of tin would be used. solder for aluminum, is light in weight and capable of taking a high polish.

That inebriety is a disease of a physical nature is susceptible of the clearest demonstration, and is generally recognized. There is now no question or doubt of its being hereditary, and no one doubts that it is acquired by social customs. That it is also a disease of the moral nature, engendered by allowing the intellectual faculties to remain inactive, by not exercising the power of conscience and will, by permitting the
power of appetite and passions to dominate over conscience, by the lack of a positive character, by defect ive moral education, and by the want of self-culture, Dr. Day.

a novel device for blowing dust from

 HIGHWAYS"It is as important to remove the worn-out material from a stone road as to put on new material," and "all mud should be brushed from the road surface before applying more stone." These were leading precepts in the mind of John Loudon Macadam, the

road cleaner-sectional view.

Scottish engineer whose name has for half a century been connected with the excellent road-making system he introduced, and which now everywhere bears his name. Road making, after his system, was practically
commenced in England in 1816, and within eight years commenced in England in 1816, and within eight years lic road the over twenty thousand miles of the pubproper cross section and with adequate provision for thorough drainage at all with adequate provision for thorough drainage at all
times, the Macadam system primarily consists of lay. times, the Macadam system primarily consists of lay.
ing small angular broken stones directly upon the earth, a yielding bed being preferred to a rigid foundation, and the angular shape of the stones causing them to bind together to a greater or less extent, as they are fixed in their places first by the roller, and
afterward by the traffic upon the road. The number of courses and their thickness and the different sizes and kinds of stone will, of course, vary with the location and circumstances and the amount to be expended on any given length of roadway, but the prepended on any given length of roadway, but the pre-
cepts above quoted, as to the removal of dust and

J. J. ASTOR'S PNEUMATIC ROAD-CLEANING MACHINE
whence it may be conveniently removed, as may be desired by the operator of the machine. This feature of the machine adapts it for use for efficiently cleaning streets in country towns as well as for work on the public roads beyond such limits.
Upon the inner face of one of the two traction wheels, loosely mounted on the axle of the machine, is a bevel gear meshing with a bevel pinion supported by a bracket, the pinion meshing with a bevel gear splined upon and having a slight longitudinal movement along the axle. The latter gear is moved by a hand lever extending upward through the platform, and having a thumb latch for engagement with a rack or other keeper, the arrangement being such that, according to the adjustment of the hand lever, the axle will or will not be rotated, as may be desired, by the revolution of the traction wheels as the machine is drawn along. A double-acting bellows, supported in a diagonal position under the platform, affords a continuous blast of air when the machine is in operation, the top and bottom plates of the bellows being rigidly attached to the supports, and a central pivoted partition having an up and down movement communicated from a gear mounted on the axle. An adjustable connection, through a pinion, affords means of giving more or less throw to the central pivoted partition of the bellows, or other gearing may be employed to increase the power of the bellows, the force of the air blast being readily adjustable for the purpose of placing the dust in windrows at one side or blowing it to a distance from the road. The bellows has a supplemental nozzle, adjustable vertically and laterally, the distance at which this nozzle is supported above the ground being conveniently regulated by a hand lever within easy reach of the driver. To keep the dust from flying upward, a hood covers both the nozzle proper and the auxiliary nozzle.
It will be seen that, by means of this machine, an air blast of almost any desired force may be obtained, and that it can be readily directed by the driver in such way as to be most efficient in completely clearing the roadbed of dust or any light or loose foreign matter. The great advantage this machine has over brüshes is that there is nothing in the air blast to wear out or to remove the solid part of the roadbed.
The subject of road making has come into a good deal of prominence during the past few months, largely from the efforts of a few public-spirited in dividuals, who have taken pains to point out, in a most conspicuous manner, the generally wretched character of our roads. Road making has been too much neglected since the railway age set in, and the farmer and country people generally are paying dearly for such neglect. In the mak ing of new roads, using broken stone, and rolling, as is most common, there has lately been start ed a healthy move-
ment, but it will be ment, but it will be
years before we shall years before we shall
see such an improvesee such an improve
ment as is most ur ment as is most urIt has been more for the sake of aiding such efforts than for any other reason that this inventor has given his atten tion to the subject, and has constructed the practical and efficient machine shown in the illustration.

The Velocity of

 The first firing wa done on thenew proving grounds of the Bethlehem Iron Works on the 28th of July. Screen were arranged in loose material from the surface, apply in all cases connection with electrical instruments for measuring where a good and permanent roadbed is to be main- the velocity with which the shots traveled. In the tcst tained. made, theThe pnematic 'road-cleaning machine shown in the
The pnematic road-cleaning machine shown in the by Mr. John Jacob Astor, of New York City, and a model of which is in use on his place at Ferncliff, Rhinebeck, N. Y., is especially designed to facilitate worn-out material, or detritus, from the roadbed, shot fired, this came so close to the standard that fur either blowing it into the bushes or over the adjacent to be one of the most satisfactory tests made in the fences at the side of the road, or laying it in windrows, \mid history of modern ordnance.

A NEW PHOTOMETER

On account of the difficulty of eliminating the personal equation, photometric work has always been attended with a great deal of uncertainty, and an instrument for the measurement of light, whose accuracy does not depend upon the sense of sight, has long been needed but since the days of gas lightiug, and more especially of electric lighting, a reliable instrument especially of electric lighting, a reliable instrument has become an absolute necessity. Various ways
have been suggested for avoiding the uncertainty of have been suggested for avoiding the uncertainty of vice for the purpose that has come to our notice is the invention of Mr. S. F. Van Choate, of Boston, which he has given to the world without price or the expectation of reward
In this instrument-which is shown in the annexed diagram-a selenium cell is employed to receive the light beam, and to thus vary the electric current which is made use of to give the visual indications. The instrument is in the nature of a balance connected with a differential galvanometer, the standard light being arranged to affect one side of the balance, and the light of unknown strength being placed upon the opposite side of the instrument. The tubes, b, of two lanterns, a, are preferably arranged axially in line. In the right hand lantern is placed the light, s, to be tested, above which is suspended a disk, c, for preventing the escape of light. In the other lantern is placed the standard lamp, m, and in the tube, b, upon the same side of the apparatus is fixed an adjustable selenium cell, d, which is moved along the length of the tube, b, by the pinion, e. To the selenium cell, d, is attached an index, p, which slides in front of the scale, g. If the standard lamp and the lamp to be tested are electric lamps, they are connected up in an electric circuit in th usual way.
In the upper portion of the diagram is shown a differential galvanometer which is connected with battery, j. The right hand coil of the differential gal vanometer is connected by one of its terminals with the zinc plate, z, of th battery, while the remaining terminal of the coil is connected with the seleni um cell, d, which in tur is connected through th rheostat, i, with the car bon plates, c, of the bat tery. In a similar manner one terminal of the left hand coil of the galvan ometer is connected with the carbon plate, c, and the remaining terminal is connected with the adjust able selenium cell, d, from which a wire extends to the zinc plate, z, of the battery The two branches of the battery circuit are placed in electrical balance by means of the rheostat, i. The selenium cells alike, if the lamps, s, m, are equal, the distance be tween the selenium cells, d, and their respective lamp will be the same. If, however, the lamp to be tested is inferior to the standard lamp, the selenium cell, d which faces the standard lamp, will be moved unti the galvanometer indicates equilibrium. The differ ence in the distance between the selenium cells and the lamps, as indicated on the scale, will give the basis for the calculation of the relative intensities of the light from the two lamps, calculations being made ac cording to the law of inverse squares
This instrument can be used in measuring the inten sity of light from other sources by simply adapting the lanterns to the kind of light used for standard and for testing.

```
Casson's Steel Process
```

In the manufacture of steel and ingot iron some attention is just now being paid to Casson's new pro cess, as carried on at his extensive works in Stafford shire, England, the purpose in view being to so carbur ize the molten metal that the amount of carbon result ing may be more or less accurately determined. Thi is accomplished by introducing carbon, in the form of charcoal, into the casting ladle, and then tapping the metal direct from the converter or furnace into th ladle, after adding any desired quantity of ferro-manganese or other material; in this way, as is found, high percentage of carbon can be readily introduced into the metal, and a high grade of steel produced. In practice, that is, to produce a high grade of steel capable of standing from 26 to 34 tons tensile strain the use is called for of about 5 lb . of finely ground charcoal per ton of metal, the usual percentage o
ferro-manganese being also somewhat increased. Other forms of carbon than wood charcoal may also, it is stated, be employed, so long as they do not contain such a high percentage of sulphur or other ingredients as would be injurious to the resultant steel.

The Great Chicago-Mississippi Waterway.
Chicago has surprised the world in many wonderful undertakings of late, and not least among them is the proposed waterway from that city to the Mississippi River, upon which contracts for one section, involving $\$ 10,696,755$, were let a short time ago. In*letting these contracts the drainage board in charge of the great sewer, as it is now commonly called, has shown considerable boldness. As it is claimed that this waterway will serve the twofold purpose of diluting Chicago sew age and for future commerce between the lakes and the Mississippi, some details regarding the plans upon which work has been begun will probably be of interest at this time. The canal will have a width at bottom of 160 feet and a uniform depth of 19 feet, a gradient of 5 inches to the mile, and a capacity of 600,000 cubic feet per minute. The Suez canal has a bottom width of 72 feet, just sufficient for one large steamer. It is, in fact, a "single track" canal with turn-outs; the Chicago canal will be "double track." The Suez canal has a top width of 197 feet, the depth in center being 26 feet, or 7 feet more than that of the Chicago canal. The superior dimensions of the Chicago canal were not so much demanded in the interests of navigation as in that of sewage disposal, the law demanding as it does a water supply for diluting Chicago's present and
future excreta to the enormous amount of 600,000 cubic
every street must have its tunnel, which will have to be about 1,500 feet long, including approaches, in order to make one crossing of the same capacity as a present street, the cost will be about $\$ 1,500$ per lineal foot, or $\$ 2,250,000$ per street. This work alone would run into a big sum of money, and it is evident on every hand that in the matter of sewage disposal Chicago has an important subject to deal with.-Marine Review.

The Discouragement of Industry.
Judging from the inflammatory editorials, personal attacks, and sensational reports in certain public jour nals, one of the last things that a man ought to aim a in this land is success and eminence in his business, es pecially if it be one requiring the investment of a large mount of capital and the employment of a large num ber of operatives.
Men of large means in such positions at once become the target for sensational journals, who offer absurd uggestions, assail them with personal abuse, or attack them as "robber barons," "purse-proud millionaires," "aristocrats," and the like. Yet these very men have built up great industries, increased the wealth of the community, given employment to thousands, and been liberal in their charities and public gifts.
All that they have done, however, in this direction is forgotten, because while benefiting others they have enriched themselves. They have sinned in being suc cessful, while others with less talent, genius, and brain have failed or plodded on in hopeless mediocrity.
One of the worst features of the disturbance at Homestead has been the pandering to a morbid desire to assail capital, because it is capital, by the sensationa press. Indeed, we maysay this is not the chief reasol it is well known that the popular side of a question is with the laboring class There are many employed by one employer. Henc the publishers, seeing a profit in increased daily sales of paper, throw right and principle to the winds print the most absurd state ments to please the excited mass, and do not hesitat to attack in the vilest and most outrageous manne men who have by thei exertions added to th wealth of the country and increased its industria capital and facilities.
Andrew Carnegie, who has created by his activ brain a business which em ploys four or five thousand men, who has given away for the public good gifts to the amount of hundreds o thousands of dollars, has a difference with some 30 out of the 5,000 men with regard to what he consider the value of their services That value is not to b gauged by the amount o
VAN CHOATE'S ELECTRIC PHOTOMETER
feet per minute. The position of the present work is money he is worth, but by the market price of labor neither the beginning nor the end of the programme of $\mid \mathrm{Mr}$. Carnegie gets no more than the market price for the sanitary commission. It is a stretch of 14 miles of heavy cutting across what is called the Chicago divide, r "height of land." It commences at a village called Willow Springs, 20 miles from Chicago Court House, close to the present Illinois and Michigan canal, and runs in a southwesterly direction to Lockport, a town three miles from Joliet. The total length of cutting will be 14 miles, the maximum depth in rock about 35 eet, and in clay about the same.
Difficulties to be met with in this project are, of course, very numerous. It will involve a most prodigious expenditure, and notwithstanding the claims of its promoters that it is intended as a highway of commerce, all attempts to secure appropriations from the general government will be stubbornly fought The local government engineer, Captain Marshall, has already opposed the application of Chicago for government grants in aid of the enterprise, considering as he does that to do so would be to apply federal money to municipal purposes. Careful study has shown that no positive detriment would result to lake shipping on ac count of the abstraction of so large an amount of water from Lake Michigan, but the great cost of securing an entrance to the city of Chicago and the lake, and the ffect of such entrance on the transportation problem are all-important questions. The present harbor en trance, narrow and with low banks, has been a barrier to rapid transit on account of the swing bridges, which obstruct also the navigation. The programme of the sanitary board includes the entire filling up of this present harbor entrance, the creation of industrial properties on its site, and the facilitation of rapid transit across the new cuts by means of tunnels. Seeing that
is iregie if he is to pay mere than proper cost of production in wages, he must stop his works, throw thousands of men out of employment, and live on the ncome of his savings.
If the workman refuses to accept, of course $\mathbf{M r}$ Carnegie must do the best he can to supply his place at the rate he offers, and one has a perfect right to do so throughout the civilized world. Yet while this ques tion is in abeyance and he is striving to protect his property from illegal occupation and injury, he is held up as a tyrant and an oppressor of the poor, is depicted in public journals as stabbing the workingman with a bloody knife on one hand and giving money to foreign charities on the other.-Com. Bulletin.

Tools of the Pyramid Builders.

A two years' study at Gizeh has convinced Mr. Flin ders Petrie that the Egyptian stone workers of 4,000 years ago had a surprising acquaintance with wha have been considered modern tools. Among the man tools used by the pyramid builders were both solid and tubular drills and straight and circular saws. The drills, like those of to-day, were set with jewels (probably corundum, as the diamond was very scarce), and ven lathe tools had such cutting edges. So remarkable was the quality of the tubular drills and the skill of the workmen that the cutting marks in hard granite ive no indication of wear of the tool, while a cut of a tenth of an inch was made in the hardest rock at each revolution, and a hole through both the hardest and oftest material was bored perfectly smooth and un form throughout. Of the material and methou ul making the tools nothing is known

HIGH-SERVICE WATER TOWER, BROOKLYN. (Continued from first page.)
feet above the street level, the tower extending 58 feet above the top of the tank or water reservoir it contains. The manner in which the reservoir is supported in the tower is shown by the sectional view on this page. The height of the tank is 75 feet, with an inside diameter of 16 feet. It is built up of fifteen rings of boiler iron of varying thickness, the two rings nearest the bottom being half an inch thick, the two next above $\frac{7}{16}$ of an inch, then three rings of $3 / 8$ of an inch each, three of $\frac{51}{16}$, and five of $1 / 4$ of a inch each. The iron is of a high grade, and has a tensile strength of 52,000 to 55,000 pounds. The tank is supported upon a flooring of steel girders resting upon masonry piers, the bottom of the tank being 34 feet 7 inches above the foundation.
The flow of water to and from the tank is indicated by the arrows, and the inlet and outlet pipes are each 20 inches in diameter. A short section of pipe connects these pipes, so that water may be pumped directly into the service main without being passed into the reservoir if desired. Within the reservoir is arranged an overflow pipe, adapted to discharge into the old reservoir. The top of the overflow pipe is 12 inches below the top of the reservoir, and in it are arranged four reducing dis̀ks or diaphragms, to break the force of the fall of the water in the pipe. The pipe is 10 inches in diameter, and the reducing disks have each a central opening of 6 inches. Fig. 2 shows one of these disks in position, Figs. 2, 3 and 4 also showing the manner of supporting and holding the overflow pipe in place. A spiral staircase, 2 feet 10 inches wide, leads around the tank to an outlook room above, in the top portion of the tower, from which a view of wide extent is afforded.
The pumping plant is to consist of two Davidson high-service pumps, each capable of pumping one and a half million gallons a day. It is expected that the entire cost of this improvement will be about $\$ 100,000$.
The beautiful memorial arch which forms so prominent a feature of the picture is now very near completion. It has been erected by the city "To the Defenders of the Union, 1861-1865," as indicated by an inscription upon an entablature below the frieze, and is built of light granite. It is 80 feet long, 71 feet high, and 45 feet wide. The top will be reached by stairs in each abutment.

Locomotive Periormances.

Almost every one is familiar with the remarkable run recently made by a Schenectady locomotive hauling a special train on the New York Central Railroad, when the distance of $4391 / 2$ miles from New York to Buffalo was made at an average speed of nearly 60 miles per hour, and which was the precursor of the Empire State express, which makes the regular run at an average speed of over 52 miles per hour.
More recently we have accounts of an interesting record made.by a well known writer on two runs between New York and Albany, on which a large number of indicator cards were taken. The weight of the train was about 270 tons. The steam pressure varied from 160 to 170 pounds. From an inspection of about a dozen cards, the indicated horse power varied from 551 horse power at 44 miles to 1,120 horse power at $78 \cdot 9$ miles. At 60 miles per hour the train resistance is stated to have been 15 pounds per ton and at 70 miles $17 \cdot 10$ pounds per ton. About seven pounds of water were evaporated per pound of coal.
A remarkable statement concerning this performance was made by Mr. Sinclair, which, while almost incredible, will, if borne out by an analysis of facts, prove to be something of a surprise to those who make their prophecies of the electric economies by comparative statements.
In the description of these tests it is stated that the whole trip-shows an indicated horse power per hour for an average expenditure of only about $31 / 8$ pounds of coal per hour. This is far better than many stationary engines.
On the New Jersey Central road one schedule time is $861 / 4$ miles in 89 minutes, which is made wherethere are a number of necessary slackings. On May 13 the time was taken of the speed of a Baldwin compound loco motive for a considerable period of time on one of the regular runs. Ten continuous miles were made in 4521 seconds, and five were made in 222 seconds. The fast est time taken was 44 seconds and the slowest noted was 47.
On February 26 a similar compound passenger loco motive running on the same road broke all steam re cords by running a mile in $391 / 4$ seconds, or at the rate of nearly 92 miles per hour.
At this speed the indicator cards showed 930 horse power, and the drivers, which are 78 inches in diame ter, were making 395 revolutions per minute.
In making these very high-speed runs there is not much attempt at maximum economy of coal consumption, the necessity being to generate steam as fast as required by the cylinder, but, on taking an average of five trips, I find that there was evaporated $7 \cdot 19$ pounds
of water per pound of coal used and $9 \cdot 41$ pounds of
water evaporated per pound of coal consumed. The total weight of the train varied from 213 to 241 tons.
Some time ago I made a very careful analysis of the
work done in the elevated roads in New York City work done in the elevated roads in New York City, with a view of determining the coal consumption and the duty performed by the locomotives. At the time this investigation was made, now nearly seven years ago, there were in use on the Third Avenue division 63 trains at one time, running at very close intervals The weight of the train was from 80 to 90 tons: th speed was often as high as 20 to 25 miles an hour ; stops were made every third of a mile; in short, the duty de manded of the engines was exceedingly severe.
The maximum indicated horse power of the locomotives was found to average about 163 horse power, although on occasions these locomotives have been worked up to 185 horse power. Work was divided approximately as follows :
Acceleration in starting, 59 per cent; lifting, $24 \cdot 3$. per cent; and traction, 16.7 per cent. The average horse power exerted was 70.3 horse power, considerably less than one-half of the maximum.
The work on the line was so distributed that there was an almost constant total duty of about 4,500 horse power. The locomotives were on duty twenty hours, but used steam only six hours, and including all losses when standing still and the amount of steam used in braking, there was a horse power developed for about $6 \cdot 2$ pounds of coal per hour.
I believe that these figures are entirely reliable, and they show a remarkable performance when we conside the class of duty.

HIGH-SERVICE WATER TOWER-SECTION

There are, generally speaking, three distinct ele ments constituting the resistance of train movemen on a level, and they have a most important bearing when we consider the operation of long orshort trains and at high speeds. One of these elements is the fric tion of the train in its bearings; with good rolling stock this is about 8 pounds per ton. For all reasonable speeds it is probably fairly constant, provided the lubrication is good. Another element is that of air resistance, which varies with the shape of the forward end of the train, the condition of the air, the direction of the wind, and the velocity of movement. The third I may call the train-lifting or rail-bending effort, which depends upon the weight and swiftness of the train and solidity of the roadbed.
Dr. Dudley stated that on the New York Central system he found that trains of about 250 tons, when running at a speed of a mile a minute, had a resistance of from 10 to 12 pounds per ton, but that on short trains of two or three cars the resistance sometimes ran a high as 35 or 40 pounds per ton.
This is probably due not to any change in the friction of the bearings, but to the fact that the air resista
It at once emphasizes the fact that the operation of short trains at high speeds must, no matter how good the track or how favorable all other circumstances, be with a train resistance higher than required by long and well-vestibuled trains.
Mr. Dudley further stated, in speaking of the influ ence of stiff rails, that the difference in power required on the Chicago Limited when running on an 80 and a 65 pound rail was from 75 to 100 horse power per mile, that is, somewhere between 10 to 12 per cent of the
power actually developed, and he estimates that with
a 105 pound rail, which is nearly twice as stiff as the 80 pound rail, there would probably be saved another hundred horse power per mile, making a total sav ing of a quarter by less than doubling the weight of the rail. In his opinion it is perfectly safe to run a steam engine 120 miles an hour on this heavy rail.
Almost all the locomotive work of the United States has been done up to the present with simple engines. Their weight and capacity has been increased, their steam pressure raised until the standard is now about 140 pounds. Within recent years, however, the compound locomotive has come into use, and there is a comparatively large number of them in daily service. The steam pressure has gone up to 180 pounds as a standard, working sometimes as high as 200 pounds, but these are by no means the limits of steam pres sure.
On the Paris, Lyons, and Mediterranean Railway the standard for steam pressure for compound locomotives is 250 pounds. The compound locomotive has still its battle to fight, but I think he would be a rash man who would say that the days of still higher steam pressure are not to come and that the triple expansion locomotive will never exist.-Frank J. Sprague.

Paving Estimates.

Estimates per square yard for the different kinds of paving for Pacific Avenue, in Tacoma, are as follows wood.
Size of blocks, nine inches long, three inches wide and six inches deep. If concrete is used for founda tion it would be six inches thick, and in the proportion of one part of cement to four parts of sand and six parts broken rock. Estimate for one square yard of wood blocks :

Concrete, six inches thick, at $\$ 9$ per cubic yard . $\$ 1.50$
 Six inch block, fifty-four feet B. M., at $\$ 10$ per M
 Total cost.. $\$ 2.25$

BRICK ON CONCRETE, PER SQUARE YARD.

Brick on edge (85584), eighty-one brick per square yard, at $\$ 14$.

Total cost.. 18.84
double brick pavement, per square yard.
Gravel, eight inches thick, at $\$ 1$ per cubic yard............... $\$ 0.22$ Brick, laid flat, forty-one brick, at $\$ 14 . \ldots$. 67
Sand, two inches thick, at $\$ 1$ per cublic yard........... Brick on edge, eighty-one brick, at $\$ 14$... ... 1.13
25

bituminous rock

Concrete.. $\$ 1.54$
Bitumen laid in place...20
Total cost..74

Florida Moss.

The valuable moss of Florida, says Mr. Harry Bom ford, abounds in the hammocks and back lands. It is gathered chiefly by negroes. In its natural state it hangs in festoons from the limbs of trees in strands from one to five feet in length. The moss is gathered by pulling it from the trees with long poles, or by cut ting the trees down and then removing it. The moss is buried in the earth for about a month, after which it is dug up and is dried and shaken and sold to the local moss dealers for $\$ 1$ per hundred pounds. It is then run through a machine called a gin, which is nothing more than a cylinder covered with three-inch spikes revolving between a roll of similar stationary spikes. The action of these spikes is to knock out some of the dirt and trash, but it does not complete the job. It is then shaken over a rack formed of parallel bars, after which it is pressed into bales of about 200 pounds each. Some of the moss mills do all this work by hand except the ginning. The moss, after having gone through the above process, brings from $\$ 2.50$ to $\$ 3$ per undred pounds.
If, instead of allowing it to remain in the earth for one month, it is left there for three months, the entire bark of the moss is pulled off and there remains a beautiful black fiber almost exactly like hair. The hair moss brings from $\$ 5$ to $\$ 7$ per hundred pounds.
Mr. Bomford suggests the treatment of this moss as good field for invention. He thinks a machine could be made which would take off the bark, leaving the fiber, without the necessity of burying the moss for so long a time in the earth.

Universal Cement

250.0 sugar placed in a flask are dissolved in 750.0 water by aid of a water bath, 65.0 slaked lime added and the mixture warmed for three days at $70-75^{\circ} \mathrm{C}$. agitating repeatedly. After cooling, the supernatant iquid is poured off clear; 200.0 are diluted with 200.0 water and 550.0 finest glue allowed to swell in it for three hours, when it is heated until perfect solution takes place; after restoring the original weight by adding water, 50.0 acetic acid (96 per cent) and 1.0 pure carbolic acid finish the preparation.

AN IMPROVED AIR SHIP.

An air ship designed to have large carrying capacity, to be strong and yet light in construction, and be susceptible of easy and perfect control, is shown in the accompanying illustration. It has been patented by Mr. B. F. Barnes, of Circleville, Ohio. The balloon portion is of elongated cylindrical shape, and the cab is suspended therefrom by rods ex tended from the frame of aluminum bands encircling the balloon, the frame of the car also consisting of aluminum rods covered by oil cloth, in which are windows and doors. On the underside of the car, as shown in Fig. 2, is a storage battery compartment and an electro-motor, the latter adapted to operate a main shaft running parallel with the balloon. The raising and lowering wings are arranged in pairs at the front and rear ends of the car, these wings being operated from the main shaft, as are being operated from the main shaft, as are
also two sets of propelling wheels mounted on a frame at the front of the machine, as shown in Fig 3, the frame being capable of lateral swing, through a mechanism con nected with a lever in the car, to facilitate the steering or guiding of the ship. Both sets of these wings vibrate on a single verti cal rod, the crank shaft at its lower end carrying a bevel gear which meshes with a bevel gear on the front end of the main haft The lifting and lowering wings shaft. The lifting and lowering wings a the ends of the car are designed to be in operative when the propelling wings ar working, and the main shaft, which operates both, is accordingly arranged to be longi tudinally movable, to effect the engage ment or separation of bevel gears. To aid the flotation of the apparatus, horizontal extensions are arranged opposite each othe upon the balloon, and rigidly supported therefrom by a suitable framework, and to the rear end of each extension is pivoted the reartal rudder, horizontal rudder, capable of being moved
vertically, the rudders being connected to vertically, the rudders being connected to
operating levers in the car. At each end operating levers in the car. At each end
of the car is an auger, to be screwed into of the car is an auger, to be screwed into
the ground to anchor the ship, and springs, carrying rollers at their ends, are extended like feet from the bottom to lessen the shocks or jar on the descent of the car to the earth.

NOTABLE SKILL IN CLOCK MAKING

The clock shown in the accompanying illustration made by Mr. W. R. Smallwood, of Gowanda, N. Y., required two years for its construction, and was finished September 1, 1885. It gives, in addition to standard local time in both the 12 and 24 hour systems, the day of the month and that of the week, and the true sun time at many important points on the earth's surface. Its dimensions are, length 34 inches, height 32 inches, and depth $131 / 2$ inches. The movement alone weighs 165 pounds, and is run by three weights aggregating 256 poundsonly half the weight usually required, as a double cord is used. The material used in its construction was principally brass, although some Norway iron cast iron and steel were employed The parts are employed. The parts are keld kel, gold and sil gear wheels all told carry over 5,000 teeth, the largest oeing $91-10$ inches in diameter and having 180 teeth, while the smallest has only a single tooth, and measures $1 / 4$ inch in diameter. The steel cables which carry the weights are $3-16$ ths of an inch in diameter, and each is 24 feet in length. The pendulum, of red cedar, is 57 inches long and oscillates 54 times per minute, bearing a 6 pound adjustable iron ball.

Three distinct trains are included in the works-the main strike, the quarter strike, and the running train, the latter provided with a pin escapement. The striking trains are composed of four bells and a large gong. One bell sounds the quarter, two

SMALLWOOD'S EIGHT-DAY SIXTEEN-DIAL CLOCK.
pitch. Brown \& Sharp's cutters were used in cutting all the gear wheels, with the pinions, 115 in number. The weights fall about 8 feet in 7 days. To prevent dust from entering the oil holes, the main boxes or bearings are provided with imitation oil cups. All the pinions in the three trains are made from casehardened Norway iron. The main barrels are $41 / 4$ inches long inside of the ratchets and rims and 4 inches in diameter. The movement is covered with a glass case, so that every portion of the working parts is plainly visible, and the whole work is beautifully finished.
The attachment to the extreme right, with small weight, is an automatic fire alarm test, a special contrivance of Mr. Smallwood, who is the superintendent of the Gowanda fire alarm system. It is attached to the main strike and connected to the public fire alarm system, and every day at 12 o'clock the movement is released and all the fire alarm signals are rung five times as a test that all is well. It is proposed to exhibit this clock at the coming Columbian Exhi bition. Those who are interested to obtain further particulars in relation to it may ad dress the maker, at Gowanda. N. Y.

The New Cunard and White star steamers.

We have surely come very near the limits of size for the steaners that take the traffic of the Atlantic ferry, if the reported dimen sions of the White Star steamer that is to be built to lower the record of the coming Cunarders may be accepted as correct. They are said to be 700 feet long by 70 feet beam and the horse power is to be 30,000 . Com paring this with the measurements of the new Cunard liners, they are understood to be 600 feet been perpendiculars and be 600 feet feet breadth of beam, with a tonnage of 13,000 and a horse power equal to 26,000 The Teutonic and the Majestic, the largest hitherto of the White Star liners, measure 566 feet between perpendiculars and have a breadth of beam of 57.8 feet. The City of Paris and the City of New York measure following places is given by its sixteen dials: Rio de' 527 feet between perpendiculars, and are 63 feet in Janeiro, Greenwich, Copenhagen, St. Petersburg, Mt Ararat, Carcutta, Pekin, Melbourne, Sand wich Islands, San Francisco, Denver, and St. Louis, and these sev eral dials can be set simultaneously by turning a sin gle wheel. Connected with the running train is a re taining power to maintain its motion while winding. The arm of the main strike fly is of cut brass 2 fee long, and has polished cedar cams. The main running and strike wheels are 91-10 inches in diameter, 5/8 thickness, and are each provided with 180 teeth of 20 breadth of beam. The two White Star steamers are therefore, already the longest afloat and have the least breadth of beam in proportion to their length of any frst-class Atlantic liner, yet the proposed new White Star liner is to be 134 feet longer than the longest now float, while preserving the proportion of one in ten between the length and the breadth. When it is re membered that the Britannia, the first Cunarder, wa only 207 feet between perpendiculars in her entir length, the jump of 134 feet all at once in the length of the longest Atlantic steam er is something astonish ing.-Glasgow Daily Mait
Notwithstanding the in terruptions to work which have at odd intervals taken place, the construction of the two new Cunarders, Campania and Lucania has made such rapid pro gress, says the Steamship that the Fairfield Company find themselves in a pos tion to arrange for the launching of the first steamer in September, feat in shipbuilding pro bably unequaled in the ex perience of the trade. The engines and boilers ar even in a more forward state, both being ready fo fitting up the moment th hull is in the water. As can be understood, the engines are stupendous pieces o workmanship, and ar splendid specimens of th engineering skill of $\mathbf{M r}$ Andrew Laing and hi staff. The parts of the en gines for the second steam er are also ready, and orfly await the removal of the first set in order to be placed in position. There is no doubt that the boat will now be finished well within contract time.

Doctors say a healthy adult should eat at least ten ounces of meat each day.

MASTHEAD ELECTRIC ILLUMINATION

An interesting detail of naval operations in the supposed case of a war between England and France has lately appeared in The Engineer, London, from the pen of W. Laird Clowes, under the title of "The Captain of the Mary Rose," a tale of to-morrow. It gives particulars of various supposititious naval combats, and brings into clear light the defects as well as the powers of modern war vessels of all classes. The story is ers of modern war vessels of a
well illustrated. Among the well illustrated. Among the engravings is one representing a plan for masthead electric
lighting in which a zone of light is made to illuminate the waters in all directions around the ship of war, while the vessel itself remains in deep shadow. Concerning this device our author says :
"Masthead electric lights of novel design are being fitted to some of the larger battleships. These are so arranged as to shed a zone of illumination all around the vessel, but to leave the craft herself in comparative darkherself in comparative darkness, and it is confidently ex-
pected that they will be of great value should our squadrons be obliged to anchor at night within raiding distance of the enemy's torpedo boats. s ome experienced officers, however, are of opinion that a ship which desires to remain exempt from attack should on no account exhibit a light of this kind, since it must of necessity be visible from a considerable distance to the foe, and they do not
hesitate to say that, even if
they be supplied with it, they will not use it. The \mid science-experimental linguistics. Our readers aladvantage of the light lies in the fact that no ship so ready know of the important results obtained by long as she employs it can possibly be closely ap- Messrs. Rosapelly and Marey in their laboratories. It proached by any enemy that does not expose himself is by the aid of their labors and those of a few others, to a very dangerous extent. On the other hand it is Scott, Barlow, etc, that Abbot Rousselot in preserv pointed out that the apparatus is large, and offers so fine a mark for machine gun fire that it could doubtless bè easily extinguished by moderately good gunners at 3,000 yards, or even more. Experts here are loud in their regrets that this device, which is quite new, in common with other electric lighting devices which are much older, has not been properly experimented with in peace time, and that, in consequence, no certainty exists as to either its practical utility or its vulnerability."

ABBOT ROUSSELOT'S APPARATUS FOR INSCRIBING SPEECH
scription of speech is हolved. The lines are inscribed upon the Verdin registering apparatus figured here with. This, as well known, consists essentially of a cylinder upon which is fastened a sheet of glazed paper blackened with the smoke of a wax taper. A clockwork, with a Foucault regulator, permits of making it revolve with a speed that may be regulated at will. In front of the cylinder, upon a horizontal rod, capsule closed with sheet rub ber. Against the rubbe there bears a metallic plate with which is connected a horn lever that thus follows all the movements of the plate and rubber. The exremity of this lever rest upon the blackened sheet and removes the lampblack and thus draws a white line upon t. On another hand, ther is an aperture in the drum into which a rubber tube may be fitted.
Evidently, every time that, or any cause whatever, th air contained in the rubber tube enters into vibration, the vibrations will be com municated to the air of the drum, and after this the rub ber and then the plate and ever will enter into motion If the cylinder is revolving at the same time, the line that will be inscribed thereon by the point of the lever, in tead of being straight, will become a tracing-a tracing of the vibrations.
Now, if we reflect that speech is a motion and tha a sound, a voice, is air tha issues from the mouth and nose in vibrating under the action of the phonic organs, we shall understand the use to which the apparatus just described may be put Abbot Rousselot does not, of course, make it note peech itself in all its complexity, but, one by one or simultaneously, all the motions that compose it. Let us begin with those of the larynx. It is here, in fact, that the first noises are produced when the air is ex pelled from the lungs. To the extremity of the tube that ends in the drum is adapted a metallic capsule about half an inch in diameter, which one applies to the throat, in the lateral curve of the thyroid cartilage and then speaks. Then the vibrations of the larynx, transmitted through the skin to the column of air o

MASTHEAD ELECTRIC ILLUMINATION.
the capsule and tube, set in motion the rubber of the drum and consequently the lever, as above explained. This gives the first trace. In order to obtain the motions of the tongue, which rises and descends when one speaks, the process is analogous, but here, instead of a capsule, a drum similar to the receiving drum is of a capsule, a drum similar to the receiving drum is
held under the chin by means of a bandage. The held under the chin by means of a bandage. The
lever follows the motions of the hypoglossal muscle lever follows the motions of the hypoglossal muscle
and the drum transmits the motions, as before, to the receiving apparatus. In order to have the opening receiving apparatus. In order to have the opening the two inscribers is necessary. The levers are so arranged as to form a sort of clamp, upon one branch of which each lip rests.
The nose explorer is that of Dr. Rosapelly. The rubber tube here terminates in a small bulb which is held in the nose by friction. When the air makes its exit through the nasal fossæ, as happens, for example, when a nasal vowel is pronounced, these vibrations act upon the inscriber and receiver in the same way as
before.
As the registering cylinder is capable of receiving several inscriptions at once and as all the levers can be placed in the front of the drum at the same time (as
shown in the figure), we shall be able to read upon it simultaneously the motions of the larynx, tongue, lips and nose. Still other apparatus that it would be superfluous to add will permit of inscribing all the superfluous to add will permit of inscribing all the
accessory mo.ions. It results that we shall have at accessory motions. It results that we shall have at once a certain number of lines repre
taneously the pronunciation of a word.
In order to comprehend the importance that such inscription of decompounded speech may have, we must reflect upon the results that can be derived from it, not only by physicians, but by linguists. It will be possible hereafter to note the pronunciation of any language, dialect or idiom whatever, without relying upon the testimony of the ear, which distinguishes but slight differences between the modes of speaking but slight differences between the modes of speaking
of several individuals. Hereafter there is to exist a of several individuals.
phonetics of precision.
How, in fact, do languages change from one epoch to another and from one country to another? Contemporary science has shown that there is nothing arbitrary here, and that such mutations operate according to fixed and constant laws uninfluenced by caprice or convention. Thus, to take an example, a Latin c placed before an a at the beginning of a word has given ch; carnem has become chair, caput, chef, and canem, chien. A t followed by an i in the middle of a word has given is in poison from potionem and raison from rationem. But what it has been impos-
sible to note up to the present is each stage of these sible to note up to the present is each stage of these
insensible; and, so to speak, microscopic transformations.
To take a contemporaneous example, one has never precisely determined, in such words as ennemie,
annee, the exact influence of the mute e, which is written but noct influence of the mute e, which out one being able to say, however, that it is no longer heard. Now, it is always by imperceptible modifiheard. Now, it is always by imperceptible modifi-
cations that a phonetic change begins. We do not cations that a phonetic change begins. We do not
ourselves perceive those that are beginning, but our ourselves perceive those that are beginning, but our
children will perceive them, for they will not pronounce any more accurately than we, and it is these modifications, imperceptible at flrst, that make of one language another tongue. By means of his apparatus Mr . Rousselot has thus already been able to note a host of variations in the same family.
This is enough to show the interest that these new instruments of study present. In the future, they will furnish our descendants with absolutely exact ideas as to our present pronunciation. As for us, they permit us to enter much more deeply into an intimate knowand differences more closely, and, by induction, to divine what has been the progressive course of the slow evolution whence our modern tongues have issued.-La Nature.

Snow as Material for Irrigation

In a paper read by Mr. A. Podolsky, C.E., before the I.R.T.S. of St. Petersburg, he says: Want of irrigation is the principal cause of the last year famine in Russia. The usual process of carrying irrigation works from neighboring streams is too costly and slow, and besides is quite impracticable in South Russia, on account of excessive small falls in all the rivers of this part of the country, the average fall being under 0.0001 , or about 2.5 inch in one mile; the streams, moreover, have very little water during the summer months, when the irri gation is principally wanted.

Now in several parts of Siberia and especially in the Semiretchensky district the water obtained from melting snow is used for irrigation. The climate of these parts is quite continental, with very hot, dry summer, a severe winter, with plentiful falls of snow, and con-
sequently very similar to the climate of middle and sequently very similar to the climate of middle and
south Russia. The snow irrigation is managed in the following manner. At the first warm winter day after a plentiful snowfall, the whole vlllage, not excepting women and youngsters, meet at a previouslyappointed spot in the flelds situated on a slope of a hill. One por
tion, consisting of strong men, collect and carry the snow to form a large bank, while others press the snow down and spread it evenly. This operation is repeated fall of snow, and by the spring a large bank of compressed snow is formed, a dozen feet deep and weighing several hundreds of tons. With the first approach of the spring, the snow bank is covered with pine branches, straw and dung; if such material is not at hand, earth and sand are used as covering, but in the latter case the layer has to be about 18 inches thick. The lecturer thinks that the same plan of irrigation would be quite applicable to Russia, because as a rule the crests of hills are left uncultivated and could be profitably utilized for forming ice banks during the winter,
For
For regulating the flow of water from melting snow in the bank, a ditch is managed on the lower side of the bank with two openings, one to be used as an over flow, in case the water is not wanted for irrigation, the other leads to the irrigation ditch distributing the water on the fields.
With regard to figures, the experience is too recent to yield correct data as to melting of compressed snow in large quantities, influence of various coverings, etc., but we can approximately calculate the extent of an be bank necessary to
land, as follows :
In south Russia, the water necessary to grow one "dessiatna" (3 acres) of wheat is about 2,000 tons, half of which, or 1,000 tons, might be required to be supplied by artificial irrigation. On the other hand, 36 cubic feet of loose snow weigh about one ton. Assuming that pressure will reduce the volume of snow by one-half, each ton of water will represent 18 cubic feet of compressed snow. Consequently, one acre will require 6,000 cubic feet of space in the ice bank; if the latter is say 15 feet high, 20×20 feet will be the ground space required for each acre.
Such ice banks are the cheapest and the most prac ticable way of irrigation for south Russia and generally for countries where snow falls in abundance dur ing the winter.

Production of India Rubber in Bornes.

There is a royalty charged on rubber collected from the jungles of Borneo of 10 per cent ad valorem. The different species of the plant found are, according to the United States consul at Singapore, (1) Manungan the United States consul at Singapore, (1) Manungan
pulan, which comes chiefly from Northwest Borneo ; pulan, which comes chiefly from Northwest Borneo ;
it is a Willughbeia barbidgei, and is specially identical with the "gutta-singgarip" of the peninsula; (2) Maugan buyok, said to yield the best gutta of the Borneo forest; it is a Leuconotis engenifolius; this species is also found in small quantities on the peninsula; (3) Manugan manga, which yields a very good gutta, is
possibly a Willughbeia, as also is Surapit, for the latter yields the same milky exudation as Manugan pulan, but is said to be a bad gutta, and seldom collected. Bertabu, or Petabo pulan, is referred to as of little Bertabu, or Petabo pulan, is referred to as of little ter kinds. The other kinds of gutta met with in the Malay Peninsula are: (1) Singgarip putch, or Gutta sudek; (2) Singgarip hitam; and (3) Gutta jelutongthe latter is only used for adulterating.
The gutta percha production and export is much larger than the trade in India rubber properly so called. The name is given to the inspissated juice, which is
produced chiefly by Dichopsis gutta, called by the natives getah taban merah, and of ten confused with caoutchouc. The tree is of large size, from four to five feet in diameter, and from 100 to 200 feet in height. When growing in the forest it has a clean, straight
stem, and it may be generally distinguished by the stem, and it may be generally distinguished by the rich
brown color of the under surface of the leaves. The brown color of the under surface of the leaves. The
flowers are small, white, and divided into six petals and six sepals. The seeds-generally two in each fruitare oily, and are eaten by birds and monkeys. It flowers in March, and the fruit ripens in June.
The method of collecting the gutta is as follows: A tree having been selected is felled, and as it lies on the ground rings about an inch broad are cut in the bark at intervals along the whole length of the trunk and of
the branches with a parang or Malay knife. These uts soon become filled with the white, cream-like sap, and in about half an hour the gutta will have separated from the aqueous portion of the sap, and may be removed by rolling a small ball of it round in the cuts, to the edge of which the coagulated gum adheres and forms a disk, varying in size according to the number of scores it is rolled in. These disks are then boiled in the persons who export it to Singapore and Penang. The gutta is at first white, but soon changes to pink, nd finally to a brownish-red. The amount yielded by a single tree about 100 feet high, and whose age was es timated to be over 100 years, was 2 pounds 5 ounces of fairly clean gutta, valued by a Malay dealer at 3 s . 3d. per pound. The product, therefore, of the whole tree is worth only 7 s . 6d. Other species of the gutta
tree in the Straits Settlements are: (1) Getah toban putch (white), (2) Getah toban sutra (silk), (3) Getah
toban chayas (liquid), and (4) Getah toban simpor. It is stated by the director of the botanical gardens at Singapore that there are over 92 species altogether on the peninsula.

American Bauxite.

Previous to the year 1890 all the bauxite used by American consumers was imported from France; in fact, it derived its name from a town in France (Beaux) near where it was first discovered. There are very few deposits of bauxite in the United States that justify their being worked. The high percentage of silica and iron most of these properties contain renders them almost, if not entirely, worthless. There are, however, some deposits in Alabama and Georgia that far surpass the French bauxite, in that they are more soluble pass the French bauxite, in that they are more soluble
and contain a larger percentage of alumina and a and contain a larger percentage of

Bauxite is a ferruginous hydrate of alumina $\left(\mathrm{Al}_{2} \mathrm{H}_{6} \mathrm{O}_{6}\right)$. It occurs in " beds " or "deposits," and is mined very much like iron ore in an opencut, by blast ing, etc. It is found in two distinct forms; one consists of birds' eyes and fine gravel, while the other is found in the form of a donix. These birds' eyes are very rich in alumina. This ore is found sometimes between layers of clay, and in such an instance it requires a very experienced miner to separate the two, from the fact that bauxite in some of its forms resembles clay very much. This is the most deceptive of all ores; you cannot form any idea of its quality by simply looking at it, but it requires analysis all along as you progress in the mine. When this ore is being shipped, analyses must be made of everything shipped out-each car must be carefully sampled. By sampling the mine at different stages and taking therewith samples of the cars gives results from which an average can be made.
Bauxite ore should always be shipped in box cars, so as to prevent the accumulation of moisture, and has to be shipped when perfectly dry, 6 per cent of moisture generally being allowed by the consumer.

There are two companies engaged in shipping bauxte to consumers in Philadelphia, Syracuse, Buffalo, and New York, viz., the Southern Bauxite Mining Com pany and the Republican Company. The former com pany owns most of the valuable ore in Alabama and two splendid deposits in Georgia. It has been stated that the shipments of bauxite by these two companies have greatly reduced the price of aluminum.
It is useless to go into detals as to the metal that is gotten from bauxite (aluminum), for upon that subject much has already been said. From the present out look it is destined to be the coming metal, its lightness, durability, and the fact that it does not oxidize be ing recommendations that no other metal has. In nature aluminum exists very abundantly, and goes to make up a large portion of the earth's crust. Common clay contains about 30 per cent of aluminum, but in view of the fact that it exists in a combined form ren ders it difficult to separate.
The following is an average analysis of the ore found in Alabama and Georgia:

The method for bauxite analysis is very simple However, great care should be taken in the sampling or upon that depends the accuracy of the result.
Method for Analysis.-Weigh out 2 grammes of the finely ground ore and place in a platinum crucible with cover on ; place over flame and heat gradually at first, and then raise the heat to redness; allow this to con tinue for 15 minutes; remove crucible and allow to ool ; weigh, and calculate loss as water.
To the crucible containing the dried powder add sodium carbonate and fuse ; when at quiet fusion, re move crucible and dissolve out contents with wate and a little hydrochloric acid; evaporate to dryness take up with as little HCl as possible and water; fil ter and wash well with hot water; make up solution to 300 cubic centimeters ; shake well to mix; take out 50 c.c. and determine the alumina by precipitating with ammonia; take another 50 c.c. and determine iron by usual method. The silica is also determined as usual.

A SEPARATE building at the World's Fair for the hoe and leather industry exhibit is now an assured fact, as the required $\$ 100,000$ has all been raised Leather dealers and manufacturers in all parts of the country have contributed to the fund. The building will be one of the handsomest on the grounds, having been designed by Sandier, an eminent French architect, now connected with the fair. It will measure 150 by 575 feet, and will contain everything in the way of eather and the products of leather exhibited at the fair. The most improved machinery used in leather manufacture will be shown, as also the manufacturing processes. The visitor may watch this from the raw hide to a flnished shoe or dainty slipper. It is likely too, that rubber goods and their manufacture will be shown in this building. Altogether the exhibit will be ar larger and more complete than anything of thesor ever before attempted.

Mechanical Properties of Soils.

The property of absorbing and retaining moisture is important. Clay loams and peaty soils absorb the largest quantity of moisture and retain it best, especially those peaty soils which have a large excess of organic matter in them. Pure clay soils are generally too compact, while sandy soils are too loose either to absorb or retain moisture. On level clay soil the water will stand and become stagnant. This is the case, also, with sandy or peaty soils with a clay subsoil. Under with sandy or peaty soils with a clay subs
these circumstances draining is necessary.
these circumstances draining is necessary.
The air should be allowed to circulate freely through the soil. It carries the elements of plant food contained in it to the roots. Carbonic acid gas and ammonia are both furnished in this way to a considerable extent. It promotes the decay of vegetable matter present, and thus again provides food for plants. The proper chemical changes in the mineral elements of the soil are promoted by the carbonic acid and the oxygen of the air. How necessary, then, that the soil should be well plowed and well pulverized.-Florida Farmer.

THE GOLDEN DOOR OF THE TRANSPORTATION BUILDING OF THE WORLD'S FAIR.
The accompanying engraving of the beautiful golden door of the Transportation Building of the World's
ine, makes a firm, fairly flexible mass. By increasing the quantity of glycerine to two or three parts, a less firm but more flexible and elastic mass is obtained. In the author's experience, the most useful proportions are one of glue or gelatine and two of glycerine.
In making the mass the glue or gelatine is soaked in water until it has become soft, then all the surplus water is drained off and the soft mass added to the glycerine, which has been heated on a water bath. When the glue or gelatine has become melted, the thick, tenacious mixture is strained through cheese cloth, and again heated on the water bath for at least an hour to drive off the water. If this is not done, the evaporation of the water, after the model is cast, causes considerable shrinkage.
Any desired color can be given the mass by adding to it, while melted, a concentrated solution in water of an aniline dye. Care must be taken not to add an excess, or it will cause staining of the hands upon handling the model.
Making the Model.-He had found paraffine the most useful material for making the model from which the plaster mould is made. Other materials, such as wood or clay, may be used, but paraffine is preferable, on account of the ease with which it can be melted out of the mould without damaging it. The paraffine is
each coat being allowed to dry thoroughly before ap plying the next.
Casting the Model.-Both halves of the mould are placed in a perfectly level position and the surface and depressions well oiled. Each half is now filled with the melted mass until it projects slightly above the surface of the mould, using the mass at as low a temperature as possible, in order to avoid contraction of the model on cooling. When perfectly cold, the of the model on cooling. When perfectly cold, the
two halves are joined in the following manner: Retwo halves are joined in the following manner: Re-
move one half of the model from its mould, then paint move one half of the model from its mould, then paint
the exposed surface of the second half, still in its mould with some of the modeling mass at a fairly high tem perature, next place the other half on it, and adjust it edges to the half contained in the mould. After two or three hours remove the complete model from the mould, cut away all rough spots at the line of junction, and finally finishby painting with a brush wet with boiling water.
All finished models should be preserved in their moulds, to avoid distortion. The mass is likely to prove useful in making casts of irregular surfaces and cavities, as, on account of its flexibility, it can be easily removed without damaging the object, when a plaster cast would either break the object or be broken itself To illustrate this adaptation of the process, Dr. Free

GOLDEN DOOR-TRANSPORTATION BUILDING OF THE WORLD'S FAIR

Columbian Exposition affords, even in the absence cast in a block or slab, in a wooden frame placed on a born exhibited a cast of the base of the human skul its completed state, a very good idea of what promises to be one of the most notable architectural feature of that wonderful architectural display. The dimensions of this door, as well as those of the building it self, have been so frequently published that it is use less to again reproduce them, but the accompanying sketch will give an excellent idea of the design and ap pearance of the work when completed.-The Railway Review.

A New Material for Pathological Models.
At a recent meeting of the New York Pathological Society Dr. George C. Freeborn presented specimens illustrating their use. For purposes of instruction models are often very useful, but as usually made they only present three dimensions, length, breadth, and thickness. In many cases it is desirable to illustrate some of the physical properties of the object, e. g., flexibility and elasticity, these properties being espe cially useful in models of some of the histological ele ments. With the mass to be described these two im portant properties have been gained.
The mass used in making these models is a mixture of glue and glycerine, or of gelatine and glycerine, the former being more economical and giving an opaque model, and the later yielding a transparent model. The proportion of the ingredients varies according as a more or less flexible mass is wanted. A mixture of equal parts of glue or gelatine, by weight, and glycer-
 smooth, level surface. When cold, the wooden frame He also presented models of a red blood cell, from the is removed and the block is ready for shaping into the human subject, and also from the frog, a crenated model. In casting slabs, the melted paraffine is run into tin trays of the desired size and depth.
The outline of the model to be made is drawn on thick brown paper, and cut out with a sharp knife or scissors, and is then placed on the slab of paraffine as soon as it has become solid, but while still plastic. With a thin and narrow knife blade, the edges of the paper pattern are followed around, carrying the point of the knife down to the bottom of the tray. This cuts away all the surplus paraffine, which can then be pulled out of the tray. The outline model is now allowed to become perfectly hard before it is re moved from the tray. The model is next brought roughly into shape by shaving with a sharp knife, still further smoothed by gentle scraping with glass, and finally finished by rubbing with bits of cloth moistened with turpentine. The model is always made in two parts, and a mould made of each.
Making the Mould.-The model is placed on a well oiled, smooth surface, the plane side of the model down, and a frame built around it with strips of wood. Plaster of Paris mixed into a cream with water is then poured into this frame until the highest point of the model is covered to the depth of at least an inch After this has set, the frame is removed, and the mould stood up in a tray. The model is melted out by allowing the flame of a Bunsen burner to play against it, after which it is given three coats of shellac varnish,
blood cell, and seiveral nerve cells.-N. Y. Medical Re blood
cord.

The Ideal Family Physician

The Hon. Thomas F. Bayard recently addressed the class at one of the medical colleges in Baltimore, having for his theme, "The Lawyer and the Doctor." It has been his fortune, he says, to be thrown in contact with not a few medical men who have been "as the salt of the earth" in their respective communities. A man who is already eminent by reason of his natural endowments may be said to double his talent by be coming a physician. "It has been my personal fortune," says Mr. Bayard, "to know such a man. It ha been my privilege and delight to accompany him in visits where his only medicines were the personal pres ence and conversation of the man himself. He had shared and had lessened their anxieties; counseled the wayward; cheered the weak-hearted; had rejoiced with them that rejoiced, and wept with the weeping. And I have seen such a man so surrounded by an atmosphere of love and trust, holding, as it were, the heart strings of a family in !his hands, their guide, philoso pher, and friend; and then I realized what a mora force in society the profession, properly comprehended and properly followed, was capable of exerting, and how relatively small a part of its usefulness was the administration of medicine."-N. Y. Medical Journal.

RECENTLY PATENTED INVENTIONS.

 Engineering.Exhaust Nozzle.-Charles W. Um holtz, Bristol, Va. This invention provides an imsupplemental surrounding passage, but with the nozzle proper independent of and detachable from the stand pipe and supported npon vertical pins projecting from he top of the latter, which also has a vertical fange it by a nasrow apace, which serves as the exterior upplemental steam passage. Through this supple mental passage the steam has practically free exit, an the nozzle proper may be readily detached when re quired.
Valve Gear.-Fred. E. Smith, Boston, Mass. A rocker is yieldingly connected throus spring s with the eccentric rod, the rocker being also connected with the valve stem and, by a piston, with an
auxiliary fluid cylinder, preferably coutaining oil, the nds of the cylinder being connected by a pipe. The with which the fluid passes from one end of the speed er to the other, so that the valve will always travel constant. rate of speed, and prevent racing of the gine, giving a uniform motion to the driving ehaft.

Hailway Appliances.
Car Coupling.-Charles W. Stillians, Pueblo, Col. This device is more especially designe for a freight car coupling. A normally elevated vert
cally sliding link tilter is located in the rear of the link angaging portion of a coupling hook or arm pivoted in the drawhead, in connection with mechanism for rais ing the coupling hook and depressing the link tilter The coupling is strong and durable, and may be opera ed without danger to the trainmen, aud the coupling
link nay be readily raised or lowered to suit opposing hnk nay be readily raised
Car Coupling:-Hampton K. Smith Union, S. C. This coupler comprises a drawhead ca ble of an interlocking connection with an opposin drawhead, while valve heads are carried by the draw cipes. The valve heads are so constructed that whe the heads of two opposed couplers are brought together connection is established between the steam or ai coupled the valves, in the heads antomatically seat hemselves and prevent the escape of steam or air, the automatically effected.
Illuminating Tracks.-William E. erguson, Montclair, N. J. This invention provide ween the rails of a track for lighting up the roadbed, without iujuring them. A board having battens on it nder face at each end encages the wehs ails, and pendent from the board is a series of hanger in which are held electric lights, brought in circuit in he ùsual manner.

Mechanical.

Clutch.-Daniel T. Denton, Duluth, Minn. A strong, durable, and effective friction clutch
is provided by this invention, the friction faces of is provided by this invention, the friction faces of which may be held in contact without exerting longicudinal or endwise pressure on the shaft, while the of gear or out of frictional contact, thus enabling the without o struction is such that the whole clutch and frictiona device may be made in halves or sections when used with the split pulley, thus enabling it
the shaft without removing the latter.

Miscellaneou

Musical Instrument.-Dwight Kemp reatly enrich the tone of stringed instrumente, suc as pianos, and whereby ulso the weight of the instru ment may be redaced, has been devised by this in each comprising an independent stringed supporting bridge and pins for holding the strings in place. Each harmonic section carries as
many strings as are necessary to produce the desired tone, the hammer striking the series of strings simu aneously, and the several sections are placed sufficient
Pencil Pointer.-Frank E. Flagg, Neiv York ciry. The casing of this device hus a sockeplate with a conical bore to receive the pencil, the bore extending through a beveled face of the plate, while a disk having a beveled inner face and attached
abrading material is held to revolve in close proximity to the beveled face of the socket plate, a clamp holding he pencil and a driving mechanism being counected with the disk and the clamp. The device is of simple construction, and is adapted to rapidly and perfectly point a peneil, producing a point as long as may be

Easel Attachment.-Henry J. Muhleld and Frank J. Splllane, New York City. To enable a student to sketch from casts or life in a crowded chnol room, the canvas or drawing board needs a support and adjustment not easily obtained, an object thi's anention is designed to facintate, providing therefor of vertical supporting rods adjustable toward and from each cther, and supports for such rods, there being picture supports mounted on the upper portions of the
rods. The device consists of two sections, each attached to the vertical side rail of a chair back at the back.
Window Chair.-Adolph. Boettcher Sonth Stillwater, Minn. This 18 a scaffold or chair con-
atructed in two side sections, udjustably connected by structed in two side sections, adjustably connected by
a bar, forming a lightand strong structure, which can
be quickly fastened in a window to extend outward be yond it, being readily removabie from one window connection with the device, and it is also well adapted ay be cold use in the cleaning of windows,
Velocipede. - Martha E. Slocum, Meadville, Pa. The depending sent frame of this ve icle has outwardly projecting arms at its upper end on which the hubs of large wheels are journaled, on neach side, an arn or arms rigidly mounted on th same azles carrying a supplemental small wheel or
wheels. Motion is communicated from the treadle by sprocket wheels and chains to the axles of the large wheels, and the machine is designed to be especially safe and easy riding, so that it can be used by the most

Whi Socket.-Henry E. Schreade anteno, IIl. This invention relates to whip sockets bstracted. The socket hus at one side a lock case, in which is a transverse slide rack with an external ope rating handle, there being a whip retainer at the inne atch, and a series of sliding tumblers engaging the atch. Keys having projecting finger pieces are pivoted in the case in engagement with the tumblers, and by changing the relative positions of the latter a great va-
riety of combinations ia made possible.
riety of combinations ia made possible.
Side REFLECTOR.-Charles E. Plum ree, Spokane Falls, Washington. A reflector suppor
which may be readily applied to any lamp is provided which may be readily applied to any lamp is provided
by this invention, the arrangement being such that the by this invention, the arrangement being such that the
eflector can be moved to any position to throw the ligh where desired. The support has a collar secured by a set screw to the burner or other part of the lamp, a ring sliding in this collar having a socket in which is held an adjustable bar, from which the reflector is suppo
ed, the adjustment being maintained by set screws.

Addressing Machine. - John P Nalley, Manistee, Mich. A type galley containin a series of addresses, at epaced distances apart, is suprame. An impression block operated by a treadle efver the type bearing the desired or envelope is hel pressure is removed from the treadle the carriage holding the type galley is automatically moved forward the distance between two sets of addresses, the operatio resses on
Snatch Block.-Adams C. French, Seattle, Washington. This invention provides an inwhich may be readily detached from its hook, and which is connected with the hook in such a way that he frame cannot spread. The construction is very nited.
Pump. - Melchi M. Grove, Garfield, may be partially submerged in water, and which, b means of air pressure applied to the chambers, is designed to pump water rapidly. It is a pump which may be used for any ordinary pumping purposes, but ing varions novel features of construction and combi ng varions novel
Grain Cut-off.-Philander D. Thomp cut-off and delivery spon ies, elevators, and mills, providing a device which is inexpensive, and which can be operated either to cut of the supply completely or to cut it off from one point and direct it to another. The construction is designed oo prevent the escape of any grain between the operat-
ing parts to clog the machine, and the various ings are made to register accurtely, whereby friction ings are ma
is avoided.
Stovepipe Coupling. - Francis P. Hart, Strasburg, Pa. This coupling consists of a sleeve piece having one end folded to double its thickness,
and longitudinally notched, the unjoined edges of the sleeves having hooks folded internally, and a thin wedge being insertible within and between the hooks.
The device is designed to facilitate the making of a neat and secure connection between the ends of stove pipe sections, whether the sections are adapted to slipAnimal Shears.-Charles and Har ry Burgon, Malin Bridge, near Sheffield, England. This nvention relates to improvements in instruments fo shearing or clipping sheep or other animals, and provides improved means for applying and adjusting the
pressure or the upper cutrers upon the lower cutters pressure or the upper cuters upon the lower cutters,
relieving the axis of the vibrating lever as far as posi, relieving the axis of the vibrating lever as far as possi-
ble from all bending strain. A spring latch retains ble from all bending strain. A spring latch retai
the axis of the swiveling crosshead of the lever in it socket, while permitting it to swivel freely and allow Window Frame and Sash.-John Anderson, Hickson, North Dakota. According to this invention, one of the parting beads and one of the
inner beads of the window frame are provided with movable section, connected crank shafts in the frame connecting the movable beads to move them to and from the sashes, to permit the latter to swing outward The attachment may be conveniently added to any
window frame, and by its use the eashes may he window frame, and by its use the eashes may he
swang outward to stand at a right angle, so that both sides of the glass may be conveniently cleaned.
Notr.-Copies of any of the above patents will be send name of the patentee, title of invention, and date of this paper.

Railway car construction, under the auspices of the
Master Car Builders' and Master Mechanics' Associa
ions, has reached a definite standard. The object of the struction of all kinds of cars and of all their parts, by the aid of very numerous illustrations. This idea is very adequately carried out. The work, we should conceive, is one which would be indispensable in the car sive them all the meaning of a large scale drawing The publisher is the proprietor of the National Car and Locornotive Builder, and is therefore pecularly wel truffic codes," as adopted by the Master Car Builders Association, are embodied, with illustrations as r guired. The work is without index, but its place is supplied by a very full table of contents.
High Medical Culture. By W. R. $\begin{array}{ll}\text { Dunham, M.D. } & \text { Cambridge : Printed } \\ \text { for the author. } & 1892 . \\ \text { Pp. } & 225 \text {. No }\end{array}$ index. Price $\$$
The author of this work believes that the present endency of the schools is to teach medical practice without the science, and, as far as they attempt to teach
medical science, to teach it incorrectly. The work is radical and claims to touch on medical science as based on the four vital properties of laws of organic force One theory which he enunciates is that medicines by their presence provoke the various organs to increased diminished or modified action, but are without action

The Metal Worker Essays on House beating. Arranged for publication David Price $\$$
This work is the outcome of prize essays on steam, hot water and hot air heating of dwellings, originally produced, together with a number of letters of criticisapon the prize eseays, which letters were also originally published in the Metal Worker. The criticisms give a vivacity to the work which might have been found feature is the addition of a section on the proportioning of radiating surfaces. The solution of this problem is precisely the great desideratum for practical work and we welcome its publication in accessible form.
Bulletin of the Philosophical SoCIETY OF
Washington: Printed by Judd
Detweiler. 1892. Pp. xxxi, 618 . vite a large range of scientific subjects is contain
Quite a large range of scientific subjects is containe perhaps the controlling motives of the proceedings. A ontents and exhaustive index are embodied in the is to the scientific activity of the society.
Elements of Machine Design, By J.
F. Klein. Bethlehem, Pa.: The Fomenius. Press. 1892.' Pp. vi, 212 . Price $\$ 6$.
Professor Klein has published the foregoing eleme with notes and folding plates for the use of students in the Lehigh University, where he holds the chair
of mechanical engineering. The work is profusely llustrated with cuts in the text as well as large plate The index gives four columns of reference-to the page to the formula number, to fifures and plates and to
the page number of tables. After the index, which may he page ned to as a real model in its was, wappendix gear tables is given.
Street Railways. By C. B. Fairchild.
New York: The Street Railway Publishing Company 1892 . Pp. vii, 441. Price $\$ 4$.

The above work 18 of interest as testifying to the inormous extension of the street railway industry. The expanded the field of work. The subjects of electric cable and horse traction, with a short notice of steam, air and gas motore, open the book. Elevated roads, for employes and passengers, together with the charters, ranchises, bookkeeping, and street rallway accounts are the gencral topics included. The trealment is as practical as the titles above summarized would indiin Chapter 13, in which different ty pes of street cars, 47 in number, built by 18 representative car-building

Fourteenth Annual Report of the State of Connecticut year ending November 30, 1891. With the registration report for 1890 relating to births, marriages, deaths, the legislature. New Haven : Tuttle Morehouse \& Taylor, printers. 1892. Pp. xxxvii, 447, 202.
Primitive Man in Ohio. By Warren
K. Moorehead. G. P Putnam's Sons K. Moorehead. G. P. Putnan
1892 . \quad Pp. xv, 246 .
$\$ 3$.

The deeply interesting work in archæology and anwith particular reference to date discoveries is years in this book in most attractive shape. Numerous vive in this book in most attractive ehape. Numerous views
of scenery and implements and plans of mounds and allied subjects give a vivid aspect to this treatment of an exceedingly popular subject. We note especially several references to Professor Putnam, who of late years
has given considerable attention to Ohio anthropology, has given considerable attention to Ohio anthropology, in the interests of the Peabody Museum.
SadDLE AND SENTIMENT. A story of
the turf. By Wenona Gilman. The Outing. Company, Limited. 1892.
Pp. 284 . Price 50 cents Pp. 284. Price 50 cents.
Horse racing, the development of man's noblest servant, under the auspices of the enthusiastic Kentucky
horseman, the excitement of the race track interwoven with a thread of romance so as to weave the whole into the form of an attractive novel are the matter of "Saodie and Sentiment." It is enlivened by numerous illus-
trations,

PBusiness and Personal.

he charge for Insertion under this head is One Dollar a line
for each insertion; about eight words to a line. Adverfor each insertion; about eight words to a line. Adver-
tisements must bereceived at publication office as early as Key Seating Machines-For cutting key seats in pul-
leys, couplings, gearn, etc. Prompt delivery. Send for
catalogue. W. P. Davis, Rochester, N. Y. Acme engine, 1 to 5 H . P. See adv. next issue.
Acme engine, 1 to 5 H . P. See adv. next issue.
"U. S." metal polish. Indianapolis. Samples free. "U. S." metal polish. Indianapolis. Samples free. 6 Spindle Turret Drill Presses. A.D.Quint, Hartford,Ct. Best baling presses. Ryther Mfg. Co., Watertown, N.Y. niversal and Plain Milling Machine
Pedrick \& A yer, Philadelphia, Pa. Steam Hammers, Improved Hydraulic Jacks, and Tube Screw machines, milling machines, and drill presses.
The Garvin Mach. Co., Laight and Canal Sts., New York. Centrifugal Pumps for paper and pulp mills. Irrigating and sand pumpingplants. rvin Van Wie, Syracuse, N. Y. For Sale-Patent on burial device illustrated on page
146. For terms and particulars address John B. Beugler, Dayton, Tenn.
A large chemical works wishes novelties, specialties, and standard
Cliff St., N.
\mathbf{Y}
Wanted-Samples, price, for cheap mechanical novelties for exhib
Natal, Africa.
The best book for electricians and beginners in elec By mail. 84 ; Munn \& Co., publishers, 361 Broad way, N. Y. For the original Bogardus Universal Eccentric Mill,
Foot and Power Presses, Drills, Shears, etc., address .S. \& G. F. Simpson, 26 to 36 Rodney St.. Brooklyn, N. Y. Canning machinery outfits complete, oil burners for
soldering, air pumps, can wipers, , can testers. labeling N. Y. Competent persons who desire agencies for a new
popular book. of ready sale, with handsome proft, may apply to Munn \& Co., Scientific American office, 36 Wanted-An ingenious, skillful, and speedy patternmaker for agricultural factory. Grain drill work a
specialty. A good place for the right man. Address, with references, Patternmaker, care this paper.
Any party having a new and useful invention with
positive merit and not requiring a large capital to place positive merit and not requiring a arge capital to place
upon the market, which they desire to sell cheap, can upon the marke, which a purchaser by addressing P. O. box 2846. Boston, Mass. No notice taken of any communication that does

HINTS TO CORRESPONDENTS.
mes and Address must accompany all letters,
and no antiontion will be paid thereto. This is for our
information and not for publication.
give date of paper and page or number of question.
In quiries not answerd in reasonable time ehould
be repeated; correspondents will bear in mind that some answers require not a little reesurch. and,
though we endeavor to reply to all or in this department, each must take his turn.
special Writen Information on maters of
personal rather than general interest cannot be

ninerals sent for examination should be distinctly
marked or labeled.
Index to Notes and Queries.
Chemicals
Dynamo c
Dynamo con
Enginering
Electrical ...

. .4505
Preserving fod produ
Gun and steam engines
Pneumatic street cars.

(4503) H. B. P. writes: 1 . Some arc dynamos, the Wood for instance, have two brushes on
each side of the commutator, with several bars of the each side of the commutator, with several bars of the
commutator between them. Kindly explain the reason for using the two brushes. What advantage is gained? cuited no arc formed at the brushes by the shoshes as stated is to cut out a portion of the armature winding, thus reducing resistance aud giving the conductors
time to cool. 2. I have been told that arc lamps contime to cool. 2. I have been told that arc lamps con-
nected in multiple series on an meandescent circuit nected in multiple series on an incandescent circuit
will consume the + and - carbons equally fast. Is will consume the + and - carbons equally fast. Is
euch the case? A. This will not occur unless the carbons are of unequal size, or unless the current is an alternating one. ' 3 . Will you advise me if there is any book on arc lamps?-the trouble in them, how found, and remedied? A. There is no book treating on arc
lamps of all descriptions. We believe that most manufacturers of arc lamps publish information for the
(4504) G. M. R. asks : How is the noise we call thuncer produced or caused? Is a side crank
on steam engine stronger or in any way better than a center crank? Why does oil or any other lubricant touch the cutting edge? Experince has cannot lard oil used in cutting a thread for a tap makes a smoother job than minst other olls, and as it could get no nearer the cutting edge. I fail to see what different longed noise is not well nnderstood. According to some the action is similar tc the explosion of powder in a
gun. When lightning strikes a tree or building, the gun. When lightning strikes a tree or building, the
noise is intensified by the sudden disruption of the solid material, as the splitting of a tree or the tearing apart of the materials of a building. All luhricants depend upon their conductivity of heat to keep the
edge of the tool and the metal operated upon, cool.

Their capacity to resist evaporation by the heat generated at the cutting edge, with their capillary power, gives the varying qualities to various labricants.
Lard oil, in addition to its high evaporating temperature, has a peculiar spreading or capillary pro-
perty, which draws it in between the chip and the tool, thereby lessening the friction and absorbing the heat.
(4505) G. A. W. asks : 1. I have a Grenet battery about $11 / 2$ or 2 volts and I would like to make au induction coil to use for giving shocks to
people. Would you kindly let me know about how to make 1t? A. You will find a description of a shocking coil in Supplement, No. 567. 2. Also could you let
me know what will keep catsup from fermenting or me know what will keep catsup from fermenting or
going sour? Some people let it ferment before they boil going sour? Some people let it ferment before they boil
it into catsup, but then it is so sour that it is not fit for se. Others put some kind of drug into it to keep it
rom fermenting. If you can tell me what to put into it to keep it ail right, I would be very happy. A. Salicylate of soda has been discovered to exert a very decided chemical action in checking alcoholic fermenta Ithough much more energetic, although much more energetic. A small quantity of
the salicylate will entirely arrest the fermentation of ine and also of milk. 3. Also would you tell me a good way to test vinegar to tell the strength of it;? The way I tell is by taking 1 ounce vinegar and then put soda in to see how much soda it would take before it
kills the acid in it. A. An accurate carrying out of he process you employ will give satisfactory results. . Also what is a non-poisonous color to color pickles (cucumbers) with ? I use now burnt sugar, but I would
like to know something better. A. Put a handful of sinach leaves in the boling vinegar, which thereby equires a green coloration, which it imparts to the pickles. This method is harmless; any receipt nsing
(4506) G. H. L. asks : 1. How can I deermine the voltage and amperage of an incandescent
lectric lamp \& A. By measuring the resistance of the lamp and taking number of ohms and dividing electromotive force by the resistance, you will find the amper How are carbon filaments made \& A. Carbon fiament are made by carbonizing slender strips of hamboo in pessel from which the air is excluded. 3. What is the A. About 15 pounds. 4. How can I tell when all the air is out of the receiver of an air pump? A. It is practiYou can tell the degree of eshaustion by means of manometer made for the purpose, or a very high
vacuum is indicated when the spark of an inductio coil will not pass between points located in a vacuum chamber and separated by $\boldsymbol{\theta}$ distance of one-sixteenth of an inch. 5. Can a patent be issued to a minor $?$ A minor's
(4507) E. B. asks : 1. Suppose two cy linders were filled, one with steam at 1 pound pressure, sure. The gas is exploded and free to expand at the same time the steam is free to expand. What would be he proportionate volume of the two vapors af ter expan
sion? A. The steam would expand about one-fifteenth f its volume; the explosive gas mixture would expand from four to eight volumes according to composition aud amount of air contained. 2. I want to maintain a pressure of 30 pounds in an air tank with a constant outlet $1 / /^{\prime \prime}$ x $1 / 18^{\prime \prime}$. I can run my pump at 150 revolutions. What should be the diameter and stroke of the pump? A. If the pump is single-acting, it
der J1/ inch by $21 / 6$ inches stroke.
(4508) A. H. asks what tri-sodium phosphate is made or. A. Acid calcium phosphate, made cipitated with a slight excess of sodium carbonate. By crystallization disodium phosphate is separated from he solution. The crystals are dissolved in water and caustic soda is added in proper quantity to form the trisodium phosphate, which is separated by crystalliza-
(4509) O. D. asks : What causes brass to break when bisulphate of mercury is applied to it?
A. The mercury being reduced from the bisulphate orms an amulgam with the brass, which is weaker than he unamalgamated brass.
(4510) G. K. C. asks : Can a sheet of mica be softened by any process? If so, how? A.
No. It is sometimes ground up and mixed with shelNo. It is sometimes ground up and mixed with sh
lac and the mixture moulded by heat and pressure.
(4511) H. P. S.-The plant is Cassia
(4512) K. M. I. says : Suppose a reservoir stands 100 feet or more above the point of discharge below the level of reservoir, is he pipe ing practice that not a drop of water might be discharged at the outlet, owing to the presence of air in the pipes? An individual supposed by many to be eminent authority has told me that he himself was an eyewitness to such a phenomenon. He also told me that he could philosophically account for it, but that it The condition of resistance of air as stated is well known to the engineering profession. If there are in-
verted siphons in the line of pipe, with uptakes in all, amounting to as great or greater height than the total beight of the head, there will be no flow of water through the pipe. The theory and fact is that the water separates from the air in the siphons, occupying the rising leg, while the air remains in the downslope leg. When the water has reached the last uptake, which represents a greater height than the whole height,
it will stop. Drawing the air from the botom of the siphons relieves the back pressure.
(4513) L. P. G. asks: 1. Is it true that orowned bodies which have sunk may be brought to
the surface of the water by firing heavy gnns? A. It is sald that sunken bodies have been brought to the is the scientific explanation of the fact 9 A. The vibra-
tion or shock of the discharge is supposed to liberate
or expand confined gases in the body, making the body er expand confined gases in the body, making the body
lighter by its enlargement. 3. Is it dangerous to leave indows open during a thunder storm? A. It is safer why A. There is some danger that a current of warm moist air from the interior of the room may act as conductors for the discharge. The building too acts as an electric screen. 5. How and where can I obtain full reports of all the speeches made in the House of Representatives and in the Senate on the McKinley
bill? A. Address Congressional Record, Washington, D., for copies containing speerhes, etc.
(4514) F. S. T. says: In a complete same to a feather as it is to a cannon ball weighing 10,000 pounds, and if dropped from the same distance hat they would both reach the ground together. B Who the cannon ball would reach the ground first. Who is right, A or B? A. A is correct. It is only in . a mosphere or other resisting medium that the bail ill have the fastest fall
(4515) A. W. N. says : I understand hat pneumatic street cars are a success, but that stasmall 1 or 2 hore to charge the cylladers. Would not ontinuously running on board the cor and air pump, car, charge an 8 or 10 horse power air engive \& The requent atopping and down grades furnishing ample ime to keep up the required amount of pressure. A. he condition of power accumulation as stated would a millennium in mechanics. The realization of air power. There is progress proposed and now being put into operation, so that by the heating of the compressed air in the motor
may be realized.

TO INVENTORS

An experience of forty years, and the preparation of An experience of forty years, and the preparation of
more than one hundred thousand applications for patents at home and abroad, enable us to understand the laws and practice on both continents, and to possess un qualed facilities for procuring patents everywhere. A foreign countries may be had on application, and persons contemplating the securing of patents, either at home or abroad, are invited to write to this office for price ensive facilities for conducting the business. Address MUNN \& CO., office Scientific American, 361 Broadway, New York.

INDEX OF INVENTIONS

re Granted

August 23, 1892.

AND EACH BEARING THAT DATE,

DESIGNS.

 TRADE MARKS

 Leaefnint Compantied

 Phosibited beeeranee, Rose Bro

 gamas. surize idieitich

 A printed copp of the giparication and araming or
 Canadian patents map now be obataned by the in-

2HDertisements.
Inside Page, each insertion - - 75 cents a line

莳

 ATHE
 Seneca Falls mfg. Co. 695 Water St., Seneca Falls, N.Y. EYESIGHT: ITS CARE DURING IN-

 SEBASTIAN LATHE
44-46 Contral Ave., CIncinnati, 0 .
 NICKEL electro-plating Apparatas and diterial. Hanson \& $V_{n}{ }^{2} W i$ Hanson \&VanWinkleCo
Newark, N. J.
${ }_{23}^{\text {LIBERTY }}$ ST..
${ }^{23}$ S. CANAL STREET,

FOR RENT, WATER POWER. - Day woi

 ELECTRICITY ELECTRICAL SUPPLIES, stanler a patterson, lectrical House Furniishings, $32 \& 34$ Frankfort St., N.

RAILWAY \& \&TEAM FITTERS SUPPLIES Rue's Little Giant Injector. SCREW JACKS, STURTEVANT BLOWERS. \&c.
JOHN S. URQUHART. 46 Cortlandt St., N. Y.

$2^{2 i}$UUSE GRINDSTONES?
 cial purposes. ETY, Ask for coatalogule.
The ELEVELAND STONE CO.

FREE SITES TO SUBSTANTIAL
MANUFACTURING ENTERPRISES in the rapidily prowing town of virgina and West Vir

Scanlon's Patent Blast Heater.

 JOHN SCANLON, Manistique, Michigan.

FIRE, WATER, ACID, HEAT and WATER PROOF-A PEIRFECT INSULATOR

EAGLE PAINT AND VARNISH WORKS Pittsburg, pa.

Single Track Overhead Railway,
 SINGLE TRACK OVERHE D RAILWAY MFG. CO. MANDFACTURERS AND ERECTERS,

Champion
 Slate Pencil Sharpener.
 $\underset{\substack{3736 \\ \text { 37 }}}{ }$

TO INVENTORS

Sixty-first Grand National Exhibition
American Institute of the Oity of New York

THE PREMIER CAMERA

IS THE BEST IN MARKET. Simple of Manipulation.

Plates or Films are used. PRICE \$18.00.
Send for C PRICE we make all kinds of Cameras.
ROCHESTER OPIICAL COMPANY,
14 S. Water St., ROCHESTER, N. Y.

WATER WHEELS

NOW READY!
A NEW AND VALDABLE BOOK.

12,000 Receipts. 680 Pages. Price $\$ 5$. This splendid work contains a careful compilain the Notes and Queries of correspondents as pub lished in the Scientific American during the
past fifty years: together with many valuable and
important additions. important additions;
over Thousand selected receipts
are here collected; nearly every branch of the useare here collected; nearly every branch of the use-
ful arts being repesente. It is by far the most comprehensive
fore the public.
The work may be regarded as the product of the
studies
ist practical experience of the ablest chemstudies and practicals and workers in all parts of the world ; the in-
ists and
formation given formation given being of the highest value, ar-
ranged and condensed in concise form convenient for ready use.
Almost every inquiry that can be thought of,
relating to formulæ used in the various manufacturing industries, will here be found answered.
Instructions for working many different proIt is impossible within the limits of a prospectus
to give more than an outline of a few features of so extensive a work.
Under the head of Paper we have nearly 250 receipts, embracing how to make papier maché; how
to make paper water proof and fire proof ; how to make sandpaper, emery paper, tracing paper,
transfer paper, carbon paper, parchment paper, colored papers, razor strop paper, paper for doing
up cutlery siverware; how to make luminous
por paper, photograph papers, ete.
Under the head of Inks we have nearly 450 re-
ceipts, including the finest and best writing ink ceipts, including the finest and best writing inks
of all colors drawin inks luminus inks invisi-
ble inks, good, silver and bronze inks. white inks; directions for removal of inks; restoration of
faded inks, ett. faded inks, etc.
Under the head of Allors over 700 receipts are
given, covering a vast amount of valuable inforOf Cements we have sowe 600 receipts, which
include almost every known adhesive preparaticn, How to make Rubber Stamps forms the subject
of a most valuable practical article, in which the of a most valuable practical article, in which the
complete process is described in such clear and ex-
picit terms that any nnteligent person may readily complete process is described in such clear and ex
plicit terms that any intelligent person may readily
learn the art. For Lacquers there are 120 receipts : Electro-Me For Lacquers there are 120 receipts: Electro-Me-
tallurg, 125 receips; Bronzing, 127r receipts; Pho-
tography and Microscopy are represented by 600 receipts.
Under the head of Etching there are 55 receipts,
embracing practical directions for the production embracing practical directions for the production of engravings and printing plates of drawings.
Paints, Pigments and Varnishes furnish over
800 receipts, and include everything worth know800 receipts, and incluade everything worth know
ing on those subjects.
Under the head of Cleansing over 500 receipt are given, the scope being very broad, embracing
the removal of spots and stains from all sort of objects and materials, bleaching of a fabrics cleaning furniture, clothing, glass, leather, metals
and the restoration and preservation of all kind
of objects and mater of objects and materials.
In Cosmetics and Perfumery some 500 receipts Soaps nave nearly 300 receipts.
Those who are engaged in any branch of industry practical value in their respective callings. Those who are in searg o the home manufacture of sample articles, will find in it hundreds of most MUNN \& CO., Publishers SOIENTIFIO AMERIOAN OFFIOE.

HENRY CAREY BAIRD \& CO.

 Indnstrial Pablishers, Booksellers, and Importern S10 Wrinut St.. Philadelphia, Pa.. U. S. A. GFOur new and Revised Catalogue of Practical and8cientifc Books 86 pazes. 8Va, ind our other Catalogue
snd Circulars. the whole covering every branch of Sci-

8
8
0
0ARTISTS WHO GET RICH

 AIR BRUSH MFG. CO. Rock ford, Ill., U. S. A.
Nassau Street.

LIFE SAVING DEVICES.-A COL

 VANDUZEN PAT, L, PUL, OILER

 FOR SALE, - One 10 in p . Wenatrom Miectil cheap, as the owner has no further ure for wame. Ad
dress H. H. \& Co., 106 West Pratt St., Baltimore, Md.

The Belknap Little Giant Water Motor

 BELKNAP MOTOR CO.,
23 Plom St., Portland, Maine U.S. A
SOME APPLICATIONS OF ELECTRIC

 rice
newsdeaiers.

HOW TO MAKE DYNAMO ELECTRRIC

To BUSINESS MEN
The value of the SCIENTIFIC American as an adver-
tising medium cannot be overestimated. Its circulation now published. It goes into all the States and Territories, and is read in all the principal libraries and reading
rooms of the world. A busincss man wants something more than to see his advertisement in a printed news-
paper. He wants circulation. This he has when he ad vertises in the Scientific American. And do not let
the advertising apent influence you to substitute some other paper for the Scientific American, when se-
lecting a list of publicstions in which you decide it is for your interest to adrertise. This is frequently done for the reason that the ayent gets a larger commission from the papers having a smull circulation than is allowed on
the ScIENTIFIC AMERICAN. For rates see top of first
dress MUNN © COO., Publishers.

ELECTRIC MINING APPARATUS, $s_{e_{i g}}$ ELECTRIC MINE LOCOMOTIVES ELECTRIC VENTILATING FANS
ELECTRIC HOISTS \& ELEVATORS ELECTRIC COAL CUTTERS.
THOMSON-HOUSTON ELECTRIC COMPANY, MINING DEPARTMENT. 622 ATLANTIC AVENUE, BOSTON, MASS.

173-175 ADAMS STREET, CHICAGO, ILL
STEEL TYPE FOR TYPEWRITERS OATES ROCK \& ORE BREAKER Hz

Steam! Steam! 2-Horse Eureka Boiler and Engine, - \$175 B. W. PAYNE \& SONS,
 ELETROMOTOR, SMPLE. HOW TO

 Mactiners of sith trade Mining CATES IRN WORESS,

SEWING MACHINE MOTOR FOR AMA

INVENTORS' IDEAS put into oractical Cor. Jomi And DUTCH STRETS, NEW Yorg City.
 Our aim is to mak
our Stocks and Dies,
edged to be THE
BEST edged to be THE BEST. (T) Send for catalogue.
THE ARMSTRONG MFG. CO, BrIdgeport,

 ROCK BREAKERS AND ORE CRUSHERS

 Cowles Electric Smelting and Aluminum Oo. Correspondence solicited. LOCKPORT, N. Y.
OIL WELL SUPPLY CO.
 Cordage, Drility
Illustrated cataogu
lists and disount
on request.

ALUMINUM : ITS USES AND AP

MAEIOGAINT TEAK FOR Andach fancy woods.

THE E. D. ALBRO co. $\left.\underset{\text { Branch, }}{\text { Eastern }}\}^{\mathbf{2 0 0}} \begin{array}{l}\text { Lt.ewis Street, } \\ \text { Fth St. }\end{array}\right\}$ New York, U. S. A H. T. Bartlett, Mg'r. F. W. Honerkamp, Asb't Mr'r Mills, Cincinnati, o.)

Preumatic Tire Bicocles.
Enery
Bent

CTAARTE'S

WAR DYENGAND SVZNG'MACHIES,
 DRyIG AND DENTLATIEGEASS, Box L. CEO. P. WIndisor

OHIO STATE UNIVERSITY.

- Columbus, Ohio

PROPOSALS.

U. S. ENGINEERR OFFICE, ARMY RUILDING, NEW

 Sion will be furnished on ap pication to this ofice.
G. LLLESPRE, Lieut.-Col. of Enginers

U. S. ENGINEER OFFICE, BOSTON. MASS. AU-

 U. S. ENGINEER OFFICE. BOSTON. MASS. AU AU

 U. E. ENGINEER OFFICE, BOSTON. MARS. AU-

 U. ENGINER OFFICE, BOSTON, MASS, AU.

U. ENGINEER OFFICE, BOSTON, MASS, AO--

U. \& ENGINEER OFFICE, ARMY BULLDING, NEW

have you read
Experimental Science?
This new book, by Geo. M. Hopkins, is just what
you need to give you a good general knowledze of
 times can afford to be without the kind of scien-
tific intormation contained in this book. It is not
only instuctive only instructive, but entertaining.

Over Tixn payess: 680 tine cuts: substantially and
veautifull bound. Price by mail, 84.00 .
Send or illustrated circular.
MUNN \& CO., Publishers Office of the SCIENTIFIC AMERIC
361 BROADWAY, NEW YORK.

ఖゆDertisements.
 The above are charges per agate line-about eligh

Victors

 CATALOGUEOVERMAN WHEEL CO. A. G. SPALDING \& BROS., Special Agents,
new ronk.

THEAMERKCANBELSTEHEPHONECD
95 MILK ST., BOSTON, MASS,

This Company own the Letters Patent granted to Alexander Grabam Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders eacb individual user of telephones not furnish ed by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.

The new quick-winding Waterbury watch has a jeweled movement and is cased in coin-silver, and gold filled cases.
American machinery and brains have added beauty and elegance to a watch that was always noted as a

Good time=keeper. It is still a low-priced watch.

No cheap Swiss watchmade by the foreign labor system-can compare with it.

GPATENTS!
 $2=- \pm=$

 MUNN \& CO. Solicitiors of Patents.

KODAKS.
Regular Junior Folding Ordinary I4 $\begin{aligned} & \text { styles and sizes } \\ & \text { for the } \\ & \text { season of }\end{aligned}$ I892,
$\mathbf{\$ 6 . 0 0}$ to
$\mathbf{\$ 6 5 . 0 0}$
Latest improvements, registers for ex posures ; glass plate attachments ; daylight oading, etc., etc. Send for catalogue.
the eastman company,
 Mocansmer,
Motor of $19^{\text {ght }}$ Century
y.

The M All the Essential Features greatly perfecte

FOOT POWER LATHES

THE SMITH PREMIER TYPEWRITER

Bristol's Patent Steel Belt Lacing
 saves Beils,
Sapes Time Sapes Moner, Sapes Pationce. THE BRISTOLS' MFG. CO., Waterbury, Conn SA WS Warted siano samyeri SA WS

Industrial, Manufacturing, and Uncurrent gedobifirs deale in.
ORDEN \& FANSHAWE, 9 WALL ST., NEW. YORK

HW.JOHIS STEAM PACKING

 Liquid Paints, Etc. H. W. JOHMS MFG. CO., 87 Maiden Lane, N. Y.

GUITARS MANDOLINS The Marquette
Tharter-sawed Sycamore
T.50

Edison General Electric Company

Incandescent Lighting, Street Railways and Transmission of Power
SAFEST-MOST RELIABLE-BEST.
OUR ELECTRIC IAAMP SIGNS ARE A GREAT COMMERCIAI. INNOVATION. 202 A tlantic Avenue....
73 and 175 Adam Stree
84 and eet Fourth

BRANOLE OFPIOES:

TANITEEmery, Emery Wheels, Emery Whetstones Grinding Machines Knife Grinders.
The Tanite Co., Stroudsburg, P 161 Washington St., NEW York.
Cом (1)

ESTABLISHED 1846 .
The Most Popular Scientific Paper in the World Only $\underset{\text { Weekly- }}{83.00}$ a Numbers a Year.
This widely circulated and splendidly illustrated paper is published weekly. Every number contains six original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufacture Chemistry, Electricity, Telegraphy, Photography, Archi-
ecture, Agriculture, Horticulture, Natural History etc. Complete list of patents each week
Terms of Subscription.- One copy of the ScIEN 1FIC AMERICAN will be sent for one year- 52 numbers-
postage prepaid, to any subscriber in the United States Canada, or Mexico, on receipt of three dollars by the publishers; six months, 81.50; three months, 81.00 Clubs.-Special rates for several names, and to Pos asters. Write for particular
Express Money Order. Money carefully placed insid of envelopes, securely sealed, and correctly addressed eldom goes astray, but is at the sender's risk. Addre MUNN \& CO., $\mathbf{3 6 1}$ Broadway, New York

Stientific gatmericall supplement This is a separate and distinct publication from THE
SCIENTIFIC AMERICAN, but is uniform therewith in size, every number containing sixteen large pages full of engravings, many of which are taken from foreign paper
and accompanied with translated descriptions. THE and accompanied with translated descriptions. TE ly, and includes a very wide range of contents. It pre sents the most recent papers by eminent writers in all the principal departments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy. Natura
History, Geography, Archæology, Astronomy Chemistry, Electricity, Light, Heat, Mechanical Engineering, Steam and Railway Engineering, Mining, Ship Building, Marine Engineering, Photography, Technology, Manu-
facturing Industries, Sanitary Engineering, Agriculture Horticulture, Domestic Economy, Biography, Medicine etc. A vast amount of fresh and valuable information
obtainable in no other publication. Obtainable in no other publication.
The nost important Engineering Works, Mechanism and Manufactures at home and abroad are illustrate and described in the Supplement.
Price for the SUPPLEment for the United States and CRICAN and one copy of the SUPPLEMENT, both maile or one year for 87.00. Single copies, 10 cents. Address an emit by postal order, express money order, or check,
MUNN \& CO.. 361 Broadway, New York.

Fuildiug Edition.

The Scientific American Architects' and Single copies, 25 cents. Forty large quarto pages, equa to about two hundred ordinary book pages: forming large and splendid Magazine of Architecture, richly
adorned with elegant plates in colors and with other flne adorned with elegant plates in colors, and with other fine
engravings; illustrating the most interesting examples ngravings; illustrating the most interesting example
of modern architectural construction and allied subjects. A special feature is the presentation in each number of a variety of the latest and best plans for private resierate cost as well as the more expensive. Drawings in perspective and in color are given, together with full The elegance and cheapness of this, Estimates, etc. have won for it the Largest Circulation of Architectural publication in the world. Sold by all news dealers. $\$ 2.50$ a year. Remit to

MUNN \& CO.. Publishers,

PRINTING INKS

