
a Weekly journal of practical information, art, SCIENCE, mechanics, Chemistry, and manufactures.

1. Working of armor plate rollers. 2. Graduated wheel and scale rods for gauging the plates. $\begin{aligned} & \text {. } 3 \text {. Largest ingot ever produced in Americn. 4. Hydranlic shears for trimming plates. 5. An ingot-heat ting furnace. } \\ & \text { 6. Pump house and river landing. }\end{aligned}$

THE CARNEGIE WORKS, HOMESTEAD, PA.-ROLLING THE GREAT STEEL ARMOR PLATES.-[See page 132.]

Surntific :纟 Americam.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors published weekly at

No. 361 BROADWAY, NEW YORK.

O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, for the U. S., Canada or Mexico..
One copy, six months, for the U.S., Canada or Mexico one copy, six months, for the U. S., Canada or Mexico.................. 1800
One
One copy,one year,to any foreign country belonging to Postal Union.
4 Remit by postal or express money order, or by bank draft or check. MUNN $\&$ CO., 361 Broadway, corner of Frauklin Street, New York The Scientific American Supplement is a distinct pape from the Scientific American. THE SUPPLEment is issued weekly. Every number contains 16 octavo pages, uniform in size
with SCIENTIFIC AMERICAN. Terms of subscription for SUPPLEM ENT, W5.00 a year, for the U. S., Canada or Mexico. 86.00 a year to foreign countries belonging to the Postal Union. Single copies, 10 cents. Sold
by all newsdealers throughout the country. See prospectus, last page. by all newsdealers throughout the country. See prospectus, last page.
Combined Rates.-The Sientipic American and SUPPLEMEN will be sent for one year, to any address in U. S., Canada or Mexico, on recelpt of seven dollars. To foreign countries
dollars a year.
the architects and Builders Edition of the Scientific AmeriCAN is a large and splendid illustrated periodical, issued monthly, containing floor plans, perspective views, and sheets of constructive details, pertaining to modern architecture. Each number is iilustrated wit tectura: work in great variety. To builders and all who contemplate build ing this work is invaluable.
tural publication in the world
tural publication in the world.
to any part of the United States, Canad or Mexico, 82.50 a year. To foreign Postal Union countries, $\$ 3.00$ a year.
Combined rate for BuILDING EDITION with SCIENTIFIC AMERICAN, 85.0 Combined rate for BUILDING EDITION with SCIENTIFIC AMERICAN, 85.00
a year; combined rate for BOILDING EDITION, SCIENTIFIC AMERICAN
and SUPPLEMENT, 89.00 a year. To foreign countries, 811.50 a year.
panish Edition of the scientific American
La America Cientifica e Industrial (Spanish trade edition of the SCIENTIFIC AMERICAN) is published monthly, uniform in size and typo-
graphy with the SCIENTIFIC AMERICAN. Every number of $L a$ America is graphy with the SCIENTIPIC American. Every number of La a mericai
profusely illustrated. It is the finest scientitc, industrial trade pape profinted in the Spanish language. It circulates throughout Cuba, the pape Indies, Mexico Central and South America, Spain and Spanish posses sions-wherever the Spanish language is spoken. \$3.00 a year, post paid to
any part of the world. Single copies 25 cents. See prospectus. any part of the world. Single copies 25 cents. See prospect
MUNN $\&$ CO., Pubishers

361 Broadway, New York
The safest way to remit is by postal order, express money order,
draft or bank check. Make all remittances payable to order of MUNN $\stackrel{\text { draft }}{ }$
Readers are specially requested to notify the publishers in case of
any failure delay, or irregularity in receipt of papers.
NEW YORK, SATURDAY, AUGUST 27, 1892.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No. 869.
For the Week Ending August 27, 1892. Price 10 cents. For sale by all newsdealers.
f. AGRicultural.-Value of Maize as Human Food.-By Chas
 ead before the American Pharmaceutical Association at the Pro file House, N. H.,July 16 ..
Ii. ARCHeological--Recent Archeological Discoveries in Ohio. HEAD.--llustrated bv 15 engravings
iII. Art.-The Descriptive Arts and the Exact Sciences. -4 illustrations
Chemistry.-A New Silver Ore.
Weighing Precipitates upon Dried Filters.-By F. RUDORFF..............
v. HORTICULTURE.-Hardy Crinums.-With one fine illustration of Crinum moorei albu
VI. HVGIENE.-Drinking Water as a Source of Malaria.-By RICH-
ARD WAGENER, M.D., Pensacola, Florida.

vii. meteorological

Cables and Land Lines.
VIII. MISCELLANEOUS.-Recent Eruption of Mt. Etna -An ea tensive paper illustrated by one engraving of the volcano and a well lettered map of the volcano and its surroundings.
Hudson Bay.-Canada's kreat lone sea.-By WILIIM Hudson Bay.-Canada's great lone sea.-By WIL
Deputy Minister of Marine and Fisheries of Canada Deputy Minister of Marine and Fisheries of Canada..............
Residual Life of Muscle.-By ARM. GAUTIER and L. LAND.. ix. natural history.-The Condor, the Penguin, and the Slot- With three engravings of specimens belonging to the Museum of Natural Sciences of Madrid.
X. NA VAL ENGINEERING.-LLife Saving Devices.-Continued from SUPPLEMENT, No. 888, page $13865 .-5$ illustration
81. PHYSICS.-Larroqu's Experiment.-On the orikin of thunder

Explosion in a great sewer

The main sewer of the drainage system of St. Louis, Mo., was destroyed July 26 by the explosion of vapor of petroleum and naphtha mixed with air, the vapor being derived from the drainage of oils set loose by the late fire at the oil works of the Waters-Pierce Oil Company. The high water in the river caused a blocking of the mouth of the sewer, and in consequence of the lighter gravity of the oil it was retained in the sewer floating upon the water, thus generating the vapor and mixed air that was by some unknown cause ignit ed, with most disastrous effect, blowing up a building with about 1,000 feet of the street and the tracks in the Iron Mountain Railway yard. Six persons were killed and many injured. The narrow escapes are thrillingly described in the local papers. The water mains were broken, requiring the shutting off of the water in the entire neighborhood. The fact that oil naphtha and gasoline were escaping into the sewer since the fire in the oil oline were escaping into the sewer since the fire ithe ois
works seems to have been known to the city authorities, works seems to have been known to the city authorities,
but no attention was given to the dangerous condition of the sewer until the final catastrophe has stirred the city of St . Louis as to the responsibility of allowing a magazine of explosives to accumulate under their feet. When will people and authorities learn that the vapors of petroleum and its products are as powder when they are mixed with air in confined places, and only requir an earthquake?

the railioad strires

In our last and present issues we present our reader with some views of Homestead and of scenes con nected with the steel works, where the recent strike o the steelworkers took place. Much comment was ex cited throughout the country by the events at Homestead, the attack on the Pinkerton watchmen, and the encampment of the State troops near the town. The actions of the strikers on this occasion rose to violenc and murder, and those who to all appearance wer peaceful workmen, when incited by the occasion of a strike appeared in the guise of open rioters. Claims were made that the works were patrolled and that the property therein was guarded by the strikers. Some of their leaders appeared as suppressors of violence But the fact remains that violence was done, lives were lost, and the steel company was excluded from it own works by the strikers.
All this affected a private corporation, the Carnegie Steel Co. Within a few days a new strike has been inaugurated which affects what is to all intents and purposes a public service-the railroad. A strike is in progress among the employes in the car yards at Buf falo, and now it is an open question how far this strike will extend, and what damage it may inflict upon the transportation interests of the country. The railroad, upon which all depend for their most urgent and everyday interests, a factor which enters into the life of the humblest as well as of the richest, is the pivo of action.
The workmen have struck; the leaders of the unions appear in their usual role as deprecators of all violence; and cars are burned, obstacles are placed on the track, and threatened and executed violence and destruction of property are the order of the day. The strikers, as a body, are not, perhaps, active participators in these ac tions, but they are fully accessories to the crime. They are the witnesses of riotous actions, and stand idly by without so much as protesting or objecting to what is done virtually in their name. If railroad property is destroyed, the destruction is attributed to the strikers. It is possible or probable that it is directly executed by the lowest elements always to be found in large bodie of men, but in doing nothing to prevent it, and in making necessary military troops to be transported hundreds of miles to do riot duty, the strikers as a body as sume a responsibility which will do much to deprive them of any semblance of public sympathy in their struggle. It seems as if when a body of men become strikers, they part with their manhood. It is not so much in the submission to the dictation of their lead ers, for this has in it the elements of military discipline but it is in being silent or active accessories to the deeds of violence which the same leaders find it convenient to deprecate.
Service in the employment of a railroad is analogous to the position of a soldier or sailor. The employer, the railroad company, is the ostensible one against whom the strike is directed, but the public is the real party attacked, and the actions of the railroad employes in their strikes have much of the aspect of a desertion in face of the enemy or of a mutiny at sea When perishable freight is left to go to destruction on the tracks, when goods whose imınediate delivery means a business success or failure are not forwarded, those responsible for it are enemies of the public. The desertion of a train, full of passengers, midway be tween two stations is an offense against the public, of incomparably greater extent than it is when reckoned as one against the company.
In some way the relations of the three parties, the public, the railroad, and its employes, should be so
regulated that strikes would be impossible. It is an
absolute certainty that in a strike riotous proceedings will be indulged in. But, irrespective of such aspect the public has most explicit rights to the services of railroads. But for the franchises and extraordinary privileges awarded them, the employes would be en gaged in other pursuits. Their very places are the creation of the public, and they are its servants. Their offenses and desertions from duty in face of the public requirements have a special element of ill. The law, in some way, should be invoked to make the punishment of strikers, active agents in destruction o property and in the impeding of traffic, very severe As it now stands, the privilege is accorded them of in terfering with the rights of citizens that outnumbe them many thousand times over, and thoseaffected by the interference with traffic do nothing.
A board of railroad commissioners, backed by proper statutes-statutes which would bear upon the railroads as well as upon their employes-should be able to do much to make strikes on railroads a thing of the past The deserting soldier, the mutinous sailor, deserve consideration almost as fully as the crew of a passenger train that desert it when miles distant from any town, or who bring all transportation on a road to a stand still by open riot. As surely as the railroad companie should be held to responsibility in their treatment of employes, so surely should employes be held to re sponsibility in their treatment of the public, whose
 a body of employes, is due.

The American Association.
The forty-first meeting of the American Association or the Advancement of Science began at Rochester N. Y., August 17. Professor Joseph Le Conte, of Cali fornia, the president-elect, said in his opening remarks There are three divisions of research which are worthy the efforts of human intellect. They are religion, fine art, and science-three sisters destined to co-operate in levating the nature of man. What can be greate than to be reckoned as a student of the three? The pursuit of scientific investigation is, without doubt, th greatest honor of the time, and I, as the president of this body, personally have been honored beyond my due in receiving this office. I have met with the body ince 1851. You remember the great names that wer egistered at these meetings. There we saw Dana, Guyot, Peirie, Agassiz, Hall, and many industrious men. But let us not cling to the past and honor it solely. We must not underestimate the present. Th golden age is ahead of us and not behind us. The last time I met with you was in 1860. Then came the war nd my removal to California. I lost the stimulating ffects of the young men. We are apt to think that we teach and educate the young, my friends, but they re act on us, and we educate only in proportion as we ar educated. Last of all, let me say I will require your constant forbearance. The qualities that I possess do not permit me to preside at meetings of bodies. I havelived in the world of thought and not in the world of men. If this were a political meeting in which there was to be any strife I would have resigned immediately but a body of scientific men are a law unto them selves.
"The Immediate Work in Chemical Science" was the subject of the address by Albert B. Prescott, the retiring president, who said, in part: The realm of chemical action, the world within the molecules of matter, the abode of chemical atoms, is indeed a new world and but little known. "The atomic theory" has more and more plainly appeared to be the centra and vital truth of chemical science. As a working hy pothesis it has directed abstruse research through diffi cult ways to open accomplishment in vivid reality. As a system of knowledge, it has more than kept pace with the rate of invention. As a philosophy, it is in touch with profound truth in physics, in the mineral kingdom, and in the functions of living bodies. As a language, it has been a necessity of man in dealing with chemical events. Something might have been done, no doubt, without it had it been possible to keep it out of the chemical mind. But the atomic theory has come to be more than facile language, more than lucid classification, more than working hypothesis, it is the definition of the known truth in the existence of matter.
The stimulating truth of the atomic constitution of the molecule, a great truth in elastic touch with all science, excites numerous hypotheses, which, howeve profitable they may be, are to be stoutly held at distance from the truth itself. Such are the hypothe ses of molecular aggregation into crystals and othe mineral forms. Such are the biological theorie molecules polymerizing into cells, and of vitality as a chemical property of the molecule. Such are the questions of the nature of atoms, and the genesis of the elements as they are now known, questions on the border of metaphysics. Let all these be held distinct from the primary law of the atomic constitution of simple molecules in gaseous bodies, an essential prin ciple in an exact science. The chemist should have the comfortable assurance, every day, as he plies his balance of precision, that the atom-made molecules are
there, in their several ratios of quantity, however many unsettled questions may lie around about them. Knowledge of molecular structure makes chemistry a science, nourishing to the reason, giving dominion over matter, for beneficence to life.
Studies of structure were never before so inviting. In this direction and in that especial opportunities appear. Moreover, the actual worker here and there breaks into unexpected paths of promise. Certainly the sugar group is preseuting to the chemist an open way from simple alcohols on through to the cell substances of the vegetable world. And nothing anywhere could be more suggestive than the extremely simple unions of nitrogen lately discovered. They are likely to elucidate linkings of this element in great classes of carbon compounds, all significant, in general chemistry. Then certain comparative studies have side by side with each other, so, for instance, silicon must be put through its paces with carbon, and phosphorus with nitrogen. Presently, also, the limits of molecular mass, in polymers and in unions with water, are to be nearer approached from the chemical side, as well as from the side of physics, in that attractive but perplexing border ground between affinity and the states of aggregation. . . . Various other branches of science are held back by the delay of chemistry. Many of the material resources of the world wait upon its progress. In the century just before us the demands upon the chemist are to be much greater than they have been. All the interests of life are calling for better chemical information. Men are wanting the truth. The biologist on the one hand and the geologist on the other are shaming us with interrogatories that ought to be answered. Philosophy lingers for the results o molecular inquiry. Moreover, the people are asking direct questions about the food they are to eat, or not to eat, asking more in a day than the analyst is able to answer in a month. The nutritive sources of bodily power are not safe in the midst of the recklessjactiv ity of commerce, unless a chemical salegimself for his duty.

The Spectroheliograph of the Kenwood Astro Physical Observatory, Chicago, and Results Obtained in the Study of the Sun," was the title of a paper read before the Astronomical section of the association by Mr. George E. Hale, of Chicago. He described the ingenious apparatus which he had invented and perfected for photographing the faculæ and protuberances of the sun. This apparatus has successfully photographed the bright spots, showing faculæ which the eye cannot detect. Means were devised for taking on the same plate at one exposure both the faculæ and the protuberances, and Prof. Hale exhibited the firs complete picture of the sun ever taken. An observa tion of unusual interest was made on July 15, 1892. A photograph of the sun showed a large spot. A few
minutes later another photograph was taken, which minutes later another photograph was taken, which when developed showed that the bright band had ap peared since the last exposure. Twenty-seven minutes thereafter another photograph showed that almost the entire spot was covered with brilliant faculæ, which by the end of an hour had entirely disappeared, leaving the spot as at the first exposure. This indicates an eruption proceeding with indescribable and inconceiv able velocity. This disturbance seems to be connected with magnetic disturbances and the brilliant aurora noted the next day. The section with much enthusi asm passed a vote of thanks to Prof. Hale for his re searches.
The results of some interesting experiments in re gard to persistence of vision were given in a paper on that subject by Ervin S. Ferry, of Mount Vernon N. Y. His conclusions entirely disagree with the old theory that the persistence of vision depends on color. "According to the old theory," said he, "when it wa noticed that the image produced by the spokes of a revolving wheel was more or less persistent, according to the color of the spokes, it was reasoned that per sistence of vision depended on color, and I think th experiments of the last year upset this theory and in dicate that color is not the important feature, but brightness of light. The experiments were carried ou by taking the normal eye and measuring the direction of that impression for difierent colors. It was found that these varied from 8-1000 of a second to $36-1000$ of a second, depending upon the brightness of light. We next experimented upon color-blind people, and found that color made no difference in the change of the phenomena.'
Robert T. Hill read papers before the Geological section on the volcanoes of North America and the geology of Mexico, giving the result of recent personal observations. He called attention to the renewed activity of volcanoes throughout the world, and pointed out the probability that some of the numerous extinct volcanoes in the western part of the United States may again become active. These craters are all in the West, and the volcanic belt extends into Mexico, where volcanoes in similar geological strata now show renewed activity.
Professor Riley read some valuable papers to the

Entomological Club. Professor Fernow, before the Economic section, again sounded the note of warning so often heard, but not heeded, as to the danger which threatens the government timber lands from thieves and fires. He said: "We have only twenty to twentyfour watchmen to protect 20,000 square miles. We expend $\$ 100,000$ a year and rarely succeed in receiving about that value back. We need a thoroughly or ganized and efficient service costing $\$ 2,000,000$ or $\$ 3,000,000$, which would result in saving $\$ 20,000,000$ to $\$ 50,000,000$ a year."
A new parasite found on the skins of cattle was the subject of an interesting discussion, during which Dr C. U. Stiles, medical zoologist of the Bureau of Anima Industry in the Department of Agriculture at Wash ington, said: It is a new disease in the skins of cattle, and is caused by a minute mite, the scientific name of which is Demodex folliculorum. The parasite is common among dogs, and is also found on pigs, cats, and sometimes on man. It has been noticed once or twice before on cattle. During the last year there has been considerable complaint from manufacturers on account of the poorness of leather produced. It is called pimply leather.' A number of investigators examined the leather, and came to the conclusion that there was some fault in the process of preparation. Las winter specimens of this leather were sent to Secretary Rusk with a request for an expression of opinion as to the cause of this peculiarity. The material washanded to me, and I succeeded in proving that this condition of the leather was not due to any defect in the prepara tion, but to a minute parasite which lives in the folli cles at the roots of the hair, which multiplies there nd by increasing in great numbers enlarges the hai ollicles in the form of a pustule. It is this enlarge ment of the hair follicle that shows on the leather The loss to the leather industry has been extensive Leather manufacturers in the West say that they had lost on the average 50 cents on a hide. There is no hat herdatment for the disease, but their herds, and a soon as the disease is noticed, keep the cattle infected isolated. The particular parasite found on cattle epresents a separate variety from that found on dog and man, so that there is probably no danger of in fection to man from contact with the cattle.

Hypnotism and its Antecedents" formed the sub ject of an address by Professor Joseph Jastrow. The career of Mesmer was sketched; the practices which he devised and the theories which he spun about them were delineated, and an analysis made of how far these involved the facts of hypnotism. While Mesmer's practices undoubtedly involved several of the phe nomena of hypnotism, his work entitled him simply to be classed among the antecedents of hypnotism. The hief points of Mesmer's career were given in some de ail, including an account of the commission of 1784 In 1784 the Marquis De Puysegur accidentaily discor red somnambulism while following the Mesmeric prac tices. He appreciated the importance of his discovery but at once involved it in much error by supposing that his subjects possessed a variety of super-normal facul ties. After the close of the French revolution animal magnetism reappeared in France, and soon found it way into Germany and other countries. It was, how ver, the extreme and extravagant phenomena that vere mainly studied
Hypnotism was introduced into the hospitals o France, and some operations and cures were performed
by its use. In 1831 a second commission on magnetism reported in 1831 a second commission on magnetis powers of the subjects, but a commission of 1837 re versed this decision, and a prize of 3,000 francs was offered for any one who could read without the use of his eyes, but this was never gained. In 1840 James Braid, of Manchester, freed the subject of much of its obscurity by showing that the phenomena depended entirely upon the subject, and not at all upon the operator. Unfortunately, after Braid had discovered so much he again deepened the mystery of the subject by announcing that his subjects proved the doctrines of phrenology. From 1840 on, in spite of extravagant and false doctrines, and in spite of the indifference o the medical profession, a few earnest students kept contributing to the advancement of hypnotism, and at last the phenomena found scientific recognition about fifteen years ago, mainly through the efforts of Charcot and Richet. The last score of years had wit nessed a remarkable revival of interest in these studies, and as many as one thousand contributions to the subject have been published.
The use of hypnotism in medicine for the suggestive ure of disease is an important phase of the subject, and several instances were given from the literature on this point. The legal side of hypnotism was also dis cussed. The phenomena of hypnotism are important to the physician, to the physiologist, and to the stu dent of the human mind. While its history shows how readily error is mixed with truth, and the odor o charlatanism and extravagance brings the entire in vestigation into disrepute, the investigations of recent scientific students have separated the truth from its false surroundings and given the whole a scientific
position which it will never lose. Following the lecture was a series of lantern views, illustrating the chief points in the history of the subject. Portraits of Mes mer and of the appliances used by him, as well as the satires directed against him, were shown. The vari ous methods of inducing the state and the more important phenomena were pictured. A variety o interesting views of patients in various stages of the hypnotic sleep were shown, and some of the effects, such as a change of handwriting accompanying a suggested change of personality, the change of pulse rigidity of the arm, burns on the flesh and the like were also exhibited.

Brushes.

When a painter buys a poor brush, he is very much like the man who takes in counterfeit money for the genuine article, either a poor judge or too careless of his own interest or too confiding in his fellow man to look at it closely. Now, my boy, here are two propositions which I wish to impress upon your mind : First, that it is of the utmost importance to you that you buy and use the best brushes in the market; second, that nine tenths of the brushes kept in the retail stores are not worth taking as a free gift, because, no matter how well skilled you may be, a poor, ill-shaped brush will retard your progress, and in measure spoil your work I have no doubt but brushes are often ruined by careless and improper usage, but judging from long experience and observation, I am led to believe that more of them are spoiled in the making than by im proper handling. There are two very important point o bear in mind when selecting a brush : First, is it well made? and, second, is it good material ?
Here is a fine-looking brush, with long heavy bristles. Buy it for you? No, mylad, in this case beauty is only skin deep, and the name of the maker or recommenda ion of the salesman is neither safe to go by. Trust only to your own judgment or to the judgment of some ne qualified to buy for you. Open this brush and look at the filling. What is it? Echo answers "What?" It certainly is not good honest wearing bristles. If you soak thisfilling in water it will no morestand alone than a wet rag. The question whether it is hair, wood filler Florida grass, or what not, cuts no figure, because it water-soaks and works more like a mop than like a good bristle brush. It has a good fringe of good bris tles on the outside, but they fail to do their own part of the work and at the same time furnish the spring for the worthless filling; and the result is, it splits and wears to a saw-tooth edge. I am speaking now of whitewash and calcimine brushes. There is not enough good stock in such a brush, ten inches wide, to make a good three inch wall brush, and yet they are sold at prices which ought to buy a fairly good brush. If there is any one poor brush which I despise more than another, it is a shedder, which, like a sick cat, keeps on shedding the year round. It is surprising to see how many bristles such a brush can shed and seem to grow no smaller. If you find a brush has many loose bristles in it, just make up your mind that there are more to follow, and don't buy it. Don't delude yourself with the idea that you can soak it up and make it hold. Such a brush will go back on you sooner or later. On of the most desirable things about a brush is a good point. To hold a good point, a brush must have good filling. Take, for instance, a flat chiseled brush, its chief value is a good edge or point; but as they are usually made with all the good bristles on the outside and the poor ones in the center, the poor stuff forms he point, except a little on the corners. The soft stuff in the center will wear down faster than the good stock on the outside, and the brush will soon become a stub, unfit for cutting in colors or for anything else.
A brush of any kind should have a good cutting edge, and to do good, durable service should have good stock in the center, because whether ground down or chiseled by wear, the center makes the point. When the point is gone the brush is a stub, and that will soon happen when a brush is filled, like this, with short, uneven, inferior bristles. Every painter should be a good judge of a brush, and exercise his judgment, and take no man's word for it. It is well to remember, my boy, that it costs you more in time to wear out a poor brush than it does to burn it up and buy a good one. If brush makers must use short, uneven stuff in their brushes, I prefer to have it on the outside, and the good bristles in a body across the center, to give me an even and good wearing point. We are using too many poorly filled and badly made brushes, which are dear to us at any price. Let us kick.-V. B. Grinnell, Painting and Decorating.

A Depilatory Powder.

According to the Bulletin of Pharmacy for February, 892, the following is a useful depilatory powder :

[^0]This is mixed with water so as to form a soft paste, and spread upon the face. In ten minutes' time it is scraped off and the skin is now found to be smooth.

How wood screws are Made.

However unpretentious the ordinary wood screw may be in appearance, its manufacture, as carried out at the present time, says the Mechanical News, has called for the exercise of no small amount of ingenuity. Passing, recently, through an extensive works where wood screws are turned out in large quantity, we had every opportunity of witnessing the successive stages of development of a finished screw, from the crude raw material in the shape of steel wire rods, and a brief account of the various processes may here be of interest. The wire rods are first cleaned and drawn into wire of desired gauge for the different sizes of screws to be turned out. This wire, on reels, is then fed into what are known as heading machines, in which the screw blanks are partly formed, the proper length of wire for a screw being cut off and a head being formed by one or more blows from a header. The rude blanks are then dumped into a form of hopper on a machine for cutting the slots in the heads and shaving off the latter so as to present a finished appearance. The necessity for this latter operation arises from the fact that the beveled heads, as formed in the heading machines, are not sufficiently smooth and uniform in shape, the metal flowing more or less irregularly.
The rough screw blanks are then fed along a slide automatically, each one in turn being held firmly by uitable grips, and are presented to a milling cutter for cutting the slots in the heads and to the tool for turn ing the head and the beveled surface on the under side. Then the blank is released and falls into a receptacle underneath, making room for the next blank. The finished blanks, having gone through a rattler, are next taken to the threading machine. In this also the entire operation is automatic. The blanks pass along a slide, one by one, in the same way; are gripped and presented, in a horizontal position, to a cutting or threading tool secured in a reciprocating tool block. This has the necessary amount of longitudinal feed to give the desired pitch to the screw head, and has a quick return motion, several cuts being taken on each blank before a finished thread is secured. Soda water is used as a lubricant. The finished screws drop into a box underneath the machine and are then ready for packing and shipping.
One of the most recent methods of forming the threads on the screw blanks is that of cold-rolling the blanks between reciprocating dies having ridges and depressions formed on their faces.
From the nature of the operations it will be readily understood that a large number of machines can be handled by one attendant. All that is necessary for him to do is to see that the feed hoppers on the several machines are kept supplied with blanks. Everything else is done by the machinery itself.

WATERING STREETS BY ELECTRICITY.

The machine for watering streets shown in the accompanying illustration presents externally the aspect of an ordinary street car, in order that it may not frighten horses, but it consists in reality of a large iron plate reservoir filled with water. This latter is distributed over the track and at the sides by means of a horizontal pipe containing numerous apertures. This pipe is jointed at the extremity near the car, and can, through a simple maneuver, be lifted against the side of the car to allow of the passage of the few ordinary vehicles that happen to be on the street during the hours in which public sprinkling is usually done. Two men standing in front maneuver the car and the pipe. This ingenious and economical arrangement, for the illustration of which we are indebted to the Street Railway Journal, assures a rapid and regular sprinkling.

Sinking of the Marechal Canrobert.

The French ironclad Le Hoche has just given the world an object lesson in the use of the ram. On July 7, the French squadron at Marseilles was exercising, and the ironclad was crossing the roadstead at full speed, when it crossing the roadstead at full speed, when it struck the mail steamer Marechal Canrobert
(1,200 tons), then coming in from Italy, hitting (, 200 tons), then coming in from Italy, hitting
her fair and full. The shock was tremendous, her fair and full. The shock was tremendous,
and the captain of the ironclad, foreseeing the and the captain of the ironclad, foreseeing the to his own vessel, and the passengers transferred. The fastening hawsers were then cut, twelve minutes after the collision, and the steamer instantly sank, the blow having cut her nearly in two. The ironclad remained uninjured. No weight of fire could have secured such ra-
pidity or such completeness of destruction, nor would pidity or such completeness of destruction, nor would
any strength in the steamer have preserved her from the consequences of the shock. It is by ramming that the consequences of the shock. It is by ramming that
the first battles of the future will be decided, with this consequence, among others, that the mortality in a sea fight will exceed all precedent. In the old sea fights, a ship rarely lost a third of her crew, including killed and wounded, but the iron ship which goes down under the blow of a modern man-of-war will drown everybody on board.-Spectator.

AN IMPROVED CAR COUPLING.

The device shown in the accompanying illustration is designed to facilitate the antomatic coupling of railway cars, also allowing them to be uncoupled without the brakeman going between thein. It has been patented by Mr. William H. Violett, of Grand Junction, Col. A swinging pin support is pivoted by trunnions in the link mortise of the drawhead, to rest on the inner end of the link when the latter is held in position to enter an approaching drawhead, as shown in the

violett's automatic car coupler.

vertical section, Fig. 2. The swinging pin support also serves as a rest for the pin when the latter is raised, the support being pivoted to swing into this position by its own gravity, and being pushed back by the entering link to allow the pin to drop. An auxiliary pin support is also provided for the adjustment of the pin, so that the cars, after being bumped or pushed together, will uncouple when the engine pulls out. The trunnions of the main pin support are held in their bearings by plates, as shown in the top plan view, Fig. 3, and an extension above one of the trunnions operates the auxiliary pin-supporting devices, which do not operate except when the pin is raised without withdrawing the link. The auxiliary support, shown in Fig. 4, consists of a plate turning on the lower end of a short shaft, a link extending from which has a pivoted dog actuated in one direction by a spring to force the plate below the coupling pin, and also adapted for engagement by the extension above one of the trunnions of the main pin support. When the latter is swung back, the spring moves the parts to adjust the auxiliary support against the pin when the latter is lowered, and below it when it is raised. A shoulder on the drawbar receives the force of the jar, after the spring has been exhausted, and also affords protection to the main pin support, which also has a covering or casing to keep out snow, sleet, etc. To facilitate uncoupling from the top or either side of the car, a forwardly extending lever pivoted to the car is connected by a

WATERING STREETS BY ELECTRICITY.

hain with the pin, a rod extension from this chain tending to the car, while the lever is adapted to be raised by pivoted hand levers extending to each side of the car.
Further information relative to this improvement may be obtained from Messrs. De Long Bros. \& Marsh, Grand Junction, Col.

Cement for Porcelain.

20.0 white lead and 12.0 pipe clay, carefully dried are incorporated with 10.0 boiled linseed oil heated on in a warm place.

Mark Twain, in his new novel, "The American Claimant," introduces his readers to a mechanics club debate, the manifest object being to satirize the socialistic tendencies of the workmen of the present day. One of the speakers, a self-educated printer, delivers a long harangue to prove that we "overrate the college culture share in the production of the mighty progress" of the nation. "In looking over a list of inventors," he continues, "I find that they were not college-bred men. Of course there are exceptions, but these exceptions are few." Now it has long been a custom, and a very pleasant one no doubt, that as soon as a man has risen to great prominence, his friends have sought to add luster to his glory by making his origin more humble than it really was and representing his education as having been practically representing his education as having been practically
neglected. In the life of a presidential candidate, gotten neglected. In the life of a presidential candidate, gotten
up for campaign purposes, this may be all very well, for our partisanship makes us very credulous, but in the work of a standard author it is entirely different Now the writer is well aware that Mark Twain is such a funny man that it is often difficult to know when to take him seriously. But in the present instance it is manifest that Mr. Clemens has allowed his reason to be carried away by the popular fallacy that the great inventors were men of little or no education, who started out in life with vague ideas of the alphabet and multiplication table. To say that the inventors, with very few exceptions, were not college-bred is to make a misstatement that could have been rectified at the expense of a very little research. To take only the more noted names in the field of American invention, we find that Morse was not only educated at Yale, but that he achieved success as a portrait painter long before he ever dreamed of having his name connected with the electric telegraph. While very poor in early life, Whitney was quick to see the advantages of edu cation, and endured many hardships for the sake of working his way through Yale College. Corliss received a good academic education, and knew enough to construct a machine for sewing heavy leathe before he had ever seen the inside of a machine shop. Fulton was a man of education and was a landscape painter by profession before he became interested in mechanics. The elder Roebling graduated at the Berlin Polytechnic School, and his son was educated at the Rensselaer Institute. Gatling was not only educated, but he studied medicine and took a degree. Moncure Robinson, one of our pioneer railroad con structors and the builder of the Philadelphia and Reading road, whose death was recorded last Novem ber, was designed for the law and was educated in the Gerardine Academy and William and Mary College Dahlgren and Ericsson received a military education, the latter having the title of LL.D. Rodman, of gun and powder fame, was a graduate of West Point; and Thurston, to whom we are indebted for more than on invention, was educated at Brown University. The list could be greatly extended if we included the names of men noted for their discoveries in the sciences, who must of necessity have had the highest education. It is poor policy, at best, for self-educated men to attempt to undervalue the advantages of a liberal education. No'in ventor need be afraid that he will handicap himself in his work by going through college. To state that Howe and Edison received very little education in early life proves nothing in an argu ment on this subject. While they deserve all the more credit on that account, who can deny that their services to the world might not have been even greater than they are if they had started out in life with the advantages of a college education?-Mechanical News.

A New Variety of Cane

Many new plants have been brought to light in the recent explorations by Englishmen Frenchmen, and Germans in equatorial Africa but one in particular has a special claim to the attention of West Indians.
In the Upper Niger region, where great heat and moisture combine to produce luxuriance of tropical vegetation, a giant variety of sugar cane has been found, which is described as possessing great saccharine richness and being reproduced from seed, which in this variety is well developed. This is indeed news to the sugar planter, and from a botanical point of view confirms the theory that our present cultivated varieties are descended from an original perfectly flowering and seeding plant, the perpetuation o_{1} which by cuttings impaired, in course of time, the original attributes of the parent variety. The agricultural board and local planters should take particular note of this reported discovery, and so also should the government botanist. Such a variety of cane intro duced in the island would be worth millions of Tusser silk worms, and prove infinitely more advantageous for its prosperity. And it is to be hoped we shall soon hear something more of the Niger cane.-Port of Spain Gazette, Trinidad.

the fall of bodies and the resistance of

 THE AIR.An exceedingly interesting series of experiments is now being carried on in Paris, by MM. Cailletet and Colardeau, in which they are seeking to verify the law of falling bodies and at the same time those of the resistance of the air to the passage of bodies. Now that high-speed electric railway work is seriously contemplated, the results of these experiments cannot fail to be of the highest interest. In order to carry out their work, the investigators have installed their laboratory on the second landing of the Eiffel tower, which gives them a free fall of 120 meters, or about 370 feet.
In carrying out their experiments MM. Cailletet and Colardeau have employed a very ingenious electrical method of timing the fall of the variously shaped objects experimented with, and particularly with the view of knowing at every instant the position of the falling body. The laboratory itself is shown, says the Electrical Engineer, in the accompanying engraving, Fig. 1, taken from LaiNature. Fig. 2 shows an enlarged view of the principal apparatus. The falling body is attached to a very fine light thread, which is divided into sections of 20 meters each. Each one of these sections is wound on a wooden cone, $\mathrm{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3}$, etc., all fixed vertically with their points facing downward. so that the thread is very easily unwound. When each of the sections of 20 meters is unrolled, an electric contact actuates a registering pen upon which an electric tuning fork chronograph indicates the instant with a precision of 1-100 of a second. Thus at the end of every 20,40 , and 60 meters, etc., a time record is automatically made.

The electric contact is accomplished as follows Iu passing from one cone, C^{1}, to the following, C^{2}, the thread is looped around a contact, M N O, Fig. 2, the contacts being separated by an insulating block, I, and supported by two springs, L L', which press the contacts together very lightly. The falling body pulls the thread through the contacts, and thus for an instant breaks the circuits and allows the pen to register. Experiments have shown that the retardation to the fall of a body weighing 1 kilogramme through 20 meters caused by the separation of the spring contacts is less than 0.2 millimeter per second; that is, less than 1 one-hun-dred-thousandth. The retardation due to the resistance offered to the unrolling of the thread on the cone has been shown to be about 1 per cent.
Up to the present the experimenters have confined themselves to investigation to ascertain if the resist ance opposed by the air to plane surfaces of equal area, moving in a direction normal to these surfaces, was dependent upon their form. Thus they have employed circular, square, triangular, etc., surfaces. They have found that the time of fall differs only by insignificant amounts, as indicated in the record reproduced in Fig. 3. This figure is a production of the chart obtained by means of the apparatus above described. No. 1 is the theoretical record of a body falling freely in vacuum. No. 2 is an experimental record obtained of the fall of a long wooden the fall of a long wooden ar mass at its point No mass at its point No. 3 is the record of the fall of a square surface (0.0225 cm . sq.) pulled by a weight of 800 grammes. No. 4 is the record of a triangular surface of the same area as the preceding, pulled by the same weight. The lowest curve in Fig. 3 is the record of the tuning fork,

Fig. 1.-LABORATORY IN THE EIFFEL TOWER, PARIS.
this is a layer of sand, and over the sand is laid a heavy covering of fire bricks. The furnace is then heavy covering of fire bricks. The furnace is then melt cast iron, and this heat is maintained for a greate or tlesser period according to the amount of carbon izing to be effected. About 120 hours are said to be required for a plate $101 / 2$ inches thick. On removal from the furnace such a plate is found to have had the composition of its upper surface changed. At a depth of about three inches from the surface the percentage of carbon has been raised by about 0.1 per percentag increases progressively as the outer surface is neared, when the amount of carbon may rise to 1 per cent. It is said that this process, though, as will be seen, it resembles the ordinary cementation pro cess, does not cause any blis tering of the surface of the plate. This the inventor at tributes to the high tempera ture at which it is carried out; but it is also suggested that the absence of blisters may be due to the homo geneity of the metal used, which, unlike the wrough ron bars used in the cemen tation process, is free from cinders.

Flies have long been accused of spreading disease; but it is asserted now from Havana that mosquitoes have a use, for if they inoculate any one after biting a yellow fever patient, the disease which follows is so mild that fatal results are rare.-Eng lish Mechanic.

THE CARNEGIE STEEL WORKS, HOMESTEAD. Undoubtedly one of the principal reasons for the location of the great steel industry at Homestead, and a leading cause of the rapid development there of such an immense plant, lies in the fact that natural gas is here to be had in such abundance that no other fuel is required. There is here no handling or storage of coal, none of the thousand inconveniences attending coal, none of the thousand inconveniences attending
the heating of furnaces and forges by such means, but the heating of furnaces and forges by such means, but operations. And so great have been found to be the advantages of this method of heating that, should there at any time in the future be a failure in the supply of natural gas, it is expected that those now using it would manufacture gas for use in the furnaces, instead of going back to the direct employment of coal, a practice already adopted to some extent in Europe. The great steel works of Homestead, general views of which appeared in the Scientific American of last week, occupy a ground space of 110 acres, on which are a dozen large and substantial buildings, and the production includes nearly every kind of structural ironwork, which is largely of Bessemer steel, up to the making of open hearth nickel-steel armor plates of the largest dimensions. In our illustrations on the first page, Fig. 1 represents the working of the great armor plate rollers, drawn by our artist a few days after the attempt of the mob to stop all operations at the works. The plate being rolled is 6 feet wide, 20 feet long, and 6 inches thick. The rollers, as will be feet long, and 6 inches thick. The rollers, as will be
seen, are both horizontal and vertical, the latter being seen, are both horizontal and vertical, the latter being
set to the required width for the plate to be produced, set to the required width for the plate to be produced,
and forming a true and uniform edge. The upper and lower rolls are held firmly to their position by other rolls above and below running in contact with them. Armor plate up to 112 inches in width can be produced with these rolls. On each side of the entrance to the colls is a revolving roller table, the rolls of which are rotated by a system of gearing, and carry the heated plates or ingots upon their upper surface toward the rolls, also receiving the plates after compression. The rolls and the roller table are readily reversible, so that the plate being formed is successively passed
back and forth from one side to thc other until it has been reduced to the proper thickness. This operation is entirely under the control of a skilled workman upon the platform above, who judges as to the amount of pressure it is best to apply upon each passage of the plate between the rolls, and regulates the pressure by means of the graduated wheel and scale rods shown in Fig. 2. When the plate or ingot is at a pretty high heat, as in going through for the first time, the rolls may be adjusted for a "bite" of as much as three-quarters of an inch or more, this being gradually reduced to a quarter of an inch or less as the metal parts with its heat and becomes more dense. By means of the graduating device, such accuracy of adjustment is possible, for both the vertical and horizontal rolls, that the plates may be rolled to within one-hundredth part of an inch of the required dimensions.
The ingot of steel ready to go to the rolls, shown in Fig. 3, is said to have been the largest ever produced in America. It is the product of several open hearth furnaces united. It is now over four feet thick, but is to be rolled down to 17 inches thick, and 112 inches wide; it weighs 72 tons. The tongs handling it have an opening of 9 feet, and are capable of picking up an ingot weighing 160 tons. This ingot had just been started on its course to be worked up into an armor plate of the largest size, and four days will be required to heat the mass to a rolling heat. Some of the special requirements for the working of such large pieces are shown in the oven-bottom railway car over which the ingot is suspended, the sanded top of the car being re ally the bottom of the oven when run into the latte
to be subjected to the natural gas heat. to be subjected to the natural gas heat.
Another form of ingot-heating furnace, known as the pit form, is shown in Fig. 5. There are four of these pit furnaces near the rollers. Ingots weighing less than 72
tons each may be heated in any of these furnaces, the tons each may be heated in any of these furnaces, the
furnace being covered with a fire-bricked lid after the ingot has been lowered to place, and the lid being so neatly balanced on its handle that it may be conve neatly balanced on its handle
niently swung aside as desired.

By means of the powerful hydraulic shears, shown in Fig. 4, the ends of the plates are trimmed with the greatest accuracy. The plates are moved to position for cutting by the shears by the same system of revolving roller table as that shown in Fig. 1, and by these shears steel plates six feet wide and six inches thick are sheared off, apparently with as much ease a one would cut off a slice of bread.
In Fig. 6 is represented the pump house and the landing to the works on the Monongahela River. It was from the windows of this house, after it had been taken possession of by the mob on July 6 , that the
most deadly fire was kept up on the men aboard the most deadly fire was kept up on the men aboard the
scows, and up this bank from the landing were marched the men who had been obliged to surrender to the mob, the latter inflicting upon their victims a continued series of outrages, compared with which death in open fight would have been far preferable.

Among other machines of immense power at the Homestead works may be mentioned a great press
used for straightening or bending to a vessel's form used for straightening or bending to a vessel's form
the thickest armor plate made, also an enormous saw, the thickest armor plate made, also an enormous saw,
made at the Krupp works, and capable of sawing steel of any thickness as readily as wood is ordinarily sawed, besides gigantic planers for truing the edges of plates, and drills of the largest capacity, etc. A new Bessemer plant is also just completed, which has within a few days turned out its first steel product.

The World's Fair.
It is estimated that the total outlay will be $\$ 17,000$, 000 when the gates are opened, and that it will cost about $\$ 3,000,000$ to conduct the fair during the six months it is open, and to close and disband the dif ferent departments. Of the capital stock of $\$ 10,000,000$, over $\$ 6,000,000$ has been subscribed, and more than \$5,000,000 paid in ; the city of Chicago has appropriated $\$$ which has been paid in ; the Congressional souvenirs are valued at $\$ 3,500,000$, making a total of $\$ 14,500,000$, paid in or subject to call. The actual expenditures thus far amount to $\$ 9,000,000$, and there is a cash balance on hand of over $\$ 1,000,000$. But to secure an amount to finish the work, it is now proposed to issue
bonds to the extent of $\$ 5,000,000$, secured by a lien on the gate receipts, and paying six per cent interest; and as there is every indication that these bonds will be readily taken, there need be no further delay in completing all the grand details originally planned, and making the exposition a success from the artistic point of view ; $\$ 20,000,000$ is the estimated amount that wil be received from concessions, the gate receipts (already
exceeding $\$ 75,000$), and the sale of buildings and material after the close of the exposition-a sum amply sufficient to pay the running expenses, and to pay both bond and stock holders 100 cents for every dollar invested. Then, in addition to all these millions which are being expended by the exposition proper, there will be from $\$ 8,000,000$ to $\$ 10,000,000$ expended by various legislatures, States, associations, and foreign govern ments. In other words, when the gates are thrown open the visitors will derive the benefits of an expo-
sition costing $\$ 30,000,000$, the educational influence of sition costing $\$ 30,000,000$, the educational influence of which will be felt for years to come, adding to the material prosperity of the entire nation and promoting the growth of every art and every industry
Transportation. - The Illinois Central Railroad, running along the lake front, is now at work elevating its tracks about twenty feet above datum on the main grade from Fifty-first Street to Sixty-seventh Street and is laying four additional tracks. When these im provements are completed the officials believe they can handle 50.000 passengers an hour at the elevated sta tions along the World's Fair front. To do this they will use eight tracks, with 24 trains an hour, 10 cars seating 60 people each to a train. The other trunk rail way lines will use the "Stub" system at the main sta tions, of which there are 36 tracks, arranged to hold 36 trains, that can deliver or carry a way 40,000 visitorsan hour, and should a rush come near the closing hours there will be sufficient tracks and trains at a sub-sta tion to carry away 15,000 more people. This "Stub" system is intended for convenience in handling country visitors coming in on excursion trains. The street rail way lines claim they can deliver 40,000 visitors an hour the lake steamers 15,000 , and the Alley " L " road 20,000 . On the State Street and the Cottage Grove Avenue lines 120 trains an hour, each train having three trail ers and a grip car, with a seating capacity of 150 , and a crowding capacity of 50 more, will be operated at half-minute intervals. Three hundred new cars are being added to these lines. The cross-town lines are also ncreasing their rolling stock in anticipation of th crowds. Thus the exposition managers are confident
that, should occasion demand, they can handle 100,000 visitors an hour from within the city and 50,000 excur ionists from out of town.
The Illinois Central Railroad Company is building a new passenger depot, costing over a million dollars, that will extend along the lake front from Park Row to Twelfth Street, with a frontage on Park Row of 220 feet. Arc and incandescent lamps will furnish the illumination, and electric motors the necessary powe used within the building, contracts for which have not yet been signed. The unobstructed outlook over Lake Michigan will make the waiting room unequaled in at ractiveness, while another feature will be a marble lined subway, extending the entire width of the station with marble steps on each side, by means of which any rain can be reached without crossing a single track, or lso being over platforms. The Hall signal system and 50 engines and 500 coaches, estimated to cost over $\$ 2,000,000$, will be added in time to handle the World's Fair business.
The Buildings.-Several of the buildings are already completed, and the exterior of the majority needs only the finishing touches of the painter. The Machinery Building is not yet roofed in. The Electrical Building is about two-thirds finished, and nearly the entire ex-

Wheatstone, Gauss, Jacobi and other noted workers in the science of electricity appear prominently in white letters nearly a foot in height. The Transporta tion Building is practically finished, while the exterior of the Manufacturers' and Liberal Arts Building, with its 44 acres of floor space, in which 300,000 people could be seated, is fast approaching completion. The first of the bonded warehouses has been opened as Warehouse A, and several carloads of exhibits are stored away to await the final arrangement. Heretofore these exhibits have been placed in the various freight houses in the city, but hereafter the railway lines will deliver shipments so marked direct to the exposition warehouse. Along the lake front, that ever-changing, horizon-bounded expanse of blue and green that will gladden the heart of our foreign and inland visitors, is a stretch of a mile and a half of graded, curbed, and paved roadway and wide promenade, embanked from the water's edge witb a sloping wall of granite blocks. The long pier, extending 2,500 feet out into the lake, is well under way, and will afford ample landing room for passengers brough by lake craft. The lagoons and waterways are assum ing artistic shape, reeds and other aquatic plants being placed at the water's edge, while the rich deposit of black earth is fast being covered by the soft green raiment springing up wherever its color and texture will beautify the scene. Referring to the spectacular and fantastic effects to be produced in these lagoons with the aid of electricity, a writer states that "these waterways will literally sparkle at night with tiny col ored lights in unique and fantastic designs. Vari-col ored lamps will glimmer in the dim green depths of the lagoons.

Hidden and buried among flowers and translucent water plants, they will appear like veritable ignis fatui, or, as skimming over the surface of the water in electric launches, like giant submarine water flies. Great sea serpents, dragons, and sea nymphs will peer out of the depths of the water and cast horrible but harmless looks at the happy thousands who may glide over the rippling bosom of the world's fair waterways. Expensive designs for this feature of the electrical display will be brought from Europe at a great expense They will consist of Chinese dragons, winged horses sea monsters, and all the horrors of land, sea, and air that the imagination of man has in the course of centuries given birth to."
At the dedication ceremonies in October the visitors will be treated to a brilliant spectacular display entitled the Progress of the Centuries, and among the twenty-four floats will be one representing "The Genius of Invention," application of steam, etc., and one representing "Electricity." Sixty 6,000 c. p. search lights will illumine their course through the most pic turesque portion of the lagoons, and as these stately barges average 50 feet in length and 30 feet in height, it is expected that a scene of unusual splendor wil result. The float representing Electricity is thus described by the designer: "This float will need no search lights to reveal its beauties. Indeed, as it approaches, these lights will be darkened so that it may the more perfectly reveal its own glory. The golden barge is of capacious form Within it seems to be filled with clouds supporting a huge sphere representing the world. This globe is banded in all directions with thousands of incandes cent lamps of varying color, incessantly flashing, now green, now blue, now crimson, a hundred tints. Upon it standsan heroic figure of the Genius of Electricity, bearing aloft a brilliant electric lamp. On the high gilt prow stands Franklin with his kite. By ingenious appliances real lightning flashes are made to flash about his kite. On elevated platforms on either side of the great globe are seen Morse and Edison with their discoveries. Far forward sits a female figure representing Europe, and far behind another represent ing America. To the latter little winged figures are bringing messages. Her fingers rest upon a telegraphic key. Europe receives the message and reads it from a tape, while other winged figures with trumpets proclaim it to the world. This barge will be provided with powerful dynamos to produce the marvelous light effects."
Dedication Ceremonies.-By an act of Congress and proclamation of the President, Friday, October 21, will be a national holiday, and special exercises will be held in every one of the 170 schools in Chicago on Thursday, October 20. No charge will be made for admission to the fair while the dedicatory ceremonies are taking place on Friday. On Thursday and on Friday after 5 P.M. an admission of 50 cents will be charged, as the fireworks and floats will be of such magnitude and such brilliancy and the expenditure will have been so great that the exposition management has decided to charge for the enjoyment of these entertainments. The fireworks will be the most elaborate ever evolved, and in many cases the bombs and display pieces will be fired by electri-city.-Electrical World.

Yale University had its beginning at Saybrook, Conn., in 1700, and removed to New Haven in 1716.

joseph le conte.

In 1891 the American Association for the Advancement of Science met in Washington, D. C., under the presidency of Professor Albert B. Prescott, of the University of Michigan, and this year it met in Rochester, N. Y., under the guidance of Professor Joseph Le Conte, of the University of California. As we have previously said, the office of president in the American Association, in virtue of an unwritten law, passes from a representative of the physical sciences to one of the natural sciences, and so the chemist of last year is succeeded this year by a geologist.
The name Le Conte is a distinguished one in the annals of American science, and a sketch of its most famous living representative would be incomplete without some genealogical history of the family. It is of French origin, and owing to the political and religious troubles subsequent to the edict of Nantes in 1685, its first American ancestor, William Le Conte, a Huguenot, came to the new world and settled in New Rochelle, near New York City, in 1698. Descendants of the family still reside in that place.
Toward the beginning of the century Louis Le Conte, a great-grandson of William, removed to Liberty County, Georgia, where he had come into possession of the estate of Woodmanston. He devoted himself of the estate of Woodmanston. He devoted himself
largely to the dilettante study of the sciences, and was a botanist of considerable reputation, sending from a botanist of considerable reputation, sending from
time to time the results of his discoveries to friends time to time the results of his discoveries to friends
in New York, who communicated them to the Lyceum of Natural History, as the New York Academy of Sciences was then called. He did not neglect the physical sciences and was an ardent student in the domain of chemistry and astronomy. At frequent intervals his brother, Major John Sutton Le Conte, of the United States Engineer Corps, paid visits to the home in Georgia, and together they discussed the scientific questions of the time.
It was here and under such influences that Joseph Le Conte was born on February 26, 1823. He was one of the younger members of the family, which included four sons and three daughters. His elder brother John, born in December, 1818, likewise became a scientist of national reputation, and from 1869 till his death in Berkeley, Cal., last spring, was professor of physics in the University of California, as well as president of that institution for a part of the time.
The elementary studies of young Le Conte were pursued at a neighboring schoolin Liberty County, where, from year to year, new teachers were called to the charge of the pupils of a few of the leading families in the vicinity. This fondness for science was a natural consequence of his association with his father, and his habits of observation were the result of his country life with outdoor sports. Game of all kinds abounded in that part of Georgia, and he was a natural sportsman from his earliest boyhood. As he grew older his practical knowledge acquired in the chemical laboratory in his father's attic or in the botanical garden adjoining the home became of use to him in his extensive ramblings for scientific purposes.
Among the different teachers under whose instruction he passed, none perhaps had greater influence upon his mind than did the youthful law student Alexander H . Stephens, then earning his education by teaching, and who subsequently left a permanent impression on the history of his State and country by his statesmanship. It was under his tuition that he was prepared for college, and then, following in the footsteps of his elder brother, entered the Franklin Col steps of his elder brother, entered the Franklin Col lege of the University of
ceived his degree of A.B.
Then, choosing medicine as his profession, he went to New York and studied at the College of Physicians and Surgeons, where he took his doctor's degree in 1845. Then turning homeward, he entered on the practice of his profession in the pleasant city of Macon, Ga., but finding the study of science more interesting than that of medicine, his success as a practitioner was not sufficient to induce him to continue in that field.

Cambridge, Massachusetts, was at that time the Mecca of all students in natural science. There, under the magnetic influence of Louis Agassiz, that famous and brilliant group of naturalists who to-day are the pride of American science was educated; among the best known of whom may be named Alpheus Hyatt, Edward S. Morse, Frederick W. Putnam, A. S. Packard Samuel H. Scudder, N. S. Shaler, and A. E. Verrill, all of whom have a world-wide reputation.
To Cambridge, therefore, Le Conte directed his steps and ettered the Lawrence Scientific School. His medical studies made the course a comparatively easy one for him, and in 1851, after spending a year at that institution, he received the degree of B.S
During the winter of 1851, in company with Agassiz, he spent several months on the keys and reefs of Florida, studying their mode of formation, from which grew his paper, "On the Agency of the Gulf Stream in the
Formation of the Peninsula and Keys of Florida", Formation of the Peninsula and Keys of Florida," subsequently published in 1856. On leaving Cam bridge he was called to the chair of natural science in

Oglethorpe University, in Milledgeville, Ga., but a year later relinquished this charge to accept the professorship of geology and natural history in the University of Georgia, in Athens. Here he remained from 1852 till 1856, busily engaged in teaching and lecturing, with but little time at his disposal for original research.
He was then called to the chair of chemistry and geology in the South Carolina College. A more congenial, locality could scarcely have been found. Columbia was the political capital of the State, as well as the site of the State University. It was within easy reach of Charleston and Savannah, and in ante-bellum days one of the most attractive spots in the Southern States. His reputation was fast becoming national, and in 1857 he was invited by Joseph Henry, secretary of the Smithsonian Institution, to deliver his lectures on "Coal" and on "Coral Reefs" before that institution.
Of his contributions to science, written at this time, may be mentioned the following: "Place of Organic Science and Geology in a Scheme of Education" (1857) "Morphology and its Relation to Fine Art" (1858); "Principles of. a Liberal Education" (1859); "Correla"ion of Physical, Chemical and Vital Forces" (1859); "Relation of Organic Science to Social Science" (1860); "Importance of National History in the School, and the General Relation of the School, the College and the University to Each Other and to Active Life' (1861).

With the breaking out of the civil war came four long years of cruel hardships. In 1862, all able-bodied men over eighteen years of age were enlisted in the

PROF. JOSEPH LE CONTE.

Confederate army, and the College of South Carolina closed its doors, so that its students might serve their State in the field. Professor Le Conte was a loyal son of the South, and accepting the situation as one of ne cessity, at once entered the Confederate service, and was for two years chemist in the government labora tory for the manufacture of medicines. Later he became chemist to the niter and mining bureau, and so continued until the close of the war.
Subsequently, when the University of South Caro lina was organized out of what was left of the old college, Professor Le Conte was restored to the chair of chemistry and geology, and also was assigned to the charge of chemistry and pharmacy in the medical department.
The educational institutions of the South were slow to recover from the disastrous effects of the war. 4 With limited resources and inadequate support they have persisted in their course, and now the University of South Carolina is again one of the foremost colleges in the South. She has failed to resume her place among the older universities of the Eastern States, and is not equal to many of the newly and richly endowed insti tutions of the Union. It was, therefore, but natura when an opportunity came to Professor Le Conte in
the shape of a call to the chair of geology and natural history in the University of California, organized in history in the University of California, organized in
1868, that he should regard the proffer as one of advancement, and leave Columbia.
He removed to California, and was present at the opening of the first session of the new university in September, 1869, since when he has continued to remain on the Pacific coast till last summer.
His laboratory, on the heights of Berkeley, over looks the Bay of San Francisco, and directly opposite may be seen the last glimpses of the setting sun as
sinks out of sight into the ocean beyond, while the metropolis of the West is a little to the left. It was here one afternoon in March of last year that Professor Le Conte told the present writer how the university had granted him a year's leave of absence, and that he was about to visit the East and renew his acquaintance among the scientific men, many of whom he had not seen since before the war
Later, in August, he was present at the meeting of the American Association-the first that he had attended in fully a quarter of a century, but among his former colleagues many had gone. Agassiz, his teacher, was sleeping the long sleep in Mount Auburn, beneath a huge granite bowlder brought from the glaciers of Switzerland-the scene of his early triumphs. Henry, the scholarly first secretary of the Smithsonian Institution, and Bache, the great superintendent of the Coast Survey-they and the two Sillimans, father and son, the able Edward Hitchcock, the courtly William B. Rogers, the learned Barnard, the skillful Lawrence Smith, the genial Asa Gray, and many others had passed away. Of those who had made geology a specialty, Dana, Newberry, and T. Sterry Hunt were unable to be present, but a younger generation, who knew him from his work, greeted him with enthusiasm, and from the moment of his advent in Washington until the time of his election, the name of no other candidate for the presidency was seriously considered Subsequent to his arrival in California he devoted considerable attention to geology. His summer vacations were spent in geological rambles with students in the high sierras or in tours through Oregon, Washington, and British Columbia. These expeditionsgaverise to such papers as his "Theory of Formation of the Greater Features of the Earth's Surface" (1872); "Ancient Glaciers of the Sierras" (1873); "Some Tributaries of the Lake Valley Glaciers" (1875); "The Great Lava Flood of the Northwest, and the Structure and Age of the Cascade Mountains" (1874); Structure and Age of the Cascade Mountains" (1874);
and "Structure and Mode of Formation of the Coast and "Structure and Mode of
Ranges of California" (1876).
Ranges of California" (1876).
From the rich experiences gained by so keen an ob server of nature grew the desire to record his impres sions in book form, and so, in 1878, he published his "Elements of Geology," a text book for colleges and for the general reader, which has since passed through several editions, the latest of which, issued in 1891, brought forth the statement that "this standard work has now, after fourteen years, been thoroughly revised in all its parts, and for the American student of geology leaves little that could be desired." It is essentially an American book, and the examples and applications cited are almost entirely derived from this country. In 1884 he issued an abridged edition of this work, which he called "Compend of Geology," and which was especially designed for use as a text book.
Besides geology, he has devoted his attention very largely to the phenomena and theory of binocular vision, and from 1869 to 1877 he published various investigations included under the following titles: " Adjustments of the Eye" (1868), "Relation of the Eyes on the Optic Axis on Convergence" (1869), "The Horoptic" (1869), "A New Mode of Representing Binocular Phe nomena" (1870), "Theory of Stereoscopy" (1871), "So called Images of Illusion" (1872), "Position of the Eyes in Sleep" (1875), "Law of Corresponding Points in Re lation to the Law of Direction" (1875), "Comparative Physiology of the Binocular Vision "(1875), and "Structure of the Crystalline Lens and its Relation to Periscopism" (1877). These he collected and issued in book form, under the title of "Sight: An Exposition of the Principles of Monocular and Binocular Vision, which was published in New York in 1880.
In addition to the foregoing he has published two volumes of essays. The first of these, originally issued in 1873, is entitled "Religion and Science," and was a series of Sunday lectures on the relation of natural and revealed religion, or the truths revealed in nature and scripture. Professor Le Conte is an evolutionist of the most thorough-going type, and in 1873 his views were regarded as somewhat radical, but the book was favorably received and recommended "to those who desir to examine closely the strong foundations on which the Christian faith is reared."
In his latest book, "Evolution and its Relation to Religious Thought," he emphasizes his belief in that hypothesis, and boldly says: "We regard the law o evolution as thoroughly established. . . . It is not only certain as-it is far more certain than-the law of gravitation." His aim is to show that "the spirit of man was indeed derived from God, but not directly created, indeed, but only by natural process of evolution; that it indeed pre-existed, but only as embryo in the womb of nature ; slowly developing through geologist time, and finally coming to birth as living soul in man. At this last stage of its development it attained to immortality." Five editions of this book have been called for.
Professor Le Conte is not without honors. The University of Georgia has conferred upon him the degree of LL.D., and shortly after his removal to California he was elected a member of the National Academy of Sciences. Besides being a member of the American

Philosophical Society, he holds either honorary or corresponding relations to many scientific associations, in cluding the Academies of Science in New York and Philadelphia. He has been a member of the Association for the Advancement of Science for many years, and at one of its earlier meetings served as secretary.
No worthier selection could have been made by the American Association from among its more than 2,000 members, for its president, and in the choice of Professor Le Conte a graceful tribute is paid the members from the Pacific States, who showed, nearly twentyfive years ago, their foresight and wisdom in calling him to their first and best scientific educational institution.

Meteorites.

Geologists are indebted to Mr. J. R. Eastman for a concise account of the Mexican meteorites. In a paper read before the Philosophical Society of Washington, January 2, 1892, he presented the latest and most complete information upon the subject, in a compact form ready for reference. A list of the iron meteorites with a table of their weights was given, followed by remarks as to the relative occurrence of iron and stony meteorites.

From the available data the ratio of weight of the former to the latter is as 1 to $12 \cdot 23$. The aggregate weight of meteoric iron observed and discovered to date on this continent is about 153 tons. If the above ratio is true in all cases there should have been a fall of about 1,880 tons of stony meteorites, or in all over 2,000 tons of meteoric matter precipitated upon the earth.
Mr. Eastman offers the following theory to account for the apparent excess of iron over stony meteorites When a stony meteorite falls to the earth it generally breaks into many fragments, and the ruptured surfaces plainly indicate the nature of the catastrophe. The author knew of no case where an iron meteorite showed any indication of having been twisted, broken, or torn from another mass of the same material.
The true type of meteorite which reaches the earth from outer space is probably like that which fell in Iowa County, Iowa, on February 12, 1875. This meteor ite is composed almost wholly of stony matter, but scattered through the mass are small grains of nickeliferousiron. This iron may exist in the stony matrix in all forms and sizes, from the microscopic nodule to the mass weighing several tons. When the stony mass comes in contact with the earth's atmosphere the im pact breaks up the matrix, sets free the iron bodies, and they reach the earth in the same condition, so far as mass and figure are concerned, as they exist in the original formation. In such cases it is probable that the stony portion of the original body is rent into such minute fragments by the explosion that they would not reach the earth in any appreciable size. The larger the masses of iron the more complete would be the destruction of the original body, and the larger stony meteorites would be those that contain the smalle granules of iron.-Amer. Naturalist.

Photo. Prints in Colors

Prof. Vogel exhibited recently before the Physical Society, Berlin, a remarkably fine series of colored prints of oil paintings, etc., prepared in accordance with his method by Messrs. Vogel and Ulrich. The method consists in first taking a red, a yellow, and a blue negative of the object on plates specially sensitized for colors. The three negatives are then printed on to one and the same paper by means of complementarily colored rollers or stones. In order to obtain the colors exactly complementary to those of the negatives, the colors used for printing were either the colored sensitizers themselves or some substances whose equivalence to these had been determined spectroscopically The application of the physical principles involved in the above yielded an approximate reproduction of the natural colors which was surprisingly complete, and will become more so as more and more colored substances are discovered suitable as sensitizers. Prof Koenig described his nof. Koenig described his new spectrophotometer. I t s chief improvement consists in theintroduction of Lummer and Brodhun's glass cube, which is, however, so modified as to admit of the measurement of the relative intensities of the parallel rays falling into it.

A NEW PARACHUTE

At the time of the ascension of the Jupiter, the results of which made so strong an impression upon the public, Mr. Capazza invited a few persons to witness an experiment, the simple announcement of which was well calculated to give the chills. It was laconi cally stated therein that after reaching an altitude of

the descent.
constitute an invention in the proper sense of the word. Mr. Capazza has contented himself with im proving, by simplifying, what was already known, and especially with more rationally applying the laws that govern the operation of analogous apparatus. In the preceding experiments with parachutes, the apparatus was defective, and, at the moment of acting, remained inert, or else, on the contrary, spreading abruptly, gave a shock which was dangerous for the system as a whole. Moreover, during the descent, the apparatus was wanting in stability and oscillated in the air in a perilous manner. Mr. Capazza's idea consists, in the main, in ascending with his parachute wide open. To this effect, his balloon is absolutely free from all fastenings and is not provided with a netting. What takes the place of the latter is the parachute itself, which covers the entire upper part and extends below its "equator."
The balloon covered with its parachute is inflated in the usual manner. It is held by its ascensional force against the parachute and remains in place as long as it is inflated. The parachute is provided throughout its circumference with a band of strong canvas, to which, throvgh the intermedium of metallic eyelets, are hooked fine cords that unite in pairs below and terminate in cords that hold the car at a considerable distance (95 feet) from the balloon. Such a length, unusual up to the present, has the effect of drawing more obliquely upon the edges of the parachute, leaving more liberty to the latter to hold itself open, and to preserve its static equilibrium automatically. Moreover, a sort of conical chimney of canvas placed at the summit of the parachute assures the flow of the gas contained in the balloon when the latter bursts, by accident or otherwise, and afterward serves to allow of the escape of the superabundant air during the descent.
The inflation of the balloon was effected normally as shown in one of our engravings, except during a sudden squall which gave the persons who held the balloon all the work that they wanted to do. This picturesque incident has been rendered by our artist with much accuracy.
The ascension took place along about five o'clock Mr. Capazza, alone in his car, rapidly reached an alti tude of 4,300 feet, at which he ripped open his balloon. The excitement of the spectators was at a high pitch when the latter was seen to abruptly change form, hang beneath the parachute and then drop upon the ring, while the parachute kept immovable. The descent was made at the very moderate velocity of $41 / 4$ feet per second, and the aeronaut reached earth with out difficulty in a wheat field at Drancy. The ex periment seems conclusive, and we may believe that the Capazza parachute will hereafter become regle mentary for ascensions.-L'Illustration.

What are Diatoms?

The plants in question are so small as to be seen only with the aid of the microscope; those of ordinary size, when magnified about three hundred and fifty diameters, appear about a quarter of an inch long Others are much larger. They are curious little plants with a silica shell, which, in certain places, is provided with little apertures through which living parts of the plant protrude. In this way they are enabled to move about freely in the water by which they are generally surrounded, for, though they are not all strictly water plants, they all need considerable water to enable them to thrive, and so are always found in wet places.

Owing to their freedom of motion, they were at one time supposed to be animals. Now it is known that they are plants, as they can perform all the functions of plants, and no animal, with all his superiority, high nature, etc., is able to do this. They are found everywhere in all inhabited countries, and in fact all over the seas. So it may be readily granted that a plant so common and widespread as this should be quite familiar to every one.
Again, not only are the living plants so widespread and common, but the shells of the dead ones remain intact for many years; and in certain localities these tiny shells are so numerous as to form a large portion of the soil. Some of the best known of these localities are the sites of Richmond, Va., and Berlin, in Germany.-Emily L. Gregory, Popular Acience Monthly.

Spontaneous Combustion.
Dr. Kedzie, professor of chemistry in the Michigan
State Agricultural College at Lansing, in a recent adState Agricultural College at Lansing, in a recent ad-
dress before the Michigan Association of Fire Underdress before the Michigan Association of Fire Under-
writers, said : "Vegetable oils, and especially spirits of turpentine, tend to take oxygen rapidly from the air, and thus generate heat. The large extent of surface exposed to the air promotes this oxidation, and the rags, being poor conductors of heat, retain the heat produced by oxidation, and hence arises the danger of spontaneous combustion. The danger is increased if the rags are moist. Similar instances of spontaneous combustion are seen in hay mows, when the hay has been put up damp. The danger is greater where the rags are soiled by vegetable oils, for example, linseed and cotton seed oil, and especially spirits of turpentine used in making varnish.
"One day, while returning from Lansing, I saw Mr. Lapman rush out of his planing mill with a box of smoking sawdust in his hands, which burst into flames when thrown upon the road. A painter had rubbed the paint from his hands with the sawdust in the box, and departed unconscious of danger. Within fifteen minutes the oil of this paint thus spread over a large surface of sawdust was smoking and just ready to break into flame.
"The danger from spontaneous combustion is increased where a quantity of greased rags are left in a pil allow a free access of air, yet so compact as to keep in the heat caused by oxidation. The mineral oils are much less liable to spontaneous combustion than vegetable oils."

NAVAL RESERVES AT TARGET PRACTICE

 Nelson laid his ship, the Victory, beside the enemy and dashed into the opposing ship his entire broadside. Fifty cannon sent forth each its roundshot and stand of grape-the round to open the way, the grapeshot to follow in and spread destruction generally. Sometimes the opposing ships were so close that their sides ground together on the swell of the sea and the lower port covers had to be blown off to allow the loaders to use their rammers.If Nelson had been told by one of his captains (the gallant Trowbridge, for instance) that the day would come when guns would be made carrying a shot equal in weight to his entire broadside and as large and heavy as one of his big guns, and that the shot would go in the breech instead of the muzzle, and its range would be fifteen miles, the good admiral would probably have said :

Trowbridge, poor fellow! has lost his mind."
We have such guns now, however, and, stranger yet, the men who manned them lately and made their great shots dance over the sea to the horizon were crews of "greenhorns" and "haymakers," who, two years ago, knew nothing about guns and ships. When the gallant naval reserves first trod the white decks of Uncle Sam's war ships the true professional salt water "Jackies" made much of thempatted them on the back encouragingly as they showed them how the big guns were worked. The haymakers, lawyers, and millionaires did little talking but much thinking, and When it came their turn to fire off those big rifles they demolished those targets looking like specks out on the water in a fashion that made the old salts stare and stow away their patronage indefinitely.
To the old-timer, used to twenty-two men at a gun, needing five minutes to

A SQUALL DURING THE INFLATION OF THE BALLOON.

Horticultural buildings. The landscape work is nearly finished around these two buildings, and John Thorpe, of the Bureau of Floriculture, is busily engaged on the large rockery which is to be placed in the central dome of the Horticultural Building.
Of the large buildings not yet completed, the Manufacturers' Building is getting along most expeditiously. The skylight glass is being rapidly placed over the nave trusses. The ironwork is entirely finished on Machin ery Hall, and some of the sculptured figures have been placed along the ridgeline of the roofs. Decorative fresco work has been begun in the lobbies of the Agricultural Building, and the large sculpured pediment is being placed ; the staff work is be lag rapidly put on the agri ng rapidy put on the agri cultural annex. The super structure is well under way
for the colonnade connecting for the colonnade connecting the Agricultural Building with Machinery Hall. In the Fisheries Building the aquarial tanks are nearly com pleted. Upon the Palace of Fine Arts staff work is nearly finished. Twenty-three Stat buildings are progress. Mon tana's will probably be the first finished, for the interior work, as well as the exterior staff work, is already wel advanced. The Turkey vil lage on the Midway Plaisance will be immediately started Work has been begun on the building for Germany. On the Mines, Transportation and Woman's buildings little now remains to be done ex cept the interior decoration The work on the Electricity Compare, too, the striking power of one of Nelson's | Building is being rapidly advanced. The staff cover guns and those used by the naval reserve. If Nelson's ing on its towers advances well. The large hemicycle
broadside did any damage at a mile, his ordnance officers passed compliments on the excellence of their work. A shot from one of the ten-inch guns that our gallant reserves have been putting through the targets starts on its flight with a striking power at one mile equal to Cleopatra's obelisk in Central Park lifted to Trinity Church steeple and dropped on the pavement. Our picture, for which and the description we are indebted to Once a Week, shows the scene at sea when one of these shots strikes close to the floating target. Had it not missed, our artist would have had no chance to show how a target looks.

Progress of the World's Fair Buildings.
How far along the buildings at Jackson Park are advanced is shown in the official statement issued August 3. There are 8,488 men on the work. This increase is ue to the activity of work on the various State build ings, special structures, and concession buildings. The grass plots, flower beds, and roadways are being made Nearly all the ornamental railings and balustrades around the lagoons are finished. Five large steam rollers are at work packing down the permanent crushed tone roadways and paths around the Womis stone roadways and paths around the Woman's and

NAVAL RESERVE TARGET PRACTICE IN GRAVESEND BAY. the main entrance is now being constructed under this the statue of Franklin will be placed The government structures are being actively pushed orward. The main building is nearly finished, while the brick warship Illinois begins to look like a real man-of-war. Its white covering of cement and smoke stacks are in place. Work has been begun on the gov ernment life-saving station.

The Restoration of Those Overcome by Inhaling humbating Gas.

A correspondent of the American Gas Light Journal says: I have seen hundreds of men overcome by the inhalation of gas, and I wish to say that to keep a man so overcome on his back would be the worst possible course to pursue; and I should expect to see a man so placed succumb rather than revive under that treatment. The absence of air in the lungs must of necessity cause the limbs to become damp and cold. If the following instructions be faithfully followedI do not care how bad the case may be-I will guaran tee that 99 per cent will be restored inside half an hour. As soon as it is observed that a man is over hour. As soon as it is observed that a man is over-
come with gas he should be placed on his feet, and large quantities of milk be given him to drink. He may show a disinclination to swallow; if so, the milk must be forced down his throat. A man should be placed on each side of the sufferer, and he should then be walked up and down. He will want to sit down, but on no consider ation should this be al lowed. When the patient vomits, more milk must be administered, and when the patient is out of immediate danger, which will be the case inside of half an hour, he should be placed in bed, when a little warm brandy and water may be given. The above is a panacea, and I confidently submit the recipe to any one that is engaged on main or service laying.

A Vienna doctor has declared that cancer can be arrested by an injection of one of the coaltar derivatives, methyl violet.

©orrespondence.

Pottery Remains in Arizona

To the Editor of the Scientific American:
Captain MacDonald, U.S.A. (retired), tells me of an interesting experience while campaigning on the desert between the Sierra Tunicha Mountains and the San Juan River in Arizona, near Agua Nigra. The troops marched for several miles along a mesa which was thickly strewn with fragments of Indian pottery. The area covered by this deposit was probably of many square miles. The level of this mesa was high above the level of the water courses, and how such vast quantities of earthenware ever reached this position is a question. The officer's theory was that in bygone times a flood washed out an Indian pottery establishment and brought the fragments to the mesa. The pottery was marked only with red painted squares.
M. Y. B.

San Diego, Cal., August, 1892.

The Mamo.

To the Editor of the Scientific American
In the issue of June 4, 1892, a quotation is given from the very interesting article of Mr. Lucas on "Recently Extinct Vertebrates," published in the report of the National Museum. The reference to the birds of the Hawaiian Islands is, however, quite incorrect. "The last ornithological collector who returned from the islands found no specimen of the mamo," it is true but there were many other things that he did not find in his short visit. Two years ago three mamo came to the sandalwood tree under which I had pitched my tent in the mountains of Hawaii, and the present summer Mr. Palmer has captured one alive. The Bernice Pauahi Museum has four specimens. The feathers were never used to make war cloaks, and none of these have been made for a hundred years. Their use was in making leis, or necklaces, and ornamenting the alaneo, or royal mamo robes. There is a very small mamo cape in the British Museum, but none here in possession of royalty. None have been made for seventy-five years, and yet twenty-five years ago mamo were found without trouble in the forests back of Hilo, Hawaii
The tailless rail is probably extinct, unless the rai from Laysan Island proves to be a mere local variety of this bird. We have in the museum a pair of the rail and a pair of the chaetoptila, and there are several other specimens known. The threatened extinction of the native birds is due to ornithological collectors in part, but the wildcats and introduced mongoose and mina birds do their share in the destruction.

Wm. T. Brigham,

urator B. P Bishop Museum

Honolulu, H. I., July 27, 1892.

Patent Law Amendments.

To the Editor of the Scientific American :
The postponement to the next Congressional session of Senate bill No. 3,246 affords opportunity for Ameri can inventors everywhere to examine its provisions, and if dissatisfied with either of its eleven sections, to interrogate their representatives in Congress on behalf of such modifications as they may think desirable. Section 1, especially, seems worthy of their attention. Its ostensible purpose is the amendment of Clause 2 of Section 4,887 R. S., by which-as is well known-the duration of a United States patent is made dependent upon that of the earliest expiring previously issued foreign patent for the same invention; but the amendment would seem to leave the most obnoxious feature of the clause substantially unchanged. Especially vex atious has the clause proved to the creators of those notable devices which, by inaugurating new arts, and opening up hitherto untrodden fields of industry, constitute, to some minds, the chief justification of the patent system. If, as commonly supposed, our legislators aimed, by the clause spoken of, to confer on their constituencies some kind of advantage over the for eigner, that aim has signally failed. The weapon's re coil has proved far more dangerous than its discharge Of patent-granting countries, ours is now foremost alike in the liberality of its patent law and in the num ber and character of its useful inventions.
The sum total of "aliens" prevented from exacting royalties on this side of the ocean is a mere bagatelle to the host of American inventors deprived by this ill-advised clause of the considerable revenue that would have been drawn from the foreign user and circulated here; for it is notorious that a large majority of our inventors, rather than jeopardize their home patents, elect to forego the dangerous foreign privilege, with the result that American inventions are generally free to all the world outside of the United States. The present writer 'believes that the effects of the clause have been only evil, and that continually, and would rejoice to see it expunged from the statute book, or, if that may not be, that American ingenuity at least be relieved of this unmerited and impolitic restriction.

Geo. Henry Knight.
Northampton, Mass., August 12, 1892

\section*{| HOUSEHOLD PESTS-WITH SOME HINTS HOW TO GET |
| :---: |
| RID OF THEM. | RID OF THEM.}

During the season of warm weather there are few houses, especially those in town, that are not invaded by one kind or another of the numerous species of in sect life which we consider as household pests, and which often cause much annoyance to the inmates. However vigorous the customary "spring cleaning" indulged in by our housewives may be, these intruders usually manage to make their way in and elude detec tion. The situation and locality of a dwelling hous frequently has a good deal to do with the appearance of these objectionable visitors, and the difficulty is to hit upon the best means of getting rid of them.
Fortunately in this country-mainly owing to it much abused climate-our household pests are not by any means as formidable to deal with as those in tropical countries, where the centipede and tarantula prowl about seeking whom they may devour. Yet at times our own particular pests are quite annoying enough, when they arrive in numbers.
To begin with, the ubiquitous household fly, which breaks its pupal skin on the first approach of warm weather, is a universal intruder. Even churches are not sacred to him. There are two methods of exterminating flies, either by poison or traps; but the latter is certainly the most ef-
 fective. For this purpose pieces of thick twine or tape which have been dipped in a sticky, viscid solution or bird-lime, and suspended from the chandeliers or other frequented places, are most effective. The sticky solu tion can be made by dissolving resin, 10 parts, and gum thus, 5 parts, in 7 parts of linseed oil, by the aid of gen tle heat, and allowing to cool, when it is ready for use. This compound may be spread on sheets of waxed pa per or plates, which placed about form excellent traps Then there are the numerous varieties of "fly papers" in use. These are composed of unsized paper soaked in a weak solution of arsenic or quassia wood. An infu sion of quassia made by allowing two ounces of the chipped wood to stand in a pint of cold water for a few hours, then decanting the liquid and placing it about in shallow vessels, also an swers well. This solution is not poisonous to animals. The destructive moth, which insidiously deposits her larvæ in oui furs and upholstery to work
havoc therein, may be successfully circumvented by havoc therein, may be successfully circumvented by
several methods. One of the best preventives is to place small pieces of naphthaline about in likely place for the moth to attack. Naphthaline is a product from the manufacture of coal gas, with a peculiar but not objectionable odor, which soon passes off when exposed to the air. Another popular plan is camphor used in the same way. A still more effective method is to spray before putting away, as it is fatal to the insect in all before putting away, as it is fatal to the insect in al
stages. Care must be exercised when spraying the benzine that there is no fire or artificial light of any kind in the room where it is used, the vapor being highly inflammable. Powdered colocynth forms another excellent exterminator, and the numerous kinds of insect powder when dusted about are also
 useful. In some parts of
England ants are a great source of annoyance when they get into a house. The best plan is, of course, to iscover the pests if possible, and exterminate them wholesale. If this cannot be done, the ground flower
heads of the Pyrethrum roseum, commonly called Dal matian or Persian insect powder, sprinkled about in their haunts and placed on their track, will drive them away. This powder, which is not poisonous to ani mals. is extremely useful in destroying all kinds of in sect life. Like other things in much demand, it is often adulterated,
ellow-ocher colo
Cockroaches and black beetles, which infest the

are extremely objectionable pests, and sometimes diffi cult to get rid of. They increase and multiply in any place where they can get warmth. Cockroaches will
eat away plaster, and often make their way into a house between the flooring and skirting boards. To prevent these insects coming, all such crevices and holes should be carefully stopped up early in the spring.

If any intruders make their appearance, ground borax should be plentifully spread round the room and in their haunts. Cockroaches have a great antipathy to borax, and its continued use will effectually drive them away. It also has the advantage of being harmless to domestic animals. Insect powder well sprinkled about is also useful, but as cockroaches have often to swallow a great deal before it proves fatal, any victims found afterward should be swept up and burnt. Several kinds of traps may be utilized, but, as a rule, they are not very successful for any length of time.
Mice of ten give trouble and do considerable damage when they invade a house. When there are dogs or other household pets about, one of the safest ways of exterminating them is to first lay down some oatmeal mixed with sugar, which will be found to have disappeared by the morning. Then, after this has been done for several nights, mix also a fair quantity of plaster of Paris with the oatmeal and sugar, which will prove too indigestible for Mr. Mouse, and after one meal of the compound he will not require another. Of poisons,
phosphorus paste is prob ably the safest to use. It should be spread on smal pieces of cheese or bread and sugar, and placed about the rooms the mice frequent. A good trap is also effective; and we must not forget the valuable as sistance that can be rendered by a good cat, who will always scare the enemy, if he doesn't always catch him.

Fleas are usually brought into a house by dogs, and the best method of getting rid of them is with the aid of good pyrethrum powder, which when sprinkled about will soon drive them away. All beds constructed of wood should be taken to pieces at least twice a year, and the woodwork well brushed over with a solution of bichloride of mercury (1 per cent), which will destroy all germs of insect life, and is a safe and wise precau tion. Fortunately we are not much troubled in Great Britain with that irritating and active little pest, the mosquito; but a hint or two how to circumvent he artful little ways (for it is the female mosquito who thirsts for human gore) may be of use to those who travel in warmer climates. The male is said to be satsfied with vegetable juices, and does not accompany his spouse on her bloodthirsty forays.
 Would that we could peruade her to remain with him! The best. preventive against the incursions of this little pest is to sponge over those parts of the body exposed with a five per cent solution of carbolic acid before retiring to rest This is an excellent plan, and renders one almost proo against attack. A small quantity of carbolic acid or powder evaporized in the apartments they frequent will also drive them away, and a free use of insect pow der is another excellent method of expelling the in vader.-C. J. S. T., in Pall Mall Budget.

No less an authority than the president of the Insti tute of Civil Engineers has declared that the sulphur ous vapor produced during the combustion of coal is most beneficial to the health of the inhabitants of London, disagreeable though it undoubtedly is. As many as 350 tons of sulphur are thrown into the air in one winter's day, and the enormous quantity of sulphurous acid generated from it deodorizes and disin fects the air, destroying disagreeable smells emanat ing from refuse heaps and sewers and killing the dis ase germs which find their way into the atmosphere There may be a good deal of truth in this view, bu there is undoubtedly another side to the question. It is an old comparison that a doctor and his drugs bear a relationship to the patient and the disease like that of a policeman toward a householder attacked by a garoter. The policeman lays about with his truncheon, sometimes he hits the householder, sometime the garoter, and the good or ill which results from his interference will depend upon which party hap pens to get the most and the heaviest blows. Thi simile is admirably suited to sulphurous acid in Lon don fogs, for although it may be beneficial to the London householders, by destroying microbes, it cer tainly frequently does them harm by attacking their lungs and bringing on bronchitis and asthma, which sometimes prove rapidly fatal, to say nothing of the minor discomforts of a disagreeable taste, filthy smell, stuffed nose, husky throat, smarting eyes, and head ache. We think that, healthy though the London fogs may be, the discomforts they cause are so great that Londoners would be really better without them and that less disagreeable and equally efficient mean might be found to clear the air of microbes, while a the same time these other remedies would be enor mously cheaper, for they would not entail the almos complete stoppage of traffic or the enormous expendiure of gas and electric light which a bad fog occa sions.-Lancet.

Canary Bird Breeding in Germany.
 The United States consular clerk at Berlin says that

 third in money value among the articles exported to the United States from the consular district of Hanover during the last quarter were canaries. For more than a century canary breeding has rendered bare existence a possibility to many poor people in Germany, and has brought a competence to others. Fifty years ago the industry had grown to such dimensions that it became necessary to seek a foreign outlet for the trade. Salesmen were accordingly sent out, first through the Rhine districts, then to Belgium and Holland, and, soon afterward, to England. The German canary dealers soon succeeded in establishing a brisk trade with St. Petersburg, the birds being brought by carrier to Lubec, and thence forwarded by ship to their destination. Encouraged by their success, the German bird dealers, about the year 1850, began making shipments to New York. This proved a very profitable business, and after the introduction of steamship lines, birds were sent to South America and Australia.Canary breeding in Germany has, from the commencement, been chiefly a home industry of poor peo ple. The principal seat of the industry was formerly the Hartz Mountains, where the poor mountaineers, engaged chiefly in the timber and mining industries, were in great need. Almost every family then had in the sitting room, the bedroom, or the garret a breeding place for their birds. In the summer the food neces sary for the birds was easily obtained, and before the winter came the dealer had purchased them. After the Hartz Mountains became more frequented by visitors desirous of benefiting by the pure Hartz air, the porerty of the mountaineers was diminished, and the canary industry fell off more and more. At present only fine singers are bred in the Hartz, and for these the dealer must pay a high price. The industry was then transferred to Eichsfelde, in the province of Hanover, where there are many very poor weavers. Nearly all of these are now engaged in breeding the cheaper varieties of canaries. The industry exists also in the poorer districts of Hesse, in the great Luneburg Moor, in parts of Westphalia, and among the Sudetic Mountains (Erzgebirge) in Saxony. In the fruitful districts of the province o Hanover, where there is not so much suffering, the business is not carried on business is not carried on
extensively. In recent extensively. In recent
years large numbers of years large numbers of
birds have been bred in birds have been bred in
the cities, chiefly as a pastime. The extent of the canary breeding industry is shown by the fact that about 250,000 canaries are bred every year in Ger many.
Among the foreign markets the first is the United States, which takes, in round $\mathrm{numbers}, 100,000$ birds annually. Next in importance is the English market, which takes about 50,000 per annum. Then come Brazil, Chile, the Argentine Republic, and Australia. To these countries salesmen are sent with canaries every year The remaining birds, especially the finer Hartz Moun tain birds, are sold in Germany, where more value is attached to fineness of song, and where higher prices can be obtained than anywhere else. The average price for ordinary canaries is from three to four marks for males. Hence the canary industry adds about $1,000,000$ marks per annum to the national wealth of Germany, and this amount goes chiefly into the hands of the poorest class. The growth of the industry is said to be due to two causes: (1) The German bird dealers have always been very enterprising, and (2) the canaries bred in Germany are said to sing better than any others. About two-thirds of the canaries ex ported annually from Germany to the United States are imported by a German resident of New York, whose German home is at Ahlfeld, in the province of Han over, whither the birds are brought from all parts of Germany. At Braunlage in the Hartz this dealer has a factory which is capable of turning out every day the material for thoustand bird cages. This material is given out to the peasants, who make the cages at home. From Ahlfeld the birds are shipped to New York via Bremen, accompanied by attendants. Each attendant has under his care about a thousand birds, each in its own wooden cage.

A Frenchman, M. Branbelay, has succeeded in making pearls by simply boring holes in pearl oysters, dropping in minute glass beads, and then hermet ically sealing the holes.
a cat as foster mother of an ape-a picture FROM THE LEIPZIG ZOOLOGICAL GARDEN.
There are plenty of examples in the animal kingdom which prove that most creatures, whether mammal or birds, are capable of conferring their motherly love on the offspring of others as well as on their own. The hen gives the duck that it has hatched the same care that it gives its own chickens, the dog will act as foster mother to a young lion, and the long-eared Egyptian goat as nurse to a young panther. But the exhibition of motherly care to be seen in the well arranged Leipzig Zoological Garden (in charge of Mr. Ernst Pinkert) is new and peculiar, offering a pleasant scene to the lover of animals. A fine, great reddish-brown Angora cat has become foster mother of a very young ape. As the little thing lost its own mother when it was very small and was greatly in need of another nurse, it was given to the Angora cat. The experiment proved successful; the cat received the little orphan affectionately, and cares for it as well as for her own kitten.
The cunning little ape hangs, in the literal meaning of the word, on its tender mother, and is never left by her. Clinging by all fours to the shaggy fur of the mother cat, he accompanies her in all her walks, and the cat is not inconvenienced by her four-legged parasite. If he is torn away from this embrace, he imme diately jumps crying loudly to his accus tomed plas At meal time he enjoys the same rights as the kitten. It is a charming picture-th e old cat with her little one

A CAT AS FOSTER MOTHER OF AN APE-A PICTURE FROM THE LEIPZIG ZOOLOGICAL GARDEN. mitted to work."
"While the men were at work, the walking delegate ntered the building and walked about through it at heir pleasure, taking down the workmen's names and asking if they belonged to the union. One of the car penters replied : 'None of your business.' The next day the delegate met the men when they came to work and told them a strike had been ordered. Some of the men shed tears and said their families were suffering but all obeyed. Mr. Haynes next received a visit from he Grand Council, who informed him that their dele gates must be respected. After consultation the coun il agreed that the man who had insulted their delegat and the rest of the men might go back to work, but the man must by Saturday become a full member of the union. Notwithstanding this, when the men came to work the next morning, the delegate declared that not one should go to work until the man who had insulted him was discharged. The difficulty was finally compromised by the man being given his wages, in order that he might immediately go and pay his dues and become a member of the union. It was three days however, before he could get himself into regular stand ing, and during this time none of the men were per

This was by no means the end of Mr. Haynes' trou bles with the walking delegate. He had made a con tract with a Boston firm to put in some new marble and on learning this th delegate for the third time made the men quit work, though, upon Mr. Haynes assurance that no marble from Boston was actually being laid at that time they were permitted to re sume work. Then Mr Haynes learned that the delegates were going abou among the men collectin $\$ 1$ from each for allowin them to work. When th marble from Boston ar rived, the delegates re fused to allow it to be unloaded, and when Mr Haynes sought the protec tion of the police, the dele gates called out all th and painter carpenter and painters f the repres Mr Haynes Mr. Haynes that he woul have to send his enginee back to Boston, and on hi refusal the union fitter were made to stop work
By this time Mr. Hayne decided that he had suffer ed enough from the tyran ny of the walking delegate and he decided to employ no more men who were the slaves of such delegates. He secured a full force of He secured a full force o
non-union men, whom h finds better workmen than the union men.-Iron Age

Irrigation.

It has been demonstrated in California that sur face irrigation is not the so well to lie in her soft, warm fur. When the best method for orchards. The system is untidy, waste cat rises she takes her living burden, and walks ful, and causes an unnecessary growth of noxious around, wagging her tail, in the building belonging to weeds. It also stultifies the tree growth, causing the beasts of prey in the Zoological Garden. Cats have been known to bring up squirrels, but this is the first time on record that one has acted as mother to an ape.-Illustrirte Zeitung.

The Record of a Walking Delegate

The case of the Grand Central Hotel, on Broadway, is a typical one, which deserves careful attention Tilly Haynes, a Boston hotel keeper, some time ago leased the Grand Central and came to New York to ex pend $\$ 100,000$ in the work of renovation, of which fully three-fourths was to go for labor. He made terms with his men which were mutually satisfactory. Work had hardly been begun, however, when the walking delegate appeared and demanded that the men should work only eight hours a day instead of nine. Mr. Haynes acceded. A week later the walking delegate came around again and said that some of the carpenters were working for $\$ 3.25$ a day, and that they must be paid $\$ 3.50$. This demand also was yielded to. A few days later the delegate informed Mr. Haynes that he had two stairbuilders from Boston, and that, although these men were union men, they could not work unless they had their union tickets changed and paid the fee for working in this city. This trouble was settled by return of the offenders to Boston. The next incident is told as follows:
roots to form in a ball near the surface. An orchard designed for market fruits should be irrigated by means of underground conduits or cement pipes These are laid below the freezing point and made of sufficient dimensions to carry the requisite quantity of water within three or four feet of the tree. Small holes cut in the top of the pipes and covered by boxes to pre vent the holes filling with earth, allow the water to percolate slowly out from the pipe and moisten the soil at the roots of the tree
By this method the roots go downward, giving the tree a firmness to resist rain storms and withstand the effects of continued dry weather in case the water supply is temporarily exhausted. This system may be considered expensive, but the additional yield of fruit will justify such expenditure. The field of the future irrigated fruit market will be large enough to justify systematic underground tiling as well as piping. Drain ges will be more extensively practiced as the market orchards increase, and although expensive, as it may seem, these orchards will be valuable, dividend-payin properties.-Irrigation Age.

Recent experiments made in Germany go to show that asbestos paper is not only of no advantage in floor as a protection against fire, but it probably aids the conflagration.

RECENTLY PATENTED INVENTIONS. Engineering.
Engine Governor.-Martin A. Green, Altoona, Pa. This invention provides an improvement
in centripetal governors in which the speed is affected hy variations of the operative position of the adjustable valve-acting eccentric. A pivot pin projects eccentricjournaled on the pin being connected with the pivotal overnor arms, and the valve pin is eccentrically jourover the axis of the wheel when the governor balls are at their normal innermost position. With this construction the operattve mechanism is designed to automatically balance up the necessary overbalance of the
Hydraulic Propulsion of Vessels. James C. Walker, Waco, Tex. A means of applying the jet principle of propulsion has been patented by this inventor, in which main trunk tubes of tapering shape are arranged lenfthwise of the vessel, the tubes
being largest at their front open end, and having along their length a series of nozzles opening rearwardly along the side of the vessel, while propeller wheels in the main tubes are:adapted to suck water in at the
front and force it out through the nozzles against the front and force it out through the nozzles against the
surrounding water. One set of nozzles nay be used surrounding water. One set of nozzles may be used set may be arranged for forward and the other fo backward movement

Railway Appliances.

Mileage Recorder.-Harry S.Squires, New York City. This is an automatic device for use
on passenger cars to record the number of miles for each seat is occupied. Electro-mag to arrole series of levers each carrying a point which marks upon a traveling sheet moved by clock work, a governor
actuated from the axle locking the levers in place When each seat is occupied its connected circuit is closed and the record commences, the circuit being
broken and the record ceasing when the passenger broken and the record ceasing when the passenger
rises. The sheets may be changed at the end of each rises. The sheets may be changed at the end
conductor's run and turned in with his report.
Torpedo Clip Fastening.-Will C. Schooley, Braddock, Pa. The securing of torpedoes to train is provided for by this invention, the fastening being simple and readily applied, so that the torpedo is not likely to get loose. The device cousists of a clip formed of an oblong wire loop, to be bent downward at its ends at opposite sides of the torpedo case, a flex-
ible clip being held in the clip fastening and adapted to be doubled upon the rail. The device holds the parts be dobbled upon the raii. The device holds the parts
of:the torpedo together in such a way that a small torpedo is designed to make
Cable Railway.-Samuel D. Root and Gordon C. Vineyard, Anaconda, Montana. This tion, automatic in operation, for use as a freight line in a hilly or mountainous section. Combined with a main etationary cable inclined in the lirection of the grade is a second cable formed in sections, each section inclined in reverse direction to the main cable, with intermediate mechanism, whereby the weighted car is made to carry the empty car to the top of the hill. The main frames by means or peculiarly constructed shoes.

Electrical.

Electric.Door Opener.-Louis Bates, Jersey City, N. J. This invention covers an improvement on a formerly patented invention of the same
inventor. When the door is to be unlocked the circuit is closed through magnets held in the lock casing by
means of a push button in the ordinary way, and when the circuit is closed an armature is vibrated to strike against the arm of a releasing latch, a locking pawl
being released from the main latch and held in this being released from the main latch and
position until the door is pushed open.

Agricultural
Cultivator.-Augustus Tindall, Bren on, Ill. This is an implement of simple, strong ard ines pensive construction, in which the blades may be quickly
and conveniently raised and lowered. Its construction is such that there may be used, in conjunction with the shank of the cultivator blade, a removable and adjustble colter wheel, capable of being placed at any 'deable colter wheel, capable of being placed at any de-
sired inclination with respect to the blade, the blade being so made that its point is removable and revers-
ible. The colter may be adjusted at any angle with eference to the shank or to the blade, and is laterally adjustable to and from the heel of the blade.

Mechanical

SAW Set.-William M. Greilick, Sutton's Bay, Mich. The frame of this device is in the shape of a standard or block adapted for attachment to on which also is seated a sleeve in which is held a horizontal arm with a lug opposite the set block, there being a key and plates for adjusting the arm vertically, while a punch slides vertically in the sleeve above the set block, and plates are provided for adjusting the punch laterally
Oiler FOR Hand Saws.-Seth Parmele, Portland, Oregon. This is an attachment to be
placed on the saw blade near the handle, by means of which oil may be ejected at any time upon the blade when it sticks while the work of sawing is being done. partly on the top of the handle, and it has a circular flexible diaphragm at each side similar to the bottom of an ordinary oil can, and a forward and downwardly projecting nozzle on each side, through which the oil s ejected by pressing apon the diaphragms.
Wood Carving Machine.- William
platen supported on a laterally movable frame, and
adjustable to incline it from a horizontal plane and also adjustable to incline it from a horizontal plane and also rotatably and reciprocally adjustable, an arbor being
ropported above the platen and adapted to swing orbitally, with cutter adjustable thereon, while there is a turutable support for the arbor, with means
to move the turntable and mechanism to effect the oo move the turntable and mechanism to effect the rotation and longitudinal adjustment of the arbor. The machine is designed to facilitate the rapid and secure execution of intaglio carving upon a surface of
wood or other material, without requiring an outline of the design on the surface to be carved.
Centering Device. - Fredrick L. Canham, Lisbon Falls, Me. This is an improved apparatus for use in finding the center of regularly or
irregularly shaped ends of pieces of wood or metal bars, etc. In the slotted top of a frame is held an
an bars, etc. In the hiotted top of a frame is held an is a funnel held in ontermost position by a spring, and directly opposite is similarly arranged another funnel, the outer end of the head being pivotally connected
with a lever. An article placed between the funnels ith a lever. An article placed between thes a central position, and is thus held.
Felting Machine.-Julius Kittel, Cranford, N. J. This machine is specially designed or making felt to be used in the manufacture of piano
hammers, the invention being embodied in a perforated steam drum covered with burlap and means for feeding the felt material. The burlap is sufficiently rough to enable it to takeup the felt material fed on to the drum and hold it securely for the required time,
the steam? passing through in sufficient quantity to the steam"passing through in sufficient quantity to merely moisten the material as required to prodace
good felt. Hair Curling Machine.-Junius A. Murphy, New Orleans, La. This machine has an ax-
ialy bored cylindrical curling head having its front end formed into a spiral face, and having a cast-off point at the forward terminal of the spiral face, there being a spiral groove between the point and the face. The
machine is designed to take the place of hand work by chanically curling or kinking hair.
Extension Shoe Last.-James H. Livermore, Port Townsend, Washington. This last is preferably made of metal, and has a detachable toe or sole portion, in the center of which is an elongated
slot through which is passed the head of a connecting slot through which is passed the head of a connecting
bar, the rear end of which extends into a hollow heel portion of the last. The connecting bar has on its
upper face a series of graduations, and the parts may be readily locked in place in such position as desired.
Pitman.-Philip Y. Barber, Sharp's Wharf, Va. This is a device more especially designed
for use on mowers, reapers, etc., and is of simple and durable construction and arranged to relieve the wristpin of all turning.or twisting strain. The head, in the free end of which screws a sleeve or tube, is pivotally
connected with the actuating crank disk, and a rod pivotally connected with the device to be driven has a reduced part extending through the sleeve, a nut hold-
ing the rod in position on the sleeve, but so as to pernit its turning.
Diffusion Apparatus.-Samuel Faon, Pahala, Kan, Hawaii. The cane juice is extracted fubjecting the cane to the pressure of successive sets of rolls, and the light or thin juice obtained by the last
set of rolls is carried back and mingled with the denser and heavier juice extracted by the first set of rolls. A series of mils is connected together by elevators and
troughs, but one pump being required and the usual roughs, but one pump being require
separate tanks being dispensed with.

Miscellaneous.

Clothes Pin.-John W. Cook, Harrisburg, Oregon. This clothes pin is formed of a length
of wire bent between its ends to form near its middle of wire bent between its ends to form near its middle
a number of clasps, and also provided with a bearing to run upon a supporting line and a guide opening for
a pulling cord. A number of the pins are supported to a pulling cord. A number of the pins are supported to move upon a line, upon which the pins and garments are drawn out. the garments being connected together
by the pins, so that the line car be filled without movby the pins, so that the line cas be filled without mov-
ing from one place, and can be stretched over any kind of ground.
Gate.-George Ford, New Harmony, Ind. This invention relates particularly to gates known
as "hand lever openers," and provides certain improvements whereby the gate may be opeued and
closed from oneside by a single lever. The gate may be lopened by one in a vehicle or on horseback, approaching from either eide, by pulling down upon a
cord attached to a lever, and the invention covers various novel features of construction and arrangement of
parts. Composition FOR Dolls.-Solomon
D. Hoffmann, Moscow, Russia. The heads, feet, and D. Hoffmann, Moscow, Russia. The heads, feet, and
lower limbs of dolls are constructed, according to this invention, of a composition of glae, glycerine, zinc making the mask and covering it is also provided, the mask being very light, practically indestructible, and slightly elastic.
DESIGN FOR A Spoon.-George P. order ornamentation, Mass. This design embodies a he rose, the stems forming scrolls, while the reverse of the spoon is free from roses and the foliate scrolls igure.
Design for a Spinning Top.-Albert J. Huntoon, Kansas City, Mo. This design presents a
ovel configuration and ornamentation, the body of the top being hexagonal, and its faces embellished to simulate the sides of dice.
Design for a Baking Pan.-George B. Gifford, Albany, N. Y. This pan has an essentially s. Guare, high cover, with paneled sides and handlees on
its ends, the cover fitting loosely within the flaring side walls of the base portion or pan proper.
Elevator.-William N. Anderson,
door for closing the well of an elevator is provided by
this invention, in connection with a simple mechanism by which the movements of the elevator cage will automatically open and close the doors. A vertically swinging door adapted to swing across the well has a segmental rack, and vertically sliding rack bars extend ing above and below the door at its hinged edge ar
both geared to the segmental rack, the arrangemen both geared to the segmental rack, the arrangemea
being such that one rack opens the door when the cag being such that one rack opens the door when the c
ascends and the other opens it as the cage descends.
Brick Kiln.-Simon Dewhirst, St. Joseph, Mo. This kiln has in its side walls a series of combustion chambers leading into the interior above side, each furnace communicating with a combustion chamber and each being provided with a separate combustion chamber opening into the interior of the kiln above the first combustion chambers. The invention covers an improvement on a former patented invention
of the same inventor, the design being to utilize the nel in the best possible
Tipewriting Machine.-George M. Beerbower, Washington, D. C. The printing of the ate, address, signature, etc., upon the paper by the
movement of a single key lever is provided for by this invention, the words, figures, etc., being ry thily changed as may be desired, thereby saving a grea deal of time and labor. The invention consists essentially of a type bar or lever carrying the necessary removable interchangeable types, in combination with
a supplemental open frame attached to the end of the a supplemental open frame attached to the end of the
main frame of the machine, the type bar or lever being main frame of the machine, the type bar or lever being
pivoted between inwardly curved arms of the frame.
Window.-Robert H. White, Madison, Ind. This invention provides novel and inexpensive appliances to allow the upper and lower aash to be sep-
arately or together rocked and placed at any desired angle of inclination, permitting the sashes to slide in their guides while inclined, while also affording

Fire Escape.-George L. Roberts, FIRE ESCAPE-- George L. Roberts, man and engineer of many years' experience. It is a exterior of a building, where it may be moved sidewis to any desired point, affording means for the quick and easy descent of a large number of inmates, at the same Ame affording the firemen means of access to the fire A pendent :movable ladder-supporting frame is supladder is effected by the weight of persons stepping apon its platforms, proper checking
Cement Mill and Furnace.-Henry H. Bourne, Trinidad, Col. This is a combination construction designed to be readily transported from place
to place, and be very effective in operation. The casing has a transverse partition forming a mill compartment and a furnace compartment, a smoke stack
extending centrally from the partition to connect with extending centrally from the partition to connect with
the outlet of the furnace, while an agitator in the mill the outlet of the Yurnace, while an on the smoke stark. rial to be treated can be readily thrown or dumped into the mill compartment.
Package Carrier.-Frank H. PalPer, Brooklyn, N. Y. A grooved handle, adapted to receive the binding strings of a package, and to hold
them in such manner that they are not likely to come detached, is provided by this invention. A trans verse groove is formed at its opposite sides with under cuts, and a diagonal groove leads to the transverse
groove. The device is very inexpensive, may be quickly applied, and prevents the cutting of the fingers by ngs in carrying packages
Unicycle.-James Imlah, Barre, Vt. This vehicle has a non-rotating inner wheel formed
with a suitable framework and a double rim connected with a framework in which the rider's seat is held, the two rim parts engaging ball bearings in an inner annular flange connected by spokes with the tire of an exterio wheel. The machine is designed to be readily manipulated for steering and propelling purposes, while being

Motor Spring Fork for Bicycles. William Lynch and Eugene Tremper, Wallkill, N. Y This is a fork of simple construction designed to act as a cushion for the rider when the wheel is passing over a motor to propel the wheel forward when an ob-yoke-shaped and the lower one comprising two bars pivoted to the members and adapted for attachment to the axle, there being power connections between the
lower section and the wheel, stop devices at the juncion of the two sections, and a spring connecting the

Book Mailing Attachment.-Chas. s. Hardy, San Diego, Cal. A permanent fly leaf is at-
tached to the cover of a book, to be shut within or tached to the cover of a book, to be shat within or
turned outward'around the book as an?attached mailing sheet or wrapper, to be sealed or otherwise fastened and having on its exposed surface the owner's name and ous articles or packages, legal and other documents, but is mainly designed for books, as pass books. bank books, etc.
Tobacco Pipe.-Thomas T. Ely, West Paris, Me. Suspended in the bowl of this pipe is
a sheet metal tobacco-holding cup, there being side sheet metal tobacco-holding cup, there being side between the cup and bowl from these perforations the stem. Within the cup is a diaphragm resting upon charged with tobacco, the spring raising the diaphragm as the smoking proceeds. With this form of pipe the
smoke is not drawn through the nicotine deposited by the tobacco, but is drawn throngh the perforations of
A war the the
A WN ING.-Bernard Branner, New
York City. This device is designed to permit an or-
dinary window shade to be utilized as a part of a door or window awning when desired, and it may also be
used as an interior screen for a window or door It consists of two triangular wings of flexible material, stretcher rod being secured to the lower end of each wing, the upright edges of the wings being connected
to the window casement, while a hook extended from to the window casement, while a hook extended from
each stretcher rod at its outer end interlocks with a each stretcher rod at its outer end interlocks with
staple or screw eye on the lower part of the awning.

Venetian Blind.-James K. Benway, Albany, N. Y. This inveution relates particularly to the pulleys over which pass the cords for raising and
lowering the slats, the pulleys being so improved that lowering the slats, the pulleys being so improved tha the slats will respond to the cords more smoothly an
with precision, and the hangers of the palleys will be prevented from marring the bars from which they are suspended.
Extension Gun Stoce.-Erastus Jones and Ralph Townsend, New York City. The
back plate and the stock are so made, according to this invention, that theplate may he carried to and from the end of the stock to form an extension of the latter Between the stock and the plate is a spring cushion, adapted to counteract the recoil of the gun, and the connection of the stock with the plate s such that the
latter may be conveniently adjusted to the marksman's latter may
shoulder.
Radiator.-George E. Longard, Halifax, Canada. This is an improved radiator of simple ance and adapted for both steam and hot water heating The headers form top and bottom girders for the pipes and each of the tubes is formed with a recess adapted to be covered on the outside by a removable metallic creen filted into the front of the pipe.
Skirt Supporter.-Georgia V. Smith, lever-like spring clasp at one endffor engaging the othe end of the band, and a cord is secured to the clasp to support and hold the band in position on the wearer
This supporter, by reason of its elasticity, will not per This supporter, by reason of its elasticity, will not per
manently crumple or crease the skirt, and may be manently crumple or crease the skirt, and may be
conveniently adjasted or removed by the wearer while on the street
Desk Attachment for Chairs. Milton C. Hutton, Georgetown, Texas. This lattachment may be applied to desks and other articles of fur-
niture as well as chairs, affording a desk or table which may be adjusted toward the person or vertically, means being also provided whereby a book or other
object may be prevented from slipping off from the object may be prevented from slipping off from the
table. Each end of the board constituting the top of table. Each end of the board constituting the top o
the table is provided with different means for attaching the table is provided with
Draught Equalizer.-Erastus Roadior, Carpenter, Ind. This invention relates to a three vehiclewhere it is desired to apply extra power on on ful on reaping and mowing machines. The construction is such that if the three horses on one side get ahead the swing of a specially arranged lever throws them further away from the tongue, instead of allowing

Fruit Jar.-Charles L. Wight, Mahukona, Hawaii. This is a knock-down jar, its bottom having marginal grooves and intersecting sockets, the aver having similar grooves and holes, the corner
posts also having longitudinal grooves and end tenons to enter the base and cover sockets, whlle the side panels grooves, and the vertical edges fit the post grooves, This jar may
able material
Animal Trap.-Edwin R. and Charles W. Knecht, Shelbyville, Ill. This is a trap to catch small animals, such as rats and mice, and is so made
that the animal passing out at the opposite end, entering either end and ferceiving the bait from any portion of the trap. But the bait cannot be taken, the animal approaching it being dropped into a
moved at will.
Design for a Carriage Body.Aaron T. Demarest, New York City. This design re lates to the contour and decoration of coupes, and its
main feature consists in the sweep or curvature of the lines of the body at the margins and between the margins as viewed from the side.
Design for a Brooch Pin.-Thomas Tugby, Niagara Falls, N. Y. This pin has something back and projecting head and horns, and the construction of the pin is strong and simple.
Note.-Copies of any of the above patents will be furnished by Munn \& Co., for 25 cents each. Please
send name of the patentee, title of invention, and date of this paper.

NEW BOORS AND PUBLICATIONS

Miner's Pocketbook. By C. G. Warn$\begin{array}{ll}\text { ford Lock. } & \text { New York: } \\ \text { Chamberlain. } & \text { 1892. } \\ \text { Ppon } \\ \text { \& }\end{array}$ Price $\$ 5$.
This comprehensive little work touches on all topics connected with mining, from the blasting and shaft
sinking operations. lighting of mines, treating of ores and similar subjects, to the oress ores ores ing, geology and the properties of mezals. A glossary, mbolied in the work.
The Arithmetic of Electricity. By
 We have already reviewed "The Arithmetic of Electri-
city" in these columns. city" in these columns. The best testimony of the na-
ture of its reception by the public is the early issuing
practical review of the mathematics of electricity with in the scope of those who are not conversant with alge
bra and the higher mathematics. It comprises a larg number of rules, illustrated by one or more example each, while, in order to remove from it anything of the empirical aspect, a chapter is devoted to aemonstra tions of the rules which require it.
Practical Carriage Building. Com
piled by M. T. Richardson. Vol. II
piled by M. T. Richardson. Vol. II New York : M. T. Rich
1892. Pp. 280 . Price $\$ 1$.
Previous works have been published by this company on allied topics to the present. The exceedingly prac-
tical aspect of the volume under review, with its numerous illustrations, nearly 300 in number, and the eminently clear and simple way in which the matters ar expressed, give the work distinctive value. Besides use of tools, and the draughting of carriaces, the construction of different types of wagons is given in detail Throughout the work a plea for good workmanship i made.
Dynamometers and the Measure
MENT Fl . Sons. Pp. vi, 215. Price \$2.
At the present day, when the measurement of powe power alone is not accounted sufficient for the engineer's use, a work on dynamometers is peculiarly imely. It is sufficient to say of Professor Flather's book that it covers the ground indicated by its title very satisfactorily and that numerous illustration receive in it very full attention.
The Jeweler's Assistant in The Art of Working in Gold. By George E. Gee. London: Crosby 238.

The properties of goid, its precipitation in waste soring, casting and the various kinds of gilding opers tions, practical manipulations of articles of plate and jewelry, alloys of bullion and imitations, with numer as recelpts and practical hints andeexhaustive table gold values and alloys, are the topics treated in th book. It would seem evident that it should recommend nd amateur. The work is written for the advance orkman of every branch, as well as for the employe and the preface states that almost everything in the red lie the test by the

SCIENTIFIC AMERICAN

BUILDINGEDITION

UUGUST NUMEER.-(NO. 82.

TABLE OF CONTENTS

1. A subarban cottage at Rutherford, N. J. Cost
$\$ \$ 2,000$ complete. Floor plans and perspective levation. Mr. C. D. Jones, New York, archi
residence near Newark, N. J., erected at a coet of $\$ 7,000$ complete. Floor plans and perspective unn \& Co. architecte, New York.
Engraving showing the North M. E. Church, Charles E. Miller, architect, New York
2. A carriage house and stable erected at Portlan summer cottage at Great Diamond Island, ne Portland, Me. Cost $\$ 3,200$ complete. Messra
J. R. \& W. P. Richards, architects, Boter J. R. \& W. P. Richards, architects, Bosto $\underset{\substack{\text { Mass. } \\ \text { reside } \\ \hline \\ \hline}}{ }$
3. A residence at Rutherford, N. J., recently erecte at a cost of $\$ 4,500$. Perspective and floor plans,
4. A cottage at Oakwood, Staten Island. Estimated cost, $\$ 3,300$. Plans and perspective elevation.
5. A row of model dwelling houses on West Seventyfifth Street, New York City. Mr. James T. Hall, architect, New York
6. A dwelling recently erected at Rutherford, N. J. at a cost of $\$ 5,400$ complete. Floor plans an perspective.
Poul's the proposed tomb of Wellington, S. 1. View of the interior of the House of Commons,

London.
12. Roman Temples in Africa-restored by Alex. Graham, F.S.A.
13. Miscellaneons contents : Scarlet runner beans, il-
lastrated.-Evolution--Fruit cultare at Barhan Court, illustrated.-Wood and iron stairway the Nationai Library. Paris, illustrated.-An ornamental wood-working machine, illustrated.-A new heater manufacturing plant.-Various doc rines of water rights.-Improved bath heater, il lastrated.-Well-made chairs and rockers, illus rated.-An improved heater, illustrated.-Kalso mining.-An improved variety wood-worker illustrated.
The Scientific Americay Architects and Builders dition is issued monthly. 82.50 a year. Single copiee, two hundred ordinary book pages; forming, practicalls, a large and splendid Magazine of architecTURE, richly adorned with elegant plates in colors and with fine engravings, illnstrating the most interesting examples of

The Fill ines

ofthis work have won for it the of any Architectural pablication in the world. Sold by all newsdealers.

MUNN \& CO., Publishers,
301 Broadway, New York.

Wusiness and æersonal.
The charge for Insertion under this head is one Dollar a line
for each insertion ; about eight words to a line. Advertisements must be received at publication office as early as
$20^{\prime \prime}$ combination wheel and lever drill. The best dril
the market for the money. Send for catalogue an " U . W. P. Davis, Rochester, N. Y
Preses \&ies. 6 Spindle Turret Drill Presses. A.D. Quint, Hartford,C G.D. Hiscox, 361 Broadway, N.Y., Consulting Enginee Best baling presses. Ryther Mfg. Co., Watertown, N. Portable and Stationary Cylinder Boring machi Philadelphia, Pa The Improved Hydraulic Jacks, Punches, and Tu
Expanders. R. Dudgeon, 24 Columbia St., New York. Screw machines, milling machines, and drill presse Cort Centrifugal Pumps. Capacity, 100 to 40,000 gals. pe
minute. All sizes in stock. IrvinVan Wie, Syracuse A large chemical works wishes novelties, specialtie Cliff St., N. Y.
For pumping engines. J. s. Mundy, Newark, N. J. Crandall's patent packing for steam, water, and am
onia. See adv. next week. Crandall Packing Palmyra, N. Y.
Portable engines and boilers. Yacht engines and
boilers. B. W. Payne \& Sons, Elmira, N. Y., and 41 De reet, New York.
Guild \& Garrison, Brooklyn, N. Y., manufacture stean acid blowers, fllter press pumps, etc.
Split Pulleys at Low prices, and of same strength and Works, Drinker St., Philadelphia, Pa.
Perforated Metals of all kinds and for all purposes eneral or special. Address, stating require
Harrington \& King Perforating Co., Chicago.
Wanted Manufactured on Royalty-Puzzle patent, , The best book for electricians and beginners in elec ticty is Experimental science," by Geo. M. Hopkina. Competent persons who desire agencies for a ne pply to Munn \& Co., Scientifle American office, 3 Broadway, New York.
Wanted-An ingenious, skillful, and speedy patternmaker for agricultural factory. Grain drill work
pecialty. A good place for the right man. Address, th references, Patternmaker, care this pap

CTV Send for new and complete catalogue of Scientific ad other Books for sale by Munn \& Co., 361 Broadwa

ruck dumis

HINTS TO CORRESPONDENTS
Names and Address mnet accompany all letters,
or no antention will be paid thereto. This is for our
infor information and not for publication.
Referentes to former articles or answers should
give date of paper and puat or number of question. inguiries not answered in reasonable time should
some answers require not a little research, and,
thoogh we endeavor to reply to all either by letter or in this department, each must take his riten In formation on maters of
peral Wonal rather than general interest cannot b personal rather than general interest cannot be
expected without remueration. to may be bad at the office. Ppice 10 cents each.
Books referred to promptly supplied on receipt
Mince.
marked or ont for exeled.
(4500) J. L. writes: I have a large look ing glass and the quicksilver is spoted. Can you advise what will remedy the trouble? A. No effectual way of repairing a looking glass so damaged is known. looking gla an be slid off and dropped upon the worst spots, but our chances of effecting a good rerar are doubtful If the mirror isa silver-plated one, the above treatme useless. You may then succeed in replating by some
(4501) B. A. H. asks : Will a bell that truck on the inside give out any more sound that case. A. The mauner of arranging the hammer stroke on large bells is a matter of safety and convenience. The outside stroke gives the stronget tone and the bell is ler hable to crack. It will stand he strongest ham be avoided, save in swinging bells, where it is necesary.
(4502) A. W. H. asks how the air brake is applied to a train. That is, how is the pressure ob-
tained A. The air brake is worked by compressed air n a cylinder nnder the car. An air pump on the locomotive furnishes the compressed air through pipes ander the cars. This air is forced into air recelvers under each car. The compressed air is kept from entering the brake cylinder by a valve which is only kept closed by he compressed air with which the pipes are filled when he brake is off. To apply the brakes the engineer simply allows this air to escape from the pipes, when the air receivers and the brake cylinders.

Communications Received.
Criticism of Animal Drawins.
$\begin{aligned} & \text { By W. P. Webster.- }\end{aligned}$
An Electrical Cabinet. By An Electrical cabine. By F. B. Whal
Aerial Navigation. By C. S. Remington.

TO INVENTORS.
$\begin{gathered}\text { An experience of forty years, and the preparation of } \\ \text { more than one hundred thousand applications for pa- }\end{gathered}$ more than one hundred thousand applications for pa-
tents at home and abroad, enable us to understand the aws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. A
synopsis of the patent laws of the United States and all forign countries may be had onapplication tates and and contemplating the securing of patents, either at home o
abroad, are invited to write to this offlice for price which are low, in accordance with the times and our exMUNN \& CO, offce SCIENTIFIC AMEBICAN, 361 Bros way, New York.

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted August 16, 1892,
AND EACH BEARING THAT DATE.
 Acid resisting composition for lining tanks, J.

B

 and

ain

 Hetivitubibion

 Sliding gate, M. L. Walters.
Snap book , . A. Traut
Snat.......

Steam generator, H. Goering.
Steam enenator G. W. Sloane.
Steam trap, W.C. Baker.

Supporter. See Garment supporter.
Supporting iltures , evice for, J. T. Ro bb.

Syringe switch and air cushion, combined fountain, J
Taide seat wiil iabiien

Turret mechanism, F. H. Richards.........
Twine making machine, automatic feder for
Type plate and biank for the same, Morse

Wamo frane. A. .i.utiner
Waser. foe wincow fatior:

HDvertisements.

ADAMANT WALL PLASTER

 Patent Foot Power Machinery Complete Outfits.

Drill Presses, shapers, Band, Circular, and Scroll Saw
Machinists SEBASTTIAN LATHE COMPANY
44-46 Central Ave., CIncinnati, O.
 fous LATHES

T. A. C. Ther vigchara qugr

 BASE BALL. - A DESCRIPTION OF
 10 cents.
dealers.

All Arithmetical Pronlems

 computations
FELT \& TARRANT, 52-56 Illinois Street,
CHICAGO.
THE COMPASS.-BY CAPT. D. WIL-

Billugs IMPROVED SCRATCH GAUGE,

The BILLINGS \& SPENCER CO., Hartford, Conn
A NEW EDITION OF
The Scigntific Amarican Reibuance Book
This attractive little book, of 150 pages, embraces a
great variety of information useful for reference in the great variety of information useful for reference in the
house and workshop. It contains the last Census of the
U. S. by states and counties, and has the area of square U. S. by states and counties, and has the area of square
miles in each state and territory, with tables of the occupations and the number engaged in each kind of busi-
ness; lists of cities having 10.000 inhabitants; all the statistics being compiled from the 1890 census; the United States patent laws, with directions how to obtain
patents secure caveats, trade marks, design patents patents secure
and copyrights.
The book contains tables for calculating the horse
power of steam engines, and other information usefu and varied. The matter crowded between the covers of this little 150 page volume cannot be obtained from
any other source. Price 25 Cents. May be had of

IUININ de CO

Scientific amprican.

TO TNVENTORS
 AND MANUFACTURERS

Sixty-first Grand National Exhibition American Institute of the Oity of New Yor
 OTTO GAS ENGINE WORKS, PHILADELPHIA.
TO INVENTORS. - Assititnoce firen in iffa

Undeveloped Wealth. The edge of an invention crops out of the mechanical means of following it up He needs a shop to go to or write to. We ave a primer to send

NOW READY!
A NEW AND VALUABLE B00K.

2,000 Receipts. 650 Pages. Price $\$ 5$. This splendid work contains a careful compilaishe Notes and Queries of correspondents as pub
ished in the sientific American during the shed in the scientific American during the
mportant years: together with many valuable and
mpority Over Tivelve Thousand selected receipts are arts being reprearented. It Is is by far the the mose-
ul
comprehensive volume of the kind ever placed beThe work may be regarded as the product of the
studies and practical experience of the ablest chemsts and workers in all parts of the world ; the in formation given being of the highest value, ar-
ranged and condensed in concise form convenient for ready use.
Almost every inquiry that can be thought of,
relating to formulæ used in the various manufacelating to formulæ used in the various manufac cesses in the arts are given. so extensive a work. Paper we have nearly 250 re-
Under the head of Pats embracing how to make papier mache; how
to make paper water proof and fire proof; how to to make paper water proof and fire proof; how to
make sandpaper, emery paper, tracing paper,
transfer paper, carbon paper, parchment paper transfer paper, carron paper, parchment paper,
colored papers, razor strop paper, paper for doing
up cutlery, silverware; how to make luminous paper, photograph papers, ete.
Under the head of Inks we have nearly 450 re-
cipts, including the finest and best writing ink eipts, including the finest and best writing inks
of all colors, drawing inks. luminuus inks. invisi-
he inks, gold, silver and bronze inks, white inks irections for removal of inks; restoration of Under the head of Allovs over 700 receipts are
given, covering a vast amount of valuable inforOf Cements we have sowe 600 receipts, which
clude almost every known adhesive presaration and the modes of use.
How to make Rubber Stamps forms the subjec f a most valuable practical article, in which th licin therms that any intelligent person may readily For Lacquers there are 120 receipts: Electro-Me
tallurgy, 12j receipts; Bronzing, 12ir receipts; Pho ography and Microscopy are represented by 60 Under the head of Etching there are 55 receipts, of engravings and printing plates of drawings. Paints, Pigments and Varnishes furnish over
00 receipts, and include everything worth knowngon those subjects. Cleansing over 500 receipt are given, the scope being very broad, embracing
the removal of spots and stains from all sorts
of objects and materiats, bleacking of of objects and materiafs, bleasbing of fabrics,
cleaning furniture, clothing, glass, leather, metals,
and the restoration and preservation of all kinds In Cosmetics and Perfumery some 500 receipts
Soaps nave nearly 300 receipts.
Those who are engaged in any branch of industry
probably will find in this book much that is of practical value in their respective callings.
Those who are in search of indeependent
busines or employment, relating to the home manufacture
of sample articles, will find in it hundreds of most
MUNN \& Sond for descriptive circular. SCIENTIFIO AMERIOAN OFFICE. CIENTIFIO AMERICAN OFFICE.

LIFE SAVING DEVICES.-A COL lection of sugkestions of deviees for communicating
between the ghore and strander vessels, offered tot the
London Daily Graphich by various correespondents. With

Vanduzen Pat. L. Puil. Oller

TO Inventore

 - Contractors' Machinery ENGINES, BOILERS, BRICK PLANTS, AND ROLLING MILL MACHINERY.
Thomas Carlins' Sons ALLEGHENY, HOW TO MAKE DYNAMO-ELEC'IRIC and fuld iorections. for conoptracting dyn drawos of differant
aizes. The small machine is intended tor experinental sizes. The small machine is intended tor experimerental
purposes. Winll heat from to 6 inches of platinum wire.
produce ihe electric likht, decompoee water rapidly magnetize steel, ring a larke gong, pive powerful shocks,
 arc light. Can be arranged as a series, shunt, or com-
pound wound machine. Can be run tor a short time by
two or four men. Requires one hore

VOLNEY W. MASON \& CU. FRICTION POLLETS, CLDTCHES, and ELEEATORS

AUTOMATIC
TIME RECORDER very employe kee
his own time. , accurate, BUNDY MFG. CO. Binghamton, N. Y.

KENAPP RLECTRICALPQ
 men TO BUSINESS MEN
The value of the Scientific american as an adver tising medium cannot be overestimated. Its circulation
is many times greater than that of any similar journa now published. It anos into all the States and Territo-
ries, ana to the in ant the principal libraries and reading rooms of the world. A busincse man wants something more than to see his advertisement in a printed news paper. He wants circulation. This he has when he ad-
vertises in the Scientricic Americas the advertising agent influence you to substitute sot let other paper for the Scientific American, when se lecting a list of publications in which you decide it is fo your interest to advertise. This is frequently done fo
the reason that the agent gets a larger commission the papers having a small circulation than is allowed on the Scientific American. For rates see top of frst column of
dress MUNN \& CO., Publishers 361 Broadway, New York.

BUILDERS OF HIGH GRADE BOATS.

 SEND 10c. FOR COMPLETE CATALOGUE. DAVIS BOAT AND OAR CO., DETROIT, MICH., U. S. A.
STEEL TYPE FOR TYPEWRITERS' GATES ROCK \& ORE BREAKER

VANDUZEN STEAM PUMP

ELECTRO MOTOR SSMPLE HOW TO

Model Matarers MODELS Died Catings

SEWING MACHINE MOTOR FOR AMA

Canning Machinery
 Pumps, Can Wiipers, Can
Testers, Labeliny Machines, Testers, Labeling Machine
PRESSES AND
DIES.
BURTMFC. CO.,

HARRISON CONVEYOR !
Handiung Grain, Coal, Sand, Clay, Tar Bark, Cinders, Ores, Seeds, \&C.

COOLEST BREEZES ON HOTTEST DAYS

A. In \boldsymbol{T} IMIIINTYMI

In all shapes. Manufactured by
Cowles Electric Smelting and Aluminum
OIL WELL SUPPLY CO.

 Illustrated catalogue, price.
lists and discount sheets
on request.
ALUMINUM: ITS USES AND AP

MAATOGANTY

TEAK FOR And all Fancy Woods.
THE E. D. ALBRO CO.
 H. t. Bartlett, Mg'r. F. w. Honeriamp, Ass't Mr's (Mills, Cincinnati, O.)
 After being on the Market Seven Years THE AGME AUTOMATIC ENGINE AND BOILER E3PIIETEDBADE:
Half to Four Horse Power. Marine and Stntionary.

SCHOOL OF ENGINEERING,
OHIO STATE UNIVERSITY,
Four year courses are provided in Civill, Mechanic
ment is well equipped with appliances for intrection
A Cataone giving foll informa

PROPOSALS.
OTICE TO ARCHITECT
$\mathrm{T}_{\mathrm{W}}^{\mathrm{HE} \text { Honorable the Chie }}$ Cor Commissioner of Lands and before the 30th September next, (competit tve) plans and
estimates of cost for the construction of certain ProParticulars of competition and further information
can be ontaing Dep obtained from the undersigned. GORE,
Deputy Commissioner of Lands \& Wrks. Lands and Works Departmentener

 Specifcations, blank forms, and all available informa-
tion will be furnished on application ot or his office
G. L. GILLESIE, Lieut.-Col. of Enginecrs.
U. S. ENGINEER OFFICE, BOSTON, MASS, AU-
 opened. Specifcations, biank forms, and all available
information will be funidled om aplication to this
office. S. M. MANSFIELD, Lieut.-Col.of Engineers.

U. S. ENGINEER OFFICE, BOSTON, MASS, AU
 bank forms. and all avail
nished. on application tot
Lieut.-Col. of Engineers.

U. S. ENGINEER OFFICE, BOSTON, MASS. AU- ASE.

 U. S. ENGINERR OFFICE, BOSTON, MASS, AU

U. S. ENGINEER OFFICE, BOSTRN, MASS, AU
 cincations, blank forms, and an avalabie information
will be furnised on application to this onfice.
S. M. MANSFIELD, Lieut.-Col. of Fingineers.

U. S. ENGINEER OFFICE, ARMY BUILDING, NEW

HAVE YOU READ
Fxperimental
Q cience?
This new book, by Geo. M. Hopkins, is just what
you need to ive ive you a good general knowledge of you need to give you a good general knowledge of
Physical Science. No one having the spiritit of the
timescan afford to be without the kind of scien-
tific information contained in this book. It is not tific information contained in this book. It is no
only instructive, but entertaining.

Over 700 pages : 680 fine cuts; substantially and
beautifully bound. Price by mail, $\$ 4.00$. MUNN \& CO.: Publishers, Office of the SCIENTIFIC AMERICAN

A Woman＇s Pride
is a beautiful watch：－fine enamel dial，with Arabic fig－ ures；the case，of coin－silver or fourteen－karat gold filled， and exquisitely engraved： This is the ladies＇style of the new QUICK＝WINDING ＂Waterbury．＂
Jeweled movement；A war－ ranted time－keeper．A gem to be proud of．

A men＇s style also is made．
Far superior to any cheap Swiss watch，though equally low－priced． Your jeweeler sells it．

WYCKOFF，SEAMANS \＆BENEDICT， 327 Broadway，N．Y．

Regula
Junior
Folding Ordinary

I4 $\begin{gathered}\text { styles } \\ \text { for the } \\ \text { and } \\ \text { season of }\end{gathered}$ 1892， $\mathbf{\$ 6 . 0 0}$ to $\mathbf{\$ 6 5 . 0 0}$ ．
Latest improvements，registers for ex－ posures；glass plate attachments；daylight oading，etc．，etc．Send for catalogue．
the eastman Company，

THE SMITH PREMER TYPEWRITER

 CENTRIFUGAL FORCE AND RE－

importance vs．necessity

PHOTOGRAPHIC CHEMISTRV－A

rop al nemadeales.

IN THE OPEN
Io miles or 1 ，, 00 miles from home－it matters not－Co－
lumbias wear the world around－repairs so seldom one
 Yorr，chicage． WEBER CAS AND CASOLINE ENGINE
 simpies and andest economical
funt
Fully Guaranteed． Fully Guaranteed
boo tatats

 Wener Gezs Engine Works， Weder Gas Eigine Worts，
Kansas city，mo．

Edison General Electric Gompany

Incandescent Lighting，Street Railways and Transmission of Power

SAFEST－MOST RELIABLE－BEST．

our blectric ladmp signs are a great commercial innovation BRANOH OFHIOBE

MEGRAVESELEVATORS．

New Friction Disk Drill． for Light work． Has these Great Advantages： The speed can be instantly changed from 0 to 1600 smallest or largest drills within its range－a a won． derful economy in time and great saving in drill breakage．Send for catalogue． W．F．\＆JNO．BARNES CO．，

 エ式曰

ESTAB1SISHED 1846.
The Most Popular Scientific Paper in the World

This widely circulated and splendidy illustrated
paper is published weekly．Every number contains six－ teen pages of useful information and a large number of
original engravings of new inventions and discoveries representing Engineering Works，Steam Machinery， representing Engineering Works，Steam Machinery，
New Inventions，Novelties in Mechanics，Manufactures， Chemistry，Electricity，Telegraphy，Photography，Archi－ tecture，Agriculture，Horticulture，Natural History
etc．Complete list of patents each week． Termss of Subscription．－One copy of the ScIEN－
TYIC AMERICAN will be sent for one \＃par－ 52 numbers－ postage prepaid，to any subscriber in the United States． Canada，or Mexico，on receipt of three dollarss by the Clubs．－Special rates for several names，and to Post Masters．Write for particulars．
The safest way to remit is Dy
The safest way to remit is by Postal Order，Draft．or
Express Money Order．Money carefully placed inside Express Money Order．Money carefully placed inside
of envelopes，securely sealed，and correctly addressed， seldom goes astray，but is at the sender＇s risk．Address
sill letters and mate all orders，drats，ete payable to all letters and make all orders．drafts，etc．．，payable to
MUNN \＆CO．，361 Broadway，New York．

THE
§cientific adncricall §upplement 2 This is a separate and distinct publication from THE
SCIENTIFIC AMERICAN，but is uniform therewith in size． SCIENTIFIC AMERICAN，but is uniform therewith in size．
everynumber containing sixten large pages full of en－ gravings，many of which are taken from foreign papers
and accompand d with translated descriptions．＇Ter and accompand d with transiated descriptions．Tge
ScIENTIFIC AMERICAN SUPPLEMENT is published week－ ly ，and includes a very wide range of contents．It pre－ sents the most recent papers by eminent writers in all the principal departments of Science and the Useful
Arts，embracing Biology，Geology，Mineralogy，Natural Arts，embracing Biology，Geology，Mineralogy，Natural
History，Geography，Archæology，Astronomy Chemis－ try，Electricity，Light，Heat，Mechanical Engineering． Steam and Railway Engineering，Mining，Ship Building，
Marine Engineering，Photography，Technology，Manu－ Marine Engineering，Photography，Technology，Manu－
facturing Industries，Sanitary Engineering，Agriculture， facturing Industries，Sanitary Engineering，Agriculture
Horticulture，Domestic Economy，Biography，Medicine， etc．A vast amount of fresh and valuable information obtaina ble in no other publication．
The most important Engineering Works，Mechanisms，
and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT．
Price for the Supplement for the United States and Canada， 85.00 a year；or one copy of the SCIENTIFIC AM－
ERICAN and one copy of the SUPPLEMENT，both mailed ERICAN and one copy of the Sopplement，both mailed
for one year for 87.00 ．Single copies， 10 cents．Address and remit by postal order，express money order，or check，
MUNN \＆CO．，361 Broadway，New York．

Building CEdition．

The SCIENTIFIC AMERICAN ARCHITRCTS＇AND Builders＇Edition is issued monthly．${ }^{82.50}$ a year．
Single copies， 25 cents．Forty large quarto pages，equal to about two hundred ordinary book pages；forming a large and splendid Magazine of Architecture，richly adorned with elegant plates in colors，and with other fine
engravings；illustrating the most interesting examples engravings；illustrating the most interesting examples
of modern architectural construction and allied subjects． A special feature is the presentation in each number of a variety of the latest and best plans for private resi－
dences，city and country，including those of very mod－ dences，city and country，including those of very mod－
erate cost as well as the more expensive．Drawings in perspective and in color are given，together with full Plans，Speciffcations，Sheets of Details，Estimates，etc． The elegance and cheapness of this magniffcent work
have won for it the Largest Circulation of ans have won for it the Largest Circulation of any dealers．$\$ 2.50 \mathrm{a}$ year．Remit to
\＆CO．，Publishers，
361 Broadway，New York．

PRINTIINE INTKS

[^0]: R. Sulphi Starch,
 oxide 25

