a Weekly journal of practical inforvation, art, SCIENCE, mechanics, Chemistry, and mantfactures.

1. Die well and gasometer. 2. Covered bathe. 3. The lake. 4. Separating tank and gasometer.

GTOCETON, GAL,-WARM WATER WELLS AND NATURAL GAS.-[See page 52.]

SVicntific gmmerical.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors published weekly at

No. 361 BROADWAY, NEW YORK.
O. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

 Remit by postan, or er express money order, or by bank drattil or cheoc.s.
MUNN \& Co., 661 Broadway, corner of Frauklin Street, New York. The Scientific American Supplement

Building Edition.

Spanish Edition of the Scientif A

MUNN \& CO., Publishers, $\begin{gathered}\text { P61 Broadway, New York } \\ \text { 3nt }\end{gathered}$
 Reades are speialy reavested to notify the
NEW YORK, SATURDAY, JULY 23, 1892.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No. 864.
For the Week Ending July 23, 1892.

inventors at the world's fair.

The invitation to inventors, by the Commissioner of Patents, published below, is taken from the Officia Gazette, and is self-explanatory.
This invitation should be generally accepted by in ventors, as it enables them to contribute to the suc cess of the fair, and at the same time gives them an opportunity to advertise such as occurs but once in a lifetime. Many inventors cannot afford to make individual exhibits at the fair, but this arrangement for exhibiting models gives them practically the same chance to show their inventions that they would have if exhibiting individually, as each model will be labeled and catalogued. The fair will be visited by millions of people capable of taking in the good points of an in vention, and a nice working model can scarcely fail to attract the attention of possible buyers. If the patent for the invention has expired, the exhibitor will perhaps have to be satisfied with the knowledge that he has contributed to the success of the world's greatest fair and with whatever fame may be derived from the exhibit; but if the patent is unexpired, the splendid advertisement will quite likely result in the sale of the will be or ancreased demand for the invention. It of the Patent Office.
"To the inventors and manufacturers of the United States:
' It is the intention of the Patent Office to make at the World's Columbian Exposition at Chicago, in 1893, an exhibit which will show that great advance in the several arts which is due, in large measure, to the en couragement and support afforded by our patent sys tem. This exhibit is to consist of models of patented inventions, which will be carefully selected, to show as far as is possible the inception of each art, the stage through which the art has advanced, and the final development reached at the present time. This display of typical inventions, embodied in concrete form and properly arranged, will, it is believed, constitute a grand historical exhibit of the progress of the useful arts and one which will be of great interest not only to inventors and manufacturers, but to the public gener ally.
"The Office collection of models has been seriously impaired by fire, and is further incomplete by reason of the fact that models have not generally been required or received during the last ten years. The quired or received during the last ten years. The
Office is not, therefore, in possession of the models of Office is not, therefore, in possession of the models of
many valuable inventions which might properly be included in such an exhibit, and without which, indeed, the exhibit would be incomplete. The limited appro priation for this exhibit will not permit the Office to make such models. An urgent appeal is therefore made to all inventors and manufacturers to come to the assistance of the Office in this matter, either by loans of models already built or by the construction of such models not in the possession of the Office as should properly be placed in such a collection. Of course, where models are loaned to the Office all proper credit will be given both in labels and catalogues to
the parties by whom the loans are made, and such disposition will be made of the models after the close of the exhibit as the owners shall direct. Many inventors and manufacturers have already indicated a willing ness to co-operate with the Office in this matter, and it is confidently expected that such a response will be made to this general appeal as will assure the un paralleled success of this attempt to graphically and concretely show the development of American inven tion.
W. E. Simonds, Commissioner."

DEFECTIVE BOILERS AND INCOMPETENT ENGINEERS.
The official quarterly report of William S. Powers, Superintendent of Steam Boilers, to Police Commis sioner Hayden, of Brooklyn, N. Y., shows that from April 1 to June 30, 667 steam boilers were examined in that city, of which 11 were condemned, removed, and good boilers substituted. It states further that 612 engineers were examined, and of these 51 found incom petent. The report does not state that the incompetent engineers were removed, and able ones substituted; we trust they were, but we cannot help calling attention to the fact that 11 boilers out of 667 is a ratio of only 16 bad boilers per thousand, while 51 incompetent engineers out of 612 is a ratio of 33 incompetent engineers out of a thousand, so that the number of incompetent engineers is more than five times large than the number of defective boilers.

The comparison of these figures shows that the boiler makers take five times more care in the manufacture and repair of their boilers than do the engineers in trying to learn their trade, who, when once having obtained employment, need looking after, as well as the boilers, in fact, five times more so, according to discovered ratio of capability for duty. In addition to this it must be remembered that boilers, being inani mate objects, are in themselves not subject to blunders, to carelessness, to strikes nor to drunkenness, in fact, possess in this regard reliability equivalent to infallibility compared with the weaknesses and incidental shortcomings of human beings, of which the ' futility has become proverbial.

If this quarterly report is the average of every three months for the whole year, then there are 44 worthless boilers condemned per year, while the number of engineers proved to be incompetent for the performance of their duties is not less than 482 , to which life and property are intrusted. It proves, also, that in regard to the causes of the many boiler explosions reported in the newspapers from time to time, at least five are due to incompetent engineers, against one by incompetence of the boiler itself, of which the practical strength is only equal to the weakest part thereof.
Matters will only grow better in this regard when owners and managers of steam power come to the con viction that it is necessary to place the compensation of steam engineers high enough to make it an object for men of a better class, that means of men having received a more liberal education, than is the case now in the reat majority of instances.
We mean by a liberal education such a one as is not confined to understanding the manual treatment of a steam engine in making it go, but who understand the scientific principles which lie at the basis of their calling, such as the laws of expansion of steam at dif ferent temperatures, of latent heat, of capacity for hea or specific heat, of combustion and draught, of units of heat, of the comparative value and economy of fuel, the laws of air pressure and the vacuum, etc.

A striking illustration was offered in this respect several years ago, in the explosion of the Staten Island ferryboat Westfield, 1871, while she was lying in he slip. She was crowded with Sunday excursionists, when, a moment before starting, her very large boiler exploded, lifting up her deck, with disastrous result, many persons being killed. At the inquest it was ound that the engineer, who was a colored, illiterate man, advanced from being a stoker to the responsible position he occupied, was entirely responsible for the appalling loss of life. The examination at the inquest revealed the fact that he had not the least idea of the revealed the fact that he had not the least idea of the heard, that he supposed that when he kept the boiler entirely full of water it was all right, etc.

Carpet Electricity.

The exact similarity in conditions attending the repe tition of experiments is a great element of success. One should be very careful before coming to a conclusion that his premises are correct. A striking example of this was recently presented to my notice.
A dentist came into my laboratory the other day and said :
"See here, I can't, for the life of me, understand what is the matter with me. All my patients complain that when I first put an instrument into their mouth it pains them fearfully. I've thought it all over, and have come to the conclusion that my instruments mus be magnetized or bewitched, or I am. I've brough over some of them to have them examined. Just let me show you what I mean. Have you got a sensitive tooth?"
I pointed to a molar then under process of repair He unwrapped some of his instruments, and selecting one, gently inserted it into my open mouth and touched the filling in my tooth. All I felt was the instrument touching the filling. I experienced no pain.
"Good heavens, man!" said he, "what nerve you have. What fortitude. What-"
"Nonsense," I exclaimed, "I didn't feel anything."
"Well," said he, looking puzzled, "you are the first man that hasn't yelled when I touched his tooth since I moved into my new office. I can't understand it."
I told him I would come around to his office in the afternoon and see if I could find out what was the mat ter.

Later in the day I called to see him.
Well, have you got it yet?" he asked, as he walked across the carpet and shook hands with me
"I hadn't one second ago," I answered, "but I have now. Did you notice what happened when you shook hands with me?"
"Nothing but the electricity."
"That's just it. Every time you walk across the floor to your cabinet for an instrument you get a small charge of electricity in your body, and naturally, a oon as you touch the sensitive tooth of the patient the delicate nerve received the charge through your in strument-hence the pain. The reason why I felt no shock in the laboratory was simply because there wa no carpet for you to rub your feet on before you touched my tooth."
Here we see that merely the want of a carpet on the floor altered entirely the conditions for a successfu repetition of an experiment that had apparently no onnection with the presence of a carpet.-Julian A Moses, Electrical Review.

Cart Horse Parade in Reg Parky
The seventh annual parade of the CartHorse Parade Society, London, was held recently in Regent's Park The entries were larger this year than ever before Five hundred and forty-two horses, including 384 singles, 56 pairs, 10 "unicorn" teams, and 4 teams of four; were present.

The Great Tin Mines of Dakota.

During the last four years a small company of gentlemen have privately contributed means to secure and occupy all the available claims for tin mining in the vicinity of Harney Peak, Dakota. They have studiously avoided publicity in the matter until their purchases, which have been very extensive, were complete. They have been greatly aided by the outcry and claptrap of the newspapers to the effect that there were no tin mines in this country worth having. Meantime they have gone ahead with their explorations and searches, and their efforts have been crowned with success. Many rich claims have been secured. A large company has been financed. Some idea of the magnitude of this property and the abundance of the metal may be gathered from the following report of an interview with one of the officers of the com pany given recently in the New York Press.
Lord Thurlow, of London, who was paymaster-general in Gladstone's last cabinet, sailed June 13 on the City of New York. He has recently returned from a visit to the tin mine properties in South Dakota, where the Harney Peak Consolidated Tin Mining and Milling Company, with a capital of $\$ 15,000,000$, of which he is an officer, owns 1,100 claims.
"This country," said Lord Thurlow, " will not need to import any tin two years hence, for our mines will produce enough tin to last for centuries. The producproduce enough tin to last for centuries. The produc-
tion will save $\$ 75,000,000$ a year, which this country is paying for tin plate. This enormous sum will go into paying for tin plate. This enormous su
the hands of the people of this country.
"The company, of which I am the chairman, and in which New York or American capitalists are equally interested, has already built two of the largest and most thoroughly equipped mills in the world. Each has a capacity to produce 500 tons of tin a day, and this will be increased to 3,000 tons daily should necessity demand it.
"Two or three other mills of similar proportions have been planned. We expect to begin to work the two mills already constructed by October 1 , and to put tin on the market in commercial quantities. I have inspected tin-mining properties in various countries, but I never yet saw such resources as I found in Da kota."

The Flame of Burning Nitrogen.

br w. crookes, f.r.s.
Nitrogen is a combustible gas; that is to say, a mixture of nitrogen and oxygen (atmospheric air) will under certain conditions burn with a flame, and production of nitrous and nitric acids. The reason why, when once nitrogen is set on fire, the flame does not spread throughout the whole atmosphere and deluge the world in a sea of nitric acid is that the igniting point of nitrogen is higher than the temperature produced by its combustion, and therefore the flame is not hot enough to set fire to the adjacent gas.
In the experiment shown at the soiree of the Royal Society on June 15, an electric current of 65 volts and 15 amperes, alternating 130 times a second, was passed through the primary of a large induction coil, when an arching flame, consisting chiefly of burning nitrogen, issued from each of the secondary poles, meeting at the center. When once started the poles can be drawn asunder till the flame bridges across 212 mm . When the terminals are more than 46 mm . apart, the flame will not strike across. When alight the flame is easily blown out by the breath, and it can then be relighted by a taper.
In the spectroscope the flame of nitrogen shows no lines, the spectrum being faint and continuous. The temperature is a little higher than that of a good blow pipe flame, easily melting fine platinum wire. The gases rising from a flame have a strong odor of nitrous
acid, and when it is produced in a closed globe, the interior rapidly fills with red gases.
The flame produced by exciting an induction coil by means of an alternating current was first observed by
Mr. Spottiswoode F.R.S.. who described it before the Mr. Spottiswoode, F.R.S., who described it before the Royal Society in 1880. It has lately been exhibited on Siemens Bros., and by Messrs. Swinburne \& Co. It is not known, however, that any chemical explanation of the flame has before now been published.-Chemi cal News.

Effects of Lightning.

M. Boens gives an account in the Belgian medical Bulletin of two young women who were struck by lightning on July 27, 1891, at Nalinnes, Namur, during tor, who treated them continuously for two hours, when signs of returning life were seen, and at three o'clock next morning consciousness of both returned, o'clock next morning consciousness of both returned,
one kejag som well, but the other being left with a profound sciatica. Her tongue was also paralyzed for two months, but both eventually recovered. The moral which M. Boens justly emphasizes is that efforts to revive those struck by lightning should not too soon be given up, as continuous attempts to restore respiration during several hours may result in return of life.

The Turret Ship Miantonomoh.

The recent cruise of the United States steamer Miantonomoh to Annapolis, Md., and return, says the New York Herald, was a success in this, that it brought to light all the good and bad qualities of this type of vessel, and she will now serve as an object lesson in the construction of other ships of her class. One fact seems to have been clearly demonstrated to the thorough satisfaction of all on board, and that is that monitors should not be sent to sea, except so far as is necessary in going from one port to another.
There are two very good reasons for this statementfirst, because of the absolute inability to fight her guns at sea, and second, because of the great discomfort and positive danger to the health of all on board.

It will be remembered from previous accounts of the ship that the muzzle of the guns when leveled are only about five feet above the water line. Now, if the ship were a steady platform, which simply rose and fell with the waves or swell, this would be all right, but such is not the case.
In an ordinary ground swell or moderate sea, such as was encountered going down along the coast, the ship rolled from 10 to 15 degrees, shipping a sea with every roll, which dashed completely over the turrets, and which would have wholly buried the muzzle of the guns if they had been trained level abeam or even at an elevation, filling the guns with water and thus preventing their being fired.
Another reason why the guns cannot be used at sea is that in order to fire them the turrets must be available, which is not the case under the present conditions.
Upo
Upon going to sea four heavy brass chocks are inserted between the turret and the deck around each turret. Then the apron over this space is screwed down tight and all the joints are calked and filled with paraffine and a wooden batten is nailed over all, thus effectually securing the turret both from revolving and from working from side to side. Besides this, heavy wooden port bucklers are put around the chase of the guns over the ports and the space between is thoroughly calked. All these things are absolutely necessary to prevent the berth deck from being flooded, and even they are notsufficient. A considerable length of time is necessary to remove these, and they must all be removed in order to use either the guns or the turrets.

The second reason why the ships of the monitor type should not be sent to sea-the discomfort of all hands-can scarcely be imagined unless it has been seen. Notwithstanding all the efforts that have been made to prevent the water from gaining access to the berth deck, sufficient water gets below to make every place damp or wet and leaves no place for the men to rest below.
Furthermore, all the hatches have to be closed and battened down immediately on leaving smooth water, and the heat from the engine and fire rooms raises the temperature of the turret chambers to from 90° to 100° Fah., making it almost impossible for any one to remain below. The artificial ventilation, although far superior to that on the old monitors, is not sufficient o carry off the hot air and supply its place with fresh cool air from above.
In the turret chambers themselves there are no exhaust ventilators, so that although fresh air is being constantly forced in, it soon becomes as heated as that already there. No one can remain on the spar deck while at sea, as every wave washes completely over the deck, several feet deep, breaking over the turrets and throwing the spray high over the forward bridge. Even while lying at anchor in Chesapeake Bay seas ame aboard, washing over the high hatch combings and necessitating the closing of everything fore and aft. The only place left for the men to stay is the hurricane deck, which being small and the space largely filled up with chests, hatches, ventilators and the smokestack, is very crowded and uncomfortable when nearly 100 men get on it.
But the people of the engineer's force have a much harder time than the deck hands. The temperature of the engine room ranges from 120 to 135 degrees, while that of the fire room is generally about 145 . The ventilation of the fire room is fair, while that of the engine room is almost nothing. The machinists and engineers have to stand on the hot iron platform above the engines in order to control the reversing gear and valves, and there is scarcely room enough above them standing a four hour watch in such a place it is absolutely necessary for the men to have some place to go for rest and fresh air, but, as has been seen, this is very hard to find. Consequently a number of the men have been prostrated and utterly unable to continue their work.
No one questions the ability of the ship to go to sea as far as her seaworthiness is concerned, but it is cer tainly considered useless to subject every one on board to such discomforts, especially when she could never be of any service in a fight at sea.
A number of changes will be recommended which,
hands. Some of these will be to increase the ventila tion by adding more blowers, by cutting a large hatch different parts of the ship.

A Large Projectile Wrecks a Schooner.

The schooner Henry B. Tilton was recently wrecked off the United States Army Ordnance Proving Grounds, at Sandy Hook, by a 575 pound projectile, which went astray after leaving the muzzle of a 10 -in breecb-loading rifled cannon. The projectile struck the vessel on the starboard counter, crashed through her longitudinally as if she were an eggshell, and before the crew realized that the craft had been struck, the water poured in through a great splintered hole in her port bow, where the shot had emerged. Her seams are wide open everywhere, and she now lies on her beam ends a wreck. All hands were saved. The wreck of this vesselpresents a novel illustration of the terribly destructive force of the gun. She was sailing along at a distance of four miles from the shore when the shot struck her. The officers in charge of the gun express ignorance of the affair. They did not see any vessel in front of the gun at the time of firing, and how the shot could have traveled off sidewise to embowel an innocent sailing vessel is more than they can understand.

Population by Color, Sex, and General Nativity,
The distribution of population by color, sex, and general nativity in 1890, by States and Territories, and for the United States as a whole, is given in Census Bulletin No. 194.

The primary results of this first detailed count of population, according to the returns made under the eleventh census, are given as follows:

Aggregate population	62,622 250
Males.	32,067,880
Females.	30,554,370
Native born..	53,372,703
Foreign born	9,249,547
White.	54,983,890
Color	7,638,360

Of the total population returned in 1890, $51 \cdot 21$ per ent are males and $48 \cdot 79$ per cent are females.
The very large excess of males in 1890 is readily ac counted for by the greatly increased number of immigrants who have come to this country since 1880, over three-fifths of the entire number of immigrants being males.
Analyzing the results of the distribution of population according to native and foreign born, it is seen that $14 \cdot 77$ per cent of the population in 1890 are foreign born, as against 13.32 per cent in 1880, and 9.68 per cent in 1850. The native born in 1850 represented 90.32 per cent of the whole population, while in 1890 they represented 85.23 per cent.
The colored element of our population, including Chinese, Japanese, and civilized Indians, as well as persons of African descent, represents 12.20 per cent of the population in 1890 , as against $15 \cdot 69$ per cent in 1850 . The relatively decreased per cent of colored in 1870, a compared with 1860 and also with 1880 , is due to the deficient census of 1870 in the Southern States.

An Alloy Resembling Gold.

This alloy, by the Menden Works, might be substituted for gold, not only because of its color, but also by reason of certain properties that it possesses. It remains unalterable, without any modification of its color, even after having been exposed for a long time to air containing ammoniacal or acid vapors. It can be rolled and worked like gold, and has the aspect of this metal without containing the least particle of it This new alloy is also much less costly than those that are usually employed in place of the precious metals. It consists of copper and antimony in the proportion of about 100 to 6 . It is prepared by adding the desired quantity of antimony to the copper melted and heated to a certain temperature. After the antimony is melted and intimately mixed with the copper, a little charcoal, magnesium, and calcspar is added to the crucible. This flux has the effect of causing the disappearance f a porous structure which the material would not ose without that, and of furnishing a very compact cast metal. The latter can then be rolled, beaten hammer-hardened, and soldered, like gold, and, after being polished, it has the aspect of genuine gold, while its solidity is much greater than that of the latter.Moniteur Scientifique, from the Metallarbeiter.

Height of Auroras.

Experiments made at the Royal Danish Academy have demonstrated approximately the height of the aurora borealis. M. Adam Paulsen, at Godthaab, by means of two theodolites situated four miles apart ound that different aurora displays varied from one to four miles in height. Experiments near Cape Farewel showed the height of different auroras to vary from one to ten.miles. At Spitzenberg the range of height was from one-third to eighteen miles. In some of the earlier experiments in this direction the observers concluded that the height of auroras varied from 90 to 500 miles.

AN IMPROVED BOILER FURNACE
The furnace shown in the accompanying illustration has a novel form of checker brickwork forming flues over the firebox and under the boiler, and is arranged for the discharge of steam in the firebox and under the grate to promote perfect combustion and insure a very high temperature. This improvement has been pat ented by Mr. Walter Hurdley, of Youngstown, Ohio.

HURDLEY'S boiller furnace.

Although only one furnace is shown, any number of ireboxes may be arranged side by side in the brick work, each of the fireboxes having a closed rear end and a semicircular top, the front open end of the firebox discharging into a space whose front portion is closed by the usual front of the boiler, while the top of the space communicates with the brickwork flues, which extend the length of the firebox. Behind the rear wall of the latter is an open space under the boiler, and to the rear of this space is a bridge wall, at the top of which are other similar checker brickwork flues lead ing to the rear of the boiler, whence the gases and products of combustion travel forward in the draught flues of the boiler to the chimney or smokestack. At the front of the furnace, directly above each filling opening, are draught openings closed by suitable dampers, and steam pipes from the boiler, controlled by valves at the side of the ashpit door, are arranged to discharge into the ashpit and firebox as shown. In starting the fire the ashpit doors are open, but when the firebox, which is preferably of metal, has reached a cherry-red heat, the ashpit doors are closed and the upper damper doors opened, at which time also the valves are opened for the discharge of steam under the grate and over the burning fuel. This style of boiler furnace is designed to be very effective for a wide variety of purposes, for use in connection with marine and stationary engines, etc.

A SALT SPRINKLER FOR TABLE USE.
A salt sprinkler designed to obviate the difficulty so frequently experienced in use from the salt becoming damp and caking is shown in the accompanying illus tration. The improvement has been patented by Mr F. N. Dixon, of No. 1611 Brown Street, Philadelphia Pa. As shown in the sectional view, a follower and a spiral spring are contained within the holder. The spring is secured to the bottom and follower respect ively, and operates to force the follower upward, to support the mass of salt, whatever itsquantity, against and in contact with the cap. The cap is permanently swiveled upon the body so as to freely rotate upon it,
having in the form illustrated a circumferential flange engaging a similar flange on the body. The cap may also be provided with small downwardly turned cut ting edges. To operate the device, it is inverted and and giant powders, etc have led to the introduction of the held with one hand, and the cap rotated backward improved method shown in our illustration, which nd forward with the thumb and finger of the cap hand. In such rotation or working the cap perforations and edges exert a positive grinding or shearing action upon the surface of the mass pressed against them, so that each movement of the cap compels a given quantity of salt to drop through the perforations. The bottom is secured to the body by a screw thread, and may be removed, together with the connected spring and follower, to fill the sprinkler.

IMPROVED STEAM WHISTLES.
In the steam whistle shown in Fig. 1 the central stem is done away with, and instead of the usual square top with acorn, is a domeshaped top. The bell or tube is securely fast ened at its lower end to a three-armed prong or spider, the stem of which is threaded to admit of being screwed into the base and there held secure by a jam nut. Owing to this construc tion the lower edge of the bell is always exactly in line with the slot in the base through which the stem escapes, insuring the best results and

DIXON'S SALT HOLDER AND SPRINKLER. a perfect, clear, and loud tone. The bell can be raised and lowered to suit the steam pressure by screwing it up or down, and when properly set is fast ened by the jam nut. It has been proved by practica tests that the prongs to which the bell is fastened do not interfere with the volume or quality of the sound In the combination or fire alarm whistle, shown in ig. 2, a valve is already attached, making it very compact and simple. It is provided with a piston that can be moved up or down within the bell or tube, thus changing the interior length of same and consequently also the sound of the whis tle. When the piston is not operated the whistle

Fig. 1.
impoved steam whistles.
gives but one sound like any ordinary one, but when pulled up or down a series of howling, penetrating ounds is produced. When placed above the roof of a building, an extension rod should be attached to the piston and a rope or wire to the whistle valve lever hese whistles are manufactured by the Lunkenheimer Brass Manufacturing Company, of Cincinnati, O., U S. A., under their own patents.
has been adopted at the Giant Powder Works, Hopat cong, N. J. The nitro-glycerine tank or storehouse it will be seen, is situated some distance from the mix ing houses, five in number. As formerly worked, the liquid was carried by lead piping from the tank house to the several mixing houses, but this method endangered the whole property in case of an explosion taking place at any point, as there was a chance of the piping communicating it to the different places about the works. In erecting a new plant, and in search of a safer method of carrying the nitro-glycerine, this matter was suggested to the Union Wire Rope Tram way Co., 117 Liberty Street, New York, who designed the arrangement shown in the view, the work being pecially devised by Mr. S. A. Cooney, an engineer who has several patents on this method of conveyance. A double wire rope tramway is supported on framed towers, at sufficient height above the ground to allow a man to conveniently take off and put on the carriage the pails containing nitro-glycerine. The tramway is worked from an engine house close to the tank house, as follows: The engineer, or a man for the pur pose, fills the different pails and hangs them on the carriage, which is started on its way to and stops a the first mixing house, the man in charge of which takes off two full pails, replacing them by two empties On signal, the carriage goes on to the second mixing house, where the same operation is performed, and so on until it reaches the last, when all the empties are carried back to the starting point, and the operation is again gone over.
The tramway consists of two $5 / 8$ inch steel wire ropes, supported every 50 feet on brackets attached to the frames. The curved portion of the line, about 40 fee long, is made with two wrought iron rails, the ends pointed and clamped with the ropes in special cast ron brackets to make the line continuous and prevent jars, special guide sheaves being placed at intervals around the curve to carry the hauling rope
The carriage, specially designed for this plant, con ists of two carriers connected by a $3 / 8$ inch rod abov and a bar below on which the pails are suspended

TROLLEY SYSTEM OF CONVEYING NITRO-GLYCERINE-GIANT POWDER WORKS, HOPATCONG, N. J.

Each carrier has two 8-inch rubber-lined sheaves running on alternate ropes, to equalize any jarring and prevent explosions.
The first cost of the tramway, which is about 600 feet long, in comparison with a complete system of lead piping, is very much in favor of the former, which, with its designed immunity from the dangers of explosion, should commend this method to the attention of those engaged in the handling of high explosives.

ERUPTION OF THE VOLCANO OF ETNA.

On Sunday, July 10, an earthquake, followed by an eruption of Mt. Etna, caused considerable damage to the town of Nicolosi, on the south side of the mountain, and eight miles northwest of Catania. The advices show that the stream of molten lava flowing from the show that the stream of molten lava flowing from the
volcano increased in width and volume during several volcano increased in width an
days, being near the crater over fifteen yards wide, and at a distance therefrom dividing into two streams. A large area of cultivated land has been laid waste and great destrucrion has been wrought among the vineyards. The villages of Nicolosi and Belpasso it was thought would duubtless be totally destroyed, and three days after the outbreak over twelve thousand people had left their homes and were encamped in the fields. Vesuvius is now also reported to be unusually active, throwing up lava abundantly.
Th? aspect of Mount Etna and vicinity since its eruption in 1879 is shown in the accompanying illustrations. Thriving cities, with numerous cupolas, are stretched out at the base of the mountain, and numerous villages, with long-pointed steeples, lie scattered over the lower region. These form a vast panorama, and terminate at a confused assemblage of conical hills, which formerly were so many craters. Above these we see rising, immense and majestic, the cone of the volcano, which overtops the clouds and forms the highest point of the island. The cultivated zone of Etna extends beyond $3,900 \mathrm{ft}$. elevation. From this limit vegetation rapidly grows other and more recent lavas, the origin of which can poorer, and, toward an elevation of 6,500 feet, becomes very rare. However, up to the base of the central cone, that is to say, at about 10,000 feet, the vegetable kingdom is still represented by four small plants, whose botanical names are as follows: Robertsia taraxacoides, Artemisia cetnensis, Senecio cetnensis, and Tanacetum vulgare. The slope of Etna is very slight up to an elevation of 3,200 to 4,000 feet, and in general makes an angle of only 15 to 20 degrees with the horizon ; beyond this it rapidly increases, but at 9,500 feet the inclination of the ground is suddenly interrupted by a sort of plain covered with black sand. This is the Piano del lago. At 1,300 feet to the north of this plain rises the cone of the central crater, at the foot of which is the astronomical observatory and the Casa Etnea, a small hotel designed for travelers who make the' ascent of the volcano. The mouth of the crater of Etna is nearly 6,000 feet in circumference, since it was enlarged by about 1,800 feet at the eruption of 1879 . The interior of the crater exhibits the aspect of a large cup filled with scoriæ and lava, among which are interspersed numerous fumaroles. At the bottom of the cup, at a depth of 200 feet, there is seen the aperture of the eruptive channel, which usually has a diameter of about 650 feet.

Mount Etna is situated on a tertiary formation, and is almost entirely enomposed of volcanic materials. On the eastern side of the mountain is a vast depression known under the name of the Valle del Bove, about six and a quarter miles long by three miles wide. Its depth at ome localities is more than

. Central crater (16,800 feet altitude). 2. Astronomical observatory. 3. Plain of the Lake. 4. Montagnola (8,660 feet). 5. La Schiena dell'Asino. 6. Rocks bordering the Valle del Bove. 7. Valle del Bove. 8. Eruption craters of 1852. 9. Crater of 1811. 10. Monte
di Calanna (4,200 feet). 11. Craters of 1879. 12. Valle del Leone. 13. Other craters of 1879. 14. Ancient craters. 15. Casa del Bosco

MAP OF THE UPPER REGIONS OF ETNA

other and more recent lavas, the origin of which can one of the sides of the mountain bursts to give passage to the incandescent matter, there results usually around the principal fracture other radiating fractures which decrease in size as they are prolonged to vary ing distances; and the liquid lava then penetrates these secondary fractures, fills them, and seals them up on solidifying. Thus, by examining the position of these strata and veins, there may be constructed a very extended chronology of the old eruptions.
The eruption of 1879 was considered by Prof. Silvestri, in a report made to the Italian government, to have been in a stage of preparation or partially suppressed development for a period of five years. It proke out May 26, there being craters on the north and broke out May 26, there being craters on the north and
south sides of the mountain, the latter having eight south sides of the mountain, the latter having eigh

rvatory. 3, 3, 3, 3. Roc
5. Village of Nicolosi.
MOUNT ETNA SEEN FROM THE PORT OF CATANIA (SOUTH SIDE),
eruptive mouths, but the stream on the south side of the mountain did but little damage. From the erup tion on the north side, by the evening of May 29, the lava had flowed $61 / 4 \mathrm{miles}$, destroying the bridge of Passo Pisciaro and crossing the postal road between Passo Pisciaro and crossing the postal road between
Randazzo and Linguaglossa. After the evening of Randazzo and Linguaglossa. After the evening of
June 1 the force of the eruption began somewhat to June 1 the force of the eruption began somewhat to abate, and by June 6 it was practically at an end. The lava stream ran nearly seven miles from its source and ultimately stopped 500 yards from the River Al cantara, and about half a mile from the village of Mojo.
At its termination it is 23 feet in breadth and nearly 32 feet in height. The lava. stream entered the bed of the Pisciaro torrent with a velocity of from four to five meters a second, which was reduced to two meters a minute in the lower valley of less inclination of
In seventy-six hours the lava had flowed more than six miles from its source.

New Process for Enamei

 ing Silver Prints. by dr. leo backland.This process gives a better finish to the prints and ren ders these waterproof. Such enameled prints can be easie mounted than by the usua methods, and when being mounted the gloss is not de creased by the application of paste.
Clean glass plates are rubbed in with talcum as for the usual process and then after ward the plates are collodion zed with collodion contain ng 1 per cent gun cotton When the layer of collodion is perfectly dry, the plate is coated a second time with a solution of rubber in benzole This solution is easily made by dissolving 1 ounce of un vulcanized Para rubber in 100 ounces of benzole and strain ing through muslin after complete dissolution of the rub ber. When the India rubber coating is dry the so prepared plate is ready for receiving the print. If the print is on albumen paper, it is soaked in a warm ten per cent solu tion of good gelatin, after which it is applied with its surface on the prepared plate,
softly squeegeed upon it and
then allowed to dry, and when strictly dry it is stripped then allowed to dry,
off in the usual way.
Prints on aristotype paper can be enameled with much less trouble by squeegeeing them simply when wet on the glass plate coated with collodion and rub ber and slipping them off when dry.

A Big Model for the World's Fair
At the World's Fair at Chicago, next year, will be a complete model of the entire plant of the H. C. Frick Coke Company, of Scottdale, Pa. This company employs many million dollars capital in their busi ness, and is the largest of the kind in the world. Th contract for the model has been let to the Jones Bro contract for the Company, of Cincinnati, Ohio, who are experts in the and four thousand dollars. The plant will occupy a space about 20×50 feet, made on scale of one twentieth of an inch to the foot, and will be an exact facsimile of the original, including boilers, en gines, piping, elevated tracks, cupolas, cars and all othe machinery, and will be in operation. The motive pow r , however, will be electri city.

BRICKS are extensively manufactured in Japan for home consumption, but a small quantity has been ex ported as a venture to Vancouver, and should the demand there justify further exportations, bricks could be shipped thither as ballast at nominal rates. Mr. Layard mentions that the wages paid at the largest of these fac tories range from 20 to 25 cents per day for men, and from 10 to 15 cents per day for women

GREAT MINERAL WATER BATHS.

There are scattered over this country a large number of natural mineral springs whose waters vary, both as to temperature and constituents, to such an extent
as to adapt them as curatives to almost every disease human flesh is heir to, and it is a curious fact that we find in the United States springs that correspond in almost every particular to the noted springs in Europe. We also have many artesian wells yielding mineral waters differing widely in chemical composi tion and varying in temperature from 47° to 184°. Some of these wells were bored with the expectation of finding mineral waters, but the most of them were put down for the purpose of obtaining pure water petroleum or gas.
At Stockton, Cal., there is an artesian well 1,700 feet deep, from which flow 2,250 gallons of water a minute. In addition to this large flow of water, the well yields 75,000 feet of illuminating gas daily. The well was bored for natural gas, but the water, on account of its pleasant temperature and medicinal properties, was found to have great value for the purposes to which it is applied.
The water issues from the well at a temperature of
6° Fah., and supplies a miniature lake varying in 86° Fah., and supplies a miniature lake varying in is about 400 feet long and 80 feet wide, is fitted up as an immense swimming bath and is surrounded by 115 dressing rooms. The water being continually renewed by the flow from the well, the temperature of the lake is maintained between 80° and 86°. Bathers at this place derive great benefit from baths in this water, and
draughts of it prove beneficial. Analysis shows it draughts of it prove beneficial. Analysis shows it
to be impregnated with common salt, soda, magnesia, iron, and sulphur. Fish are often seen jumping from the surface of the lake. Several varieties have been caught there by our own artist, who made the accompanying sketches. It is supposed that the fish find their way into the water of the lake through the over flow.

Our engraving shows the separator by means of which the water flowing from the well is separated from the gas and directed to the lake. The gas is con-
veyed to a gasometer, from which it is distributed for veyed to a gasometer, from which it is distributed for
lighting and heating purposes. A second well is being drilled, but up to the present time the only yield from this well is gas. It is thought that the absence of water is owing to its proximity to the first well. However, the work is being pushed still further, with the expectation of finally striking a good flow of water.
When the out of door temperature is too low to permit of bathing in comfort, bathers resort to the covered baths, the air of which is heated by a jet of natural gas burning freely in the room, as shown in one of the engravings.
It is stated that as many as 1,000 bathers can be accommodated daily at this place. In addition to the large bath and the inclosed baths, there are twelve private bath rooms containing large tubs, and other rooms containing bath tubs for children too small to be taken into the lake.
This place has become a great resort, not only of the citizens of Stockton and the surrounding country, but of people from distant places who visit the place as much for pleasure as for the beneficial effects of the mineral water. These baths are probably the most popular inland resort on the Pacific coast.

Some Strange Plants.

The line between the vegetable and animal kingdoms is very narrowly drawn. Indeed, as all naturalists are aware, there are certain forms of lowly life which it is difficult to assign to either kingdom, presenting as they do features which, taken singly, might cause the on to be identified now with one and now with the other.
But even in more highly developed forms there are instances of plants whose carnivorous habits seem to suggest some survival of a former animal instinct, or at least some strange adaptation to circumstances of a nature entirely opposed to those by which the great bulk of plant life is affected.
The Mediterranean Naturalist, published at Malta, quotes from the Liverpool Post the following description of an adventure that befell a naturalist who has recently returned from Central America. This gentle man, after two years' study of the botany of tha region, has brought with him a story which, if it be anything more than a " traveler's tale," may well make us thankful that the woods of our temperate clime contain nothing more inimical to the integrity of the human form than burrs and briars. He tells of a strange plant which he found in one of the swamps surrounding the Nicaragua Lake.
While hunting for specimens he heard his dog cry out, as if in agony, from a distance. Running to the spot whence the animal's cries came, Mr. Dunstan
found him enveloped in a perfect network of what found him enveloped in a perfect network of what
seemed to be a fine, rope-like tissue of roots and fibers. The plant or vine seemed composed entirely of bare, interlacing stems, resembling more than anything else the branches of a weeping willow denuded of its
foliage, but of a dark, nearly black hue, and covered with a thick, viscid gum that exuded from the pores.

Drawing his knife, Mr. Dunstan attempted to cut the poor beast free, but it was with the very greatest difficulty that he managed to sever the fleshy muscular fibers of the plant. When the dog was extricated
from the coils of the plant, Mr. Dunstan saw to his horror that its body was bloodstained, while the skin appeared to be actually sucked or puckered in spots, and the animal staggered as if from exhaustion. In cutting the vine the twigs curled like living, sinuous
fingers about Mr. Dunstan's hand, and it required no slight force to free the member from their clinging grasp, which left the flesh red and blistered. The tree, it seems, is well known to the natives, who relate many stories of its death-dealing powers. Its appetite is voracious and insatiable, and in five minutes it will suck the nourishment from a large lump of meat, rejecting the carcass as a spider does that of a used-up fly.
Another strange plant that has lately been discov red flourishes in masses, resembling huge gray bowlders from five to ten feet across, covered with lishens and grass, seen in the lowlands of the Falk-
land Islands, and each one proves to be a single umbelliferous plant, a specimen of balsam bog (Bolax glebaria). These have grown so slowly, and have been o compressed in branching, that they are almost as hard as the rocks they resemble. The circlets of the leaves and leaf buds are seen as tiny hexagonal markings, terminating in a multitude of stems, which have been steadily growing for centuries. The plant mits a pleasant odor in the warm sunshine, and the op exudes an astringent gum that is prized by the shepherds.

Lac Insects in the United States.*

Several kinds of plants have recently been discovered in the United States which are infested by lac insects, notably the "stink weed" and a certain variety of acacia. These flourish abundantly from southern Utah to northern Mexico and from the Colorado Desert to western Texas. There is no reason why these valuable insects should not be gathered and put to very profit vation, the production of them could be rendered so large as to make Americans independent of foreign sup plies of lac. Artificial propagation is resorted to abroad although the bulk of the product is gathered from the jungles. Its employment is most familiar in the lac quered ware manufactured in the East, though it is atilized for many other purposes, notably in the composition of sealing wax and varnishes.
The "lac" of commerce is a resinous incrustation resulting from punctures of the twigs and branches of ertain kinds of trees by insects. Its color varies from deep red to bright orange, and it occurs in brittle frag ments. The female insects utilize it for the purpose of protecting their progeny. As soon as each one has covered herself with the secretion, which serves as a sort of cocoon, she lays her eggs and dies. The young, upon being hatched, make their way out through the crust, and seek green and juicy spots on the bark, inserting their probosces and beginning to feed at once. They never wander from the branch where they first came into being. The latter, after affording nourishment to millions, finally withers and dies. Thus the extinction of the lac-making species would soon come about were it not for the fact that other insects and birds carry them about, planting new colonies in fresh places.
The lac insects are most plentiful in India, but they re also found in Siam, Ceylon, and other countries Siamese lac is considered the best. Certain provinces of India yield thousands of tons of "stick lac" annually. The right of collecting the lac in some parts is rented out by the government to companies, but the gatherers of lac are mostly jungle tribes. They obtain the product in the wild forests, sell it to small dealers, who in their turn dispose of it to big merchants. Much is done in the way of propagating the insects artificially in the central provinces of India. For this purpose,
nurseries of the proper kinds of trees, such as the insects naturally feed upon, are formed. At the right season, when the larvæ are about to be hatched, twigs bearing the incrustations are cut in the woods and tied with bits of grass to the upper branches of the trees in the nursery. The insects are thus transplanted to nursery trees, where they rapidly multiply and form the precious lac. At regular intervals the twigs bear ing the lac are cut loff-this process of pruning en-
couraging the development of fresh twigs for insects to feed upon.
The crude lac on trees is called "stick lac." In manufacturing it the first process is to strip the twigs of the incrustation by passing them under rollers. The wood is rejected and the separated lac is ground up by rolling into a coarse powder. In this form it is put into large tubs half full of water, in which it is stamped and rodden by coolies, who get into the tubs and do the work with their feet. The water is changed repeatedly this performance being kept up until it comes off en
tirely clear. Then the lac is dried, being now tirely clear. Then the lac is dried, being now desigton bags. Two men take one of these bags containing
lac by the ends and hold it in front of a charcoal fur nace, twisting it the while. The roasting melts the lac and the twisting causes it to exude through the cloth and drop into a trough below. From the trough it is dipped out with a wooden spoon and skillfully spread over a metal cylinder in such a manner that, cooling and hardening immediately, it is formed into thin sheets. These sheets are the shellac of comtherce.

Forbidden by Law to Use Sea Water.
One of the curious ways the French government has or obtaining its revenue is told by Edmund Yates in the New York Tribune
In confirmation of Mr. Yates' story, one of the editors of this paper had like experience on the shore of the Mediterranean some years ago.
The doctor who was in attendance on a member of the writer's family desired his patient to have sea water baths daily at the hotel. But before the attendant dare to dip even a pail of water from the sea a permit dare to dip even a pail of water from the sea a permit
from the prefect of the police had to be obtained, and rom the prefect of the police had to be obtained, and to ge
A well known English public man, writes Mr. Yates, member of a former administration, staying in one of
the many quiet and pretty villages on the Riviera, the the many quiet and pretty villages on the Riviera, the garden of his temporary home running down to the sea, on a recent morning, so the story runs, wished to vary his usual bedroom bath by substitutingsalt water for fresh, and asked that a pailful be fetched for him. To his intense amazement he was informed that this could not be done without special permission from the civil power. There was the Mediterranean stretching broadly before his bedroom window, countless miles from east to west, and away again toward Corsica in the south as far as the eye could reach, and at the end of the garden, mind you, and yet as much of it as would fill an ordinary pail must not be taken from it. It was too absurd for belief. It turned out to be quite true, however. Not a servant nor a villager could be induced to draw a few quarts out of the sea for fear of the penalties which would follow, and in the end the official permission of the mayor of the village had to be formally sought and granted before the English politician could have a salt water sitz bath. The tax on salt was at the root of this anomaly, and the stringent restriction was to prevent the natives from boiling down sea water and making salt for themselves.

Patent Kights Cannot be Taxed.

Judge McPherson, of the Pennsylvania Supreme Court, has handed down an opinion holding that the Westinghouse Electric and Manufacturing Company, notwithstanding the varied powers conferred by its charter, is nevertheless exclusively for manufacturing purposes. He discusses at great length the patent right feature, which he says " presents a question of great importance which has not been decided by any court of last resort, so far as we are aware, and which deserves and has received our consideration." He sustains the contention of the company's counsel, and holds that the right to tax patent rights does not exist in the State, because "as a tax upon the right itself we think it cannot possibly be supported, because it restricts and interferes with a right granted by Congress in the exercise of power exclusively committed to the government of the United States by the federal constitution. The tax is not only derogatory from the dignity but subversive of the powers of the government and repugnant to its paramount sovereignty."
The court expressly states, however, that the opinion is restricted to the intangible right existing in the patents, and does not extend to tangible articles manufactured under patent rights. The judgment in each case is wholly in favor of the company. The amount involved in the Westinghouse case was $\$ 8,839.90$ for 1888 ; $\$ 14,694.46$ for 1889 ; and $\$ 16,739.57$ for 1890.

Counting Coins by Electricity.

In the London Mint, it is stated in the master's report just published, a new counting machine for telling bronze coin has. been erected in the bronze store. It was designed by Messrs. Maudslay, Sons \& Field, Limited. The machine has four distinct sets of counting apparatus, each of which can be worked independently of the others, and when all four are in full work upward of 3,000 pence can be counted per minute. The coin to be told is raised to the level of two tables placed on a platform by a lift worked by an electric motor, which also drives the counting machines. A pair of these machines is fed from each of the two tables, the coins passing from the table down an inclined iron plate forming a flat hopper, from which they issue in single file through a channel of anpropriate width. They are then gripped by a pair of India rubber driving wheels, which force the coins past the rim of a thin disk provided with recesses in its circumference to fit the circular edges of the coins. As the disk is thus made to revolve, the coins are pushed forward, falling into a bag placed to receive them, and continue to advance until the counting wheel is automatically stopped and the bag containing the coins is removed.

CYRUS W. FIELD.

The successful laying of the Atlantic cable marked great step in modern progress, and with that event is indissolubly linked the name of Cyrus W. Field, who died at his summer home, Ardsley, near Dobbs Ferry, N. Y., on July 12, in his seventy-third year. He had been lying in a critical condition for ten days, subject to violent delirious spells, each one of which threatened to end his life, and through which he was carried only by a wonderful vitality. At the time of his death there were present his three brothers, David Dudley Field, Rev. Henry M. Field, Justice Stephen J. Field, of the United States Supreme Court.
Cyrus West Field was born in Stockbridge, Mass., Nov. 30, 1819, his father, David Dudley Field, being a Congregational clergyman. Cyrus Field's elder brothers, David Dudley and Stephen Johnson, were sent to Williams College, but the father was unable to do the same for him. When he was 15 years old he came to New York, where his brother, David Dudley, already in practice as a lawyer, got for him a clerkship in A. T. Stewart's dry goods store, where he worked three years, beginning at $\$ 1$ per week, being advanced to $\$ 2$ per week the second year and $\$ 4$ the third year. At the end of his term of apprenticeship he went into business for himself as a junk dealer and paper maker
In spite of one failure he made enough in twelve years to be able to retire from business. He was 33 years old when he did this When he was 21 he had married Miss Mary Bryan Stone, of Guil ford, Conn., who died only a few days ago, and by whom he had six children.
In 1853, a few months after he had retired from business for life, as he had supposed, he became interested in the subject of submarine telegraphy. It was brought to his attention by a telegraph operator named Gisborne, who had secured a charter from the Newfoundland Legislature for a cable between St . Johns and New York. A cable was laid across the Gulf of St. Lawrence after great difficulties. Mr. Field then induced Peter Cooper, Moses Taylor, Marshall O. Roberts, and Chandler White to join him in the enterprise. A company was formed under the title of the New York, Newfoundland and London Telegraph Company. It was thirteen years after this before any results worth speaking of were obtained. This was the most remarkable period of his life. He bore up against rebuffs of all kinds and financial disaster which would have easily subdued most men. He made fifty journeys across the Atlantic on behalf of his scheme. A few great men encouraged him. Mr. Thackeray and John Bright were among them. In this country he found the reluctance of the investing public even greater than in England. After a long series of dismal failures a cable was laid in 1858. Two ships, one coming from Newfoundland and the otherfrom Ireland, met and spliced the ends together. Messages were sent over the cable for a few weeks, and then it became useless.
Undaunted by this failure, Mr. Field again went to England in 1859 to make preparations for another attempt to lay the cable. Mr. Field's company had a nominal capital of $\$ 1,750,000$, representing 350 shares of $\$ 5,000$ each. Mr. Field himself subscribed $\$ 440,000$. Great Britain granted an annual subsidy of $\$ 70,000$ and the United States an annual subsidy of $\$ 70,000$ for twenty-five years. Both governments granted the use of ships of war in laying the cable.
In 1865 the Great Eastern started to lay the cable. When the cable had been laid 1,200 miles from Valentia, and only 600 more remained between it and Heart's Content, it was broken by a sudden lurch of the vessel and sank two miles and a half into the ocean. Repeated attempts to bring the ends of the cable to the surface failed. The enterprise was abandoned for that year, butin the summer of 1866 it was resumed. All honor was given Mr. Field after that notable July 27, 1866, when the feat was finished. Congress voted him a gold medal and the thanks of the country. John Bright, in Parliament, called him "the Columbus of modern times." The Paris Exposition in 1867 gave him the Grand Medal. Other marks of appreciation were the thanks of New York, with the freedom of the city and a gold snuff box; the thanks of the Chamber of Commerce of New York,
the thanks of the American Chamber of Commerce of Liverpool, with a gold medal ; a decoration from King Victor Emanuel, of Italy; and a silver service from George Peabody
Mr. Field himself, after the success of the cable, thus touchingly told of his personal experiences: "It has been a long, hard struggle-nearly thirteen years of anxious watching and ceaseless toil. Often my heart has been ready to sink. Many times, when wandering in the forests of Newfoundland, in the pelting rain, or on the decks of ships, on dark nights-alone and far from home-I have almost accused myself of madness and folly to sacrifice the peace of my family and all the hopes of life for what might prove after all but a dream. I have seen my companions, one and another, falling by my side, and feared that I, too, might not live to see the end. And yet one hope has led me on, and I have prayed that I might not taste of death till this work was accomplished. That prayer is answered and now, beyond all acknowledgments to men, is the feeling of gratitude to Almighty God."
Ten years later, in 1876, when Mr. Field was in possession of an ample fortune, and had achieved a posi tion with which most men would have been content

CYRUS WEST FIELD.
wide extremes of fortune as Cyrus W. Field passed through. From a most humble beginning his course was a constant battle, persistently and pluckily fought, with far more than the ordinary number of reverses, till he had attained the highest honors and the greatest worldly success. He was most happily married, and for half a century had an almost ideally perfect home, but the last days of his life were inexpressibly saddened by the affliction which came to him through his son's business downfall and mental aberration. He had earned and enjoyed the highest distinctions, and had experienced the severest reverses and the most cruel blows of misfortune, but he never lost his self-poise and to the very last his spirit was brave and resolute.

End of a Long-Contested Patent office Case.
The Commissioner of Patents has decided a long standing controversy between Thomas A. Edison and Joseph W. Swan, in favor of the latter. The matter in contention was as to the priority of right to a patent for an electric light carbon for incandescent lamps. The dispute had been pending since 1881.
Swan laid claim to having invented the parchmentized paper in March, 1880. He filed his application in April following, and the patent was issued in October following. Edison did not file his application until May, 1881, but he said that he had made and used the invention as early as 1879 . Edison asserted his claim under the provision of law which entitles the inventor to his product as soon as he discovers it, and not from the date of his application for a patent. In 1881 Edison filed the following issues of interference :
"1. A carbon formed from a straight strip of cardboard paper or parchment paper, and bent to the form of an arch, hoop. or loop, and carbonized by heat while in a bent condition.
"2. A carbon for an electric lamp made of the carbonized parchment paper."
On these testimony was taken on both sides, and for a time a spirited legal battle was waged. The Westinghouse people took an active hand, for at that time they thought that the parchmentized paper would continue to be of invaluable profit to them. But electrical genius was too fertile to stop short at parchmentized paper as the best material for incandescent lamps, and in a year or two there were a half dozen new patents that were considered superior to it Since that time the case has lagged, not being considered of any material being considered

The Diameter of Fulgurites.

When a bolt of lightning strikes a bed of sand, says an exchange, it plunges downward into the sand for a distance, less or greater, transforming simultaneously into glass the silica in the material through which it passes. Thus, by its great heat, it forms at once a glass tube of precisely its own size. Now and he became interested in the plan of supplying New \mid then such a tube is found and dug up. Fulgurites have York City with rapid transit by means of the elevated been followed into the sand by excavations for nearly railroad system. Dr. Gilbert had been for some time previously pushing this scheme, and to his efforts were due the construction of the first portion of the present ystem, in Ninth Avenue. But it was not till Mr Field took hold of the enterprise that anybody realized that this method of rapid transit would ever amount to anything. He interested Samuel J. Tilden and other capitalists in the undertaking, and the building of the present main lines of elevated railway from the Battery to the Harlem River rapidly followed. This method of transportation has proved a great boon to New York City, and the stock which Mr. Field originally bought for $\$ 14$ a share went up to $\$ 172$ a share Mr. Field afterward lost a considerable part of his for tune by the manipulation of prominent Wall Street operators in the elevated railway stocks, and the stratagems employed in the management of the property and combinations of different interests. H inally retired from business in the summer of 1887 although he still remained a special partner in the banking and brokerage business of his son, Edward M. Field. The disastrous failure of this house last year, and the subsequent confinement of the son in an
insane asylum, where he was at the time of his father's death, undoubtedly had much to do with hastening the death of the father.
The lives of but few men afford illustrations of such cess.

INEXPENSIVE ELECTRIC MOTORS.

We are pleased to notice that there is one concern in this country having sufficient enterprise, and confidence in an appreciative public, to construct a line of small electric motors which are electrically correct, mechanically perfect, and well worth the price asked for them. One style sells for $\$ 1$, another for $\$ 1.50$. Both are complete with battery and chemicals for charging the same.
Fig. 1 shows the dollar motor, the battery being inclosed in the base; Fig. 2 shows the dollar and fifty cents motor, which is provided with two cells of battery in the base. Both of these motors are furnished with Siemens H-armatures, with adjustable commutator brushes, and with field magnets regularly wound and connected up in series with the armature.
In the motor shown in Fig. 1, the field magnet consists of a pair of polar projections formed integrally with the magnet core and a single bobbin formed of 27 feet No. 18 wire, A. M. W. G., wound on the core. The armature is $11 / 2$ inches in diameter, and the end pieces or polar extremities are $5 / 8$ of an inch wide and $7 / 8$ inch long. The portions on opposite sides of the armature shaft which receive the armature winding are which receive the armature winding are
$\frac{1}{3} \frac{1}{2}$ inch in diameter and $\frac{7}{16}$ inch long. The $\frac{1}{3} \frac{1}{2}$ inch in diameter and $\frac{7}{16}$ inch long. The
winding of the armature consists of 15 feet winding of the armature consists of 15 feet
of No. 22 wire, which is wound on the core of No. 22 wire, which is wound on the core
after the manner of a straight electro-magnet, and the extremities of the wire are con nected with a two-part commutator mounted ou the armature shaft. The commutator is formed of a cylindrical wooden core with two semicircular pieces of copper attached to opposite sides thereof by clips projecting from the edges of the copper pieces and bent into the concaved ends of the wooden core. The commutator brushes consist of two copper springs looped at their outer ends and pivoted on wires running through the spool, the springs being pressed toward each other and into contact with the commutator cylinder by a rubber band surrounding both of the springs.
The battery in the base of the motor consists of a copper pan provided with a central rivet extending upwardly and sur rounded by a piece of rubber tubing, a piece of thick loose felt and a zinc disk resting upon the felt, but out of contact with the pan and central rivet. To the bottom of the wooden base which forms the cover of the battery are attached two copper springs, one of which rests upon the zinc plate and the other upon the end of the rivet, thus establishing an electric connection between the two poles of the battery. One of these springs is connected with one terminal of the field magnet, the other terminal of which is connected with one of the pivotal wires of the commutator spring; the other pivotal wire is connected with the other spring. The battery is charged by placing under the felt some powdered sulphate of copper and upon the top of the felt a little sulphate of zinc, then filling the cell up with water so as to immerse the zinc. The battery thus charged is sufficient to run the motor for two or three hours. The motor, however, is capable of withstanding the current of a much larger battery, and if connected with such a battery it might do a considerable amount of useful work.
The motor shown in Figs. 4, 5 and 6 has a field magnet with double arms which are oblong in cross section and are wound in the regular way. The armature is of the Siemens H pattern, of small diameter but of considerable length. The commutator is like that already described. The field magnet is wound with 64 feet of No. 25 magnet wire, 32 feet being wound on each arm of the magnet. The armature winding consists of 29 feet of No. 31 magnet wire, forming 100 convolutions. The central part or core of the armature is $\frac{5}{16}$ inch wide, $11 / 2$ inch long and $\frac{: 3}{16}$ inch thick. The battery is a double one, and the under surface of the base of the motor (which is of insulating material) carries a spring which connects a copper plate at the bottom of one of the cells with a zinc plate at the top of the
other cell, and other springs are provided for estab- useful purpose in every family where young people lishing connection between the copper and zinc plates and those that are older are to be instructed and with the binding posts on the motor base, the latter amused. These motors could be used to considerable being connected with the armature and field magnet as in the other case. The double cells in which the elec trodes are placed is made of insulating acid-proof material, and the copper plate which lies at the bottom advantage in every school, however small or obscure, and certainly the price would be no bar to the estab lishment of an electrical plant in any school without regard to the condition of the treasury. These little motors are made by the Electro Novelty Company, of Boston.

ONE DOLLAR ELECTRIC MOTOR.

Isatine.

Isatine, called also artificial indigo, is a dark blue violet liquid; it is destined, on account of its low price and the ease with which it is used, to play a very important part in dyeing vegetable fibers.
Isatine can replace advantageously those colors which have been used to top natural indigo upon piece goods and yarns, and will give more or less heavy shades as desired. The shades thus obtained resist the action of the light, also alkalies and acids, and are remarkable for the ease with which they can be fixed upon vegetable fibers. The color can be diluted with more or less hot water according to the depth of shade required. The liquid can be applied without mordant; it is, however, preferable to add a little alum or other alumina salt, in order that the shade may be faster and more regular.
For topping vat blues upon pieces or yarn the dye stuff may be used to great ad vantage. In its use the material is first dyed in a vat, is next treated with a mordant of alum or acetate of alumina and nitrate of iron, and finally dyed in a more or less concentrated color bath, varying also the temperature according to the shade desired. The color fixes better upon the fiber if the yarn or pieces bottomed with indigo are treated directly with a mordant of alum and nitrate of iron instead of souring with an acid. The strength of the mordant should be regulated according to the depth of the vat blue. In fact, the lime should be neutralized by the mordant; if the latter is too strong, the color is fixed too slowly, and there is a loss of coloring matter, but if too weak, the color goes on too rapidly and unevenly. To avoid these two difficulties it is very important to observe exact proportions, especially for
of each cell is furnished with an insulated rivet extending upward through a hole in the zinc plate.
The exciting material is carried in a blotting paper pad, shown in Fig. 6, one such pad being placed in each cell between the copper and zinc plates. The pad consists of three thicknesses of blotting paper fastened together by a row of stitching near the outer edge. The space between the middle and lower pieces of blotting paper is filled with pulverized copper sulphate, the space between the middle and the upper pieces of blotting paper is filled with zinc sulphate

INEXPENSIVE SIEMENS ELECTRIC MOTOR. water.
hght shades. For dyeing cotton and linen yarns, afte boiling them out, they should be put in a lukewarm and weak color bath for light shades, or hot and strong bath for dark shades, and to the bath should be added alum or acetate of alumina in the proportion of 1 pound of alum for 200 pounds of yarn; finally rinse with

The nitrate and the pyrolignite of iron are the proper mordants for dark shades; these shades can be blued with soda, potash, soap, etc. Sumach can be placed advantageously on the bottom. Verdigris added to the color bath gives a more intense blue, which dark ens at the end of the dye ing by contact with the air An addition of aniline violet or fuchsine gives beau tiful shades of dark violet which are fast. A large use for the color is for dyeing fast blacks. Logwood and quercitron can then be used in connection with the color.-Indu.strie Textile ; Textile Record.

Treatment of Erysipelas.

 Schneider (Centralblat fur Chirurgie, No. 1518, 1892) states that he has employed Sachs' treat ment for erysipelas with almost invariable success. This consists in applying beyond the involved areas a ten per cent ichthyol collodion mixture. If the extremity is involved, this collodion is spread around the limb above the limit of the disease, forming a band about twice the breadth of the hand. It should be put on in a layer All that is necessary to start the battery is to place so thick that after drying it presents an appearance as hese pads in the cells and pour in sufficient water o saturate them and effect a partial solution of the salts contained in the pad. A dozen or so of such pads accompany each motor and an extra supply can e purchased for a small price.These little machines are safe and convenient, they illustrate many electrical principles and will serve
though the limb were encircled with a broad bandage. In nearly all cases, when the inflammation reached the border of this collodion layer, it ceases to spread. Improvement follows in two or three days, the temperature drops, and symptoms rapidly subside.
Schneider believes that collodion without ichthyol is as efficacious as the mixture suggested by Sachs,

A VISIT TO CHALCEDONY PARK, ARIZONA. by h. c. hover.
Twenty years agoa miner who had been prospecting in Arizona gave me an oblong block of peculiarly marked agate. After letting friends cut off a dozen pairs of sleeve buttons from it, I had the rest of the block polished as a cabinet specimen. It was evidently a kind of petrified wood, and the donor told me that there were immense quantities of it in the region where he had been exploring. That same region is now known as the Chalcedony Park, and was mentioned to me by the railroad officials as being one of the most extraordinary of the many remarkable localities along the Santa Fe route. Holbrook was the place where I was told to leave the cars and take a stage for the park. But there was no stage, and the sand storm that was raging at the time was such as no man who valued his comfort and safety was willing to encounter. Corrizo was somewhat nearer the park, but it was a mere watering station, with no houses nor conveyances. On stating the case to the conductor of the fast California ex press, he kindly relaxed his rules and stopped his solid train of Pullman cars at " whistling post 233 " in the midst of the sage brush, and just at sunset Pointing to a windmill near the horizon, he said "That is Adam Hanna's ranch, the only house with in ten miles. May be you

PETRIFIED LOGS-CHALCEDONY PARK, ARIZONA.

No log, nor fragment, is limited to a single kind of gem. Many are massive mosaics of all the kind named above. The material breaks pretty easily into cubical forms, but it is extremely hard, and takes a brilliant and durable polish.
Under a magnifying glass the cellular structure is plainly visible, and experts assure us that the ancient forest was made up of trees analogous to our pines and cedars. The region is decidedly volcanic, lava bed and extinct craters being in sight in every direction Some catastrophe doubtless felled the "forest prime val," which was subsequently buried in volcanic ashes. Floods of hot siliciou waters were poured ove the ashes, possibly from geysers. The wood became water-soaked, and gradu ally the silica took its place and shape. The pure silica, as Mr. Kunz sug gests, would form the lim gests, would form the lim
pid quartz, while the rich colors of red, brown, yel low, and purple would be due to ironand manganes held in solution. I found one block of wood that had changed to solid iron Spurring my horse from the valley to the summi of the mesa, mainly formed of light gray sandstone, followed a trail to its fur ther side, where it is cut by a small canyon abou fifty feet deep. And her is the Agate Bridge, th most wonderful object o its kind in existence. This unique bridge is simply a huge trunk spanning the canyon where it is sixt feet wide. The trunk it can get a horse there; and if not, you can foot it in the morning." The train unbroken, from one hundred to one hundred and fifty' self is a hundred feet long, and tapers down from rolled on and left me and my kodak alone in the wil- feet. The peculiarity already hinted at is that these a thickness of five feet to a diameter of thre derness.
After proceeding for about a mile the banks of an if the work had been done by a cross-cut saw. The arroya were reached, usually dry as a tinder box, but lengths varyfrom disks like cart wheels to logs twenty now flooded by melting snow. The stream seemed to or thirty feet long, or longer. Twigs are found an inch be a moving quicksand, and varied in width from through, and trunks ten feet thick. They lie at every forty to two hundred feet. The ranch was on the angle; parallel to each other, and at right angles other side of the stream ; but my halloo brought out singly and in great groups; down in gulleys and perched the inmates, who directed me to a pile of drift wood, like cannon on hill tops.
as the only means of crossing. Why Mr. Hanna does And all these myriads of trunks, stumps, logs, not occupy higher ground, near the railroad, and further his own interests, as well as those of tourists, by making regular trips to the park, was a matter not fully made clear.
been known variety. Those that remain intact have
The next morning, after an exciting episode, being black. But Time's relentless ax aided by the reo nothing less than an attack on the lady of the ranch logist's hammer, has made havoc with so many of back, for my destination. It was an easy trail, and the distance did not exceed seven miles. But it was a dreary ride over mesas and arroyas, with occasional glimpses of distant mountains. From the very start the road was lined by specimens of agatized wood equal to the one I had been guarding for so many years. Now and then a petrified log, or solitary stump, were harbingers of what was to be seen further on. The term "park" is a misnomer: for there is no natural park here, nor has the hand of man done anything but to shatter the marvelous relics of dateless antiquity. The people of the vicinity always speak of it as "the Petrified Forest." But that again is misleading; for there is no forest, whatever there may have been fifty centuries ago. It certainly seems as if the place
ought to be made a national park, and should be both better protected and more easy of access. As it is, the enchanted spot lies at the mercy of vandals, the only precaution against spoliation being a rail road rule against shipping specimens from it in bulk.
How shall the Chalcedony Park be described? At first one gets the impression that it is a small affair, of perhaps fifty acres. Then he says that it must be a hundred. And after riding over its amazing ruins for many hours in succession, he concludes that the area includes a thousand acres; and finally he hardly ques
tions the bold estimate of Mr. C. F. Lummis that the extensive forest now hardened into stone formerly covered "hundreds of square miles;" and accepts without dissent the assertion of Mr. G. F. Kunz, tha there may here be seen at a glance a million tons of precious stones. A matter-of-fact visitor might say that the scene reminded him of a vast logging camp where the lumbermen had tossed the huge logs from their sleds at random, and then had gone away, leaving them to become rain-soaked and moss-grown. The trees when standing were fully two hundred feet high
for even now their prostrate trunks measure, when colors of rea, brown, yel ade up of agates, jaspe eet. Its entire mass is made up of agates, jaspers, and other precious materials. At a point two-third by violence I could not determine. At the bottom of he canyon is a pool resorted to by the cattle of the plains, and around it grow the only living trees to be plains, and aro een for miles
The task of selecting specimens from a million tons of gems is less easy than it is agreeable. Each crystal or moss agate, or amethyst, or onyx, seems most de sirable till it lies in your pocket or saddle pouch, and then others assert their superiority. At last my load was as heavy as could be managed on horseback. With reluctance I left the enchanted forest, made my way back to Hanna's ranch, crossed the perilous arroya lagged an approaching train, gained permission to take my sackful of treas ures on board, and sped on my journey, convinced that whatever marvel may have existed in the days of the Arabian Nights' entertainments none in these more mod ern times could rival, in its way, the petrified fores of Arizona.
Attempts have been made, to a limited degree to introduce agatized wood for ornamentation. The material, however, is so extremely hard as to re quire special machinery for cutting and polishing and we do not know of any company that has un dertaken this work on large scale except the Drake Company, of Sioux Falls, Dak., specimens o whose work are on exhibi tion at Tiffany's, in New York City. The largest of these is a block 36 inche in height, 41×34 inche diameter, and weighing $2 \cdot 1$
fragments, from rocks like bowlders down to chip and minute splinters, that show their brilliant colors under the fierce Arizona sun with kaleidoscopic effect. At every footfall you tread on gems, some of which might grace a ducal coronet, while the most plain and least attractive would be worthy of an honored place in the finest cabinet. There are no rubies, sapphires or diamonds here (as has been incorrectly reported), jasper chaleedon abounds, and the red and yellow the carnelian, and every imaginable variety of agate
tons. Its entire top is beautifully polished, showing the many kinds of gems of which it is composed. The Indian name for agatized wood is "Chinarump." Fo centuries the aborigines have resorted to the Petri fied Forest for materials from which to make the precious arrow tips so greatly admired by collectors.

The dynamo is replacing the battery to such an extent in telegraphy that its use will, it is thought be universal in a few years. It is both cheaper and more efficient

The Great Suspension Bridge be

We are indebted to Charles C. Martin, chief engineer and superintendent of the great bridge, for the following :
details of construction.
Construction commenced January 3, 1870
Size of Brooklyn caisson, 168×102 feet.
Size of New York caisson, 172×102 feet.
Timber and iron in caisson, 5,253 cubic yards.
Concrete in well holes, chambers, etc., 5,669 cubic feet. Weight of New York caisson, about 7,000 tons.
Weight of concrete filling, 8,000 tons.
Depth of tower foundation below high water, Brooklyn, 45 feet.
Depth of tower foundation below high water, New York, 78 feet.
Size at high water line-of New York tower, 140×59 feet; of Brooklyn tower, 140×56 feet.
Size at roof course-of New York tower, 136×53 feet Brooklyn tower, 136×50 feet.
Total height of towers above high water, 272 feet.
Brooklyn tower contains 38,214 cubic yards of masonry New York tower contains 46,945 cubic yards of masonry. Size of anchorages at base, 129×119 feet.
Size of anchorages at top, 117×104 feet.
Height of anchorages, 89 feet front, 85 feet rear.
Weight of each anchor plate, 23 tons.
Length of river span, 1,595 feet 6 inches
each land span, 930 feet.
Brooklyn approach, 971 feet.
New York approach, 1,562 feet 6 inches.
Total length of bridge, between Park Row and Sands Street curbs, 6,016 feet.
Total length of structure between Center and Concord Street curbs, 6,952 feet 6 inches.
Width of bridge, 85 feet.
Height of roadway at towers, above high water, 119 feet 3 inches.
Height of towers above roadway, 152 feet 9 inches. Clear height of bridge in center of river span, ab high water, at $90^{\circ} \mathrm{F}$. temperature, 135 feet.
Grade of roadway, $31 / 4$ feet in 100 feet.
Grade of roadway, $31 / 4$ feet in 100 feet.
Maximum grade of railway, $33 / 4$ feet in 100 feet.
Maximum grade of railway, $33 / 4 \mathrm{fe}$
Number of supporting cables, 4 .
Number of supporting cables, 4.
First wire was run out May $29,1877$.
First wire was run out May 29, 1877.
Cable making began June 11, 1877.
Diameter of each cable, $153 / 4$ inches.
Length of single wires in cables, 3,579 feet.
Total length of wire in 4 cables, 14,361 miles
Each cable contains 5,296 parallel, galvanized steel, oilcoated wires, closely wrapped to a solid cylinder. Weight of wire, nearly 1 pound to 11 feet in length.
Weight of 4 cables, inclusive of wrapping wire, $3,5881 / 2$ tons.
Ultimate strength of each cable, 12,200 tons.
Bridge opened for pedestrians and vehicles May 24, 1883.

Railway opened to passengers September 24, 1883.
Cost of bridge at completion, exclusive of land, $\$ 9,000,000$.
Total cost to April 1, 1884, $\$ 15,552,878$.
details of operation.
From opening of railway, September 24,1883 , to January 1,1892 :
One cable-hauling engine, 30 in . diameter, 48 in . stroke. Speed, 70 revolutions per minute.
One cable-hauling engine, 26 in. diameter, 48 in . stroke. Speed, 70 revolutions per minute.
One cable-hauling engine, 22 in . diameter, 36 in . stroke. Speed, 80 revolutions per minute.
Greatest indicated H. P. observed, $1,093 \cdot 15$.
Least indicated H. P. observed, $65 \cdot 6$ negative
Speed of hauling cable, $101 / 3$ miles per hour.
Hauling cable, $11 / 2$ inches diameter, 12,000 feet long.
No. 1, used 1,140 days, hauled $22,142,706$ ton miles.
No. 2, used 607 days, hauled $25,492,892$ ton miles.
No. 3, used 393 days, hauled 20,395,073 ton miles.
No. 4, used 356 days, hauled 18,923,469 ton miles.
Nos. 5 and 6 are still in use.
Weight of cars-12 cars, 8 tons each, used to March 5, 1887.

12 cars, 10 tons each, used to October 29, 1890.

48 cars, 17 tons each, in use.
12 " 19
Number of cars in service, 60.
Number of cars in use during rush hours, 48.
Largest number of round car trips per day-April 30, 1889-2,159.
Next largest number of round car trips per day-De cember 31, 1891-2,014.
Total number of round car
trips made by cable....... $3,477,000=7,388,625$ miles.
Total number of round car
trips made by locomotives $\quad 78,574=166,970$ miles.
Total number of round car
trips...........................3,555,574=7,555,595 miles.

Each car is moved by cable $21 / 8$ miles in making one round trip.

Weight of each locomotive, 22 tons.

Number of locomotives in service, 6.

Number of locomotives in use during rush hours, 5. Shortest headway between trains, $11 / 2$ minutes. Total number of railway passengers carried, $224,077,923$. Total number of railway passengers carried for last 12 months, $39,890,205$.
Largest number of railway passengers for one monthOctober, 1891-3,623,016.
Largest number of railway passengers for one dayApril 30, 1889-159,259.
Total number of foot passengers to June 1, 1891, 28,171,839.
Largest number of foot passengers in one monthJune, 1883-909,100.
Largest number of foot passengers in one week-the last week in May, 1883-668,456.
rgest number of foot passengers in one day-on May 27, 1883-163,000.

Progress of the Maryland Steel Company.
A correspondent of Engineering thus describes the recent visit of the members of the American Institute of Mining Engineers to the above works, at Sparrow's Point, near Baltimore :
This is really a part of the Pennsylvania Steel Company, and bids fair to be the largest part. That company having obtained an interest in the celebrated pany having obtained an in looked to a location for manJuragua mines in Cuba, looked to a location for man-
ufacture on tide water. They accordingly secured 1,000 acres about nine miles from Baltimore, in Chesapeake Bay, and have labored since 1887 to put it into shape, with most gratifying results, for they have
probably one of the finest Bessemer works in the United States, while the outlook for the future is even more remarkable. The works have deep-water navigation, which not only brings, their ore, but enables them to ship to all coast points and to South America at a minimum expense, and in addition they have constructed a railroad to Baltimore which gives them access to all interior points.
The manufacturing plant at the present time consists of four blast furnaces, of which three have been in operation, and the fourth is ready for work at any time, furnace C being the only one in blast at present a Bessemer plant and rail mill; the marine department or shipyard, machine shop, pattern shop and foundry, partly completed and in operation. All the buildings and other improvements on the propert have been placed here since the Pennsy
Company commenced operations in 188%
Oompany then operations in 1887.
built in 1887 ; No. 2 , finished in 1890 , is 900 ft long, was built in 1887; No. 2, finished in 1890, is 900 ft . long and 100 ft . wide. These piers, which will accommodate six steamers, are designed chiefly for the handling of cargoes of iron ore and for shipping the products of the works; they will be equipped with the most approved appliances for this work.
The four furnaces now built are each 85 ft . high and 22 ft . bosh. The blast is supplied by double vertical condensing engines, built from designs of the company. The blowing cylinders are 84 in . in diameter and 60 in . stroke, and steam is supplied by Babcock and Wilcox boilers, 4,000 horse power being allowed each pair of furnaces. There are four Whitwell stoves,
70 ft . high and 22 ft . in diameter, for the hot blast to 70 ft . high and
The Bessemer plant is arranged to work either with direct metal from the blast furnace or with remelted metal from the cupolas, and is designed for four 18ton converters. Along the line of the stock house electric cars are run on a depressed track to convey the stock barrows to the hoist, thus saving the labor of wheeling. A casting was made while the party was there. The moulds were placed in vertical position on cars specially designed for the purpose, and the ladle is hung over the cars, which are moved mechanically under it to be filled; hence a pit is not required, which seems a great improvement. The ingots are stripped by a double vertical stripper and taken to two blocks of pit-heating furnaces.
The blooming mill is of the "two-high " reversing type, with rolls 36 in . in diameter, driven by a pair of 42 in . by 60 in . reversing engines. Beyond the rolls is a hydraulic shear for cutting off the ends of the blooms. The blooms pass direct from the blooming mill table through the shear to the rail train, where they are rolled into rails without reheating.
The rail train is "three-high," with rolls 26 in . in diameter, driven by two 48 in . by 66 in . Porter-Allen engines. One engine will drive this in case less power is needed, and the train is fitted with tables for handling the bars from the different passes mechanically, and (hs (180 ft) lengths (180 ft .) each. The six-length rails are rolled on the lighter sections, the number of lengths being
reduced as the weight of the section increases. The reduced as the weight of the section increases. The object is to keep the weight of the ingots uniform, Beyond the rail train are the sawing, straightening and drilling appliances.
In cooling, the rails do not touch each other. Henc
there is little straightening required. In fact, one is impressed with the many devices to facilitate the work and to reduce the handling of the material to a minimum.
On that portion of the property lying east of the Bessemer and rail department an extensive plant of open-hearth furnaces is projected, the product of which will be distributed among the blooming mills, plate and structural shape mills to be erected in connection with them.
The marine department, although not complete in its varied details, is in active operation. On the fitting out pier, alongside which vessels will be taken as soon as launched, to receive their machinery and outfit, is being erected a machine shop, also hoisting shears of 100 tons capacity. The other buildings comprise the tool shed, smith and machine shop, joiner and paint shop, and dry house. There are now completed four slips for vessels 250 ft . to 300 ft . long, others for larger slips for vessels 250 ft . to 300 ft . long, others for larger
vessels to be added as required. One steel seagoing vessels to be added as required. One steel seagoing
tugboat has been recently completed and is now in active service; another is nearly finished. A side wheel steamer 210 ft . long and a propeller steamboa 305 ft . long, for the service of the Baltimore Steam Packet Company between Baltimore and Norfolk, are under way.
The machine shops, one section of which is now erected and partly in operation, are intended to produce the apparatus required for the extension of the manufacturing plant and the engines and other machinery required by the shipbuilding department. The present shop is one of three bays, of which the other two will be used as erecting and light tool shops.
In this building heavy castings for the works and or the vessels at the shipyards are being made daily and handled by hydraulic cranes, to be aided by a 50 -ton electric traveling crane which is nearly completed.
A brick manufactory with a daily capacity of 25,000 is operated by this company, and on the property is located a lumber company manufacturing $250,000 \mathrm{ft}$. per day. The buildings have been constructed with a view to extension, and reflect the greatest credit on their designers. This inspection closed the day's ex cursion, and there was yet another trip to be chron icled, and that was to Indian Head on the day follow ng, to see the United States proving grounds, to wit ness some tests. Shots were fired from the rapid-fire guns and from the $6-\mathrm{in}$. and $8-\mathrm{in}$. rifles. The 6 -in. shot passed through a Carnegie 6 -in. plate. The smokeless and cocoa powders were examined, and from thence the party visited the United States Navy Yard at Washington, to see the gun shops, and to admire at Washington, to see the gun shops, and to admire
the lathes and rifling machines for guns from 6 in. to 12 the lathes and rifling machines for guns from 6 in . to 12
in. These guns were shown in various stages of comin . These guns were shown in various stages of com-
pletion, and the heart of the American citizen dilated with pride, and he felt almost like wishing for a war to show foreigners what an American gun can do when needed.
The arrangements for this meeting, it may be said in closing, were most carefully planned and completely carried out. The local committee covered themselves with credit and deserved all the thanks they received. Their souvenir book giving an account of Baltimore ts industries, its geological characteristics, and accom panied by an excellent map of the city and a geological map of the section, was a work of care and wa greatly appreciated. It will, undoubtedly, find a per manent place in the libraries of the members, and re mind them that the Baltimore committee are men to be proud of.

A Kingdom in Ohio

Zoar, O., is the abiding place of a mystic band of German communists who. hold all property in common, the place being a miniature kingdom within itself. The people, who call themselves Zoarites, own 7,000 acres of land, which all lies in one body, about half of the tract being in a high state of cultivation The original Zoarite purchase was 10,000 acres, but 3,000 have since been sold at a high figure. Every article, implement, device, contrivance or machine used, wrought with or employed in Zoar, is of Zoarite manufacture, and the same may be said of every article worn or eaten, with the exceptions of coffee, tea and pices.
The shoes the Zoarites wear are made by their own shoemakers from leather prepared by their own tanners, from hides taken from cattle bred and raised on the great community cattle farm. The coal which warms them and cooks their food is dug from their own mines, and is burned in stoves cast in their own foundry from iron smelted in their own furnaces from ore found in abundance on their own lands. They have community tailors, bakers, weavers, butter mak ers, cheese makers, and all other useful artisans and radesmen. The tailor uses nothing but Zoarite cloth made by the Zoarite weaver from wool sheared from Zoarite sheep. The same may be said of the whole catalogue of manufactures, which certainly gives to Zoar distinctive characteristics unknown to any other American city or community.-St. Louis Republic.

THE WATER LILY HOUSE AT KEW.

This house, at the Royal Botanic Gardens, about six miles from Hyde Park, London, is at its best any time between the middle of July and the end of September. The Nymphæas occupy the whole of the large circular tank, with specimen plants of hedychiums, sugar cane, sagittaria, and clusia round the margin. The iron rail which encircles the tank is partly covered with the stems, leaves, and flowers of Batatas paniculata, and the narrow shelves against the sides of the house are covered with soil one foot in depth, in which a collection of tropical gourds is planted. The vine of the gourds is trained to wires running below the roof, and the effect of their large and sometimes bright colored fruits as they hang over the water lilies is particularly good. Along with the gourds grow such handsome flowering creepers as Solanum Wendlandii, the best of all tropical solanums, passifloras, ipomœas, Aristolochia elegans, A. ridicula, Clitoria ternata, BigAristolochia elegans, A. ridicula, Clitoria ternata, Big nonia Tweedieana, Beaumontia grandiflora, Allaman-
das, etc. In tanks in the corners of the house are das, etc. In tanks in the corners of the house are
Nelumbiums, Cyperus papyrus, Amorphophallus campanulatus, and other large and remarkable moistureloving plants. The collection of Nymphæas is a rich one, and we have counted, says the Gardeners ${ }^{\text {' }}$ Chronicle, over a hundred expanded flowers in this tank on a July morning at about eleven o'clock, when the whole of the kinds are in "blow." Blue, purple, red, rose, white, and yellow colors are among ple, red, rose, white, and yellow colors are among them. The gourds tiaca, which has fruits five feet long, and which are shown in the picture; Lagenarias, such as L. gigantea and L . vulgaris, Cucurbita maxima, Cucumis sikkimensis, snake and adder gourds (Trichosanthes), the wax gourd, and numerous other kinds.
The house was built in 1853 for the Victoria regia, which was grown there until the present Victoria house was erected some twenty erected some twenty years a the re wold" Since then the Old lily house has been devoted to the Nymphæas, which do extremely well in it. Its dimensions are 44 feet square, with a porch on the south side. The roof is span, about 20 feet high in the middle high in the middle, and the whole of the framework is of iron, resting on a thick stone base. It is an extremely light and, at the same time, a strong and elegant

WATER LILY HOUSE AT KEW ROYAL BOTANIC GARDENS.

The original plans of the Texas were made by Engiish designers, but they have received so many successive alterations that but little has been left of the special features at first contemplated. She will be a steel-armored twin-screwed vessel, of 6,335 tons normal displacement, driven by two sets of triple expansion engines, capable of developing 5,800 horse power with natural draught and 8,600 with forced draught.
The vessel will be 290 feet long, 64 feet 1 inch broad, and have a mean draught of 22 feet 6 inches when carrying about 500 tons of coal, with a bunker capacity for 450 additional tons. The main armament will consist of two 12 -inch breech-loading guns, each weighing $461 / 2$ tons, mounted in two turrets en echelon, one being on the starboard side aft, the other on the port side forward. The secondary battery will consist of four sixpounder and four three-pounder rapid-firing guns, with four 47 mm . Hotchkiss guns, all mounted on the gun deck behind $11 / 2$-inch plating, two Gatling guns, and two 37 mm . Hotchkiss guns, mounted on the bridge, the same in the military tops, and two three pounder rapid-fire guns on the flying bridge. There will be six torpedo tubes, one in the bow, one in the stern, and two on each side; a strong ram bow adding to her offensive powers.
The turrets will be armored with twelve inches of steel and their bases inclosed by a diagonal redoubt armored with 12 inches of steel, which also will protect the hydraulic machinery for working the guns, and the smoke pipe casings. A belt of steel armor 12 inches

Richmond, Va., but will be placed on board at the Norfolk Navy Yard.
Aside from the delay in the construction of the vessel from the changes found necessary in her plans, far more time has been required for the work from the fact that the Norfolk Navy Yard, which was selected as the place of building, was but poorly supplied with the required facilities for the construction of so large a vessel. Large additions have, however, been made to the plant and equipment at this yard, thus affording additional facilities for the building and repair of war vessels in the future.

Compressed Air Locomotive.

The street Railway Review describes as follows a compressed air locomotive that is reported to have been successfully used for several months in the interior of the old Eagle Mines, near Pittsburg. This locomotive was built by H. K. Porter \& Co., of Pittsburg.
Generally the construction is the same as a steam locomotive, with the omission of the boiler and water tank, these being replaced by two large cylindrica tanks holding the compressed air. These tanks are 36 inches in diameter and 16 feet long. The connection of the air reservoir with the cylinders is simple, and no difficulty is experienced from freezing either in summer or winter. The locomotive carries air at 500 to 600 pounds pressure, but ordinarily the pressure varies rom 250 to 450 pounds.
In the mine where the locomotives run, the grades are varied. The largest up-grade is 1,200 feet at $11 / 3$ per cent, but varying to 5 per cent. Curves average 25 feet ra dius, but 17 feet are successfully round ed. An ordinary day's work of $20 \cdot 5$ miles, or thirty-one
round trips, does not round trips, does not
develop more than half the power of the motor. Over the longest entry up maximum short grades of 5 per cent from eight to eleven cars are hauled each trip, the weight of the car being 1.250 pounds and of the load 3,360 .
The average charge of air doing this work was 334 pounds, running the pressure down 193 pounds and having 141 pounds pressure left at the pressure each trip.
each trip.
The air is com The air is com-
pressed by a Norwalk compressor (made by the Norwalk Iron Works, of South Norwalk, Conn.), and situated
thick, extending 2 feet above the designed water line, \mid for convenience 2,400 feet from the charging point of $41 / 2$ feet below it, and 116 feet in length, will protect the boilers and engines. A protective deck of 12 -inch steel will be laid above the armor belt. Beyond this belt it will be inclined toward the extremities and sides, and will be 3 inches thick on the slopes. At the ends of the belt will be diagonal armored bulkheads of 6 -inch steel, pointed toward the bow and stern, whose oblique surfaces will afford additional protection.
The hull is of steel throughout, and built on the cellular system. • A double bottom extends under the engines, boilers, and magazines, and is divided both longitudinally and transversely into numerous watertight compartments. There are 129 of these compartments, all connected to steam and hand pumps by an ments, all connected to steam and minimizing the disasextensive drainage system, thus minimizing the disas-
trous effects of the ram and torpedo. The boilers and engines are to be in six water-tight compartments below the protective deck, three on each side, with a central passage providing protective communication between the extremities of the ship. Above the turrets will be a flying deck for navigating the ship, on which boats are stowed. Two second-class torpedo boats will be carried in addition to the usual complement.

The ship will be lighted throughout by electricity, and will carry two powerful electric search lights and two smaller search lights for boat use. She will be used as a flagship, and will carry a complement of 368 officers and men, her spacious decks affording much greater accommodation and comfort for the crew than is possible on cruisers. Her machinery is being built by the Richmond Locomotive and Machine Works, of
the convenience 2,400 feet from the charging point of the engines. No loss of pressure is noticeable, although charging is one minute.
If charged to 500 pounds, the engine can make a dis tance of $11 / 3$ miles, doing heavy work, and it is practi cable to make a running capacity of 4 miles with one charge. The compressed air locomotive is peculiarly fitted for this work, inasmuch as the narrow quarters, short curves, presence of fire damp, water seepage, and ventilation require a motor fulfilling most difficult conditions. The air locomotives are built in various sizes of cylinders, from 5 to 10 inches in diameter. The smaller sizes will run on 16 pound rail in 4 foot entries. The larger sizes require 20 to 30 pound rail and $41 / 2$ foot entries.

Straw Bleaching

Place the straw in tubs of whitewood, pour over it hot water, and allow it to stand for 24 hours. Pour of the water and run in a lye made from 1 pound potash in 3 quarts of water, and after standing a short time in this, place in a boiler and boil up for 9 hours, adding water from time to time to make up for that which is lost by evaporation. Wash well with water, give another boil in lye of half the strength of the last, and wash well. Then prepare a liquor of chloride of lime (bleaching powder) of 1 to 2 degrees Tw.; pour this over the straw, and allow it to stand for 24 to 36 hours, or until it is perfectly bleached. Rinse the straw wel in several waters, and expose it to air until all traces of chlorine have disappeared. The straw is then ready

RECENTLY PATENTED INVENTIONS． Engineering．
Fire Engine Pump．－Truckson S．La France，Elmira，N．Y．A double－acting upright pump is，by this invention，provided with a novel casing and
arrangement of the inlet and outlet passages with the pump barrel，double sets of valve chambers being ar ranged in the front or accessible side of the pump
casing and c＇osed by separate lids，with all the valves grouped in close relation with each other，and so that ither end sets of a casing．The valves and interior mechanism are thu made conveniently accessible when reparr or adjust－ ment is necessary．The

Bridge．－Thomas H．Kosure，Farmers ville，Texas．A suspension bridge，in which the prin－
cipal members are constructed of wire cables under ension，is provided by this invention，the cables bein made of straight strands of wire twisted at the tim the bridge is constructed．The cables are run back atil enough arado are tion，and from that turnbuckle the strands are then laid to the next for the next section，etc．，the screw eyes of the turnbuckles being finally turned in oppo－
site＇directions to twist the strands and tighten the cable between its anchorage points．The improvemen is mainly designed for use in bullding small，ligh
Smoke Consuming Furnace．－Ed ward Cartwright，Wilber，Neb．This furnace has a through a horizontal arc of ninety degress，and having reater vertical depth along the outer or longer arc than has along the inner or shorter arc，the peculiar shap nd arrangement of this discharge conduit making heat in a manner designed to completely consume the moke without the aid of a blast．This furnace is de signed to he especially neeful in heating steam b
in smelting and other metallurgical operaticns．

Railway Appliances．

Car and Hose Coupling．－John H． Carroll，De Smet，South Dakota．This is a combinatio evice in which the hose coupling for the air brake ether of two cars simultaneously effecting a coupling of the hose sections on the coupling heads．The car oupling head is pivoted to swing laterally and connect with a mating coupling head，while a hose coupling hal ection is positively held upon the car coupling hea and movable into position to couple in response to corresponding movement of the car coupling head，be tion of the opposing car

Mechanical．

Drive Chain．－West Dodd，Sac City， and Arthur T．Martin，Clinton，Iowa．The link of thi with radial flanges at the ends of its shank near the ook and eye．A chain made with these links is de signed to be perfectly flexible，making a secure drivin connection with the wheel or wheels，around which may be passed in any direction．The chain can also be rossed to reverse the motion of the shafts，and can be conveniently used to connect wheels or pulless at any desired
iders．
Equalizing Links．－Thomas Murphy， ewickley，Pa．This invention provides a method and apparatus for equalizing the members or links used n deep well drilling machines，etc．，to prevent the
links from breakirg when subjected to a heavy etrain or sudden jerk．The lengths of two sides of a link are equalized by subjecting two connected links to the ac－ tion of heat and at the same time straining the links part until the two sides or members are of equal nder strain，the heating and stretching process bein continned until the reins of each of the jars are of fthe same length．
Water Motor．－Benjamin S．Part－ Wige，Jacksonvile，Fla．This is a device adapted for pessure of water，to afford a high degree of power Opposing cylinders，with pistons connected by a powe od，are arranged opposite spaced valve chests in whic are oscillating valves connected with a spring－pressed
and longitudinally movable rod operated from the power rod，there being spring catches for temporarily from the spring－pressed rod．The invention also in－

Machine for Carrotting Fur．－ in，Brooklyn，N．Y．This is perating machine adapted to fit furs for use in bat making more perfectly than the work can be done by hand，and which is also constructed to deliver a fine spray of the carrotting liquid npon the fur and save the surplus solution，so there will be no waste．The machine comprises a pair of feed rollers，adacent izer delivering between the brush and rollers，and a

Pump．－Robert H．Raprager，Lakota， North Dakota．All the pumping parts of this pump are designed to be below the surface of the water．and
thereby be protected from freezing，the improvement being especially designed for double－acting pumps for
use in a cold climate．T＇he pump is very simple in construction and easy in operation，and has two plunger barrels convected with each other at their bot－ toms，inlet and outlet valves being arranged in the up－
per ends of the barrels，there being an outlet pipe per ends of the barrels，there being an outlet pipe
formed with a casing，into which discharge the outlet valves，various other novel features being also included in the invention．

Clay Conduit Machine．－James J Powers ad Robert Van Buren，New YYork City．Th
economical working of clay conduits for electrica wires and other uses is the purpose of the machine pro－ vided by this invention．The machine has a pow ons in the cylinders being connected，while a spider locked to the lower end of the cylinder by a bayonet
joint，there being means for releasing the spider b joint，there being means for releasing the spider by
the descent of the pistons．An inclined filling cylin－ he descent of the pistons．An inclined filling cyla
der，in which is a follower，communicates with the oulding cylinder．Longitudinal passages of the elec－ when discharged from the moulding section，only re quires drying，baking and glazing，to make a perfe

Wool Washing Machine．－Walter ．Forbes，Atlanta，Ga．A box－like receptacle，with eed opening at one end and discharge openings in the bottom of its opposite end，has suspended in it a per orated trough with discharge portions projecte hrough the discharge openings in the box．A con eyer is journaled in the trough，to convey the wo rom the feed end to the discharge end，there being als spray pipe connectes whed to anickly and effectivel eparate dirt and greasy matter from wool without in juring it．

Agricultural

Potato Digger．－David Livingston， Thornville，Ohio．This machine has a shovel of nove onstruction，which，as the machine is drawn over the ry or weedy，and enables the operator also to co eniently cut off weeds and tops and roots．The hovel lifts the potatoes with the dirt in such a way tha he dirt loosens and falls away and the potatoes are left －
Hand Cultivator．－Tyree T．Rodes， Paris，Mo．This is an implement of very light and sim ple construction，which can be operated to close it
jaws or to open them any desired distance to cultivate t each side of small plants．The teeth are rididly se cured to the two jaws，which are opeued and closed by handle，and the teeth are long，sharp and hook haped at their outer ends．In spreading or opening
he jaws，they open with mathematical precision，and he ime，hey open with math
Stock Feeding Rack．－Henry G． hamberlan，Higeway，Wis．This is an improved rack designed for use in the stable，or in the pasture or arm yard，for feeding grass，fodder，grain，roots，etc．， permitting the stock to reed readily and at the sam the preventing any waste．Sliding gates regulate gates being adjusted according to the nature of the ma－ erial fed，while the arrangement is such that none of the feed is liable to be drawn out or dropped upon
the ground．Continuations or extensions of the roof of the rack are also provided for as a protection to the ock from the sun and rai
Milk Cooler．－Samuel W．Tobey， Fairfiela，Neb．A tank is centrally arranged within a ouble－walled hox having suitable covers，an inle pipe having its inner end arranged transversely in the its outer end is provided with a funnel，there being discharge and overfiow pipes leading from the tank through which running water is allowed to pass．Pro－ vision is made for a free circulation of air around the tank，and there is no chance for impure air to come in contact with the milk or cream，while the milk i cooled from the bottom the ream．

Miscellaneous．

Swing Joint for Brackets．－Henry P．Drew，New York City．This is a cheap，substantial
and shapely swing joint connection for gas pipes． adapted to pass a large volume of gas，and which may he readily converted into an electrically insulated swin gas fixtures．It has two cupped sections with branches perforated and threaded to recelve pipes，and further perforated to connect the threaded perforations with the cupped cavities of the joint sections，a headed ocked to the other joint section，a washer between the joint sections and one under the coupling bolt hean， joint section and the head of the clamping screw
．Miner＇s Lamp．－Julius R．Watts， Springfield，Ill．This lamp has a spout provided with a wick raiser，and there is a guide between the sfout and
the body of the lamp，a wick－retaining device having an opening at its lower end freely embracing the spout the guide to the upper edge of the spout．The lamp 18 without removing the lamp from its support，quickls or diminish the light．
Balanced Stage．－Maurice Richter， Willamstown，W．Va．A gang plank，or balanced which can be easily operated by a single person，the main portion of its weight being supported by a spring mechanism upon the ship．A counterbalancing spring is arranged within a post，in the upper end of which is sheeve carrying the tubular shank of a bracket on which is a pulley，a boom from the post also carrying a bracket and pulley，while the gang plank is con－
nected hy a rope with the balance spring．The tension of the spring is such that it nearly balances the weight of the gang plank，and but little manual force is re－ quired to raise or lower it．
Cradle．－James H．and George W． Meek，Denison，Texas．This cradle is susp nded from
its supporting frame in such a manner as to render it
apable of vertical，lengthwise and sidewise movements，
the cradle being given an easy，uniform and steady mo tion without the danger of tilting over．The construc set aside without the necessity of removing the cradle from the frame or detaching any of the parts．
Nailless Horseshoe．－James Mc－ Caffrey，PPhiladelphia，Pa．A spring splice plate is lamping arms being connected to the rear ends of the clip plates，connected by a screw and nut，in connec－ tion with detachable wearing plates．The improve－ orses，and avoids the necessity of driving nails in he horse＇s hoof．
Device for Ascertaining Grades， rc．－David C．Woire，Lyons，Kansas．A holl provided with angle ion an corners and spring clasps，in combination with a reversible base bour cales，and having pins projecting in central positio rom the ends there being also an adjustable carri with graduated lever or rule．The improvement esigned to furnish an accurate and ready calculator in railroad work of the position and height of bed and flope stakes，and of the cubical contents of a cut or

Ditching Machine．－John Cornelius， Oaklana，Ma．This is a simple and inexpensive m hine，which may be used to cut ditches with paralle ides or with sides faring outward，the machine bein previly hed at the desired depth in the ground，an has a sole piece in which is a base cutter，a central cutter held hetween the base beams，with side cutters， partition plate，and turning wings，the dirt being equally divided and thrown half on each side．Th

To Open and Close Cocks，etc．－ oscur Lnewe，Berlin，Germany．This invention pro－ vides a means for opening and closing gas taps，valve， he switches of incandescent lamps，etc．，those whic It consists of a tubular key turner with a projecting arm rod extending through the body，and having at it ower end a handle，an inclined shaft journaled in th arm，bevel gears connecting the shaft and rod，and key engaging a clip on the shaft．Connected with the which may be used when the device is employed on and light a gas je
Horse Collar．－John B．Mueller Sreator，IIl．Two depending bails or links are pro pad being pivotally connected with the lower ends he bails，an easily operated coupling for the commo the two members of the collar may be secured togeth aud held the desired distance apart．The pad is so connected with the collar that the movements of the atter will not be transmitted to the pad，which will lie

Water Still．－Johannes Petterson號 Louis H．Liebeck，New York City．In this ap paratus a water tank having a filter is connected with a source or suply，and a boler havig a steam dome has a pipe connection with the filter，a steam filter ing connected with the steam dome，and a cooling npper end connected with the steam filter and its low－ er end provided with a discharge pipe．The apgra isdesigned to distill a large and continuous snpply of water，which is rapidly converted into steam，and the
steam filtered and condensed，finally issuing in the steam filtered and condensed，finally issuing in the

White Lead Corroding Pit．－Wil－ Wiam H．Wetherill，Philadelphia，Pa．This invention lead，where then is placed in layed for corroding layers of wher process producing a column of heated air in a ventilat ing shaft，and causing fresh air to be drawn in through side plpes leading to the surface of the ground．These side pipes are embedded in the surrounding earth，and thus hastening the process．

Music Rack and Stand．－Henry W．位正，Wellington，New Zealand．This is a folding rack with relescopic stand，the invention providing an article which，when not in use as a stand，nay be
made to assume the shape of and be employed as a walking cane，means being also provided whereby the rack may be quickly and corveniently spread for use
and adjusted to the desired height．The device simple，durable and light，and can be readily manipu－ lated．
Horseshoe．－John E．Jarvis，London， England．This is a combined metal and rubber horse shoe，in which the India rubber＇is combined with the metal in such a way that the weight shall be priucipally
borne by the wall of the hoof，and the rubber，held in place by the metal shoe and its fastenings，constitutes an integral part of the wearing surface of the shoe，
the sole of the foot being either uncovered or so covered as to bring a part of the weight on to the frog． The improvement is designed to promote lightness and elasticity of tread，prevent slipping，cutting and click－ ing，protect the heels and feet from undue pressure，促

MOKE EXCLUDING HOOD．－Christia Herlick，Marquette，Mich．Firemen and others about to the flame and smoke by the use of this device，which is a light and readily applied structure，permitting the wearer to see，and provided with means of obtaining
air for breathing from the floor，below the level of the air for breathing from the floor，below the level of the
smoke．The hood has a pendent glazed door in front， air supply pipes supported by the frame bars，and an
apertured bottom piece，below which drop hinged
doors．A fire－extinguishing apparatus may be carried Till Lock．－Hugo Brav，Berlin，Ger many．Connected with the lock provided by this im－
provement is a device whereby the drawer to which he lock is applied may be opened by pressing with the oot on a foot lever，the movement of which is trans－ mitted by a combination of levers to the drawer．The lever normally holds the drawer closed，so that it can－ oot be opened by a person at the side or front of the ，and a hand inserted when the foot is not
illuminated Advertising Sign．－ Charles R．McGimsey，New York City．A casing and designed to emit a steady or an intermittent light as de－ designed to emit a steady or an intermittent light as de－
sired，the stencil advertisement or notice to be backed with transparent colored and movable material，the by the matter upon the steucil will appear in illumi ated colors without disclosing the mechanism withu he casing．If the light is to he intermittent，a spring motor is preferably employed，the circuit of the light eing then alternately opened and closed
Wooden Pipe．－Archie McL．Hawks， Tacoma，Washington．A new article of manufacture is afforded by this improvement，consisting of a pipe
tube formed of staves，for use as conduits and for like purposes，the staves having transverse dovetailed grooves in their ends，the opposing grooved ends being
united by docble dovetail blocks fitting the grooves and serving to maintain the ends of opposing graves in close contact．The staves are tightened by bands，and bility．
Registering Toy Bank．－William R． mproved bank of simple construction，into which coins of auy predetermined denomination may be intro－ duced，and the amount of coins placed in the bank be ndicated by suitable dials，a gong or bell beitg sounded hat the bank can beopened only when a predetermined mount has been placed in it or it may be made to open at any time desired．
Any of the above books may be purchased through his office．Send for new book catalogue just
ished．Munn \＆Co．， 361 Broadway，New York．

SCIENTIFIC AMERICAN

BUILDINGEDITION．

JULY NUMBER．－（No．81．）

table of contents

1．Handsome plate in colors of a residence recently floor plans，etc．Messrs．Rossiter \＆Wright， late in colors of a residence erected at Marina Heights，Black Rock，Conn．Perspective eleva－ tions and floor plans．Cost $\$, 000$ com，
erspective view and floor plans of a brick house a Chambersburg Pa．，recently designed and built A cottage near Orange，N．J．，from plans prepared by Munn \＆Co．，architects，New York．Cost
$\$ 7,000$ complete．Perspective view and floor $=$
$\$ 5,575$ complete．Floor plans and perspective elevatio
residence at Bensonhurst，Long Island．Cost
$\$ 9,800$ complete．Messrs．Parfitt Bros． $\$ 9,800$ complete．Messrs．Parfitt Bros．，archi－ tects，Brooklyn，N．Y．Two perspective eleva－
tions and fioor plans． Perspective elevations and interior views of the American Yacht Club House，at Milton Point near
Rye，N．Y．A handsome buildiug of the Queen Anne style．Messrs．E．A．Sargent \＆Co．，archi－ tects，New York．
8．A dwelling at Upper Montclair，N．J．，erected at a cost of $\$ 7,000$ complete．Mesers．Munn \＆Co．，
architects，New York．Perspective and floor plans．
9．A cottage at Babylon，Long Island，N．Y．，erected
at a cost of $\$ 3,700$ complete．Plans and perspec－ at a cost of $\$ 3$,
tive elevation
10．Sketch of an Australian bush home．Cost from $\$ 1,200$ to $\$ 1,500$ ．A simple and economical design liscellaneous contents：Electrical cotton gin．－ Aluminum．－The efflorescence on brickwork．－ Leaf photography．－Car roofng．－Superior steel
furnaces，illustrated．－How to stain wood yellow and gray．－Ink for writing on glass or porcelain． －An improved wood－working machine，illus－ trated．－An improved revolving chimney top， illustrated．－Elevators in the amphitheater of trated．－Natural wood grille and screen work， illustrated．－Galvanized eaves troughs and con－ Scientifc America Architecta Buile
The Scientific American Architects and Builders Edition is issued monthly．$\$ 2.50$ a year．Single copies
25 cents．Forty large quarto pages，equal to about two hundred ordinary book pages；forming，practi－ cally，a large and splendid MAGAZiNe of architrc－ ture．richly adorned with elegant plates in colors and with fine engravings，illnstrating the most interesting
examples of Modern Architectural Construction and examples of M
allied subjects．
The Fullness，Richnese，Cheapness，and Convenience of any Architectural publication in the world．Sold by of any Architect
all newsdealers．

MUNN \＆CO．，Publishers，
361 Broadway，New York

DBusiness and Personal．
The charge for Insertion under this head is one Dollar a line The charge for Insertion under this head is One Dollar a line
for each insertion ；about eight words to a line．Adver－ tisements must be received at publication office as early as

Grindstone Frames－With cabinet base and all im－
provements．Send for circulars and prices．W．P． provements．Send for
Davis．Rochester，N． $\mathbf{~}$ ．
＂U．S．＂mefal polish．P．See adv．next issue． U．s．metal polish．Indianapolis．Samples free． Presses \＆Dies．Ferracute Mach．Co．，Bridgeton，N．J Spindle Turret Drill Presses．A．D．Quint，Hartford，Ct，
Patent Open－Side Planing and Shaping Machines．
Pedrick \＆Ayer，Philadelphia，Pa． Steam Hammers，Improved Hydraulic Jacks，and Tube
Expanders．R．Dudgeon， 24 Columbia St．，New York． Screw machines，milling machines，and drill presses Centrifugal Pumps for paper and pulpmills．Irrigatin and sand pumping plants．Irvin Van Wie，Syracuse，N．Y Wanted－Pattern makers accustomed to machine
work at an iron works in Camden，N．J．Address Cam den，care of Scientiffc American．
The best book for electricians and beginners in elec tricity is＂Experimental Science，＂by Geo．M．Hopkins．
By mail．\＄4；Munn \＆Co．，publisbers， 361 Broadway，N．Y ． For the original Bogardus Universal Eccentric Mill Foot and Power Presses，Drills，Shears，etc．，address
J．S．\＆G．F．Simpson， 26 to 36 Rodney St．，Brooklyn，N．Y Canning machinery outfits complete，oil burners for machines．Presses and dies．Burt Mf．Co．，Rochester N．Y．
hat do you want to buy？We will send without cos ing anything you wish．Paret，Willey \＆Co．， 265 Broad way，New York．
Competent persons who desire agencies for a new
popular book of ready sale，with bandsome apply to Munn \＆Co．，Scientific American office， 361

Wanted－A toolkeeper．Must be capable of makin and tempering punches，dies，cutters，taps，etc．Apply Wharleston，s．C． TRend for ne
解 New York．Free on application．

HINTS TO CORRESPONDENTS
Names and A ddress must accompany．all letters
or no attention will be paid thereto．This is for ou information and not for pubication． give date of paper and puge or number of question．
In quir ires not answered in reasonable time should
be reveated：corresponden some answers require not a little research，and
though we ndeavor to reply to all either by lette or in this department．ench must take his turn．
Specal Writen Information on mater
personal rather than general interest cannot b expected without remuneration．
Scientific Amerrican Supplements referre
to may be had at the office．Price 10 cents each． to may be had at the office．Price 10 cents each．
Books referred to promptly supplied on receipt
Minerals sent for examination should be distinctly
marked or labeled．
（4455）J．F．M．writes ：Will you please explain the art of decalcomania？A．Decalcomanies
or chromo transfer prints are made by brushing thin plate paper with flour or starch paste．When dry the paper is treated with a solution of gum or gum and starch．When dry it is well rolled．The printing is orked in reve order，the pare printed first．Either the surface of the print or the surface on which it is applied must be brushed with copal varnish．Apply，and remove the paper by spong－
（4456）H．W．S．says ：When was the nd and also whobuilt the firt locomotive and whe did it run in America？A．Ruilways were introduced in England，September 27．1825；in Austria，September $30,18: 8 ;$ in France，October 1，1828；and in the United tates，December 28，1829．The first locomotive whic was imported for the Delaware and Hudson Railroad
（4457）G．M．F．says ：What employ－ ment is considered to be the healthiest and what the tive the longest？A．The average ages for a few occu－ pations are as follows：Judges，65；farmers，64；clergy－ men，56；lawyers，54；merchants，51；tailors，44；editors 40；machinists，36；teachers，34；clerks，34；operative，
（4458）B．C．W．says ：A number of years ago I suw a table in your paper giving the average people of average health at different ages．Can you ive this table？A．At 20 years of age calculate on at 50,9 or 10 days；at 60,16 days；at 65,31 days；at
（4459）B．C．S．says ：Kindly give the eight of the ten highest towers and steeples of the orld．A．Eiffel tower 1，000 feet，Washington monu 473，Strassburg 468，Rouen，Notre Dame，465，Rome ． ephen＇s，449，Cairo，second pyramid， 44
（4460）W．A．R．asks how to give a right brass wheel the appearance of old bronze．A．A simple way is to wash the article with vinegar，and expose it to the vapor of ammonia，and repeat this until orisiactory，or boil it in a solution or copper n：trate， phate of soda in 8 parts of water
（4461）I．A．wants a very deep black，and been informed that Frankfort black is the blackes all．He cannot obtain it，and asks how it is made． ther refuse of the vine culture like charcoal is and rom wood．There is，however，a better black now it is the blackest black known
（4462）B．M．wishes to know what is sed to make woven textures uninflammable．A．The nest to this is ammonium phosphate，also calcium celate and calcium chloride，equal parts dissolyed in wice their weight，of water；also solution of alum， of the lagt foulphate，and boracic acia，or a misture
 drying
（4463）J．B．asks for the best mixture sed to protect iron machinery exposed to the atmo phere．A． 1 part pulverized graphite， 1 part lead sul hate，and 1 part zinc sulphate，rubbed up together mixed well with 16 parts of linseed oil varnish and
 ，and proves a reliable protection for all kinds of ox
（4464）R．S．，of New York，asks the sim lest way to test if the ground combination coffee con ists of a mixture of different kinds of coffee only ontains adulterations，such as burned sugar． When he mixes the coffee with cold water，and lets the bottom，while pure coffee will float on the top．H ill ind that most all the so－called combination coffe re in fact adulterated coffees

TO INVENTORS．
An experience of forty years，and the preparation of
nore than one hundred thousand applications for pa ents at home and abroad，enable us to understand the qualed facilities for procuring patents everywhere． ynopsis of the patent laws of the United States and all oreign countries may be had on application，and person ontemplating the securing of patents，elther at home o which are low in accordance with the times and price tensive facilities for conducting the business．Addres MUNN \＆CO．，offlee Scientific American， 361 Broad

INDEX OF INVENTIONS

For which Letters Patent of the
July 12， 1892.

AND EACH BEARING THAT DATE

［See note at end of list about copies of these patents．］	Grate bar and feed water heater，combined， \mathbf{H} ． Grinding wheel attachment，J．H．Goetsche
	Rein guard．Trousers guard．
Air sinip，B．F．Barses ．．．．．．．．．7．．．．．．．．．．．．．．．．．478，905	Gun，
Amalgamator，Coni	Ham
Angle fnish for rooms A．D．Ellis．．．．．．．．．．．．．．．．．478．${ }^{\text {47 }}$	Hammer
Arch，freproof fioor，P．M．Bruner．．．．．．．．．．．．．．．．．．．．．．．${ }^{\text {478，914 }}$	
Articles，construction of legred，Harman	Harra
Asphatt biociss，forming，s．Mccarter．．．．．．．．．．．．．．． 478,626	
mizer，T．E．Ogram．．．．．．．．．．．．．．．．．．．．．．．．．．．． 488,940	Harvester，corn，R．W．
	Harresters，raising and lo
Awning，B．Brooks，．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 478.842	Hat，s．Cohen．
A Arle lubrica	Heater．See Lamp heater．Peanut
Basin，catch，	
Baskets，means for securing coverings of netting	Ho
Bed，fold	
Belting，woven fabric for machine，J．Öildäeld．．．．． 478,941	Hook．
	Hop pickin
	Horses，gauge for determining the ake of， A ．
Bicycle，Tuttle \＆Cable．．．．．．．．．．．．．．．．．．．．．．．．．． 478,724	
Bicycle exhibiting device，C．W．Munson ．．．．．．．．．．478，805	Implement holder for tablets．etc．，Hougen \＆
Bicycle support，T．B．Marshall．．．．．．．．．．．．．．．．．．．．．．478，878	Index and maii assorter w．
cle wheel，G．G．F．Firswell．．．．．．．．．．．．．．．．．478，735	
Black ash dissolver，Newhall \＆Hamilton．．．．．．．．．．478，630	Ingots，m
Blank feedin	
Blower powder，W．J．Ev	Jai
t．See Surf boct．	
Boat，J．Savag	Keyhole gue
Boiler	Knife．See Pocket K
Boiler fire box．W．Mc	Ladder，extension，
W Wood and co	Lamp，cent
	Lamp，cy
Brake．S	Lamp hea
${ }^{\text {Brake adjusting device，A．}}$ ．Rauh ．．．．．．．．．．．．．．．．．． 478,638	
Brick machine，W．Burkman．．．．．．．．．．．．．．．．．．．．．．．．．．．．478，	Latch，gate，C．F．
Brick，pavi	Lathe cen
b	
Bucket，dinner，W．F．Janeway ．．．．．．．．．．．．．．．．．．．．．． 478,606	Lens，
Buckle，D．L．Smith	Link lif
Building front，A．Brunkhorst ot al．．．．．．．．．．．．．．．． 488	uors in bottles，apparatus for impregnating，
Cable grips，lifting mechanism for，Bishop \＆Bell 4788.911	
Calculating machine，W．M．McCafferty ．．．．．．．．．．．478，885	L
Camera shutter，Blarr \＆Kelley．．．．．．．．．．．．．．．．．．．．478，909	Locomo
Car brake，F．A．Baier．．．．．．．．．．．．．．．．．．．．．．．．．．．478，902	Lo
Car coupling，	
Car coupling，	Log binder，
Car	Lubricator．See Axle lu bricator．－
Car locker，J．E．Dempsey．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．478，740	Machinery，
rtr	
Carving machine，J．Rohlmann．．．．．．．．．．．．．．．．．．．．．478，640	Mashing
Case．See	Meat cho
sks，	Meat ten
Cattle，suppressing horns in，J	Mechanical
Cheese vat，L．Meyer．	Merry－ko－r
Chill plate for flasks，F．Marty ．．．．．．．．．．．．．．．．．．．478，622	Metal whee
Clamp for fruit jar caps，etc．，C．E．Thomas．．．．．．．． 478,771	Mili．
Claw bar，J．W．Gray	
Clock case，w T．Amown．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 478.	g．
ch，	Motion，device for transmitiong rotary
Cob pipes，compound for filling，A．C．Bauscher．． 488,55	
Cock ${ }^{\text {cock }}$	
Coillar fastener，horse，J．Himmelstel	M
mbination chair，W．H．Tuttie．．．．．．．．．．．．．．．．．． 478	
Combination 1ocki，W．H．Thompson．．．．．．．．．．．．．．．．． 4788,688	Net，fy，W．H．Osmer．．．．${ }^{\text {Nitrog }}$

 craut

 amper operating mechanism，time，o．Briggs，

 Ireal tool and
Drum，J．Knit

Wind engine．

$\stackrel{\rightharpoonup}{\mathrm{F}} \stackrel{1}{\mathrm{~F}}$

000000

 tiont．

 ，

Wheel R. w orio

 Wood anc cal ibox, R . Feaeerrol
 designs.
Rade. F. Roche

trade marks.

みコvertisements.
Inside Page, each insertion - -75 cents a line
Back Page, each insertion - $\mathbf{\$ 1 . 0 0}$ a line

Improved Screw Cutting Foot and Power

BASE BALL-A DESCRIPTION OF

SPECIAL NOTICE!

 m

JEviIIS' UPRIGET CUSHIONBD POWER HAMMER.
 "THE SINTZ"
 aulcheapted
CLARK
CLIRE

2nd © MACHINERY

PERU.-AN INTERESTING PAPER,
 and its availability for immikration. Withan a starement
of exports ind other data. Illustrated with a map. Con
qined

NEWLY INVENTED ARTICLES

CELLULOSE OR WOOD FIBER.-By

PURE CONDENSED MILK

INVENTORS' IDEAS ${ }^{\text {put }}$ into practical

STATIONARY and PORTABLE. All Sizes.
 Dwarfs in Size, bu Giants in Strength Expense one cent a
bour per horse pow
bond
atention to run them
EY ery Eng ine
Earar teed. Fuli
Particularsiree by mail
Mention this paper
VAN DUZEN GAS \& GASOLINE ENGINE CO. Cincinnati, 0

ROTARY VENTILATING FANS. MECHANICALAIR MOVERS. WATERMERK FULTETER

SMALL ELECTRIC MOTOR FOR AM-
 With 15 figures drawn to a scale. Contained in SCIEN-

LIFE OF AN ANT.-BY E. A. BUTLer. An entertaining paper on the life of a an ant from
the eer to the mature state. With an account of the
curious habits of these insects. With 4ilustrations.

NICKEL electro plating Apparatus and Material.

 PELTON WATER WHEEL
 -

ㅎ

THE EVOLUTION OF COMMERCE.

 Si5. Price 10 as.
all newsdealers.

HAVE YOU READ

Experimental
${ }_{\text {a }}$ Sience?
This new book, by Geo. M. Hopkins, is just what
you need to give you a good general knowledge of You nical Science. No one having the spirit of the times can afforor to be without the kind of scien-
tific information contained in this book. It is not tific information contained in this
only instructive, but entertaining.

Over $\boldsymbol{7 0 0}$ pages: 680 fine cuts; substantially and
beautifully bound.
Price by mail, $\$ 4.00$.
MUNN Send for ilustratee circular. Office of the SCIENTIIFIC AMERICAN ELECTRIC COAL CUTTERS.
ELECTRICAL MINING APPARATUS OF EVERY DESCRIPTION. SEND FOR ILLUSTRATED CATALOGUE M 2
thomson-van depoele electric mining company, 620 ATLANTIC AVENUE, BOSTON, MASS.

A New and Important Book on the Manufacture of lnk, the only one in the English Language. JUST READY.
The Manufacture of Ink.
 LARKIN'S BRASS AND IRON

THE PRACTICAL BRASS AND IRON EOUNDER'S GUODE

 Lace, Embrioteries, Ferrn Leaves and
Materials
Some Modern
Bronzes.

 HENRY CAREY BAIRD \& CO., 810 Wallut St., Phila delphia, Pa., U. S.A.

DECORATIVE TREATMENT OF NA

TO BUSINESS MEN
The value of the SCIENTIFIC American as an adver-
tising medium cannot be overestimated. Its circulation tising medium cannot be overestimated. Its circulation
is many times greater than that of any similar journal now published. It goes into all the States and T'erritories, and is read in all the principal libraries and reading
rooms of the world. A business man wants something rooms of the world. A business man wants something
more than to see his advertisement in a printed newspaper. He wants circulation. This he has when he ad-
vertises in the ScIENTIFIC AMERICAN. And do not le's the advertising agent influence you to substitute some lecting a list of publications in which you decide it is for your interest to advertise. This is frequently done for the reason that the agent gets a larger commission from the papers having a small circulation than is allowed on
ihe ScIENTIFTC AMERICAN.
For rates see top of first column of
dress MUNN \& CO., Publishers,
361 Brondway, New York.

Why Not Move

Nearer your best and biggest market-nearer your raw materials? Chicago is the greatest distributing point in America because of low railroad and lake freights everywhere; unrivalled location; belt railways. Chicago Heights is the center of Chicago's manu facturing district. Can't you come

To Chicago?

We'll show you Chicago Heights, and offer you strong inducements to locate there. We have the property, the men and the money-and mean business, If you're a manufacturer, affected by the new, changed conditions of doing your business, write us; we have a 'way out."
"Chicago's Beaten Path"' is an illustrated and carefully-prepared booklet. Every THE CHICAGO HEIGHTS LAND ASSOCIATION, 822-823 Chamber of Commerce, Chicago.

OIL WELL SUPPLY CO

gates rock a ore breaker
 Caparis p pt 20 whusprt ber. Has spod uced more ballast road
Hetal and broken more ore
thas
 MATES IRON WORRKS

STEEL TYPE FOR TYPEWRITERS

Senctis seel stames. Rubser and ail Mand Experimental work
 V VANDUZEN STEAM PUMP THE BEST INET THE WORLD.
THMPS Any Kind of Liquid. Pumps Any Kind of Liquid.

PERFORATORS OF ALL METALS Cotion, ill and Rice Mils, Susar Houses, Distileries, Phosphate and Fertilize

 Manufactured by HARRISBURG FOUNDRY AND MACHINE WORKS Harrisburg, Pa., U. S, A.

 A CONNECTICUT PEACH ORCHARD

Perfect Newspaper File The Koch Patent File, for preserving Newspapers, Mag
azines, and Pamphlets, has been recently improved and price reduced. Subscribers to the Scientific AmeriCAN and Scientific American SUPplement can be fice of this paper. Heavy board sides; inscription fice of this paper. Heavy board sides; inscriptio
SCIENTIFIC AMERICAN" in gilt. Necessary fo every one who wishes to preserve the paper. Address
MUNN \& CO., Publishers ScIENTIFIC AMERICAN

ON BALANCING MARINE ENGINES

WHAT ELECTRICITY IS -BY W. W Jacques. An interesting discussion of the subject. illus
trated with some new experiments. Contained inscleN

AIUTMIINUMI

 Cowles Electric Smelting and Aluminum Oo Correspondence solicited. $\begin{aligned} & \text { LOCKPORT, } \\ & \text { N. }\end{aligned}$
VITRIFIED BRIGK.

An indestructible product, impervious to water and
acids, for roumo linings and fooring. Especially useful
in chemical works for lining Digesters. NEW YORK BRICK AND PAVING CO. SYRACUSE, N. Y.

ARTESIAN

OPTTICAL PROJECTION OF OPAQUE

CIARAIKIS WARP DYENGAND SJZNG'MACHIES. POWER WRINGERS FOR HOSIERY AND Drying and entilitive fans, CEO. Cataloguegrreairk
Box L. Windsor Locks, conn.
 WHAT TO PLANT ON THE HOME Grounds.- By Prof. J. L. Budd. An enumeration of the
shade and ornamental trees. shrubs and sanal fruits
suitaule for planting in the vichity
of dwellinks. Con-

THE PREMIER CAMERA

IS THE BEST IN MARKET. Simple of Manipulation.

Plates or Films are used.
The Shutter is always set. PRICE \$18.00.
Send for Catalogue and copy of Modern Photography We make all Kinds of Cameras.

ROCHESTER OPTICAL COMPANY,
$1 \&$ S. Water St., ROCHESTER, N. Y.
PROPOSALS.
T HE Honorable the Chief Commisssioner of Landa and

 U. S. ENGINEER OFFICE, BOSTON, MASSI. JUNE

NOTICE TO CONTRACTORS.

 U. SNGINEER OFEECEF CUSTOM HOUSE, CIN for furnishing cement, lumber, tie rods and washers re-

DEAF Ness g Hean gass cufg

 SmaticitivinHEELS

MAFEOGAINTZ

TEAK FOR And all Fancy woods.
THE E. D. ALBRO CO.,

h. t. bartlett, Mg'r. F. W. Honereamp, Ass't Mg'r. Mills, Cincinnati, o.)
 STORAE SIMPSON
 Can ampererargeots. per peacity,
 SIMPSON ELECTRIC MFG. CO.
$\mathbf{3 9 - 4 1}$ w. Whentidyton st.,

Dfovertisements.
Inside Page, each insertion -. 75 cents a ine
Back Paze, ench insertion

 $\stackrel{\text { morning to appear in the following week's issue. }}{ }$

Victors

 4

OVERMAN WHEEL CO.
A. G. SPALDING \& BROS., Special Agents,

DO U BEEIK POWVBR?

Motor of the 19th Centary

THEAMERICAN BELKTELEPHONE CD
95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alesander Graham Bell, March th, 1876, No. 174.465, and January 30th, 1877, No. 186,787
The transmission of Speech hy all known forms of Electric Speaking Teleplones infringes the right secured to this Company by the above patents, and renders earl individual user of telephones not furnished by it or its licensees responsible for such unlawful use. and all the consequences thereof, and liable to suil therefor.

A Woman's Pride
is a beautiful watch:-fine enamel dial, with Arabic figures; the case, of coin-silver or fourteen-karat gold filled, and exquisitely engraved: This is the ladies' style of the new QUICK = WINDING "Waterbury."
Jeweled movement; A warranted time-keeper. A gem to be proud of

A men's style also is made. Far superior to any cheap Swiss watch, though equally low-priced. Your jeweler sells

DENSMORE TYPEWRITER CO., 202 Broadway, N. Y.
KODAKS.
Regular Junior Daylight Ordinary

I4 $\begin{gathered}\text { styles and sizes } \\ \text { for the season of }\end{gathered}$ for th
1892,
$\$ 6.00$ to $\$ 65.00$.
THE SMTH SREMER TVPEWRITER

Latest improvements, registers for exposures; glass plate attachments; daylight the eastman company,

The Belknap Little Giant Water Motor

Fine Taps, Dies, Reamers, ett.
IIIIIIIIIIIIIM: LGHTNING

LIFE SAVING DEVICES.-A COL

 The Shipman Automatic Steam Engine (Insurance Not Affected. 8 RORSE POWER, COMPOUN STATIONARY AND MARINE.

THE SQUARING OF THE CIRCLE.By Hermann Schubert. A historical sketch of the pro-
blem from the earliest times to the present day. Uni-
Un rem from the earliest times to the present day.
versal interest in the probem; natur ot the problem
historical atempts; proof that the protem is insol
hable

F. A. SINCLAIR'S

Common Sense Chairs, Settees, and Rockers

Iogue to . SINCLAIR, morrvilis,
Onondaga Co'nty,

18DIEOIN

GENERAL ELECTRIC CO.

INCANDESCENT AND ARC LIGHT PLANTS.

Stationary and Railway Motors.-Lamps.-Cables.-Safety Devices.

 TANITEEmery, Emery Wheels, Emery Whetstones Grinding Machines, Knife Sharpeners, Knife Grinders.

The Tanite Co., Stroudsburg, P
161 Washington St., NEW York.

(a)

ESTABIISHED 1846.
The Most Popular Scientific Paper in the World Only $\$ 3.00$ a Year, Including Postag
This widely circulated and splendidly illustrated paper is published weekly. Every number contains sixteen pages of useful information and a large number of
oricinal engravings of new inventions and discoveries representing Engineering Works, Steam Machinery, representing Engineering works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures. Chemistry, Electricity, Teleepraphy, Photography, Archiecture, Agriculture, Horticulture, Nat Termis of Sinbscription.-One copy TIFIC AMERICAN will be sent for one year- 52 numberspostage prepaid, to any subscriber in the United States,
Canada, or Mexico, on receipt of three dollars by the Canada, or Mexico, on receipt of three doilars by
publishers; six months, 81.50 ; three months, 81.00 . Clubs.-Special rates for several names, and to Post Masters. Write for particulars.
The safest way to remit is by Postal Order, Draft. or
Express Money Order Express Money Order. Money carefully placed inside
of envelopes, securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., payable to
MUNN \mathbb{E} CO., $\mathbf{3 6 1}$ Broadway, New York.

THE

Scientitir Smericant Supplement This is a separate and distinct publication from Tre every number containtigg sixteen large pages full of engravings, many of which are taken from foreign papers and accompanied with translated descriptions. THE
SCIENTIFIC AMERICAN SUPPLEMENT is published weekIV. and includes a very wide range of contents, It pre sents the most recent papers by eminent writers in all
the principal departments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural
History, Geography, Archæolog, Astronomy Chemis trystory, Geography, Archæology, Astronomy Chemis-
try, Electricity, Light, Heat, Mechanical Engineering. Steam and Railway Engineering, Mining, Ship Building, Marine Engineering, Photography, Technology, Manu-
facturing Industries, Sanitary Engineering, facturing Industries, Sanitary Engineering, Agriculture.
Horticulture, Domestic Economy, Biography, Medicine, etc. A vast amount of fresh and valuable information obtainable in no other publication.
The most important Enineering
and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT.
Price for the SUPPLEMENT for the United States and Canada, 85.00 a year; or one Copy of the SCIENTIFIC AM-
RRICAN and onecopy of the SUPPLEMENT, both mailed ERICAN and one copy of the SUPPLEMENT, both mailed
for one yearfor 77.00 . Singlecopies, 10 cents. Address and remit by postal order, express money order, or check, MUNN \& CE., 361 Broadway, New York,

Fuilding Edition.

The scientific american Architects' and BUnle ${ }^{\text {Singer }}$ edition is issued monthly. 82.50 a year. to about two hundred ordinary book pages: forming a
large and splendid Magazine of Architecture, richly large and splendid Magazine of Architecture, richly
adorned with elegant plates in colors, and with other flne adorned with elegant plates in colors, and with other fine
engravings; illustrating the most interesting examples of modern architectural construction and allied subjects. A special feature 18 the presentation in each number
of a varitety of the latest and best plans for private resiof a variety of the latest and best plans for private resi-
dences, city and country, including those of very moderate cost as well as the more expensive. Drawings in
perspective and in color are given, together with full plans, Specifications, Sheets of Details, Estimates, etc.
Pid The elegance and cheapness of this magnificent work
have won for it the Largest Circulation of any Architectural publication in the world. Sold by all newsdealers. $\$ 2.50$ a year. Remit to
MUN N CO

PRINTING INKS

