

Entered at the Post Offlce of New York, N. Y., as Second Class matter. Copyrighted, 1892, by Munn \& Co
A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

FROM CHAOS TO MAN-HISTORY OF THE DEVELOPMENT OF THE EARTH.-[See page 4Ũ̃.]

Frientific smmerican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORE.
o. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, for the U. S. Canada or Mexico.
One copy, six
One onths, for the U. S . Canada or Mexico

Building Edition.

The safest way to remit is by postal order, express money order,
Readers are specially requested to notify the
ilure delay, or irregularity in receipt of papers.
NEW YORK, SATURDAY, JUNE 25, 1892.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
INO. 860.

For the Week Ending June 25, 1892.

Joint
mions
tions

V. ELECTRICTYT.-Apparatus for Hxamining the Cavities of the

 III MISCEELLANEOUS.-SSiree of the Royal Society.-Remarka-

the seven ages of odr world.

We publish on another page an interesting series of pictures, illustrative of the formation, growth, and de velopment of this earth, from the time of its first formation from a nebulous mass. These pictures have been faithfully copied from the original set scenes which have been arranged to put in practical shape this wonderful history before the eyes of an audience. The scenes are elaborate in their detail, and give to the beholder a very vivid idea of what they are in tended to represent. Some wonderfully beautiful effects are produced by the use of electric lights and steam vapor.
It is primarily to the far-reaching discernment of Mr. Morris Reno that New York owes its Urania Scientific Theater, in the Carnegie Music Hall. It must be admitted, to begin with, that the "Urania" idea is of European origin; at least it had its first successful embodiment in Berlin, where a Urania theater has been in operation for four years. Mr. Reno, perceiving the excellence of the entertainments given in Berlin, and their uncommon educational value, believed that a similar theater could and should be established in New York. He interested Mr. Andrew Carnegie in the project, and Mr. Carnegie entered upon it with his customary enthusiasm for anything which tends to popular education. So the novel enterprise started out, late last winter, backed by intelligent appreciation and unlimited capital.
It is not to be understood that Mr. Carnegie has expended, or intends to expend, a fortune upon the Urania Theater (although, as a matter of fact, a great many thousand dollars had to be sunk to start it), but simply that the influence of his princely wealth and his world-wide reputation for philanthropic deeds buoyed up the undertaking and enabled it to pass successfully through that first critical stage which attends all such experiments. It has already fully demonstrated its usefulness, it has received the unqualified approval of some of our foremost educators, and it has awakened a
degree of popular interest that is truly astonishing. Considering the indifference shown to anything that possesses a flavor of science, and the sweeping competition of the numberless light and frivolous amusements with which this city abounds, the Urania Theater has been the most remarkable success in the way of has seen in many years. It is to the Urania idea that science is in itself entertaining and delightful, and to the extraordinary effectiveness of the upon the stage to illustrate the facts and wonders of science vividly to the eye, that this success is due.
Science has never before had such an opportunity as this is to make good its claims upon the attention of men and women who have been brought up, without knowing exactly why, to shun it as something essentially dull and uninteresting. We who know the real charms, the beauty, the poetry, the inspiration of science, can not doubt Evary scientific book and periodical will profit through the Urania Theater, because it will make fresh and eager readers for them ; every scien tific club and association will profit through it, because it will bring new members to their doors.
Thus far only two lecture spectacles have been produced here, and in each case both the scenery and stage settings, and the apparatus used for electric light ing, were imported from Berlin. They are, however, produced upon a much larger scale here than in the called "A Trip to the Moon," and it was recently se forth, with illustrations, in the Scientific American. The second of the series is "The Seven Ag World, or from Chaos to Man," which may be broadly described as a pictorial history. of the earth, beginning with the time when it first assumed form by condensa tion out of the original nebulous mass.
The lectures are exceedingly popular in form, and great credit is due Mr. Garrett P. Serviss for the and the interest with which he holds his audience The abstract of the lecture, which we publish in another column, is in his own words.

The Depopulation of France.
According to Der Reichsbote, Berlin, the recently published vital statistics of France reveal some start ling facts. The figures for 1890 show that the number of deaths was actually greater than the number of births. According to the report of the Chief of the Statistical Bureau, there were 838,059 births during the year 1890 and 876,505 deaths. Although the data of recent years had led students of statistics to expect that the annual deaths in France would soon equal the births, yet such a sudden and startling revelation
was entirely unexpected; and the officials are trying to was entirely unexpected; and the officials are trying to
discover the causes of this phenomenon, which stands absolutely unique on the Continent.
The main reason, doubtless, for the present abnormal condition is the widespread aversion to large
families. In France, the one or two system prevails. families. In France, the one or two system prevails. On the average, France reports the childen to every
100 families. In other countries the
than 300 ; in England as great as 380 . A singular phenomenon in this connection is the fact that in 1890 the number of illegitimate children of French mothers decreased 2777 , while those of foreign women living in France increased 292
Another fact to be taken into consideration is the physical degeneracy of the people; the higher classes by high living have become effeminate; the lower classes have become weakened and dwarfed by the tasks imposed upon them. It is an undeniable fact that it has become harder and harder for the average family to secure the necessaries of life. The cost of living steadily increases.

A Twenty Foot Channel from Duluth to Buffalo. The new River and Harbor bill provides a sufficien sum to begin the work of deepening the connecting channels of the Great Lakes, so that there will no where be, between Chicago, Duluth, and Buffalo, less where be, between Chicago, Duluth, and Buffalo, less
than twenty feet of water. The official estimates of the cost of the entire work, as made by Gen. O. M. the cost of the entire work, as made by Gen. O. M.
Poe, called for $\$ 3,394,000$. This is exclusive of the Poe, called for $\$ 3,394,000$. This is exclusive of the
work on the great new lock in the St. Mary's F'alls Canal, and in the Hay Lake channel immediately below in the St. Mary's River, for which provision was made in the River and Harbor bill of 1890. Six points need improvement. Two of these, Round Island and Sailor's Encampment lsland, are in the St. Mary's River-the outlet of Lake Superior; Corsica Shoal is at the foot of Lake Huron, and the St. Clair Flats Canal, Grosse Point Flats and the Limekiln Crossing are between the foot of Lake Huron and the head of Lake Erie.
Few persons who have not made a personal study of the matter realize the magnitude of the traffic of the Great Lakes. There were over 1,100 more vessels pass ing through the canal into Duluth, Minnesota, in 1891, than passed through the Suez Canal the year pre vious. Through the "Soo" Canal at the outlet of Lake Superior there were more than three times as many vessels and nearly a million and three-quarter tons more freight in 1890 than through the Suez Canal during the same year. There is not the same absolute record of vessels passing through the Detroit River as is obtainable for the two points previously mentioned. But an estimate made by Hon. George H. Ely, of Cleveland, shows that in 1889 there were more than $36,000,000$ tons of freight carried through the Detroit River. This sum seems large when it is stated by it self, but the real magnitude will perhaps be better appreciated when it is known that this is $10,000,000$ tons in excess of the tonnage at all the seaports o the United States for the same year, and $3,000,000$ ons in excess of the total arrivals and clearances both coastwise and foreign, of Liverpool and London combined. The arrivals and clearances of vessels a Chicago for 1890 numbered 21,541, while the corre sponding aggregate for New York was but 15,283. The entries and clearances for the entire seaboard of the United States in that year were 37,756, while for the United States ports on the Great Lakes the arrivals and clearances numbered 88,280 .
The average cost of transportation on the railroads in the United States for the fiscal year ending June 30,1891 , exceeded nine-tenths (941) of a cent per ton per mile. The average cost of transportation on the Great Lakes for 1891 was, as near as it can be ascertained, about 11-10 of a cent per ton per mile. But the importance of the Great Lakes to the busines interests of the country may be better understood i hese microscopic figures are translated into large terms. The traffic of the Great Lakes in 1891 was 27 per cent of the total traffic of all the railways of the United States for the same year, and if the tonnage carried on the lakes had been carried instead by rail, at the average price per ton per mile above given, it would have cost, in round numbers, $\$ 150,000,000$ more than was actually paid for its transportation by water. The total expenditure under the River and Harbor bills up to date for the improvement of the Great Lakes abov Niagara Falls is less than $\$ 30,000,000$. So that the saving on the business of a single year has been a mor than fivefold return for all the expenditures made in the past. The cost of water transportation decrease so rapidly with each increase in depth of available channel and capacity of the vessels engaged in the arrying trade that the saving effected by the deepen ing of the connecting channels from sixteen feet to twenty feet will be greater than that which has been produced by the expenditure of the $\$ 30,000,000$ in the past.-Review of Reviews.

Solidified Petroleum.

Some trials with solidified petroleum were made a ew weeks ago at the works of the Solidified Petroleum Corporation at Hackney Wick, London, and they demonstrated that a 6 horse power tubular boiler con taining eighty gallons of water could be heated by 62 lb. of the Chenhall fuel (or solidified oil), and in $361 / 4$ minutes steam raised to indicate 60 lb . to the inch while it took 106 lb . of coal and wood to raise steam to 60 lb . in one hour's time.

The Mercury mines of Almaden.

The following description of the mercury mines of Almaden is taken from the Journal de la Chambre de Commerce de Constantinople:
The mercury mines of Almaden, in Spain, are at a short distance from the town of that name, following the valley in a northerly direction. The veins of the precious metal are disseminated a little hap-hazard, but those at present in working form altogether a zone stretching for a length of from 160 to 170 meters, and which is only from 10 to 12 meters wide.
The depth of the bed is still unknown for the reason that when a vein is exhausted, the depth of the well is increased in order to reach a new vein. Between the different workable veins, there are beds of ores and rocks of different kinds; the average thickness of the unworkable beds varies between 10 and 37 meters.
The deepest gallery at present reaches 317 meters. A curious feature is that the farther the distance gone, the quality of mercury improves and the quantity in-

In the tenth and eleventh gallery (the deepest) the mercury runs, so to speak, from the rock as resin exudes from the trees; it can be gathered in small skin receptacles.
The rock varies in color and passes from black to brilliant red; the more the color approaches red, the more the quantity of mercury increases. Very often mercury is present under the form of cinnabar or sulphide.
The pits at present in working number three. The other old wells have been abandoned, and only serve in exceptional cases.
On delivery from the pits, the ore is smelted in vast furnaces, with enormous cupolas, beneath which a fierce fire is constantly kept burning.
Distillation is effected through a long and complete series of tubes, formed of thick jars, with a long and narrow neck, fitting into each other.
In the lower portion of these jars there exists a kind of small reservoir where the drops of mercury produced by the evaporation of the metal in a state of fusion are condensed. These drops are then collected and, with the aid of small pipes, stored in large iron
barrels. A strong smell, which irritates the eyes and barrels. A strong smell, which irritates th
nostrils, escapes from the jars and barrels.
The production of mercury reaches about 55,000 to 60,000 frascos per annum ; the frascos are enormous bottles of cast iron, which contain four arrobes of about 25 pounds each. Each bottle, which measures 22 centimeters in height by 6 in width, weighs, when filled, about 100 pounds.
The workmen at present employed number about 2,000. There are also a thousand workmen who are employed out of the mines with machinery, furnaces, transports, and other works.

Dirty Lenses.

The subject of the transparency of glass has, perhaps, not altogether received the attention which it deserves, and some recent failures in obtaining bright negatives by a friend have brought it rather prominently before the writer's mind. There is an idea abroad that a thick lens is necessarily a slow lens, on account of the thickness of the glass traversed by the light which goes to form the image. Though in some cases this is true, yet with the majority of lenses the loss of light by an increase in the thickness of glass is parison is made between the effect of photographically active rays after traversing even a thin lens and that when they act without the interception on a sensitive surface. Perhaps one of the most instructive lessons to be learnt from Professor Boys' recent papers on the photography of the flight of bullets was the fact that a piece of the thinnest microscopic glass practically cut off as much photographically active light of an electric spark as a slab of the same material-in other words the absorption by the glass for any rays of any reason able thickness was almost greater than that of the thinnest microscopic glass. This, perhaps, was better brought out in the case of the light from the electric spark than it was from the light of the sun, for the former contains a much larger range of ultra-violet rays of the spectrum than the latter, and consequently the difference is more marked, but it is merely a matter of degree.
A good plan of showing that thickness of glass in a colorless lens has practically but little influence on the light passing through it is well exemplified by absolute experiment of a very simple kind. Suppose we place a colorless lens in contact with a piece of sensitized pa per, such as ordinary albumenized paper or platinotype and expose it through the lens to direct sunlight, it will be found that the printing action is apparently the same throughout, showing that the thicknesstraversed
has very little to do with the amount of blackening. Indeed, in many cases, no difference can be seen be tween the part exposed through the central portion of such a lens and of the margins if the lens should be a plano-convex, the plane surface being that in contact with the paper. If we cut a strip of sensitive paper
the lens so that direct sunlight travels along the axis, measurements show that the amount of blacl ening is dependent only on the angle which the surface of the lens, and consequently that of the paper, makes with the perpendicular, and can be calculated out by the ordinary law of cosines. But in order for this to be the case the glass of which the lens is made must be color less, and of this lack of color a good judgment may be formed by looking at white paper through it; if the glass appear yellowish this will no longer be quite true, and if greenish there will also be proportionally more cut off by the thickest part than by the margins. The present lenses are all, however, made of colorless glass, and therefore by comparing the blackening of sensitized paper when light passes through it and when it does not an idea may be derived of the absorption for any moderate thickness of glass. The glass ordinarily used for photographic plates is of a decidedly greenish hue and this, it will be found, may cut off as much as 25 per cent of the incident light, so that such glass is really a powerful absorbent of photographically active light. The colorless glass of a lens, on the other hand, will not absorb nearly so much.
Quartz is the only material of which a lens can be made which is seemingly transparent for all rays of this kind. Iceland spar, however, approaches it when sun or sky light is in question. There is, however, a fa greater possible loss of light in lenses than this absorp tion, and that is dirt. The negatives which were placed in the writer's hands were of a peculiar character. They were not overexposed, for in the shadows there was, in some cases, no detail whatever, although there was a deposit over what should have been transparent parts; but the margins of the plates, which were covered by the rebates, were devoid of any trace of veil. From that it was evident that the plates were not in fault and the defect must have arisen either from stray light in the camera or coming through the lens, or from the lens itself. The lens was capped, and an exposure of a plate in the camera with the lens in that condition showed that the defcet was not due to light percolating into the camera. After a little further examination the lens itself was scrutinized, when it was found that the surfaces were not exactly dusty, but greasy-in fact they looked like the surface of a London window which has not been cleaned for a month. This state of the lens at once gave a clew to the cause of the faulty nega tives. A trial negative of a subject was taken with it when the same veil as seen in the other negatives was apparent. The lens was then carefully polished with a chamois leather, and finally with a soft silk handker chief, and a negative of the same subject was again taken, with the result that the veil had entirely disap peared.
The facts then are these, the dirt on the lens became a source of light from outside sources and illuminated was made there were thus two sources of light, as it were, at work, the one forming the image and the other scattering in all directions the light which the dirt scattering in all directions the light which the dirt
stopped. The one gave the image, the other stopped. The one gave the image, the other
veiled it. In extreme cases the writer has known as veiled it. In extreme cases the writer has known as
much as thirty per cent of the light to be stopped in this manner, and supposing the scattering took place in all directions, there would, in this case, be almost as much ill-directed light coming on to the plate as there would be of light to form the half tones of the image for it must be recollected that in the case of a doublet lens it would receive not only the light from the object to be photographed, but also the light coming in all directions, giving the dirt an extra illumination. With a single lens with the stop in front this is saved to a large extent, and, therefore, it is safer to use a dirty ingle lens than it is to use a doublet in a similar con dition. But the question arises, Why have dirt at al on the lens? This is a question which should be taken to heart by all photographers. It is not the professional photographer who is likely to neglect the polish of his lens, but the amateur, who very often puts it into winter quarters, and then withdraws it for use in the spring, and he probably never stops to consider whethe it is in the same state as that in which he put it away A fruitful source of the kind of dirt alluded to is that f the fingers. An impression of a hot thumb or finge may often be seen on the lens of a careless amateur and every point of grease becomes a source for scatter ing light. It may be supposed that the limit of scattering is reached when the surfaces of the lens are ground Between this limit and that of absolute polish comes aid should at all stages of dirt-stages which
In photography, as in everything else, "experience eaches," but there is no need that the lesson should be practically learnt by every one. It should suffice that ome have met with what we may call this incident and have pointed out the bad effects of it. It must never be forgotten that even a thoroughly cleaned lens is, to a certain extent, a source of illumination. Per fect transparency does not exist, and this being so, the glass is always to a certain extent a cause of a sligh when the lens faces the sun always gives a veiled image The object to be taken is very much less bright than
the sky is; the image is formed by comparatively feeble rays, whereas the lens is illuminated by the direct sun's rays, and hence a veil is induced. When a pinhole is used, this is not the case to nearly the same extent. While not advocating the use of a pinhole on every oc casion, yet it is sometimes useful.-W. De W. A., in Photography.

Launch of a Large Steamer at the Works of the Newport News Shipbuilding and Dry Dock Co.
Among the new industries which have been inau gurated in our Southern latitudes is that of iron shipbuilding, and one of the leading concerns in that line is the Newport News Shipbuilding and Dry Dock Company, at Newport News, Va. An example of the extensive capabilities of this establishment is seen in the splendid steamer El Norte, a freight vessel of 4,500 tons, 400 ft . length, which was launched on the 14th of June with great eclat.
The general dimensions of the vessel are as follows : Length between stem and after side of propeller post 380 ft .; breadth of beam, moulded, 48 ft .; depth from top of keel to top of upper deck beams of lowest part of sheer, 33.9 ft .; length over all, 406 ft .; depth of hurricane deck, 33 ft .9 in .; gross tonnage, 4,552; net tonnage, 3,021 ; capacity for cotton in bale, 14,000 .
The vessel has three decks, with a partial orlop deck t fore end of fore hold. The lower and main decks are divided into sections by ten transverse bulkheads. The engines and boilers were designed by Mr. Horace See, the superintending engineer for the Morgan Line steamships.
The engines are of the direct-acting, surface-con densing, triple-expansion type. The cylinders are 32 , 52 , and 84 in . in diameter, by 54 in . stroke of piston They are designed to work under a pressure of 16 pounds of steam. The valves are all of the piston type on the front of the engine and close to the cylinders There is one valve only on the high-pressure and inermediate cylinders, and two upon the low-pressure They are driven by the See-Marshall gear.
The crank shaft is in two lengths, both pins and main bearings being 16 in . in diameter. Steam will be supplied by three double-ended cylindrical boilers, having three corrugated furnaces at each end. They all lead into a common combustion chamber. The boilers are fired fore and aft from two fire rooms.

Salt Water Baths.

Not many people nowadays deny the wholesome ef fect of mineral water baths, and M. Albert Robin, of France, who has made a special study of the effect of the mineral salts on the human system, when applied by the bath, has announced some of his conclusions as follows: "A bath containing six per cent of chloride of sodium diminishes the amount of organic matter uric acid and extractive substances, but increases the norganic compounds, the amount of nitrogen, urea chlorides and phosphoric acid. If the bath has twelve per cent of common salt, it gives a brisk stimulation to the nitrogenous interchanges. A bath of twenty-five per cent of salt influences mainly the process of oxidaion, while it affects the nitrogen interchanges but slightly.
"This last strong salt bath is, therefore, indicated or patients of sluggish digestion and oxidation, who suffer mostly from diseases of the skeleton, with ra chitis or necrosis, or with anæmia.
"It is also good for all persons in whom the nervous system needs to be built up by economizing the nitrogenous interchanges."
In following up this discussion of the biological ac ion of salt baths, the European edition of the New York Herald contains a proposition advanced by ome enterprising scientists " to utilize the waters of the Dead Sea for antiseptic purposes."
So far as known, no bacteria can abide in this sea which is densely charged with chlorides of magnesium and sodium, and also contains in large quantities the bromide of potassium and lime.
Whether this will be attempted or not, and whether in case it should be done there will be found any advantage for antiseptic dressing over the ordinary emedies now in use, remains to be seen.
Meanwhile, for certain classes of invalids, especially people of bilious habits and sluggish circulation, says the American Druggist, there is fresh encouragement to plunge, when convenient, in the ocean surf, and when not so convenient to make use of the waters de rived from the sea salt as may be most easily procured.

Coffee and strawberries.

The very height of strawberry eating is with coffee. Nobody ever really tasted coffee who has not drunk it in alternate mouthfuls with strawberries, and nobody knows the strawberry flavor excepting immediately after the clearing of the taste which comes from drinking coffee, says the New York Post. The clearing property of coffee is familiar enough, but there is strange ignorance of this special application of it. The best of strawberries with the best of coffee makes the supreme refinement of indulgence in the fruit.

AN IMPROVED BALLOT BOX

A box of strong and simple construction to safely hold ballots deposited therein, and provided with ready means for securely locking the box when the balloting is concluded, is shown in the accompanying illustration. It has been patented by Messrs. Virgil A. Grimes and Charles R. Lame, of Pittsfield, Ill. On the under face of the cover of the box is a recessed angled portion on its four edges, engaging the inner

GRImES \& LAME'S BALlot bOX

face of the body of the box at its top edge, as shown in one of the views, so that ballots cannot be inserted in the box by slipping them under the cover at its edge. The front of the cover also has an attached metal plate, and such a plate may be placed on the sides also if desired. The opening for the introduction of the ballots is provided with a hinged metal lid, and the locking device consists of a bar pivoted centrally on the top of the cover. When the lid is closed this bar is swung over it, the bar then engaging on its inner end a stop plate or block on the top of the box, while its front end, provided with a hasp, is engaged by a staple, and locked on the front of the box. When the box is in use to receive ballots, the locking bar is swung across the cover from side to side, its hasp being then engaged and locked upon a side staple. The lid of the box may be made to simply lift out from the body of the box if desired, the box being also provided with other metal or strengthening strips as may be deemed necessary

intelligence of parrots.

I have for twenty-three years owned a female parrot of Gaboon, with ashen gray plumage and a red tail, aged at present about forty-eight years, and which the reader will find figured herewith. This bird, whose plumage is very well preserved for its age, is so remarkably intelligent that it has seemed to me that it would be interesting to give an account of it to my
house, their contests in spring for the possession of a nest, and their daily quarrels.
It imitates also all the cries of Paris, and especially the cry of the clothes peddler, and many a time have the inhabitants of the house been deceived by this faithfully reproduced sound. When my brother-in-law gave me this bird in 1870, I placed it in the hands of our farmer, in the country, while I was doing service in the army during the war
Its repertory then became enriched with all the sounds of nature-those of the quail, the owl, the magpie, the cock, and the hen, in all their vocal manifestations. It excels in the phonetic reproduction of the death of the hog, at which it has certainly been present. It reproduces in the first place the broken cries, low or shrill, of impatience and fear of the animal while being dragged to the place of slaughter, and then the howls of anguish during the process of throat cutting, and this with the same shades of gradation and force as manifested by the animal itself. Although it has not heard these sounds in twenty-two years, this death fantaisie passes through its brain from time to time, and it rattles the windows of my house with it to such a point that I am obliged to silence it.
My parrot observes every motion that precedes an act which will be accompanied with a sound. If it sees me approach an open window and prepare to close it, it immediately imitates the noise made by the window before I have touched the latter. If it sees meholding a handkerchief, it wipes its nostrils. If it sees me holding an overcoat or a frock coat, it immediately, and in advance, makes with its wings the motion that I am going to make with my arms in order to put on the coat.

It imitates the sound of flowing water. If it sees me holding a glass containing a liquid, or merely approaching it, it immediately imitates in advance the sound of swallowing and the descent of the liquid into the throat. If it sees a cat, or if any one calls a cat, it at once imitates all the various forms of the cat lan guage, and the same as regards dogs, horses, and asses.
My parrot puts into all these imitations, often inter rupted by peals of laughter, an intelligent intention malice, and volition. But what is of especial impor tance to make known about this bird is its faculty of understanding what is going on around it, and of participating therein in language and actions. When any one talks before it, it takes part in the conversaany one talks before it, it takes part in the conversa-
tion by "oh's" and "ah's" of astonishment and approbation uttered at the apposite moment. It bursts into a fit of laughter if a person says something funny with an air of jovialness. If it needs anything, it calls its mistress by her first name-Marie ; and if she is tardy in coming, its voice gradually becomes impatient and imperious.
On a certain winter's day it was placed in its cage near the fireplace. A log of wood rolling outward covered it with ashes, sparks, and smoke. Its mistress, busy in an adjoining room, heard it cry, "Marie! Marie !" like a person a prey to a danger, to an exces sive fright, and she ran to its assistance.
When its noon meal is served to it, consisting of a few dainties, my parrot daily reserves fo its evening meal a small piece of bread and preserves.
It does not like men, who could not touch it without being attacked with its bill and sharp claws. On the contrary, all its ca resses are for women, and especially for little girls. It suffices to be of the feminine sex to be able to touch it and caress it with out danger. It loves its mistress to distrac tion. It obeys her commands, and when she corrects it by giving it a few light taps with the finger on the bill or head, it licks the finger that strikes it, and utters little cries asking her pardon.
When, after having gone out, I return home, it knows who it is through the wall, and, although it cannot see me, it apprizes its mistress of my return by singing two notes-do-do, the second in the octave of the first. It does that for no other person in the house.
It says good day to me in the same manner every time that I enter the room in which it is placed. If I give it anything, it thanks me with voice and action by raising its wings.
But my parrot excels especially in the ex traordinary gift of being a music-mad and composing bird. If it sees a polka danced
readers. Although it imitates and remembers all the noises and all the sounds that it hears, the character istic of this bird is a particular originality which is peculiar to it, and which makes of it both an imitator and a creator.
Before it became my property this bird was kept in a house at Paris that had a large number of tenants. It imitated to perfection the language of the sparrow that fought upon the roof and in the courtyard of the
accompanies it with short notes, and in measure with the same accuracy as a trombone player.
It improvises true musical morceaux, which it whistles and incessantly varies, without ever repeating in its improvisations. It produces them with a style that a pupil of the Conservatory might envy. It finishes its improvisations in tone. It improvises in asks it to sing. When other prever when its mistres
rupts its musical strain from time to time to burst out into a laugh, mingled with "oh!" "oh's!" which indicate that it is happy to be listened to. Before improvising, it often preludes by gamuts trilled and vocalized, like those practiced by a singer to get her voice in trim before going upon the stage.
From time to time it stops in order to dry its throat, to swallow its saliva by a motion of deglutition, accompanied with a quick stroke of the tongue against the palate, so that the sound of the whistling shall come out with greater purity. I should say the sound of the flute, for one might believe that he was listening to a large, flexible and well timbred instrument of that kind. The grave notes of this instrument are truly remarkable.

When my parrot sings in faithfully imitating the human voice, it often passes from deep bass to the purest soprano in continuing the air
It likes to open its cage in order to walk around the room and to get under the furniture and to hack the legs thereof with its bill, which cuts oak with the same ease that it does whitewood.
After having carefully and patiently studied all the systems of hooks employed for closing its cage, it un fastened them all. The door was then closed with a carbine swivel. It studied and recognized the mechanism of this, and succeeded in opening it by resting one foot upon the interior spring, while it opened the hinge with its bill. For several months past the door has been closed with a padlock and key. The bird has passed hour after hour in studying this new device, and in turning the key in all directions, but has not yet succeeded in opening it, because the spring is of hard steel.
I should never have ventured to speak of these so astonishing phenomena of intelligence on the part of this bird had not hundreds of persons been witnesses thereof for the past twenty-three years, and even now when on pleasant days my parrot is placed near an

LENTY'S HOSE COUPLING.

open window looking upon the street, it collects the passers-by of all ages, who are surprised at the music that it offers them
Children come to play on purpose in front of this window, which surmounts a wide sidewalk. The bird participates in their plays by running rapidly from one end to the other of its cage, as well as a parrot can do so upon a long perch, and in uttering with gleeful cries and laughter the same words that the children do.
I have passed some interesting moments in studying this bird, whose intelligence introduces a new element into the solution of the problem that my friend, the Marquis de Nadaillac, has defined in these terms in his remarkable study entitled "Intelligence and In tinct:" "The reader will thus be able to determin whether intelligence is the real characteristic of man whether it creates an abyss between him and the ani mal, and whether there does not exist between beings merely a ouestion of degree; in other words, whether human intelligence differs essentially or only in quantity from that of other beings.." ${ }^{-}$. Nicaise, in La Nature.

AN IMPROVED HOSE COUPLING.

The coupling shown in the picture may be quickly and conveniently applied to any broken hose to unite the parts, and may also be used to connect the ends of ections of hose. It has been patented by Mr. Joseph Lenty, of Troy, N. Y. A hollow plug, A, is adapted to enter the hose, and has on its exterior grooves into which the material of the hose is pressed by means of an exterior tapering sleeve nut, D, the latter having lugs to engage a wrench and a screw-threaded portion engaging a screw on the inner end of the hollow plug The inner end of the hollow plug is also interiorly crew-threaded, to engage the thread of a swivel block B , connected by an ordinary locking-sleeve, C , with the threaded end of another hollow plug, E , attached to the end of the other hose section, with which the coupling is made. The coupling separates by disengaging the threaded end of the plug from the locking sleeve. The ends of the hose held between the sleeve
nuts and the tapering ends of the plugs are firmly clamped in place by tightening the nuts.
Further information relative to this invention may be obtained of Mr. J. G. Patton, No. 285 River Street, Troy, N. Y.

A SIMPLE CAMERA SHUTTER.

It would be difficult to say who invented the simple shutter shown in the annexed engraving. It has been made and used by amateur photographers, and seems to answer the purpose very well indeed. Although it is crude when compared with some of the perfected shutters, the results secured by it are not inferior to those of better instruments.
The block forming the support for the working parts is bored to receive the outer end of the camera tube. To this are attached two grooved uprights and a cleat extending across the block at its lower edge. To the grooves of the uprights is fitted the shutter, which consists of a piece of thin board blackened on its inner surface, and provided on its outer surface with three escutcheon pins, all arranged on the median line of the shutter. The lower pin, which is without a head, is engaged by a spring catch. The second pin projects the farthest, while the third projects only a short distance. In each grooved side strip is inserted a pin, which projects some distance from the surface of the strip An ordinary rubber band is stretched An ordinary rubber band is stretched around these pins, and the outer strand is wound several times around each pin, to separate it from the inner strand. The spring catch, which is attached to the bottom of the block, is bent outwardly to permit of placing under it a small pneumatic bulb similar to those used on pen fillers. With the bulb is connected a flexible rubber tube, having on its free end a larger bulb, by means of which the smaller bulb is inflated when the shutter is to be released.
The shutter is held normally in a closed position by the spring catch, which engages the lower pin. In another form of the shutter an ordinary hook is used in lieu of the spring and pneumatic bulb.

To prepare the shutter for operation, the outer strand of the rubber band is placed around the upper and shorter pin, as shown in the left hand figure. When the exposure is to be made, the shutter is operated by compressing the large bulb, which inflates the smaller bulb, thus pressing outwardly the spring catch and disconnecting it from the pin. The elasticity of the rubber band forces the shutter upward until the pin passes above the inner strand of the rubber band. The momentum of the shutter carries it upward, and bringing the longer pin into engagement with the inner strand of the rubber band, stretches the band, as shown in the right hand figure, thus arresting the movement of the shutter and storing power for closing

tured by Messrs. C. Aultman \& Co., of Canton, O. and is reported to have been successfully used in breaking hemp in Kentucky, and to have given great satisfaction in an experimental test upon jute fur nished for the purpose by the Commissioner of Agriculture, the machine being likewise adapted for work upon ramie, flax, and all similar fibers. There are at present three of these machines for use in breaking hemp in central Kentucky, one in Bourbon and one in Clark County, one on the farm of the inventor, Mr in Clark County, one on the farm of the inventor, Mr. ton, 0 .

From the top and back of the machine the fiber is fed through two feed rollers which adjust themselves y to any sized bunch, passing thence through the break, which is composed of a sash and four stationary feed bars. The sash passes between these stationary bars, breaking the hemp on both the up and down strokes, the bars being so ar ranged that they break alternately first on one side and then on the other, mak ing each revolution equivalent to four strokes. Passing into the cleaner, the fiber is separated from the hurds-its coarse or hard part. The cleaner is composed of two bars, one stationary and the other vibratory, being longitudinally placed slats, the upper stationary one of which is smooth, while the lower vibratory one is grooved or notched. The vibratory bar or riddle runs by a compound elliptical motion, forcing the fibe between the slats of the stationary riddle and thence out of the machine. In breaking rough hemp stationary dividers are preferably placed between the break and the cleaner to split the hemp and better prepare it for the cleaner.

Glycerine, $\mathrm{C}_{3} \mathrm{H}_{5} 3 \mathrm{HO}$, is the hydrate Sea by inundation. A commission was appointed some ; of the trivalent radical glyceryl. It is a sweet, sirupy time ago to examine into the question of draining this liquid, obtained by the decomposition of fats and oils, territory, which has a superficial area of 760 square principally as a by-product in the manufacture of canmiles. A report on this subject has now been issued. dles and soaps. The fatty acids are used to make candles miles. A report on this subject has now been issued.
It proposes to close the Zuyder Zee by means of a dam
and soaps, when combined with soda or potash. Pure that shall be constructed from the mainland, on either glycerine is colorless and odorless, freely miscible with side of the island of Wieringen. The water thus cut off water and alcohol in all proportions; but with oils it from the sea would be divided into four parts, in each of which the work of draining would be carried out successively. The cost of constructing the dam is estimated at $£ 3,675,000$, and the draining would involve an xpenditure of $£ 13,000,000$.

THE SHELY FIBER BREAKER.

The machine shown in the illustration is designed to break six to eight thousand pounds of hemp or similar fiber per day, with a ten h. p. engine and about nine hands--an engineer, a water hauler, a buncher, one feeder and assistant, three to receive and remove fiber, and one to take care of hurds. It is manufac
it. The elasticity of the inner strand of the rubber
band is sufficient to cause the shutter to drop quickly and regain its original position.

Draining the Zuyder Zee

The government of Holland has for a long time pas had under consideration a project fordraining the vast agoon known as the Zuyder Zee. This sheet of aater vessels can only find their way to Amsterdam by mean of the North Sea Canal. As agricultural land, how ever, it would be exceedingly valuable, since it is esti mated that more than two-thirds of it is very fertile The Zuyder Zee was formerly a lake, but in the twelfth glycerine is colorless and odorless, freely miscible with
water and alcohol in all proportions; but with oils it only emulsifies, and does not perfectly blend. It is a solvent of many alkaloids and their salts, as well as resins. The purest is prepared by distillation although not volatile without decomposition, yet it passes over undecomposed in the vapor of water, and may be concentrated by careful evaporation. This mode of preparing it was patented by Price's Candle Company, but now much distilled glycerine is imported from Germany. Glycerines of inferior quality have a disagreeable smell, and are sometimes colored. Good glycerine should not be colored after being subjected for two hours to the action of an added solution of the nitrate of silver.-Cole.

New Industries Resulting from the Building up
In a stirring speech recently made in the Senate by Senator Gorman, of Maryland, in favor of liberal appropriations for the navy, he said :
Under the provisions of those various acts, Mr. President, we have created plants which are a marvel to the whole world. It does not apply alone to the navy. We are equipping and have ready now the finest war vessels, of their type, that float upon the ocean. We have done more than that. We have created plants that are constructing vessels for commercial purposes. These shipbuilders claim, and I believe it to be true, that they are now prepared to construct the finest steel vessels on private account within 10 per cent of the cost of like ships constructed on the Clyde. We have in the State which I have the honor in part to represent three or four shipyards constructing vessels for the government and for commercial use. The largest plant in Maryland, and probably one of the bestequipped in the country, is at Steelton, Baltimore Harbor, the president of which informed me a few days since that while they were prepared to construct the largest war ships, they had not and probably would not make an offer to construct a war ship, for the reason that his company had reached the point where they would have all that they could do on private account.
The concurrent testimony is to the effect that but for the appropriations heretofore mado on account of the navy, none of these great plants would have been equipped with machinery to build war ships or the great ships for commercial use that are now afloat and being constructed.

Abnormal Breathing.*

Neither man nor animal breathes through the mouth normally. The only natural way for respiration and inspiration is through the nose. When we breathe through the nose, the cold, dry, impure outward air is sufficiently warmed, supplied with watery vapor and freed from dust. When we breathe through the nose, smelling at the same time through our organ of smell, which assists respiration, we become aware of the presence of an injurious or of a generally abnormal mixture drawn in by the breath, and can then either correct so unfavorable an atmosphere or escape from it. Furthermore, only in the nose are found those fine arranyements which can prevent the entrance of injurious substances into the deeper respiratory organs (larynx and lungs), and thus stop the further advance of the hostile body (painful smoke irritating dampness, thick dust, etc.), besides defy ing that which has already slyly effected an entrance. This is done by the so-called nasal reflex breathing, to which class belongs sneezing. If we breathe through the mouth, the air is neither sufficiently warmed nor satisfactorily moistened, and laden with all its bad mixtures of dust of mineral, animal and vegetable origin, added to injurious gases, reaches the larynx, the air tubes and the lungs. Snoring is only the least among the evil consequences of breathing through the mouth. The swollen, sore, constantly chapped lips, bad condition of the front teeth and decay of the back ones, a defective development of the sense of smell, frequent inflammation of the throat, attacks of fever, diphtheria and catarrh, and soreness of the larynx and lungs are consequences of breathing through the mouth which have been fre quently observed. In children one often sees an habit ual and peculiar weak or even stupid expression of countenance. It has also been found, through the experiments of different trustworthy observers, that there is a causal connection between stammering and breathing through the mouth. On the other hand however, certain forms of nightmare and asthma ar causes of breathing through the mouth. That infant are sometimes brought almost to death's door when prevented by a cold from breathing through the nose is a fact well known to physicians.
When a child or a grown person begins to breathe with the mouth open, there must exist some sufficien cause for the occurrence in the uppermostair passages. No one would voluntarily exchange the only healthy, comfortable manner of breathing through the nose for the burdensome and unhealthy breathing through the mouth. Let any one attempt to breathe through the mouth for five minutes, instead of, as one is ac customed, through the nose, and he will soon be convinced that it is almost impossible. Almost of itself, that is, without muscular force, through the mere pressure of the air, the mouth closes and th original manner of breathing is resumed.
Whoever snores can, as a rule, not ibreathe through the nose. That it would be useless in such cases to desire to close the mouth mechanically is entirel comprehensible. Every mother, who frequently gives to her child the useless command "Close your mouth," is aware of this. Here it is better to seek, without de lay, the advice of an experienced specialist, in order to determine the cause of this mouth breathing. In the
case of children, in particular, an innecessary delay
might prove fatal Now fatal
this habit maye certainly cases in which the cause of main But be determined and the habit still re main. But these are the exceptions; as a rule norma passages; if the snoring and breathing through the mouth returns as an evil habit, then and only then can mechanical means be used with advantage to stop this opening of the mouth.
The simplest and oldest of these is to place a band from the chin to the top of the head. This often suffices. As the mouth remains closed by pressure of the air, some of the mechanical appliances to produce this effect might be used. Sometimes it is even suffcient to place a piece of celluloid plate between the teeth, but one would not likely decide to place a foreign substance in the mouth of a sleeper, particularly a restless child.
All of these apparatus must be put on every evening, and worn overnight, until the normal position of the lips and lower jaw is regained. But the most import ant thing is to remove the obstructions to norma breathing.

SHEELEY'S CANNING OR PRESERVING JAR.

The accompanying illustration represents a canning or preserving jar, provided with novel means to pre vent its turning while the cover is being applied to or removed from it. The most satisfactory fruit jar in use, the Mason, is taken for the foundation. Its promi nent features are retained, but a change of shape is made, by which it is held securely in the socket whil the cover is fastened or removed.
The cover, which is screwed on, as in the old Mason jar, has on its upper edge fluted or scalloped surfaces, and a fluted wrench accompanies the socket. In the upper end of an arm at one side of the socket in

which the jar is held is a friction roller, a cord passed around the roller and attached to the handle of a wrench fitting the scalloped cover, affording ready means for quickly removing the cover. This is so contrived that no one need be at a loss to know which way to pull in order to unscrew the cover, neither is there the awkwardness of the common way of unscrewing. Further, the work of both fastening and removing the cover can be done not only by one person, but with one hand of one person. This all housekeepers will find a great relief. The improvement has been patented by R. C. Sheeley, of Walter's Park, Berk County, Pa.

Legal Electricity

Electricity seems destined to afford lawyers of all ands an opportunity of showing their professional skill at splitting hairs. In America several legal questions have cropped up. Is electricity dutiable? Can it be stolen? In France it was a moot point until a short time ago whether an electricity supply company was a Societe Civile or a Societe Commerciale matter of no little importance to investors, who in the latter case would only be liable for the amount of their shares. A Societe Commerciale, it appears, is one which has for its principal object "the accomplishment of acts of commerce," such as buying raw material and reselling it at a profit, manufactured, or in its natural state. The Edison Company, of Saint Etienne, summoned before the Tribunal of Commerce of that town by one of its customers, declined to submit to the jurisdiction of the court on the ground that the supply of electricity from a central station did not constitute a commercial act, "the company only sold a product which it gathered from nature, and which was a res nullius." The Tribunal of Commerce, nevertheless, declared itself competent to try the case, France, at any rate, electricity when supplied from central station must be deemed a manufactured ar-
ticle. Across the Atlantic, where the manufacturing號 f central stations.-London Electrician

The Potato.

As some perhaps look upon the potato, it appears to be a very admirable source of food for man, but it is hardly biological to attribute to the plant such exalted altruistic motives of disinterested generosity as it might imply if we should intimate that this is the end and aim of its existence. There is a class of mankind who appear to deem it proper, like Pope, to hold al nature to account for itself as useful to man, and such would doubtless say that the potato was created to be a food product. To the biologist's ways of thinking this end of the potato's life is merely incidental-from its standpoint a very unhappy incident; the real end and aim of the potato's life is to propagate its kind the storage of starch being a part of the plan
The life of the tuber of the potato is part of the larger life of the entire plant. The history of the tuber is as follows: It starts from a bud on a preceding "seed potato," of which and of whose predecessors it may be thought to form a part, but really it is (like cuttings or slips from any plant) the beginning of what we may call a new plant. The early growth of the ells in the embryonic part of the bud requires food to furnish which is the reason for the starch supply. But after a time the growing bud tissue differentiate into stem and leaves and rootlets, and then it can begin to depend, as all green plants do, upon the sunligh and the water and gases of the air and soil, and with their help construct its own substance. The starch of the potato tuber thus acquires a biological meaning. Its production and storage are perfectly analogous to the provision made in seeds. In the case of the peanut, we have also an underground structure stored abundantly with food for the undeveloped embryonic tissue, which is also part of the nut. The substance in many seeds is largely albuminous, as shown so abund antly in the pea and bean, also in the peanut, which is a close ally of the pea and bean.
Since the potato tuber and the pea or bean are thus comparable in two respects, both being the starting point of new individual plants and both containing cells which secrete and amass large quantities of food to nourish the embryo plant until its vegetative organs are developed, a hasty conclusion might be made by some that the potato is a sort of seed. This conclusion would be found by the study of the anatomy of the entire plant to be true only in a very particular sense and not as meant in ordinary terms. The seed is the product of a ripened flower, while the tuber is not There is a very great difference in the powers of potato seed and of the tuber bud; the latter propagates it kind absolutely and without variation, while propaga tion from seeds is very likely to result in the appear ance of varieties unlike the parent plant. We have in this case an example of the law that nature works very variously toward the same end, using the stem bud in one case as the special organ of propagation and the seed in another, equipping either suitably for its pur oose.
Finally, if we compare the potato with an animal, we find that the aggregate of its actions are anabolic, hat is, they are constructive, so that as their result elements, or simple inorganic compounds, are laid hold upon and caused to combine to form higher and more complex organic compounds used in the plant's struct ure. In this it is unlike an animal, the aggregate of whose activities is katabolic, for it takes in highly com plex chemicals (furnished from the plant's work) and ives out simpler ones. Associated with the difference is the further fact that the functions of motility and ensation, which are so characteristic of animals and are possible by reason of the constant katabolic charac ter of its metabolisms, are unspecialized in the plant i not entirely absent, while the metabolic function is highly specialized and results in the production of anabolic products in the vast amount we see in the tuber.
We see then that the same forces are at work in the vegetable as in the animal body. The active agents of the tuber are protoplasmic cells, which work along ines determined by inheritance, and manifest certain of the protoplasmic powers in so high a degree as to nearly exclude the others, but retaining the two most universal powers of protoplasm-metabolism and re production.-H. L. Osborn, Microscopical Journal.

Possibility of a Gaseous State of Certain Metal ares below theiment. Leaflets of ver, platinum, and gold were heated to 150° with con centrated hydrochloric acid in sealed tubes. The metals were dissolved and the chlorides formed were reduced by the hydrogen evolved from the metals and the hydrochloric acid. They were deposited on th sides of the tubes in microscopic crystals. It may be assumed that in this experiment even the platinum ex isted for some time as a liquid before taking a crystal line form.-Chem. News.

Sorrespondence.

How to Drill Glass.

To the Editor of the Scientific American:
Tell your correspondents if they wish to "drill glass," and do it successfully, to make a drill of the required size out of a bit of Stubs steel wire. Make the cutting edge just like a stone drill, having the corners square and sharp. Heat the drill with the blowpipe to a white heat and drop it instantly into water. A few trials will get it hard enough. Rotate the drill in a small drill stock, keeping the cutting edge wet with a solution of camphor in turpentine. Sharpen the drill occasionally on an oil stone. Such a drill will cut a hole through plate glass three-eighths inch thick in about one minute. If the glass is thin, paste writing paper on each side with common mucilage.
A little practice is necessary with this as with everything else. Having tried about every way mentioned in the books, I can say that this is the only way ever tried which did not end by breaking the glass. C. W. N.'s three-cornered file always broke my Holtz plates.

John W. Kales, M.D.
Franklinville, N. Y., June 13, 1892.

Methods of Educating the Deaf.

A child born deaf remains, unless especially trained and instructed, wholly ignorant of verbal language. This verbal language, which comes in vocal sounds to the normal child through his faculty of hearing, reaches the deaf child only through his vision, and always in silent signs and characters-whether these be movements of the hand, which are called gestures, or of the mouth, which may be termed articulations, or are forms and pictures on the printed or written page. It is impossible for one born deaf, or one who has become totally deaf in early childhood, ever to gain an adequate apprehension of speech as this human faculty is used and enjoyed by normal persons. To the deaf, no matter how adept they may become in understanding the import of speech, by observing closely the oral and facial movements of those who speak, oral utterance must ever lack the life-giving quality of sound with all its attendant effects of eloquence, pathos, sympathy, sternness, persuasiveness, humor, and the like.
The merits of the two principal methods, the manual and the oral, have been earnestly pressed by their respective advocates from the earliest times down to a very late day, and controversies over them, always warm and sometimes bitter, as was the case with Heinicke and De l'Epee, have recurred with varying frequency. So long as the question was which of the two should prevail to the exclusion of the other, small progress was made toward a settlement. But within a few years a conciliation and combination of methods have been shown to be both practicable and desirable, and it is in the union of elements once thought to be necessarily antagonistic that a careful consideration of "values" in the education of the deaf becomes important. The single objection to the exclusive practice of the manual method is that under it no provision is made for the teaching of articulation and speech reading to that very considerable proportion of the whole number of the deaf who are indisputably capable of these very valuable acquirements. This objection is a serious one, and yet it is true that under the manual method, with oral teaching entirely omitted, the intellectual, moral, and religious training of the whole body of the deaf can be effected much more easily than under the oral method. Industrial teaching can be readily given, and the children, as sent out from the schools, are capable, with very few exceptions, of supporting themselves and of living happily and reputably in the communities to which they are returned, even though they are limited, in their communication with the hear-
ing, to writing, signs, and the manual alphabet. The ing, to writing, signs, and the manual alphabet. The insuperable barrier to success in business or the attainment of happiness.
The best results in the education of the deaf can be obtained, not by the exclusive practice of either the manual or the oral method, but by making use of both, in such combinations as may be most practicable, and adding aural teaching for such children as possess a degree of hearing sufficient to comprehend articulate
sounds. There are in the United States and Canada sounds. There are in the United States and Canada
at the present time eighty-four schools for the deaf, in which 9,650 pupils are receiving instruction. Of these schools thirteen, having 402 pupils, are conducted on the manual method; nineteen, containing 1,104 pupils, follow the oral method, while fifty-two, containing 8,146 pupils, are conducted under the combined system. Considering that this system prevails in sixty-two per cent of the schools, containing eighty-five per cent of the pupils now under instruction, it may justly be called, as it often is in Europe, the American system. In effecting the combination of methods under this system, circumstances suggest, and often compel, differences of detail. The most satisfactory arrangements are possible in large schools, where each method may
find its proper subjects in sufficient number for advanfind its proper subjects in sufficient number for advan-
tageous classification. tageous classification.

Among the nineteen in which the oral method prevails, and in which the sign language is unwisely prohibited, there are those in which earnest, faithful, intelligent work is done, and where the results in many individual cases are most commendable, sometimes even brilliant. But many children are retained in them that never succeed in speech, and who would derive far greater advantage under the manual method. In all these oral schools the sign language, in spite of rules against its use, is a cul.stant means of communication
among the pupils. The marked success attending the among the pupils. The marked success attending the
operation of the combined system in this country has attracted attention in Europe, and when, a few years since, a royal commission was appointed in England to inquire into methods of educating the deaf and other special classes, witnesses were summoned from this country to furnish full information to the commission as to the workings of our American schools. The advantages of the oral method and the combined system were presented by competent witnesses, and their testi
mony was published along with the report of the mony was published along with the report of the com-
mission.-Prof. Edward M. Gallaudet, in the Educational Review.

Chloroform in Typhoid Fever.

Dr. P. Werner, physician to the German Hospital at St. Petersburg, has treated with the greatest success, so says Merck's Bulletin, 130 cases of typhoid fever by using a one per cent solution of chloroform (La Sem. Méd.) In pursuing this form of treatment the author was prompted by the work of Behring on the micro bicide action of chloroform upon the bacillus of typhoid fever; but he was not familiar with the observations of Dr. Stepp, of Nuremberg, who, in 1890, successfully administered chloroform in cases of typhoid fever.
Dr. Werner employed, as has already been said, a one per cent solution of chloroform, the patients taking one to two tablespoonfuls every hour or two, night and day, without interruption, as long as the fever was at its height.
As the disease abated, the dose was progressively diminished, although, even after the fever had completely disappeared, the medicine was continued for some time, several teaspoonfuls being given each day.
In all the cases where this treatment was commenced before the tenth day of the disease, the mos present the regular typhoid condition; the general symptoms were limited to fever, with feebleness and want of appetite; the tongue never got into that coated, dirty, and loathsome condition so characteristic of typhoid fever; the thirst, habitually so intense, disappeared in about two days; and the diarrhœa and
meteorism progressively diminished and soon disappeared altogether. Bed sores were never observed, and relapses were very rare.
When the treatment with chloroform was commenced late, the disease being already in the third week, such extremely favorable results were not attained; but, even in such cases, the treatment proved tained ; bul, even in such cases, the treatment proved
very useful, and was always well borne. Nevertheless, in four cases Dr. Werner observed a jaundice, which in one instance was sufficiently pronounced to advise a suspension of the medicine. Three of these cases wer in children; the fourth occurred in a young man.
It might be remarked, in conclusion that the observations of Dr. Werner agree in every respect with by chloroform appears to be deserving of the attention of the practitioner, not only on account of its efficacy, which has been proved by two investigators independent of each other, but also because of its great simplicity.

The Late Professor A. W. Von Hofmann.
The interment of this illustrious savant took place on the 9th ult. Baron Von Mirbach, on behalf of the Emoffin and Empress, placed a splendid wreath upon th ofin. The Empress Frederick, the Grand Duchess of Baden, and the town of Giessen had also sent magnificent floral offerings. The Minister of Public Instruc tion was unable to be personally present, but was represented by Dr. Althoff. The University was repre ented by the rector, Dr. Foerster, the Judge of the University Court, Daude, and the Dean, Prof. Diels The Academy of Sciences was represented by the per petual secretaries, Professors Auwers and Mommsen the Imperial Physico-technical Institute by Privy Councilor Von Helmholtz, the Patent Office by Privy Councilor Rommel, and the Imperial Sanitary Office by Dr. Koehler. The Technical High School and the Agricultural High School were represented by their rectors. Numerous universities and chemical societies had sent splendid garlands. The most distinguished representatives of the various societies took part in the ceremonies. The eulogium was pronounced by P. Stechow. The students of the first chemical institute of the University opened the procession to the ceme-
tery. Then followed the funeral car drawn by si tery. Then followed the funeral car drawn by six great body of the students with numerous banners closed the procession.-Chemiker Zeitung.

from chaos to man

In the following description the various scenes alluded to as illustrative of the development of the earth from a nebulous mass have been faithfully copied from the originals as portrayed in the Urania Scientific Theater, at Carnegie Hall, and the scenes will be described in their chronological and scientific order, and the various pictures which they refer to may be readily followed.
The opening scene, denominated "Chaos," shows the stage filled with whirling and hissing clouds of steam, suffused with weird light that slowly changes color as the awful elemental battle accompanying the deposition of the first ocean upon the new-formed and still heated crust of the earth proceeds. Finally, the raging clouds are chased away, the commotion ceases, and the face of the earth gradually emerges to sight, covered by the sea.
By slow gradations the scene changes. The creative throes have been transferred to the interior of the planet, and the effect of the strain upon its crust from within, as the pent-up fires struggle to break forth, begins to be manifested. A huge black ridge of rock appears in the gloom, thrust up from the sea bottom, and representing.the first land of the new planet. Then an angry red overspreads the sky; fierce and broken storm clouds stream across the scene; the threatening hue of the heavens deepens; blinding flashes of lightning illuminate for a moment the rising land, which has swelled up into a mountain; heavy, rolling thunder is heard, and presently there is a deafening crash, the summit of the mountain is rentopen, and volcanic fires pour forth. From the ocean, thus assailed by floods of molten lava, clouds of steam againarise, and, enveioped in tumbling vapors, the scene closes.
Thus the spectator has presented to him a most im pressive representation of the formation of the first crust of the earth and of the tremendous upheavals and revolutions to which it was subjected at the be ginning of its history, through the strain and compres sion that were produced as it cooled and contracted.
The next scene carries us forward millions of years to a time when the crust of the earth had become com paratively stable, and broad continents had appeared above the sea. This is the Carboniferous age, when the low, moist lands of the globe were clothed with a wonderful vegetation, forming strange forests, in which plants allied to some of the reeds and the club mosses of to-day attained the size of great trees, such as the Lepidodendra, the Sigillaria, and the Calamites. At that epoch the atmosphere was very dense and filled with carbonic acid gas. The luxuriant vegeta tion flourished upon the atmospheric carbon, and thus tended gradually to purify the air. Finally a change came, the Carboniferous forests began to de cay, and their remains were swept together by floods, sunk in swamps, and, owing to changes in the level of the earth's crust, covered by the sea. In the course of ages the sea buried them deep under the ooze and mud of its bottom, and there, through pressure and chemi al change, they were transformed into beds of coal.
Even before the first lands were formed life had ap peared at the sea bottom. There were sea weeds and simple forms of animals, such as crinoids and mollusks. As the continents were formed, life crept out of the ocean, and gradually improved in its organization Before the Carboniferous age the highest form of animal life had been the fish; but during that age mphibians, which show a progress in developmen from the fish toward the land vertebrate, appeared.
After the Carboniferous age, which finally closed with the formation of the coal deposits, there was a eneral revolution in the face of the earth. This epoch of transition was the Permian period. As represented upon the stage, the landscapes of this period appear open and variegated with lofty mountains, thus pre senting a striking contrast to the level and swampy ands of the Carboniferous age, with their tangle of vegetable forms. Higher representations of plant ife are seen, and the earliest reptiles make their appearance, the forerunners of the giants that were to rule the earth in the next succeeding period.
With the Permian period the so-called Paleozoic era (Greek palaios ancient, zoe life) came to an end, and the changes then wrought served to introduce the Mesozoic era (Greek mesos middle, zoe life) The culminating epoch of this era was the Jurassi period. The Mesozoic period is often called the age of reptiles. The Jurassic landscape shown at Music Hall is one of the most beautiful of the remarkable scenes employed to illustrate the progress of the earth. In the foreground magnificent palm-like trees, and other forest growths, bearing no little resemblance to modern vegetation, appear, while the middle distance is occupied by a sandy slope running down to the shore of the sea, whose blue waters fade away in the distance adorned with coral islands. Gigantic teleosaurs and iguanodons are seen upon the land, while the strange winged creatures called pterodactyls are flying above the margin of the water. The iguanodon, the pterodactyl and the archæopteryx marked the gradual development of the bird out of the reptile. Yet the

CRETACEOUS PERIOD-BOTTOM OF CHALK SEA.
giant reptiles furnished with a won derful armor of bony plates, and having a sort of secondary brain in their backbones, larger than that in their skulls.
The next age, the Cenozoic era (Greek kainos recent, zoe life), began with the Tertiary period. The stage is set with a view of the Alps and the site of the present lake of Zurich At that time tropical warmth pre vailed in Central Europe. But a great change ensued, in the course of time, and an Arctic climate succeeded. The gradual fading of the daylight, the glowing of the snowy mountain peaks in the flush of sunset, the deepening gloom of twilight, and the sound of rain flooding the darkened landscape, convey to the spectator an impression of the vast geological and climatic changes which occurred dur ing this period
Next comes the age of the glaciers whose broad flanks are seen glittering in the sunlight as they stream down the sides of the mountains. Both geo logical and astronomical causes may have been at work in producing this singular period in the earth's history The best established view seems to be that glacial periods are periodic phe nomena, depending principally upon
iguanodon, which was one of the first reptiles to exhibit in the structure of its bones and the form of its legs and feet bird-like characteristics, was a ponderous monster, weighing several tons!

The Cretaceous or chalk period closed the Mesozoic era. At this time reptilian life continued to flourish, and plants made a wonderful advance. Two Cretaceous scenes are presented upon the stage, one being a land view, filled with beautiful forest trees, representing many of our modern forms, such as the oak, the sycamore, and the maple; and the other a view of the sea bottom, covered with splendid corals of many hues, and scattered heaps of varicolored shells seen through the blue medium of the water which fills the whole stage. In the later Jurassic and the Cretaceous periods, a shallow sea ran across our continent from the Gulf of Mexico to Alaska, and in the deposits formed by this sea the remains of some of the most remarkable monsters of the age of reptiles have been discovered. Among these were the atlantosaurus, the largest land animal known to have ever existed, whose length was not less than 100 feet, while it probably stood 30 feet high ! Then there were the stegosaurs,

THE GLACIAL EPOCH.
the eccentricity of the earth's orbit. If this is correct, we can approximately fix the time of the age of glaciers. It would seem to have begun about 240,000 years ago and to have ended 80,000 years ago. In about 150,000 years to come the orbit of the earth will again be so eccentric that a glacial period may supervene. Since indications of the existence of man close to if not within the glacial period have been discovered, the time estimate given above becomes of great importance in the light that it throws on the question, How long ago did man first make his appearance on the earth ?
The next scene is distinctly within the human period of terrestrial history, and it represents the lake dwellings on the shores of the Swiss lakes, which are among the earliest known relics of the homes of man. A magnificent Alpine horizon, with great peaks towering against the blaze of sunrise, shuts in the lake in the foreground, which is surrounded with the singular structures that those early inhabitants of Europe placed upon platforms supported on piles driven in the water, and approachable only by bridges. Other remains of the early dwellings of man are the celebrated cave and cliff houses of Arizona and New Mexico.

The final scene represents the shores of the Medi-|nograph continues to operate until the projectile passes terranean adorned with cities and villas-the age of through a secondary frame located in front of the tarcivilization in all its splendor.
Perhaps the most beautiful and really marvelous features of these scenes are the light effects produced by a most ingenious and novel system of electric illumination, and exceeding anything of the kind that has ever been exhibit ed on an American stage. Under the ingenious, skillful, and scientific management of Mr. J. C. Mayr hofer, the electrician, improvements are introduced almost nightly in these effects. His hand seems to have learned the cunning of nature while manipulating the colors of Iris.
It is intended that next season, in addition to the "Trip to the Moon" and "From Chaos to Man," at least one entertainment shall be presented which will be illustrated by scenes painted by American art ists, from American originals, and owing whateve excellence it may possess as a revelation of the educa tional capacity of the stage to American science alone

the chronograph

The apparatus which we
are going to describe was constructed for the purpose of measuring the initial speed of projectiles.
The chronograph of Mr. Schmidt, which is capable of measuring as minute a period of time as the tenthousandth part of a second, is based on this principle: The regularity and rapidity of the movement of the balance wheel of the escapement enables measuremen to be made of intervals of time much less than that of one oscillation.
A special mechanism gives a constant range of 360° to that wheel to which is connected an index which marks thousandths or ten-thousandths of a second. The pointer is turned to zero. The spiral spring is then turned around half way, and the balance wheel when at rest is in th \quad same position as the free balance wheel at the end of an oscillation. It is started and stopped by means of an electric current, which is broken at the moment of taking the observation and which is set in motion again when it is finished. The number of divisions compassed by the index during this interval gives the duration of the flight of the projectile.

The balance wheel for measuring the intervals less than an oscillation is independent of the spring and of the escapement. The index pointer is turned by means of a thumb screw, designed for that purpose, to the zero point. The balance wheel is made of soft iron, and is held set by means of an electromagnet through which a current is passed of any desired intensity. These magnets become inactive and release the balance wheel at the beginning of the experiment, and do not stop the wheel until the end of the trial. This construction prevents the loss of time in starting and stopping which is so often found in apparatus of this kind.
These chronographs have been used principally for measuring the initial speed of projectiles. At the moment of discharge the projectile breaks the current by cutting a wire which is stretched in a primary frame attached to the end of the gun. The chro-

apparatus For measuring the velocity of projectiles
 both sides. The first connects with the frame located on the gun; when the discharge takes place, the projectile breaks the current at it, and the chronograph operates until the projectile passes the second scree in front of the target I is possible, therefore, to read the exact interval that has elapsed while the projectile has passed between the two screens. If the distance is fifty meters, the device will indicat the number of meters tra versed each second. The graduations on the index are very perfect and make an exact record of the mak ing and breaking of the current.
The chronograph is very easily managed. The two currents are first regulated by the rheostats; the pointer is put back to zer by means of a thumb screw, and when this is done the chronograph is ready for operation. The chronograph Schmidt seems to possess certain advantages over the appa ratus now in general use It is portable and require no solid foundation. It can be placed near the gun without being inju riously affected by the riously affected by the mechanism consisting of heavy weight which is discharg thereof It requires no special knowallowed to fall, and which during its flight, at certain ledge on the part of the operator. The index needle points determined upon beforehand, breaks the cur- operates with the greatest precision. The indicator rent of the electro-magnet.

The chronograph is shown in detail in the right hand $\left\lvert\, \begin{aligned} & \text { can be easily read, especially with the aid of a } \\ & \text { nifying glass mounted on the apparatus. The result }\end{aligned}\right.$ view of the engraving. The index is located at the of experiments made at various time stations compar	view of the engraving. The index is located at the	of experiments made at various time stations compare
center of the apparatus togetherwith the index needle.	very favorably with the results obtained by othe	apparatus.-La Nature.

IMPROVED PUNCHING AND

SHEARING MACHINE.

The punching and shear ng machine illustrated herewith was designed and con structed by the Southgate Engineering Company, nea London. Our illustration is from Engineering. The gea is all of the double helica form, strong and yet noiseless in working. The punching gap is 30 in . deep, so that it can punch a hole in the cen ter of a plate 5 ft . wide. The lift is $33 / 4 \mathrm{in}$., and the main shaft is of steel and of large dimensions. All bearings are bushed, above a n d below with gun metal. There is a bearing in center, directly above the angle shears, and the parts that make up the angle cutting arrangement are all of steel and of extra strong proportions. It is made to carry a crane in the center the supporting seats of which are shown in the engraving The machine generally give the impression of grea strength, compactness, and adaptability to the work it has to perform

Schutzenberger, in a recent number of the Comptes Rendus, has described experi ments which apparently con clusively prove that nickel is volatile in presence of hydrochloric acid. Both when nick el chloride is reduced in a cur rent of hydrogen and when hydrochloric acid is passed over finely divided nickel traces of nickel chloride are found in the further part of the tube when heated to dull redness. Precautions were taken to prevent any mechanical conveyance of the nicke salt, so that the effect must be analogous to that of the action of carbon monoxide on nickel and iron.

RECENTLY PATENTED INVENTIONS.

Railway Appliances.

Car Coupling.-Daniel Kint, Alpena South Dakota. Two operating levers are pivotally con nected together at their inner ends, and there is con nection between the levers and the coupling piu, to
raise and lower it, in connection with a latch and hand levers connected with the latch, there being a keeper o device may be conveniently coupled with latch. The device may be conveniently coupled with the ordinary
liuk coupler, and opposing cars may be uncoupled liuk coupler, and opposing cars may be uncoupled
without the trainmen passing between them, while the coupling pin may be locked in elevated position if de
Rail Joint.-John N. Lewis, Coulee City, Wawhington. The chain 18 , by this inventon, formed with a base plate, a side plate, and a transverse
portion within the hollow formed by the juncture of portion within the hollow formed by the juncture of
the plates, and provided with a seat for the ish plate and lock ing plates. The transverse portion and the
fish plate sectious serve to hold the lock plates in posifish plate sectious serve to hold the lock plates in posi-
tion, and the lock plates operate to prevent the nuts fom jarring loose, the whole forming a strong, secur

Railroad Gate.-David M. Dewitt, Bee Branch, Ark. This is au automatically working device, the an approaching and departing train or wagon. The construction is such that an approaching train passe from the fixed rails to rails on a hinged platform, the depression of the latter operating through shafts and links to open the gate, which is afterward closed by connected weights and levers. The device is also ap-
plicable, with some modifications, to a wagon road, the gate being then opened by the
and afterward similarly closed.
Elevated Railroad.- Eliphalet L. Arnold, Georgetown, Texas. This invention provide absolutely safe, with which the cars will ride easily, and which can be readily adapted for both passenge and frelght traffic. The railway is supported upon sec tional hollow posts, from whose upper ends extend areral arme, which pivotally uphold a continuous stee russ, the base plate of which forms a support for the
track rails, the cars being euspended from the track hrough yokes. If desired, the cars may be brough near enough from the ground to be entered therefrom, or the entire mechanism may be light enough for the cars to be operated by horse power.

Electrical.

Arc Lamp. - Robert H. Thurston, Ithaca, N. Y. This invention provides a lamp having in approximately parallel lines, with the carbone a ranged in planes intersecting at a small angle to prevent their slipping by each other, or jamming and welding together, thus extinguishing the lamps when shaken by the wind or other force. The angle in prac-
tice is not so large as to make any material difference in the length of the arc formed between the center and the ends of the carbons.

Mechanical.

Wood Turning Machine.-Abraham Stoner, Stony Point, La., and Frarcis M. Pennebaker,
Pleasant Hill, Ky. This is a machine for turning solid taveless hulls or bodies of tubs, buckets, or simila wooden ware from a solid block, the invention being a he inventors. By the improvement increased sim plicity and strength of parts is secured, greater accuracy of adjustment and reliability of operation, with more compactness and better adaptation for convenient
manipulation and control of the machine by the operaor, doing better work more quickly and economically. Carpenter's Square.-Mark P. Pastructed that one arm may be manipulated to strike a right angle or an angle more or less obtuse, as may be
desired, several slides containing scales being located, if wished, in an arm of the square for use as needed One of the slides may be removed from the arm and used in conjunction with and adjustable upon both arms to form triangles as required, and the square has scales for facilitating the calculation of the length,
pitch, or angle of rafters, and for various other work pitch, or angle of rafters, and for va
Wind Motor.-Hagbarth Winge, Miles City, Montana. This motor has a frame with a central
post carrying a pivot, on which turns a wheel having masts on its rum carrying sails, a gear wheel on the hu h of the wheel meshing with a series of gears on a shaft is simple and durable in construction, and is designed to actuate pumps and other machinery.
Mould for Electrotype Shells, rc.-Jacob C. Wolfe, New York City. This is a mould down or separated in sections, and disconnected from the block when cast, while its construction is such that it may be utilized for casting large or small backings or blocks, as desired. The flask has a shoulder around its interior and within is a series of core blocks of less height, each block having an external shoulder and
having their lower adjacent faces inclined, core plates resting against the faces of each block and against the inner walls of the flask, and there being wedge-shaped spacing blocks or keys betwees the lower inclued faces of the blocks. This backing is very light and durable, being braced in every direction, and the blocks are
Fur Sefing Machine Device. Catharina Booss, New York City. This is an improved guide attachment, for use in sewing fur, leather, and other goode, to bring the parts into the exact proper
position, and provide means for brushing the fur away position, and provide means for brushing the fur away needle and keeping the fur away from it. The device consists of an open-ended hood having a central parti-
tion extending through it with brushes on its sides and
with a revoluble brush turning at one end
Lubricator Gland.-Fortunatus G. cellogg, Brainerd, Minn. This is a device designed to be conveniently applied to reciprocating sharts, such a piston rods, valve stems, etc., to be readily held on th bofts and keep them well lubricated. It consists of ing opposite their place of hinging a staple and hasp while there is a peripheral funnel on each section, and he adjacent or meeting sides of the sections have regisering semicircular openings forming the shaft passage

Agricultural

Potato Digger.-William H. Van Voorhis, Spearville, Kansas. This is a machine of sim nuts, etc.; separating them from the dirt and weeds nd also separating the small and large sizes and pass he digger plows ap th. A plow on the front end wardly to an elevator, the weeds being cut off by cute or shears, and the potatoes being turned over an creened on the elevator slats until they are flinally pased on to a separating plate and thence to a hoppe om which they are removed to a bag.
Tether.-William E. Bradley, Roscoe . Y. This is a tether in which the rope is paid ou when pulled upon by the animal, and the elack is auto matically taken up and wound in by suitable winding
devices, the tether beng cheap, durable, and compact asily portable, and suitable for stalls as well as outoor use. The body or frame of the device has a vert ope, there being friction disks on the axle or the gravity wheel, and pins on the hub of the wheel engaging the rack. Means are provided for securing the
ether to a salll, or to a post, tree, or fence. [Addres Ther to a stall, or to a post, tree, or fence. [Address
Tether Mfg. Co. 325 North st. North Middletown, N. Y.] Cotton Cleaner and Condenser.William B. Wherry and William F. Smith, Overton, Texas. This is a cheap and simple machine for use in onnection with a cotton gin, for rapidly separating he aily from then and condensing the later to b inlet at one end and an outlet at the other, between hich an endless screen belt is held to move, a sand hes sides within the belt, and air pipes opening from away. The drums for the carryngy belt are arranged beneath the inlet and above the outlet, and a springpressed corrugated hood is hinged to the case and ex
tends above the upper drum.
Scraper.-Benjamin F. Shuart, Bill nge, Montana. This is a device which may be quickly
adjusted to scoop or scrape up any desired amount of earth, delivering it where wanted, or strewing it evenly ingrading land preparatory to irrigation. The frame of the machine consists of two parallel ranners, beween which a scraper with beveled edge is held to
move verticuily, a pivoted lever affording means fo raising and lowering the scraper. By manipulating the ever the dirt may be gradually allowed to escape e spread evenly on the ground.

Miscellaneous.

Typewriting Machine.-Allard E. Benedict, Cuiro, Neb. This is a machine designed to be without the use of and arranged to print directly etters of the alphabet, numerals, etc., and also words of two, three, four, or more letters ench. Inking rollers are provided to ink the type, and the type holder contains 120 different types, the type holder being mounted to travel longitudinally on the carriage. The arrangement is such that no separate key or lever need be Typemriter Register. - Harry I. romer, Rapid City, South Dakota. This is a simple device, adapted for attachment to any form of typewriter, and, by the movement of the keys and space
bars, will accurately count and register the number of words printed by the machine. A recessed sliding bar to operate the register is arranged adjacent to the space
bar, a spring on the sllding bar having a lug to enter bar, a spring on the sllding bar having a lag to enter he recess and a lug on the space bar contacting with a lug on the spring, while a stud on the sliding bar and a block on the spring are arran
type rod aud space rod lugs.
Jeweler's Forceps.-David Mendelson, Eureka, Utah Territory. An article, or several
articles, may be held at auy desired angle by the use of hese forceps, which are especially adapted for holding also suitable for use in other lines of manufacture a supporting post, slotted at its upper end, is mounted to swing a bolt, to which arms are adjustably secured at their inner ends, being gradually curved upon themselves at their outcr extremities, tweezers provided with eyebolts being adapted to slide from the arm areund upon their curved extremities. The articles
be operated upon are clamped in the tweezers, when the latter are brought into thedesired position and held

Watch Case Spring.-John E. Ket chem and Thomas C. Nixon, Morrillton, Ark. The stiffly turning rivet or screw, having its head provided with a nick or other means for turning it, and having on each of its opposite sides a projecting lip, whose
outer portion is sharpened to a knife edge, to bury into the metal of the bezel and hold the spring in place tive and frm connection.
Bellows.-John G. Gareis, Brooklyn, N. Y. This invention relates to rectangular bellows,
such as used in accordions, photographic cameras, etc., ach as used in accordions, photographic cameras, etc.
providing therefor a simple and durable construction, with which the bellows will be perfectly air and ligh tight. The bellows are provided with corner strips
of one another, and adapted to be fastened by their
legs to the folds of the sides and ends of the bellows
Change Receiver and Transfer. Weet R. Uchtmann, New York Cliy. This is a device o be applied to a counter or simar support to receive hange, and it is adapted to be readily manipulated to hand of the person for whom it is intended. The a rangement is such that when a person receiving the change places his hand and presses upon a hiuged sec tion of a table, palm upward, a change-receiving re
ceptable is tulted so that the change will slide into the ceptable
hand.
Roll Paper Holder and Cutter. Ed win E. Sentman, Philudelphia, Pa. The construc on of this deviceis such that the knife, by means of which the paper is to be pevered into lengths, will fol meter, and the knife will, througl the medium of a oller interposed between it and the roll of paper, exert constant tension upon the paper. The construction is very simple and inexpensive, and the frame of the dend wh the knife and roll, may be carried upwara to the frame of a roll of paper
Cooking Utensil.-Augusta R. Lsace, New York City. This is a vessel to be insert in a pot of water, where its contents may be steame or boiled without escaping therefrom, the contents be ing then removed to a platter in bulk without injury sheet metal, with an open top and bottom an opening n one side near the bottom and brackets on the inside below the opening, on which slides a perforated plate. Note.-In the description of Mr. C. N. Wall's feeding attachment for paper folders for use in newspa offices, the following typographical error occurred The notice states that the feeder will place the pape in position to be folded will the aid of any gripping mechanism or any hand-operated machinery.
should read : without the aid of any grippirg mechat ism or any hand-operated machinery.
Notr.-Copies of any of the above patents will be end name of the patentee, title of invention, and date of this paper.

SLIENTIFIC AMERICAN

BUILDING EDITION
TUNE NUMBER.-(No. 80.)

TABLE OF CONTENTS

Hand erected at. Plainfield, N. J. Perspective views,
floor plans, etc. Oscar S. Teale, architect. Cost about $\$ 12,000$. An excellent design.
Long Island, N a cottage erected floor plans. Cost \$3,450 complete. P. F. Higgs, architect, New York.
3. Engravings and floor plans of the Crescent Block of six houses erected on Golden Hill, at Bridge-
port, Conn. An excellent design. Total cost port, Conn. An excellent design. Total cost
of six houses $\$ 55,000$ complete. Messrs. Loug staff \& Hurd, architecte, Bridgeport, Conn. handsome residence at Babylon, Long Isla N. Y., recently erected for F. H. Kal bfleisch, Esq. Co:t $\$ 17,500$ complete. Two perspective views
and floor plans. H. J. Hardenberg, New York architect.
A school house at Upper Montclair, N. J. Perspec tive view and ground plans. Cost $\$ 12,200$ com
plete, including heating and ventilatug appar tus. Geo. W. Da Cunha, architect, New York. 6. Perspective views of sever ings located near New York.
A suburban residence of attractive design erected
at Lowerre, N. Y. Cost $\$ 2,800$ complete. Floor at Lowerre, N. Y. Cost $\$ 2,800$ complete. Floor
8. The St. James' Episcopal Church at Upper Montclair, N. J. A picturesque design. Cost $\$ 8,000$ York. Perspective view and ground plan. floor plans. Cost $\$ 8,500$ complete.
10. Aloor plas. Cost $\$ 8,500$ complete. N. J. Perepective and floor plans. Cost $\$ 6,250$ complete.
11. Proposed railway tower for the Columbian Exposition at Chicago.
sketch of the new City Hall, Philadelphia. - A magnificent structure. Cork pavement. - Bes treatment of hardwood floors.-'The twin stuir-
case, illustrated.-The electric stair climber, ilcase, illustrated.-The electric stair cllmber, $11-$
lustrated.-The sick room temperature. - Stai lustrated.-The sick room temperature. - Stair
builder's goods, illustrated.-Ornamental hardwood floors.-Large winding partition doors.The "Alberene" laundry tub.-Honse heating and ventilation.-Nolan's hot water and steam heater, illustrated.-The crushing resistance of
bricks.-An excellent motor, illustrated.-A successful hot water heater, illustrated.-The lacquer tree.-A self-retaining dun water, inustrated -Architectural wood turning, illuetrated
Edition is issued monthly. $\$ 2.50$ a year. Single copies 25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages ; forming, practically, a large and splendid Magazine of Architec TURE, richly adorned with elegant plates in colors and
with fine engravinge, illngtrating the most interesting with fine engravings, illnstrating the most interesting
examples of Modern Architectural Construction and examples of M
The Fullness, Richness, Cheapness, and Convenience any Architection for it the Largest Circulatio any Architect

MUNN \& CO., Publishers.

PBusiness and Personal.

The charge for Insertion under this head is (me Dollar a line
for each insertion ; about eight words to a line. Adver. tisements must be received at publication office as early as
Thursday morning to appear in the following week's issue

Grindstone Frames-With cabinet base and all im-
provements. Send for circulars and prices. W. P. Shingling gauge patent for sale. See page 410 .
Acme engine, 1 to 5 H . P. See adv. next issue.
U. S." metal polish. Indianapolis. Samples free. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J.
6 Spindle Turret Drill Presses. A.D. Quint, Hartford,Ct. Patent Open-Sid Phing. Shaping Machines

Open-Side Planing and Shaping Ma
Pedrick \& A yer, Philadelphia, Pa.
Steam Hammers, Improved Hydraulic Jacks, and Tube Screw machince, milling machines, and drill presses. he Garvin Mach. Co., Laight and Canal Sts., New York. Centrifugal Pumps for paper and pulp mills. Irrigating
and sand pumping plants. Irvin Van Wie, Syracuse, N. Y. For Sale or on Royalty-Something new in trunk pro-
tectors or coverings. Address Inventor, 38 Ashland Place, Brooklyn, N. \mathbf{Y}.
Portable engines and boilers. Yacht engines and boilers. B. W. Payne \& Sons, Elmira, N. Y., and 41 Dey
Street, New York. For the original Bogardus Universal Eccentric Mill,
Foot and Power Presses, Drills, Shears, etc, address S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y. The best book for electricians and beginners in electricity is "Experimental Science," by Geo. M. Hopkins.
By mail, $\$ 4$; Munn \& Co., publishers, 361 Broad way, N. Y. What do you want to buy? We will send without cost to you, catalogues, price lists, and information concern-
ing anthing you wish. Paret, Willey \& Co., 265 Broading anything you wish. Paret, willey \& Co., 285 Broadw Yor
Young American, residing at Budapest, now in New
York, desires to represent manufacturers in York, desires to represent manufacturers in Austria,
Hungaria, and Orient. Address F. E. Gould, 105-113 Wooster St., N. Y.
Competent persons who desire agencies for a new popularbook. of ready sale, with handsome proftit, may
apply to Munn \& Co., Scientific American office, 361 apply to Munn \& Co.
A German engineer, experienced in machine building
and construction of iron bridges and roofs, seeks an engagementruction of in then bridges and roofs, seeks an enof G. L. Daube \& Co., Cologne, Germany.
G. D. Hiscox, 361 Broadway, N. Y. consulting engineer.
Hydraulics, pneumatics, steam appliances, heating and Hydraulics, pneumatics, steam appliances, heating and
ventilation, artesian and driven wells, tramways and ventilation, artesian and driven wells, tramways a
conveying machinery, mill and factory plaits.

hints to correspondents.
Names and Address muet accompany, all letters,
or no attention will be paid hhereto.
This is information and not tor por phbication. This is for our
References to former articles or answers should References to former articles or answers should
give date of paper and paye or number of question.
Inquilries not answered in resonable time shonld be repeated; correepondents will bear in mind that
some answers require not a littie reeearch, and,
though we endeavor to reply to all either by letter
or in this department. ench must take his turn
 expected without remuneration.
Sclentife American Supplements referred
tomay he had at the office. Price 10 cents each. to may be had at the office. Price 10 cents each.
Boks referred to promptly supplied on receipt of
price.
Minerals pent for examination should be distinctly
marked or labeled. Index of Notes and Queries.
Boiler, management of.... 4418
 Ink eraser
Power
tra
Water power......
White lead,
Wood polish.......

(4418) G. S. J. says : I would like to ask a question (to be answered in Notes and Queries) among engineers. On a plain horizontal tubular boiler
ame what stage of water is mosteconomical (as regards labo and fuel) just as low as safety will permit, or as high as is possible without drawing water through the engines? est and best practice is to carry the water inches over the tubes in boilers of 3 feet diameter, inches over in boilers 4 feet diameter, and 8 inches in boilers 5 feet in diameter, when the rear end of such boilers are set from one to two inches lower than the
front or gauge end. This gives the largest safe water surface for the liberation of steam and lessens foaming High water makes wet steam, and is no safeguard to ful of fuel. Uniform feed and a uniform gauge measure
(4419) C. E. B. says: In your reply to W. H. P., query No. 4360, date of May 21 , ou asy The water power of an artesian flowing well may be
obtained by measuring the quantity of water delivere bic feet per minnte c. This is true in theory. I would like to hear you pollowing actual tests of a i inch well. Pressure whe losed 130 pounde, gives 2 inch stream 80 pounds, 2 inch stream 72 pounds. 3 inch stream 62 pounds, 4 inch stream 58 pounds. Is the power in proportion to th product of the quantity multiplied by the preseare? The inch well referred to is in Woonsocket, Sanbor Connty, South Dakota. It is driving a 3 foot Pelton wheel which is running a 150 barrel flour mill, owned
by Northy \& Duncan. I think they are using less than an inch ouzle and have plenty of power. I inished an inch nozzle and have plenty of power. I rinished
the well in November, 1891. The tests were made through short pieces of standard pipe from 6 to 18
inches in length. The depth is 775 feet. This is a fai
water is used in South Dakota wells. A. This is the
most reliable record that we have had of the condition water is used in south Dakoa wells. A. This is the
most reliable ereord that e have had of the condition
of the low under different heads and nozze sizes from the artesian wells of South Duksta, and we give with pipe of the sizee used for the streams are about 2 pe cent larger than their nominal diameter, which will nearly equalize their flow to the coefficient of properly formed nozzles of the stated sizes. We find that the water head for the closed pipe is 299 reet, the static pressure of the well. Wha the 2 inch stream the hea is 184 feet with a flow of 135 cubic feet per minute power from a Pelton wheel. With the 26 inch stream the head fell to $165 \frac{1}{2}$ feet with a flow of $2071 / 2$ cubic feet per minute, with 65 gross horse power, or 55 hors power developed. For the 3 inch stream the head fell to $1421 / 2$ feet and 277 cubic feet per m . with 74 gros horse power $=62$ developed horse power. For the 4 inc stream the head fell to $1331 / 3$ feet, with a flow of 480 cubic feet per m., with 121 gross horse power $=102 \mathrm{de}$
veloped horse power. These ranges of variation in head and flow go to show the almost perfect freedom of inflow at the bottom of the 7 inch tabe, as in some wells the head falls very fast under the enlarged flow. For the power used in the flour mill the pressure hea feet per minute ; and with the nozzle velocity of 7,60 of only $411 /$ cubic feet per minute nozzle and a flow of only $411 / 2$ cubic feet per minute, the 3 feet Pelton
wheel is equal to 17 horse power, developed, and sufficient for the 150 barrel flour mill as stated. The flgure show that the present use of this well is far below its capacity.
(4420) C. V. S. asks (1) for a corn salve. A. Dried carbonate of soda. $1 / 2$ ounce; lard, 1 ounce
smalts (to color), q. s. Mix. The above are applied on a piece of rag, and renewed night and morn ing. Use for corns only. 2. How to clean carpets. A. If brooms are wet with boiling suds once a week, they will hecome very tough, will not cut a carpet, and will
last much longer. A handful or so of salt sprinkled last much longer. A handful or so of salt sprinkled
on a carpet will carry the dust along with it and make the carpet look bright and clean. A very dusty carpe may be cleaned by dipping the broom in cold water, shaking off all the drops, and sweeping a yard or so a a time. Wash the broom and repeat until the entire carpet has been swept. 3. For a fiber that would make signs. A. Nothing better than white cloth or whit
(4421) W. M. asks: Will you kindly explain tome in the columns of your valuable paper
the meaning of the term "radius of gration," that is an angle iron, etc.? Kindly explain fully and clearly Have been studying for quite a long time, but canno solve it. A. The radius of gyration of a column or a
beam is such distance from its central line or axis that if all the material in the section across the axis wer concentrated there, its moment of inertia would equal that of the rection. The moment of inertia is the product of the mass of the beam by the square
of its radius of gyration. This is the basis upon which the strain due to the whole section under flexure is computed. For details of various forms of columns and beams, see Trautwine's "Engineer's Pocket Book,' $\$ 5$ mailed
(4422) D. M. asks how to make an elec tric bell work from each end of the line of the telephone 1889. A. To make a signal work at opposite ends of single line wire you require a closed circuit. With two wires and the ground, you can work your signals on a en circuit.
(4423) T. M. R. writes : I am going to uild a small motor, and wish to know if there is an way in which I can make it run slowly without waste of nd armature. A. By making your armature of larg operate without loss of power.
(4424) O. W. C. asks (1) how to polish wood naphtha, $1 / 6$ pint ; benzoin, 2 drachume. Mix and put in warm place for a week and keep the materials from settling by shaking it up. To apply it, make rubber of cotton wool and put some old calico over the face, and till you have a good body on your wood keep he rubber well saturated with polish. When your rub polish up. Allow it to stand a few hours and give it another coat, using rather more linseed oil on your rubber, so as to get a finer polish. Then let it stand again, and finish off with spirits of naphtha; if not, add a sma quantity of polish to your spirit. 2. For a walnut stain A. Water, 1 quart; sal soda, $1 / 2$ ounce; Vandyke brown $21 / 2$ ounces; potassium bichromate, $1 / 4$ to $1 / 2$ ounce; boi Use hot and allow the work to dry thoroughly before oling or varnushing. A nother reliable walnut stain for urniture, mostly hard wood: Spirits of turpentine, 1 allon; pulverized asphaltum, 2 pounds; dissolve in an ron kettle on a stove, stirring constantly.
(4425) C. B. S. ask for an ink eraser. . Win When to be used, dissolve a little in wate It is poisonous. 2. Oxalic acid mixed with citric aci may be used. 3. Equal parts of cream of tartar and citric acid in solution with water.
(4426) D. L. N. asks for a sticky fly paper. A. 1. Melt resin and add thereto, while soft, cold, about the consistency of honey. Spread on writing paper, and place in a conveniert spot. It will soon be fllled with ants, flies, and other vermin. 2. Boiled linseed oil and resin, melt and add honey. Soak
the paper in a strong solution of alum and then dry before applying the above.
(4427) H. W. asks how the dolls of a chess game are called? A. The chessmen are called much is an ounce chloride of platinum worth? A. Chloride of platinum is worth $\$ 90$ a pound.
(4428) Reader asks: 1. What is the length of a pendulum making one vibration in flve pplied to a wheel whose diameter is five feet, balances our hundred poun
(4429) W. J. C. asks (1) how to remove rust from fliely polished steel, such as drawing instru-
ments, etc. A. Polish the rust from fine steel articles with flour of . Ponsh the ras ine steelarticle leather. 2. How to remove dandruff? A. For dandruff wash the head once a week with weak borax water, an ounce to a quart of water. 3. How to preven: excessive
arspiration of the feet? A. For sweating feet bath em often in the feet
(4430) H. E. T. writes : I have one of work any more. At one time it worked all right here is a thin spiral of some kind of wire which when pon pushing the zinc in the solution becomes a white will only get warm. What can I do to remedy that and epair the concern? A. Apparently your battery ba run down and needs renewal. As we do not know the tyle of the battery, we cannot give a formula for the (4431) D. W. McG. asks: In transmit ing motion by friction gears at right angles, using a hat disk for the driver and a square-faced wheel for the driving wheel, what percentage of power will be lost by riction? Is it practicable to use this style of gearing tranemit 8 horse power, and what is the relativ the perpetual entage of power will be lost by friction? A. The tran mission of power as above described is not admissible he system is not economical, but may be very conven nt for variable motion. The friction depends so much upon the width of the bearing surface and its distance
from the center of the driving wheel that no definit ercentage can be given. It should only be used for ght and variable motion. If definite speed only 18 re quired, there is but little loss of power by friction transmission to angular lines with bevel wheels faced with
leather, such being in use on centrifugal driers. The transmission by worm screw gear is practical and very coful for great reduction in speed, and is fully as (4432) F. W. J. asks: What is meant by he pass-over valve on a triple-expansion marine en-
ine? Also, how can I find the north and south pole f a dynamo when in motion? How can I tell which he positive or negative brush? Does the fan of a cen rifugal pump force the water through the discharge or oos it form a vacuum? A. The pass over valve is used the steam pipe connection to the receiver of the low
pressure cylinder for starting the engine. You can nd polarity of the dynamo by placing a compase needle entrally over it. The north pole will point to the ind the polarity of the brush. A centrifagal pump de ives its power. over both force and suction side, from the centrifugal force of the revolving water between the
blades of the pump. (4433) E. J. G. says : I wish to put in closets and bath rooms. We have no sewerage system.
Would there be any objection to using a well for the ewer pipe to discharge into if properly covered ? from auy other wells? A. It would be dangerous to use he well as a receptacle for sewage. It would be likely o poison the neighboring wells, perhaps within a radius of half a mile or more. The safer way will be to make a tight cistern, for the sewage
emptied and taken away periodically.
(4434) C. H. B. asks : Will you kindly nform a constant reader, which is the proper way to lay a bell joint water pipe? Should the bell point opposite way. There is a right and a wrong way. Will ou kindly give me the correct way? A. The practice down hill. The bell end against the direction of flow or toward the pump. This is not always practicable in short lines with tees and crosses. Hence convenience of
making joints is first considered. In vertical lines the making joints is first conside
(4435) H. P. L. asks: 1. Give formula by which I may use certain chemicals which will gradually develop a steady pressure when confined, and no limestone, and hydrochloric acid or a very compaciom, ble may be used instead of the limestone. 2. Also a so lution which will impart a bright, silver-like appearance oo metals, and which will cause it to remain so for som time. A. A solution of nitrate of mercury in water will work on brass or copper, but will ruin the metal. 3. What sort of battery would be best for a small neckA pocket storage battery. It is best to buy one rather
(4436) T. E. R. asks : What is the difference between momentum and inertia? Is it proper
to say, "The trick rider in a circus flnds it easy to jump rom his horse through a ring and back to the horse rection as his horse?" A. The proper word is momentum, which indicates weight under motion. Inrtia is from inert-motionless, and in physics means eiving or resisting motion.
(4437) "Inventor" asks: 1. What acids ave the effect of acting upon or softening granite or besides the ordinary drills? A. No acid has this effect to a sufficient extent to be of any practical value. The For the former, see SUPPLEMENT 416; latter, see Sclentific american, No. 9, vol. 61. 2. Wouldaquafortis act upon cast steel $\%$ If so, to what extent \% What so-
lation should be used to give the best results ?
Yes; dilute strong acid with five volumes of water (4438) T. B. W. writes: 1. Give a sim ple method of determining the purity of the so-called dry white lead and lead in oil now on the market. A
Drywhitelead should be completely soluble in nitric cid. If ground in oll, the oil may be removed by benine before treatment with acid. 2. Will heat applie c state ? A. It will more or less completely, depend ng on the percentage of the oil present? 3. If so, what proportion of lead should be gotten from same A. No exact proportion can be given. White lead itself
aries in composition, and the oil may be of differen varies in comp
proportions.

Replies to Enquiries.
The following replies relate to enquiries recently pub ished in Scientific American, and to the number
E. F. H.-The United States public debt, less cash in the Treasury, has decreased each year
for the last five years, and each year since 1871. The ist of July, 1887, it was $\$ 1.175,168,075$. The 1st of June his year, it was $\$ 843,303,350$.

TO INVENTORS. An experience of forty years, and the preparation more tha one hundred thousand applications for pa aws and practice on both continents, and to possess un Byopsis of the patent laws of the United States and a foreign countries may be had on application, and perso contemplating the securing of patents, either at homeo abroad, are invited to write to this office for price which are low, in adcordance with the times and our ex tensive facilities for conducting the business. Addre MUNN \& CO., office ScIENTIFIC AMERICAN, 361 Broad way, New York.	

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted

June 14, 1892,
AND EACH BEARING THAT DATE.
(See note at end of list about copies of these patents.)

 \section*{}

名. .

${ }_{\text {ord }}$

$\substack{\text { Raf } \\ \text { Bata } \\ \text { Bata } \\ \text { Batb } \\ \text { Bath }}$

Bean
Bead,
Bed
Bed
Beer
Beer
Bea,
Bed
Bed
Bed
Beer
Ber
ing

ned

Velocipede rrank, F. Westwood...............
Vtiveiped
Vending machine, automat
Washing machine. F. M. Webst
Well fishing tool,
Wrench, J. J. Tomey.

DESIGNS.

TRADE MARKS.

 Whisk 7 , Betterton \& Co....................... $2,2,281$

Dひvertisements.

Inside Page, each insertion - - 85 cents a line
Back Paze, each insertion -- $\mathbf{- 8 1 . 0 0}$ a line

Thilil ooupling, $\mathrm{F}_{\mathrm{c}} \mathrm{B}$ B. Hi. Mutrdo

Tricgce.e.A. McDougail

Trussing machine, Gilader \& Schmiat
as, hame, msulating tube.

Valve silide, He Vön Mitziliait

Canning Machinery

bASE BALL. - A DESCRIPTION OF | the rreat national game of the United states, hy an |
| :--- |
| Ennalish witer Jno. Newton Crane, with diukram of |

 The Belknap Little Giant Water Motor

 BELKNAP MOTOR CO., WANTED-PATENTED NOVELTIES

SPECIAL NOTICE!

THE PREMIER CAMERA

is the best in market. Simple of Manipulation.

Plates or Films are used. The Shutter is always set. PRICE \$18.00.
Send for Catalogue and copy of Modern Photography. we make all kinds of Cameras. ROCHESTER OPTICAL COMPANY,

OYSTER CULTURE.-A VERY INTER

THE TRASK WATER MOTOR, the best mo-

W ANTED-A FOREMAN FOR OLR HARD

HIECTRIC HOISTS
OE AII CAPACITIES.
ELECTRICAL MINING APPARATUS OF EVERY DESCRIPTION, SEND FOR ILLUSTRATED CATALOGUE M 2 . 620 ATLANTIC AVENUE, BOSTON, MASS.

	Fair, World's, progress of. Famine in India Feed water heater Feed water heater, olisen Fence machine. Ferry boats, new........	Paradox, hydrostatic. \qquad Park, Lower Bow Parrot, female, Gaboon. Patent office, views in...........390, Patents, Commissioner or Petroleum burner. Photographs, magic	Warship Raleigh. Water Company, Hackensack water feeder, automatic. Water power, Niagara Falis	Birds, longevity of. Bit, bridle Black; dead Black knot law, N. \mathbf{Y} Blackford, E., removal of Blanket fastener Blankets, rubber, cleaning	
Acoustics, experiment in.	Fire alarm, econ				Columbus, Bost on's tribute to. Columbus, egg of.
rial ascensions spp	Fluar cabin				Columbus, frst voyage..............*2.
rodynamics, experrments in.. 100	Fly			Blood. travel of	Com
tar, househo	Flywheel, bu	Pipe, line	Windmill Evar	Blow-pine, new.	Concret
ternator, Tesla s............... 195					Con
minum, acoustic prop........ ${ }_{50}^{312}$	Furnace, new..................... 197				Condu
diron teak					Condu
p. meas. veloc. p	c			Boiler waters, locomotive, treat-	Cont
tomaton, curious................ 179					
lator, Trouve's 105	Gas engine, 60 h . Gas, illuminating, exper. Gas pipe, girder Gauge, shingling.	Power, water, Niagara Falls Propener blades, Pump, high duty	Wrench, improved.. 67 Wrench pipe, Ryans..........	Boilers, steam, caustic soda. Boit header. Betts Book, account Books, privately illustrated	
mproved............	G1		Zither, neumatic............... 40		
Barometer, lectu	Go	Pythons of Philippines..........: 359			
Bed spring	Gr				
Belts, rubb	Grant monument................... 277	Q			-
Bicycle railway	Gun, carram	Quilting machine................. 180		Bras. hints for, \%.e.eatin....... 176	
Billiard balls, tr	Gun clea				Curling, indoor.
nnket faste	Gun, Gating, for p	R		Breaker, fiber. Shely.............*403	
				Breathing, a n norm	
t, hnuse, Loril	H		A		
t header	Hackensack Water Company ... 203			Bridge, bamboo. India......... $*_{137} 137$	
k, vent		Railway, bicycle...7icolici.... ${ }^{247}$		Bridge over Ganges.	Dam, masonry, the largest
for v	Heater, fe	Rail way, elevat		Bridd e, steel, over Mississippi... ${ }^{325}$	af, teaching to speak.. 21
men, fe	Hill terraces, California.......... 163	Rain m		Brush, industry, Florence......... 328	
me,	Horse blanket	Rain making in India............ 150			
$\begin{aligned} & \text { dae. ba } \\ & \text { dgee } \end{aligned}$	House boat, I	Raleigh. cruis		Burner, crude cil*226	
Burner, crude oil...................... $2 \% 6$	Hydrostatic paradox			Buoy,wreck-lindicating............ ${ }_{99}$	Depot, sh Destroy
C				celluloid, danger........ 208	
164		Rope trac			Diphtheria
eroad			of		既stal Swan
boats, electrric towing..... 52		s		64	Distillation
on of the Co			0	Cable read of San sulvatore....... *55	Dist
amonia motor	J	Sea, bottom of chalk	Alloy for cementing, new........ 85	Cable, West Indian ${ }^{3}$	Do
door.					Door,
dump	canning or preserving........ 404		${ }^{\text {AOFs }}$	Camphoid....................290, 337	
aze, elec					Dra
rriage, steam	K	91	lterna	Cana	
du	K	Shooting pulle electric.......... 265	Alternator, Tesla's..............*95	Cane	Drug explos
tch, safety		Sickle grinder	Aluminum, chapap.............. ${ }^{7}$		Dyamo mac
aos to man		Sidewalk, traveling. \qquad i6i 31	Aluminu		
ken broode	L	,	Aluminum light....aio........ 65		E
ar measu		Siphon for domestic use......... 371	Aluminum, production of........ ${ }_{28}^{133}$	Car coupler legisiation. 258	
Clinck, electric chime............... 327			Aluminum soldering............. ${ }_{292}^{262}$		
硅	Lamp flash,	Soap bubble	Ammonia motor $.450,304$	Car door, Gray's.................. *51	Earthqua
	Lamps, lighthouse. U. S.......... ${ }^{367}$	Soaut. cut-oft	Ammonia		Earthquake in
lorad	Ledger, Depue's	Square,	Antma	Car, mail, electrric............... 80	Earthworms,
lumbus	Light electric, ${ }^{\text {d }}$	Stairase, twin	Animals, speech	Cars, American, in Ne w England 21	Edar, eruiser,
ndenser. siphon	Lidghthouse illumination......... ${ }_{215}^{373}$	Steamers, lake,	Antisepties, new................ ${ }_{23}^{337}$	Cars, electric vs. cable........... ${ }^{309}$	${ }^{\text {Ediso}}$
Cotton mill engine.	Liquids, raising,	stereopticont beseler's 34	Apples, ${ }^{\text {a }}$ poisoned ; ${ }^{\text {a }}$............. ${ }^{\text {a73 }}$	Carpenter, naval, knowledge..... ${ }_{\text {a }}^{152}$	Edison, taik w
coupling,	Locomotive, compound, new ...: 111	Stocking, Preston'.............. 290	Aquarium, propose	Carriage, gun, Elswick	Education,
	Locomotive	storm, magnetic, Feb. iz.......... 323	Armor plates, tes	Carriage, steam, gasoline.... ...**329	Egg of Columbus
er		Sun, great spot on......... $\ldots \ldots .1116$	Armor, submarine.............. ${ }^{214}$		E ectric blow pip
	motive		Ascensio		
	Labricator, impreved.............. 179				Electric experiments, Tesla's.... ${ }^{132}$
				Cattle tubercular disease.......: ${ }^{246}$	Electric gir.
Dedication, World's Fair	M	T			Electricins
Door arch. m	Machinc, hemp or fiber breaking. 408				Electric lipht for lantern.........*183
or, car	Machine, punching, sheari		Aviator, Trouve's...*1u5	Cells, glass, large \qquad 281	Eleetric light in medicine........: ${ }^{344}$
er. wooll.				Celluloid, dangers of 208	Electric lights for horses.......... 70
namo machines...atary current...... 102	Man		B	1	Ele
				cem	
E		Th			Ele
		Tle, railroad	Bal	Cens	Elec
Earthquake in 'japañ, recent 146	Monument, Grant		Balsam-bog	Channel,	Electri
	Monterey engines of 235	Tha manufacture, St. Liouis....... 335	Balls, foot, rubber............... ${ }^{20}$	Chaosto	Electric shooting pull
etrric blow pipe 184	Motor ammonia.................... 50	Tipple, coal, Murphey's ${ }^{34}$ /		Chemical Society, American..... 32	Electric station, highest 119
	Motor, Neef's....	Tool, intrenching................. 243	Bananas,		Electric system, Pomona........ ${ }^{274}$
ectric governor.	Motor, wind, Evart	Towing by electrici	Barometer,	C	Electric waves, propagation..... 120
ectric girl	Muir glacier.		Barr	Children poor, New York....... 281	
ecrric lig hifor			Battery, storage,		
ectric staotic stan, Lauff			Batteries. ${ }^{\text {st }}$	Chr	Electricity; legal.
ectricians, disting	Navigation. new system	Tricks, scientifle			${ }_{\text {Elec }}$
$\begin{aligned} & \text { Patori, sarety } \\ & \text { anations. destr } \end{aligned}$	Nut lo ck....................... 290		Bearings, antilifriction	${ }_{\text {cima }}$	Electricity, what is it? ${ }^{\text {a }}$........ 89,152
gine, gas, Charte		Tunnel, new method.	Bearings, lubricated, friction.... ${ }^{293}$		Wlectricity, wonders of.......... ${ }^{360}$
gin	0				Electro plating with silver alloys 354
gines of			G		Eleephant, feeding habits
gines, mill.	Oil pump,	U			
ne of Mo	Oil refn	University, Purdue....... 306	$\begin{array}{ll}\text { Beetles, water. in gasometer..... } & 88 \\ \text { Belts, preparation of } ~ & 145\end{array}$	$\begin{aligned} & \mathrm{Cl} 1 \\ & \mathrm{Co} \\ & \hline \end{aligned}$	1
bian....	Ore washer .-.................... 82		Belte. rubber, improved.243		
Explosion, locumotive............ 228	Ovens, annealing................. ${ }^{343}$			Coal	${ }^{4}$
				Coal	
F		balanced. Kiley's			
		steam, , San Sa	Bills, patent, before Congress.... 160		

This splendid work contains a careful compila-
tion of the most useful Receipts and Heplies given in the Notes and Queries of correspondents as pub-
lished in the Scientific American during the
past past fifty years together with many valuable and
important additions
Over Twelve ; Thousand selected receips are here collected; nearly every branch of the use-
ful arts being represented. It is by far the most
comprehensive volume of the kind ever placed before the public.
The work may regarded as the product of the
studies and practical experience of the ablest chemists and workers in all parts of the world ; the in
formation given being of the highest value, ar ranged and condensed in concise form convenien
for ready use.
Almost every inquiry that can be thought of relating to formulw used in the various manufac
turing ndustries, will here be found answered.
Instructions for working many different pro It is impossible within the limits of a prospectus
to give more than an outline of a few features of so extensive a work. Paper we have nearly 250 re-
Under the head of Pats embracing how to make papier maché; how
to make paper water proof and fire proof; how to to make paper water proof and fire proof; how to
make sandpaper, emery
transfer make sandpaer, emery paper, tracing paper,
transfer paper, carbon paper, parchment paper,
colored papers, razor strop paper, paper for doing
up cutlery, silverware; how to make luminous paper, photograph papers. ete.
Under the head of Inks we nave neary 450 re
ceipts, including the finest and best writing inks of all colors, drawing inks, luminous inks, invisi
ble inks, gold, silver and bronze inks, white inks
directions for removal of inks; restoration o Under the head of Allors over 700 receipts are
given, covering a vast amount of valuable infor-
mation. Of Cements we have some 600 receipts, which
include almost every known adhesive preparation
and the modes of use.
How to How to make Rubber Stamps forms the subjec
of a most valuable practical article, in which the complete process is described in such clear and ex
plicit terms that any intelligent person may readily For Laccuers there are 120 receipts ; Electro-Me tallurgy, 125° receipts; Bronzang, 127 receipts; Pho-
tography and Microscopy are represented by 600
receipts. Under the head of Etching there are 55 receipts
embracing practical directions for the productioz
of engraving Paints, Pigments and Varnishes furnish ove
800 receipts, and include everything worth Under the head of Cleansing over 500 recipe are given, the scope being very broad, embracing
the removal of spots and stains from all sorts
of objects and materials bleaching of fabrics cleaning furniture, clothing, beaching ors. ther, metalals,
and the restoration and preservation of all kind and the restoration and preservamop of all kind Soaps nave nearly 300 recertos
probably will find in thin book much that is on Those who are in sebrch of independent busines or employment, relating to the home manufacture
of sample articles will find in it hundreds of mos
excellent sug excellent suggestions. descriptive circular.
MUNN \& CO., Publishers, SOIENTIFIO AMERIOAN OFFICE,

CIARTESS
 POWER WRINGERS FOR HOSIERY AND DRYING AND VENTILATING FANS, CEO. Patalogues free.

of aul new General Circular "S. A.." showing specimens is now ready. Send stamp and particu-

STATIONARY and PORTABLE. All Sizes. STATIONARY and PORTABLE. All Sizes.
 - Waw

 Manufactured by HARRISBURG FOUNDRY AND MACHINE WORKS Aarrisburg, Pa., U. S. A.

THE UNITED STATES LIFE SAV

Perfect Newspaper File
The Koch Patert File, for preserving Newspapers, Mas
azines, and Pamphlets. has been reeently improved and

ELECTRICITY

 ELECTRICAL SUPPLIES, STANLEY \& PATTERSON,
Electrical House Furnishing lectrical House Furnishings,
$82 \& 34$ Frankfort St., N. \mathbf{N}. City.
PERFORATORS OF ALL METALS
CHUCKS. $\begin{gathered}\text { Catalogue No. } 12, \text { just issued } \\ \text { withover ict new in initrations } \\ \text { sent free. Addroes, }\end{gathered}$ The Cushman Chuck Cp., Hartford, Conn. QUARTZ FIBERS.-BY PROF. C. VER

DYAMO CASTINQS - Comprate et

THE MILITARY ENGINEER AND

PROPOSALS.

DEAF NESS, \& HEAD NOISES CURED

ELECTRO MOTOR. SIMPLE. HOW TO

MAEIOGAINT TEAK FOR YACHTS, SPANISH CEDAR THE E. D. ALBRO CO.
 ett, Mg'r. F. w. Honerkamp, Ass't Mg'r.
(Mills, Cincinnati, O.

ELEGTRICTYY Ameanaz binionex nan ond

 The "VEROX. Detective Magazine Camera.
Simple, Portable, Best Mater Hase of Operatition, Rectilinear Lons.
Plate Hodders. No Slides. Operated rapialy, anywhere.
HURLBUT MFG. CO., Belvidere, II.
Send for catalogue. P. P. Box 23 . ON THE SPACE PROTECTED BY

fREE SITES TO SUBSTANTIAL MANUFACTURING ENTERPRISES

WORKITIG MODELS \& LIGHT MACHINERY. INVENTIONS DEVELOPED. Senil for Morlel Cificular. Jones Bros. E Co.. Cinti. O. \a

2hdvertisements.

Inside Page, each insertion - - 75 cents a line
Back Page, each insertion - - 81.00 a line

Victors

A. G. SPALDING \& BROS., Special Agents,

 mupply it with the
Motor of the 19th Century

95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telepbones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such
unlawful use, and all the consequences unlawful use, and all the consequences thereof, and liable to suit therefor.

PELTON WATER WHEEL

TATENTS!
 In this line of business shey have had forty-firw years MUNN \& CO., Solicitors of Patents,

Why Not Move

Nearer your best and biggest market-nearer your raw materials? Chicago is the greatest distributing point in America because of low railroad and lake freights everywhere; unrivalled location; beltrailways. Chicago Heights is the center of Chicago's manufacturing district. Can't you come

To Chicago?

We'll show you Chicago Heights, and offer you strong inducements to locate there. We have the property, the men and the money-and mean business, If you're a manufacturer, affected by the new, changed conditions of doing your business, write us; we have a "way out."
"Chicago's Beaten Path"' is an illustrated and carefully-prepared booklet. Every manufacturer should have it. Send us your name and address. Here's ours: THE CHICAGO HEIGHTS LAND ASSOCIATION,

822-823 Chamber of Commerce, Chicago.

kodaks.

Regular Junior Folding Daylight Ordinary
I4 $\begin{aligned} & \text { styles } \\ & \text { for the } \\ & \text { and season of }\end{aligned}$ 1892, $\$ 6.00$ to $\$ 65.00$.

Latest improvements, registers for exposures; glass plate. attachments; daylight oading, etc., etc. Send for catalogue.
the eastman company,

FIRE-PROOF. Easily applied by anyone. Send forSamples and DescriptivePricoLisfo H. W. JOHNS MANUFACTURING COMPANY,
E. W. Johns' Asbestos Fire and Water-Proof Sheathing, Building Felt, Steam Packings,

87 MAIDEN LANE, NEW YORK,
dersey cirt, chicago, philadelphin, boston, athanta, londom

a GENTLEMAN'S LAUNCH.

YOUR OWN ENGINEERS.
 PADDLE YOUR OWN CANOE.
noes, Family Row and Sill Boats. Fishing and Hunt-
ing Boats. Manufactured by HHOMAS KANE \& COM, Chicuico, III.
 ERICAN and year; or one copy of the SCIENTIFIC AMor one year for 87.00 . Single Soppplement, both mailed remit by postal order, express money order, or check,
MUNN \& CO., 361 Broadway, New York,

Gfuilding ECdition.

The SCientipic American Architects' and
Builders' Edition is issued monthly. 82.50 a year. Single copies, 25 cents. Forty large quarto pages, equal lo abe and splendid Magazine of Architecture, richly adorned with elegant plates in colors, and with other fine engravings; illustrating the most interesting examples of modern architectural construction and allied subjects.
A special feature is the presentation in each number of a variety of the latest and best plans for private residences, city and country, including those of very moderate cost as well as the more expensive. Drawings in
perspective and in color are given, together with full perspective and in color are given, together with full
Plans, Specif.
ations, Sheets of Details, Estimates, etc. Plans, specif.
The elegan
ad cheapness of inis magniffcent work have won f the Largest Corculation of any
Architecturb Architectur, iblication in the world. Sold by all news-
dealers. \$2.' foar. Remit to

PRINTING INKE

