(Entered at the Post Office of New York, N. Y., as Second Class mater. Copyrighted, 1892, by Munn \& Co.
a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.
$\underset{\text { Vol. LXXVI.-No. }}{\substack{\text { Establised } \\ \text { 1845. }}}$
NEW YORK, JUNE 4, 1892.
$\left[\begin{array}{c}\boldsymbol{\$ 3 . 0 0} \\ \text { WEEKLY. } \\ \text { A YEAR. }\end{array}\right.$

IMPROVED PLASTIC BRICKMAKING MACHINE.
The process of brickmaking by the machine we illustrate from Engineering is divided into four stages, viz., mixing, pugging, moulding, and pressing. The mixing process is performed in a long trough in which there revolves a shaft fitted with peculiarly shaped knives or stirrers. The clay after it has gone through a preliminary preparation of grinding to reduce it to a powder, or to crush any stones it may contain-this preparation being carried out by a perforated grinding pan or horizontal crushing rollers, whichever machine is most suitable to the clay to be worked-enters the end of the mixer furthest away from the machine. end of the mixer furthest away from the machine.
There it is met by a spray of water, if the clay is not damp enough in its natural condition; the rotation of the knives incorporates the clay and water, and a substance of uniform consistence is delivered to the pug mill of the machine.
The pugging and moulding processes follow immediately after the mixing, and these operations are completed by the pug mill; the clay, after it has been kneaded or pugged, is propelled by the action of the pug mill knives into moulds on the rotating table of the machine, which come in succession under the mouth of the pug mill. At this stage we have accurately formed bricks contained in the table moulds; the table rotates to a position directly opposite the powerful press shown in front of the machine, when the bricks are ejected from the moulds by a lever worked in connection with the rotating gear ; during the time the moulding table is making another partia Alations made by the Boston and Albany rotation the pair
out of the moulds are pushed into a cage or receptacle designed to turn them upside down, the object being to reverse the side of the brick on which there has been the greatest pressure on the pug mill, so that both sides of the brick get an equal pressure. The next pair of bricks, entering the turning-over cage, push the pair nal process of pressing is performed.
By the operations just described we have a brick of plastic nature, densely moulded, well pressed, and highly finished, and one that contains the minimum mount of water to obtain plasticity, and therefore capable of being placed immediately in the kiln for burning.
It will be readily conceived by those acquainted with brickmaking that if a brick can be made in the above manner from the crude clay in the space of a few minutes, there is a great saving in labor. It was to this kind of machine that the inventors gave the term "stiff plastic." The makers of this machine Messrs. Bradley \& Craven, of Wakefield, have adhered to this system of brickmaking, which they claim o have originated, for a period of thirty years.
The machine described weighs 21 tons, but it can be aken into pieces of convenient size for shipment. It is capable of producing 18,000 to 20,000 bricks per day, but it is made in a smaller size producing 10,000 to 12,000 per day.
had a decided influence in improving the horticultural taste of the people living along its lines, and that good plants, like Forsythia fortunei and other hardy shrubs, have been made common and popular in this way. The scheme under which these plantations are made has already been described in these columns. The station grounds are decorated with trees and the best hardy shrubs, preference being usually given to native species, as being more hardy and generally more atisfactory than exotic plants; no bedding or tender plants whatever are used, the effect being obtained rom well kept lawns, skillfully arranged shrubberies, in which it has been aimed to secure a succession of flowers, handsome fruit and brilliantly colored autumn leaves.

The most recently completed high mountain railway in Switzerland is that up the Rothhorn, 7,240 feet high rom the lake and town of Brienz, not far from Inter laken. The road was completed so that a locomotiv reached the summit October 31, and will be opened the coming season. The Rothhorn will command a magnificent view of the Jungfrau, and the other mountains outh and southeast of Interlaken. The material through which the eleven tunnels of this line were excavated consisted of debris which had slipped down the mountain, and which seemed disposed to go on liding when disturbed. Subterranean springs also made the work difficult, and in places new beds had to be made for mountain streams. The work was done by contract for $£ 70,000$

IMPROVED PLASTIC BRICKMAKING MACHINX

SVientific gammicam.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors, published weekly at

No. 361 BROADWAY, NEW YORK.

O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

 One copp, one year, for the U. S., Canada or Mexico.One copys, six months, for the U.'S., Canada or Mexico
Remitby postal or axpress moign coy orry belonging to or bostailuinion. 150 MUNN \& CO., 361 Broad way, corner of Frauklin Street, New York. The Scientific American Supplement

Building Edition

 and SUPPLEMENT, 99.00 a year. To foreign countries, 91.50 a year

Spanish Edition of the Scientific American

NEW YORK, SATURDAY, JUNE 4, 1892.

TABLE OF CONTENTS OF

SCIENTIFIC AMERICAN SUPPLEMENT

NO. 857
For the Week Ending June 4, 1892.
Price $\mathbf{1 0}$ cents. For sale by all newsdealers.

 fed by architects and engineers for use on structural iron work
The Influence of Air and its Impurities on the Illumnatin
Power of Flames.-By Ir. BUNTE-The principal aerlal impur
ties studied with reard to their effect on flame. An interestin
series of experiments

SUDDEN RUPTURE OF A 1500 HORSE POWER ENGINE

On April 30, at 9:58, the shaft of the new 1,500 hors power Corliss engine of the Willimantic Linen Co Mill No. 4, Willimantic, Conn., broke, causing a com plete wreck of the engine and engine house. The en gine, when complete, was to be of the triple expansion type, with four cylinders in pairs, one side only being completed when the accident occurred. The part erected consisted of a 30 inch and a 55 inch cylinder ar ranged tandem on one side, the other side, when com pleted, to be 26 and 44 inches, 60 inch stroke. The bel fly wheel was 28 feet diameter, 9 feet 2 inches face bolted together in 12 segments, with 12 arms terminat ing in a double flanged hub, occupying a space of about 4 feet on the swelled part of the shaft. Weight of th belt fly wheel complete was 125,000 pounds. The shaft was 21 feet 4 inches in length- 15 feet between bearings, which were 28 inches each in length. Th swell of the shaft carrying the wheel was 18 inche diameter, 8 feet long, occupying the central portion of the shaft the balance, 6 feet 8 inches from the curve shoulders to each end, was 15 inches in diameter.
When the shaft, crank disks, and hub, weighing 27 tons, were put in place the leveling showed a slight sagging in the center, and when the wheel was completed the sag amounted to 0.135 of an inch. Soon after the engine was started in January last a noise or sligh squeaking was heard at the hub of the fly wheel, which upon examination, was found to arise from the hub working upon the shaft, caused by the spring of th shaft. This had slightly bell-mouthed the outer end of the hub, so that a thin piece of steel could be insert ed between the shaft and hub on the under side, while on top there was contact be'ween the hub and shaft.

To remedy this the engine was stopped and a pair of supplementary or re-enforcing hubs were made and ap plied on each side of the main hub. Each re-enforce ment was made in three sections and bolted togethe so as to tightly hug the shaft and hub as if one piece Six $21 / 2$ inch bolts were put through from side to side passing through one of the bolt holes in six of the arms the or ginal bolts being removed and the holes bored larger, the hub having been turned off and faced to exactly fit the recess in the re-enforcing pieces. When the whole was screwed together it made the hub ap parently a solid one, 8 feet in length, and covering the entire length of the 18 inch swell in the shaft. This tended to relieve the spring in the central portion o the shaft.
By this arrangement nine tons was added to the weight of the fly wheel, making the total weight upon the central portion of the shaft 143,000 pounds, or ove 70 tons.
The engine was again started early in April with two 24 inch belts making a temporary connection with the mill shafting, and furnishing about 400 horse power, or about one-third of the power required by the mill, the balance being made from the three old duplex high speed engines within the mill. For two or three week the engine was apparently running well, when a sligh creaking
the hub.
Upon examination no visible signs of disturbance could be found; but, suspecting that a slight move ment of the arms in the hub sockets might be the cause melted sulphur was poured into the hub around the arms. On trial, this gave no indication of the cause of the noise, and it was decided to shut down at noon on Saturday, April 30, and make a thorough examina tion, but the engine could not wait, for at 9:58 on that morning the impending crash came.
The speed being 65 revolutions per minute, the rim of the fly wheel was running at over a mile per minute The shaft parted at the junction of the curve with the straight part on the driving crank end. The immense straight part on the driving crank end. The meime momentum of the ponderous rim, which alone weighed
42 tons, acting like a gyroscope, seemed to prolong the 42 tons, acting like a gyroscope, seemed to prolong the
canting fall of the wheel, as related by Mr. T. R Schenck, for a second, when the roar of the crash made him seek safety by a dash through a window. He wa standing in the corner of the engine room at the rea of the cylinders.
Dwight E. Potter, superintendent of the company was in the corner near the fly wheel, and, comprehend ing the urgency of the case, dove through a glass doo into the main body of the mill, only to see the wall of the mill and pieces of the wheel flying past him. The third person in the engine room, Andrew Darcey, wa at the moment in the wheel pit, and only sheltered by the condenser and air pump, had a most miraculou escape, being covered with the falling debris. He crawled from under with only a few bruises

A close examination of the broken shaft reveals the probable cause of the creaking noise during the last few days that the engine was running. A zone of laminated surface extended around the outer edge of the broken surface, showing by its smoothness evi dence of the progressive extension of the crack during a number of days until it had reached a depth of about $11 / 2$ inches, leaving about twelve inches of the diameter of the shaft to support the load, when by the great weight the final break occurred. The surface
within the laminated zone showed a nearly uniform crystalline grain usual with iron of large size suddenly broken.

PRESERVATION OF FLOWERS IN THEIR NATURAL FORM AND COLOR

A "Constant Reader" asks how flowers can be pre served in their natural form and color. The followin are some of the processes that have been recom mended :

1. Take a wooden box of any convenient length and width, but at least five inches in height, and provide it with a sliding bottom. About a quarter of an inch above the latter fasten to the interior sides of the box piece of wire gauze having wide meshes.
Now procure some fine white sand, pass it through a hair sieve and wash it thoroughly in water, in order to remove every particle of foreign matter. Place the washed sand in an iron pot and raise it to a tempera ture of about 200° in a stove or oven. Add to the sand, while hot, a melted mixture of stearic acid and sperma ceti in the proportions of six grains of each to one pound of sand Stir thoroughly, and when the one is cool enough rub it between the hands, in order that is cool enough rub it between the hands, in orde
every grain may be coated with the fatty matter.
Place a layer of the prepared sand in the bottom of the box and carefully arrange thereon the plant to be aried. Then, with great care, cover the plant with hin layer of sand, and, having placed a sheet of pape on the top of the box, place the latter in a stove or oven heated to a temperature of about 120°. The desic cation takes place very rapidly. When it is supposed that it is finished, remove the bottom of the box, when the sand will pass through the wire gauze, and the plant will remain upon the latter. Brush the plant with a badger and preserve it as will be directed below The prepared sand adheres but slightly to the plants and is always easily removed. It suffices in most cases to give the stem a few fillips to get rid of all of the sand, provided the plants have not been moist.
It must be added that sand, prepared or otherwise cannot be used for preserving plants that have a clammy or viscous coating. In this case, it is abso utely necessary to use grains of millet or rice
As the dried plant, when left in contact with the air As the dried plant, when left in contact with the air
absorbs a little moisture, and fades, it must be ar ranged in a jar or wide-mouthed bottle on the bottom of which has been placed a piece of quicklime wrapped in tissue paper and covered with moss. The jar mus be sealed hermetically with a cement of gum lac or ubber
2. Mr. James L. English's method consists in embed ding the plants in a mixture of equal quantities of plas ter of Paris and lime, and gradually heating them up a temperature or 100°
On removing a flower from the absorbent it present very dusty appearance, and is also somewhat brittle it has been left in the plaster too long. It is best to ay the plant aside for an hour, during which time it will absorb sufficient moisture to prevent it from break ing when subjected to the necessary dusting to rid it of the superfluous plaster. After being dusted, the plants still have somewhat of a hoary appearance, and or this reason, they should be coated with a varnish made as follows :

Powdered gum dammar ... 5 oz.

Dissolve the gum in the turpentine and add 16 ounces of benzoline. Strain through fine muslin. The plants may receive a second coat of varnish, if need be
3. The Revue de Chimie Industrielle recommends the following varnish for the preservation of flowers :

```
Ether ...............
Transparent copal
                                    .500 parts.
.20
20
```

The flowers are to be immersed in this varnish for a couple of minutes, then allowed to dry for ten minutes, and be submitted to this treatment five or six times.
4. Mr. Jules Poissan, of the Paris Museum of Na tural History, recommends a solution of 30 grains o salicylic acid in one quart of water for the preservation of plants in their natural form and color.

Dried Bananas.

According to a report made by Vice-Consul Robin son, of Colon, on the Isthmus of Panama, the busi ness of preparing banana meal for the New York market will soon be carried on in that region. He states that a company has been organized with a capital of $\$ 75,000$, under the name of the Banana Food Company, for the purpose of drying and otherwise preparing bananas and plantains for food. He says thas been ascertained that while apples yield only 12 per cent, bananas with the skins removed yield 25 per cent of thoroughly desiccated fruit. The supply of bananas is practically unlimited. The fruit grow to maturity all the year round, and may be obtained every day throughout the year, so that the manufac ture of the new food can be made continuous.

POSITION OF THE PLANETS IN JUNE.

 venusis evening star and is the central object around whom the planetary interest of the fair month of June clusters. It is her last appearance as evening star, and many a month (her whole synodic period of 584 days) will pass before she comes round to a similar position with regard to the sun and the earth. Observers should therefore improve the opportunity to watch her departing steps as she hastens to make her exit from the evening sky so long adorned by her gracious presence. Venus reaches her greatest brilliancy on the 2 d at noonday, being then 39° east of the sun and having one-fourth of her illuminated disk turned to the earth. After her superior conjunction until this era in her course, although less of her illuminated surface is turned to the earth, her approach toward us more than counterbalances the lessening light, and her luster increases. After this era, the lessening light more than counterbalances the neare approach, and the luster decreases. The light num ber, or the brilliancy of her disk, on the 2d is 183.7 the highest point. It is 44.6 on the 30th. Venus is on the meridian at $2 \mathrm{~h} .48 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. on the 1 st , and at $0 \mathrm{~h} .57 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. on the 30th.
Figures are unnecessary to convince observers of the quickly-coming changes in the aspect of this bright planet. She will be seen to set earlier every night, seemingly to approach the sun and lose a portion of her light, and when the month closes will be so near the sun that it will take bright eyes to find her.
The one-day-old moon is in conjunction with. Venus on the 25 th at $8 \mathrm{~h} .5 \mathrm{~m} . \mathrm{P}$. M., being $6^{\circ} 16^{\prime}$ north, but crescent and planet are near the sun, and are above the horizon together scarcely an horur after the sun has set.

The right ascension of Venus on the 1st is 7 h .35 m . her declination is $24^{\circ} 14^{\prime}$ north, her diameter is $37^{\prime \prime} .2$, and she is in the constellation Gemini throughout the month.

Venus sets on the 1st at 10 h .19 m. P. M. On the 30 th she sets at $8 \mathrm{~h} .5 \mathrm{~m} . \mathrm{P}$. M.

mars

is morning star. We place him second on the June annals, not for his present but for his coming importance. He is within two months of his opposition, when he will attract more attention and be more care fully observed than the rest of the heavenly bodies put together. Astronomers and amateurs will vie with each other in seeking to find out something new on his surface, when, about August 4, he makes his neighbor ly call, approaching the earth's domain $13,000,000$ miles nearer than he does when his opposition takes place near his aphelion. He is now a somewhat insignificant red star of about one-third his future brightness, ris ing about half past 11 o'clock in the early part of the month, and reaching the meridian about 4 o'clock. Observers will find him at 2 o'clock about half way be tween the horizon and the zenith. These are the conditions for the first part of the month. Later, he will rise earlier, perceptibly increase in size and ruddy light as the month draws to a close, and give unmistakable signs of the grandeur and majestic mien to which early astronomers paid tribute when they named him for the god of war.
The moon four days after the full is in conjunction with Mars on the 14 th, at $1 \mathrm{~h} .15 \dot{\mathrm{~m}}$. P. M., being $1^{\circ} 25$ south.

The right ascension of Mars on the 1st is 20 h .57 m ., his declination is $20^{\circ} 23^{\prime}$ south, his diameter is $15^{\prime \prime} .8$, and he is in the constellation Capricornus.
Mars rises on the 1 st at $11 \mathrm{~h} .26 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 30 th he rises at $10 \mathrm{~h} .0 \mathrm{~m} . \mathrm{P}$. M.

JUPITER

is morning star. There is a law of compensation in matters celestial as well as terrestrial. When Venus falls from her high estate in the evening sky, Jupiter asserts his right to reign in the morning sky. He is now a superb object in the early morning of the month of June, rising on the 1st of the month two hours before the sun, and on the last of the month four hours before the sun. A glance at the morning sky will reveal his presence in the east, for this princely planet is always bright when visible. He must be looked for a few degrees north of the eastern point of the heavens,
and his benignant presence in the dawn is worth getting up to see. Northern observers have two things to be thankful for, that Jupiter is moving northward, and approaching perihelion, two events that will make him the grandest object in the heavens when the month of October is ushered in.
The moon, two days after her last quarter, is in conjunction with Jupiter on the 19th, at 6 h .40 m . A. M., being $1^{\circ} 9^{\prime}$ south
The right ascension of Jupiter on the 1st is 1 h .5 m . his declination is $5^{\circ} 41^{\prime}$ north, his polar diameter is $34^{\prime \prime} .4$, and he is in the constellation Pisces. Jupiter rises on the 1 st at $2 \mathrm{~h} .1 \mathrm{~m} . \mathrm{A}$. M. On the 30 th he rises at $0 . \mathrm{h} .17 \mathrm{~m}$. A. M.

SATURN

is evening star. One event enlivens his course. He
east of the sun. This brings Saturn near the meridian at sunset, and during the rest of the month he will be visible only in the west, setting at the close of later than Venus.
The moon is in conjunction with Saturn, when eight days old, on the 3 d at $1 \mathrm{~h} .15 \mathrm{~m} . \mathrm{A}$. M., being $2^{\circ} 5^{\prime}$ north.
The right ascension of Saturn on the 1st is 11 h . 39 m. . his declination is $4^{\circ} 48^{\prime}$ north, his polar diame ter is $17^{\prime \prime} .0$, and he is in the constellation Virgo. Sat urn sets on the 1 st at 1 h .12 m. A. M. On the 30 th he sets at $11 \mathrm{~h} .16 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.

MERCURY

is morning star until the 20th, and then evening star He is in superior conjunction with the sun on the 20 th at 11 h .44 m. A. M., when he appears on the sun's eastern side, as evening star, and makes a rapid ap proach to Venus, whom he almost overtakes when the month closes. He is in conjunction with Neptune on the 10 th at $11 \mathrm{~h} .50 \mathrm{~m} . \mathrm{P}$. M., being $1^{\circ} 2^{\prime}$ north, neither
of the actors in the scene being visible.
The right ascension of Mercury on the 1st is 3 h 26 m ., his declination is $16^{\circ} 42^{\prime}$ north, his diameter is 6 ". 0 , and he passes during the month through the con stellation Taurus and nearly through Gemini
Mercury rises on the 1st at 3 h .35 m. A. M. On th 30 th he sets at $8 \mathrm{~h} .20 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.
uranus
is evening star. The moon, four days after her first quarter, is in conjunction with Uranus on the 6th, at $9 \mathrm{~h} .22 \mathrm{~m} . \mathrm{A} . \mathrm{M} .$, being $0^{\circ} 53^{\prime}$ north. The resulting occultation is visible in China, but not in America. It is worthy of note that the moon's present path lies so near to where Uranus is now that the moon has occulted Uranus (when the June occultation has passed) in every month of the
only being visible here.
The right ascension of Uranus on the 1 st is 14 h .2 m ., his declination is $11^{\circ} 54^{\prime}$ south, his diameter is $3^{\prime \prime} .8$, and he is in the constellation Virgo.
Uranus sets on the 1st at 2 h .37 m. A. M. On the 30 th he sets at $0 \mathrm{~h} .41 \mathrm{~m} . \mathrm{A} . \mathrm{M}$.

NEPTUNE
is morning star, a role he assumed on the 29th of May. He is, therefore, at the beginning of June, too close to the sun to be seen.
The right ascension of Neptune on the 1st is 4 h 30 m ., his declination is $20^{\circ} 18^{\prime}$ north, his. diameter is $2^{\prime} .5$, and he is in the constellation Taurus.
Neptune rises on the 1 st at 4 h .29 m. A. M. On the 30th he rises at 2 h .39 m. A. M.
Venus, Saturn, and Uranus are evening stars throughout the month. Mars, Jupiter, and Neptune are morning stars. Mercury is morning star at the beginning of the month, and evening star at the close.

The Egg of Columbus.

When we carefully, with an unprejudiced mind,
xamine the traditional anecdote of the egg of Columexamine the traditional anecdote of the egg of Colum-
bus, we are driven to the conclusion that there is even bus, we are driven to the conclusion that there is even
less truth in it than there is in that other traditional story that Newton discovered the theory of gravitation by accidentally seeing an apple fall from a tree. Gravitation was not discovered, neither must we ever
speak of the "theory of gravitation," because gravita tion is not a theory but a stubborn fact, which everybody understands by experience. Surely the apple was not the first thing which Newton ever observed to fall down. He discovered nothing new, but what he did was that, by his inventive genius, aided by his
mathematical knowledge, he detected the link of mathematical knowledge, he detected the link of
connection between the amount of centrifugal force generated by the motion of the moon in its elliptical orbit around the earth with the amount of velocity which it would obtain by the earth's attraction when it were left to itself without revolving, and he found that these two forces balanced each other, so that the velocity of falling to the earth and the velocity of fly ing off from the earth generated by the centrifuga orce were alike, and kept the moon at the same The result of
The result of Newton's labors were as much inven tion as discovery. He first invented a mathematica theory, and when applying it to the motion of the moon he found it to be verified by the facts, and this was a discovery.
This leads me to call attention to the difference of the meaning of these two words, which are frequently onfounded, as well in England as in our country. S I find, for instance, the London lllustrated News men-
tioning "the discovery of the sewing machine in America," as if the sewing machine had been lying loose in our Western States and had been discovered like we discover coal mines or like De Soto discovered the Mississippi River.
The above reasoning will make it clear that an in vention is to create a thought, theory or material object which was not known or did not exist before, while a discovery is to unveil to the world somethin which existed, but was unknown to mankind.

Applying these truths to what Columbus did, we find that he discovered a new world, and, considering the results, he did, in fact, more than was done by any man who ever lived. Comparing this with the stupid anecdote of the egg, it is clear that this had ruthing to do with his grand discovery, as it was no discovery to do with his grand discovery, as it was no discovery
at all. It was a mere trifling invention, in fact a trick; and it is surprising that intelligent men have for so many years thoughtlessly been believing and repeat ing such nonsense. For my part, I cannot believe that Columbus did ever lower himself so far as to compare his grand discovery to a trick. Surely it was no trick by which he discovered a new world, but it was the result of his earnest philosophical convictions that our earth is a globe floating in space, and it could be circumnavigated by sailing westward, which most likely would lead to the discovery of new lands in the (before him) utterly unknown hemisphere beyond the western expanse of the great and boisterous Atlantic Ocean; while thus far no navigator ever had the courage to sail toward its then utterly unknown, apparently limitless, western expanse.
Columbus is the most illustrious example which the world ever saw of faith in his own philosophical de ductions, and of perseverance in his attempts to verify that which he had faith in, and all mankind must glory in his triumph, in the same sense as that which our illustrious poet Whittier describes in his poem entitled "My Triumph."
But suppose that the most undeniable evidence were forthcoming that it really happened that Columbus illustrated his method of the discovery of a new world by the smashing of the point of a hard-boiled egg, I wil say that his comparison was a most unfortunate one, considering the obstacles in the way of his grand dis covery, obstacles which his perseverance did overcome such as hardships by stress of weather, privations, and even mutiny of the crew on board of his ship-all these and many more he had to vanquish; and when we compare the ultimate results of his discovery with that of crushing the shell of a hard-boiled egg, the only rea sonable explanation I can find is that Columbus wa an old sailor, and cracked the egg shell after a dinner party.

Shade Plants.
In addressing the Association of American Cemetery Superintendents at Chicago last autumn, Mr. Eurich of Toledo, Ohio, said, with regard to plants that can be used to cover the ground beneath trees where gras will not grow, that he had experimented successfully with two "sod-forming" plants, Herniaria glabra and Veronica repens. The first named, he explained, "i moss-like, creeping plant which covers the ground in a very short time, and surpasses a grass sward in beauty. A strip of ground was planted in April with one hundred sucb plants set apart, and in less than two months the entire surface was covered closely. The plants were thinned out, so that we obtained more than twice the original number, and an adjoining new piece was planted with the same result. This pro cedure was repeated in August, and before winter se in we had a beautiful greensward of Herniaria grow ing. A very cold winter followed, and the plants were tinged slightly brown, but by April were again charmingly green. H. glabra will thrive in any soil in the open sun or in the shade." Veronica repens, the speaker, said, "has somewhat larger leaves of shining green and generally the same characteristics as Herniaria glabra. A grave mound planted with it in August was completely covered by fall, and with a light protection during the winter was brighter and resher than the mounds covered with myrtle (Vinca) and ivy. The special feature of this plant is that in May it is completely covered with very light blue flowers as low as the plant itself."

Satisfactory Test of New Armor Plates.

A satisfactory test of 14 inch nickel-steel armor was held at the Indian Head proving ground on the 21st ult. This is the thickest armor plate yet tested by the Naval Ordnance Bureau.
The plate came from the Bethlehem Works, in Pennsylvania, where the armor for the battle ships is being manufactured under contract. The present plate was the first, the test plate, of the 800 tons of 14 inch diagonal armor intended for the Massachusetts, Indiana, and Oregon. The usual severe conditions which surround the acceptance tests of armor obtained at the trial, and, after the firing, an order was sent to Bethlehem by Commodore Folger, the Chief of Ordnance, to complete the order and deliver the material. Three shots were fired at the plate. There was not crack anywhere visible after the shots, nor a perforation. It is said this is the best showing made by any armor in any recorded test.

Aluminum in the Galvanizing Process.

According to Mr. J. W. Richards, the addition of a mere trace (0.08 oz .) of aluminum to a ton of zinc makes a galvanizing base which insures a highly crystalline a galvanizing base which insures a highly cryst
and permanently brilliant and adhesive coating.

A CONVENIENT FORM OF RESONANCE TUBE FOR DETERMINING THE VELOCITY OF SOUND.

One of the essentials for securing fullness of tone in a musical instrument is that there should be as large a volume of air put in vibration by the sounding body as is possible. The difference between putting a small amount of air into vibration and a large amount may be readily shown by playing a common toy musical box, first when holding it in the hand, and again when resting it upon-a suitable box.
In the first instance the result is a delicate tinkling produced by the vibration of the steel comb alone, while in the second this tone is enriched and rounded out by the vibrations of the air in the supporting box. In studying this subject by the use of a tuning fork
moving the arm, \mathbf{B}, from its vertical position as in Fig.
2 , and, on putting the fork in vibration, 2 , and, on putting the fork in vibration, a position can mum.
Knowing, then, the vibration frequency of the fork, finding the value of d by measurement and the value of l by the experiment, a substitution in the above formula for V will, on reduction, give the velocity of sound in air at the temperature of the room in which the experiment was made.

Geo. A. Hoadley,
Physical Laboratory of Swarthmore College.

Photographs in Colors.

The method adopted by Mr. Ives for photographing
in colors is, says the British Architect, another instanc f American ingenuity. Act ing on Helmholtz's theory that the nerves of the eye respond to wave vibrations corresponding to light of red, green, and bluish violet, and that all tints are made up of combinations of these light waves, he takes three photographs of a scene or object, screening off from the first sensitized plate all but the red rays, from the second all but the green rays, and from the third all but the blueviolet rays. Then he places the photographs on celluloid obtained from these nega tives in a three-lens lantern, and projects these so that they coincide in one picture, creening his lenses with glas of red, green, and blue-viole color. The result is a large photograph in all the actual
for the vibrating body and a glass or pasteboard tube for the resonator, it is found that the column of air in a tube of a fixed length will be put into vibration by a fork of a certain pitch, and, also, that the higher the pitch of the fork-and consequently the greater the rapidity of its vibration-the shorter must be the tube to produce resonance.
This fact,being established, the possibility of using the tuning fork and its resonance tube to determine the velocity of sound in air at once suggests itself.
The air space around any sounding body is throw into alternate condensations and rarefactions, the condensations being separated by the length o the sound wave produced by the sounding body Then if N represents the number of vibrations made by a tuning fork, L the wave length, and V thed velocity of sound in air, the velocity will be given by the formula $\mathrm{V}=\mathrm{N} \mathrm{L}$.
Now, in order that a tube may be a resonator for a certain fork, it must be of such a length that the pulse of the sound wave, which is put in motion when the fork starts on its path toward the tube, shall pass to the closed end of the tube, be reflected, and reach the fork just as it is beginning its movement in the opposite direction. In order to do this, the pulse of air must pass through twice the length of the tube while the fork is making half of a complete vibration, and hence must pass through four times the length of the tube for each vibration of the fork.
From this, if l represents the length of the tube the velocity will be given by the formula $V=4 \mathrm{~N} l$.

It is found, however, by experimenting with tubes of different diameters, that a connection must be made for the open end of the tube; in other words, that to obtain a correct result, a certain fractional part of the diameter must be added to the value of l.
Lord Rayleigh gives this value as one-half, so that the formula will now read :
$V=4 \mathrm{~N}(l+r)$, in which r is the radius of the tube
It is better to use the formula $\mathrm{V}=4 \mathrm{~N}(l+k d)$, in which k is the constant required, and then determine its value at 0° experimentally. In one tube used thi value was 0.56 .
A form of tube by which this method of measure ment can not only be readily demonstrated for class use, but the value of V accurately determined, is shown in the accompanying figures.
In Fig. 1, A is the resonance tube of 11 mm . internal diameter. This is drawn out at the lower end and connected by flexible rubber tubing to a similar glass tube which is fastened to a wooden arm, B. This arm is movable about a point at the lower end, the pivot being formed of a bolt passing through the vertical support.
Back of the tube, A, is a paper scale graduated in mm . with the scale division numbered from the position of the fork.
At a right angle to the main vertical support is another, which is so arranged that forks of different lengths may be held in position.
By filling the tubes with water to a convenient height, the length of the air column can be varied by
colors of nature, both land-
scapes, photographs of pictures or of flowers. A stil more striking effect is produced by placing the treble celluloid positives in a kind of stereoscope lantern with prisms, when the photograph of a geranium or other flower stands out with the vivid colors of nature. Of course Mr. Ives' results are very different from the colored photographs often put forward!as examples of actinic power, but in which all colors but one are produced mechanically. It is remarkable that M. Lipp mann, one of the professors at the Sorbonne, has also succeeded in photographing colors. At the last meet ing of the French Academie des Sciences he exhibited several examples of plates from colored objects, one being taken from the national flag.

AN IMPROVED TRACTION ENGINE.

The engine shown in the illustration, while being a compact and efficient machine, is designed to travel without difficulty over uneven roads, to be run with a relatively small amount of fuel and carry a heavy load, and is also provided with means for changing its speed without changing the stroke of the engine. It has been patented by Mr. John R. Hatch, of Sugar Lake Mo. The cylinders, supported on a suitable frame work, are arranged at slightly different angles, so that there will be no dead center, and receive direct steam by a pipe leading through the smoke stack, and not exposed to the air. The valves, of the common slide valve form, are operated through a link pivoted at its ends to connecting rods extending rearward and terminating in ccentrics on a countershaft over the boiler. The link is also centrally pivoted to a rod pivoted to an elbow lever on a shaft in front of the dome, the two links being similarly connected to a lever on each end of the shaft, the shaft being also connected by a rear wardly extending rod with a lever in convenient reach of the operator,
for changing or reversing the stroke or changing or reversing the stroke
in the ordinary way. The upper in the ordinary way. The upper
end of the main supply pipe in the dome has a common throttle valve, a rod from which terminates in a handle within convenient reach. On the countershaft over the boiler are disks which have a crank connection with pitman rods pivoted to the crossheads, and near the enter of this shaft are different on a parallel shaft just to the rear, in hangers on the top of the boiler, the latter gear wheels being keyed to the shaft but adapted to slide thereon, so that, by means of a lever, the different sized wheels of the two shafts may be brought into mesh with each other to change the speed of the machine, causing it to run slowly, with increased power, as may be desired, in going up a hill, or with greater speed when the pull

HATCH'S TRACTION ENGINE. sized gear wheels meshing with similar gear wheels May 21, just to leeward, a large iceberg was sighted
 about sunset. Such a sight is not often witnessed by passengers, and every one crowded to the bulwarks.
After watching some minutes, all agreed they saw human beings on the ice, and the steamer's course was changed so as to bear closer on. It was then discovered that two large polar bears were pilots of the iceberg, which was traveling to warmer seas. No attempt was made to rescue the adventurous voyagers.
is less. On the rear shaft is the usual fly wheel, from which power may be taken by a belt in the ordinary way, the shaft being likewise connected with the governor, and on one end is a gear wheel meshing with a lower pivoted gear wheel at the side of the boiler the latter wheel meshing with a compound gear wheel on a shaft below the boiler. This shaft has at each end a gear connection with the rear wheels of the machine, the axle resting in socketed heads in which are spiral springs to prevent jar, and beneath the center of the boiler in front is a depending socketed head, in which is a strong spring, and through which a king bolt extends, passing through the front axle. Each end of this axle is connected by a chain in which is a spring with a steering shaft in front of the firebora the shaft having on one end a worm wheel meshing with a worm on a shaft extending diagonally upward and carrying a crank disk, by revolving which the front axle is turned as desired to steer the machine.

Electroplating with Silver Alloys

The alloy now deposited is one of cadmium and silver, or of zinc, cadmium and silver. The percentage of cadmium used is from 25 to 35 per cent, although or common work a much larger proportion of the cheaper metal may be employed. The bath is made by dissolving cadmium cyanide in a solution of potassium cyanide, and adding a small quantity of the double cyanide of potassium and silver. The anode consists of an alloy of cadmium and silver of about the same composition as the deposit required. The bath is worked cold, and the electrodes are kept in motion, in order to prevent the formation of layers in solution of different densities. For this purpose the plates are carried on a frame, to which motion is communicated from a shaft running parallel to the end of the bath, by means of a rod and eccentric, and at the same time a vertical movement is obtained by causing the frame to ride up short inclined planes placed at the side of the bath. The alloy can be deposited on such metals as form a suitable substratum for silver plating, either direct upon white metal alloys, or on a previously coppered surface in the case of iron. A weight of an ounce to a square foot gives a good coating, and, like the original alloy, there is said to be less tendency to tarnish than when silver alone is used. Greater current density can also be adopted, so that a given tank will turn out about twice as much work as when silverplating is being done. A curious phenomenon has been noticed in rolling the metal for anodes. When the proportion for cadmium slightly exceeds 35 per cent, the plate shows a tendency to split longitudinally into strips of triangular section, the bases and apices of which alternate on each side of the plate. No explanation, as far as we know, has been advanced to account for this effect, which certainly merits investigation. The process as a whole is chiefly interesting from the fact that it adds another to the scanty list of those in which an alloy is successfully deposited. It may be that in time alloys will hold as useful a position in commercial electrolysis as they already do in other industrial arts.

Hceberg Bears.

The steamship Ems arrived recently at New York from Bremen. Captain Sanders reported that on

EXPERIMENTS WITH SOAP bUBBLES,

The air confined in a soap bubble is often submitted to pressure which, let us say in passing, is proportional to the bubble's curve, that is to say, inversely proportional to its radius, when it is spherical. Such pressure has been frequently measured, but its exact determination requires apparatus and a certain amount of skill. In return, it is very easy to demonstrate its existence and render it visible to an assemblage. To this effect, it suffices to blow a bubble upon a small funnel having a wide neck, like the mouthpiece of a cornet-a-piston, and then to direct the current of air issuing from the orifice against the flame of a candle. The flame will then take a horizontal position and may even be extinguished at the moment at which the bubble, before entering wholly into the funnel, exerts its maximum pressure. The annexed figure, reproduced from a photograph kindly sent us by Mr. C. V. Boys, member of the Royal Society of London, shows the arrangement of the experiment.
We shall describe another, which also is due to Mr. Boys. The phenomena of the diffusion of gases through membranes are rarely demonstrated in elementary lecture courses, although it can be done very simply. Pour into a bell glass, whose mouth is directed upward, a few drops of ether. These will volatilize and fill the bell with a heary vapor. We can, in the first place, render the existence of this vapor evident by allowing a soap bubble to descend into the bell glass. The bubble will stop and float at a certain level. Then, after having bursted the bubble, let another be blown and plunged into the vapor. On taking this out after about half a minute, it will be remarked that it has lost its graceful form and hangs placidly be neath the funnel. If, now, a cande be plas in length
the latter's neck, a flame several centimeters will be observed to burst forth and burn as long as it is fed by the mixture of air and ether contained in the bubble. In preparing for this experiment, the bottle of ether must be immediately recorked, and only the quantity of liquid necessary to produce the effect required should be poured out. The candle should be at a level higher than that of the rim of the beli glass. Were these precautions neglected, there might an explosion occur that would offer a certain amount of danger.-La Nature.

a SIXTY HORSE POWER gAS ENGINE.

We give an illustration of $]$ a 60 horse power nomina Otto gas engine designed and made by Messrs. Crossley Brothers, Limited, Manchester. This, says Engineering, is one of the largest gas engines yet constructed. Even when the success of the Otto gas engine of sizes up to 20 indicated horse power had been insured a few years ago, the makers themselves would scarcely have ventured to predict that in the short time that has since elapsed engines indicating 85 horse power with a single cylinder would be commercially successful, and supplanting fairly good steam engines,
even when using ordinary gas. The engine illustrated florists, who, by the use of chemical manures and is what the makers call a "twin 30 horse power" or 60 other means, strive to take the greatest advantage of horse power nominal, and indicates 170 horse power it. For instance, it is a common practice to mix alum with ordinary town's gas and 160 horse power with and iron filings with the soil in which certain plants Dowson gas. The consumption with ordinary coal gas are grown in order to bring out special colors. The is, we are informed, as low as 16 cubic feet per indicated bluish-tinted hydrangea is the result of such treathorse power per hour, and with Dowson gas the con- ment. Salts of iron, or sodium phosphate, added to sumption of fuel is only 1 pound of anthracite per in- the soil turns the crimson of the peony to violet and dicated horse power per hour. These engines are sub-/ produces blue hortensias. According to Dr. Hansen who has studied the subject very closely for many years, there are only three distinct pigments to be found in flowers-setting aside the chlorophyl which forms the green coloring matter in al plants. These colors are yellows, reds, and blues The yellows are mostly in combination with the plasmic sap, while the others exist chiefly in solu tion in the cell sap. The yellow pigment forms an insoluble compound with fatty matters, and is termed lipochrome. Orange is formed by a denser deposit of the yellow, and the color in the rind of an orange is identical with that found in many flowers. The red in flowers is a single pigment soluble in water, and decolorized by alcohol, but capable of being restored by the addition of acids. Lipochrome combined with this red pigment pro duces the scarlets and reds of poppies and of the hips of hawthorns, but the varying intensity of reds in roses, carnations, peonies and other flowers depends on the presence of a greater or lesse quantity of acids. The blue and violet colors are also decolorized by alcohol, but reddened by acids. Florists have already succeeded in producing a very large scale of unusual colors in flowers, and there seems to be very good grounds for believing that it is possible so to manipulate nature that she will produce blossoms of every conceivable tint and hue.
surfaces, and are the result of over twenty years' ex perience by the makers in gas engine construction. The general design is very compact and simple, and the engine occupies a very small space when compared with that required for a steam engine of equal power with its boilers, flues, and chimney shaft.
The ignition of the gaseous mixture inside the cylinder is effected by a glowing tube, the tube being made of a metal which can be depended upon to last over twelve months. A timing valve is used to insure the igniting of the mixture exactly at the right moment, and at the same time to avoid the risk of the engine reversing and turning the wrong way in starting. These large "twin" engines are started in a very sim ple manner, by a small auxiliary gas engine placed ple manne
alongside.

Color in Plant Life.

Those familiar with the growth of flowers know how essential light is to the creation of color. The most gaudy blooms and the most brilliant foliage if kept in the dark or overshaded will become pale and almost white. This fact (according to the Horticultural Times) shows the presence in the plant of some chemical agent which is acted upon by the actinic rays. To some extent this chemistry of nature is understood by

Complicated lnstrument.

The beak of the mosquito is simply a tool box, wherein the mosquito keeps six miniature surgical instruments in perfect working order. Two of these in truments are exact counterparts of the surgeon's ance, one is a spear with a double-barbed head, the fourth is a needle of exquisite fineness, a saw and a pump going to make up the complement. The spear is the largest of the six tools, and is used for making the initial puncture; next the lances or knives are brought into play to cause the blood to flow more freely. In case this last operation fails of having the desired effect, the saw and the needle are carefully and feelingly inserted in a lateral direction in the victim's flesh. The pump, the most delicate of all six of the instruments, is used in transferring the blood to the in ect's "stomach."-Discovery.

\rightarrow

A recent census bulletin states that the national debt of the United States at the close of 1890 was $891,960,000$. The State and local debt of the United States was $\$ 1,135,110,000$. The aggregate national debts of foreign countries, $\$ 26,621,223,000$.

PHOTOGRAPHIC NOTES.

Photographing on Wood.-Thenew process by W. J. Rawlings is highly spoken of, and is as follows : Whiten the face of the block by means of a mixture of albumen and zinc white. Next coat the dried block with collodion containing nitrate of silver. Dry it by heat. Dissolve off the coating with ether and alcohol. Apply a second coating of the collodion, dry and remove it as before. Dry and expose under the negative. Bring out the print and fix in hypo; wash and dry.
New Developers.-Two more substances are to be added to the already extensive list of developing agents. Herr Schmidt has, according to the Photographische Correspondenz, discovered the developing properties of methyle-para-amidophenol-meta-kresol and para-oxyphenyl-glycin. Life is short, says the Photographic News, and it is, therefore, a matter of congratulation that these substances are to be called methol and glycin respectively.
Red Printing Process.-In the Revue Photograph ique, M. Letellier gives the following process, by means of which prints of a red tone can be obtained: In a small quantity of water mix 72 grammes of nitrate of uranium and 20 grammes of nitrate of copper, the solution being neutralized with a little carbonate of soda. It is then made up with water to a liter. Paper sized with gelatine or arrowroot is floated on the solution for a minute or two, and dried in the dark. Printing is carried out beneath the negative until the image is
fairly visible. It is then developed with an 8 per cent fairly visible. It is then developed with an 8 per cent
solution of potassium ferrocyanide, until the required density is obtained. Fixing is accomplished by well washing in plain water. If sepia tones are required the uranium copper solution is neutralized with ammonia, and the developing solution made up to 2 per cent only.
Rewards for New Processes.-The Administrative Council of the Societe Francaise de Photographie have decided to offer the following prizes: First, a silver medal to the inventor of a simple and sure process of obtaining positives direct in the camera; second, a sil ver medal to the inventor of a process of artificial light ing which will permit of instantaneous photographs
being made in the studio. The system must be free from danger, without smoke or odors, and without complicated apparatus. All communications to be made to the society before the 31st of December next, at their address, 76 Rue des Petits Champs à Paris.
Detection of Crime by Photography.-Once again photography has played an important part in the de tection of fraud. It would appear that in France gold articles are marked by being stamped with tiny marks representing horses' heads, insects, etc., according to the parts of France where the articles are made. The genuineness of some gold rings manufactured at Havre, and which were stamped with a mark representing some kind of insect, was doubted, and in order to detect the fraud, and convince a French jury, M. Londea gentleman well known in French photographic cir cles-undertook to make photomicrographic reproductions of the doubtful marks, and also of genuine marks This done, it required but a comparatively small mag nification to entirely remove all doubt as to the dif ference that existed.

The New Concentric Lens.-The new lens is intended for landscape, architecture, and copying purposes. Open a pair of compasses to about three inches, and draw a curved line two inches in length; now close the compasses sufficiently to draw another curved line half an inch within the other. Between the two curved lines draw a straight one, and the result will be the re presentation of a convexo-plano lens combined set in a
plano-concavo lens. Imagine two such lenses plano-concavo lens. Imagine two such lenses set in a
mount with their concave surfaces opposed to one mother, and you have a correct picture of Messrs. Ross' new concentric lens.
We see at once that the instrument has a novelty of form ; for achromatic lenses generally, which have flat or other contact surfaces, and which give a positive
image, have the radius of their convex surface shorter than the other; here it is necessarily longer, for the curves are concentric, and the convex is the outer one. The convexo-plano, or outside lens, is made of glass having a high refractive power and relatively low dispersive power ; while the plano-concavo, or inner lens, which is cemented to it, is constructed of glass having
a lower refractive power than its fellow, while at the same time it is of the same or higher dispersive power.
Among the advantages claimed for the new lens are the following: It will give uniformly perfect definition over a flat field of a circle of about seventy-five degrees in diameter; it is free from astigmatism, distortion, and over the entire field; it has more depth of focus than other lenses of the same aperture; it does not require to be stopped down in order to gain marginal definition, and it differs in other ways from all lenses hitherto constructed
It may be asked why, seeing that this lens was conceived about four years ago, it has been so long in the hands of its makers. The answer is that lenses are not like boxes of pills or bottles of patent medicine, which
can be filled by children and placed upon the market
at a few hours' notice. Their construction requires
skilled labor and personal supervision at skilled labor and personal supervision at every stage of
the process, and Messrs. Ross have been wise to make the process, and Messrs. Ross have been wise to make no public mention of the lenses until they could report that the special glass of which they are made is per manent in its good qualities, and until they had ac cumulated sufficient stock to meet the demand which is sure to arise for them.
We recently had an opportunity of seeing this lens tried against many others, and have no hesitation in saying that the claims made for it are justified. Focusing a view on the ground glass of a large camera with this lens, and employing a large stop, it was quite
startling to find the whole screen brilliantly illuminatstartling to find the whole screen brilliantly illuminat-
ed, while, at the same time, the details of brickwork and slates were as sharply defined at the extreme margins as they were in the center of the field. The volume of light seemed strange to one who was accustomed to identify such sharpness of definition with the use of very small stop.-Photo. News.

Petroleum.

Dr. William Anderson, in his recent presidential ad dress before the Institution of Mechanical Engineers gave the following:
One more subject which is attracting greatattention, and which seems to open up a field for the inventive faculties of mechanical engineers, is the use of petroleum or mineral oil. As a source of power, petroleum is rapidly gaining ground, especially where motors of moderate size are needed. The records of
the Royal Agricultural Society show that for many years past efforts have been made to produce petroleum engines, but never, until quite recently, with any practical success, chiefly, he thought, because oils of low flashing point, or petroleum spirit, were used. The dangerous nature of these would alone have condemned any engine, however efficient, for general use, except, indeed, in the form advocated by Mr. Yarrow, in which petroleum spirit acts only as the working substance or agent for the conversion of heat into work, and is therefore not expended, except by way of leakage, so that the difficulty of supply does not arise. It was not till the show at Nottingham in 1888 that Messrs. Priestman brought out their engine working with heavy oil having a high flashing temperature self independently, and gave an efficiency of one brake horse power to 1.73 pounds of oil. At the next year's show the consumption fell to $1 \cdot 42$ pounds; at the next in 1890 to $1 \cdot 243$ pounds; and Professor Unwin this year reports that a brake horse power has been obtained by the combustion of 0.946 pound. It is proved by ex-
perience that these engines do not need any special atperience that these engines do not need any special at-
tendants; neither boiler nor chimney is required; the fuel is much more cleanly, and the engine can be got to work in a few minutes; it is certain therefore that they will increase greatly in favor with the public, and will prove formidable competitors to gas engines. Naturally, also, Messrs. Priestman's success has stimulated the inventive spirit, and already more than one successful form of motor is in the field, the tendency being to simplify the details and to render them less delicate in adjustment. But much still remains to be
done. The useful work on the brake is under 14 per cent of the energy latent in the fuel; while the heat carried off by the water jacket round the cylinder and by the exhaust is equivalent to 75 per cent of the total thermal capacity of the oil. This loss surely constitutes a storehouse from which we may hope to appropriate a good deal. He thought that probably a comination of the direct combustion engine with th spirit engine of the Yarrow type would give the best results, especially if a more advantageous
that of the Otto gas engine can be adopted.
As a lubricant also petroleum is taking a prominent place. The circumstance that it is devoid of fatty acids makes it peculiarly fitted for use with steam machinery, and for work which it is desired to protect from rust or verdigris. It can be obtained also of any degree of fluidity, from the most mobile of iquids to the consistency of jelly, while its cheapness serves to recommend it to every consumer.
origin of petroleum.
It is commonly assumed, without any good reason however, that petroleum is of the nature of coal, and has been formed like it out of the debris of primeval orests or out of the remains of marine animals, and that, like coal, the deposit will be exhausted in time. But it seems not unlikely, as the distinguished Russian chemist Dr. Mendeleeff has suggested, that petro leum is constantly being formed by the action of water on metallic deposits in the heated interior of the earth; and that there is good hope. tharefore, not only that rock oil can never be einhausted, but that it will be found in most parts of the earth if borings sufficiently deep be mare; and it should be borne in
mind that the depth of a boring adds very little to the cost of getting, beceause the oil usually rises naturally to the surface, or very nearly to it.
Petroleum is an almost pure hydro-carbon, the with marsh gas or fire damp, C H_{4}, that is, composed
according to the general formula $\mathrm{C}_{n} \mathrm{H}_{2 n+}{ }_{2 n}$ ranging in value from 1 to 15 . The Caucasian oil has the neneral formula $\mathrm{C}_{n} \mathrm{H}_{2 n}$; and olefiant oil gas or ethylis, $\mathrm{C}_{2} \mathrm{H}_{4}$, appears to be the lowest of the series, n rising in value to 15 . When exposed to heat-either in the ordinary process of distillation or when, by working under pressure, the temperature is raised above that due to the atmospheric boiling point-the rude oil "cracks," as it is termed, and the vapors of different boiling points, but still preserving a homologous chemical composition, are given off in succes sion, and in varying proportions; indeed, in some districts rock oil issues from the ground in the form of gas, even at ordinary temperatures and pressures. Petroleum, in a form not to be distinguished from he natural product, has been produced artificially by the action of steam at high temperature and pressure upon the carbides of metals, more especially on those f iron; the water is decomposed, the oxygen combining with the metal, and the hydrogen, in part, at least, with the carbon. This circumstance, among others, led Dr. Mendeleeff in 1877 to propound a theory, which he would sketch very briefly, because if correct it gives an assurance of inexhaustible supplies of oil, and also indicates the probability of its occurring in every part of the world, quite irrespective of the age of geological formations; and so holds out moives to engineers to perfect the means of penetrating much deeper into the heart of the earth.
Laplace's theory of the origin of the planetary sysm is generally accepted as correct ; and according to t the earth must be composed of the same materials as the sun. This view has in latter days received striking confirmation from the spectroscope, by means of which it has been demonstrated that there exist in the sun many of our metals, and especially iron, in the state of vapor, while meteoric stones, which belong to the same order of substances as the planets, have been found by actual analysis to be largely composed of iron and its carbides. The law of the diffusion of gases would lead as to expect that on the condensation of the metallic vapors the substances of higher specific gravity or greater atomic weight would collect chiefly nearer the center of the future globe, while the lighter matter would tend to aggregate on the surface. The mean specific gravity of the earth is about 5 , while that of its superficial deposits ranges from only $21 / 2$ to 4 , so that it is evident that the interior of the globe must be composed of substances having high specific weights-such as iron, for example, which ranges between 7 and 8. Moreover it is certain that the rocks at a comparative y short distance down from the surface exist in a highly heated if not in a molten condition; and that the solid crust covering them is relatively thin and easily fissured, as is abundantly proved by the upheav ai of the land in geological and even in modern times, and by the earthquake disturbances which prevail more or less over the whole world even now.
Dr. Mendeleeff points out that the oil-bearing regions generally lie parallel to mountain ranges, such as the Caucasus in Russia, the Alleghanies in America, and the Andes in Peru; and that petroleum does not appear to belong to any particular geological formation, inasmuch as it occurs in Europe usually in rocks of the tertiary period, while in the United States it is found in the Devonian and Silurian strata, which are so nearly devoid of animal and vegetable remains. He also points out that, on account of the volatile nature of rock oil, it could not have been borne from a distance like many other deposits, but must have been formed very near the spot where it is found.
The fissuring of the earth's crust by the upheaval of mountain chains and by other disturbances allows surface waters to penetrate into the heated internal portions of the earth; and there, coming in contact with the glowing metals and their carbides, they give rise to the chemical reactions which result in the formation of petroleum in the state of vapor, and in the evolution of steam. These vapors penetrate through the fissured crust into the upper and cooler regions, where they are either wholly or partially condensed, forming deposits of petroleum very commonly associated with watar; and the gases which cannot be condensed by cold escape to the surface. The precise compounds which are formed depend upon the temcompounds which are formed depend upon the temassociated every grade of product-gas, oil, mineral pitch, ozokerit, and other substances. The extraordinary average persistence of the oil wells leads to the
conviction that the substance must be forming as fast conviction that the substance must be forming as fast almost as it is removed; and he had very little doubt that improved boring appliances will enable engineers to penetrate to depths not even dreamed of now; so that, by the time that our coal resources come to an end, from the exhaustion of the mineral, or from the condition of perpetual strike to which we seem tending, il springs will be tapped which will have the priceless dvantage of yielding their riches without the agency of underground labor.

A Hint to Inventors.-An elastic stove pipe coupTexas siftings.

Extinct or Nearly Extinct Vertebrates. Mr. A. F. Lucas has a readable article upon the animals which are recently extinct or threatened with extinction as represented in the National Museum.* The West Indian seal (Monachus tropicalis) is uncer tainly placed in this category, for but little is known of it, and its habits and habitat seem favorable for its perpetuation. The California sea elephant (Mac rorhinus angustirostris) is possibly entirely extinct, none having been recorded since fifteen were sent in 1884 to the National Museum. The walruses, too, are threatened with extinction, the Pacific species, Odobcenus obesus, being in greater danger than the Atlantic, O. rosmarus. The source of danger lies in the whalers, who capture the animals for oil and ivory. Between 1879 and 1880 there was brought to market $1,996,000$ gallons of walrus oil and 398,868 pounds of walrus ivory. In 1879 the ivory was worth 45 cents a pound; in $1880, \$ 1.00$ to $\$ 1.25$; and in 1883, $\$ 4.00$ to $\$ 4.50$. The European bison (Bison bonasus), which is at present restricted to Lithuania and the Caucasus, is protected in both localities. In 1880 the Lithuanian herds numbered but 600, and the number is smaller at present. The Arctic sea cow (Rytina gigas), the history of which has already been given in our pages, was exterminated in 1767 or 1768.

Three species of birds from the Hawaiian Islands are probably extinct. The last ornithological collector who returned from these islands found no specimens of the mamo (Drepanis pacifica), and but about half a dozen specimens represent the species in museums of the world. It was probably exterminated in obtaining feathers to make the yellow war cloaks of the Sandwich Island kings. The Hawaiian Chotoptila augustipluma is represented but by two specimens, and the small tailless rail (Pennula ecaudata) of the same archipelago is nearly as rare. It would appear that nearly all the native birds of the islands are also threatened with extermination.
The California vulture (Pseudogryphus californianus) is now extremely rare, and largely restricted to Southern California. "The free use of strychnine in ridding the cattle ranches of wolves and coyotes has caused the disappearance of this bird, which has been poisoned by feeding on the carcasses prepared for the four-footed scavengers." The dodo (Didus ineptus) of Mauritius, and the solitaire (Pezohaps solitaria) of Rodriguez, have a history too well known to be recounted here. They are represented in the Nationa Museum by a few bones.
So, too, the fate of the Labrador duck (Campto lomus labradorius) and of the great auk (Alca impen $n i s)$ has often been told. Of the former but thirty-six specimens are in existence. Two of these in the National Museum were collected by Daniel Webster. The last specimen was taken in 1878. Specimens of the great auk are not so rare, and yet they command enormous prices. The last skeleton sold brought $\$ 600$ the last skin $\$ 650$, and an egg brought $\$ 1,500$. The great auk was probably exterminated in 1840.
Pallas' cormorant (Phalacrocorax perspicillatus) of the region around Kamschatka has a brief history. It was killed by man for food. In 1741 it was "frequen tissimi" on Bering. Island. About a hundred years
later it was extinct, and is represented to-day by four stuffed specimens and twenty-three bones in all the museums of the world.
Of the lower vertebrates Mr. True refers to the great Galapagos tortoises and their relatives of the Mascarene Islands, and the tile fish. The former have already formed the subject of a paper by Dr. Baur in this journal, \ddagger and it is only necessary to say that probably they are exterminated from another of the Galapagos group. The giant tortoises of the Mascarene Islands were extremely abundant in the seven
teenth and eighteenth centuries, but their teenth and eighteenth centuries, but their use as food caused their extinction at the beginning of the present
century. "Save the" few bones rescued from the century. "Save the' few bones rescued from the
marshes of Mauritius and the caves of Rodriguez, nothing is left to show that these large and formerly abundant tortoises ever existed."
The history of the tile fish (Lopholatilus chamexleonticeps) is among the strangest known. So far as we have any information, no one, fisherman or naturalist, ever saw a tile fish (the common name is an abbrevi ation of the generic) until March, 1879, when a Gloucester fishing schooner took about 6,000 pounds. In
the following years 1880 and 1881 a few were taken by the following years 1880 and 1881 a few were taken by
the U. S. Fish Commission steamer. In March and the U. S. Fish Commission steamer. In March and passing through large numbers of dead and dying fish off the southern coast of New England and Long Island. Vessels reported sailing for forty to sixty miles through floating fish (in one instance through 150 miles), so that it became evident that a vast destruction had taken place. Captain Collins estimates from these reports that an area of 5,000 to 7,000 square statute miles were so thickly covered that the total
numbers must have exceeded a billion. The next fall

[^0]the Fish Commission searched in vain for these fish on the ground where they were formerly so abundant; and no one has since reported a specimen.

A Cold.

$$
\begin{gathered}
\text { A Cold. } \\
\text { bY J. J. waller, m.d., oliver springs, tenn. }
\end{gathered}
$$

In dealing with the above subject we, of course, are aware of the fact that it has never as yet been clearly defined. Most or very nearly all text books consider it merely as a cause of a number of different pathological conditions, or sometimes the morbus at hand is con sidered a phase or manifestation of what is so familiar among us-" taking cold."
Dismissing further speculation along the line as not germane to the object now in view, I wish to call especial attention to the mechanism by which the effects of taking cold are brought about; and as theories and facts make up the bulk of our medical information probably to theorize on this subject and draw a corol lary of facts from the result would be the proper man ner of procedure.
Any portion or the whole of the body exposed to a cold draught for a varied length of time of course suffers from irritation, and immediately wires the ganglion or center most intimately connected with that region, through the afferent nerves, and makes known the disturbance there. If the irritation is great (which we will assume to be a fact now) and the whole nervous system has to take cognizance of it, the disturbance is appreciated as an insult, and revenge is at once sough by sending out orders to have the secretions and excre tions of the skin locked until peace is made. When the glands of the skin surrender their function, the ram parts of the citadel are taken, the skin becomes in a measure dry and chaffy, and loses its usual pliancy which is so essential to health. With the periphery thus in a state of blockade, it is not known by the economy at what time some of the more vital internal organs will suffer ; so the nervous system trembles with fear, and we have a form of nervousness as a concomi tant symptom of cold. The nervous system, still trembling with fear and maddened by the insult of irrita tion, resolves to carry on the secretions and excretions by precipitating a double duty on the internal mucous membranes or serous membranes, as the case may be. So when the nervous system orders a mucous or serous membrane on double duty it revolts at the idea of having a vicarious function to perform, and even refuses to carry on its normal function. It is now that we have the dry stage of cold. When the nervoussystem locked the secretions and excretions, it seemed to not realize the fact that it was at the same time locking in some of the venomous products of destructive metamorphosis which, so to speak, in a state of stagnation, undergo ort of change and become irritating to the brain and nervous system, thus causing the dull lethargic feeling and indifference to mental and physical exertion, and the aching pains in the limbs.
After a while the mad internal membrane yields to its higher authority, the nervous system, and being overburdened by hyper-secretion and hyper-excretion soon ceases to do its work physiologically and passe into a pathological state, and a catarrh is the result Thus we may have coryza, pharyngitis, laryngitis, bronchitis, enteritis, etc., if a mucous membrane be in volved; pleurisy, pericarditis, etc., if it falls on a serous membrane. Other troubles besides diseases of mucous and serous membranes are brought about by cold, bu it is not our purpose to go minutely into them now.
In treating a cold, just bear in mind the mechanism by which it was brought about. The nervous system is willing to compromise on almost any plan which includes removal of the offending locked-up excretions Diaphoretics propose to do that, and on their adminis ration and promise the nervous system unlocks th pores of the skin, and equilibrium is restored.-South ern Medical Record.

How to Drink Milk.

Terpsichore gives a few practical hints about digestion as follows :
Do not swallow milk fast and in such big gulps. Sip it slowly. Take four minutes at least to finish that glassful, and do not take more than a good tea poonful at one sip.
When milk goes into your stomach, it is instantly curdled. If you drink a large quantity at once, it is curdled into one big mass, on the outside of which only the juices of the stomach can work. If you drink it in little sips, each little sip is curled up by itself, and the whole glassful finally finds itself in a loose lump made up of little lumps, through, around, and among which the stomach's juices may percolate and dissolve the whole speedily and simultaneously.
Many people who like milk and know its value as a strength-giver think they cannot use it because it gives them indigestion. Most of them could use it reely if they would only drink it in the way we have described, or if they would, better still, drink it hot. Hot milk seems to lose a good deal of its density, and one would almost think it had been watered, and it also seems to lose much of its sweetness, which is cloy ing to some appetites.

Varieties and Uses of Mica

George P. Merrill contributes to Stone some usefu formation on the varieties of mica.
There are several distinct varieties of mica, all characterized alike by a very perfect basal cleavage whereby they split readily into thin sheets, but differing in color, elasticity and composition. The most prominent varieties are (1) the white colorless variety, muscovite (2) the white to yellowish brown or brownish red variety, phlogophite; (3) the black and frequently opaque varieties, biotite and lepidomelane; and (4) the pink lilac or rose colored lepidolite. Of these only the white variety muscovite is, excepting as a rock con tituent, of economic importance, and need be described here.
Occurrence.-The micas are among the most common and widely disseminated of minerals, occurring in rregular shreds or six-sided tablets in rocks of all kinds and of all ages. They are particularly charac teristic of the acid crystalline rocks, both eruptive and metamorphic.
The white variety is, however, much the more re stricted in its distribution, and it is believed is confined wholly to the older acid rocks of thegranitic or gneissic roups.
The prevailing form of the micas is that of small ir regular flecks, from a mere point to a fourth of an inch in diameter, disseminated throughout the mass of a rock. In the younger eruptives, in limestones, and in ranitic veins it not infrequently shows good crystal ographic forms hexagonal in outline, which are easily recognized as mica from their property of splitting eadily into six-sided thin sheets.
The white mica, or muscovite (sometimes called isin glass) of commerce, is derived wholly from pegmatitic or other coarse granitic veins in granite and gneiss Besides mica, the chief constituents of the veins are quartz and feldspar, though there not infrequently oc curs a pleasing variety of minerals, as beryl, tourmaline, apatite, cassiterite, etc. Indeed, such veins are he mineralogist's most fruitful fields, both as regard abundance and variety as well as perfection of crystaline form
Properties.-The distinguishing characteristic of muscovite, and that which gives it its chief value, is ts property of splitting readily into thin, transparent tough and elastic sheets. It is but little acted on by heat, though gradually becoming brittle on prolonged exposure to high temperatures.
Uses.-The chief use of mica is in the form of thin sheets for stoves and furnaces. For this purpose it must be clear and free from bad spots, cracks, or blem ishes of any kind. The most desirable color is stated to be wine red. Of late years there has arisen a con iderable demand for mica in the form of strips some eight inches long by one inch wide for insulating pur poses in the manufacture of electrical apparatus. The qualities essential for these purposes are toughnes and freedom from iron. There is a considerable and increasing demand for ground mica, which allows of the utilization of the scraps, which must otherwise go to waste. At present eight grades are prepared, the coarsest being used to give a spangled effect to fancy grades of wall paper, while the finest is used in pro ducing a uniform metallic white surface on the same The intermediate varieties are used mainly in the manufacture of lubricants for heavy machinery
Preparation.-Mica occurs in sheets of all sizes up to two or more feet in diameter and from the fraction of one to several inches thick. The larger sheets are utilized mainly for sheet mica, and for this purpose the blocks, after being taken from the quarry, arc freed from all gangue material, split to such thinness as to trim readily, and, by aid of patterns, cut to stand ard sizes, the value of the cut sheets increasing very rapidly in proportion to their size. There is a great amount of waste in this process, and it is stated not above eight or ten per cent of sheet mica is obtained from the block mica thus treated. The waste materia or scrap from the trimming, and, in some cases, the entire product, if sufficiently clean and free from gritty substances, is ground. This process, owing to the toughness and fissility of the mineral, is one of coniderable difficulty, and at date of writing not more than two or three firms in the entire country are preared to do the work.
Sources.-More or less mica has from time to time been produced by nearly every State bordering along the Appalachians, though the mining is nearly alway more or less spasmodic and intermittent. Frequently mica forms a product of the feldspar and quartz mines, though the amount thus obtained is comparatively small. New Hampshire and North Carolina are at present the chief sources in the United States. From forty to fifty tons are annually produced, valued at rom ten cents to five dollars a pound, according to quality. The chief foreign sources of mica are Canada and India.

Some one has said that a man never realizes how much valuable advice his neighbors have to give away until he announces his intention to build a house.

AN ECONOMICAL FIRE ALARM.

The present illustration is taken from the fire alarm at Boiling Springs, opposite Rutherford, N. J. The machinery for striking the gong or ring was made by a blacksmith of the town. The gong is held up in place by means of a $5 / 8$ inch wire rope which goes around the gong and over a heavy piece of timber at the top of the tower. The striking apparatus with bearings are also connected to this piece of timber. These bearings are made of $2 \times 1 / 2$ bar iron and the striking material mostly of $5 / 8$ inch round iron. The L shaped bell crank with shaft is forged in one piece. The lower section of bell crank and the lever below are joined together by means of a piece of $5 / 8$ inch round iron with a forked connection at the top and bottom. This piece of iron runs through a piece of gas pipe which is bolted to the floor as a support. One end of the lever works inside of a yoke which is bolted to the side of building. To throw the clapper or ball back the lever is drawn upward which throws the uprigh part of crank with forked connection backward which in turn forces back the clapper. By pushing the lever down the clapper strikes the gong. The gong is a 6 foot tire of a driving wheel of a locomotive, is $13 / 4$ inches in thickness, 6 inches in width and weigh 500 pounds. It yields a deep tone like a bell. On a still nightitcan be hear about two miles. The clap per weighs about forty pounds. A plan has been adopted for locating the direction of fires by strokes of the gong. One strok indicates that the fire is in the northern section o the town. Two strokes, south. Three strokes east. Four strokes, west. On stroke and a pause and then three strokes, indi cates a fire in the north east. Two and three strokes, southeast. One and four strokes. north west. Two and four strokes southwest. This fire alarm has been very satisfactory costing, with gong and ma chinery, with labor, the small sum of $\$ 25$.

Distillation of Wood

At a recent meeting of the Society of Chemical Industry, London, Prof. Ramsey read a paper by himself and Mr. J. C. Chorley on "The Distillation of Wood." The communication being one which dealt with a number of tabulated details rather than general conclusions, was wisely given in abstract form. Prof Ramsey remarked that although remarked that although wood had been for at least 100 years, yet but little had been done to investigate the precise character of the reactions which went on, and the nature of the products which were obtained. Of the main products of distillation which were wat hol, and wood creosote, and acetic acid, methyl alcoin the retort, the first was of course valueless, the next two largely utilized, while the creosote, with the exception of a little which was purified for dentists' use, was not generally considered of much account; the utilization of the charcoal depended upon the kind of wood that had been employed. That from oak and beech was consumed in the foundry, while charcoal from willow and alder was preferred for the manufacture of gunpowder. After recounting the numerous sub stances which accompanied the main products, Prof Ramsey pointed out that our knowledge of what was going on in the interior of the retort was necessarily very limited, as the temperature could not be accurately ascertained. In order to investigate the phe nomena of distillation more closely, a small-size appa ratus had been devised, consisting of a flask in which the wood was distilled, surrounded by a triple air
jacket and provided with a thermometer, connected with condensing and receiving vessels, the further end of which was coupled to a gas holder. A connection was made to a water pump, so that at the beginning of the experiment a fair vacuum could be obtained throughout the apparatus, and thus the true amount of permanent gases yielded by the wood determined. The method adopted for estimating the methyl alcohol, though confessedly crude, was in the authors' opinion the best that was applicable under the circumstances. It consisted essentially in oxidizing that portion of the distillate containing the alcohol with potassium bichromate and sulphuric acid, and determining the carbonic acid given off. Some light was thrown on the degree of reliability of this method by the fact that the amount of methyl alcohol recorded as being

LOCOMOTIVE TIRE USED AS A FIRE ALARM BELL.
phrase, "begins to explode" and to cease with the explosion. Furfural was similarly a product of "explosion." The products from the distillation of wood varied not only with the nature of the wood, but with its place of origin and state of seasoning. A smaller yield of acetic acid was obtained with wet wood. In the discussion which followed, Mr. Blount took exception to the use of the word "explosion" for a change of this character, and characterized it as an abuse of terms. Mr. C. F. Cross spoke of analogous changes such as occur in the formation of ensilage from grass, such as occur in the formation of ensilage from grass, from various sources would be likely to give suggestive results. Mr. Watson Smith, speaking as an old wood results. Mr. Watson Smith, speaking as an old wood
distiller, said that it did not appear that any severe rise of temperature took place during distillation. I was true that when the charcoal was drawn it migh take fire, but this migh well be due to the conden sation of air in its pores Mr. A. G. Green pointed out that a more satisfac tory method of estimating methyl alcohol than tha described might easily have been used. Mr. Bigg complained of the attitude of the inland revenue au thorities toward the pro ducers of methyl alcohol One at least was induced to experiment in order to obtain a pure product, and when success had been attained, was confronted with the fact that the ful duty would be levied upo the spirit because of it potability. Professo Ramsey, in reply, defended the use of the term "ex plosive," and intimate that he was prepared to denote many substance and reactions not usuall thus included by tha term.-Chem. Tr. Jour.

The University of Chicago.

The University of Chi cago will soon be one of the greatest educationa establishments in the country. Mr. John D Rockefeller of New York in addition to large con tributions to this institu tion previously made, ha lately added the munifi cent sum of $\$ 2,000,000$; and other large amounts by other contributors have been made, so that the institution will have a splendid endowment, the total being nearly $\$ 5,000$, 000 . The ground occupied by the University has an area of some 24 acres. It is situated between the two great parks-Jackson Park and Washington Park. Three buildings now under way are the Divinity Dormitory, the University Dormitory, and the Recitation Building or Lecture Hall.

Professor William Rainey Harper, of Yale University, has been chosen president. He is a young man, 37 years old. He is result which was not confirmed by the yield on the professor of the Semitic languages and literature. large scale the variations under manufacturing conditions being, it is true, in the same direction as those in the laboratory apparatus, but showing smaller and less violent fluctuations. Strictly speaking, therefore, it was necessary to consider the results obtained by this method as indicating the amount of "oxidizable matter calculated as methyl alcohol," rather than to assume that they represented methyl alcohol itself. The change that went on during the distillation of wood became exothermic at a certain point, the stage being marked by a sudden evolution of gas, without additional or more vigorous firing. On account of the occurrence of this exothermic change, the authors ventured on the somewhat paradoxical course of regarding wood as an explosive. The yield of acetic acid was remarkably constant even with different woods, and its evolution might be taken to start from the time when the wood, in the authors'
, President of Brown Unive Dr. E. G. Robinson, late President of Brown Univer ity, and J. H. Tufts have charge of the Department of Philosophy. Professor J. Lawrence Laughlin, late of Cornell University, is the head of the Department of Political Economy and Finance. He is assisted by Professor Adolph C. Miller. Dr. Hermann Eduard Von Holst, of Freiburg, Germany, also takes a professorship. He will be assisted by a number of distinguished and able professors. The Department of Physical Culture is to be under charge of Professor A. A. Stagg. William C. Wilkinson is Professor of Rhetoric. E. H. Moore, Professor of Mathematics. The Library is in charge of Mrs. Zella A. Dixon and Miss Julia Bulkley. The University is to be open to both sexes.

A steel rail lasts, with average wear, about eighteen years.

THE PYTHONS OF THE PHILIPPINE ISLANDS

 To the Editor of the Scientific American.In your issue of August 29, 1891, we notice an article on boa constrictors in which mention is made of the pythons of this region. Thinking that some additional facts might be of interest, we submit the following :
Pythons are abundant in the Philippines, the species being identical with that found in Borneo. During our stay of eighteen months in these islands we have heard many accounts of the enormous size attained by these snakes and recently have obtained three fine specimens. The smallest of these measured nineteen feet eleven and one-half inches in length and eighteen inches in greatest circumference. It had evidently been without food for some time and was in an emaciated condition, but was still a heavy load for two men. The next in size measured twenty-two feet six inches in length and twenty-four inches in greatest circumference. The head was six inches wide at the angle of the jaws and the mouth opened thirteen inches without any of the stretching of the skin or displacement of the bones of which it is capable. The third specimen measured twenty-two feet and eight inches in length, and twenty-two inches in greatest circumference. The gape was the same as in the second specimen. In each case the stomach was entirely empty, and one familiar with such animals can easily form an idea of the enormous increase in size that would take place if gorged with food.
Above the length of nineteen or twenty feet, these snakes increase greatly in bulk for every foot in length, so that a snake nineteen feet long looks small beside one twenty-two feet long. It is difficult to estimate the weight of an animal of this kind, and we had no means of determining it accurately. A quarter of it was a heavy lift for a strong man, and it was all that two men could do to drag it a few feet along the ground, one man being unable to do so. The second specimen dis played its enormous strength by snapping in two by a steady pul one of its fastenings a rattan be tween one-half and three-quarter of an inch in diameter. The snake being securely fastened by rattans around the neck, two men and a boy who attempted to hold it by the tail were powerless to do so
From the log in which the third specimen was caught, eighty-nine eggs were taken. They were white and nearly round, about the size of an ordinary base ball, and were covered with a soft leathery shell or skin. They adhered to each

PHOTOGRAPHIC CIGAR HOLDER.
other, forming a large mass, which
had to be literally torn apart to separate them. So far|It is necessary to prepare the photographs without as observed, all were fertile, each specimen examined gold. The bichloride of mercury changes the photocontaining a living embryo about four inches in length. When discovered the snake was coiled upon its eggs, apparently incubating. Upon being removed from the log the eggs dried up rapidly. As the temperature within the log was noticeably above that of the atmosphere, it is probable that the close coils of the snake prevented evaporation.
A snake of this size cound
sized buffalo, and could sized buffalo, and could crush out the life of a man in a fraction of a minute; and we have no hesitation in expressing the opinion that it could swallow him We know of the him We know of the case of a snake of about this size
swallowing a full-grown buck with antlers, a male deer of this species being larger around the belly than is a man around the shoulders.
If the stories told here about large snakes can be believed, the specimens described are small indeed in comparison with really large snakes, but we find that such snakes decrease greatly in size when brought in contact with the deadly foot rule. An intelligent half caste recently told us that his brother-in-law had killed, measured, and skinned a snake forty-four feet long. We did not wish to ques tion the man's veracity but heartily sympathized with the remark of a Spanish gentleman, that fortyfour feet were a great many feet.
We inclose a photo-

a PHILIPPINE PYTHON.

Skin 22 ft .6 in . long, 2 ft . circumference. From a photograph sent from Manila to the Scientific American by Mebsis. D. C. Worcester and
F. S. Bourns, of the Menage Scientific Expedition.

In the annexed cut, Fig. 1 represents the cigarette holder closed: Fig. 2 shows it open, exhibiting the orifice and showing one of the small plain papers inserted in the holder, and Fig. 3 shows the paper after the image has been developed upon it.

An Electrolytic Experiment.

In La Lumiere Electrique for March 19 the following electrolytic experiment is described; it is due to Herr Arons, and was shown by him to the Berlin Physical Society. If we place a hollow copper cylinder between the electrodes of a sulphate of copper voltameter, copper will be deposited on the cylinder where the current enters it and dissolved where it leaves. If the cylinder is free to turn about a horizontal axis, it will commence to rotate as soon as the current passes, owing to the surface next the anode becoming weighted. It is possible to arrange matters so that the specific gravity of the cylinder is only a trifle greater than that of the solution, and hence the presur its uxis upon the supports may be the prity rin nitely reda Arons was a glass box. The copper cylinder, which occupied nearly the entire width of the containing vessel, was 4.5 cm . long and 10 cm . in diameter, and the walls were about 1.8 mm . thick. The spindle was formed by a glass rod 1 mm . in diameter, secured to ebonite plugs fixed into the cylinder; the spindle rested on ebonite supports, attached to the walls of the containing vessel. The cylinder turned slowly and continuously under the influence of currents varying from $0 \cdot 1$ to 1 ampere. Experiments showed that the speed of rotation was very nearly proportional to the current.

The Solar Heat.

An interesting paper on "Solar Heat" is given in a recently issued volume of the "Transactions" of the Astronomical and Physical Society of Toronto by Dr. Joseph Morrison. Two theo ries have been advanced to account for the source and maintenance of the heat of the sun. One ascribes the heat to the energy of meteoritic matter falling on the sun, the othe asserts that the supply of heat is kept up by the slow contraction of the sun's bulk. Taking the "solar constant" as twenty-five calories per square meter per minute, Dr. Mor rison calculates that the linear con traction of the radius of the sun which is requisite to keep up the present rate of r adiation is 0.000004972 feet in one second, or 156.9 feet in a year, or 29,716 miles in a thousand years. "Now 450 miles of the sun's diameter subtend at the earth an angle of one second, and therefore it would require 7,575 years for the sun's angular diame ter to be reduced by one second of arc, which is the smallest angle that can be accurately measured on the solar disk." With regard to the meteoritic theory of solar disk." With regard to the meteoritic theory of
solar energy, a calculation shows that a quantity of solar energy, a calculation shows that a quantity of
matter which weighs one pound falling freely from in finity to the sun would develop by its kinetic energy $82,340,000$ units of heat From this it can be found that the heat radiated could be developed by the annual impact on the sun of a quantity of meteoritic matter a trifle greate than 1-100th of the earth mass, and having a velo city of 382.6 miles per sec ond.
Water Dearer than Fuel
In Balakany, near Baku, the center of the Russian petroleum indus try, is witnessed the anomaly of the water used for the steam boilers in the several establishment costing more than the fuel. As a matter of fact the water is bad and dear costing about half a crown per ton; while a ton o astatki, that is the residu um of the distillation of the crude naphtha, which is the combustible naturally utilized, is sold at price equivalent to eigh teen pence per ton of coal.

An alloy of 78 per cent gold and 22 per cent alu minum is the most brilliant known.

It see Management of Cemeteries.

 It fory to be a pretty general belief that in almost But in matters where a refined public taste is concerned, the supply of good work precedes and creates the demand. For many years the best pictures produced by American artists have not been those which sold the best, and, of course, those which sell the best most truthfully represent the condition of the public taste: Again, our appreciation of the best foreign works of our time has been largely due to dealers who imported the pictures of such men as Corot, Rousseau, and Daubigny, before we even knew their names, and long before we could understand and properly estimate their art. It is true that in the long run dealers may have profited by this experiment, but the public has profited by it far more, and it is just that we should feel grateful to them as to unselfish benefactors. What we wish to do now, however, is to call attention to another illustration of this truth which has been suggested by the published report of the Proceedings of the Convention of the Association of American Cemetery Superintendents, which was held last autumn in Chicago.To some eyes there may seem no hint of artistic things or questions in this title. But our readers are aware that we consider the right treatment of the rural cemetery, an institution which is almost peculiar to America, rests on important and interesting artistic principles. And yet it is evident from this report that the greatest obstacle in the way of such treatment is the persistent bad taste of the public. We might suppose that our cemeteries are not more beautiful because it is hard to find people to make them beautiful. But the case is really the reverse of this. Many at least among the persons who are employed to care for them know what aspect they ought to wear, and are eager to give them this aspect, bu their employers bar the path. If the bad taste of the blame, then it is usually the bad taste of the majority of individual lot owners.
Of course, we should not assert this simply on such statements as that "the superintendents of cemeteries have to bear with many things that they do not like in catering to the public." If no explanations with regard to points of difference were given, we might conclude that the superintendents rather than their patrons need an education in good taste. But the various addresses given at length in this report bear such clear witness to the correctness of the views of prominent cemetery superintendents, and to the con-
flicting views of their patrons, that one cannot help feeling confident as to the source from which improve ment may be expected.
For example, Mr. G. H. Scott, of Rose Hill Ceme tery, Chicago, in discussing how large a part nature should play in the cemetery, said: "What may be grass and trees. There should be an abundance of grass and a sufficiency of trees and shrubs, with as few pathways as possible, and no more driveways than are absolutely necessary. A cemetery lot with mounds or graves not higher than three inches above grade of plain sod, well clipped and trimmed, gives that appearance of neatness, simplicity, quiet, and beauty which every such lot should have. The prevailing anxiety on the part of lot owners to surpass each other
in the erection of costly monuments, vaults, and stone work generally, is detrimental to the natural appear ance of a cemetery. Another encroachment upon the natural appearance of a cemetery is carpet bedding To take the natural and well trimmed sod from a grave and cover it with a carpet bedding of plants and flowers, giving it the appearance of a patchwork
crazy quilt, is, to say the least, absurd, and certainly not in keeping with the natural appearance of a ceme tery representing the peaceful resting place of the dead. Not so with plants of wild flowers and hardy herbaceous perennials. They are things of nature. winter, flourish without care, become larger in size and increase in beauty every year, and should be dispersed over the ground so as to give them a natural appear ance. A cemetery should be a place for meditation, a
place where the living, pleased and satisfied with its natural appearance of peace and quiet, and free from the busy hum of human toil and artistic dazzle, may anticipate the time when they, too, must succumb to the inevitable, not mournfully, but cheerfully. Besides, if cemeteries generally were kept more natural in appearance, their cost of maintenance would b less."

We have taken these sentences out of their context and massed them so as to show, as briefly as possible Mr. Scott's idea of what the treatment of a rura burial ground should be. And from the speech of Mr. Higgins, of Woodmere Cemetery, Detroit, we may
take a few more sentences with a similar purpose. take a few more sentences with a similar purpose.
"What," he asks, "are the essentials of a perfect cemetery? Beauty and harmony. Harmony, as I here use it, should not be considered as flatness or want of
difficult to overcome. Thus a small Niagara would not be 'desirable in the proposed site for a burying ground, neither beetling cliffs nor wild gorges. Picin the improvement of parks or private grounds, but is scarcely productive of that air of quiet repose which should be one of the main characteristics of the last should be one of the
resting place of man.

The two crying evils of all cemeteries are our present great ugly headstones and our unsightly grave mounds. It seems to me however, that in some cemeteries which are working toward the lawn plan, they lay too much stress on prettiness and bring with it the puerilities, polish and showiness of highly kept front yards or showy lawns, and that too much money is expended in ornamentation and display. Now, neatness is one thing, display an entirely different thing. I believe that the nearer we keep to nature in our methods of cemetery improve ment, the better results we shall obtain and the more economical will be our management of affairs. We must bear in mind that cemeteries are designed for burying places for the poor as well as for the rich, and that extravagance in ornamentation or wasteful
methods of care defeat the very purpose for which methods of care defeat the very purpose for which they were intended."
Surely these ideas are sound. They are the truly artistic because the truly fitting principles in ac cordance with which rural burial grounds should be designed and maintained. It is pleasant to know that persons holding executive positions in our cemeterie entertain such ideas, and we should be glad to know that they were less frequently hindered from acting upon them by their employers.-Garden and Forest.

Rosin Oil.

Until recently it was generally believed that the use of rosin oil was almost entirely confined to the man ufacture of printing inks and cart grease and the adulteration of other and more expensive oils. Although large quantities of it were manufactured, but little found its way into the retail market, at least under its own name. There is now, however, some probability of an increased consumption taking place owing to the rediscovery of its properties as an insu-
lator; and it will not, therefore, be out of place to say lator; and it will not, therefore, be out of place to say only to dispel the vague atmosphere with which the subject has been surrounded and to show how completely any dogmatic statements that have been made, or may be made, must be modified by a consid eration of the quality of the oil referred to.
In the first place, rosin oil is so called because it is the heavier part of the products of the destructive distillation of rosin, which, in its turn, is the residue left by distilling crude turpentine, spirits of turpen tine being the volatile portion. The ordinary vitreou body, varying in color from light yellow to almos black, known as rosin consists of a mixture of abietic acid and abietic anhydride, together with a small quantity of sylvic acid. When distilled, these bodies are broken up, yielding a mixture of hydrocarbons, accompanied by a larger or smaller proportion of un hanged rosin acids and anhydrides. The relative mount of these constituents is determined by the design of the stills and the manner in which the dis tillation is conducted. The more carefully prepared and refined the oil is, the lower is the proportion of rosin acids, and in the laboratory rosin oil may be obtained with but a few per cent of substances other than hydrocarbons. The specific gravity of rosin oil o commercial quality may vary from 0.98 to $1 \cdot 10$, whil its power of rotating a beam of polarized light is sim sometimes lævo-rotatory, or nearly absent. These facts are sufficient to indicate the variable characte of commercial rosin oil, and the futility of discussing its electrical properties without defining the characte of the sample used is tolerably apparent. In the various communications which have lately been made concerning rosin oil insulation, this necessity has not been sufficiently kept in sight. The only satisfactory method for settling once for all the kind of oil best fitted for this purpose would be to examine the in ulating capabilities of numerous samples, and simul taneously determine their composition by analysis If this were done, and it were ultimately found tha rosin oil could be as advantageously used as some o ts advocates appear to think, there would be after ward no difficulty in obtaining supplies of precisely the same quality as those which had been found efficient. The maker would be given a definite standard to work to, and could, by the aid of his chemist match that standard as nearly as would be necessary
In dealing with rosin oil, one of the most noteworth qualities that are apparent on inspection is its grea viscidity. It is to this, and to its immiscibility with water, that its applicability for the purposes of insula
tion is chiefly due. It is, therefore, plain that in addition to a purely chemical examination, the deter mination of the important physical property of viscos advances that to be undertake in the methods of
examining lubricating oils, there is no difficulty in effecting this. Besides determining the viscosity at ordinary temperatures, it would be very desirable to do so at higher temperatures, as it by no means fol lows that oils of the same viscosity at any given tem perature have the same coefficient of decrease as the temperature is raised. There is a further point which seems to have been also overlooked. Rosin oil when exposed to air undergoes change. How noteworthy that change may be has been opportunely illustrated by some figures given in a paper by Mr. F. H. Leeds, which was recently read before the Society of Chemi cal Industry. The results of three of the samples examined are given below :

No. of Sample.	\sim Original oil. $-\sim$		Oil after exposure to air. -	
	$\begin{aligned} & \text { Rosin } \\ & \text { acids. } \end{aligned}$	Hydrocarbons	Rosin acids.	Hydrocarbons.
A	31.07	$68 \cdot 93$	$24 \cdot 90$	$75 \cdot 10$
B	22:20	$77 \cdot 80$	$16 \cdot 09$	$83 \cdot 91$
C	972	90:28	4:29	95\%79

The results show that a considerable amount of alter ation has taken place. There is an apparent decrease under the column headed rosin acids (which strictly means total saponifiable matter, including probably anhydrides and esters) and an increase under the head of hydrocarbons. It is unlikely, on purely chemical grounds, that a conversion of the former into the latte takes place. Probably the explanation of the change is to be sought in the volatilization of the lighter acid constituents, and the consequent enrichment of the mass in heavy non-volatile hydrocarbons. In the paper in which these results appear, other differences are re corded and discussed, but, being at present still un settled, do not immediately concern us. One deduction is, however, plain, namely, that an oil may undergo profound alteration by exposure, and may well alter in character to such an extent as to become more or less useful in tangible degree. It can, therefore, never be safe to assume that, because a specimen of oil has at one time given certain results, it will necessarily possess dentical properties after the lapse of time, particularly f the conditions under which it has been kept have nvolved its exposure to the atmosphere. This again opens up a field for investigation, in that not only do all kinds of rosin oil change, but that the tendency of oils of different qualities to alter by exposure varie greatly. It is probable that samples consisting almost wholly of hydrocarbons would prove the most resistent and, if found to be also high in insulating power, would preferable on that account. Direct experiment is, however, much needed.

Wonders of Electricity.

At the Crystal Palace, London, a private view lately took place of some new electrical experiments illus rating recent discoveries of Professor Elihu Thomson. The demonstrator was Dr. J. A. Fleming (Professor of Electrical Engineering at University College). As a preliminary to the experiments Dr. Fleming made a ew remarks, in the course of which he informed his hearers that he was about to deal with an alternating current which changed its direction of flow 125 times a second. The original current, a continuous one, wa generated a mile and a half away from the palace, and was on arrival changed into one of alternating charac ter, and was used to excite an electric magnet which stood on his lecture table. The current was now witched on, and the lecturer held a copper ring over the pole of the magnet. A strong and perceptible repulsion was the result-so much so, that directly Dr. Fleming released the ring it flew several feet upwar into the air. Lighter rings, he explained, could be held captive by short cords, and would then float in the air above the magnet which repelled them in this wonderful way against the force of gravity. The next experiment was a very beautiful one. A glass jar of water was placed on the pole of the magnet, and in the water was set floating an incandescent lamp, in circuit with a coil of wire, which, with the help of cork, formed a kind of round boat below it. This arrangement sank to the bottom of the jar, but directly the current was applied to the magnet it rose up to the surface, while at the same time the little lamp burst into radiance. If, while this experiment was in progress, a copper shield were placed between the magnet and the vessel of water, all action ceased, for the copper acted as a screen. Many other curious experiments were shown, including one which plainly indicated that this form of magnet would differentiate between a good and a spurious coin. The metal of the former being pure, or nearly so, formed a good conductor, and was, therefore, held between the poles of the magnet; but a bad coin, not possessing that necessary qualification, immediately fell down when placed in position.

A reduction in some of the fees for British patents has been passed by the English government. The reduction takes effect upon the taxes that accrue during the latter part of the term for which the patent is granted, but does not lessen the cost of making tho application.

RECENTLY PATENTED INVENTIONS. Engineering.
ROTARYENGINE.-Stephen H. Bloomer, East Portland, Oregon. This engine has a ring-shaped steam chamber in which operates a piston ring-shaped steam charber
connected with and arranged to travel concentric with
the main shaft, the peripheral edge of the piston having the main shaft, the peripheral edge of the piston having
transverse sockets for packing, while around its edge is transverse sockets for packing, while around its edge is
held a packing ring, whereby the positive operation of held a packing ring, whereby the positive oper at is effected without danger of loss of pow by undue leakage By a novel arrangement of peveral cam disks which operate the cut-off valve and gate, the cut-off may be made when the piston is near the end of its stroke or at any point which may be desired.
Steam Engine Governor.-Richard H. Payne, Aquone, N. C. In this governor the gov-
ernor stem is controlled by balls and connected with ernor stem is controlled by balls and connected with ever carries at one end a pulley resting on the driving belt, the other arm of the lever being adapted to engage an arm held on a rocking shaft controlling a spring supporting the governor stem. This improved con-
struction is simple and durable, while it is very effective in operation, keing arranged to actuate the vaive at the slightest variation of speed, according to an in at the sightest variation of speed, according to
creasing or diminishing load or steam pressare.

Railway Appliances.

Car Coupling.-John La Burt, New York City. In this coupling the drawhead has a horizontal recess from which a recess leads through the apper side of the drawhead, a locking arm being pivoted at its angle or beings in the front corner of the
horizontal recess to swing horizontally, a pivoted tumbler of novel form co-operating with the rear end of the locking arm and a rearwardly projecting
handle. The deviceis of simple and inexpensive conhandle. The device is of simple and inexpensive con-
truction, and provides for the automatic coupling of the cars, while it is so made that it cannot possibly uncouple by accident and m
brakeman without danger
Car Coupling. - Robert Reardon, Savannah, Ga. This invention provides an improvement in automatic couplings in which coupling
knuckles or hooks are used, and which frequently get out of repairs on account of the breaking of the hooks For this purpose it provides a double or reversiblelocking hook or knuckle which may be quickly changed, so that either end may be used, also providing a positive locking mechanism which will hold the coupling hook in such a position that it cannot accidentally be displaced. A lever mechanism is employed by means
of which the coupling may be unlocked without going

Tramway Brake. - Friedrich Adler, Prague, Austria-Hungary. This invention relates to a style of brake which is automatically applied to the
wheels when the forward pull on the car lessens, while the momentum lost by the car in stopping is stored and applied to lessen the power necessary for starting. For this purpose a sliding drawbar is provided with a rack
engaging a gear wheel mounted loosely on the axle, engaging a gear wheel mounted loosely on the axle, to the axle when the drawbar is pulled out in the act of starting the car, whereby the wheels of the car will
be revolved by the engagement of the teeth of the rack with the gear wheel.
Railway Signal.-Colon M. Stanley, Montezuma, Ga. This is an improvement in that class
of signals in which the signal arm is secured to a post at the side of the track, and provides means for easily raising and lowering the arm so that the lantern may be filled without dificulty. A crank-operated drum is mounted on the post, on which the arm is held to move
vertically, and a weighted lever pivoted in the arm has at one end a brad to engage the post, a cable extending over guide pulleys on the top of the post connecting that the arm cannot be accidentally dropped.

Mechanical Applian

Boring and Tenoning Machine.Abel B. Shary, Durango, Col. This machine is especially designed to form the tenons on spokes and
bore the tenon apertures in fellies. A bracket held on bore the tenon apertures in fellies. A bracket held on
a supporting beam has a bearng in which slides and a supporting beam has a bearıng in which slides and into and out of engagement with the screw, in which turns a shaft on which is held a tool-holding socket. adapted to support the spoke in line with the shaft, and a collar held adjustably on the feed screw is adapted to regulate the depth of the tenon to be formed

Stave Trimming and Jointing Maching.-William J. Wright, Cooperstown, Pa. By
this machine the billet is first trimmed to the proper size, after which it is automatically fed into the machine through the various stages necessary to com-
plete it, the stave in passing automatically controlling and setting the bevel-cutting and bilge-forming devices in exact proportions relative to the different widths. The invention is an improvement on a formerly patented invention of the same inventor, all of the machine
operating automatically after the stave is fed to the trimmer saws, the several parts serving to give the trimmer saws, the several parts serving to give the
proper bilge and bevelto all staves, irrespective of their
thickness, length or width.

Miscellaneous.

Pressure Regulating Valve. August Heithecker, Long Island City, N. Y. This is an improved valve adapted to be connected with a high pressure gas main, causing the gas to flow therefrom at in the valve, in which is a horizontal diaphragm, is
regulated by the resistance of a spring, which is inregulated by the resistance of a spring, which is in-
creased or diminished, according to the gas pressure desired, by adjusting a collar by turning handles upon
may be nicely and positively adjusted so that the gas
will flow at the exact pressure desired while will not easily clog up and get out of repair
Electric Lock. - Frederick Morgenhaler, Brooklyn, N. Y. An attachment by means of which a door may be locked in either an open or closed
position is provided by this invention, the device being electrically operated and controlled by push buttons arranged in different parts of the building. The invention relates more particularly to the mechanism for holding the door open and for releasing the door, providing a positive means for effecting these objects, and simplifying the construction covered by a former paequipped with this improvement the escape of a thief ight sometimes be prevented, the attendant being

Hay Ricker.-Maxon Chase, Lucerne, Combined with a suitable base and upright vating ropes, operating rope, pawl, and automatic locking and unlocking devices, the several parts being
simply constructed and assembled and requiring but simply constructed and assembled and reguiring but
ittle power to operate them. The mechanism dis-

Oil Can. - Noah G. Pomeroy, New Haven, Conn. This can is designed to be safely carried in the pocket without spilling any of its contents. Its nozzle has a loosely fitted piston or cleans-
ing rod, adapted to clean oil apertures from any dust or dirt before the oil is supplied, and the device is or dirt before the oil is supplied, and the device is
especially adapted for use in oiling the bearings of milar machines
Axle Lubricator.-James S. Patten, Baltimore, Md. This is an improvement in axles having a reservoir for oll, and constructed to feed oil
from the reservoir to the spindle or bearing for the wheel, the reservoirbaving a novel cover. The axle is
chambered to form an oil reservoir, there being along the chambered portion external threads, while the cover consists of a band having internal threads mesh-
ing with those of the axle and provided with an opening movable into and out of register with the reservoir. Cotton Baling Apparatus. Edmund M. Ivens, New Orleans, La. This invention
relates to that class of baling machines which bale the relates to that class of baling machines which bale the
cotton by what is known as the "roller process." Combined with a continuously operated folder or lapping device and a compressing platen is a rotatable receive the cotton from the lapper and carry it over the compressing platen, with means for temporarily receiving the cotton from the folder when the cotton
box is not under it, the oscillating lapper and folder Rope Clamp and Stopper.-Thomas P. Inglesby, St. Louis, Mo., and Thomas J. Davis, Richmond, Va. This device is adapted to clamp and hold different sized cords and ropes subjected to longiope to permit its release from the drum of a hoisting machine so that another similar rope may be applied to the drum while the clamping rope is held with its load suspended. It consiets principally of two longitudinally grooved grip blocks, with means to anchnr one block to
a staple object, while a bail clamp is loosely secured to a staple object, while a bail clamp is loosely secured to
the other block and adapted to slide endwise upon and removably hook fast to the anchored block, an adjusting screw engaging the clamp and one of the grip
blocks. Stirrup. - Alain J. De Lotbiniere, Que lower ends of the members of the bow section being provided with collars, and the foot rest having at its ends sleeves sliding upon such lower ends, a spring against the under side of the middle portion of the foot rest. By this means the weight thrown up,n the back of the horse, is taken up gradually by the foot rest, saving the horse from shock. The foot will also be readily released in case the rider is thrown, and the upward pressure of the spring causes the stirrup to
felt at all times, so there is no danger of losing it.
Artificial Tooth. - David B. McHenry, Grenada, Miss. This invention provides a meaus of securely fastening a partial plate of artificial
teeth in the mouth. The plate is formed of rubber or similar material fitted to the general contour of the jaw, and studs, pins or screws are inserted in the natural teeth, or in permanently mourted artificial crowns, and projecting a short distance therefrom, while also re
moved from the gums a sufficient distance to admit of slipping the edge of the plate under the fastenings, the ends of the plate being adapted to spring inwardly.
Portable Oven.-William O. Silvey, Middleport, Ohio. This is a simple and cheap construction adapted to be heated by an ordinary lamp
burning oil or gasoline, and especially adapted for raising any kind of bread, or for keeping articles warm. The oven is also provided with means for heating an inner chamber either by steam or hot air, which may be kept warm for a long time, and which has ther-
mostatic means for regulating the amount of heat to mostatic means for regulating the amo
maintain the exact temperature desired.
Calculator. - Jose H. y Bolado, Aguas Calientes, Mexico. A series of cylinders fitted
one upon another aud each provided with an enlarged portion having apertures, and a reduced portion having a set of numerals appearing through the apertures of the next following cylinder, form the principal feature of this invention. The device has the general appear-
ance of a lead pencil, to be readily carried in the pocket, ance of a lead pencil, to be readily carried in the pocket,
and carries movable leads, while it can be arranged to and carries movable leads, while it can be arranged to
perform mechanically a variety of arithmetical and mathenratical calculations, as multiplication, division, extraction of root,
relative profortions.
Window Shade Fixture. - William W. Wythe, Orange, N. J. Two adjustably connected cord extending over pulleys secured to the brackets,
the cord being secured at opposite sides of the window rame at points above and below the brackets, while an adjustable suspending cord is secured to one of the
brackets and to the window frame. The fixture is adapted to conveniently suspend a window shade in
front of a window to admit light at the top or any other front of a window to admit light at the top or any other
part of the window, and it may be readily adjusted to part of the window, and it m
suit the width of any shade.
Ladder. - Francis S. Sprague, Coldater, Mich. This is a step ladder which is light legs, and steps may be readily taken anart side piece in small space for carriage. The construction and ment ma without legs. The steps are held in connection with the side pieces by means of swinging stirrup-like straps or loops, the steps having pins or projections on
their under sides to engage with the free or swinging their under sides to engage with the free or swinging
lower ends or portion of the straps or loops. Gate Latch. - Charles J. Ericson, Salt Lake City, Utah. This is a simple and inexpen-
sive device for attachment to gates of all kinds, either single or double actıng, but more especially designed for garden or front gates swinging both ways. It conintegrally with a rock shaft having at its ends hand levers for operating the bolt, an ad justing screw passing through the bolt for limiting its drop, and a metallic plate for holding the rock shaft in place on the gate,
guiding the bolt, and covering the opening in the gat guiding the bolt, and covering the opening in the gate
stile containing the bolt. The bolt is balanced to clos perfectly from either side by its own gravity, and the

Gate Hinge.-The same inventor has hinge, preferably made from sheet metal, althongh it It coneists of two rectangular alike and oppositely arranged with respect to each other, each having at one end a pair of perforated ears, while a link is pivoted between the ears. The two parts are applied, respectively, to the lower part of the gate
post and the stile of the gate, the upper part of the gate post and the stile of the gate, the upper part of the gate
having an eye which turns on an angled hook projecthaving an eye whic
ing from the post.
measuring from the post.
Matcet. - Herman M. Nye, Avoca, Neb. This is an improvement on a cheapen and simplify the construction of measuring faucets for air-tight barrels or receptacles, providing a drawn and accurately measured. The improvement also adapts the faucet for use in connection with highly combustible or explosive liquids, and provides a suit-
able air vent in the liquid receptacle, and means for able air vent in the liquid recept
straining the liquid as it is drawn.
Fountain. - Fridolin Pascalar, Rochester, N. Y. This fountain is especially adapted for use in churches and other places to hold holy water
for distribution. A lower open vase of any approved form constitutes its lower portion, and supported on the plan wall an inverted bottle whose mouth is held below the level of the water in the vase. By this means, as the water in the vase portion or fountain is used the supply is constantly replenished, so that it does not get below the level of the mouth of the reservoir until all the water in the latter has been used up, thus
preventing waste and obviating the necessity of frequent renewals. The reservoir portion, being filled, is readily moved to place with the hand upon
the vase first having been sufficiently filled.
Kitchen Cabinet. - Albert C. Carr, Middlesborough, Ky . This is a simple and inexpensive construction comprising an upper compartment, a
central drawer compartment, and a lower bin compart ment, there being a cupboard in the upper compartment and hinged bins at each end of the cupboard, ther being also a detachable board or cover adapted for use
as a shelf, and a bin formed with a series of compart ments.
Theatrical Appliance.-Frederick Wohlgemuth, Philadelphia, Pa. This invention proa bicycle race on the stage. It consists in a bicycle mounted to have its wheels free from contact with the surface on which it appears to run, its frout and rear
weels geared together, and its pedals free to be operwheels geared together, and its pedals free to be oper-
ated by the rider, the supports of the machine being ated by the rider, the supports of the machine being secured to and projected up from a carriage adapted to be moved over the stage. The carriage carries suitably
arranged dust-making devices, operated by the motion of the bicycle wheels, whereby the illusory effect of the race is rendered more effective.
Lawn Tennis Court Marker.Herman Reichwein, Spring Lake, N. J. The casing of this device is open at its base and carries a dust-reciprocating box with a perforated bottom, any suitable white
powder being carried in the box. The device has a forward supporting wheel, and is pushed over the ground by means of handle bars, when the powder is evenly sifted in a continuous line as the marker is

Trap.-Hubbard S. Goff, Arch Beach, Cal. This is a trap for taking fish or game of any description.
frame jaws frame jaws, apon the outer rounded portion of which
are hooks, a spring normally drawing the jaws to engagement. The trap may be conveniently set or baited
without danger to the manipulator, ard it may be without danger to the manipulator, ard it may be
placed in a horizontal or suspended in a vertical posiion, according to the use to be made of it.
Water Closet Device. - Walter R. Webster, Pine Grove, Cal. This is a device for automatically closing the covers of closets or other re-
ceptacles. It operates by the combined action of a ceptacles. It operates by the combined action of a
metallic or other spring and air-cushioning cylinder and piston devices, through the intervention of suitable levers and connections. It effects the gradual closing of the cover, without noise or bang.
Catamenial Bandage.-Anna Chap-
construction and combination of parts whereby the im-
proved appliance is adapted for quick adjustment and removal of parts, affords comfort in use, and facilitates the renovation of portions requiring it.
Note.-Copies of any of the above patents will be furnished by Munn \& Co., for 25 cents each. Please
send name of the patentee, title of invention and date of this paper.

NEW BOOKS AND PUBLICATIONS

Philosophical Notes on Botanical

 With 160 illustrations. London, Eyre The author presents the subject of botany from thetandpoint of evolution and very graphically treats on plant structure and life.
A History of Watches and Other Timekeepers. By James Francis Kendal. London : Crosby Lockwood By numerous illustrations, personal, historical and
archaeological references, this work is rendered of archaeological references, this work is rendered of
great interest to the ordinary as well as to the profesgreat interest to the ordinary a well
sional reader. The author, a member of the firm of Kendal \& Dent, is evidently qualified from study and literary taste, as well as . The work appears to , fo be one of great interest, and is presented in the most at tractive manner.
L'Annee Electrique ou Expose Annuel des Travaux Scientifiques, DES INVENTIONS, ET DES PRINCICITE A L'INDUSTRIE E'T AUX ARTS. Par Ph. Delahaye. Paris: Baudry
The title of this work tells its own story. The entire field of electricity, from electric light to medical electricity, is treated. It diecloses the wonderfu cellent compendium of a year's progress. While it has excellent and clear illustrations, we think that a more liberal use of the artist's pencil would have been ad-

SLIENTIFIC AMERICAN

buILDING EDITION.

JUNE NUMBER.-(No. 80.)

TABLE OF CONTÉNTS

1. Handsome plate in colors of a residence recently erected at Plainfield, N. J. Perspective views, floor plans, etc. Oscar S . Teale, arc
about $\$ 12,000$. An excellent design.
Plate in colors of a cottage erected at Bensonhurst,
Long Island, N. Y. Perspective elevations and Long Island, N. Y. Perspective elevations and
floor plans. Cost $\$ 3,450$ complete. P. F. Higgs, floor plans. Cost $\$ 3,45$
architect, New York.
2. Engravings and floor plans of the Crescent Block of six houses erected on Golden Hill, at Bridge-
port, Conn. An excellent design. Total cost port, Conn. An excellent design. Total cost
of six houses $\$ 55,000$ complete. Messrs. Longstaff \& Hurd, architects, Bridgeport, Conn. A handsome residence at Babylon, Long Island, N. Y., recently erected for F. H. Kalbfleisch, Esq.
Cost $\$ 17,500$ complete. Two perspective views and floor plans. H. J. Hardenberg, New York architect.
3. A school house at Upper Montclair, N. J. Perspec tive view and ground plans. Cost $\$ 12,200$ comtus. Geo. W. Da Cunha, architect, New York. Perspective views of several very attractive dwellings located near New York.
suburban residence of attractive design erected at Lowerre, N. Y. Cost $\$ 2,800$ complete. Floor The St. James' Episcopal Chu The St. James' Episcopal Church at Upper Mont-
clair, N. J. A picturesque design. Cost $\$ 8,000$ clair, N.J. A picturesque design. Cost $\$ 8,00$
complete. Messrs. Lamb \& Rich, architects, New York. Perspective view and ground plan.
residence at Ludlow, N. Y. Perspective and floor plans. Cost $\$ 8,500$ complete.
4. A comfortable summer residence at Asbury Park, complete. tion at Chicago.
Sketch of the new City Hall, Philadelphia. - A magnificent structure.
Miscellanecus contents: Cork pavement. - Best case, illustrated.-The electric stair climber, il-lustrated.-The sick room temperature. - Stair builder's goods, illustrated.-Ornamental hard-
wood floors.-Large winding partition doors.The "Alberene" laundry tub.-Honse heating and ventilation.-Nolan's hot water and steam heater, illustrated.-The crushing resistance of
bricks.-An excellent motor, illustrated.-A suc-bricks.- An excellent motor, illustrated.-A suc-
cessful hot water heater, illustrated.-The lacquer tree.-A self-retaining dumb waiter, illustrated. -Architectural wood turning, illustrated.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies two hundred ordinary book pages; forming, practically, a large and splendid magazine of architrcture, richly adorned with elegant plates in colors and with fine engravings, illnstrating the most interesting
examples of Modern Architectural Construction and examples of M
The Fullness, Richness, Cheapness, and Convenience this work have won for it the Lareest Circulation of any Architec
all newsdealers.

MUNN \& CO., Publishers.
361 Broadway, New York.

Business and Persomal.

The charge for Insertion under this head is One Dollar a tine
for each insertion; about eight words to a line. Advertisements must be received at publication office as early as
Thursday morning to appear in the following week's issue

Complete Machine Shop outfts furnished. Send for
prices and list of new and second hand Machinery. W. P. Davi
U. S." metal polish. Indianapolis. Samples free. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J
6 Spindle Turret Drill Presses. A.D. Quint, Hartford,Ct mixing machinery. J. H. Day \& Co., Cincinnati, Ohio Portable and Stationary Cylinder Boring machines.

Pedrick \& Ayer, Philadelphia, Pa.
The Improved Hydraulic Jacks, Punches, and Tube
xpanders. R. Dudgeon, 24 Columbia St., New York. Screw machines, milling machines, and drill presses.
The Garvin Mach. Co., Laight and Canal Sts., New York. Centrifugal Pumps. Capacity, 100 to 40,000 gals. per
minute. All sizes in stock. IrvinVan Wie, Syracuse, N.Y. Crandall's patent packing for steam, water, and am-
monia. See adv. next week. Crandall Packing Co.
Palmyra, N. Y. Split Pulleys at Low prices, and of same strength and
ppearance as W hole Pulleys. Yocom $\&$ Son's Shaftin appearance as Whole Pulleys. Yocom \& Son's Shafting
Works, Drinker St., Philadelphia, Pa. Guild \& Garrison, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vacuum apparatus, air pump
For mining engines. J. S. Mundy, Newark, N. J.
Perforated Metals of all kinds and for all purposes,
eneral or special. Address, stating requirements, The general or special. Address, stating require
Harrington $\&$ King Perforating Co., Chicago.

The best book for electricians and beginners in elec ricity is "Experimental Science,"by Geo. M. Hopkin Canning machinery outfits complete, oil burners for soldering, air pumps, can wipers, can testers, labeling
machines. Presses and dies. Burt Mg. Co., Rochester

What do you want to buy? We will send without cost o you, catalogues, price lists, and information concerning anything you wish. Paret, Willey \& Co., 265 Broad-
way, New York.
Competent persons who desire agencies for a new
popular book. of ready sale, with handsome proftit, may apply to Munn \& Co., Scientific American office, 361
Broadway, New York. G. D. Hiscox, 361 Broad way, N. Y.. consultingenginee
Hydraulics, pneumatics, steam appliances, heating an ventilation, artesian and driven wells, tramw
conveying machinery, mill and factory plants.
Send for new and complete catalogue of Scientif nd other Books for sale by Munn \& Co., 361 Broadwa,

HINTS TO CORRESPONDENTS
ames and Address must accompany. all letters,
or no attention will be paid thereto. This is for our
 be repeated; correspondents will bear in mind that
some answers require not a little research, and,
though we endeavor to reply to all either by letter
or in this department, each must or in this department. each must take his turn.
pecial Writen Information on matters
personal rather than general interest cannot expected withour tremuneration.
Scientific Ammerican Suppplements referr
tomay be had at the office. Price 10 cents each.
Books referred to promptly supplied on receipt
price.
marals sent for examination should be distinctly
marked labed.
Index of Notes and Queries.
Boilers, heating, to preserve
Combustion, spontaneous...
 Dynamo and motor co
Eloctropoion solution.
Heating Eloctropo
Heating.
Injector.
In
(4370) T. R. asks : In a dynamo made of the field magnet of Parkhurst motor and drum arm-
ature $41 / 2$ inches long, $11 / 2$ inches diameter, wonld 250 ature $41 / 2$ inches long, $11 / 2$ inches diameter, wonld 250
feet of wire give 25 volts? By winding it with 6 layers of No. 21 wire 350 feet could be wound on; allowing 10 feet wire to a volt it would give 35 volts, and with low
eyternal resistance 10 amperes. This would give 350 watts and require about $1 / 2$ horse power to run it, if my
calculations are correct. Is there danger of getting too calculations are correct. Is there danger of getting too
much wire on and requiring too much power to run it $?$ Could nut resistance be introduced and thus
decrease the power required? How many ampere decrease the power required ? How many ampere
turns does this field magnet need to magnetize it
fully A. Parkhurst, who has kindly furnished the reply, given below. Although an abstract of the reply would probably answer the purpose, we print it in full to show
that it is not always an easy matter to furnish a reply to an apparently simple question.-ED.] Referring to your correspondent's query, I would say that I have
worked out the winding with No. 21 wire for the dynamo in question, and I have not the time now for a complete solution of the question. But I can say at once that even granted that No. 21 wire can be
wound eo as to give 35 volts E. M. F., the carrying capacity of the wire entirely precludes the idea of ever taking out more than 4 amperes as a maximum current.
Even this is beyond limit of ordinary safety, and anyEven this is beyond limit of ordinary safety, and any-
thing more would probably heat the wire of the armature so much as to burn it up, or at least destroy the sible to put upon the armature is 8 turns per layer per sible to put upon the armature is 8 turns per layer per
coil, with 12 coils, each 3 layers deep (and it would be a
tight squeeze to get on 3 layers per coil on core $11 / 8$ inch diameter and not exceed $11 /$ inch for diameter of fin rmature, and this would come somewhere between 300 nd 350 feet of wire, the uncertain factor of waste length in the heads not being readily determined except b winding. Of this length of wire, whatever it might be here would only be about 225 feet not connecting the heads, and of this there would only be about 75 per cent active, or about 170 feet of active wire, or about
85 feet active in each half of the armature. By driving 85 feet active in each half of the armature. By driving
it fast enough this might and probably would penetrate 35 volts E. M. F. The armature with 350 feet No. 21 wire would have a resistance of something over one have from $2 / 3$ ohm to 1 ohm , so that the lowest resistanc
Whable is external circuit would be-
$35-8$
27
$=\frac{27}{4}=6.75$ ohms

$$
\begin{aligned}
\text { This comes from C }=4 & =\frac{\mathrm{E}}{\sum \mathrm{R}} \\
\mathrm{E}=35 & \sum \mathrm{R}=\mathrm{Rex}+\mathrm{R} a+\mathrm{R} f \\
\mathrm{Ra}=1+ & \mathrm{R} f=1
\end{aligned}
$$

$$
=\frac{35}{\operatorname{Rex}+2}
$$

This would only give 140 watts; and assuming that the dynamo is working at 70 per cent efficiency-as high a
rate as can be assumed-this would call for about 200 rate as can be assumed-this would call for abont 200
watts as the actual work expended, or something over 4 horse power. The armature is small in diameter an
pretty stiff. Mechanically, it probably can stan 6,000 revolutions per minute, and it would have to tur something like that rate to generate 35 volts E. M. F. The area of magnet limb 18 only about 2 square inches. Allowing 40,000 lnes of force per square inch, and not
deducting for leakage, 80,000 lines of force for each deducting for leakage, 80,000 lines of force for each
magnet is all that can he counted on, or 160,000 lines of orce for the field (with no leakage). To generate 35 volts E. M. F. 35×10^{8} lines of force must be cut per minute and since there are about 225 active turns of wire, and 60,000 lines of force, in the field, there will be $225 \times$ 160,000 lines of force cut in each revolution, or the
3500000000 $\longdiv { 3 6 0 0 0 0 0 0 }$
5 volts E , or 5820 revolutions per minute, to generate 5 volts E. M. F. This is only about 40 feet per minut or the outside wire of the armature, a speed not unusual
in fact general, in large machines. No. 16 wire for the ield can carry 4 amperes of current safely. Allowing hould be got upon each magnet limb; 5 layers would herefore give 170 turns per limb, or 680 turns for the limbs, and with 4 amperes we would have 680 am ere turns per limb, or 2720 ampere turns in all, which would probably be enough for the purpose. This eld winding than called for, but not enough to make very much difference. The above calculations are only roughly approximate, for as I said above, I have not time to go into the matter in all its detail. They may
serve however to show that the machine in question ould not under any very probabic circumences ev run up to more than $1 / 4$ horse power, and if it ran to
much over $1 / 8$ horse power, I would be rather sur(4371) N. W. B. asks: 1. An electric notor that takes 110 volits 3 amperes current to run at its full capacity is run as a dynamo; will wire will it take to
output? A. Nearly. 2. How much wither make an induction coil to get one thousand volts, No.
32 wire, worked by 2 cells Bunsen battery? A. Consalt Supplement, No. 160, for this information. 3. In winding an induction coil does it make any difference if the wire is not wound in even layers near the
primary coil? A. The wire should be wound as compactly as possibe.. 4. Is it essential that you should be 5. In asking you questions in reyard to patents, if they are worth patenting or not, do you charge anything for the desired information? If so, how much? A. We give our opinion free of charge. 6. I was testing an electric
bell iron frame. If I took hold of the bell with one hand, and the screw that makes the connections with he other one, I received a shock. What was the caus of it 9 Had about 4 volts, 2 cells plunging battery. A
The shock was due to the induced or extra current generated during the discharge of the bell magnet. Which is the cheapest-to buy an induction coil, say 1,000 volts, or to make one? A. It is probably cheaper
to purchase. 8. In making induction coils with more than one electrode, how do you do it-by winding as
many wires on it as you want electrodes? A. The many wires on it as you want electrodes? A.
binding posts are connected with the winding at differ ent points, so as to include different lengths of the se there any danger of burning the armature out- 100 volts 3 amperes? A. Yes, there is danger of burning out the
armature unless the wire is of sufficient size to carry armature u
the current.
(4372) E. B. A. asks : 1. What is formula or the solution in the porous cup in the Bunsen cell? water. To this slowly add one-fifth its weight of commercial sulphuric acic. 2. What is the internal resistance of the Daniell cell? A. About 3 ohms. 3. Is there
any local action in either of the above cells when in use? How strong a current will each of these cells give? Is the number of Supplement named giving the directions to make an induction coil for medical purposes? A. There is very little local action in a Daniell battery, more in the Bunsen battery. The Daniell battery has an electromotive force of $1 \cdot 07$ volts, and the Bunsen about 2 volts. The current from either is dedivided by the resistance equals the current. $\frac{\mathrm{E}}{\mathrm{R}}=\mathrm{C}$. Induction coil is described in Supplement, No. 569 . (4373) C. W. O. asks : 1. How can I get mercury from the stuff on looking glasses ? A. Scrape
off and boil with a little hydrochloric acid and water. If the mirror is coated with amalgam, this will remove the tin. 2. If I make a Trouve battery such as is de
scribed in Notes and Queries No. 3395 (September 26 scribed in Notes and Queries No. 3395 (September 26 ,
1891), with plates 3 inches in diameter, how many such
pairs will be required to give 90 watts through zero ex-
ternal resistance 9 A. We have no exact figures a very large num ? We have no exact figures, but not adapted for high power currents. 3. Is copper 1-100 inch thick, thick enough? A. Yes. 4. Which wear out-zinc or copper? A. The zinc. 5. What is the re distance of motor described in Supplement, No. 641 A. About 3 ohms. 6. What number of feet of coppe wire will it take to give a resistance of 1 ohm of each
size given ? $12,13,14,15,25,26,27,28,29,31,33,34$ size given ? 12, 13, 14, 15, 25, 26, 27, 28, 29, 31, 33, 34,
35, A. W. G. A. 615, 488, 386, 306, 30, 24, 19, 15, 12, 74, 2•9
(4374) W. W. asks: Which is the more economical for heating purposes, hot water or steam? when idle, when full of water or when empty? Please name some good work on drawing machinery in perspective. A. Hot water circulation for heating buildings and dwellings is the most economical in fuel when the plans favor its proper arrangement. The economy consists in the grading of the fire in moderate weather so that all the pipe circulation may have any desired tem heating by steam a constant and full fre must be kept heat all times or no steam is generated. This applies to low pressure heating. Boilers should al ways be laid up or summer, full of water that has been boiled by filling the boiler and drawing the fire. Empty boilers rust.
We recommend "Drawing for Machinists and Engi. We recommend "Drawing for Machinists and Engi-
neers," by Davidson, $\$ 2$; " Practical Perspective," by Davidson, $\$ 1.50$; and "Orthographical and Isometrica Davidson, \$1, mailed.
(4375) J. G. S. asks: Will hay or straw when packed in large quantities and in a damp condion cause spontaneous combnstion? A. Yes; heating massing large quantities of hay or straw in such a wa that the air will feed the oxidation following the heat of fermentation. This does not apply to ensilage which must be done in tanks or ground recesses that are airtight at the bottom and sides, so as to hold the carbonic acid gas generated by fermentation, which in urn remains in the tanks by its weight and which
${ }^{\text {(4376) }}$ C. L. D. asks : 1. Could a yacht of 140 horse power, burning $31 / 4$ pounds of coal per horse power per hour, be run any more economically by needed for A. No. 2. How much rory to above amount of horse power for four days 9 A. It re-
quires about 8 cells for a horse power, and for a co quires about 8 cells for a horse power, and for a con-
tinuous run one charge will last about 6 or 8 hours, tinuous run one charge will last about 6 or 8 hours,
working at full capacity. The cells will average about one-half of a cubic foot each. 3. Has conl ever been turned directly into electricity in a battery? A. The earest approach
(4377) A. H. N. writes: 1. I have use of about No. 16 magnet wire; said coil is. 5 have a coil 6 layers carefully wound in glue on a dry hardwood spool the shell of which is $1 / 3$ thick, the end flanges or collars 14 thick. Would it mprove this coil as a magetizer to wind on a pound or so of very fine wire A. The fine wire would not improve a coil for this pur it more efficient with a euitable current. 2. Would it answer for an induction coil, and by removing vibrator and core, and changing connections direct to terminals of primary coil, be suitable for making strong permanent magnets 6 or 8 inches long by $3 / 6$ to $3 / 4$ size of hole A. Six layers of wire is more than is necessary for the primary wire of an induction coil. However, if you were could magnetize with it, but not as successfully as you could with a coil having a larger number of convolutions of No. 16 wire. 3. Is an induction coil and a coil or making permanent magnets practical as a combina-
(4378)
(4378) E. N. asks how to make hydro Hydroquinone No. Sodium sulphite e. p........................ 64 gr.
Water............................ 1 oz.

Water
Use less of No. 2 if it works too fast, 2 . How can
ye prints a black tone? A

Chloride of gold... 2.
Water............. 1 gr .
Mix equal parts. 1 grain of gold will tone a sheet
(4379) T. B. H. asks: Does a curved ball really change its course in the air or is it only deception of the eye? A. Yes; there is no doubt as to
a curve or deflection being made from the line of proa curve or deflection being made from the line of pro-
jection by the peculiar twirl given to the ball as it leaves jection by the peculiar twirl given to the ball as it leaves
the hand. See a full discussion of the subject, with oos. 402, 410, 423, on base ball science.
(4380) W. B. asks for a good formula or coating paper with a chloride gelatine emulsion fo paper. A. Scientific American Supplement. No 276, for full directions. 2. Please name a good treatise on the manufacture of gun cotton or pyroxilin. A
(4381) Subscriber, Vernon, Texas.-The
insect is one of the plant lice. It belongs to the genu
(4382) M. M. says: I was much inter-
vorks. When theinjector (or inspirator) is in opera-
ton under high pressure of steam, and the overflow valve is opened, allowing part of water to enter boiler nd part to return to well, why don't the water rush out with great force, as there is an opening to interior boiler through check valve? In balancing a cylinder, how can I tell whether both ends are balanced alike? Is there any rotary steam engine in successful operation, nd where? What is the greatest difficulty to overcome to make a rotary compete with a reciprocating steam engine $?$ A. There is a elignt contraction in
the stream as it passes between the delivery nozzle and he receiving nozzle, and when they are exactly proportioned and adjusted to prevent scattering and over-
flow, except when starting; the stream not only enw, the with it. The check valve shuts off all flow from the boiler and only opens when the impact from the jet becomes greater than the boiler pressure. In balancing
revolving cylinders place one journal in a box held by easy springs, or in an easy-sliding box, or suspended box, and revolve the cylinder or drum by an attachment on the shaft at the solid box end. By revolving at about its proposed speed, the journal in the elastic box will wabble and a piece of chalk held against the end of the cylinder will mark the light side. When one nd is balanced, reverse the cylinder and balance the We know of very few rotary engines in use, and those not on a large scale. They suit many special wants, but have not yet been brought to match the economy and ease of repair and care of the best reciprocating
(4383) J. S. McD. asks the best method diators of during summer months, the pipes and raer to ke should they be kept empty when not in use? Please give me the best plan to preserve pipes, radiators and ing apparatus should be laid up for the summer full of water, the same that has been circulating, as such water contains no air, and the boiler and pipes will not rust in water from which all the air has been discharged. If the water has been long in use, and it is desirable to clean out by drawing off, the new water should be heated and a hot circulation made before laying up for oughly cleaned and the draught entirely closed to pre vent sweating by changes of weather during the summer. Empty boilers and pipes rust very fast, as the inside cannot be made thoroughly dry.
(4384) A.W.T. asks (1) how ordinary tack A. By passing them through an excited helix ; the hammers being made of hard iron, or case-hardened, retain the magnetism. 2. What kind of metal is most easily magnetized? A. Very soft wrought iron is most easily magnetized, but it does not retain its magnetism. ou can permanently magnetize hardened steel or case-
hardened cast iron. 3. I can magnetize the blades of my pocket knife with a horse shoe magnet but I have a steel tack hammer that J cannot magnetize with the magnet. Why is it ? A. Possibly your steel ; tack hammer is too soft, or it may be too hard, or possi-
bly your magnet is too small to charge the hammer
(4385) T. H. B. writes: 1. In regard to torage battery described in Scientific american Supplement, No. 845, can it be formed with a gravity battery? A. Yes, by giving it plenty of time, say one (6×8). A. 4 or 8 cells. 3. How should the gravity celle be connected-in series or parallel? A. They should be connected so as to give an E.M.F. of $2 \not / 4$ volts. 4. How long should the current be allowed to flow before re
(4386) W H asks .
(4386) W. H. asks: Can you inform me The "bird's eye "and "curled" "maple are accidental growths of the sugar maple, acer saccharinum. It is
native through all the Northern States and west to Eastern Minnesota Nebraska and Kansas, and southerly and Western Florida. It is elightly reduced in size toward the limits of growth; it reaches its greatest de velopment in the States bordering the great lakes.
(4387) J. A. B. says: In making a what keeps it flowing? Again, I take the tube and fill it with water and start it flowing. What starts it, and what keeps it flowing? A. The principle of the columns of water which are sustained in the bent tube by the pressure of the atmosphere. In whatever way you deprive the siphon of its air the water follows, and
when full will run by gravity toward the lowest level when full wilh run by gravity oward he lowest leve
with the velocity due to the difference in level less the friction of the pipe. See Scientifio Ame plement, No. 793, on siphons, illustrated.
(4388) A. H. S. asks: In what propor ion should the ingredients of a tar and gravel roof be be spread with the trowel when hot. Cannot give the parts, as gravel differs in kind and fineness. Use tar
that is nearly hard when cold. The gravel should be made hot before mixing with the hot tar. The surfac ould be sanded as soon as ibe mixture is spread
(4389) C. N. asks : Can a circle be de scribed so as to make any three given points the termin
 each, and draw a line tit right polles from abch bi section. The point of meeting of the lines will be the common center of a circle passing through the thre
(4390) A. M. asks : Where is the proper position for the steam dome on a horizontal boiler
Does it make any material difference where it is placed n regard to danger of explosion? A. The number o sheet sections in a boiler generally determines the po-
sition of the dome. The center of the boiler is the
proper place, so that it may gather the steam with equal
facility from both ends of the boiler. When there are facility from both ends of the boiler. When there ar although there are exceptions to this in practice dim although there are exceptions to this in practice. With
two sections the usual practice, and we think the pro per one, is to put the dome on the front section.
(4391) G. T. R. asks : 1. Where do baloonists get the hydrogen to inflate the balloons, or how do they produce iti? A. Street gas is generally
used. Hydrogen can be made by passing steam ove white-hot iron borings and scrap. 2. When petroleum is burned there is great smoke. Is there any materia containing oxygen which, if burned with it, would resill in consuming this smoke (or unconsumed carho known. Proper revented. A. No such sabstance raught are the proper lines to work, on smon consuming. 3. Would black manganese, if heated evolve oxygen? A. Yes, if heated high enough.
(4392) L. H. D. asks: If a sheet iron rmature core be used for simple motor, as in Supple ENT, No. 641, would it give satisfactory
(4393) E. J. K. asks : 1. What is the ex iting fluid used in the Crowfoot gravity battery wit aturated solution of copper sulphate, 2. I am makit wo cells of storage battery, each cell containing tw lead plates 6×8 inches; can I form the cells and after ward charge them with Crowfoot gravity batteries if not, could it be done by covering them with red lea a. You can form your seconaary plates and charge them with the gravity batteries. It is advan Will the two cells run motor in Supplement lead. f not, how many will it take? A. The two cells of bat erry described by you will have a very small capacity wing to the small number of plates. Yon should ave 7 or 9 plates in each cell.
(4394) H. L. asks : 1. Is plaster of Paris, after belleg moulded and dried, porsus, so as to allow 2. Is there a mixture the uature of plaster of Paris hat after being dried no air can penetrate it? If there nont A. Probably the oxychloride of zinc ce a air, but you can saturate the plaster with gelatine hellac varnish or paraffine, thus rendering it non porous. 3. Is a note collectable which reads: Ten days ter death I promise to pay, etc., provided afte death the estate is valued a
(4395) J. T. D. writes : Please explain he action of the Bourdon tube, used by Trouve in his aviator, illustrated on page 105, current volume of the Scientific American. I cannot understand why its branches recede from or approach each other as the pressure of the contained gas is increased or decreased.
A. The Bourdon tube has an elliptical cross section, so A. The Bourd on tube has an elliptical cross section, so o approach a figure of circular crose section; in so doing, the inner surface of the tube is forced inwardly coward the center of curvature. As the inner wall of the tube is confined in the direction of its length by the outer wall, the pressure which renders the inner wall exity or curvature in a lorgitudinal direction and hus tends to straighten the tube
(4396) G. M. V. asks: How many volts, as? A. The E. M. F ef a Its resistance depends upon the solution and the condition of the battery, from $1 / 4$ of an ohm upward. The current depends upon the resistance of the battery and of the external circuit. It is calculated according to Ohm's law, which is $\frac{\mathrm{E}}{\mathrm{R}}=$
(4397) Amateur asks for directions for making a dry battery, and how to charge same, or if Gassner's dry battery we refer you to Supplement No. 792.
(4398) C. L. asks : Is it a fact that light ing rods have the power, to any extent, of protecting properly put up and grounded is undoubtedly a pro ection against lightning.
(4399) M. T. asks : If a surveyor was unning an old line, that the call was north, and the me had been long enough to require two degrees variarun N. 2 W . or N. 2 E. to hit the old line? Out here in this portion of Virginia does the needle of a compass vary to the east or west, and aboul how many years does the line of no variation, as it is called, wo oess the end of needle pointing north, if it is east of iation, tend to travel to the west, and west of it does it tend to the east? A. The variation ast in 1870, and has been decreasing at was about 2° bout 3 ind and has been decreasing at the rate of dicted variation for 1892 sor your that time. The pretenths of a degree east. As the variation of the needt travels west, the amoant of variation known since ormer line was run must be added to the east reading and subtracted from the west reading from the north end of the needle for tracing the old line on northern courses, and the reverse for southern courses. The or end of needle always travels to the west by or east of the line of no variation, which is now west near your county, its amount there being somewhat un certain from local influence due to monntain regions-
(4400) G. F. C., Plaquemine, La., asks : What is meant by the figures, the river is 35 feet, a rise
of 0.2 of a foot, and stands 1.7 feet below the flood line f 1890 , or the gauge reads 16.6 feet, or the rise is 0.15 of foot? I read this daily in the river news columns of our newspapers, and will be very glad if you will explain how it reads in parts of feet or inches, as there as
a dispute about it. A. The datum of river gauges is at
ow-water mark. The published readings of the helght low-water mark. The published readings of the helght
of water are in feet and tenths above low-water mark. foot. Thus: 0.2 is 2 inches and 4 tenthe of an inch and $\cdot 7$ is 1 foot 84 inches. Also 0.15 is 1 inch and of
(4401) O. F. H. asks: 1. Which will he most work according to weight, the steam engine or the electric motor including with both all acces sories? A. As the electric motor is not a prime motor, you will be obliged to inclade the weight of the prime over in making your estimate. This being the case, ectric motor with ite prime mover. If the prime mover is disregarded the elime mic much lees than a steam engine of the some weigh Which will produce the most power in a given hort time according to weight-the primary or
R. Bros. \& Co. ask how to make ambergris extract. C. T. L. asks for a receipt for rice soap.-R. N. C. wants O know the antidotes for the principal poisons.- H . W. J. asks how hair washes are made.-P. W. S. wants
to know how to bend glass tubes.-E. C. W. asks how o make the powders for a gasogene.-B. D. L. asks how to renovate oil cloths.-F. U. G. asks how to make gelatine sheets.-J. C. O'B. wants to know how to repair books.-C. H. H. asks how to make the composition for carton pierre ornaments.-E. W. S. wants to know how to make resin for violin bows.-A. E. N. H. asks for inter water for drinking purposes.--G. G. how sand blast engraving is done
Answers to all of the above queries will be found in ne "Scientific American Cyclopedia of Receipts, Note The advertisement of this book is printed in another column.

TO INVENTORS.

An experience of forty years, and the preparation of
nore than one hundred thousand applications for pa-
ents at home and abroad, ensble

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted

May 24, 1892
s

$\stackrel{A}{A}$
$\begin{aligned} & \text { Arch } \\ & \text { Artom } \\ & \text { Am } \\ & \text { Auto }\end{aligned}$
Auto

Auto
Bank
Base
Bate
Bate

Newspaper holder and door plate, combined, \mathbf{H}.
Numbetzing and mari ing machine., J." D. Hüm-

Planter and fertilizer distributer, potaio, j:
Planter, potato, F, Robi nson...
Plow, Jackson \& R
Plow, sulky, ${ }^{\text {che }}$ E. T
w, sweep,
conter, E. C. Heydenreich

 TRADE MARKS

 Cortan fees.ary purposes, preparation or, E. C

purter, A. п. Li. Lemid

 Remadies for Aleogonish morphine. opium, and

DESIGNS.

A printed copo of the spocification and dramingot

Canadian nutents may now be obatanad by the in

T. A. C. . .

 THOMAS ALVA EDISON. - A BIO

Confroumitr
 FELT \& TARRANT MFG. 00
$62-66$ Illinois St WOOD WORKING MACHINERY For Veneer, Fruit Package and Barrel Works.
I. E. Merritt Machin, spoke and Turning Factoriess
Ina., Lockport, N. Y: MODELS ANO CEARS

DIXON'S SILICA GRAPHITE WITHAINT

~ $\mathrm{T}_{\text {The }}$ Uorld's MIINGG

YMCHNGG: KENCELDSE,

 birersof hoathru pastime and 33.00 per Year sample, 2 mentioninis tensus apaper apy. OUTiNG COMPANY, LTD
 ARTIFICIAL SAND.

SYLPH CYCLES RUN EASY

SEND FOR LIST, Cloanng out Maching ston Toill

The Ogden Mills of the New Jersey and Pensylvania
Concentrating Works are prepared to frimish OneThou
 THOMAS A. EDISON, Ogdensburg, N. J.

ARTIFICIAL INCUBATION.-A DE-

 VENTILATING FANS TUERK WATER METER CO., FULTON, N.

ELECTRIC POWER APPARATUS, FOR EVERY VARIETY OF MEOHANIOAL WORK
SAFE, SURE, RELIABLE.

estimates furnished. Send for catal

THOMSON-HOUSTON MOTOR CO.,
620 ATLANTIC AVENUE, BOSTON, MASS
have you read
Experimental

RAILWAY \& STEAM FITTERS SUPPLIES Rue's Litule Giant Injector. SCREW JACES, sTURTEVANT BLOWERS. \&C. Pus men
 ROSE POLYTECHNIC INSTITUTE.

Over roo pages: 680 fine cuts; substantially and
beautifully bound. MUNN \& CO., Publishers, Office of the SCIENTIFublishers,
361 BROADWAY, NEW YMERICAN

 ROCK BREAKERS AND ORE CRUSHERS

BUILDERS OF HIGH GRADE BOATS.
 SEND 10c. FOR COMPLETE CATALOGUE. davis boat and oar co., detroit, mich., U. S. a.

THE AC'PION OF HEAT FROM OPEN

 E. Konipsow, manufacturer of Fine Machiner
and Moders. offers speciau Facilities to Invent
ors. Guarantees to work out ideas in strictest secrec not any improwement thart he can suqgest qoes with the
Thansonds of men have crude though reall val
nable ideas, which they lack mechanical training to de y contract. 181 seneca St., Cleveland. Ohio.

MAKE YOUR ICE, Etction bite appanatu in
NOW READY!
A NEW AND VALUABLE BOOK.

12,000 Receipts. 680 Pages. Price $\$ 5$.
This splendid work contains a careful compila-
tion of the most useful Receipts and Heplies given
in the Notes and Quer lished in the scientific American during the mportant additions. are here collected; nearly every branch of the use
ful arts being represented. It it by far the most
comprehensive volume of the kind ever placed be The work may be regarded as the product of the
studies and pratcical experience of the ablest chem-
ists and workers in all sts and ranged and condensed in concise form convenien r ready use
Almost every inquiry that can be thought of
relating to formulæ used in the various manufac uring industries, will here be found answered.
Instructions for working many different pro cesses in the arts are given. so extensive a work.
Under the head of Paper we have nearly 250 receipts, embracing how to make pape nearier maché, ; ; ow
to malse paper water proof and tire proof ; how transfer paper, carbon paper, parchment paper
colored papers, razorstrop paper, paper for ooin
up cutlery, silverware; how to make luminoua ap cutlery, silverware; now
pnder photograph papers. ete.
Unake head of Inks we have nearly 450 ceipts, including the finest and best writing inks
of all colors, drawing inks, luminous inks, invisi ble inks, gold, silver and bronze inks, white inks.
directions for removal of inks; restoration of
faded Under the head of Allors over 700 receipts are
given, covering a vast a mount of valuable infornclude almost we have some 600 receipts, which How to make Rubber Stamps forms the subject
of a most valuable practical article in which the of a most racuabse is described in such clear and ex-
complete proct
plicit terms that any intelligent person may readily Farn the art. Fors there are 120 receipts: Electro-Me tallurgy, 125 receipts; Bronzing, 127 receipts; Pho-
tography and Microscopy are represented by 600 Undracing practical of direching there are for the production of engravings and printing plates of drawings.
Paints, Pigments and Varnishes funnish ov ing on those subjects. Under the head of Cleansing over 500 recipes the removal of spots and stains from all sorts cleaning furniture, clothing, leachis, leather, metalas,
and the restoration and preservation of all kinds nd the restoration and \mathbf{p}
objects and materials.
re given.
Soaps have nearly 300 receipts.
probably will find in this book much that is of
Those who are in search of independent busine or employment, relating to the home manufacture
of sample articles, will find in it hundreds of most

MUNN \& CO., Publishers, SCIENTIFIC AMERICAN OFFICE,
$\mathbf{3 6 1}$ Broadway, New

aAfter being on the Market Six Years The ${ }^{61}$ A CM E E^{27} Still Leads!
 roceester machine tool woris. brown's Race, roceester, n. y. OIL WELL SUPPLY CO. |GATES ROCK \& ORE BREAKER
 Has

 Machnerys send to Catalagres 136 Co. Liberty Street., New Yor
237 C, Franklin Ste, Boston, Mass

STEEL TYPE FOR TYPEWRITERS

DEAFNESS \& HEAD HOISES CURED

MALLEABLE

COLOR IN PHOTOGRAPHY.-AN IN

 $\underset{\substack{\text { win } \\ \text { sen }}}{\substack{\text { and }}}$ THE MAN OF SCIENCE : HIS ME
 been and is to be done by the scientist. Contained in
SCIENTIFIC AMERICAN SUPPLKMENT, No. \&35. Price
10 cents To be had at this office and from ail news-
dealers.

CIARIE'S

WARP DYEING AND SIZING, MACHINES, POWER WRINGERS FOR HOSIERY AND DRYING AND VENTILATING FANS, CEO. Patalogues freA R K Box

BIT

HARRISON CONVEYOR!

Steam! Steam!

 2-Horse Eureka Boixter and Engine, - \$175 B. W. PAYNE \& SONS, Drawer 56.QUARRYING.-A PAPER BY MR. W.

Have you a Thought That you want to make work? The way work) is to put it into a machit won't have a shop on purpose. Will send a primer first.

SCIENTIFIC AMERICAN SUPPLEMENT. Any desired back number of the SClENTIF 10 cents. A
the country

PATENT RIGHTS, Stocks, and Bonds handled on
commissin by The Central Business Exehane,
Broad St., Newark, N. J. G. F. Kingeton, Proprietor.

MAGNETISM-A PAPER BY B. S. Giles. piving a resume of the work which recent experi-
nentalists have done, and dosuskin the theories that
have been advanced to accunt for the phenomena ob.

CILULODD ZAPON

PROPDSAL.

Col. of Engineers.
 The BILLINGS \& SPENCER CO., Hartford, Conn. VOLNEY W. MASON \& CU. FRICTION PULLEPS CLUTCHES and ELEVATORS PIROVIDENCE. 1R. I.
HETHERINGTON MAGAZINE CAMERA.

JOHN T. FIELD \& CO., REAL ESTATE INVESTMENT ACEENCY,

 River with the vast expanse of the oceans-places the
city in touch int hall the inhabitants of the gobe Rew
material of ail kinds and in inexhaustibl quantities is
obtainable within easy reach of St. Louis. We shall be obtainable within easy reach of St. Louis. We shall be
pleased to furnish any desired information on applica JOHN T. FIELD \& CO.

ARTISTS WHO GET RICH
 1 Nand AIR BRUSH MFC. CO.

BARNES

?New Frictiondisk Dril FOR LIGHT WORK. Has these Great Adrantages: The
speed can be instantly changed romio to 1600 without stopping or
shifting belts. Powerapplied can
be gracuated to drive will arills within smallest or range-a largest
ful economint in tine and great
saving in drill bread Send for catalogue.
W. F. \& JNO. BARNES CO. W. F. \& JNO. BARNES CO. THATENTS! In this line of business they have had fonty-five years

 We also send, free of charge, a Synopsis of Foreign Pa-
tent Laws showing the oost and met tod of seur
Patents inall the principal countries of the worla. MUNN \& CO.. Solicitors of Patents.

Drdoertisements.

Iuside Page, each insertion --75 cents a line Back Page, each insertion -- 81.00 a line
 Victors

OVERMAN WHEEL CO. A. G. SPALDING \& BROS., Special Agents,

DOU © whr Mr Motor of the 199th CCnitiry

STOP BOIOR

 THE VAN AUKEN STEAM SPECIALTY CO.,

CHICAGO.

8)

 THEAMERGANBRHLTETHRHONE CO 95 MILK ST., BOSTON, MASS. This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders eact ed by it or its licensees responsible for such unlawtul use, and all the consequence thereof, and liable to suit therefor.
 Simplest and most economic
engines on earth.
Fully Guaranteed. A boy starts it, requires only a
few minutes' attention a day
at
 We ber Gas Engine Works, hansas city, mo.

BUSINESS
 Bicy ycle Dealer:-A bicycle will be better or you than a horse. IIt doesn't eat anything. int give me cago Tribune.
 The moral is yours - so's a Columbia bicycle-Business men, the Pope Mfg. Co. offer you health and ha piness, clear headedness, reno.ed money-making brains-2 Columbus Ave., Boston.

Regular Junior Daylight Ordinary

Latest improvements, registers for ex posures; glass plate attachments; daylight loading, etc., etc. Sena for catalogue. THE EASTMAN COMPANY,

Rocensmra, , v. x.

THE SMITH PREMIER TYPEWRITER

important lmprovements. Alt
The Most Durabe Essential Features greatly perfected.

Try R AVESTELEVATORS, ELECTRO VAPOR ENGINE. GAS OR GASOLINE FOR FUEL. NO BOILER. NO FIKE. NO DANGER. NO ENGINEER.

Engine operated by spark
from small battery.

THOMAS KANE \& CO., CHICAGO, ILL

ESTA BIISHED 1846. The Most Popular Scientific Paper in the World
Only $\underset{\text { W.eekly }}{83.00}$ a \mathbf{Y} Nar, Including Postage. This widely circulat ted and splendidyly illustrated
paper is published weekly. Every number contains sixeen pages of useful information and a largenumber of original engravings of new inventions and discoveries,
representing Engineering Works. Steam Machinery representing Engineering Works. Steam Machinery.
New Inventions, Novelties in Mechanics, Manufactures. Chemistry. Electricity, Telegraphy. Photography, Architecture, Agriculture. Horticulture, Natural History.
etc. Complete list of patents each week. etc. Complete list of patents each week.
Terms of Subscription. - One copy tipic American will be sent for one year-52 postage prepaid, to any subscriber in the United States, Canada, or Mexico. on receipt of three dollars by the
publishers: six months, $\$ 1.50$: three months. $\$ 1.00$. Clubs.-Special rates for several names, and to Masters. Write for particulars. The safest way to remit is by Postal Order, Draft. or
Express Money Order. Money carefully placed inside Express Money Order. Money carefuly placed inside
of envelopes, securely sealed, and correctly addressed, of envelopes, securely sealed, and correctly addressed,
seldom goees astray, but is at the sender' risk. Address
all letters and make all orders, drafts, etc... payable to MUNN \& CO., 361 Broadway, New York. §rientific Ammerican §upplement This is a separate and distinct publication from THE
SCIENTIFIC AMERICAN. but is uniform therewith in size. every number containing sixteen large pages full of engravings, many of which are taken from foreign papers and accompanied with translated descriptions. THE
SCIENTIFIC AMERICAN SUPPLEMENT is published week1 y , and includes a very wide range of contents. It presents the most recent papers by eminent writers Ual
the principal departments of Science and the Usefu Arts, embracing Biology, Geology. Mineralogy. Natural
History, Geography, Archæology, Astronomy ChemisHistory, Geography, Archæology, Astronomy Chemis-
try, Electricity, Light, Heat, Mechanical Engineering. Steam and Railway Engineering, Mining. Ship Building. Marine Engineering, Photography. Technology. Manufacturing Industries, Sanitary Engineering. Agriculture.
Horticulture, Domestic Economy Biography, Medicine Horticulture. Domestic Economy Biography, Medicine.
etc. A vast amount of fresh and valuable information obtainable in no other publication.
The most inpurtant Engineering Works, Mechanisms. ed in the Supplement
Price for the SUPPlement for the United States and
Canada, 85.00 a year; or one copy of the SCIENTIFIC AM ERICAN and one Copy of the SUPPLEMENT, both mailed remit by postalorder, express money order, or check MUNN \& CO., 361 Broadway, New Yorls, Publishers Scientific American

Foulding cedition.

The Scientific american Architects' and Buliders' Edition is issued monthly. $\$ 2.50$ a year.
Single copies, 2 cents. Forty large quarto pages, equal to about two hundred ordinary book pages: forming large and splendid Magazine of Architecture, richly adorned with elegant plates in colors, and with other fine
engravings; illustrating the most interesting examples of modern architectural construction and allied subjects. A special feature is the presentation in each number
of a variety of the latest and best plans for private restof a variety of the latest and best plans for private rest-
dences, city and country, including those of very moderate cost as well as the more expensive. Drawings in perspective and in color are given, together with ful Plans, Speciffcations, Sheets of Details. Estimates, etc.
The elegance and eheapness of this magnifcent work have won for it the Largest Circulation of any Architectural publication in the world. Sold by all newsdealers. \$2.50 a year. Remit to

MUNN \& CO... Publishers,

PRINTING INKS

[^0]: *Report National Museum for 1888-89, p, 609, 1891.
 \dagger L. Stejneger, Am. Nat., x xi., p. 1047, 1887.
 \ddagger Am. Nat.. xxiii., p. 1039, 1889.

