

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

PURDUE UNIVERSITY, LAFAYETTE, IND.-THE ENGINEERING, ELECTRICAL, AND MECHANICAL LABORATORIES,-[See page 300.]

タixntific Ammicam.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at

NO. 361 BROADWAY, NEW YORK.
o. D. MUNN. A. E. BEACH.

terms for the scientific american.

The scientific American Supplement

 Roreign countries w.

and SUPPLEMENT, $\$ 9.00$ a year. To foreign countries, 811.50 a year.
Spanish Edition of the Scientific American.

NEW YORK, SATURDAY, MAY 14, 1892.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT NO. 854.

For the Week Ending May 14, 1892.
 II. ARCHTEECTURE.-The City Hall, Philadelphia.-The larrest

 of experiments.

 x. METALLUGY-Aluminum: Its Manfacture and Uses from an

xuII. TPCHNOLOGY-P Petroleum as a F Fuel.-Possible importance

vibrations of steam vessels.

Mr. A. F. Yarrow presented recently, before the Institute of Naval Architects, a very able paper Institute of Naval Architects, a very able paper,
descriptive of a series of practical experiments which de has lately conducted, relating to the causes of vibration in screw-propelled vessels. The paper is illustrated with a number of diagrams. One of the instru ments employed to show and record the vibrations consisted of a weighted drum hung in elastic slings and operated by clockwork, with paper and a pencil, the apparatus being so arranged that the pencil was made to shake by the vibration of the vessel, but the drum and paper remained at rest. In this way the pencil was made to mark the vibrations on the paper. The experiments were made on board of a fast torpedo boat in which the engines made 248 revolutions per minute. The author found that the vibration was not due, as has been heretofore commonly believed, to the action of the propeller in the water, but is caused by the unequal balancing of the machinery-of the cranks, piston rods, cams, etc. So great was the vibration of the experimental vessel that when held fast by cables in still water, the propeller being removed and the ma chinery set in motion, the vibration of the hull was communicated to the surface of the water, and the communicated to the surface of the water, and the
waves so produced photographed. Different parts of waves so produced photographed. the of the vessel showed different degrees of vibra tion in the water; that is to say, the shake varies in intensity at different points in the length of the hull. There are places where it is excessive, and places, termed "nodes," where it does not exist. We give an illustration on next page, which is from a photograph. It shows the vibrating sections and the nodes, and the ef fect produced on the water. The vessel on which thes experiments were tried was 130 feet in length, 13 feet inches beam, $1,100 \mathrm{~h}$. p., and had a speed of from 22 to 23 knots.
Mr. Yarrow shows that by the application of bal ancing or bob weights and devices to the machinery the vibration can be very greatly reduced. The ves sel was tried under three conditions: First, without any balancing weights whatever, with engines as usually constructed; second, with balance weights on the cranks only; third, with balance weights on the cranks and with bob weights. The use of the weights effected a very great reduction in the vibration.
This subject of the vibration of small steamers re minds us of an experience we had a few years ago We were invited to witness an experiment with a steam launch for which it was claimed a velocity of 30 miles
an hour had been obtained. This launch was built at Amesbury, Mass., chiefly from English designs, and the builder pledged himself the boat had made the above time, and he would prove it to us by giving us a test of her speed. We duly attended, and the boat was put in
motion. The builder said the way he had been accustomed to test the speed was by timing from on board a watch being held in the hand and stakes on shore observed.
The boat was started with the builder at the engine, and when the highest speed was attained the watch was observed, but so terrific was the vibration that it was impossible to see the position of the pointers, and observance of the correct time by that method was out
of the question. We subsequently ascertained by a of the question. We subsequently ascertained by
stop watch and other means that the vessel could not on that occasion, at her highest speed and shortest spurt, reach 20 miles per hour. Where unusual speeds are claimed by private owners or interested parties, the tests should be conducted by reliable persons who have no interest in the result, and the precise method of taking the speed should be fully explained.

World's Fair Notes.

An effort is being made to collect $\$ 25,000$, with which to build at the exposition a headquarters for the Sun day schools of the United States. The scheme contemplates asking each school to contribute an amount equal to ten cents for each officer and teacher and one cent for each pupil.
As an illustration of the rapidity with which the work of erecting the exposition buildings is being pushed at Jackson Park, it may be stated that on
March 1 sketches were made for a building to serve March 1 sketches were made for a building to serve
as permanent accommodations for the construction bureau, the Columbian guards, emergency hospital, central fire alarm service, etc. The contract was let on April 2, and on April 30 the building was finished and occupied. The structure measures 200 by 300 feet, is put up. with most of the buildings nearingrounds now afford construction being pushed forward by more than 6,000 workmen, is accounted so interesting and wonderfu that from 1,000 to 5,000 visitors a day willingly pay the admission fee of 25 cents to witness it. Before the abo lition of the free pass system, the visitors often num bered as high as 15,000 or 20,000 . The work of con struction was interfered with, so that it was thought
of the crowd of sightseers and at the same time add to the financial resources of the exposition.
The construction of the exposition buildings is pro gressing in the most satisfactory manner, and there is no reason for doubt that all will be completed in time for dedication. The rough carpentry work is practically finished on all of the large structures except Machinery Hall and the Manufacturers' building, and on these it is in an advanced stage. Six or seven of the buildings have the exterior appearance almost of finished structures, and look like imposing marble palaces. The erection of a number of the State buildings is now progressing. Landscape gardening and other work of beautifying the grounds is being pushed by a large force of men, and sodding, walk making, and the planting of thousands of trees, shrubs, etc., is in progress.

The Ammonia Motor.
The Standard Fireless Engine Company had a run of their ammonia motor, Sunday, April 24, on Jackson Park, the World's Fair site, for the benefit of those who could not come week days. On this occasion 36 persons rode around the grounds on the motor. In our issue of January 23, we gave a description of this novel motor and its operations; but since that time improvements have been made which have decreased the cost of running the motor from $1 \frac{8}{10}$ cents pe mile, as stated in that issue, to less than one cent per mile, while adding to the smoothness of the running. The distance traversed on the construction tracks was 14 miles with two thirds of a charge. Among these present were several street railroad men and capitalists, some ladies of note and representatives of the press. This motor is a portion of an exhibit for the World's Fair of 1893, when the company will have a select location for operation in the front of the grounds terminating opposite the Administration Building.

Rapid Railroad Building.

In an article in a recent number of the Engineering Magazine, Mr. J. S. Coleman describes the process of track laying on the Texas and Pacific Railway, where as much as three miles of track were laid in one day, which is stated to be a record performance for a single force of tracklayers working from one end. The main difficulty in such performances is said to be the supply of the material. In this instance the sleepers had to be transported a distance of nearly 800 miles, and delays were therefore frequent, consequently reducing the rate of progress considerably. The arrangement of forces for laying was as follows: A tie squad in advance of all others who laid the ties. These tie were loaded in wagons and hauled by teams along the roadbed, and set and spaced under the care of the engineer who accompanied the squad. In the most rapid work this gang numbered 125. Behind the tiesetters and spacers came the iron gang, who brought with them the truck into which the rails were loaded as they advanced, the rails were taken out of the ca by twos and dropped into place on the ties. The end were then brought snug with the last rails laid and placed at the proper gauge. The car was then advanced over these rails and the process repeated until it wa empty, when it was tipped off the line to make way for a second truck and gang, who continued the work. Close behind this gang came the "strappers," who make the joints between the rails, and the first spikers who simply spiked the centers and ends of the rails to the ties, which held them securely enough for the oaded iron trucks to pass over them. These were fol lowed by the main force of spikers who finished the work, so that the material trains could deliver the ties and rails as near the working point as possible. The "lining," "surfacing," and "black filling" was done by three separate squads of men in the order named, who left the work ready for inspection.

Eye Mcasurements.

A good mechanical eye is an almost essential re quisite in a good mechanic, says the Manufacturers Gazette. No one can ever attain distinction as a me chanic unless he is able to detect ordinary imperfec tions at sight, so that he can see if things are out of plumb, out of level, out of square, and out of proper shape, and unless he can also detect disproportioned or ill-shaped patterns. This is a great mechanical attainment, and one which can be readily attained by any ordinary person. Of course there are defective eyes, as there are other defective organs; the speech, for instance, is sometimes defective, but the eye is sus eptible of the same training as any organ. The mus cles, the voice, the sense of hearing, all require trainng. Consider how the artist must train the organ of ight in order to detect the slightest imperfection in shade, color, proportion, shape, expression, etc. Not one blacksmith in five ever attains the art of hammering square, yet it is very essential in his occupation. It is simply because he allows himself to get into care less habits; a little training and care is all that is necessary for success.

Sutro's Great Mining Tunnel.

Adolph Sutro recently delivered an interesting lecure before the mining students at the University of California. In speaking of the development of the Comstock, he said :
New obstacles now developed themselves, one of which was the rapid increase of heat. As a usual thing, the increase of heat in nearly all parts of the globe amounts to one degree of Fahrenheit for every 60 feet of descent. On the Comstock the increase was more rapid, and when the mines had reached a depth of 2,000 feet, it was a common occurrence to find the thermometer in the lower drifts rise to 110 degrees and over. Such a temperature, in an atmosphere saturated with moisture, is almost unbearable, and it would often take three men to one pick ; that is to say, one man would work ten minutes or thereabout, and then retire to the cooling station, while the second man took his place, to again retire in order to make room for the third man, and so the rotation went on during eight working hours. The miners received $\$ 4$ per day. In this mode of working, a day's labor amounted to $\$ 12$. I visited Nevada for the first time in the early spring of 1860 , and, traveling over the country, saw at a glance what an advantage to the mines a tunnel would be driven into the mountain from the valley of the Carson.

Actual work on the tunnel was commenced in 1869, and it is my special object to allude to its construction and some of the obstacles encountered.
At first all the work was performed by hand labor and the progress was slow ; but as more ample means were procured, drilling machinery driven by compressed air was introduced and the advance was more rapid, amounting to an average of 300 feet per month.
and returning into the darkness from the bright sunlight the mules could not see anything and stumbled about, so a remedy was found, and that was to band age une eye before coming to daylight, which band age was removed after the mule had re-entered the tunnel, thus enabling it to see perfectly with that eye In driving the tunnel all the length of four miles many obstacles were encountered. As regards the sur veys, it was not an easy matter to keep a perfectly straight line, for sometimes observations had to be made at short distances on account of the mist, and the slight est variation in centers would throw it to one side or the other.
After the tunnel, however, was completed and the connection made with the shafts at the Comstock lode the foul and moist air was driven out within the firs 24 hours, and for the first time daylight was seen from its farther end, appearing as a small, tiny star of the fifth magnitude
If the tunnel had been driven a few miles more day light would have been lost altogether, though the opening at the mouth was quite large.
In this connection, speaking of surveying, we had nother curious experience.
Under the act of Congress the Sutro Tunnel Company was given a right to all the mines discovered for a width of 2,000 feet on each side of the tunnel for its whole length. When the time came to survey this grant, application was made to the General Land Office at Washington for the survey of those 4,000 feet The law provided that 2,000 feet should be projected at the tunnel level, but the Land Office at Washington proposed to run the lines on the surface to that width to which we objected, for a line measured 1,500 feet or 2,000 feet under ground would have a greater width
were terribly injured at different times through touch ing the wires of these exploders with their naked fingers, which caused several thousands of them to ex plode together. One man was killed outright, being penetrated with thousands of pieces of the copper which forms the exploder caps, while the other poor man lost his eyesight. This last accident occurred notwithstanding the precautions which had been taken to make the men, before entering the exploder house wet their shoes, while on the floor of the house wa placed an iron plate connecting by means of wires with the water flowing below to carry off the electricity
Then followed a graphic account of the various theories on the origin and formation of the Comstock ode, and the difficulties of mining at great depths, and how they had been overcome
The lecture concluded with a display of excellen lantern slides illustrating the lecture, which Mr. Sutro had prepared in London and which were thrown on a creen by Prof. Christy

Transportation by water in the United States.
In Census Bulletin 179 are presented statistics show ing the condition of the industry of transportation by water in the United States in all its branches, excep that of canals, for the year ended December 31, 1889.
The text and tables have been prepared by Mr Thomas J. Vivian, in charge of statistics of transpor tation, under the general direction of Prof. Henry C Adams, expert special agent, and the work exhibits rare ability.
This is the first census that has undertaken to ather, compile, and publish full statistics concerning all classes of transportation by water, and the total

VIBRATIONS PRODUCED BY THE MACHINERY OF STEAM VESSELS

Ten, twelve or fifteen holes would be drilled in the face on each side, going toward the center, so when all these holes were charged with dynamite and exploded by electricity a wedge-shaped mass of rock would be blown out from the center to a depth of 6 or 8 feet, and afterward more holes were drilled on the side and similarly exploded, making an advance for the whole width of the tunnel of 6 or 8 feet or thereabout.
After the tunnel had penetrated some thousands of feet, the air became worse and worse, and the heat commenced to increase. It was therefore necessary to have (besides the air derived from the drills) additional air thrown in by means of blowers placed at the mouth of the tunnel.

Here I will note a curious fact, which I have never seen explained, and which is worthy of close investiga tion by means of experiments. We found that the com pressed air used for driving the machine drills, afte having been compressed and expanded, and discharged from the drills, was not wholesome to breathe, and the men and mules would all crowd around the end of th blower pipe to get fresh air suitable to be inhaled by the lungs.
Whether the air in being compressed has parted with some of its oxygen or become vitiated from some other cause, I do not know, and I hope that this subject wil at some future day be carefully examined into.
Speaking of mules reminds me of some of the peculiarities of these intelligent animals, which were exten sively utilized in the underground workings. We soon found that horses would not do, for if anything touched a horse's ears, it would throw its head upward, and so be apt to injure itself, while a mule, if anything touched its ears, very wisely dodged.
We had as many as 200 mules employed in the trans portation of debris from the works and otherwise. Going along through the tunnel a torch would be fastened to the mule's head, but coming out of the
projected up to the surface, being a portion of the radius of a circle commencing at the center of the arth ; it would have given us several feet more on the surface, which might have been of great value in that country of bonanzas.
The Land Office, however, refused to make that pro jection, and so we had to accept the 4,000 feet measured on the surface
In driving the tunnel we encountered all sorts of ground, nearly always rock, some as hard as flint, and some of ordinary hardness. In very hard rock, the drills striking against it would illuminate the face of the tunnel with a thousand sparks, and give the men and the machinery quite a ghastly appearance.
At many points great bodies of accumulated and often hot waters were struck, which came out through he crevices with such force as to throw the men down At still other points great bodies of clay were en countered, especially when approaching the Comstock lode. This clay, after being cut through, would swell and timbers 16 inches square would break in two like mere reeds. The pressure in some places was so great that a cap 16 inches square, placed on posts of the same dimension, would be found to be pressed through by the posts within 24 hours, showing an almost incon ceivable force. In one place the track did swell up every day, and had to be cut down thirteen times before it remained level.
The heat in the face, though very high, could be endured on account of the fresh air constantly being blown in, but a few hundred feet back of the face the air would be insufferably hot, and so much deprived of oxygen that a candle could not be kept lighted.
In the dry atmosphere of Nevada, electricity accumulates very rapidly in the human body, and I could first walking over the carpet, on almost any day, with my fingers light the gas. This was the cause of severa accidents. We had a special house for the storage of electric exploders, and two men in charge of this house
given in this bulletin are indications of the importance of the industry and the success made in reporting it Among these totals are those which show that the transportation fleet of the United States at the beginning of 1890, with the exception noted above numbered no fewer than 25,540 vessels of all classes of which 6,067 were steamers, 8,912 were sailing vessels, and 10,561 were barges or unrigged vessels, whose gros tonnage was 7,633,676 tons, and whose estimated valu stood at $\$ 215,069,296$. Other totals show that during the preceding year the freight movement by the whole operating American mercantile fleec amounted to $172,110,423$ tons of all commodities. Others show tha the number of persons of all classes employed to make up the ordinary or complementary crews of all oper ating vessels of the United States, exclusive of pleas ure craft on the Atlantic coast and Gulf of Mexico numbered 106,436, and that the total amount paid out n wages was no less than $\$ 36,867,305$. There are other totals of an equally interesting nature, but enough figures have been quoted to show how vast this industry of transportation by water has become. It is moreover, almost wholly conducted in vessels of Amer ican construction.

A Big Saw for Work on Metal Plates.
Carnegie, Phipps \& Co., who have the government contract for a portion of the armor plates of the new navy, are to add to the finishing plant of the armor department at their Homestead mill, near Pittsburg, a gigantic saw, weighing 110 tons, that will cut a nickel steel armor plate as an ordinary saw does a plank. The armor plates range in weight from 8 to 38 tons, and are sometimes 29 feet long and 20 inches thick. The saw has a blade $71 / 2$ feet in diameter, geared from above and revolving horizontally. With it an angular slab of cold nickel steel, weighing perhaps a dozen tons, is taken off like the slab of a pine log. The saw is the first of its kind used in this country and cost $\$ 35,000$.

PURDUE UNIVERSITY, LAFAYETTE, IND.
Purdue University is beautifully located at Lafayette, Ind., a thriving city in direct line of communication between the cities of Indianapolis and Chicago, Toledo and St. Louis, and Louisville and Chicago. Under the wise and energetic management of its president, Dr. James H. Smart, extensive laboratories have been developed for every branch of its scientific work. It is the purpose of the present article, with its accompanying illustrations, to present some features of the laboratories of the schools of mechanical, civil and electrical engineering. These laboratories, by bringing the students into direct contact with machines of many kinds, by giving them an oppor tunity to study systematically their action, and to test their efficiency, constitute a most important element in the work of their college course.
The technical work of all engineering students during the early part of their course at Purdue is such as will afford practice in working wood and iron. Practice is given in benchwork, turning, pattern making, moulding and casting, forging, and in machine work. The exten sive shops of the department of practical mechanics, wherein all of this work is accomplished, are equipped with tools and machines for the accommodation of 150 students at a single time. Later in the course, the laboratory work for each of the several schools becomes more distinct.
The mechanical engineering laboratory is a handsome room, 50 by 110 feet, and there is boiler room attached, 25 by 40 feet. The equipment of this building is such as will provide for a large range of experimental work in steam engineering, applied mechanics, and hydraulics. The character of its equipment may be seen by reference to the following enumeration, which includes some of the more important pieces of apparatus which have thus far been put in place.
A 100 horse-power triple-expansion steam engine has been designed and constructed especially for thi laboratory. The engine cylinders are 8 15 , and 22 inches in diameter respective ly, by 24 inches stroke. The pipe connections are such that any of the cylinders may be worked singly, or they may be worked in combination under any one of six possible arrangements, thus giving, for the purposes of the laboratory, what is equivalent to nine different engines. The steam jackets of the cylinders and of the intermediate receivers may be thrown out of use at will. The crank of the high and of the low pressure cylinder may be set at an angle of 90,120 , and 180 degrees with that of the intermediate cylinder. Connected with the engine are a surface condenser, an independent air pump tanks on scales in which may be weighed the condensed steam given up by the engine, tanks on scales in which may be weighed the cooling water which passes the condenser, permanent indicator rigs, and the usual gauges and counters.

A 104 horse-power boiler, having its safety valve se at 160 pounds, supplies steam at high pressure for the triple-expansion engine, and for general purposes. Accessory appliances are provided for use in making boiler tests.

A high-speed passenger locomotive, weighing 85,000 pounds, is mounted upon supporting wheels in the laboratory in such a way as to allow its action to be

engineering laboratory-stand pipe and weir tank. he laboratory.
studied and its performance tested while the engine is similar to those of the track The power of the encine is absorbed by powerful friction brakes of special de ign and it tractive fored by a suit ign, and its tractive force is measured by a suitable dynamometer attached to the draw-bar. The boiler
may be fired with coal in the usual way. A powerful
ester for determining the relative value of cement and ement mortars; and a good supply of vernier and icrometer calipers, scales and gauges.
For work in hydraulics there is a direct-acting steam mp ; two centrifugal pumps; a turbine water wheel flow of waters, and apparatus for measuring the over weirs, in pipes and through orifices.
A steam pump delivers the water supply from a well to a storage tank of 1,000 barrels capacity, and an experimenta stand pipe affords means for maintaining any desired range of water pressure.

In civil engineering, instruction is offered in rallway engineering, bridge engineering, and hydraulic and sanitary engi neering. For work in the field, the de partment is well equipped with instru ments of the highest grade. These consist of four complete sets of instruments, by different makers, and include transit level, chains, tapes, rods, etc. In addi tion to these, for refined field practice and geodetic work, the department pos sesses a ten-inch alt-azimuth instrument made to order for the department by Fauth \& Co., of Washington, D. C. Fo work in river hydraulics, there is a cur rent meter, and other apparatus designed bystudents in the department. In bridge engineering there are several models of various types of bridge and roof trusses, in wood and iron, and the instruction is made as valuable and practicable as pos sible, by requiring the student to make complete designs of framed structures including the calculation of strains, pro

LECTRICAL LABORATORY, PURDUE UNIVERSITY.

steam blower above the engine, but not in pipe connec tion with it, takes up and carries off whatever may b given out from the locomotive stack. There are prob lems of great scientific and economic value relative to the performance of the locomotive that cannot well be solved experimentally on the road; it is expected that some of these will be subject to easy management in
of portioning of members, shop drawings.
The electrical laboratory is in a special building having facilities for exact experimental work. The dynamo room of this laboratory contains a 22 horse power straight-line steam engine, and the following dynamos and motors: An original French Gramme, a Thomson-Houston arc, a Brush arc, an Edison incandescent, a Slattery alternator, with full line of converters of various sizes and makers; a large Thom

LABORATORY OF PRACTICAL MECHANICS
In
speed engine. Altogether, the laboratory contains fourteen steam engines of different forms.
A 12 horse-power gas engine, especially arranged for experimental work, is supplied with natural gas from the same pipe which feeds the fire under the fixed boiler. Means are thus afforded not only for carefully testing the performance of the gas engine, but also for making a direct comparison of its efficiency with that of the steam engine.
For work in applied mechanics there is a 100,000 pound testing machine driven by power, for determin Perrett motor, a 5 horse-power Thom son-Houston motor, and several smaller motors. A large Brackett cradle dyna mometer, a bank of incandescent lamps, resistances for large currents, photome tric apparatus, and other testing appliances have been provided. The appara tus is of the latest design and from the best foreign and domestic makers. With the usual commercial testing bridges, ammeters and voltmeters, there are also the finer pieces, such as a Kew magnetometer, two Thomson balances, a Thomson quadrant electrometer, ten of the best mirror palvanometers, ten of the bent nces, electrodynamometers, etc The pier rooms and other laboratory rooms re well lighted and are pleasant rooms for work.
Instruction and practice in mechanical drawing are continuous throughout all engineering courses. In the solution of problems and in the designing of new work the methods of the drawing room are constantly employed.
The engineering chairs at Purdue are filled by W. F. M. Goss, Professor of Experimental Engineering and Director of the Mechanical Engineering Laboratory; J. J. Flather, Professor of Mechanical Engineering; A. E. Phillips, Professor of Civil Engineering; A. P. Carman, Professor of Physics and Applied Electricity; and M. J. Golden, Professor of Practical Mechanics. They are assisted in their work by an efficient corps of pressional and transverse There are at present six hundred and forty students stresses; a 2,000 pound cement in attendance at the University.

CARRYING A LIFE LINE ASHORE BY A KITE.
A few weeks since, on two different occasions, experıments were made on some islands in the East River, near New York City, to test a new method of carrying a life line ashore from a vessel in distress, as represented in the accompanying illustration. The trials, however, were not made from a vessel actually in need, as portrayed by the artist, but the kite was made to carry the buoy, with the life line attached, across a strip of water five-eighths of a mile wide, in which the current was running at the rate of two and a half miles an hour.
The kite used in the experiment was made with three sticks, each 7 feet long by $3 / 8$ of an inch thick, their width tapering from $11 / 2$ inches at the center to $1 / 2$ inch at the ends. The weight of sticks and bolt is $31 / 2$ at the ends. The weight of sticks and bolt is $31 / 2$
pounds. The kite is foldable and can be made into a small package of convenien
it is only necessary to it is only necessary to spread the sticks and tie four strings to the ends of two of them, the covering being already tied to the ends of one stick while folded. Oiled muslin or duck is used for the covering, and the tail is made of clothes line knotted in loops.
This kite is designed to stand any wind up to fifty miles an hour, having a safety factor of seven in a forty-mile wind, the breaking of one of the six bridle strings in such a wind still leaving a safety factor of one and a half. In sending one and a half. In sending up the kite the three bridle strings of each side are
connected to a single line, each of these lines leading to a separate reel, provided with a brake and ratchet, as shown in the detail view. By means of the cords from the two sides to the separate reels the kite can be held at an angle to the wind, so that it can be wind, so that it can be flown in a direction up to
67° off the wind on each side 67° off the wind on each side
of the dead to leeward point, and held to keep the given direction. The ability to do this was fully demonstrated in the experiments. The kite having been raised a sufficient height and started in the required direction the two required direction, the two lines are connected to the
buoy to which the life line is attached. The weight of the buoy is a little less than the lifting power of the kite, when the forward movement of the latter is arrested, so that ordinarily the buoy will be held down to the water by the life line, although the kite can drag it over reefs, bars, and floating spars, obstructions which stop such devices as self-propelling torpedoes, etc. When the kite is traveling its lifting power diminishes, and it simply tows the buoy, so that it is possible to take ashore in this way a much heavier line than can be sent by rocket or shot. The pressure of a forty-mile wind upon the 22 square feet of this kite, the kite being held vertical, equals 176 pounds; the strain upon the lines in flying, when the kite is inclined 30° from the vertical, is calculated at 130 pounds, with a horizontal pulling force of 11% pounds and a lifting force of 56 pounds.
A patent for this improvement has been applied for by Mr. J. Woodbridge Davis, of No. 645 Madison Avenue, New York City.

A Commotion was caused in all technical circles when, in 1885, congo red heralded the many-colored array of that class of dyestuffs which dye cotton with out mordants, that is direct. Like the fuchsine discovered by A. W. von Hofmann in 1858, and the first alizarine synthetically produced by Graebe and Liebermann in 1869, Boettiger's congo red was a red dyestuff forming the marking stone of a new period in the history of the development of the tar dyestuff industry and at the same time of the dyeing industry.

DAVIS' METHOD OF CARRYING A LIFE LINE ASHORE BY A KITE

ground that it was not new, and yet I was told when in Essen, at Mr. Krupp's works, that Mr. Fried. Krupp paid Mr. Bessemer $\$ 50,000$ to go to Essen and teach them the method. Krupp had already spent considerable money and time in trying to make Bessemer steel and failed to do so.
Mr. Bessemer in 1869 was said to have amassed a fortune of about twenty millions from his invention, and it was said then to be the largest amount eve made by any one inventor, and probably was.
The John Brown works were then the largest Bessemer steel works in the world, and I went there to see about twenty tons converted at one time. A two hundred horse power engine was used at the blast furnace alone, and it was indeed very interesting to see the immense converting pot poured full of molte see the immense converting pot poured full of molten iron, and then the blast turned on, and see it boil and and when by the heat sumed pure ir except the quite pure iron, then the molten the affinit poured in, and mass was so great that on could see its greedy appe tite for the carbon, like tite for the carbon, like a hungry swine for its swill. I was told that Mr. Besse mer for a long time antici pated the making of stee by his process equal to the best cast steel, but in this he of course failed. Still while I was in Sheffield was at a steel rolling mill where they used the sculps, as they are called, that come out of the convertin pot. These were broken up, remelted, and a small mixture of better material used and melted togethe and poured into ingots, and that rolled into shee metal and crosscut and pit saws made of it for the Russian market; and I was told that over six hundred thousand of them were sold there every year, be sides saws made from it were sold all over the world. If there is any cheap method of producing anything of metal, Eng land is among the first to adopt it. An immens amount of work that is done in America by men is done there by poor women for a mere pittance women for a mere pittance
that will keep soul and body of part of them to gether; but when sickness comes or their job is lost it is the pauper house or the grave. No American can ever appreciate the glories of our free and liberal country and govern ment until he goes to foreign lands.
J. E. Emerson.

Photography of Inks

Dr. Jeserich claims it is possible to demonstrate differences in the colors of the inks which cannot be seen, the one ink appearing
proved quite successful, but here he found a stumbling block. Some man had patented a method of melting wrought iron and restoring it to steel by supplying it with molten spiegel, and he was quite successful except that the metal must go through the puddling process, and then the remelting added another cost, which made it quite as expensive as to convert wrought bars into blister steel, then melt it in the crucible and pour it into ingots in the usual way. Under the English patent laws there must be an annuity paid after a cer tain number of years or the patent becomes invalid. The inventor of this process of melting wrought iron and restoring it with spiegel was in Mr. Bessemer's way, but in a short time, unless he paid the government installment on his patent, it would become invalid. So Mr. Bessemer watched the records until the poor unfortunate let it run out, then Mr. Bessemer that same day entered his claim, and his patent was granted, covering the entire process. I learned these facts in 1869 while at the John Brown Bessemer Steel Works, in Sheffield, England. But when Mr. Bessemer applied for a patent in Germany, it was refused on the $\left.\right|_{\text {seen than in the original. }}$
light and the other dark. following considerations
As is well known, the tints of the inks that are called black are either brown, red, green, or blue in shade. Such tones have but little effect on the eye, as it is chiefly sensitive to the yellow and red rays, but the chief sensitiveness of photographic plates, on the other hand, lies in the blue, violet, and ultra-violet. As, with ordinary sensitive plates, yellow and green subjects are rendered dark, and blue ones light, the same will follow in photographing inks of various tones. This difference can be considerably intensified by the use of suitably colored ight and color-sensitive plates. In this manner marked differences in the various inks can be clearly and distinctly demonstrated.
Among the subjects with which the author deals is the application of photography to the detection of the falsification of handwriting. In such cases photography can be of great service, as in an enlarged photographic

The Telephone in New York.

The New York Electrical Society has been engaged in practical missionary work in connection with the present agitation in the metropolis over the question of telephone service. It is generally believed that the opposition to the telephone companies is due largely to a misconception on the part of the general public and that the daily papers are in a great measure responsible for this condition of affairs. It was thought that an actual inspection of a representative telephone exchange would do more in the way of removing popular errors than any amount of argument or mere statement of facts. Accordingly the society arranged with the Metropolitan Telegraph Telephone Company for a meeting at the Cortlandt Street exchange to which the members might invite their friends. The opportunity was accepted by many persons interested in the agitation which has been stirring New York for several months, and on the evening of April 21 a large party gathered at the headquarters in Cortlandt Street.
The visitors were received by J. J. Carty, electrician of the Metropolitan Company. Mr. Carty first described the outfit employed at the subscriber's station. He alluded to the fact that the public had been told that a telephone cost $\$ 1.45$ to make and that the rest of the apparatus was proportionally cheap. The subscriber would thus be led to figure out how many times he paid over and over again for theinstrument during the year. The public gave no thought to the army of engineers and electricians employed in the building and repairing of lines, the laying down and testing of cables, and the equipment of exchanges, to say nothing of the staff of inspectors and the wire men who set up instruments and trace out the maze of wires running through the exchange from the ends of the cables to the switch board. The subscriber was too busy to gauge exactly the value of such facts as that, in addition to other appliances, the telephone service necessitated the use of 10,000 small dynamos in various parts of the city, that 30,000 cells of battery were employed, that these 30,000 cells have to be renewed every eleven weeks, and that in New York alone the company had over 30,000 miles of wire underground. It has been the fashion, Mr. Carty said, to imply that other nations were better off in the matter of telephone service than America, while as a matter of fact no other nation is so well supplied. Representatives of corpor ations from the principal countries in Europe, and even from Japan, had visited New York to study the working of the telephone system. Both in technical equipment and general organization the Metropolitan Telegraph and Telephone Company was recognized as a model, not only by other companies in this country, but by all the continental governments of Europe. It was very suggestive of the state of the telephone ser vice in England, as compared with our own, that in that country the parsons are taking an active part in the agitation for better service, on the ground that it are in New York City alone more underground tele phone wires than there are in the whole of Europe. No expense has been spared by the company to bring the service to the highest state of efficiency Within the last five years every single wire, cable and switch board in use by the company has been removed in order to permit the use of metallic circuits. It was
found that with wires put underground on the old found that with wires put underground on the old
system there was constant and confusing induction system there was constant and confusing induction, and it was impossible to utilize the instruments of indeveloped ency which progress in telephor the re sult of using the new instruments with the old wires would be that everybody could hear what everybody else was saying. To overcome this difficulty metallic circuits were adopted, and as two wires then became necessary instead of one, the heavy cost of wire throughout the system was doubled. All the metallic circuit subscribers, the only ones now taken by the company, are equipped with the highest type of long distance apparatus,which will enable the subscriber to talk not only to any part of New York City, but to any part of the eastern section of the United States, i.e. to Buffalo, Pittsburg, Washington or Boston, and to the most distant points that are now reached or ever will be reached. With one of these instruments Mr Carty made connection with Boston, and 40 additional instruments were connected, so that the members of
the society could listen in relays of 40 to the conversation. And thus for a while the Gothamites held pleasant communion over the wire with the telephonic representative of the City of Culture; whistling whispering and vigorous denunciation were all dis tinctly audible. Connection was also made to Boston over an instrument which was supplied with cur rent from a thermopile. By mearis of this appli ance, the use of which for this puroose is in the initial
stage, an efficient current of electricity can be generstage, an efficient current of electricity can be gener-
ated by the heat from a gas flame. The visitors were next conducted to the operating room on the eighth floor of the exchange, and Mr. Carty described the operation of the enormous switch board, which alone entailed a cost of $\$ 350,000$. In his remarks Mr. Carty
showed that, aside from its technical interest, the switch board furnished an interesting paradox in the
laws of trade in that it illustrates how the telephone business, unlike other branches of industry, is vastly more expensive under wholesale than retail conditions A switch board sufficient to install 100 subscriber would cost, at the very outside, $\$ 500$, but where 100 subscribers are added to an existing 5,000 the additional expenditure necessitated would be over $\$ 5,000$. The cause of this is that in the first instance facilities are re quired for the intercommunication of only 100 stations, butin the second the connection of fifty-one hundred stations is necessary. And thus the expense of new in stallations "rolls up," as Mr. Carty expresses it, "like a snowball running down hill." After following the course of the 12,000 wires throughout the switch board the visitors passed into the long distance room and in vestigated its many remarkable features. A descen was then made to the basement, where bewilderin ranges of lightning arresters, cable terminals, and distributing racks gave furtherevidence of the tremen dous upheaval that the change from grounded to me tallic circuits involved. By the time the tour of the building was completed, the visitors, although astounded at the magnitude and complexity of the plant, were able to form a very intelligent idea of the oper ation of the exchange. The company provides one operator for every nine subscribers, so that each sub scriber may know that one man in the telephone company does an hour's work for him in some way or another every day. This proportion of operators to subscribers is larger than in any other city in the world. This is due to the fact that New Yorkers are
notoriously impatient of delay, and the company seeks to give them the highest class of service. Considerable surprise was expressed when not long ago a quantity of American cutlery was sent to Sheffield, the cutlery fastness of England, but a still more remarkable indus trial innovation has lately been recorded in the ship ment of American telephone cables to London, the home of the cable manufacture. This is a gratifying recognition of the fact that in telephone cables, as well as in all other telephonic appliances, this country leads the world. An inspection of the costly and perfectly appointed Cortlandt Street exchange, in which the utmost resources of engineering and ingenuity are drawn upon to furnish service that is unequaled, should convert the veriest carper to the belief that he is getting excellent value for his money, even though he may not be able to go so far as did an eminent law yer, who publicly stated, a month ago, in England that if he paid $\$ 60,000$ a year for his telephone, would be cheap at the price.

The New Star in Auriga

 by prof. c. A. YoungDuring the months of February and March as Donomers have been in something like a state of xx citement over a new or "temporary" star which has been visible in the constellation of Auriga, about two degrees north of Beta Tauri. As compared with some of the recorded "temporaries," it did not really amount to a great deal, since it never much exceeded the fifth magnitude in brightness, while the stars of 1866 and 1876 both surpassed the second magnitude, and the famous star of 1572 more than equaled Venus at her brightest. The new star, however, though not at al obtrusive, was easily visible to the naked eye, and the circumstances of its discovery show that it is quite possible for such objects to appear and disappear entirely unnoticed.
It made its first appearance some time in November rearly in December, but was first discovered about January 30 (after it had actually begun to decline in brightness), by a Mr. Anderson, of Edinburgh, who, on ebruary 2 , sent a postal card announcement to Dr Copeland, the astronomer royal for Scotland. Ou tatement as to its first appearance rests upon the fact hat, while it is not visible upon any of the numerous photographs of the region made previous to November 1891, it is conspicuous on a negative taken at the ob servatory of Harvard College on December 10. Dur ing the remainder of that month and in January a considerable number of negatives were taken, and from their comparison it appears that the maximum brightness of the star (41/2 magnitude) wasattained and passed about December 20-at least a month before it was noticed by any one
On February 5 the star was a little above the fifth magnitude, and, excepting some peculiar fluctuations, it remained without much change until the 15th then it began to fade pretty rapidly, so that by the end of the month it was barely visible to the naked eye, and by March 20 had run down to the eighth magnitude. At the time of writing (April 2) it is hardly of the tenth, and probably will soon disappea entirely, like the last of the "temporaries," which ap peared in August, 1886, in the middle of the great nebula of Andromeda, and had utterly vanished before the end of the year.
The Andromeda star presented very little of interest in its spectrum; with the new star the case was dif
bands, both bright and dark, which undoubtedly con tained the record of a wonderful story if we could only decipher it completely. The most conspicuous feature was the brightness of the lines of hydrogen the whole series appeared to be present, including the remarkable group in the ultra violet which are in visible to the eye and come out only upon the photographic* plate. Many other bright lines were also visible, especially the two D lines of sodium, a series of our very conspicuous ones in the green, and some twenty or more fainter ones in the region between \mathbf{F} and H. As to the lines in the green, a very interest ing question has arisen whether the two brightest of hem are or are not coincident with the two brightest lines in the spectrum of the gaseous nebula. Lockye asserts the identity, while Huggins denies it. The observations of Vogel, with which my own agree very closely, support the view of Dr. Huggins, and the comparison with the spectrum of the nebula of Orion, which was favorably situated for observation at the time, was so easy and direct that there is hardly a possibility of mistake. Speaking generally, the bright ines in the star spectrum seem to have been for the most part identical with those which are most fre quently conspicuous in the solar chromosphere; and yet the line known as D_{3}, which, next to the hydrogen lines, is by far the brightest of all the lines in the spec rum of the chromosphere, appears to have been wholly asent from the spectrum of the star-a very puzzling ircumstance.
But the most curious thing about the spectrum of he new star was that every one of the bright hydro gen lines (not the other lines) was accompanied by heavy, dark line on its "upper "-i.e., its more re rangible-edge. The natural explanation is to suppose that two bodies, at least, are concerned in the phenomenon-one of them showing the dark lines of hydrogen alone, like any ordinary star of the so-called "first type," while the other shows them bright, and ccompanied by a multitude of other lines. The dark ined star is rushing toward us and the other receding rom us, each with a speed exceeding a hundred and fifty miles a second. The spectrum of the well known ariable star Beta Lyræ presents a similar phenomeno t certain times.
It is obvious that this doubling of the hydrogen lines agrees very well with the hypothesis which Mr. Lockyer has proposed as an explanation of the phenomena of temporary stars, viz., that two meteoric swarms encounter each other, and light up for a short time either in consequence, as he maintains, of actual colisions between the meteors or else, more likely, by means of electric discharges and other interactions be tween the particles as they pass near each other with out actually striking. A different hypothesis, origi ally proposed by Dr. Huggins, regards the phenome non as substantially the same which the sun present in its eruptive prominences, but on an immensely vaster scale. This also agrees equally well with the general aspect of the spectrum, and especially with the apparently composite character of some of the bright ines in the star spectrum, which, as has been said, orrespond very closely to certain groups of lines in the chromosphere; but the absence of the "helium" ine $\left(D_{3}\right)$ is unfavorable to it, nor does it so readily ex plain the doubling of the hydrogen lines.-Popular Science News.

Maple Sugar.

According to the returns of the census of 1890, there were in the United States in 1889, 62,074 producers of maple sugar, and the quantity of sugar produced was $32,952,927$ pounds, and the quantity of maple sirup wa $2,258,376$ gallons. The sugar was produced in the fol owing States, in quantity as shown herewith

Arkansas	$\xrightarrow{\text { Pound }}$
Connecticat.	17
Illinois.	
Indiana.	
Iowa..	45,120
Kentuck	11,259
Maine	
Maryland..	156,284
Massachusetts	
Michigan..	1,641,402
Minnesota.	
Missouri.	182
Nebraska.	
New Hampshire..........	2,12,515
New Jersey.....	210
New York.	
Vorth Carolina.	7,713
Pennsylvania.	1,651,163
Tenressee	9,167
Vermont.	
Virginia.	26,991
West Virgin	${ }^{177,724}$
Wisconsin.	128,410

* By a misunderstanding it was stated in the last number of the Nevos that the writer had obtained photographs of the spectrum of the star.
The non-completion of the prism train of our new spectroece The non-completion of the prism train of our new spectroscope pre-
vented this ; but Lockyer and Huggins in England, Vogel in Germany. and the astronomers at the Lick Observatory were all very successful in

Sorrespondence.

To the Editor of the Scientific American:
I send you the inclosed photo. to show what an amateur can do when he tries, the dynamo having been made by me from your description from the patterns up. You will observe some changes from the standard model, dictated by expediency. They do not impair the efficiency. It has been tested and lights ten 16 candle power lamps to full power at the standard speed.
C. D. Parkhurst

Lieut. 4th Artillery.
Fort Monroe, Va., April 25, 1892.
[The photo. sent by Lieut. Parkhurst shows a dynamo which could not be distinguished from the Edison machine were it not for the few alterations referred to. The machine both in appearance and performance does credit to its builder.-ED.]

Electrical vs. ©able Cars.

To the Editor of the Scientific American:
In the article on the "Transformation of a Cable Road," in your issue of April 23 , the statement is made that it is the only one in the world that has been completely torn up from end to end and entirely replaced with new equipment. Allow me to say that exactly the same was done in this city last year. There was the same trouble from cables wearing out here on account of so many sharp corners, and nearly all of the expensive machinery and equipment was broken up and sold for old iron. The engines are being used, however, to drive the dynamos that furnish the current for the new system.
The grip slots and rails are retained on the hill lines, and an auxiliary brake has been fitted on the cars to catch on these rails in case of an emergency.

The increased amount of patronage, together with the better facilities for doing business, will doubtless repay the company for the great expense in making the change.
D. Egery.

Grand Rapids, April 26, 1892.

Controlled Torpedoes

Some very pertinent remarks on the torpedo question have lately been given by the Engineer, from which we make abstract as follows :
Recent experiments with the Sims-Edison torpedo have so far demonstrated that a heavy charge of explosive can be set in motion and controlled throughout its course from a given point, whether on land or afloat. These attributes have never been contested, and are equally capable of proof with any other torpedo of this
class. Though the Brennan torpedo is worked from certain fixed points on shore, the apparatus can be placed in a tug or gunboat with equal facility, and many consider its value diminished by the limitation of mobility now imposed. Several of the early experi ments with it were carried out from a floating base, and the original proposal was to employ it in this manner. As such an installation would have placed the
weapon in naval hands, and the Admiralty had no faith in a weapon of this nature, the Brennan was taken up by the Royal Engineers as a part of their fixed defenses in certain localities where it is now being installed with great elaboration. We are not concerned, therefore, to
make any comparison between the different types of controlled torpedoes, but rather to consider whether this method of submarine attack has the advantages claimed for it over other forms now in use. Now, the dirigible torpedo is dependent upon one or more wires connecting it with the ship or shore from which it is directed. The wire may be of steel, and of fine dimensions, working a mechanical apparatus, as in the Brennan, or it may be an electrical conductor as in the SimsEdison. In either case the source of power is outside the torpedo, and transmitted to it by means of the wire. But the fact of thus trailing a wire behind is sufficient to cause its rejection by the navy as a ship weapon for general use.
In action, the ship must be free to move in any direction, and a captain would be terribly hampered if he had to regulate his movements by an external object of this nature. His anxiety would be constant lest a turn of the helm should bring his propeller in contact with the wire. Such an occurrence would not only at once render the torpedo useless, but might also endanger the ship using it. Hence, a controlled torpedo is inadmissible as regards battleships and cruisers. But it is urged these objections would disappear if the torpedo were placed in special vessels whose movements would be entirely subordinated to the manipulation of the torpedo. They would not have to approach within close range, and would thus escape the deadly fire of machine guns. If the operation could be carried out
at a distance, say, of two miles, such a contention at a distance, say, of two miles, such a contention
might hold good. But though it is often stated a torpedo can be controlled and directed beyond the limits of machine gun fire, practical experience has not hitherto demonstrated the fact. Its effective action
difficulty is to know how near the torpedo is to the object. It may appear to be close, while in fact there is considerable intervening space-and a slight miscalculation would render the attack abortive.
As the torpedo runs below the surface the projection above to show its position-which may be a disk or a flag on a pole-is not a conspicuous object to those guiding the torpedo, and is only visible in clear weather. As the small quick-firing guns, now so numerous afloat, make good shooting up to 2,000 yards, the craft using the controlled torpedo at sea would probably be disabled before her weapon could come into play. Her chance would be better if able to carry out the operation at high speed, but that has not been demonstrated, and we do not believe it feasible. We have only alluded to the difficulty by day, but at night the difficulty of directing the torpedo successfully would be much increased. There does not appear therefore, any field for a controlled torpedo at sea. It remains only to consider its value for harbor defense, and for this purpose we may compare the controlled torpedo with the other forms of submarine attack What we have specially to guard against and provide for is the case of a hostile vessel rushing past certain points with a view to attain a position from whence damage could be effected afloat or on shore. Such raids were common enough in the old days, and we have no reason to suppose they will not be repeated. They will probably take place more often at night than by day.
Now, under certain local conditions, no better pre-
entive can be found than in submarine mines. When once placed they act equally by night or day, in thick or clear weather. No hostile vessel would venture to pass through water where it was believed mines existed ; but, on the other hand, their efficient use depends on the absence of current, and on a moderate depth of water. Moreover, if the area of approach is extensive, an enormous number of mines is required to render it secure. There is also a strong objection to the indis-
criminate use of mines, as liable to impede the movements of our own vessels seeking the harbor as a refuge, or in their ordinary trade avocations. For such reasons stationary mines can only be recommended to a limited extent. Over them the controlled torpedo has this advantage, that it is practically independent of depth of water and strength of current, though at nigh weather it would be of little value. Now, the torpedo boat is free from these objections. It is a submarine mine with the power of locomotion; it may be considered a controlled torpedo with vastly increased range. It does not wait till the predatory craft is at your gates. but goes to meet him and prevent his ap-
proach. Night and mist favor in this case the defense, and the ubiquity of the torpedo thus carried enables it to guard an extensive area, and more than one approach.
Not only does it insure the safety of the vessels with in the port, but it protects those without seeking shelter. "A raider who remained outside and said to the atter, "Stand and deliver!" would soon find it neces sary to shift his quarters. The squadron hovering be yond the effective radius of mines and controlled tor pedo, with the object of shelling at long range, would find the attack of these wasps sadly interfere with such an operation. It is sometimes claimed for the controlled torpedo that it carries a larger charge of explosive than the Whitehead, but the latest type of the latter weapon is charged with 200 pounds of gun cotton, sufficient to disable any vessel, and a slight increase in the dimensions of the torpedo would enable this amount to be doubled. We have seen within a few months an iron clad sunk in less than five minutes by the explosion of 60 pounds of gun cotton, and the usual charge for elec tro-contact mines does not exceed 100 pounds. Hence there is no necessity to employ excessive charges.
In thus comparing the controlled torpedo with the Whitehead, we have not alluded to the liability in the former of a break in the connecting wire. When this happens to be an electrical conductor, circumstances compel it to be of a fragile nature, so that its ruptur would follow any check to the course of the torpedo it did not unwind with perfect freedom. In this re spect the Brennan has an advantage, because it is controlled by steel wires of considerable strength. These are details, however, which do not affect the main principle of all such weapons. Their want of mobility imitation of range, and difficulty in effective use, ren der them in all cases inferior to the locomotive torpedo carried in fast boats and manipulated with the skill and enterprise examples of which have been fre quently given in our naval maneuvers.
It may be rightly estimated that the Brennan torpedo has cost the country a quarter of a million sterling, of which nearly half has gone into the pocket of the inventor ; and we believe that only one locality has been provided with an installation of the weapon. For this sum we could have had twenty first-class torpedo boats, which. divided between three ports, would have been a more efficient protection. But the procedure in
system which delegates to two departments the responsibility for the defense of our shores, and allows each to work independently as if the other had no existence. It is time that this important question was placed on a more satisfactory footing, or we may see repeated the blunder of acquiring some new weapon of such limited value as the controlled torpedo.

When the Sun Gives out.

Sir Robert Ball, who is one of the foremost astron omers in Great Britain, speaking from scientific know ledge, places the day when the world will come to an end, as we know it, about four or five million years dis tant, but he gives us every reason to believe that this will be the final winding up of the existence of the human race. It is comforting to have the date of this event so far off. It does not concern us personally, or the generations of the future, so far as we have to do with them. It is simply the statement of a scientific fact which is based upon our present knowledge of the resources of the earth and of the sun. Sir Robert Bal in his Fortnightly article on this subject uses the determinations of our own Prof. Langley as the basis of his calculations. The amount of heat which he estimates that the sun originally contained would supply its radiation for $18,000,000$ years at the present rate. It is believed that the sun has already dissipated about four-fifths of the energy with which it may have originally been endowed, and this brings us to the conclusion that at the present radiating energy it will last, per h hps, $5,000,000$ years longer. This is all that we really know about this matter.
The dependence of human life on the sun is absolute. Even when the sun is withdrawn during the winter sea son to only a slight degree from the extremities of the earth, it is difficult to sustain life on this planet. What must it be for the whole planet if there should be any considerable diminution of its radiating energy? This statement shows that, while the exhaustion of heat is not an immediate danger, it is a state of things that at some time must be realized, and that nothing can stand in the way of this culmination. In a lesser degree here are many things in life, as we know it to-day which show that, as a race, we are living beyond our resources, and exhausting the supplies which nature ages ago provided for us. The coal supply in England and Germany and in the United States has its assignable limits. Our later life is almost absolutely dependent for its large development upon the discovery of unlimited supplies of coal, or, in other words, the ability to supply heat in quantities sufficient for all the needs of advanced civilization, but already the coal beds give signs of exhaustion. It is true that new mines are discovered and can be opened, but the open ing of new deposits simply transfers the day when the energy that is found in coal must be supplied from some other source. In the distant geological ages the sun itself was the principal agent in supplying the forces that incarnated heat in this form. It is not now possible to supply any new kinds of fuel. What we have exhausted is lost for all time to come, and it is the loss in these material ways that limits the ability of the earth to sustain life.
It is thus seen that the duration of human life on this planet has certain definite and fixed limits. There is no danger that the world will come to an end in ou day, but science is right in fixing a limit to the sun's capacity to heat this planet to a degree necessary to support life, and there is a fixed limit for the supply of the amount of heat necessary for carrying on the operations for expanding life. It has been a subject of vague speculation heretofore as to when and how the earth would come to an end and the human race pass off the stage as a finality. Science has now in a general way told us as much as we can ever know probably on this subject. Human life within the limits of history goes back only about 3,000 years. Whatever else can be traced in the life of man is a matter of tradition and is obscure. The human race is much older than 3,000 or 4,000 years; but there is every indication that there was a long period in the world's history when human life, as we understand it, did not exist, when the earth was, so to speak, "without form and void," and neither the animal nor the spiritual life was anything more than a germ yet to be realized. In the light of what Sir Robert Ball states, that early condition of things is again to be realized, and this planet will by and by become a vast mass of dead matter in the universe. We have the consolation, before that day comes, that we shall be where it will be no concern of ours whether the planet is one thing or another; but it is one of the wonderful things about our scientific developments to day that we can put out our measuring lines and make estimates upon problems over which we have no physical or material control. It is only the mind that rises to the greatness of these issues and measures them with its own rules and feels their gravity by its own elasticity and comprehensiveness. It is a
singular evidence of the value of the sciences which singular evidence of the value of the sciences which
seem to be most remote from a practical bearing that one of them should throw light upon the question of the length of time that the sun will survive, and this earth itself will be able to sustain life.

NEW DISAPPEARING ELSWICK GUN MOUNTING. The advantages of having a gun mounted on a disap pearing carriage are now too well known to need recapitulation. It will suffice to say that hitherto it has only been successfully carried out by employing com pressed air and a liquid, on what is known as the hydro-pneumatic system, with which there has always been certain accompanying disadvantages, the princibeen certain accompanying disadvantages, the princi-
pal of which are the necessity of using air pumps, pal of which are the necessity of using air pumps,
lowering pumps, pressure gauges, recoil valves, by-pass lowering pumps, pressure gauges, recoil valves, by-pass
valves, cup leathers, and packings, all of which give let off the pressure. Recognizing these
facts, Elswick has recently designed a new disappear-
faler oil, and the recoil press and ram are of bronze,
so that no question of rusting can arise. Oil cannot trouble in inexperienced hands, and so discount to a ling carriage, which has, among others, the following lo used in the high pressure cylinder, as it is found to

LOADING POSITION

FIRING POSITION.
NEW ELSWICK DISAPPEARING CARRIAGE FOR SIX INCH B. L. GUN.
froth too much; (8) the gun is shown in the loading and firing position in Figs. 1 and 2 respectively, can be lowered by turning a crank handle in connection with gearing which is arranged so as to slack off some of the springs, or without slacking off the springs, by a small block and tackle attached to the breech end of the gun.
The makers have also embodied the following improvements in this mounting : (a) Automatic sighting gear, the same as has been so successfully applied to turret guns for the navy; (b) a sighting platform-A in Figs. 1 and 2-placed at the side of the gun clear of its recoil, and fitted up with training, elevating, and firing gear, so that the eye may be kept on the target up to the moment of firing; (c) a pair of reflecting mirrors, moving with the leaf of the tangent sight B, by means of which the sights can be seen from below the shield. It should be noted that no inaccuracies can arise from the use of the mirrors, as the actual sights are reflected in them, and they are arranged so that the image is not inverted. Night sights and a telescopic sight can be used if required; (d) various alterations and improvements about the shield.
These advantages are obtained by designing and constructing the carriage in the following manner : The weight of the gun is counterbalanced in any position of its path by steel springs, designed so that at every point there is always a proper proportionat amount of spring trifle in excess, to
cause it to rise to cause it to rise to
the firing position the firing position so. This counterbalancing of the gun is in no way connected with the recoil press, the recoil press, but is an action pendently of it. pendently of it.
The strength of the springs can be regulated by compressing them or allowing them to extend, by a screw and nut arrangement worked by ment worked by Whand wheer. When the springs aresufficiently slacked off, their tension is insufficient to support the weight of the gun, and it lowers to the loading position. This gear therefore takes the place of the lowering pump of the hydro-pneumatic disappearing carriage, but has the advantage of taking less time and labor. There is no danger that too much of the supporting power will be removed, because the springs can only be slacked a definite amount sufficient to lower the gun carefully, but not to let it fall at a dangerous speed. The recoil press would also check any undue speed. The springs are placed in compression, not tension, so that the breaking of a spring would be a matter of no great moment. It is not, however, at all likely that a spring will break, as experience has shown that the same pattern of spring in the six inch quick-fire mounting stood hundreds of rounds, and in that case the spring is compressed at the same speed as the gun recoils, whereas in the disappearing mounting the spring is only compressed at a third the rate of recoil. Provision is, however, made for inserting a new spring if necessary.
The recoil press is made as a plain cylinder, mounted on trunnions, and fitted with a piston rod and piston. On recoil, all the liquid below the piston passes to the upper side of it through a port, which varies in size to suit the varying velocity of the recoil in such a man ner as to produce an equal pressure throughout the stroke and at the same time to give always a full recoil. It is important to have a full recoil with disappearing guns, even with a three-quarter or a half charge, so as to bring the gun to the proper heightfor loading. The recoil press is cast with a tank on the top of it, to re ceive the liquid displaced by the ram or piston rod on the recoil of the gun, and this tank is made large enough to give a certain storage of liquid, so as to in sure the cylinder always being full. A most important point is that leakage of oil is guarded against by not fitting plugs or cocks in the cylinder, the necessary filling and air plugs being inserted in the tank. When
necessary the oil can be drawn from the cylinder by a siphon or syringe, so that there is no need for a draining cock or plug. To prepare the recoil press for ser vice: With the gun down fill up the press by the filling plug on the tank until no more oil can be got in. To increase the efficiency and rate of fire it is proposed to use a quick-firing gun, and for this purpose a rear platform is provided, and two sets of ammunition boxes to carry the metal cartridge cases. The numbers loading will be carried round as the mounting is trained, and will, therefore, be able to load the gun as rapidly if mounted on a naval carriage, an extra five seconds only being required for the gun to rise.
Both the training and elevating gear are arranged so as to be worked either from the emplacement floor or from the sighting platform. At the sighting platform two training wheels are provided, one within reach if the ordinary or the telescopic sight is being used, and the other when the mirrors are in use. Only one elevating wheel is necessary, as it is well within reach at all times. C shows the winch and training gear worked from the emplacement floor. The mount ing can be trained on the object, and the elevation adjusted while the gun is in the loading position, so that on the gun rising to the firing position, it may be fired immediately, as no further adjustment is necessary With the automatic sights the greatest accuracy and ease of movement is secured for laying on the object ease of movement is secured for laying on the object
before the order to raise the gun is given, so that the
at 4 deg .20 min . depression. The time taken by the gun, not loaded, to rise to the firing position was found to be four seconds. When fully loaded with 55 lb . of powder and 100 lb . projectile, it was five seconds. The trials were most successful, and we understand that the officers attending were impressed with the simplicity of the new mounting and the facility with which it could be handled.-The Engineer.

A GIRDER GAS PIPE.

This self-supporting gas pipe was erectedacross the Morris Canal by the United Gas Improvement Company, of Jersey City. The canal is the old dividing line between old Jersey City and Lafayette. To span the canal at the least possible cost the company erected a pipe made of plates of sheet iron. It is made of $1 / 4$ inch iron and is 421 feet in length from pier to pier It is $31 / 2$ feet in height and 1 foot in width. It is put together in five sections, each section being $81 / \frac{\text { feet in }}{}$ length. The top and bottom sections of the pipe are flanged and are closely riveted to the side pieces. The side pieces are made secure by means of $1 / 4$ inch iron plates, 11 inches in width, riveted over the joints. The pipe is curved and rises in the center about 12 inches. The ends of the pipe rest in grooved castings on the tops of the piers and are made secure by means of bolts 1 inch in diameter, which pass through the castings and up long the sides and through the iron plates on the top pipe, where they are held in place by heavy iron nuts. Small iron nuts. Small iron braces placed
about 8 feet apart about 8 feet apart and fastened to the pipe from swinging back and forth in case of storm or high winds. The stree pipe which pro jects above th ground surface is about 2 feet diameter, and is made in two sec tions riveted to gether. The con nection between the two pipes is V shaped, and made of the same material as $t h e$ main pipe, the small end being hammered out to conform to the shape of street pipe. The pipe weighs about four tons and was erected at a cost of about $\$ 900$.

The Sugar Trust.

By the purchase or rather admis sion into the trust of the refinery of Claus Spreckels, at Philadelphia,
A GIRDER GAS PIPE, JERSEY CITY, N. J.
gun need be above the shield only some two or three econds at the most. This mounting will go on the same racer and live rollers as the present six inch hydro pneumatic disappearing carriage, and the same train g rack may be used.
The electrical firing gear is arranged so that the circuit can only be completed after the gun is properly in the firing position, and with the quick-firing gun the further precaution of having the gun closed and locked. The shield is rigidly supported on platework, so that the gun and sights may always retain the same elation to one another. A combing is raised round he edge of the port or opening in the overhead shield, through which the gun rises, and when out of action this opening is covered in by a tarpaulin stretched tightly over the combing. This will be found handier than using a tarpaulin large enough to cover the whole of the shield.
The official trial of the mounting was carried out at the Silloth range on October 23, 1891. The following officers were present on behalf of the War Office Colonel Colquhoun, R.A., Colonel Walker, R.A., and Major Penton, R.A. Three rounds were first fired with a three-quarter charge, at a target 9 ft . square at 1,000 yards range, using the automatic sighting gear, with very satisfactory results, each shot striking the target. Three rounds were then fired with the full charge, at angles of elevation of 5 deg., 10 deg., and 15 deg., respectively, for testing the strength of the structure. Finally two rounds were fired with a half charge, in order to show that the recoil of the gun was practically the same as with the full charge. The first of these was fired at 5 deg. elevation and the second
the Sugar Trust completed its operations for the conrol of the sugar refineries of the country The follow ing are the refineries owned absolutely by the trust with their daily capacity in barrels:

The Brooklyn S. R. Co., Brooklyn......................... 3,000	
The Decastro \& Donner S. R. Co	
The Havemeyer S. R. Co., Brookly	
The Havemey	
The F. O. Mathiessen \& Wiechers S.	
The Standard S. R. Co., Boston 3,000	
The Boston S. R. Co., Boston............................. 1,500	
The Continental S. R. Co., Bosto	
The Forest City S. R. Co., Portland........................ 500	
The St. Louis S. R. Co., SL. Louis........ 1,000 The Louieiana S. R. Co., New Orleans. 3,000	
The Louisiana S. R. Co., New Orleans, and the Planters' S. R. Co., New Orleans	
The Franklin S. R. Co., Philadelphia.... 6,000	
The E. C. Knight S. R. Co., Philadelphia................. ... 1,300 The Spreckels S. R. Co., Philadelphia......... 3,500	
The Spreckels S. R. Co., Philadelphia......... 3,500 The Delaware S. R. Co., Philadelphia 500	
The Baltimore S. R. Co., Baltimore.............. 1,500	

- N. Y. Com. Bulletin.

Sending Insects by Mail.

Large-bodied insects should never be mailed or sent by express when pinned, without first fastening the bodies so that they cannot break, and thus damage the rest of the specimens in the box. A little cotton drawn out and turned around the pin so that it holds tightly near the thorax, and then brought around the end of the abdomen and again fastened to the pin, will be found sufficient, especially if a few pins are used around the body to prevent its otherwise moving.
the acoustic properties of aluminum.* At the April meeting of the Physical Department of the Brooklyn Institute, Prof. Alfred M. Mayer, of the Stevens Institute of Technology, delivered a very interesting lecture on the acoustic properties of aluminum. From the beginning to the end of the lecture the interest was maintained by the instructive and entertaining manner of the lecturer, no less than by the subject matter of the lecture and the many interesting experiments by which it was illustrated.
The lecturer began by describing the methods of various physicists of obtaining the modulus of elasti city of metals, and told how he, knowing the modulus of elasticity of any metal, could calculate the rate of vibration of a given body of that metal. He then performed several experiments illustrating the elasticity of aluminum, the first being that of vibrating longitudinally a rod of aluminum. The rod was grasped at the middle by one hand while it was rubbed lengthwise by a glove charged with resin and worn upon the other hand. The rod emitted a sound of very high pitch. The exact rate of longitudinal vibration of the

Su.AM.N.

Fig. 1.

rod was ascertained by comparing the sound with that of a tuning fork having a known rate of vibration; then the fork was made to vibrate sympathetically by causing the rod to vibrate in the vicinity of the fork, as shown in Fig. 1. The next experiment was one in which a column of confined air was vibrated in a tube by the longitudinally vibrating rod. Some light dust contained by the tube was heaped up at the nodes, or points of no vibration, and removed from the venters, or region of greatest vibration, thus showing how the air column is divided up into vibrating segments. He said the aluminum rod was divided into two vibrating segments with a node at the middle.
In the next experiment a number of aluminum bars were supported at the nodal point upon a frame elevated a short distance above the table, something after the manner of a metallophone. These bars were tuned to the 1st, 3 d , 5th and 8th of the scale, represent ing the major chord. When these bars were struck with a mallet of suitable weight, beautifully clear notes were emitted, and the sound was prolonged beyond that produced by metallophone bars made of other metals.
To show accurately the location of the nodes, bars were sprinkled with very fine sand and vibrated. The sand was piled up in fine transverse lines at exactly two-ninths of the length of the bar from the ends; a resonator applied at different points along the ba (lower part of Fig. 1) readily located the nodal lines To re-enforce the sounds and more strikingly exhibit

Fig. 2.
the quality of the tone emitted by the vibrating bars, a Helmholtz resonator was placed under each bar, when the sound was very loud and rich. The bar when struck bends downward at the center and upward at the ends, then by its own resiliency bows upward at the center and bends downwardat the ends, thus producing opposite effects which partly neutralize each other. The lecturer said that the end portions of the bars outside of the nodes seriously diminished the total sound emitted by the bar. He therefore pro* Abstract of a lecture delivered by Prof. A. M. Mayer
Physical Department of the Brooklyn Institute, April 22,1892
duced a piece of cardboard (Fig. 2) having apertures in it corresponding in width, length and position with the several segments of the bars, and placing this over
the series of bars so as to cover the portions lying out side of the nodal lines, the effect was like that of a resonator, the sound having much more volume.
Another interesting experiment consisted in placing one of the bars on cords stretched across a frame and supporting it a quarter of a wave length from the table, as shown in Fig. 3, noting the intensity of the sound as the bar was struck, then lifting the frame and bar from the table through a distance equal to several wave lengths. At certain intervals the sound was quenched, showing interference at those points The same thing occurred on lowering the bar to its original resting place.
Prof Mayer tried a large aluminum Chladni plate producing several intricate sand figures showing the nodes and venters. The plate was explored with a re sonator which re-enforced the sound at the venters, while at the nodes the effect was practically nothing. The experiment with the longitudinally vibratin aluminum rod was designed to show one method of getting the velocity of sound in a solid. The number of longitudinal vibrations per second of the rod, multiplied by twice its length, gives a velocity of sound in it; similarly the length between two adjoining nodes in the tube experiment is a half wave length, and the length of the rod (which gives the half wave lengths) divided by the half wave length (as shown by the dust in the tube) shows how much faster is the propagation of sound in the rod than in the air column.
The lecturer performed numerous other experiments showing the superior resonant qualities of aluminum, and stated that all he had shown was merely preliminary to a further study of the subject. He intends to make a further investigation in Paris, with Koenig, during the coming summer, and will be able, when the investigations are completed, to publish the results.

Tannin in Tea.

"Some examples which have been forwarded to us," says the British Medical Journal, "of the results o analyses for tannin and theine in tea indicate consider able variation in the amount of tannin, according to the quality of the tea and the state of growth at which it is picked. In some blends of China teas the percentage of tannin extracted by infusion for thirty minutes was $7 \cdot 44$; theine, $3 \cdot 11$; and a similar result was given in the examination of the finest Moning; while, on the other hand, with fine Assam tea a percentage of 17.73 of tannin by weight was extracted after infusion fo fifteen minutes, and two blends of Assam and Ceylon tea gave, respectively, $8 \cdot 91$ and $10 \cdot 26$ of tannin. On the whole, it is probable that the Indian teas are much more heavily loaded with tannin than the China or Japan teas. Moreover, the common method of prolonged infusion in boiling water is well calculated to extract all the tannin, while it dissipates the flavor of the tea To be drunk reasonably, tea should not be infused for more than a minute, and with water of which the temperature does not exceed $170^{\circ} \mathrm{F}$. It should be taken without sugar or milk, which would drown the flavor of the delicate and aromatic infusion thus obtained. This at least is how tea is drunk both in China and Japan, whence we have borrowed the use of it. With our European method of prolonged infusion in boiling water we destroy all the best flavor of the tea, and we extract such heavy proportions of tannin as to cultivate indigestion as the result of tea drinking. Indigestion is unknown among tea drinkers in the East, and use of the leaf."

Parcels Post Extension.

A postal treaty has been concluded between the United States and Great Britain, by which parcels may be sent by post to and from this country and th Windward Islands. These embrace the colonies of St. Lucia, St. Vincent, Barbados, Grenada, Tobago. No parcel can exceed eleven pounds weight, or five kilogrammes. Greatest length, 3 feet 6 inches. Great est combined length and girth, 6 feet. Postage, 12 cents per pound.

Photographing Bullets.

In a lecture on this subject, delivered recently at the South Kensington Museum, Professor C. V. Boys ex plained his apparatus for the purpose. It consists of box lined with black cloth, in which the photographic plate is exposed, of a condenser formed of a plate of lass about a foot square; of a smaller condenser in the a system of wire circuits and knobs to give the spark which throws the shadow of the bullet on the plate, and thus takes the photograph. The bullet enters and leaves the box by two holes, covered with paper to exclude the light, and in passing the plate the bullet touches the terminals of two wires, composed of thin lead wire, thus partly completing the circuit; a small flash passes from the smaller condenser, causing a condenser inside the box, and this flash, lasting less
than one millionth of a second, takes the photograph of the bullet, no lens being employed. A wet string in the circuit of the small condenser is used to damp the electrical oscillations. Mr. Boys was able to infer from his experiments with a rifle that the bullet must have

Fig. 3.
received some three per cent of its velocity after leaving the muzzle, at which point the turning effort of the rifling must have necessarily ceased.

an Improved flue cleaner.

The boiler tube cleaner shown in the illustration, which has been patented by Mr. Michael J. Carbis, of Bingham, Utah Ter., is designed to be quickly set up and readily operated to clean the tubes of scale, sedi ment, or any obstructions, being especially adapted for cleaning the tubes of the Babcock \& Wilcox and similar styles of boilers, the machine being for this pur pose set on a platform having the same inclination as the tubes, or extension tripod legs may bearranged for the purpose. In a suitable tripod stand is a vertica sleeve, in which slides a post having in one side gear teeth in mesh with a pinion actuated by a hand wheel, as shown in the principal view, whereby the post is raised and lowered. On the upper end of the post a pivot engages a socket on the under side of a horizontal casing, in which screws the feed screw rod, having on its outer end a scraper and brush, as shown likewise in the sectional view. The feed screw rod has a keyway engaged by a key on a sprocket wheel on the casing shown in one of the views, the sprocket wheel being rotated by means of a crank on a shaft in bearing lower down on the post, whereby the feed screw rod is moved inward or outward. The scraping plates are

CARBIS' FLUE CLEANER.
preferably made of thin steel, spirally curved, the small figure showing an end view of the scraper.
The plates are sufficiently elastic to conform to the nner surface of the tube, and in a normal position are preferably somewhat in excess of the diameter of the tube. The brush is located directly in the rear of the scraper, is preferably circular in form, and has a diame er somewhat greater than that of the scraper, so that it will readily remove all the particles loosened by the atter. The feed screw rod is made in sections, rea dily connected together, whereby the scraper may be passed through tubes of any length. If desired, the cleaner may be geared to run as high as two and a half or three revolutions on the driven sprocket wheel to one revolution of the driving wheel, thus doing the work very rapidly. Where tubes are badly incrusted, the cleaner and brush may be taken off and a suitable cutting tool attached to the outer end of the slotted shank of the feed screw rod by means of a set screw or a key, and in this way the worst cases of choked-up tubes can be efficiently dealt witn.

RECENTLY PATENTED INVENTIONS Engineering.
Steam Engine.-John N. Kemmerer, oganton, Pa. This inveution provides a novel me chanism to apply power to the crank shaft, levers arthe crank, one of the levers being pivotally secured at one side of the shaft and the other at the opposite side, with operating devices to rock the levers, thus overcoming dead centers and increasing the power. Im-
proved throttle devices are also provided for use in proved throttle devices are also provided for use
connection with several steam cylinders and steam channels leading to their opposite ends, so that steam may be admitted to the inner end of one cylinder and the outer end of the other and vice versa, there being and controlling the valves of the different for operation

Spark Arrester. - Langford C Mabie, Richmond, Va. This is an improvement fo locomotive and other high pressure engines designed
to entirely eliminate from the products of combustion ensparks and cinders and carry them to a place mporary deposit, also carrying off the thick black smoke. Within the stack is a novel construction and
arrangement of two freely revolving wheels having radial blades set at an inclination to the plane of the wheel like a windmill wheel, the inclination of the blades of the two wheels being reversed to give them evolution in opposite directions, separating, by centri fugal action, the sparks and cinders from the blast a o different points.

Cut-off Governor.-Levi O. Harris, adilac, Mich. This is an automatic device for steam engines, designed to secure an economy of fuel and the rical casing communicating with the steam chest is a nnular chamber in which revolves a closely fittin eeve having valves on its periphery, and in this sleev he ports of the casing, the first sleeve having an out xtension sleeve conne inner one has a shaft connected with the governor解stering openings, and the ports are pass through ont of register as the engine runs too fast, being in per ect register only as the engine is run at the spee
esigned
Wrist Plate.-James Barclay, Sioux City, Iowa. This device consists of two plates or disk pendently one of the other, one of the disks being conwith the valve rods and the other with the hook r eccentric rod, there being also a locking device fo
connecting the iwo disks with each other. The wris plate thus provided is of simple and durable construction nd the arrangement permits the engineer to easily art the engine without being compelled to lift th hook rod and hold it up while manipulating the
throttle valve and starting bar.
Balanced Slide Valve.-William T. Harrison, Pooler, Ga. This is a valve of simple and durable construction, arranged to supply the cylinde with a full charge of steam at the time the piston is a ists of inlet ports formed in the slide valve and alance plate provided with a port adapted to connect with the valve inlet ports at the time the steam is ad mitted to the end of the cylinder.
Vehicle Propelling Mechanism.pulley, and adapted to be driven in either direction motor, is located on the vehicle body, a belt connec ing this pulley with a second cone pulley on the axle of the vehicle, a convenient shifting mechanism for the
belts being provided. The mechanism is simple and belts being provided. The mechanism is simple an durable and permits of readily changing the speed of he vehicle without changing the speed of the moto steering the vehicle in any desired direction.

Railway Appliances.

Car Coupling.-E. H. B. Knowlton, West Superior, Wis. This is an improvement in tha class of devices known as "twin jaw" couplers, and the omatically coupled and locked when brought together together with means for automatically locking them in an uncoupled position when they are separated. Th cck can be quickly and easily operated to uncoupl he jaws, and the top surface is without any irregular ties or

Railway Gate.-John S. Chambers r., Allegheny, Pa. This is a swinging gate which wil hus clearing overhead electric wires and when raised, tions. It has a main arm to which is pivoted a supple mental arm, an inclined guide pivoted to the máin arm projecting over and beyond the pivot of the arm while a cable has one end secured to the free end of th supplemental arm and is passed throngh the guide, it ther end being secured the support at the pivoted nd of the main arm. The length of the arms is varie track
Train Smoke Conduit.-Chester L. mprovennent in devices for carrying away smoke from locomotive, providing for this purpose a simple and nexpensive apparatus by means of which the cinders moke, etc., will be discharged from the rear end of the sists of a conduit made up in sections and open at eac nd, the section on the locomotive having a flaring mouth which is open over the smoke stack, and the nd effective means are provided the train. Simp everal sections together, so that ther will be smok ight and will conform to the different movements o the cars.

Mechanical-Appliances.
Punch. - Francis N. Simmonds, San Francisco, Cal. This is an inexpensive article to make, while designed to operate efficiently, the penetrating
portion of the punch being cheaply and easily renewe after it is worn out. It has a removable face with a crew-threaded bore aligning with that of the body to s passed down through the body and face, the head nd of the bolt being threaded to engage the threads of the bore of the face. The lower end of the bolt has slightly projecting hardened centering point, the several parts being so firmly united that there is no liability
Coal Drill.-Charles S. Sheppard Pittston, Pa. An auger is formed at one end with a
dovetailed groove having its sides diverging outwardly, nd a center cutter engages with its shank one side he groove, while a cutter standing at angle theret ngages with its shank the other side of the groove, engaging tie adjacent inner sides of the shanks of the enter and cutter. The drill is of simple constructio nd is designed to easily and conveniently cut a larg pening in the coal without requiring much power.

Agricultural

Plant Frame. - Edward K. Jones Portand, oregon. This frame has a soil receptaci with a cover and fruit protector having openings fo he plants to project through, and prevents the washin way of the eoil and its spattering upon the fruit. It erably $51 / 2$ by 12 feet in size, accommodating 12 dozen plants, the openings being 4 inches in diameter. It is protected from heat or cold, and it is provided with per rect meane for ventiation, irrigation, and drainage.
With this rrame fruit may be produced very With this frame fruit may be prodnced very carly
he eeason, and its production continued until ver ate, young plants being forced to early maturity and ade to yield large quantities the frst seaso
Ant Hill Cutter. - John Tym, Vorth Bend, Neb. This device comprises a frame witt ide runners, with a cutter arranged obiiquely to and
secured atits front end to one of the runners, while dapted at its rear end to permit trash and the like to pass ofi. It is designed to be dragged over the ground y a horse, when the cutter will strip the ant hills off
cloe to the ground surface, so they can be readily recloe to the ground surface, so they can be readily re--
noved and the ground left in condition for cultivation. moved and the ground left in condition for cultivation.
By means of an adjusting lever the cutter may be lifte by means of an adjasting lever the cutter may be lifted and held off th

Miscellaneous.

Method of Mining Coal.-Peter C. Forrester, Wilkeson, Washington. The method
mining provided by this invention consists of fres dining provided by this inveerricals ontal cuts or drifts or cross cuts intersecting with the ertical cuts, and then undercutting or blasting from below the pillars of material formed between the cuts and cros8 cutts. By this method the miner will not be a Il subjected to the obnoxious gases arising in blasting or undercutting, and can always go to a place of safet
whenever a blast is fred, while there is also θ sevin Whenever a blast is ired, while th.
umber used in building the cuts.
Vehicle Wheel. - August Bauer, Sandusky, Ohio. This wheel has a circular brace rastened to to ata point betwear trie hub a felly, the intermediate filling blocks or sections between the spokes, the rings and filling blocks being clamped together by bolts or rivets. This improvement may be pplied to any old wheel to strengthen it and prolon usefulness, preventing the spokes from breakin Tail Board Spring. - Freeman Nickerson, Jr., Fall River, Mases. This is a combined
spring and catch, constructed of two pieces of metal, or keeping the tail board of a vehicle closed when shu while readily admitting of the opening or dropping c The spring is made of sheet steel, and the catch secured to it is very solid and strong and made to project beyond the free end of the epring, where it is of a
ooll or hook shape above, to form a ready handle fo lifting the spring. The device is designed to be much than the ordinary devices for the pur
Wiring Fence Pickets.-Lemuel H Slagle. East Brady, Pa. A machine of simple an durable constraction, designed to be very effective for chis purpose, is provided by this invention, the ma
chine croseing the wires after the picket is inserted and having a tension device to give a proper tension and twisting to the sets of wires. A Aeries of levers are pivoted on a post, each lever having forked ends to re-
ceive the wires, and a retaining wire is held on eact ever to extend across the fork and hold the wires in place, while a bar is pivotally
give them a swinging motion
Ladder. - James F. Mitchell, Titus ville, Fla. This ladder is especially designed for pickng oranges and other fruit. It has a straight section
hinged to the top of which is a section that is curved nd extended laterally in a plane at an angle of not le tan forty-five degrees to the body of the ladder, the
op section being in most cases extended at a righ angle to the body portion.
Feed Trough.-Earl B. French, Oak land, Cal. In this feed trough the feed is supplied his feed d sowly and thoronghly masticate it. The
trough is made with a side reservoir separated from the other portion by a removable partition, a ratche nechanism holding the partition in position in the
reservoir. The flow of feed is controlled by the reservoir. The flow of feed is controlled by the move-
ment of the partition by the animal feeding, this also mert of the partition provides for different kinds food.

Knockdown Exhibition Stand.Herman A. J. Rieckert, New York City. This stand has two connected corner posts, sides being hnned to
the posts and sleves hinged to the connecting bars of the posts, eacn made in two parts hinged together and resting on cleats formed on the sides. The stand is of simpe and durable construction, and can be reading
folded for storing and transportation. It is arranged to be conveniently set uf for use in stores, hotels, and ike places, for exhibiting goods.
Journal Page File.-John O'Rourke, Mandan, North Dakota. Covers adapted to inclose heavy indexed pages are hinged to a central base por-
tion a jointed section forming the back edge and pertion, a jointed section forming the back edge and permitting the file to be closed as an ordinary book. On the
base is a soring-pressed bar carrying curved file posts, the doabled-over upper ends of which enter sockets in the top of posts secured to suitable plates on the base, the pressing down of the curved posts forming the turned freely from one cover to the other. The improvement forms a simple file which may be conveniently operated, and in which may be kept journal sheets,
statements, summaries, and matters of a similar na-
, are in form for ready referenc

Beer Drawing Apparatus.-Peter . Gaynor, Greenbush, N. Y. This invention affords a simple means by which beer may be conveniently draw under pressure from the cask, the device being inserted The spile is of the usaal external shape and within it seat aginat which fte a rubber packing valve beving tits lower end a a ewinging flap normally presed upward by the pressure within the cask. A novel form of stem and handle takes the place of the ordinary cock, the beer flowin
Bar Fixtures. - John Neumann, Brooklyn, N. Y. This invention provides separable
nd interchangeable bar fixtures such as rinsing chamand interchangeable bar fixtures, such as rinsing cham-
 he parts may be readily detached from other adjacent parts for cleaneing or repair. The improvement is applicable to contters or bars where liquors
kinds are served to customers by the glass.
Lamp Burner.-Patrick J. F. Graeme, Beulah, Canada. A triangular frame is adapted for vertical movement at each side of the wick, and there the frames each having a piston rods at each siad with the frames, while telescopic hoods secured to th such that the flome the wick 'tube. The construction such that the flame may be extinguished and the wi being also provided that the wick may be raised and lowered without
ming mechanism.
Tea Kettle.-John Black and Fred. C. A. Natius, South Chicago, ill. The breast of this he filling opening formeral level of the op and the ket hie is filled, and this space is connected by a tube with he upper part of the spont, and the bail wher thrown By this construction the water in the kettle is prevented from boiiing over at either the spout or filling opening, and in bandling the kettle there is nodanger of burnin or scalding the hands.
Cooling Apparatus.-Sherman L. Smith, Plymouth Penn. This is an apparatus designed to faciilitate the transportation in good cond
ion of buter lin of butter and like articles in warm weather, pro placed in a cask containing ice or spring water. there eing locking connection between the receptarle and the cask. The receptacle is preferably made of shee contents may be readily removed withont disturbin

Tor.-George W. Galbreath, Sedalia,
Mo. This is a device constructed somewhat in the naure of a target, and provided with an attached elastic cord carrying a weight which may be made to strike the target, the latter when being struck at the center atomatically sounding an alarm. The toy may be held In the hand, one or both hands being employed in its Truss. - William A. Adair, Moline, on the body in cases of hernia, and is light, strong, and easily adjustable, to enable the pads to bear where ments of the body, aud sufficiently elastic to adapt

Urinal.-Charles G. Zeilman, Albany ating flushing device, which also afforde a positive se at all times against the escape of sewer gas. The conout of order.
Nork.-Copies of any of the above patents will be urnished by Munn \& Co.. for 25 cents each. Please of this paper.

NEW BOOKS AND PUBLICATIONS.
Travels among the Great Andes of THE EQUATOR. By Edward Whymper. With maps and illustrations.
New York: Charles Scribner's Sons.
1892. Pp. xxiv, 456 . Price $\$ 6$.
Supplementary Appendix to Travels AMONG THE GREAT ANDES OF THE with contributions from H. W. Bates F.C.S. (and many others). London:
John Murray. 1891. Pp. xxiii, 147 . These sumptuous and richly illustrated volumes it is
at our command. Edward Whymper is the frrst man Who succeeded in climbing the Matterhorn in Switzersain climbing in South Americe is simply facinting. The desperste haddehing enconntered toplach tions are pictured, and the oddities of the characters met with, whether of his party or not. give an agreeable rate volume, toiche recita. The appendix, asepaexpedition
Transactions of the ameridan InSTituTe of Electrical Engineers.
Vol. VII. 1891. New York: Published by the Institute. Yp. $\mathrm{Pl}, 635$. All that is necessary to say of this very handsome papers, their authors, and the discussions annexed to such papers give the highest value to the work as an ex ing, portrait of Elibu Thomson, will recall to many the features of the great enginer, the inventor of electric welding and investigator and inventor in many other branches of alternate current work. Among the more notable papers in thay be ciled Resla on Alternate Currents of very high Frequency, Kennelly on in and reports on the Frankeort Electrical Congress But this paticularization does not affect the value of the other papers with accompanying discussions.
Encyclopedie Scientifique des AideMEMOIRE, PUBLIEE SOUS LA DIRECTION DE M. LEAUTE, MEMBRE DE
L'INSTITUT. Etude Experimentale Calorimetrique de la Machine a Va-
peur. Par V. Dwelshauvers-Dery.
Paris: Gauthier-Villars et Fils. Pp. 13.-Transmission de la Force MoPar Al. Goruilly. Paris : GauthierVillars et Fils. Pp. 170.-Resistance
des Materiaux. Par M. Duquesnay.
Paris: Gauthier-Villars et Fils. Pp. 187.-La Distribution de l'Electricite.
Installations Isolees. Par R. V.
Picou. Paris: Gauthier-Villars et Fils. Pp. 168. Price per volume, 75
cents.

We note the reception of four little volumes of this ncyclopedic aid to memory. The books are all well edited, and the subjects seem well treated. Where reance of the books adds materially to their value.
The Galvanic Circuit Investigated Mathematically.
Ohm Dr. New York: D. S.
Van Nostrand Company. 1891. Pp. 269. Price 50 cents.
The science series of the D. Van Nostrand Company has never received a more interesting acquisition than
the present one. It is a translation of the famous paper of Dr. G. S. Ohm. published in 1827, in which previous translation has been hard to obtain, and elec-
\qquad
A Manual of Phonography, or WritING BY SOUND. By Isaac Pitman.
London: Isaac Pitman \& Sons. Austraia: Ed wards, Dunlop
The Phonographic Teacher. By
 cents.

Practical Carriage Building. Com- piled by M. T. Richardson. Propiled by M. T. Richardson. Pro- fusely illustrated. Vol. 1. New York: M. T. Richardson Co. 1892. Pp. 222. Price $\$ 1$.

We have before now favorably commented on pre-
vious works on practical blacksmithing. We can exvens works on practical blacksmithing. We can ex-
tend the same favorable consideraticn to this book. It seems thoroughly practical and to the point, and well adapted for repairers who have many different cases of tions are given to elucidate the text Many contributions from practical workers make the book read like Stereotyping. The papier mache process. By C. S. Partridge. Chicago,
Ill. 1892. Pp. 139. The flong process of stereotyping is given in detail by Mr. Partridge. The tools, presses, etc., required are
illustrated, and every step of the process receives due Mustrated, and every step of the process receives due best receipts and processes

Irrigation Canals and other Irri-
Gation Works. By P. J. Flynn, Gation Works. By P. J. Flynn,
C.E. San Francisco, California. 1892 . (Two vols.
Price $\$ 8$.
The general subject of open channel irrigation as emtopic treated in the seven hundred pages of this work. The first volume is devoted to irrigation canals and other irrigation works, the second to flow of water in
irrigation canals. We can only make the old complaint irrigation canals. We can only make the old complaint that space forbids anything like an adequate review of
this very handsome work. It is a credit to the publisher as well as to the author, and will be found of ex-

Safety Valves: their History, InVention, and Calculation. ${ }^{\text {By }}$
William B. Le Van.
Wew York,
W. Henley \& Co.
Price $\$ 2$ Price $\$ 2$.
As the safety of a boiler and the life of its engineer and others depend on the all-important safety valve,
it is eminently appropriate that a book should be deif is eminently appropriate that a book should be de-
voted to so important a topic. Sticking safety valves,
miscalculated levers and similar factors have been responsible for many disasters. In Mr. Le Van's work we
have the full subject properly presented, calcula tions have the full subject properly presented, calcula tions
elucidated, the different constructions shown, and last, but not least, the ills that safety valves are heir to are described
feature.
Record of Scientific Progress for THE YEAR 1891. By Robert Grimshaw, M.E., Ph.D. New York: Cas-
sell Publishing Co. Pp. vi, 372. Price $\$ 1.50$.
In brief form the entire field of scientific work is covered by the author. The mere recital of his headings
would fill the space allotted for a review. The absence would fill the space allotted for a review. The absence
of illustrations and the necessarily short treatment allotted to so many subjects are the features of the work which we can least approve of. The volume will be
found, however, of use and interest. An excellent indez found, however, of use and interest. An excellent indez

How to Make Inventions. By Edward Postrand Co. No date. Pp. ii, 161 Nostrand Co. Price $\$ 1$.
As this work covers the whole field of the arts it is cer tain that if reviewed carefully errors could be indicated.
But in the main it is an excellent manual, and will But in the main it is an excellent manual, and will be read by many desirous to become inventors. Cousidera-
ble labor on the author's part must have been requisite to give so logical and clear an arrangement to such diversified material. As is always the case when a book
of thistype is well done, it is most interesting reading of this type is well done, it is most interesting reading
and can be commended to many others than inventors.
A Concept of Political Justrice. By
J. W. Sullivan. New York: Twentieth Century Publishing Co. 1891 Pp. 58. Price 10 cents.
The Modern Cook Book.
O.: Mart, Crowell \& Kirkpgield, O.: Mart, Crowell \& Kirkpatrick
Pp. 320 . The Forging of the Sword and lustrated by Charles Bradford Hud lustrated by
son. Pp .103.

SCIENTIFIC AMERICAN

BUILDINGEDITION

MAY NUMBER.-(No. 79.

table of contents.

 1. Elegant plate in colors of a very handsome resi-dence erected at Sea Side Park, Brigeopt
Conn. Two perspeciive views, floor plage, etc. Conn. Two perspecive views, floor plans, etc
J. w. Northrop, architect. Cost $\$ 17,000$ com plete.
Plate in
mond Island near Portend Mee rected on Dia vations and two floor plans, an excellent design Cost $\$ 2,500$ complete.
. A very attractive summer cottage recently erected at Great Diamond Island, near Portland, Me.
Floor plans and perspective elevation. Cost $\$ 2,000$ complete.
. A handsome residence in the colonial style of archi W. F. Hobhs, Esq. Cost about $\$ 7,500$ complet Perspective view and floor plans. J. W. North rop, architect.
5. A one story brick cottage erected at Richmond, Mo. erspective view and floor plans. Cost abo $\$ 2,300$ complete,
Several photographic plates of handsome residences near New York.
suburban reside
at Bensouhurst, Long Island, N. Y. Cost $\$ 5.80$ complete. Fioor plans and perspective view very tasteful desing for a stair hall, for a resi-
dence in Cleveland 0 , dence in Cleveland, 0 .
9. Perspective view and ground plan of St. Andrew
Episcopal Church, at 127 th Street and Fitt Episcopal Church, at 12 tht Street and Fift Avenue, Ne,
New York.
10. Sketch and plans of a
house. Cost $\$ 1,100$.
11. A Califor Cia residence. Perspective elevation and
floor plans. A pleasing deeig.
floor plans. A pleasing design.
12. Perspective and plans of the Manchester Palace of Varieties, Manchester. furnishings. An entrance hall. A Chippendale drawing room.
14. Miscellaneous contents: The white stain or efllo-
rescence on bricks.-Household pests.-The keynote of an anditorium.-Curious foundations. An Albany house.-To keep iron pipes from rust-ing.-The Senate chamber new decorations.-
Don't turn the exhaust into the sewer. - Floors Don't turn the exhaust into the sewer.-Floor
and their finish. - Bedroom furnishing. - Moderate price screens, illustrated.-Improved hot water pheeter, illustrated. - French observations on
American constructions. - The compensation of Americn constructions.-The compensation of
architects, - A speaking tube and eariphone, architects. - A speaking tube and eariphone,
illustrated.-Diamoud wall finish.- - Fireproofing eceipts. - An improved hot water heater, illusrated.
The Scientifc American Architects and Builders Edition is issued monthly. 82.50 a year. Single copies,
25 cents. Forty large quarto pazes, equal to about two hundred ordinary book pages ; forming, practically, a large and splendid Magazine or Architrcrurer. richly adorned with elegant plates in colors and with fine engravinge, illnstrating the most interesting
exumples of Modern Architectural Construction and allied subjects
The Fullness, Richnese, Cheapness, and Convenience of any Architectural publication in the worla. Sold by all newadealers.

MUNN \& CO., Pobbushirs
361 Broadway, New York.

Pusiness and Personal. The charge for Insertion under this head is One Dollar a line
for each insertion; aboute eight words to a line. Adver tisements must be received at pubbication office as early a
Thursay morning to appear in the following weeks in

For Sale-One 15 H. P. double cylinder, double drum riction horizontal hoisting engine, with boiler and fixAcme engine, 1 to 5 H. P. See adv. next issue. "U. S." metal polish. Indianapolis. Samples free. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. 6 Spindle Turret Drill Presses. A.D. Quint, Hartford,Ct For foundrymen's metallic pattern letters and
send to H. W. Knight \& Son, Seneca Falls, N. Y.

Universal and Plain Milling Machines
Steam Hammers, Improved Hydraulic Jacks, an Expanders. R. Dudgeon, 24 Columbia St., New York. Screw machines, milling machines, and drill presses. Centrifugal Pumps for paper and pulpmills. Irrigating,
and sand pumpingplants. Irvin Van Wie, Syracuse,N. Y. For Sale or Wanted Manufactured on Royalty-Wall and ceiling mop. Patent No. 465,188, issued Dec. 15, 1891 For the original Bogardus Universal Eccentric Mill Foot and Power Presses, Drills, Shears, etc.. address
J. S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y. The best book for electricians and beginners in ele ricity is "Experimental Science," by Geo. M. Hopkins,
By mail, $\$ 4$; Munn \& Co., publishers, 361 Broad wap What do you want to buy? We will send without cost What do you want to buy? We will send without cos ing anything you wish. Paret, Willey \& Co., 265 Broadway, New York.
Competent persons who desire agencies for a new
popular book, of ready sale, with handsome proft, may opular book, of ready sale, with handsome proft, may
apply to Munn \& Co., Scientific American office, 361
Any one having a specialty of merit, and desiring to have it pushed on the Paciffc coast by one who hassome
money and much energy, address B. C. B., 67 Nevada money and much ene
Block, San Francisco.
$\$ 30,000$ to $\$ 40,000$ capital is wanted to extend the manueveryday usage. It is a purely commercial enter prise, in which a large sum has already been invested by New York merchants of the very best standing, for pro-
viding the plant and equipment. The practical adaptadility of the produ it is to extend the tions that additional capital is desired. The fullest opportunity will be given to bona flde investors to investi-
gate the business. Address "Security," care Scientift gate the business.
(\%) Send for new and complete catalogue of Scientific and other Books for sale by Munn \& Co., 361 Broadway,

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letter
or no antention will be paid thereto. This is for ou
infor or no attention wil be paid thereto. This is for our
information and not for publication.
Berene ces to former articles or answers should
give date of paper and page or number of question. References to former articles or answers should
give date of paper and page or number of question.
In uires ont answered in reasonable time should
be repeated; correspondents will bear in mind that be repeated; correspondents will bear in mind that
some answers require not a little research, and,
though we end eavor to reply to all either by letter
or in this dender though we endeavor to reply to all either by letter
or inthis departmente each must take his turn
Special W Wrten Informanion on matters of
personal rather than general interest cannot be personal rather than general interest cannot be
expected without remuneration.
cientific American Supplements referred ciennine American suppiements referre
tomay he had at the office. Price 10 cents each.
Books referred to promptly supplied on receipt
price.
Minerals sent for examination should be distinctly
marked or labeled.
INDEX of Notes AND QUERIEs. No.
 Dynamo an
Electric circ
Fuses for e e
Glass bottle
Glass, to dr
Induction

(4325) N. S. P. asks (1) for a receipt for n invisible ink which can be made visible by blowing the breath on the paper containing it, and which after-
ward returns to its invisible state. A. Writing made with a weak solution of chloride of cobalt is blue when
dry and pink when moist, therefore if ary and pink when moist, therefore, if you write witu
this ink upon blue paper, by breathing upon it you will produce ann che paper, By writing on glass with very dilute hydrofluoric acid, an invisible etching 18 made which stands out clearly when the glass is breathed apon. See SUPpLEMRNT, No. 378, for the full process
f making magic pictures. 2 . What is the metal used f making magic pictures. 2. What is the metal used
in the plugs connected in an electric current, and what re all of the reasons for its being used in preference other metall ? ? A. Tin is often used for the fusihe
plugs, and some of the fusible alloys are also need. The main requirements are a metal not easily oxidizase, which will fuse at a heat below that required
char wood or burn the insulation of wires io char wood or burn the insulation of wires. 3. Has
it much reesistance, and why do the plags blow out ? . The resistance is considerably above that of copper.
The plugs do not in reality blow out but met wo wires carrying a current of electricity are put into bucket of water, the wires touching nothing but the water, does any current pass ? If so, what per cent of
the currentused ? A. With a low E. M. F. a very smal percentage of the current will pass, and this per centage increases as the E. M. F. increases. The amount of current will of course depend apon the surraces exposed to the water. 5. While an electric street car is ranning, could it be stopped quickly by
reversing the motor, or would it damage it to do so A. In most motors, if reversed quickly, there will be be
danger of burring out the armature. . While examinA. In most mirs, if reversed que. 6. While examin-
danger of burning out the armaturce
ing the bell in a telephone I noticed that the two coils
were both on the same cirouit and that the circuit was not broken in any way, yet the armature, which is pivoted in the middle, has each eud alternately attracted.
Not understanding the reason' for this, will you please explain it thoroughly? It was an old telephone not in use, and I don't know whether the bell is just like the nes in use now or not? A. The bell you examined was a polarized bell, and the current which operates
it is an alternating current. The armature of the bell is it is an alternating current. The armature of the bell is magnetized, and the reversals of the current cause the armature to be alternately attracted and repelled.
Could you tell me of a way by which the gloss or shine Could you tell me of a way by which the gloss or shine
can be removed from clothes? A. It is said that spongng with a solution formed by dissolving 1 ounce ammoninm bicarbonate in 1 quart of water will remove the gloss from clothes.
(4326) W. T. B. asks: 1. If a motor attrery to batery having $\mathrm{E}=5$ and $\mathrm{C}=10$, what is the strength
C in the motor, and what is the E ? A. If your E.M. of your battery must be (according to $\frac{E}{-}=C$) $1 / 2$ ohm. $1 / 2+3=312$. This is, according to the same formula, $5-$ $31 / 2=1 \cdot 428$ amperes. 2. Is watts=C E correct for mo tor? A. Yes. 3. By the ermine as to what the E, C, and internal resistance having a known resistance? A. The resistunce of the battery should be equal to that of the external circuit. . For a plunge battery what should be the proportion of water, sulphuric acid and bichromate of potash, by weight and by measure? A. Make a saturated solution of bichromate of potash and water; to this slowly ad one-fifth its weight of commercial sulphuric acid. 5
Which is the best way to connect the cells of such battery to run a or multiple series? A. It depends upon the resistance of the motor; if its resistance is low, the cells may be connected in parallel; if it is very high, they must be connected in series. A little experiment will oon determine the best arrangement of batteries for given motor. 6. Is the emciency of a plunge bat ery impaired by the fact that the carbon plates are onl are two carbons to one zinc, the other dimensions being the same? A. The thickness of the carbon plates is not very material, although those of medium thickess are preferable to very thin ones
(4327) G. L. B. asks: Are there any means by which the time required for the sun to radiate ainty in any computations in regard to the time that he sun will continue to give light enough to sustain life pon the earth. The temperature of the internal ma the sun is only a conjecture. The temperature of servers at from 3000° to several millions. Professor Young estimates that $18,000^{\circ}$ Fah. is probably nearer the truth than the extremes. From the radiant heat of the sun as observed on a given surface of the earth is
computed the radiation in all directions throughout the sun's sphere. With this as a divisor, and the assumed ture with the sun's mass as a dividend, the time is obtained. According to Newcomb this is about $10,000,000$
(4328) H. B. C. asks how kodak ca daylight without injury. A. The roll of sensitive film has attached to Its inner and outer ends a strip of black paper about a foot long. The roll comes.in square haped cardooard boxes wises a slit in one corner
trough which the paper passes. To load the camera you simply drop the square box into the compartment the camera, then draw the outer black paper across the latter, put on the roll holder to the camera, and wind off the black paper until the sensitive film is utions tells you when the sensitive film is in place When the exposures are made, the black paper on the
inner end of the roll now surrounds the outside by inner end of the roll now surround the outside
continuous winding and protects it from light. The film is made of celluloid by the Eastman Co., Roches-
(4329) W. McC. asks : 1. A railway company in this vicinity have a pump to fill a tank for enand an electricamp and tank are one-half mile apart, pump when tank is full. Six cells of Leclanche battery are used, and a float closes its circuit. In very hot
weather the alarm will not work, but in cold or wet weather the alarm will not work, but in cold or wet
weather it works well. What is the trouble and what will remedy it? A. Possibly the expansion of the wir of the line, but if a ground is used, the trouble is probably due to the dryness of the earth surrounding the ground plates. The remedy is obviously to place the ground plates at a lower level, where they will be surounded by molst earth. 2. Have you any books that ou could recommend to show the manner of cutting in wires on a switchboard, especially a loop? Also any
on the setting up of telegraph instruments, both the ordinary and "quad"? A. For answers to these queries consult Prescott's "Electricity and the Electric Tele-
(4330) E. S. A. inquires in regard to the feasibility of constructing a large induction coil under the following data. Coil heads of black rubber $\frac{1 / 4}{}$ inch 6 inches square, length between heads 20 inches, rubber tube one-sixteenth inch rubber on a side 1 inch is movabla) will be placed. Core of charcoal iron very thin with paper laminæ between. Two layers of No 12 doube-e-covered magnet wire, B and S gauge, for primary, 20 pounds .011 inch or No. 29 B and S gauge for secondary. The question is, will the amount and gauge of the secondary wire compensate me, considering the previous data? Of course, extraordinary pains will be in primary circuit. Can you condenser will be placed of spark, or an approximate idea of the coil's efficiency A. We think the length of your coil is too great for its diameter; that you would succeed better by reduc
ng the length to 12 inches and increasing the dia-
meter correspondingly. Instead of using two layers of No. 12 wire in the primary coil, we would suggest the use of four layers of No. 16, with the ends brought out, so that you can use the several convolutions in to adapt the coil to different currents. The secondary wire is rather large for long sparks; however, it ought o give sparks of great intensity. The secondary coil hould be made up in sections according to the method Ritchie. You will probably succeed in producing a
(4331) W. S. asks (1) what to put in whitewash to keep fies out? A. We know of nothing
that can be used for the purpose that will not be offenthat can be used for the purpose that will not be offen-
sive and injurious to the occupants of the room. Dalmatian insect powder blown around the room occasionally is effective. 2. What chemical is put in a retort
and then heated to make oxygen gas ? A. Potassium chlorate and black oxide of manganese mixed are used for producingoxygen. 3. What makes the magnetized sewing needle described in Scientific American Re-
ference Book, page 101, point north and south? A. ference Book, page 101, point north and south? A. The earth has magnetic poles like a magnet, which cor larity is now supposed to be due to electric currents circulating in the earth in planes approzimately par allel with the equator.
(4332) N. C. H. asks: 1. Will you please explain to me the philosophy of the silo? Why is food in the silo depends mainly on the exclusion of air. This is accomplished by placing over the ensilage a movable close-fitting cover and weighting it heavily. 2. and whet me a blat and where to get it? A. The following are good books $\$ 3$; "Complete Practical Confectioner," price \$4; "Ornamental Confectionery," price \$2. We can send you either of these books on receipt of price.
(4333) N. L. writes: Will you kindly inform me, through your columns of inquiry, the
voltage of a magnetoeelectric machine, the fields of which are composed of six 6 inch permanent magnets ? The armature of one pair electro- magnets 2×1 inch, with $9-16$ inch cores, wound with about No. 25 wire.
A. It is impossible from the above data to estimate the A. It is impossible from the above data to estimate the
voltage of the magneto-electric machine. Probably the only method of measuring the current would be by the esulting mixed gas.
(4334) C. D. B. asks: 1. Will you state he E. M. F. of an ordinary gravity cell, and could the be run with gravity cells? If so, how many are required A. The E. M. F. of a gravity cell is practically 1 volt The gravity cell is not adapted to running motors, on er mon in ber made up in series of six to secure the proper voltage, or more cells to run it properly. 2. Will you also state the horse power of the motor? A. With a proper batery the motor will generate one horse power.
(4335) W. P. says : What is the composition of the artificial flowers and fruit used on mil-
linery ? A. Mix bread crumbs, magnesia, and finely powdered starch. When fermented, it can be formed and colored to aty pattern. Use the lakes to color, and a solution of gamboge in alcohol for a varnish. From
the "Scientific American Cyclopedia of Receipts, Notes the "Scientif.
(4336) O. D.-With gelatine bromide paper, C brand, made by the Eastman Company,
Rochester, New York, and the eikonogen developer you can make prints by lamp light with the greatest ease You should use Saxe or Rives photograph paper for blue prints. Probably the iron salts affected your
paper.
(4337) F. W. D. asks : 1. Are street car motors run by the use of only one wire? A. The cars
propelled by the trolley system are supplied with a current by a single wire suspended overhead, the current being returned by the track rails or by the 2. How can 1 drill plate glass? A. Make your drill of new tool steel. Do notheat it above a low red. Sharpen it, and afterward temper it by heating it to a low red and plunging it in a solution of chloride of zinc, this solution being made by dissolving the zinc in muriatic
acid until it will take no more. 3. Which is the cheapest light and power? A. A steam or gas engine. 4 Describe electric welding and forging of metals. A electric welding is accomplished by passing a very
heavy current through the pieces to be welded. You will find a full description of electric welding in SupPlement, Nos. $592,682,582$, and 785. 5. Has anything been made to lift itself into the air\% Has it wings or
wheels? Describe its power. A. Up to wheels? Describe its power. A. Up to the present time
no aerial machine has been made that will lift itself and its motive power. For information on aeronautics see Scientific American, No. 7, Vol. 66, and Supplement, Nos. 738, 739. 6. What dynamo will heat a bar one inch diameter to a welding heat, and at what cost? A. Write themakers of electric welding machinery for this informntion. 7. For experimenting purposes would you advise the purchase of a good lathe instead of having my work
done by some one else? A. If you are a good workman done by some one else? A. If you are a good workman
and have plenty of time, you will probably derive more satisfaction from doing your own work. 8. Can noiseless powder be used in guns? A. We know of no
noiseless powder. 9. What Supplement tells how to make a water motor? A. You will find articles on wate motors in Supplement, Nos. 611, 617. 455, 463. 10. Will 80 lb . pressure from hydrant give eight sixteen-candle
power lights with dynamo? A. With sufficient volume,
(4338) J. W. S. asks: Would it be practical to propel a small boat by means of a force
pump operated by foot power? The pump to take water through a tube at the bow of the boat and disbut a pair of oars would give you better speed and be
easier.
(4339) A. B. writes: 1. I have an in duction coil of about the size of the one described in
"Experimental Science," which is, however, woun No. 3\% silk-covered wire straigh, however, the spo to a depth of about three inches, each layer bein separated hy two thicknesses of paper well shellacked
It gives a three-eighths inch spark, and will give no tiver spark with double the amount of bottery. By your mode of winding you have removed the oute layers of the coil too far from its magnetic center furthermore, the wire you have used is too large; but taking the coil as it now stands, you would probably get a better result by connecting your cells in paralle 2. Which is the most injurious to life-a current wit one ampere and 600 volts, or a current of one-hal the same, the larger the current the greater the dange Is it more economical to conduct a five-ampere cur rent with an E.M.F. of 100 volts than with 75? A ore economical in the use of copper. 4. Does anode mean the posituve and cathode the negative pole? A
Yes. The anode is the electrode through which the current enters, and the cathode is the one through which it emerges. 5. What is
(4340) R. A. W. states that a Sawyer Mann 16 candle 50 volt lamp requires one ampere Queries some time since.
(4341) R. W.-For the information you desire concerning solar printing we refer you Wilson's "Photographics," price
(4342) E. A. asks: 1. How can I connect two dynamos together to increase the voltage? A Connect them iu series, as you would two batteries. 2.
How can iron be soldered? A. Iron may be soldered with soft solder by first tinning it, after the application and steel may be brazed. Use borax for a flux, and spelter, sheet brass or silver solder for solder.
(4343) F. M. G.-In the construction of yonr dynamo, the use of gas pipe for the core of th could not be stated without experiment.
(4344) W. C. G. writes : 1. I have made a telephone described (Fig. 5) in Scientific American and would like to know: If a larger spool and more wire (No. 36 s.c.) were used than what is shown in diagram, would it interfere with the working of the we working of Too much wire would interfere with ary resistance into the circuit. 2 What effect smaller amount have, or if the quantity on each spo as not exactly the same? A. Too little wire would produce only a slight effect. If the two spools were o early but not exactly the same resistance, there would no perceptible difference in the working of the line. . Would it make a difference in the working of the laced on the the "positive" end of each magnet wa itive" end be placed on one pole and the "ne "po ne the pole in other? A. It makes no diference whic pole of the magnet is used. 4. Should the instrumen be connected by the screws P of each instrument, of by the screw P of one and \mathbf{Q} of the other? A. This immaterial. 5. Would a straight, pointed magne or 4 inches long answer in place of the U magnet A. Yes. 6. What kind of steel should I use to make U magnet? A. Any steel that can be hardened. Machinery steel is often used for this purpose. 7. In wha number (Supplement or Scientific American) i the " House" telephone described? A. The "House telephone is described in No. 20, vol. 55, of the Scientific American, page 303. 8. In what number is the escription of an induction coil, illustrated, for shockgive a good shock and such that one could make with out machinists' tools, etc.? A. Such a coil a mention is described in Supplement, No. 569. Would two thicknesses of paper between the magn pole and coil be sufficient? A. Ye
(4345) W. W. L. asks: 1. What is the esistance of a 16 candle power Edison incandescent
lamp? A. About 220 ohms. 2. How many would flow into a storage battery connected with the Edison incandescent light wire (E. M. F. 112 volts) with
four 16 candle power lamps connected in circuit thus $\stackrel{+}{\leftrightarrows}$

Fig. 1.
A. 0.012 of an ampere. 3. How many amperes would flow into battery with one, two, three, o
candle power lamps connected in circuit thus:

A. limited only by the mains Fig. 2 , the amount woula resistance is interposed between the dynamo and batery except the conductors. You can connect the lamps Then assuming the E.M.F. to be in the third diagram. would flow through your battery, 4 . What is the name given to the way the lamps are connected in each of hese illustrations? A. The lamps in Fig. 1 are connected in series, those in Fig. 2 in multiple arc or
(4346) W. G. C. asks : Is there any way
not to destroy either piece, and leave the edges so the
can be.stuck together again? A. You can cut off the ottom of the bottle by using a curved hot wire, turn ircumferentiol lin it well to scratch the on ircumferential line. It is well to scratch the bottle tart the fracture. If the bottle does not break, a drop of water applied to the scratch will generally start th
(4347) E. R. H. asks : 1. What is th (4347) E. R. H. asks : 1. What is the arrents generated in the core of the armature and flel rated in induction, in the same manner as thos does minated ce wre of the armature. ture core? A. Laminx, with the insulation between he laminæ, prevent the circulation of theee currents magnets wound mathematically correct with regard to he size and length of wire? A. They are practically orrect; a formula has been devised which would rende it possible to design a dynamo by mathematical calcuations alone. Many of the formulas in electric work are impracticable. 4. What is the limit of speed in he dyname A . M depends on the design the dynamo; a dynamo may be
current at almost any speed.
(4348) A. L. D. says : What papers or ooks do you publish that will give me information o could I get to instruct me in pholo-engraving por work? A. For incubators see Supplement, Nos. 612, 30, 778, 835. Regulator, 848. For photo-engraving see Supplement, Nos. 612, 731,768, 849, 656.
(4349) W. F. A. asks for a simple test in iron in sal ammoniac. A. The color will show it, if
in quantity. Dissolve in water and add a drop nitric acid, boil, cool, and add solution of potassium errocyanide or sulphocyanide. The frrst will give lue color, and perhaps a blue precipitate, if iron is
(4350) G. A. W. asks: Will you please inform me how pure bisulphite lime and sulphite lime re made? A. By acting on caustic lime with sulphurou side. The later may be made by burning sulphus, owdered charcoa
(4351) G. S. H. says : A car moves round a curve at a certain speed; the outer rail is hig in the car by building it higher, what will be the effect? Will it add to the safety or detract from it? Will it be necessary for safety to add to the elevation of the outer ail or not? A. It will make the car more liable to be apset, and the outer rail must be raised to compensate
P. asks: How can I etch on steel, as knive tc.?-Prof. McD. asks for a table giving the atomic an equivalent weights of the elements, with their quantivalence. I have such tables, but they do not include he laterelements.-B. G. T. wants receipt for lutes for A. G. M. N. asks for a receipt for bleaching fuia. -A. G. M. asks how to make gold lace.-B. S. T. wants tions for polishing the edges of leather strops.- - H K. asks for instructions for using salicylic acid.

Answers to all of the above queries will be found in Ae "Scientific American Cyclopedia of Receipts, Notes The advertisement of this book is printed in another column. A new circular is now ready.

TO INVENTORS.

An experience of forty years, and the preparation of
nore than one hundred thousand applications for pa
ents ant

 tensive facilities for conducting the business, Address
MUNN \& Co, office SIIENTITC AMERICAN, 361 Broad-
way, New York.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted

May 3 1892,
AND EACH BEARING THAT DATE.
(See noteat end of list about copies of these patents.J

Box. See Fruit box. Journal box. Letter box. Box for stationer, etc. G. B. Hurd................
Bracket. Sioe Towel Irackete.
Brake. See Car brake. Cycle brake. Hemp

Colla
Collar
Cor
\qquad
Corer, apple, W. W. Boutell...........................
Corkserew, W. B. Boubl.
Coupling. See Airand steam couping. Carcoup

Cushion. See Bed slat cushion.
Cutter. See Paper cutter.
Wyed cutter.
Cycle brake, Woodhead $\&$

Drainape trap, T. © A A very.
Dress facing and protector, A.M. Y̌oung..
Drier, J. G. Sanderson....

DESIGNS.

 Canoon, Codelember. Bücioüitì:

TRADE MARKS.
Antiseptic for the prevention of gonorrhea, syphr

 Game for outdoor and indioor पse, J. C. Horreil.:

glet and simimiär dis:

A printed copy of the specilcation and drawing of
 Canadian patents maynow bo obtaind by the in-
vent ors for anyof the inventions name oin the fore

mem sem cint LATHES Foot and Power
 SEBASTIAN LATHE COMPANY,

Ou USE GRINDSTONES?
 2d Floor, Wilshire, Cleveland, 0.

GRAINING. - Walls "Practical Grainin "o eontains

"ECONOMY IS WEALTH."

THE PREMIER CAMERA

Is the best in market. Simple of Manipulation. The Fhims are used. PRICE $\$ 18.00$
\qquad We make all Kinds of Cameras. ROCHESTER OPTICAL COMPANY, 14 s. Water St., ROCHESTER, N. Y.

ELECTRICITY
BELLS, $\begin{aligned} & \text { send for our special Price List } 2, \\ & \text { BA TTERIE } \\ & \text { 2 }\end{aligned}$
ELECTRICAL SUPPLIES
STANLEY \& PATTERSON,
Electrical House Furnishings,

 THOMAS ALVA EDISON. - A BIO

 INVENTORS' IDEAS $\begin{gathered}\text { put into } \text { practical } \\ \text { pin }\end{gathered}$
Mining and Electrical Alfring ivinubre Machinery a Specialty

Room 10 owing Budn miners. 215 DEARBORN STREET, CHICACO.
 THE WARDEN MFG. CO., Germantown Junction HORIZONTAL, VERTICAL LOCOMOTIVE

Jexhive upright clshioned

Useful Books!
$2=$ chanics, Builders, men of leisure, and professional
men. of all classes need ood book in the line of
their respective callings. Our post ofice department their respective calings. Our post office department
permitsthe tranmmision of books thrugh the maite
at very small cost. A comprehensive catalogue of

 MUNN \& CO.. 361 Broadway, New York.

DEFIANOE, OHIO, U. S. A.,
HUB, SPOKE, WHEEL, BENDING,

ELECTRIC PERCUSSION DRILLS.

ELECTRICAL MINING APPARATUS OF EVERY DESCRIPTION.
THOMSON-VAN DEPOELE ELECTRIC MINING CO., 620 ATLANTIC AVE., BOSTON, MASS.

A New and First－Class Book on Perfumery．
A PRACTICAL TREATISE
Manufacture of Perfumery：
Comprising Directions for Making all kinds of Per
fumer，Sachet Powders．Fumizating Matrias o Donti－
frices，Cosmetics，etc．etc．

 Chapter I．ABSTRACT OF CONTENTS．
Otical
 in Perfumery．Vithesins and Balsams．Vil．Perfuee
Substaneestrom the Animal Kingoom．VII．Artifial
Perfume Materials．VIII．Alcoholic Perfumes．IX．Dr Perfumes．X．Fumigating Essences，Pastilles，Pow
ders，etc．XI．Dentifrice，Mouth Waters，etc．XII
Hair Pomades，Hair inis and Hair Tonics．
and Depilatories．XIII．Cosmetics．Index． （⿴囗十a The above or anyof our Books sent by mail，free of
postage，at the publication price，to ony adaress in the worla．

 whole coveringevery branch of Science applied to the Arts
sent free and fereot postage to any on in any part of the
worla who wil furnsh as with his adaress． HENRY CAREY BAIRD \＆CO．，

NEW AND VALDABLE BOOK

12，000 Receipts． 680 Pages．Price \＄5 This splendid work contains a careful compila
tion of the most useful Receips and Replies given in the Notes and Queries of correspondents an pub－
lished in the Scientific American during the
past fifty years：together with many valuable and important additions．
over Thousand selected receipt ful arts being represented．It ind by far the most The work may be regarded as the product of the studies and practical experience of the ablest chem ists and workers in all parts of the world；the in－
formation given being of the highest value，ar－
ranged and condensed in concise form convenient for ready use．
Almost every inquiry that can be thought of relating to formulw used in the various manufa Instructions for working many different pro－
cesses in the arts aregiven．
It is impossible within the limits of a prospectus to give more than an outline of a few features of
so extensive a work．
Under the head of Paper we have nearly 250 re－ Cipts，embracing how to make pape paper nachath 250 re make paper water proor and fire proor，how
nake sandpaper，emery paper，tracing paper
ransfer paper，carbon paper，parchment ransfer paper，carbon paper，parchment paper，
：olored papers，razor strop paper，paper for doing
ip cutlery，silverware；how to make luminous paper，photograph papers，ete．
Under the head of Inks we have nearly 450 re
eeipts．including the finest and best writing ink fle all colors，drawing inks，luminous inks，invis directions for removal of inks；restoration o Under the head of Allors over 700 receipts are
given，covering a vast amount of valuable infor nation．
Of Cements we have some 600 receipts，which
nclude almost every known adhesive preparation fow to make Rube．
How Stamps forms the subject
f a most valuable practical article，in which the complete process is described article，in which clear and ex
plicit terms that any nntelligent person may readily Forn the art． For Lacquers there are 120 receipts；Electro－Me－
tallurgy， 125 receipts；Bronzng，127 receits；Pho－
tography and Microscopy are represented by 600 Under the head of Etching there are 55 receipts，
Ubracing practical directions for the production of engravings and printing plates of drawings． Paints， 300 receipts，and include everything worth know－ Under the head of Cleansing over 500 recipes the removal of spots and stains from all sorts cleaning furniture，clothing，glass，leather，metals，
and the restoration and preservation of all kinds
of objects and materials． In Cosmetics and Perfumery some 500 receipts re given．
Soaps have nearly 300 receipts．
Those who are engaged in
Those who are engaged in any branch of industry practical walue in their respective callings．
Those who are in search of ind or employment，relating to the home manuuactur
of sample articles，will find in it hundreds of mos xcellent suggestions．

MUNN \＆CO．，Publishers， SCIENTIFIC AMERICAN OFFICE，

THE INTERNATIONAI CYCLOPEEDIA REVISED EDITION OF 1892.

The BEST REAOY REFERENCE CYCLOPEDIA in the ENGLISH LaNGUAGE ing special fatures will be mailed free． AGENTS，WHERE CAN YOU FIND BETTER BUSINESS？
DODD，MEAD \＆COMPANY，ighth Street，bet．Fifih Ave．and Broadwaj，N．Y
\％ OIL WELL SUPPLY CO

STEEL TYPE FOR TYPEWRITERS

LEARN WATCHMAKING，- Arractian

 PURE TEMPERED COPPER
 0 \＄15 por day，at lioh ily pratis

DEAFNESS，\＆HEAD HOISES CURED

CIARIEXIS

WARP DYNNOLANASHRE， POWER WRIVGENS FEOL HOSIERY AND DRying Ant vevencing kans， CEO．${ }^{\text {Catalegues }}$ ．Wind frap

MIATIOGAINT
TEAK FOR YACHTS，SPANISH CEDAR the E．D．ALBro co．，
 H．T．Bartlett，Mg＇r．F．W．Honerkamp，Ass＇t Mg＇r Mills，Cincinnati，o．
 TOR－SUBSTANTAL
FREE SITES TO SUBSTANTIAL MANUFACTURING ENTERPRISES
 GEE．330 Walnut Street，Philadelphia．Pa．．President
and General Manaerer of numerous Land Companies
ant anted along the lines of the Norfolk \＆Western
Railroad．
 STEEL，IRON，COPPER，ZINO，BRASS，TIN，

 THE HARRINGTON \＆KING PERFORATING CO．，Chicag

PROPOSALS．

Ropogad For stran power phant

THE BEST LOOSE PULLEV OILER

Vanduzen Pat．L．Pul．Oller

PETROL LEUM SOLIDIFICATIIN－－By

GEAR AND RACK CUTTING．

 A. G. SPALDING \& BROS., Special Agents,
NEw York.
pHiLaoslp
 H2
4.
\square Motor of the 19th Centriry

- Sxpe bilge.

 THE VAN AUKEN STEAM SPECIALTY CO.,

OYSTER CULTURE.-A VERY INTER

95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March
7th, 1876, No. 174,465 , and January 30th, 1877, No. 186,787.
The transmission of Speech by all known orms of Electric Speaking Telephones in fringes the right secured to this Company by the above patents, and renders eac individual user of telephones not furnish-
ed by itor itslicensees responsible for such ed by it or itslicensees responsible for such thereof, and liable to suit therefor.

LOVEL工 DIAMOND CYCLES

ARTESIAN

THERPERFE ECGNER

SAWS Wantes ing.o. Samyers $\mathbf{S A W S}$

a gentiemans Launch.

YOUR OWN ENGINEERR.
Launches 19 to 60 feet in length, with Qutom
chinery. No Smoke. No Emgineer.

THE SMITH PREMIER TYPEWRITER

The Most Alt the Essential Features greatly
Earabie in Aliignment.
Easiest Running and Most Silent Easiest Running and Most Silent.
All type cleaned in 10 seconds without soiling the hands.
The Smith Premier Typewiter Co, Syracuse, N. Y., U. S. A.
Send for Catalogue.
Sel $\underset{\text { tery. - Bs }}{\text { HOW M. Hopkins. }}$ TO MAKE Directions for making a

KODAKS.

Regular Folding Daylight Ordinary

I4 $\begin{aligned} & \text { styles and sizes } \\ & \text { for the season of }\end{aligned}$ or the season
1892,

Latest improvements, re Lates: glass plate atachmer loading, etc., etc. Send for catalogue.

THE EASTMAN COMPANY,

FDIEOIN

 GENERAL ELECTRIC co. INCANDESCENT AND ARC LICHT PLANTS.Stationary and Railway Motors.-Lamps.-Cables.-Safety Devices.

Steam! Steam!
Quality Higher, Price Lower. 2-Horse Eureka Boiler and Engine, - \$150 B. W. PAYNE \& SONS
 Paciffc Coast..Edison B'lding, 112 Bush St., S. Fran, Cal.
Pacifcc Northwest...Fleischner Building, Portland, Ore.
Rocky Mountain.Masonic Building, Denver, Colo.34 vi
\cdots
and

OUT=DOOR

Pleasure.

$\left\{\begin{array}{l}\text { No exercise so healthful-so joyful- } \\ \text { with so much of Nature's exhilaration }\end{array}\right\}$

 \{ $\begin{aligned} & \text { with so much of Nature's exhilaration } \\ & \text { sensible-so fascinating-so pop- }\end{aligned}$ \{ular-Cycling is the monarch ofsports3 the Columbia, the king of strengthful 3 on application to any Columbia agent, $\left\{\begin{array}{l}\text { or sent by mail fortwo two-cent stamps. } \\ \text { Pope Mfg. Co., } 22 \text { I Columbus Av., Boston. }\end{array}\right.$

AN UNUSUAL BUSINESS CHANCE : Reliable men with a few thousand dollars (the same
secured in any State and Canada to get into business
for themselves, and have a monopoly and vosi-

 Manufactured by HARRISBURG FOUNDRY AND MACHINE WORKS HESTRLPTIOENGINES

TANITE Emery, Emery, Wheels, Emery Whetstone Emery Whetstones, Grinding Machines Knife Sharpeners,

The Tanite Co., Knite Grinders.
Stroudsburg,
161 Washington St., New York.

$=7 \operatorname{Lit}$ Thle giant PRICE, \$35.00.
Only Boy's Safety with a Only Boy's Safety with a
Spring Fork, preventing in-
jury to young riders from

ESTABLISHED 1846
The Most Popular Scientific Paper in the World

Only \$3.00 a Year, Including Postage.
Weekly-52 Numbers a Year.
This widely circulated and splendialy illustrated
paper is published weekly. Every number contains sixteen pages of useful information and a a large number of original engravings of new inventions and discoveries,
representing Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures,
Chemistry, Electricity, Telegraphy, Photography, ArehiChemistry, Electricity, Telegraphy, Photography, Archi-
tecture, Agriculture, Horticulture, Natural History, etc. Complete list of patents each week.
Terms of Subscription.-One copy of the ScIENTIFIC AMERICAN will be sent for one year- 52 numberspostage prepaid, to any subscriber in the United States,
Canada, or Mexico, on receipt of three dollars by the Canaida, or Mexico, on receipt of three dohars by the
publishers; ;ix months, \$1.50; three months, \$1.00.
Clubs. - Special rates for several names, and to Post Masters. Write for particulars.
The safest way to remit is by Postal Order, Draft, or
Express Money Order. Money carefully placed inside Express Money Order. Money carefully placed inside
of envelopes, securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Address
all letters and make all orders, drafts, etc., payable to all letters and make all orders, drafts, etc., payable to
MUNN \& Co., 361 Broadway, New York.

THE

Scientitic Gurexicat Supplement This is a separate and distinct publication from The
SCIENTIFIC AMERICAN, but is uniform therewith in size every number containing sixteen large pages full of engravings, many of which are taken from foreign papers
and accompanied with translated descriptions. and accompanied with translated descriptions. 'The
SCIENTIFIC AMERICAN SUPPLEMENT is published weekly, and includes a very wide range of contents. It presents the most recent papers by eminent writers in all
the principal departments of Science and the Useful the principal departments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural
History, Geography, Archæology, Astronomy Chemis-
try, Electricity, Light, Heat, Mechanical Engineering, Steam and Railway Engineering, Mining, Ship Building, Marine Engineering, Photography, Technology, Manu-
facturing Industries, Sanitary Engineering, Agriculture, facturing Industries, Sanitary Engineering, Agriculture, etc. A vast amount of fresh and valuable information obtainable in no other publication.
The most important Enineering
and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT. Price for the SUPPLEMENT for the United States and
Canada, $\$ 5.00$ a year; or one copy of the ScIENTIFIC Canada, $\$ 5.00$ a year; or one copy of the SCIENTIFIC AM-
ERICAN and one copy of the SUPPLEMENT, both mailed ERICAN and one copy of the SUPPLEMENT, both mailed
for one year for 77.00 . Single copies, 10 cents. Address and remit by postal order, express money order. or check,
MUNN \& CO., $\mathbf{3 6 1}$ Broadway, New York, Publishers Scientific American.

Guildiwy fedition.
THe SCIENTIPIC AmERICAN ARCHITECTS' AND
BUILDERS' EDITION is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages; forming a
large and splendid Magazine of Architecture, richly adorned with elegant plates in colors, and with other fine engravings; illustrating the most interesting examples A special feature is the presentation in each number
of a variety of the latest and best plans for private resi of a variety of the latest and best plans for private resi-
dences, city and country, including those of very mod dences, city and country, including those of very mod-
erate cost as well as the more expensive. Drawings in
perspective and in color are given, together with full Plans, Speciflications, Sheets of Details, Estimates, etc. The elegance and cheapness of this magnificent work
have won for it the Largest Circulation of any have won for it the Largest Circulation of any
Architectural publication in the world. Sold by all newsArchitectural pubicat ionit to
dealers. $\$ 2.50$ a year. Remit

MUNN $\underset{361}{\mathbb{E} \text { CO., Proadway, New York. }}$

PRINTIING INKES

