
(Entered at the Post Office of New York, N. Y., as Second Class matter. Copyrighted, 1892, by Munn \& co.
a Weekly journal of practical information, art, science, mechanics, chemistry, and manufactures.


#### Abstract

$\underset{\text { ESTABLISHED }}{\text { Vol. L845. }}$ I9.] NEW YORK, MAY 7, 1892. $\left[\begin{array}{c}\text { \$3.00 } \\ \text { WEELLY. } \\ \text { A. }\end{array}\right.$

THE NAVAL GUN FACTORY, WASHINGTON. The largest of the modern high-powered guns, entirely of American manufacture, thus far completed, are the two 12 inch guns for the Monterey, the new monitor now nearly finished at San Francisco, and these pieces, as they were assembled at the Washington gun factory, were believed by our very competent ordnance officials to $b c$ equal, if not superior, to the best guns of the same caliber made anywhere else in the world. The acquirement of the plant and the establishment of a factory capable of turning out such guns have been among the most noteworthy of the achievements of the national government during the achievements of the national government during the past five or six years. Within that period about two millions of dollars have been expended upon the Washington gun factory, and it is claimed by officials of the ordnance department to be at the present time the most cumpletely equipped establishment of its kind in existence. The accompanying view represents the completion of the work of "assembling" a gun upon a foundation provided for this purpose in the factory, this branch of the manufacture including as well the adjustment of the carriage and all its parts to operative position in connection with the gun, the horizontal and vertical movement of the latter, as required on shipboard, being practically tested, and the breech mechanism carefully adjusted, that the gun and its carriage may go forth, as far as possible, a faultless piece of work. The original gun foundry board, in recommending the establishment of two separate gun factories, one for the army, at West Troy, N. Y., and the other for the navy, at Washington, considered that with only one factory there would be an almost unavoidable conflict of authority between the two departments, and that their needs in many respects, particularly as to the gun carriages, were so dissimilar that it would be the best economy to have two separate establishments, aside from the fact that the total productive capacity would the government buys the forged and tempered material from private firms, who furnish the several parts or forgings of which the guns are made. At the government gun factories is performed the work of putting together or "building up" the guns, the cutting of the rifling in the central tubes, the manufacture and adjustment of the breech-closing mechanism, and the carriages for the guns for the navy are built at the Washington factory. One of our views shows a portion of one of the gun carriage departments, where an armor plate has been returned after the recent tests at the Indian Head proving grounds, the plate retaining its almost perfect shape, notwithstanding the severe blows it received from the projectiles. It is the conclusion thus far, after the costly experiences had in making large guns in England, France and Germany, during twenty years past, that what is called the " built-up" system affords guns of far higher power and greater endurance than can be produced in any other way. In the guns for our navy highly elas tic open hearth steel of the finest quality is used, a bored out to the required caliber, forming the body of the gun. Over the breech end of the tube, and extending along it for about two-fifths of its length, is shrunk a steel jacket, the shrinking of the jacket slightly compressing the tube. Upon the jacket is then shrunk in a similar manner, a layer of broad steel hoops, designed to exert a considerably greater pressure upon the jacket than is that of the latter upon the central ube, after which the part of the tube in front of the jacket is inclosed by a series of gradually tapering acket is inclosed by a series of gradually tapering hoops extending nearly to the muzzle. With this conhoops extending nearly to the muzzle. With this con- struction, when the gun is fired, the expansion of the struction, when the gun is fired, the expansion of the central tube by the enormous pressure within it brings a due proportion of the strain upon the jacket and hoops. To surely attain this result, the various parts of the gun tube, jacket and hoops, must be all made and fitted with mathematical accuracy, their surfaces being true to the thousandth part of an inch, each part being also tested separately to determine its ten sile strength and elastic limit. The strain each part will be called upon to bear in actual service is calculated, and it must be proved able to stand that strain before being placed in the gun. After the assembling of the parts forming the body of the gun, the piece is taken to an immense lathe where the rifling is done, the most skillful mechanic in the country being employed at the Washington gun actory. The rifling adopted for all guns of the United States service is the "polygroove system," with a twist increasing from zero at the powder chamber to one (Continued on page 294.)




THE NAVAL GUN FACTORY, WASHINGTON-ASSEMBLING LARGE GUNS,

# Srientifir gmerican. 

ESTABLISHED 1845.

## MUNN \& CO., Editors and Proprietors published weekly at

No. 361 BROADWAY, NEW YORK.

| O. D. MUNN. | A. E. BEACH. |
| :---: | :---: |
| TERMS FOR THE SCIENTIFIC AMERICAN |  |
|  <br>  MUNN \& CO., 361 Broad way, corner of Frauklin Street, New York. |  |
|  |  |
|  |  |
| The Scientific American supplement |  |
| is a distinct pape from the SCIENTIFICAMERICAN. THEes upplem ind |  |
| a year, for the U. S., Canada or Mexico \%6.00 a year to foreigm |  |
|  |  |
| oy ain newsiealers throughout the country. Ase prospectus, last paye. |  |
| will be sent for one year, to any address in U. S. Canada or Mexico, on |  |
|  |  |
|  |  |
| BUILDERS EDITION OF |  |
| news |  |
|  |  |
|  |  |
| and all who contemplate build- |  |
|  |  |
| Combined rate for Building EDition with Scientific american, 8.00 a year; combined rate for BUILDING EDITION, SCIENTIFIC AMand SUPPLEMENT, $\$ 9.00$ a year. To foreign countries, $\$ 11.50$ a year. |  |
|  |  |
| sh Ed | Sc |
| ierica cientifica e industrial (Spanish trade edition of the |  |
|  |  |
|  |  |
| Indies, Mexico Central and South America, Spain and Spanish posses-sions-wherever the Spanish language is spoken. $\$ 3.00$ a year, post paid to |  |
|  |  |
|  |  |
| The safest way to remit is by postal order, express money order, draft or bank check. Make all remittances payable to order of MUNN |  |
|  |  |
| $\& \mathrm{CO}^{\circ}$ <br> Readers are specially requested to notify the publishers in case of any failure delay, or irregularity in receipt of papers. |  |
| NEW YORK, SATURDAY, MAY 7, 189 |  |
| trated articles are marked with an |  |
|  |  |
|  |  |
| Aluminum, present output of... 290 Naval gun factors, Washington,* <br> Artesian well, hot, Waco, Texas 293  <br> 2929  |  |
|  |  |
|  |  |
|  |  |
|  |  |
| ${ }_{\text {Carrier pigeons in }}$ |  |
| Carriar pigeons, use of, at sea.... 2 |  |
|  |  |
| Cattle and horses, differences in. 292 |  |
|  |  |
| Death watch, ticking of the...... 292 Electrical ribbon machines. |  |
|  |  |
| Gold alloys |  |
|  |  |
| "Grippe," the, origin of term.. : 288 |  |
|  |  |
|  |  |
| Inventions, recently patented... 297Inventions, wealth in........ 296 |  |
|  |  |
| Lontern slides, coloring (4292).... 298 |  |
| Lubricated bearings, friction of. $2_{29}^{23}$ |  |
|  |  |
|  |  |
| Mechanical inventions, recent... 288Monterey, turrets of the........ 289 |  |
|  |  |

## TABLE OF CONTENTS OF <br> SCIENTIFIC AMERICAN SUPPLEMENT NO. 853



## teadying vessels at sea

At the recent meeting of the Institute of Naval Architects, in London, Mr. J. I. Thornycroft read a paper on the steadying of vessels at sea. He gave an account of some experiments recently made on the yacht Cecile. The vessel was provided with a shifting weight which was arranged under the floor of the cabin and connected with a pendulum and a hydraulic apparatus, in such a manner that when the vessel rolled, the weight was shifted so as to counteract the rise of the vessel. In this way he was able to decrease the rolling from about eighteen degrees each way; when the apparatus was not in use, to about nine degrees, when the device was put in operation.
The use of shifting weights for the trimming of ves sels is in common use in this country, and has been for many years. It is chiefly employed on our river and sound steamers. In some cases the weight is shifted by mechanism, but a more common method is to make use of boxes containing iron weights, such as chain cables. The boxes are mounted on wheels, and when the boat begins to roll, the seamen, on signal from the pilot, move the weight as required to bring the boat back to even keel.
Quite a number of patents have been granted in this country for self-acting ballast-shifting devices, with pendulums to trim or prevent vessels from rolling Among the earliest of these patents was that of Purse and Staley, number 1,460, granted in 1839-more than half a century ago. In this invention a weighted pen dulum was used, which, by swinging when the vesse rolled, set gearing into motion that instantly moved a heavy weight athwart the vessel so as to counteract the rolling. This apparatus was arranged below decks and motive power from the main engine or from a special engine operated the mechanism.
Mr. Thornycroft is of the opinion that a contriv ance on the principle described might be advantage ously applied to sea-going vessels. The success of his recent experiment and the long use of analogous ap paratus in this country support his views. The ap plication of anti-rolling devices to Atlantic passenger steamers certainly would render the sea passage much more comfortable than it often is at the present time

## california wines.

An excellent quality of table wine, red or white, can be had of the wholesale dealers in California for from 50 to 60 cents per gallon. Each gallon fills from five to six bottles, making the cost to the vender but about ten cents a bottle, although he sells it at from 50 to 60 cents a bottle to the consumer. Very little nativ wine goes to the saloons, because the demand is small, the patrons usually preferring beer or stronger liquors The hotels and restaurants are the channels through which the wines chiefly go to the tables, and the reason why there is not greater use of native wines is on ac count of the exorbitant prices charged, under the guise of foreign labels. A correspondent says he has seen casks of as fine claret as the world can produce mad in Los Angeles; but the wine merchant sorm will in New York under French labels."
The result of such frauds is not merely to impose on the purchaser, but also to diminish the inducement to make really choice native wines, because there is no market for them as such.
Large cargoes of California wines go abroad, to be reshipped to this country as foreign goods. The French manipulate them, put in a fancy bouquet and sell them back to us at an enormous profit Patriotism should lead us to patronize our own pro , which with a fair degree of caution we may know to be pure and wholesome.
The question is asked, however, if California wines are not adulterated. It is asked in reply, what they can be adulterated with that is cheaper than $\$ 10$ a to -the price of the native grapes to the manufacturer There is no question about imitations and frauds ; but this is not done in California, for the simple reason that honesty is cheaper there.

## Electrical Fibbon Machines.

The City Council of St. Etienne have resolved to apply electric motive power to all the hand looms in the city, and contracts have been made with an electric company for the necessary plant and currents. The electric dynamos are to be driven by water from the city reservoirs. There is practically an unlimited sup ply of water in the reservoirs, with a fall of upward of 100 feet. To grasp the importance and far-reaching results of this innovation, it is necessary to understand that the bulk of the enormous output of ribbons (\$22,000,000 a year) is the product of house industry. The weavers for the most part own their own looms, and operate them by hand in their own houses. There are 18,000 looms which are thus distributed among the homes of the weavers, while the number of looms driven by steam in the few ribbon factories of the town is only 5,000 . The 18,000 looms of the independent weavers are valued in the aggregate at $\$ 4,500,000$. What the city of St. Etienne proposes to do is to con vert each one of the 18,000 hand looms into a power
loom driven by electricity, the innovation being coupled with the adoption of electric light. The result of this change from slow, laborious, uncertain hand power to the swift, regular, unfailing power furnished by electric motors will be an increase in the produc tive capacities of the looms and a considerable reduc tion in the general expenses of fabrication. In othe words, art will be wedded to modern machinery. The weavers of St. Etienne have always been the most art istic ribbon makers in the world, but they have en joyed few mechanical advantages. Now the old orde of things is to be changed, and the products of the St Etienne ribbon looms, which have been a trifle more costly than similar products in some other countries, notably in Switzerland, will be turned out at the low est possible prices. The weavers employed in the rib bon trade number 70,000.

Origin of the Term ${ }^{6}$ Grippe."
La Medecine Moderne gives an extract from a mete orological journal kept at Versailles in the eighteenth century, and in which the meteorological variation are carefully noted day by day, with a few reflection upon remarkable atmospheric occurrences-storms, hail, thaw, etc
Commenting upon the months of February and March, 1743, the journal says. "There was a prova lence of colds and inflammations of the chest at Ver sailles and Paris. The king named this malady 'la grippe.' It was observed that bleeding was wholly contra-indicated. Such persons as had not been bled and who drank much, were the most quickly cured."
It results, then, from this document, that it wa King Louis XV. who gave the name of grippe to th influenza that then prevailed under a meteorologica state, as the journal shows, analogous to that of recen years and of the present year.

## wooden Pavements in Paris

In an article on wood pavement in Paris, contri buted to the Revue Pratique des Travaux Publics by Mr. Brown Vibert, the author remarks that, to insure durability, this class of pavement must be laid with considerable care. The concrete foundation should be 6 in . thick, and made with 300 lb . to 440 lb . of Portland cement to a mixture of 9 cubic feet of sand and 27 cubic eet of gravel. As soon as it has set, the concret should be covered with a $\frac{7}{16} \mathrm{in}$. layer of mortar consist ing of 660 lb . of Portland cement to every 35 cubic fee of sand, and left to harden two or three days. The blocks should then be set in rows separated from each other by a space $3 / 8 \mathrm{in}$. wide. These cracks are filled with cement mortar, and a layer of broken porphyriti stone $11 / 2$ in. thick spread over the pavement. Thi layer is soon driven into the wood by the action of th wheels. Provision must be made for the expansion of the wood, and for this reason in wide roadways a spac about 2 in. wide is left open along the sidewalk and fterward filled with sand. In a roadway 131 ft . wid n expansion of no less than 16 in was observed take place in fifteen days, the blocks being very dry In Paris these blocks are 6 in . high, 3 in . thick, and $81 / 2 \mathrm{in}$. long. The cost as laid is about 9 s . 6 d . per squar yard for Landes pine and 14 s . 3 d . per square yard fo northern spruce blocks. The duration is said to be about seven or eight years under heavy traffic and about fifteen under moderate.

## The Best Stone for Roads.

In a paper read before the Boston Society of Civil Engineers, Mr. W. E. McClintock remarks that the pecific gravity of a rock is no indication whatever of its fitness for road metal. Thus slate weighs 175 lb per cubic foot and pure mica about 183 lb ., but no on would think of using either of these for road metal. The best material for this purpose was, he considered rap rock, after which he would place felsite, and the came granite. As regards the latter, however, it differ in quality, that containing hornblende being prefer able to those with mica. The latter was soft and should not be used unless it was very difficult to ge better material. In cases where the traffic is light and the stones previously mentioned difficult to procure andstone may be economically used for metal, in spite f its inferior wearing powers. Of two sandstones, he held that the coarser-grained was to be preferred Gneiss he held to be of about the same value as a good sandstone.

## Use of Carrier Pigeons at Sea.

According to the Revue Maritime et Coloniale Ame important experiments have been recently made at Portsmouth relative to the use of carrier pigeons a ea. A depot of these birds having been established t the Eastney barracks, some of the nigeons belong ing thereto which they wore set free iu sirw at a benmeneariy
 almost invariably re
occasion there was a thick fog con the other side of the hannel ; the pigeons set free circled for a few minute round the boat, and then, getting their bearing, re turned to Eastney without delay.

## The Manchester Merchants on the Chicago

A meeting of manufacturers, merchants, and others interested in this exhibition was held at the Town Hall, Manchester, Eng., on the 8th ult., with a view of affording manufacturers information upon the conditions under which exhibits might be made and space obtained. The Chemical Trade Journal gives the following report of the proceedings :
The mayor (Mr. Alderman Leech), presiding, stated that the Society of Arts had been appointed commissioners for the.exhibition on behalf of the government, and introduced Sir Douglas Galton, Sir Cunīiffe Owen, and Sir Henry Trueman Wood, as the representatives of the commissioners, who had also brought with them Mr. M'Cormick, the commissioner from Chicago, to lay this matter before the manufacturers and merchant of the district.
Sir Douglas Galton said the government had ultimately voted $£ 60,000(\$ 300,000)$ for the purpose of representing England at Chicago, this grant enabling them to offer exhibitors space free of cost. He pointed out that other countries were making extensive preparations to be fully represented, and it was desirable that the manufacturers of the Manchester district should be also to the fore.
Mr. M'Cormick then pointed out that the United States were the best custome: $:$ England had, despite the M'Kinley tariff. Moreover, Chicago was in the center of a large district where there had been a great deal of opposition to the tariff. By sending to the exhibition, manufacturers at home would be able to show the merchants of the great West how much cheaper they could sell their goods without the tariff, as exhibitors would be allowed to mark on their goods the cost to the buyer at Chicago, with the tariff and without the tariff, thus demonstrating what benefits the abolition of the tariff would carry with it.
Sir Philip Cunliffe Owen said that the Chicago World's Fair would be different to the ordinary run of exhibitions, as it would be essentially a business exhibition, and was intended for business purposes and not pleasure, as was the case with the Paris Exhibition. As to the objection that by sending our goods we only enabled the Americans to copy from us, he said, we and the Americans were brothers, and why should we not steal from each other. (Laughter.) He thought that in the face of the efforts that France and Ger many are making, the manufacturers of Manchester would rever cease to regret it if they did not go hand somely into this exhibition.
Sir H. Trueman Wood said that already much of the available space had been taken, and as yet barely any of the industries of Manchester were represented he hoped those who wanted space would apply before it was too late
Mr. Alderman Bailey then spoke strongly, deprecating the idea of exhibiting machinery at Chicago. If anybody in the United States desired to copy our machines, let them come over here and do it. (Ap plause.)

Mr. M'Cormick, in replying, pointed out that English manufacturers would best please the Americans by stopping away, especially in the case of the iron in dustry, in which they were developing an export trade In answer to a question, he also stated that an article patented in England, and not in America, would during the exhibition be protected as if it were patented in both countries, and also that goods for the exhibition would be entered duty free.

The only point raised practically was whether it was advisable to send machinery to Chicago or not. Noth ing was said about other industries, more particularly the chemical and allied industries, which are centered in the Manchester district. The information given, however, will no doubt be of interest to those who have any intentions of exhibiting, and, as was pointed out by Mr. G. Helm, though the opinion expressed by Mīr. Bailey did exist to a large extent in Manchester, there was also a broader spirit, which, instead of evinc ing any jealously, rather courted competition, believ ing that mutual benefits would result. The mayor of Oldham (Mr. Alderman Emmott), in moving a vote of thanks to Mr. M'Cormick, said that as makers of maCinery in England often complained of their goods not being known abroad, he thought they would appre© ate the opportunities afforded them by the Chicago inibition when looked at from an advertising point
i view. After passing a vote of thanks to the Royal ni view. After passing a vote of thanks

## Ventilation of Underground Railways.

Those who are accustomed to travel much on the underground railways of London are aware, says the London Practical Engineer, from painful experience, the ventilation is utterly inadequate, while the quantity of smoke and other deleterious products of combustion with which the air in these tunnels is laden is a serious trial to the health of those passengers who happen to be afflicted with delicate lungs. With a view to improving the ventilation of these underground railways, an invention has been patented
by Mr. Christopher Anderson, of Leeds, and an inter-
esting trial of his system was made on a half mile
length of the Metropolitan Railway, at Neasden, a few days ago. Mr. Anderson's invention consists of a long rectangular tabe laid between the rails, the tube having valves opening downward at intervals on its upper side. This tube or flue is connected with an ex hausting apparatus, while underneath the locomotive is a slider, which communicates with a down chimney connected to the smoke box. As the locomotive passes along, the slider presses open the valves in succession,
and the products of combustion are drawn into the and the products of combustion are drawn into the
tudbe by an exhaust fan at the station, from whence they are delivered into anordinary chimney stack, and so discharged into the air. The locomotive is so fitted that the gases and products of combustion can be delivered into the air through the ordinary funnel when the train is running in an open cutting, while during its passage through the tunnel the upper funnel is closed, and the down chimney from the smoke box connected to the exhausting trough or pipe between
the rails in the manner described. At the trial to which we have referred the arrangement was found to work very efficiently, and complimentary opinions were expressed by a large number of influential engineers and
railway imanagers who were present, respecting the value and practicability of the invention.

## Kansas Salt.

Anciently there were extensive lagoons and landocked lakes in the region now occupied by the Stat of Kansas. These shallow waters held variousmineral substances in solution, that would necessarily be pre cipitated in the course of evaporation. One of these substances was the sulphate of lime, which, being heavier than the rest, fell in the form of gypsum. First
there were crystals of selenite scattered through the crevices of the underlying limestone. Then came thin crusts, and finally massive beds from five to twenty feet in thickness. Plaster factories have been success feet in thickness. Plaster factories have been success-
fully established at points where the gypsum can be worked to advantage. Occasionally, as in the bed near Geuda, the rock is hard as marble and is quarried as a fine building stone. Dental plaster and kinds of $\|$ ce ment heretofore only had from Europe] are now made in quantities. According to Professor Hay, this gyp-
sum horizon was "the premonition of the great salt sum horizon was " the premonition of the great salt be, and is possibly related in order of time to the broad salt marshes described by Professor Mudge and found within the limits of the State have been ound within the limits of the State, besides sal springs and saline streams. To these resorted formerly
great herds of bison, as well as deer, antelope, elk, and great herds of bison, as well as deer, antelope, elk, and
other creatures, whose bones have been abundantly found along their margins. The density of the brine tested by the salometer, varies from 13 to 45 degrees, Some of the marshes are small, while others are very
large. One covers 1,000 acres, another 3,000 acres, and arge. One covers 1,000 acres, another 3,000 acres, and
till another is described as seven miles long and one mile wide. In Meade County is a circular sink 150 feet in diameter, containing a black pool 50 feet deep, whose surface is twenty feet below the prairie level. This was formed by the sudden sinking of the ground in 1878. The efflorescence along the margin of many
an ugly bog resembles newly fallen snow, and over the bog itself are scattered small oval domes of indurated mud crowned by sparkling saline crusts.
Further examination shows that these marshes and springs ooze from beds of gray shales, probably them selves formerly marshes. Below the saliferous shales, and resting on the permo-carboniferous rocks, are re markable beds of pure rock salt, varying in thickness from a few inches to several hundred feet. Their con tents seem to have been protected by strata locally known as "red beds," but which, being barren of fos sils, the geologists have hesitated to classify. In Bul letin 57 of the United States Geological Survey, Prof Hay gives his reasons for regarding them as triassic. Above the salt and below the red beds are non-saline shales. The region in southern-central Kansas over ying the beds of rock salt is about 130 miles in diame ter, extending from Kanopolis to the Indian Territory At Kingman, and perhaps elsewhere, shafts are sunk rom which the solid rock salt is obtained that ha ound a ready market; but exact statistics are not thand.
Aside from the mines, and from the solar works a Solomon, that have existed for a quarter of a century there are about twenty salt plants in the Kansas field As fourteen of these are owned by the three com panies operating at Hutchinson, I decided to visit that place in order to inspect their methods and results. The city itself is highly attractive. It was laid out in 1871 by Mr. C. C. Hutchinson, whose name it bears. It has gained celebrity from its packing house, and is also a commercial center for a wide region. Like othe Western cities it has suffered from overbooming, but is now recovering from the consequent reaction. It ha an actual population of about 10,000 , and is steadily growing.
The vein of salt was discovered here in 1887, and the * See 6th and 7th
f Kansas Salt."
first block was worked for two years by a New York firm that afterward sold out to the parties now operat ing on a far larger scale. Some 400 men, besides a few women and girls, are now employed in the various plants. The wells are driven in triple tubes. The outer, or jacket, tube goes down 80 feet through the soil and gravel to the red rock, its object being to exclude all surface water. The other tubes go down 775 feet, completely through the red rock and the salt bed, which is here 300 feet thick. Through the inner tube which is here 300 feet thick. Through the inner tube
fresh water is forced, which is driven up again to the fresh water is forced, which is driven up again to the
surface through the middle tubing, charged with a solution of salt. This is at first quite weak. The custom is to pump for only half an hour to begin with, and to ncrease the time as the subterranean reservoir is enlarged by solution. It takes a month for a well to get nto thorough working order, $i$. e., for the reservoir beow to become sufficiently large to hold brine enough to fill a receiving tank. The aim is to obtain a saturated solution, having a strength of from 97 to 100 degrees by the salometer. When by too rapid pumping it gets down to 80 degrees, the brine is too weak for profitabl working, and the well rests till it gathers strength again. The life of a well is usually three years; the cause of failure being the breaking of the pipes by the overlying shale. It is cheaper to drive a new wel than to repair the old one. The brine, having stood in the receiving tanks 24 hours, is run into pans for boiling down. These pans are 26 feet wide, 115 feet long, and 14 inches deep; and are fired at the end of the pan nto three large arches. Each pan consumes from 10 to 5 tons of coal daily, and yields from 100 to 125 barrels of salt. The pans are "raked for dripping" every two hours. The salt is then wheeled into the store room, where for thirty days it is allowed to drain through a perforated floor; after which it is ready for packing and transportation. According to Messrs. Mulkey and Vincent, to whom I am indebted for attentions, the output from all the Hutchinson plants is about 700,000 barrels annually. The entire output from the State is about $1,250,000$, which supplies the present demand in he territory reached; but it could readily be increased o $2,000,000$ annual output if necessary. It should be added that the Hutchinson Salt Company has one of the largest and most complete dairy and table salt re fineries west of New York, supplying the creamery trade of Iowa, Missouri, Nebraska, and Kansas, en tirely displacing imported brands in those States. We regret not being able to furnish otherthan approximat estimates, but they seem to be all that can be had at present. It is but fair to this new and growing indus try to say that, in the opinion of the State geologist the actual aggregate of products exceeds the figures now given. He recommends that a State salt inspector should be appointed, by whose authority more complete returns may be obtained.

## Turrets of the Monitor Monterey.

The building of these turrets, recently completed at Bethlehem, Pa., marks the attainment in this country of a high state of excellence in the most difficult clas f work required for the modern battle ship. The tur rets are made of five armor plates each, every plate ocurved that when the five plates are set together they form a perfect circle. One of the turrets is com posed of plates $111 / 2$ inches thick and 4 feet 6 inches wide or so high when set on edge. The other turret is heavier and composed of 13 inch plates, 4 feet 4 inches high. All the plates were forged on the big hammer and bent to the required curve on the hydraulic bending press, next to the hammer.
The quality of each set of plates was tested by the process. Six plates were made for each turret, one of which was chosen to stand the test for the group. The plates were sawed and finished on the big saws and planers in the armor plate finishing shop. Where the ends of the plates touch they are joined by heavy steel keys. The keys are each four feet long and four inches square.
On the Monterey's decks the turrets will be pinned by the keys and fastened to a strong frame, to which they are clamped by enormous bolts, three inches in diameter. The 13 inch turret is fastened by 104 bolts, the other by 72 bolts. The $11 / 2$ inch turret set up in a perfect circle in the machine shop is large enough to contain an ordinary workman's cottage. It is 24 feet 5 inches in diameter, or about 80 feet in circumference. The larger is almost 29 feet in diameter, or over 90 feet around the outside.

## Testing a Horse for Lameness.

When examining a horse with a view to purchasing, ays a contemporary, always have him led down a steep or stony descent at the end of a halter and with no whip near him. Many horses when brought out of the stable are excited by the presence of strangers, and become still more so at the sight of a whip. A slight lameness may therefore be momentarily overlooked by the horse himself, just as a man, under strong excitement, will sometimes forget a sore foot. Leading the horse down a slope will show any defect in his forequarters, and running him back will develop any weakness that may exist in his hind legs.

## PRESTON'S IMPROVEMENT IN STOCKINGS.

The illustrations show a new method of making stockings in two sections-a leg section and a foot sec-tion-to be connected and disconnected, for the purpose of renewing the foot section when worn. Former attempts have been made in this direction by finishing the joining edges with a selvedge, which necessitated patience and care in picking up the loops, in connecting the two sections, and in the union thus made the selvedged or finished edges presented a comparatively inelastic seam at a point where elasticity was most


PRESTON'S STOCKING-ENLARGED VIEW OF THE SECTION JOINING LOOPS.

## ford, Jr., University, Palo Alto, Cal.

The distinctive features of the Stanford, Jr., Uni versity relate not alone to the course and methods of training, but as well to the character of the buildings which have been erected. The style of architecture is modeled after the low, tile-roofed, adobe structures o the mission period. The buildings first erected were of hewn stone, massive, costly, and enduring. The later edifices are upon the same general plan, but are also unique and peculiar in mode of construction. They are monolithic, being moulded, walls, floors, and roofs, of artificial stone or concrete with the addition of iron rods as an element of supporting strength for the floors.
The real problem of success ful architecture clearly lies not so much in a choice of material as the proper use of materials common to all structures. Essentially the same elements enter into the construction of all important edifices. The great difference is in the way these are han-
essential in putting on and taking off the stocking. In the improved method, which has been patented by Mr. Leonidas M. Preston, of Bonham, Texas, the joining edge of the sections is formed with loops, normally protruding lengthwise and having their necks tied and fastened by a thread, as plainly shown in the enlarged view, the thread being tied round each loop transverse to its length.
In the figures, 1 indicates the leg and 2 the foot section, 3 a part of the ankle portion of the stocking where the sections are designed to be connected, and 4 the projecting loops, which are held from being drawn back into the knitted body of the stocking by being fastened at the neck, 5 , of every loop by slip knots, 6 , in the trans verse thread, 7, suffi cient slack being left in the latter thread at points between the loops to provide an equal elasticity at the joining edges with that of other portions of the stocking.
The sections are designed to be connected by means of a needle and thread by the purchaser or user, the protrusion of the loops placing them in convenient position for this
purpose, the union being made by the ordinary button hole stitch, and colored silk being used where it is desired to thus ornament the completed article. The union thus made is designed to afford a smooth, un broken, and apparently undivided fabric.

A Canadian paper states that great difficulty is found in keeping brakemen at work on the trains which run through the St. Clair Tunnel, the discomfort from the accumulation of coal gas being so great that the men, although paid high wages, generally give up their places in a few days.


PRESTON's SEPARABLE LEG AND FOOT STOCKING.
dled; whether the articles in question are used in their natural condition, or shaped and fitted by art, modified by preparation or manu facture, to meet the taste and means of the designer.
Buildings of stone are conceded to be the most en during, and to best resist climatic changes, but they have been the most costly, where the granite or marbl has to be transported from the quarry and dressed by hand for use in the walls. The same materials, broken in fragments, and again united by machinery with ce ment, and utilized in the form of monolithic (single stone) structures of concrete, prove cheaper, and, as use has demonstrated, more enduring, and resist heat better than natural stone.
Such structures are not new, but have heretofore been too massive and imposing. There was needed some device by which floors of stone need not be of ex cessive weight. In the construction of the new museum building and girls' dormitory at Palo Alto, this fina problem seems to have been solved by a method first introduced upon the bay of San Francisco, which in effect utilizes the principle of the suspension bridge in very separate floor beam.
The floors, though formed of single slabs of artificia tone, are light and graceful in design, though capable of supporting great weight. This requisite strength has been secured by means of bars of twisted iron em bedded within the mass, whereby the tensile strength of the iron-firmly held in place by the surrounding concrete-supports the floor.
The common iron floor beam can be depended upon to the safe limit only of its lateral or transvers strength. Were it possible to use the same weight of iron as a suspension rod, the safe limit would be the cohesive or tensile strength, which is about three times as great. In other words, a floor can be sustained by a suspension rod one-third the weight of the latera beam. To break a beam by overloading, it is necessary to separate the particles forming the lower chord of the beam, by tension, or to disintegrate the uppermem ber by compression. Incorporating the twisted bar in the lower portion of the beam, it acts as a suspension rod, and being firmly held at every point, the weight is distributed over the length of the bar. The iron thu embedded is also safe from corrosion and protected against fire, enduring with the concrete, which harden as the years pass.
There is yet another feature of large interest here. It has been demonstrated that bars of iron, twisted while cold, and left a while before use, have their cohesive strength increased fifty per cent. The one-third weight is thus again reduced, showing that less than one-fourth the weight of iron affords equivalent strength.
May not this departure at least indicate somewhat the character of the ideal building of the future? History of the Bay of San Francisco.

Camphoid.
William Martindale says: It is known that iodoform is soluble ( 1 in 10) in Rubini's solution of camphor, composed of equal parts by weight of camphor and dilute alcohol. This requires fixing on the part to which it is applied. I therefore added 1 part of pyroxylin to 40 of the solution, and found it dissolved readily. Applied to the skin this preparation dries in a few minutes and forms an elastic opaque film, which does not wash off. The excess of camphor seems to volatilize, and as it disThe excess of camphor seems to volatilize, and as it dis-
guises the odor of the iodoform its solution formsa useguises the odor of the iodoform its solution formsa use-
ful vehicle for applying this drug. Pyroxylin dissolves readily in the simple solution of camphor, and this forms a cleanly basis for the application of many medicaments to the skin, such as carbolic acid, salicylic acid, resorcin, iodine, chrysarobin, and ichthyol. I suggest the name "camphoid" for the simple pyroxylin solution.

## AN IMPROVED NUT LOCK

The nut lock shown in the annexed cut is adapted or use on railroads, machinery, wooden structures, and for a wide variety of purposes. It has been patented by Mr. William P. Sweetland, M.D., of 397 Hayes Street, San Francisco, Cal. The lock is formed by means of an elastic non-metallic washer, to be placed upon the threaded end of each bolt. This washer may


## SWEETLAND'S NUT LOCK.

be of rubber or any fibrous material, or felt will answer the purpose, each washer being saturated with a hardening preservative compound, such as white or red ead and oil, or litharge and oil, or for which coal tar may be used, applied at the time of making the wash ers or just before their application. A metallic washer, preferably circular in shape, is placed upon each bolt to rest upon the non-metallic washer as shown in the small view, and upon the securing nut being screwed down to place, the central por tion of the elastic washer is compressed, so that its uncompressed edges partially embrace the sides and corners of the nuts. As the preservative compound hardens in drying, the nut is locked in place with such rigidness that a wrench is necessary to remove it. The washer, being elastic, also takes up any vibratory motion or jar, such as ordinarily causes the nuts to work loose.

## AN IMPROVED TRUNK PROTECTOR

An improved protective covering or envelope for trunks, portmanteaus, etc., consisting of an open network of cords, ropes, or similar material, is shown in the accompanying illustration, and forms the subject of a patent issued to Mrs. Carrie V. Thompson, of No. 38 Ashland Place, Brooklyn, N. Y. The small outline diagram shows the form in which the envelope is constructed, the ropes being bound together by twine, or sewed, riveted or otherwise fastened together at the intersection of the meshes. Handles, preferably of the same material as the network, are formed upon the ends of each of the projecting flaps by which the ends of the trunk are coveren, and the whole is secured to the trunk by means of straps, ties, or clasps of any suitable description. The envelope preferably consists of a
 THOMPSON'S TRUNK PROTECTOR.
strong, tightly made hempen cord or rope, although it may be made of leather, rawhide, or similar material, or of small metallic chains or wire ropes.

A recent issue of the Bulletin de Musée Commerciale gives the following statistics regarding the present production of aluminum :

[^0]
## AN AERIAL SHIP.

The construction for navigating the air represented in the illustration is designed to be readily guided and controlled in its travel, irrespective of the direction of the wind. It has been patented by Mr. William N. Riddle, of Crowley, Texas. Its main body is substantially of an upright cylindrical form, and is divided horizontally into two compartments, the lower one for freight and the operative mechanism and the upper one for passengers. The body is centrally pivoted at its upper end to a main frame piece above, the lower end of the body also being centrally pivoted in the horizontal member of a yoke, in which the body is suspended from the frame piece, cords serving as braces. A circular rack, controlled by a spring catch upon controlled by a spring catch upon
the upper end of the body, holds the upper end of the body, holds
the latterstationary in any required the latter stationary in any required position in traveling around its ver-
tical axis. Connected with the yoke and the stay cord at one side is a stationary rudder, and a laterally projecting second rudder is pivoted to one end of the main frame piece above, this rudder being capable of adjustment up or down, and being locked in position by a leverhandle engaging a rack on the frame piece Attached by cords to the latter i an upper gas receptacle divided in to compartments, one above the other, united to form but a single buoyant chamber, but so connect ed with one another by central up right tubes that if one compart ment collapses or bursts the others will hold up the ship. To propel the vessel, a horizon tal shaft projects from each side, each carrying two upright partly circular tracks, one below and the other above, between which an upright propelling wheel is arranged to rotate upon the shaft. Each wheel is driven or rotated by gearing actuated by any suitable prime mover or motor within the body of the vessel, and the construction of the wheel. is such that the paddles will have a feathering action, striking the air on their flat side during half of the revolution of the wheel and presenting their edge surface to the air during the other half of the wheel's rotation. The construction is such that the position of the wheels may be changed to give their paddles a flat or edge presentation to the air as desired, and to move the vessel upward or downward when necessary, it being designed that in lowering the ship it will not be necessary to permit the escape of the gas in the buoyant chamber.

## Gold Alloys.

Prof. Roberts Austen hasdrawn attention to the fact that the properties of gold are changed in a most remarkable manner by alloying it with small perwith small percentages of other lately exhibited a lately exhibited a
new series of alnew series of al-
loys of this metal loys of this metal with aluminum. loys, containing 20 ner cent of aluminum, forms an exception to the usualrule that the melting point the melting point of an alloy is lowthan that of Gither of its con-- ituents. This ailoy has a fusing point above that of gold, the most infusible of its constituents. Curiously enough, the alloy with 10 per cent of aluminum follows the ordinary rule. These alloys have the most brilliant colors The 20 per cent alloy is a brilliant ruby in tint, while those containing greater percentages of aluminum are purple in hue.

## INGLETON'S IMPROVED STEAM PLOW

The accompanying cut, which is from a photograph taken while the machine was in operation, represent the rear view of a steam plow designed and manu actured by Mr. E. Ingleton, of Brantford, Canada, an engineer who has had some 18 years' experience in steam cultivation and steam drainage in England, Germany and Russia, and with every known system. The ap paratus is doing some excellent work, and is not only a working but a commercial success. As much as three acres per hour have been plowed in a most excellent

anner, and the average of a day's work may be set cents per acre
As will be seen from the engraving, this plow is an entire departure from everything yet attempted in steam cultivating machinery, inasmuch as the plows operate across the track of and at right angles to the travel of the engine. By this means a serious objection has been overcome. In nearly all the attempts of steam plowing made on this continent, the system of direct haulage by traction engines has been adopt ed. It may be stated, however, that so long as the propelling wheels of a traction engine have to depend upon the loose and ever-changing surface of the soil upon the loose and ever-changing surface of the soil for a sufficient "grip" to haul a gang of plows, so long


RIDDLE'S AERIAL SHIP. tages of this system. There is practi cally no fixed limit to the width of the plow frame, a each plow is mounted upon a small carriage, with four flanged wheels traveling on rails, and is independ ent to rise or fall, so as to follow all uneven surfaces of the land. By means of a lever placed within reach of the fireman, the main frame can be raised, and all plows taken clear of the land, with the power of the engine, and without stopping the machinery. The plows are fitted with an automatic apparatus for raio ing them clear of stones or roots, thus saving all dam ge from this source
The main frame can be 'fitted with a seeder box, and Ingleton's patent harrow, so that the three operations of plowing, seeding and harrowing can be carried on at one time. The time is at hand when a good steam plow is required It is surprising how little ha been done in this direction, when we take into aocount the elaborate steam thrashing machine which only dealy with two or three tons weight per acre, while to plow an acre of land six inches deep one thousand tons have to be stirred, and that in a very short space of time.

## A Great Bridge

 or New York. Modified plans have been prepar ed by T. C. Clarke for the North River bridge, proposed by the New York and New Jersey Bridge Company. The original plans prooriginal plans a center vided for a cente pier in the river abandoned. The present design provides for a combined canti-
## INGLETON'S IMPROVED STEAM PLOW.

will all attempts in that direction prove unsatisfactory It is admitted that in dry summer weather, when the and is hard and traveling good, a traction engine will haul quite a large gang of plows; but it is different with anything in the nature of a steam plow.
In the Ingleton system the resistance of the plows is against the side of the engine, and does not, therefore hinder the forward move of the latter. This is the secret of its successful working; for, no matter what the condition of the land, so long as it is fit for plowling, a good treation engine, with suitable wheels, may ninth Streets, Eighth Avenue and Broadway. ing, a good trgetion engine, with suitable wheels, may $\left.\right|_{\text {ninth Streets, Eighth Avenue and Broadway. }}$
lever and suspension bridge. The river span will be 3,200 feet. The New Jersey end of the bridge will be at Miles Avenue, the New York City end at a point between the lines of Seventioth and Seventy-first between the lines of Seventieth and Seventy-first Streets. A viaduct 100 feet wide, with four main
tracks and three lines of sidings, will run through private property to a point between Eleventh and Twelfth Avenues, thence to a point above Thirty-eighth and Thirty-ninth Streets. A large union station will be built on the blocks between Thirty-seventh and Thirty- and wear and tear. Besides these advantages, it must not be forgotten in propelling the saving of powe engine will suffice to do the same amount of work than when hauling direct, for there will be found some conditions of land that it would take as much power to propel the engine over at the rate of three miles per hour as it would require to haul a gang of plows.
In the Ingleton system the plows faster than the soil eight tiw the engine is traveling half a mile in one direction, the plows are moving at the rate of four miles per hour at right angles thereto, giving a maximum of work done to a minimum movement of engine
The width of the plow frame may be doubled if necessary ; in fact, it is recommended for large opera tions. This will further the advan

It is stated that wasps' nests often take fire, sup posed to be caused by the chemical action of the wax upon the paper material of the nest itself. This fact may account for many mysterious fires.
be made to travel light. To haul a weight behind it, however, under certain conditions of soil is another uestion.
The main propelling wheels of the Ingleton engine are 7 feet diameter and 30 inches wide, which gives mple "grip" for propelling itself over any con dition of land, while, owing to the width of the frame containing the plows (thirty-three feet), the engine move forward at the rate of about half a mile per hour only, or one-sixth of the speed required by direct haviage
$\qquad$
$\qquad$

$\qquad$



## Progress of Hippophagy.

Contrary to what is commonly supposed, a very respectable number of French men and women have for a long time been eating a large quantity of horse meat, because this food agrees with their stomach as well as their purse.
In our day, the consumers of solipeds have so increased that in many places, it appears, horse meat is sold at a much higher price than it was fifteen or twenty years ago, without, however, having reached such a figure as in Denmark for a few years past, and recently in Germany. In France, hippophagy, while remaining within reach of modest purses, has made surprising progress. In several localities ordinary butchery has been seriously affected by the competition of this new trade. For example, at Toulouse, the city of France in which the largest number of horses are consumed proportionally to the number of inhabitants, the butchery syndicate has formed itself into a sort of committee against the sale of horse meat.
At Paris, the first horse butchery was opened on the 9 th of July, 1866. The number of solipeds slaughtered from that epoch up to the 31st of December of the same year was only 902 . It rose to 2,758 in 1869 , to 65,000 during the siege and the commune, to 5,732 in 1872, and to 10,619 in 1877. The horse butcheries num bered 48 on the 1st of January, 1874, and 132 on the 1st of January, 1889. At present, the price of horse meat is nearly half that of beef for corresponding cuts Thus a fillet of beef is sold at $21 / 2$ francs per 500 grammes, and a fillet of horse meat at $11 / 4$ francs. The inferior cuts, which are from 40 to 60 centimes for beef, are from 20 to 30 for those of horse meat. The solipeds seized after being slaughtered, as unfit for consumption, numbered 3,583 from 1868 to 1884 , that is to say for 203,537 consumed in 17 years ; 304 in 1886, for 18,435 consumed ; and 245 in 1887, for 16,446 consumed.
At Lyons, Bordeaux, Orleans, and Troyes and other cities the output of the horse butcheries is enormous.
According to Prof. Thomassen, of the Veterinary School of Utrecht, hippophagy is in great favor a Rotterdam. Horse meat is used there as human food to an extent that is unknown in Denmark, Sweden, and Switzerland, as well as in several parts of Italy such as Lombardy, Piedmont, Venetia, etc.
It is extensively used in Milan, while it is scorned in Turin. In the latter city, only 55 horses were slaughtered at the abattoir in 1888. The flesh of all of these animals was used exclusively for feeding the animals of a menagerie. Mr. Manuel Prieto regrets that hippophagy is not adopted in Spain, where it would benefit numerous poor laborers, to whom ordinary meat is an article of luxury on account of its high price.
The Annual Agricultural Statistics published by the Minister of Agriculture give the number of horses, asses, and mules slaughtered for human food at Paris and in the suburbs.-La Nature.
mproved Propulsion and Ship Design.
Professor J. Harvard Biles, of Glasgow University, addressed the members of the Rutland Place (Glasgow) Marine Institute recently on "The Effect on Ship De sign of Improvement in Means of Propulsion." Professor Biles, in the course of his lecture, compared the old time propulsion by manual power with the methods in vogue at the present time. One man, he said, on board a modern st amer with all the latest appli ances at command, could produce fifteen hundred times as much work as was possible when the power was applied direct. After describing the changes which had been effected in means of propulsion, and pointing out their effect upon ship design, the lecturer pro ceeded to consider the possibility of propelling ship by lighter machinery and boilers of the tubular type whose weight would be one-fifth less than at pres ent, and in which oil would replace coal as fuel. Even with such improvements, however, it would take a vesse 1,000 feet in length and 109 feet beam, with engines of 100,000 to 120,000 indicated horse power, to cross from Queenstown to New York in four days. But remem bering that in the last fifteen years the propelling power of steamers had been multiplied by six, and that in the present day 30,000 horse power was not unknown it was not unreasonable to assume that in the nex fifteen years the maximum horse power would be quadrupled.

The Magnetic Properties of Oxygen
Commenting on Professor Dewar's recent experi mental verification of the magnetic properties possessed by liquid oxygen, M. Guillaume points out, in L'Indus rie Electrique, that if we accept the values found by Edmond Becquerel for the magnetic constant of oxy gen, it ought, when in the liquid state, and in a field of medium strength, to possess a magnetic moment per cubic centimeter one-third that of iron, and a mag netic moment per gramme twice as great as that of iron; so that the strange conclusion is forced upon us that oxygen is the most magnetic of substances. M. Guillaume also points out that liquid oxygen might be made to give a faithful and delicate representation of he distribution of the lines of force in a magnetic field, the liquid being heaped up in the strong places.

## A BED SPRING AND SUPPORT.

The simple and inexpensive device shown in the Ilustration is adapted for attachment to any ordinary bedstead rail to support the slats and form a cheap simple and easy spring bed. It has been patented by,
 Mr. Wilbur L. Gillette of Yalesville, Conn. The base or support of the spring consists of a bracket, A, the wall plate of which rest against and is secured to the inner side of the rail, or the bracket may be secured in the notches where the slat are usually inserted The main bracket arm, B, has a hole at its outer end and a notch at its inner end in which the bed spring wire is se
cured, the upper free
nd of the spring being doubled to form a keeper, $C$ shaped to easily receive a slat of the bed.

## NOVEL TOYS.

The elasticity of torsion and tension, the storage of energy, centrifugal force, momentum and friction, are all concerned in the movement of the simple toy illus trated in Fig. 1, and yet, perhaps, not one in a thou sand of the people who see the toy realizes the composite nature of its action. Barring the well known return ball, nothing can be simpler than this toy which consists of two wooden balls of the same diame ter connected by a slender elastic rubber band at tached by staples, as shown in the lower figure.
To prepare the toy for operation, it is only necessary to twist the rubber band by holding one of the balls in the hand and rolling the other round in a circular

path upon the floor by giving to the hand a gyratory motion. As soon as the band is twisted, the free bal is grasped in the hand, then both are released at once The untwisting of the rubber band causes the balls roll in opposite directions in a circular path, and centrifugal force causes the balls to fly outwardly. By virtue of the acquired momentum, the balls continue to rotate after the rubber band is untwisted, so that the band is again twisted, but in the opposite direc ion. As soon as the resistance of the band overcome he momentum of the balls, the rotation ceases for an instant, when the band again untwisting revolves th balls in the opposite direction, and the operation is re peated until the stored energy is exhausted.
In Fig. 2 is illustrated another ball in which the enter of gravity is located near the periphery. The ball, which is hollow, is made of paper. To the inner


## Fig. 2.-UNBALANCED BALL.

surface of the wall of the ball is attached a weight which is secured in place by a piece of cloth glued over it When this ball is thrown through the air with a whirl ing motion, it describes a curve like that indicated in dotted lines in the upper part of the engraving, so that it is difficult, if not impossible, to catch it. When the ball is rolled on a plane surface, it does not take a traightforward course, as would be expected from a well-balanced ball, but its course is very erratic, as indicated in dotted lines in the lower part of the figure.

## Bovines vs. Equines.

The differences anatomically and physiologically between the cattle tribe (Bos) and the horse family (Equus) is an interesting study. In parallel tables, as given in the Maryland Farmer these can be seen at given
glance

| cattle. | Horses. |
| :---: | :---: |
| Have two toes. | Have one toe. |
| Horned. | Without horns. |
| Have no mane. | Have flowing mane. |
| Long hair in a tuft at end of tail | Taul covered with long h |
| Pawing with fore feet denotes anger. | Pawing with fore feet denotes hunger. |
| Seize forage with the tongue. | Gather food with the lips. |
| Lips slightly movable. | Lips very movable. |
| Have no upper incisor teeth. | Have upper and lower incisor |
| Lie down fore parts first. | Lie down hind parts first. |
| Rise on hind legs first. | Rise on fore legs first. |
| Short mouth. No space between incisor and molar teeth. | Mouth long. Space between front and back teeth. |
| Four stomachs. | One stomach. |
| They chew the cud. | Do not chew the c |
| Intestines small-120 feet long, | Intestines largc-60 feet long |
| Have gall bladder. | Have $n ¢$ gall bladder. |
| May vomit. | Do not vomit. |
| May breathe through the mouth. | Don't breathe through the mouth. |
| Mouth generally open when weailed. | TIouth never open from exhaus. tion. |
| Defense by goring. | Defense b |
| Bel | Neigh or whinny. |
| t sweat. | Perspire easily. |
| Have dewlap. | Have no dewlap. |
| No warts on inside of hind legs. | Hard, oval warts insidc hind legs. |
| Never use teeth in fighting. | Use the teeth in fighting. |
| Do not retract the ears. | Retract the ears when angry. |
| ery rough tongue. | Soft, smooth tongue. |
| Short, broad head. | Long, narrow head. |
| Wide, drooping ears. | Erect, narrow ears. |
| Limbs formed for strength. | Limbs formed for spee |
| Live twelve or eighteen years. | Live thirty or forty year |
| Do not roll in the dust. | Do roll in dust. |
| Sleep with both ears alike. | Sleep with one ear forward. |
| Lie down to sleep. | Often sleep standing. |
| Eat and lie down to ruminate. | Nover ruminate. Eat little and often. |
| Shoulders straight. | Shoulders sloping. |

The Iron Industries thinks men who attend to the lubrication of moving machinery ought to make a study of the action of various oils upon metals more than they do. Recent experiments show the following interesting results : Iron is least affected by seal oil and most by tallow oil. Lead is least affected by olive oil and most by whale oil; whale, lard and sperm oils act to very near the same extent on lead. Brass is not affected by rape oil, least by seal oil, and most by olive oil. Tin is not affected by rape oil, least by olive oil and most by cotton seed oil. Zinc seems not to be acted upon by mineral lubricating oils, least by lard il and most by sperm oil. Copper is not affocted by mineral lubricating oils, least lby lard oil and most by tallow oil. Mineral lubricating oil has no action on zinc and copper, and acts the least on 3 rass and most on lead. Olive oil acts least on tin and most on copper Rape oil has no action on brass and tin, acts least on Rape oil has no action on brass anc tin, acts least on
iron and most on copper. Tallow oil act.. least on iron and most on copper. Tallow oil acta least on
tin and most on copper. Lard oil acts least on zinc tin and most on copper. Lard oil acts least on zinc
and most on copper. Cotton seed oil acts least on lead and most on copper. Cotton seed oil acts least on lead
and most on tin. Sperm oil scts least on brass and and most on tin. Sperm oil scts least on brass and
most on zinc. Whale oil has no action on tin and acts most on zinc. Whale oil has no action on tin and act
least on brass and most on lead. Seal oil acts least on least on brass and most on lead. Sell oil acts least on
brass and most on copper. From these results it will be seen that mineral lubricating oil has, on the whole the least action on the metals employed in the experiment, and sperm oil the most. For lubricating the journals of heavy machinery, either rape oil or sperm oil is the best to use in mixture with mineral oil as they have the least effect on brass and iron, which two metals generally constitute the bearing surfaces of an engine. Tallow oil should be used as little as possible, as it has a bad effect on iron.

The Transformations of the Digger wasps
At a recent meeting of the Entomological Society, of Washington, Professor Riley gave a detailed descrip tion of the larva of our larger digger wasp (Sphecius speciosus), and drew attention to a remarkable peculiarity of the cocoon of this insect. This peculiarity consists in the presence of certain very anomalous pores which occur about the center of the cocoon and extend nearly around it. These, Professor Riley stated must be intended for some special purpose, and prob ably for ventilation or respiration.
The occurrence of these pores, he stated, brings up the interesting question of the need of ventilation in the cocoons of hibernating insects, and he believed, in general, that in proportion to the imperviousness of the cocoon to air, some provision for its admission would be found.

## Ticking of the Death watch.

Mr. C. J. Gahan, at the meeting of the Entomological Society, of London, for December 2, 1891, exhibited specimens of the common book louse (Atro pos pulsatorius Fabr.), which he had heard making a ticking noise similar to that made by the " death watch" (Anobium). We put this on record as corroborative evidence of the power of making such noises possessed by atropos, which many have felt doubtful of on account of its minute size and soft body covering.

## Sorrespondence

## The Aurora.

To the Editor of the Scientific American:
There was a bright aurora on the night of Saturday, April 23. This display is of special interest, because it is the sixth successive recurrence at the precise interval of twenty-seven days, the dates being as follows: Decemior 9, January 5, February 2, February 29, Mareh 27, and April 23. This period corresponds to the time of a revolution of the sun as viewed from the earth, or, in other words, a synodic revolution. Upon each of these dates, also, there was at the sun's eastern limb a disturbed area located south of the equator appearing by rotation. In like manner a record now before me shows that disturbed areas in the sun's northern hemisphere are attended by the appearance of the aurora when coming into view by rotation, but that this is the case in the autumn months instead of in the spring. Now, in the autumn the north pole of the sun is inclined toward the earth and in the spring the south pole is thus inclined, and the sun spots are invariably located within the limits of a narrow belt on each side of the sun's equator and at comparatively a short distance from it. Thus it appears that, in order that a solar disturbance may have its full effect upon the magnetism of the earth and produce an aurora, it must be in a particular location, namely, at the eastern limb, and as near as possible to the plane of the earth' orbit.
Lyons, N. Y.

## Patent office Examinations.

To the Editor of the Scientific American:
Referring to your suggestions under the head of "A Proposed Congressional Resolution Relating to Patents," v. 66, p. 256, I would suggest that, as it does not appear to me that " examinations may readily be made by any skilled person " outside of Washington, or even of the cxamining force of the Patent Office, it being difficult to make exhaustive examinations even inside of the office, it would not be well to dispense with official examinations; but that the injury to the public resulting from delays in deciding interferences would be obviated by a law providing that, when interfering applications were ready for issue, a patent for the invention involved should be deposited in court, to date from day of deposit, and the rival claimants should prosecutc their claims in court, as in the case of dispute over the ownership of money paid for condemned land or any other property deposited in court. The interests of the contestants would then be in the direc tion of a speedy settlement, while the public could not in any event be made to suffer by delays.
B. Pickman Mann.

1918 Sunderland Place, Washington, D. C., April 23, 1892.
[Our correspondent thinks it would be wise, in the case of interfering applications for patents, to issue the patent and have the question of priority settled by the court. In this we agree with our correspondent. Our suggestion goes a step further. We proposed the issue of patents to all applicants, leaving the question of novelty and validity to be settled by the courts, and removing it altogether from the Patent Office. If it is desirable to do this in interfering applications, it is cqually so for all applications.-Editor Scientific AMERICAN.]

The Fair to be Dedicated october 12.
A Congressional investigating committee visited Chicago the first week in April, and it is said its members werc astonished to see the vast amount that has been done during the last few months. All but three
or four of the fifteen largest buildings are under roof, or four of the fifteen largest buildings are under roof,
and evon the vast manufactures building, which covers over thirty acres of ground, is rapidly advancing toward completion. The much discussed subject of the nature of the dedicatory ceremonies next October has at last been settlod, and the general features of the ceremonies, as now docided upon, are as follows :
On October 12 there will be a national salute, and, in the early part of the forenoon, the troops, both of the regular army and the national guard, will be assembled under the command of Gen. Nelson A. Miles, U. S. A. and will be reviewod by the President of the United States at $11 \mathrm{~A} . \mathrm{M}$. Immediately after the review the ceremonies proper will be held in the great manufac turers' building. They will consist of (1) a march for the orchestra, composed especially for the occasion by John K. Payne ; (2) a prayer by the Methodist Bishop, Charles H. Fowler, of California ; (3) presentation by the chief of construction, Mr. Burnham, of the master artists of the exposition and their completed work; (4) report by the director-general of the exposition, Col.
George $\mathbf{R}$. Davis; (5) presentation of the buildings to George $R$. Davis ; ( 5 ) presentation of the buildings to
the president of the national commission by the president of the local directory; (6) vocal chorus, "The Heavens Are Telling," Haydn ; (7) presentation of the buildings to the President of the United States by the president of the national commission; (8) march and chorus from "The Ruins of Athens," Beethoven; (9)
dedication of the buildings by the President of the United States; (10) hallelujah chorus from "The Messiah," Handel ; (11) dedicatory oration, by Hon. W words by Miss Harriet Monroe, music by Prof. Chadwick; (13) "The Star Spangled Banner," and "Amer ica," with grand chorus and full orchestral accompani ment: (14) national salute. In the evening there wil be a magnificent display of fireworks, and the grand allegoric parade, the "Procession of the Centuries." The next day, October 13, will be devoted to receptions, military maneuvers and a grand dress parade of al the troops, with more pyrotechnics and a repetition of
the allegoric "Procession of the Centuries." The foregoing programme has been approved by the national commission and concurred in by the local directors Director-General Davis will be master of ceremonies and Gen. Miles chief marshal. Seats in the manufac tures building will be provided for all invited guests. No admission fee will be charged to the grounds on October 12, the first day of the ceremonies, until 5 P. M., after which, and during the next day, fees wil be charged.

## Collecting and Recovering Waste Rubber. <br> by i. A. SHERMAN

The business of securing waste rubber and recovering it obtained its impetus soon after the expiration of the Goodyear patents. Before that time the scrap, particularly that which was vulcanized, had been burned under the bollers or thrown away. The old Hayward company made a road through a swamp of heel trimmings and other vulcanized scrap. A quantity which would now be worth many hundreds of thousands of dollars has been dumped over the docks or buried in the ground to get it out of the way. As the manufacture of rubber increased in importance, and natural competition became more severe, the price of crude rubber constantly appreciated. The inventive faculty of the manufacturer was exercised, therefore, to find various ingredients and adulterants that would make the goods cheaper. Of all the materials used in rubber compounding, none was found to be as effective as recovered rubber, and this for the simple reason that when carefully prepared it is rubber. There are those who think, in buying rubber goods, that any percent. age of "shoddy" in the compound is a disadvantage If these people were aware that mould work of the of pure rubber, they wouldiperhaps awaken to the fact that a certain percentage of this same shoddy would be far better in good goods than would an equal or perhaps larger amount of whiting or lampblack. It is true, however, that while the amalgamation of waste
rubber with pure gum is an advantage, it can reach a point where it becomes a positive injury to the goods and to the trade, and a permanentsource of annoyanc for both manufacturer and retailer.
The purchaser of a pair of rubber shoes apparently can see little difference between that which costs twen-ty-five cents and that which may cost $\$ 1.25$ a pair, and he most eloquent salesman finds it difficult to point ut the difference. On the other hand, if goods were made entirely of pure gum, they would be too elastic and would draw the feet, besides being so costly that the ordinary consumer could not afford them. It is by the most careful working of waste with "live" material
that the best goods are obtained at a price that any that the best goods are obtained at a price that any
one can reach. The abuse comes in when the maker forced by competition, allows his cupidity or embarrass ment to obtain the better of his judgment and to so load the goods with shoddy that they have little or no wear. The career of the rubber car spring business is good illustration of this sort of folly. It is acknowledged that there is no better material in the world for car springs than rubber, and to-day the railroads would be using little else had the manufacturers kept up the quality of the goods. In an evil hour, however, they began to cut prices, and to do this without loss they were forced to lower the quality of the goods. Thi was kept up until the railroad men became disgusted, and, as a whole, gave up the rubber spring. To-day its use is chiefly among electric men, and those who made specialty of rubber car spr
Waste rubber is gathered
Waste rubber is gathered in all sections of this coun thy and also in Europe, although more is gathered in the United States than abroad. This is perhaps because the people in this country are far better shod than
those in other countries. The familiar Italian in New those in other countries. The familiar Italian in New
York City, with hook and bag, who prowls around th York City, with hook and bag, who prowls around the
morning ash barrel, is the pioneer in this collection of bits of waste rubber. He selects the old shoes and occasional water bottles, and sometimes a rubber waterproof, and takes them all to a junk dealer, who in turn delivers them to the dealers of higher degree. Many of the rubber mills also have quantities of vulcanized scrap that they sell to those who make the business of grinding and recovering. The wholesaler of rubber scrap classifies his goods as follows: Pure, two qualities of white, boots and shoes, springs, packing, hose, red rubber, and unvulcanized rubber. Of the scrap
old boots and shoes. These are sorted roughly, put up in bales, and shipped to the companies who make a business of reclaiming.
Briefly described, the process of reclaiming old rub ber boots and shoes is as follows : By the mechanical process the boots and shoes are thrown into a machine known as a "cracker," and are roughly torn to pieces, the workman picking out any pieces of brass that he may see. From this they go to a grinding mill with a very decided friction motion which grinds the product to a fine powder. It is then passed through an air blast to remove the fiber, and the black powder is then run over a machine fitted with a series of magnets, which removes the iron. It has been found that grinding waste rubber in water greatly increases its life, which opens up a field for interesting experiment on the part of rubber men. The black powder is next put in iron pans, run into a vulcanizer and exposed to live steam for a number of hours at a temperature vary ing from $400^{\circ}$ to $600^{\circ} \mathrm{F}$. The steam heat volatilizes the sulphur, whence the term "devulcanization." When the shoddy is taken out of the vulcanizer it may be pu on a grinder, when it will readily form in sheets, and has very much the appearance of compoundod stock that is unvulcanized. A more modern process and one that gives excellent results is what is known as the acid process. In this, instead of removing fibor by the ai blast, it is destroyed by a weak acid solution in which the shoddy is boiled. Of course, for various kinds of ubber work there would be other shoddies than the boot and shoe shoddy; for example, hard rubber saw ust and turnings are used largely in hard rubber work and pure gum is often ground to a fine powder and used in stock that is to be very springy. Pure rubber however, cannot be easily devulcanized. There are also those who make a business of purchasing the un vulcanized scrap from rubber clothing manufacturers soaking the cloth in benzine, peeling off the rubber and selling it back to the manufacturers.
The business of gathering shoddy is a large one, and the transactions involve contracts of two and thre hundred tons a season for a singlemanufacturer. Ship ments are of ten made as large as fifty and sixty tons a a time. It will hardly be just to say that all rubber manufacturers use shoddy, for they do not. There are however, few lines of goods in which recovered rubber cannot be used, and that, too, with a certain advantage. In no line of business is there more system than in the recovered rubber business. Practically the waste out of an ash barrel is as free as the water in the river. At the same time it costs even to collect it. After the rough work of gathering is over the steps in manufac uring are most carefully planned, and until it reache the factory where it is to be used there is no chance for exorbitant profit in any of the processes of manufac ture. So close is the competition that oftentimes the rate of freight will spoil the trade of certain factories Taken as a whole, the business is a peculiar and not particularly pleasant but exceedingly importantone.Rubber World.

## Friction of Lubricated Bearings.

At the meeting of the Leeds Association of Engineers n February 25, Mr. J. H. Wicksteed read a paper on the "Friction of Lubricated Bearings," founded on the researches of the Institute of Mechanical Engineers. After describing the apparatus used, the author began the discussion of the results arrived at, which he stated confirmed the deductions drawn from ordinary prac tice. With careful lubrication steel shafts running in gun metal bearings at from 50 to 300 revolutions per minute would seize with the below mentioned loads: Collar bearings, 100 pounds per square inch; footstep bearings, 200 pounds per square inch; cylindrical bearings, at 600 pounds per square inch ; while a pin working intermittently will stand about ten times the above pressure without seizing. In all the experiments the surface was taken as being the diameter by the length. The lecturer pointed out that in the friction of solids, the friction is directly proportionate to the load, while with li quid friction, $i$. e., with a perfect lubrication where a film of liquid intervenes between the metallic surfaces, the friction is independent of load. The experiments showed that in a bearing with the load applied above, as in rolling stock, there was an upward pressure of more than 500 pounds, a hole being bored in the crown of the journal, and a pressure gauge in erted showing as much as 600 pounds pressure pe square inch in a bearing 4 inches in diameter by 6 inches long. Thus a total pressure of upward of 6 tons was supported by fluid pressure of the lubricant, which pressure did not fall appreciably for hal an hould not exeed one ten-thousandth of an inch in thickness.

Prof. Chandler, of Harvard, has suggested that he variable star Algol-alpha Persei-owes its variableness to the fact that, together with a dark satelite, it revolves round a third and central body, which is also dark, in one hundred and thirty years. The orbit of the shining star Mr. Chandler calculates to be two thousand five hundred times as large as that of the satellite.

## THE NAVAL GUN FACTORY, WASHINGTON.

 (Continued from first page.)turn in twenty-five calibers. The number of grooves for the various classes is four times the caliber of the gun in inches; their width for the larger guns is a little less than half an inch and their depth about five onehundredths of an inch
The breech is closed by a steel cylinder or breech block, having a screw thread on its outer surface. The circumference of the block is divided into six equal parts, and from three of these, alternating with the others, the threads are cut away longitudinally. A corresponding thread, similarly cut away, is made in the prolongation of the bore, at the breech of the gun; and thus, when the block is pushed into its place, sixth of a turn to the right locks it.
The time required to make one of thesemodern guns, notwithstanding all the facilities which have been provided for the work, is considerable. A 4 inch gun, after its separate parts have been received from the manufacturers, cannot be "assembled" in the factory

## How to Get Rid of Household Pest

In a lecture before the Lowell Institute Prof. Riley discussed the ever timely subject of household pests The treatment of the subject was practical, and the remedies given for each particular pest are worth not ing by the careful housewife. For certain of the commoner pests, such as the bedbug, the carpet beetle, the clothes moth, benzine applied in a fine spray by means of a hand atomizer was stated to be the best remedy as in most cases it destroys the insect in all stages, in cluding the egg. In using benzine, however, care mus be taken that no fire or artificial light is in the room a the same time, the vapor of benzine being highly ex plosive. For cockroaches, bristle tails, or fish moths, and fleas the lecturer recommended a liberal use of pyrethrum powder, in the form of either Persian or Dalmatian powder, or buhach. Fleas, he said, are generally introduced into houses by dogs or cats, and the presence of bed bugs is not always a sign of uncleanliness, as they have been found under the bark of
connection between the two, though the same con ditions which cause malaria are apt also to breed mos quitoes. In the case of elephantiasis, however, a disease prevalent in tropical countries, and due to a minte organism known as filaria, it has been well established that the filaria in its life development must need. pass through the mosquito as an intermediary host. -Boston Advertiser.

## The Composition of Resin Oil.

Mr. F. H. Leeds finds that resin oil of the first dis illation varies considerably in its composition, accord ing to the design of the stills and the consequent greater or less ease with which the resin can volatilize unchanged during distillation. The acidity of commercial samples varies from 15-24 per cent, the molecular weight of the acids being assumed to be 302. The acidities quoted above are those given by titrat ng an alcoholic solution of the oil with caustic alkal By boiling the oils with excess of caustic potash, and titrating back, a further consumption of alkali takes


THE NAVAL GUN FACTORY, WASHINGTON-AN ARMOR PLATE AFTER TESTING.
within less than fifty days, and $5,6,8,10,12$, and 13 inch calibers require respectively $55,60,105,150,270$, and 360 days for their completion. The plant of the factory, however, permits work upon a considerable number of guns to be in progress at the same time, and its capacity for production can be quickly and greatly increased in an emergency. But, slow as is the process of gun construction, that of building ships of war is still slower ; so that the Washington gun factory is re garded as amply able to supply our new vessels with their batteries as soon as they shall be ready to receive them.
The 12 inch guns of the Monterey weigh 45 tons each, and each is 37 feet long, the firing charge being 425 pounds of powder, with a shell weighing 850 pounds. The 13 inch gun weighs $601 / 2$ tons, using 550 pounds of powder, with a shell weighing 1,150 pounds.

Cure for Snake Bite.
The April number of the Therapeutic Gazette con tains reports of several cases of deadly snake bites which were cured by hypodermic injections of strych nine. It seems to be almost a sovereign remedy.
times be traced to this source. Keeping premises clean and dry was said to be in general a good preventive of nsect pests.
The common house fly, with its complicated mouth and its stereoscopic eyes with 4,000 facets, was next discussed, and the lecturer then passed to an interesting account of the mosquito. The eggs of this insect are laid in the water, and the larva, when hatched, passes through several moults in the same element, the perfect mosquito finally breaking out from the pupal skin and fying away on her bloodthirsty mission. The female mosquito is the form which stings, the male seldom leaving the swamps where he dwells, and contenting himself with vegetable juices. In dealing with the mosquito as a household pest, good pyrethrum powder is probably the best preventive of its annoyances. Moistened and made into little cones, allowed to dry and then burned in a closed chamber, this powder will either stupefy or kill, and is one of the best means of freeing chambers from mosquitoes. Touching upon a theory advanced some years ago-that mosquitoes by heir stings inoculate the body with malarial poisonthe lecturer stated that in his judgment there was no
place, a difference varying from 1-9 per cent being noted. Long exposure of the oil to the air produces little change in the percentage of acids found by direct titration, but leads to a marked decrease in the additional portion that is only senonified by boiling with an excess of caustic alkali. It further appears, from the non-agreement of the volumetric and gravimetric determinations of saponifiable matter, that the mole cular equivalent for the acids quoted above is not ac curate

The Treasury Department has lately issued a circu ar reciting the various articles of American production that may now be introduced either free of duty or reatly reduced duties in Brazil, Spain and colonies San Domingo, Salvador, Great Britain, and Germany The list is a large one and embraces many of our prin ipal agricultural productions, machinery, and articles of manufacture. In due time these new commercial treaties probably will give a new impetus to our foreign trade. The country needs now more than ever the establishment of lines of fast steamers from these shore to the countries above named.

## THE NEW CRUISER RALEIGH.

The cruiser Raleigh was launched at the Norfolk navy yard March 31, in the presence of many thousand spectators. Besides the great throng in the navy yard itself, the shores of the river were lined for a long distance, and dozens of steamers, tugs, and yachts were crowded with spectators.
We give an engraving of the launch, prepared from a photograph of the scene, for which we are indebted to Mr. J. H. Faber, photographer, Norfolk, Va.
Naval Constructor Bowles had charge of the work.
One circumstance which added to the interest was that the Raleigh was ready so much in advance of her sister ship, the Cincinnati, now under construction at the Brooklyn navy yard.
The signal was given at 11:36 A. M., and Mrs. Alfred W. Haywood, of Raleigh, N. C., daughter of Governor Holt, of North Carolina, standing between the Secretary of the Navy and Ensign Hilby P. Jones, broke the bottle of wine on the bow of the cruiser, which began to move off as easily as if under her own propeller. Just threequarters of a minute from the time the bottle was broken the Raleigh was stopped by her anchors in midstream. Govérnor Holt and staff, the volunteer soldiery of this section, and many prominent people from a distance were present.

By act of Congress, approved September 7, 1888, the construction of two steel cruisers of about 3,000 tons displacement each, to cost not more than $\$ 1,100,000$ each, exclusive of armament and any premiums that might be paid for increased speed, was authorized. The speed prescribed was 19 knots, with a premium of $\$ 50,000$ for each quarter of a knot additional, and the same deduction for each quarter of a knot deficient. The act authorized the Secretary of the Navy to build the vessels in navy yards if unabl to contract for them at reasonable prices.
Proposals were advertised for, but none within the limit of cost fixed by Congress was received. The Secretary, accordingly, directed that the vessels to be known as cruisers Nos. 7 and 8 should be built at the navy yards at New York and Norfolk, respectively. The chief constructor gave No. 8 on September 26, 1889. The first keel plate was laid on December 19, 1889. Since then the work peditiously as possible against the difficulties of training a new force of workmen and vexatious delays in the delivery of material. In pursuance of the plan of naming second class ships after cities, the President decided that cruiser No. 8 should be called the Raleigh.

The Raleigh has a length of 300 ft . on the load water line, and an extreme breadth of 42 ft . At her mean normal draught of 18 ft . of sea water her displacement is about 3,180 tons, the maximum draught then being about 19 ft . She will have two sets of engines working twin screws, and develop (estimated) 10,000 indicated horse power at full power with a steam pressure of 160 pounds. This will drive the ship at 20 knots. Her coal supply at normal draught will be 400 tons. The bunkers will hold 675 tons, and with this supply she can steam 1,500 miles at full power, or 10,500 at 10 knots, her most economical speed.
The engines are of the triple-expansion, vertical, inverted, direct-acting type, with two low-pressure cylinders. Her cylinders are $36,53,57$ and 57 in . in diameter, with a common stroke of 33 in . Steam is supplied by four double ended boilers and two single-ended ones, to be used as auxiliaries. The grate surface is 597 sq . ft . and the heating surface 19,382 . The closed ash pit system of forced draught will be used. The condensers have each 7,000 sq. ft. of cooling surface. The revolutions at full power will be 164 .
The main and auxiliary engines occupy four watertight compartments, and the boilers four others. The watertight subdivision at the ends of the ship is very

complete. The protective deck is 1 in . thick on the flat, 2 in . at the slopes at the ends, and $21 / 2 \mathrm{in}$. on the slopes amidships. A cofferdam to be filled with woodite or cellulose extends around the ship in the wake of the water line, on the protective deck. The ship has poop and forecastle decks, with an open gun deck between, and bridges extending along the top of the hammock berthings connecting the poop and fore castle. The rig is that of a two-masted schooner |  |
| :--- |
| spreading 7,210 sq. ft. of sail. The boats are stowed |
| on skid beams between the two fore-and-aft bridges. |



THE UNITED STATES CRUISER RALEIGH.
either of the dynamos can be put on any or all of the arc or incandescent circuits.
The engine power of the Raleigh is relatively greater than that of any other vessel of the United States navy, except the Vesuvius and the torpedo boats, oc curring, as it does, in conjunction with a larger battery power, necessitating a larger crew. The complement will be about $320 ; 24$ officers, 34 marines, and a crew of 66. The rudder is partly balanced. Its weight is bout $7 \cdot 5$ tons. The ordinary right and left steering gear is used, actuated by a powerful steam steering engine below the protective deck.
It is estimated that her cost completed, including armament and equipment, will be $\$ 1,642,915.74$.
The actual weight of the ship when launched was 1,140 tons.

The Raleigh is the first vessel of the new navy to be built complete by the government, as the machinery and boilers are under construction and now nearly com pleted at the navy yard at New York.

## Census of the Carrier Pigeons at Paris.

The enumeration of the carrier pigeons at Paris prescribed by a law of 1877 shows that the number of pigeons and owners is yearly
The main armament consists of one 6 in . breech-loading rifle mounted on the forecastle and having an arc of train of 270 degrees from quarter to quarter, ten 5 in . rapid-fire guns, two mounted on the poop and the others on the gun deck in sponsons; those on the poop and the after two on the gun deck train from right astern to 60 degrees forward of the beam; the two forward ones on the gun deck train from right ahead to 60 degrees abaft the beam ; the others train 72 degrees before and abaft the beam. The auxiliary armament consists of eight 6 pounder rapid-fire guns mounted, four over the forward and after sponsons on forecastle and poop, two on gun deck forward and two on gun deck amidships; four 1 pounders mounted, two on gun deck aft (in captain's after cabin) and two on bridges; two Gatlings mounted in the tops. The forward and after 5 in. guns on the gun deck are protected by 4 in . armor. The other sponsons have 1 in . armor plates. The conning tower will be 2 in . thick as will the tube leading from it to the protective deck.


LAUNCH OF THE NEW WAR SHIP RALEIGH, AT NORFOLK, VA.
ncreasing in a very sensible proportion. In 1890, the census gave the following figures
Owners, 608; trained pigeons, 6,619; untrained, 658 ; say a total of 12,277 .
In 1891, the census gave :
Owners, 697 ; trained pigeons, 7,012; untrained, 6,977 ; say a total of 13,989 .
These figures, put in comparison with those of the preceding year, represent an increase of 89 owners and 1,712 pigeons. The census of carrier pigeons does not concern itself solely, as for horses, with the gross number of the birds, but is completed by a serious in quiry into the subject of mortality, and the military situation of each owner of carrier pigeons, and into the direction in which his pigeons are trained, so that at the moment of a declaration of war, the military authorities, on taking possession of the cotes, may be able to utilize the pigeons at once. This inquiry per mits also of detecting owners who are in contravention for false declarations or for want of authorization The great majority of th breeders are of French nationality. There are however, a certain numbe of foreigners among them say twenty-seven Belgians, one Russian, one Spaniard one Swiss, one Austrian and four Germans.
The arrondissement of Paris that contains the largest number of owners of pigeons is the twentieth after this come the elev enth, nineteenth and thir teenth. The arrondisse ment containing the small est number is the third, in which there are but thre owners, who possess, in all twenty-four pigeons. - Co lombiers Militaires en Europe.

The Sampson well at Waco, Texas.
The "Sampson" is the largest well in the United States, and has few rivals in the world. It is bored with a diameter of 10 inch es to the depth of 1,850 fee -all the artesian wells o Waco finding their supply at from 1,825 to 1,850 fee deep. The "Sampson" throws up about $1,500,000$ gallons daily of hot but perfectly pure and crystal line water, at a temper ature of $103^{\circ}$-which is the highest temperature of any artesian water yet dis covered-with a pressure
There are six above-water torpedo tubes; fixed ones of 60 lb . to the inch. It will rise in the standpipe to the
ahead and astern and training ones on each bow and quarter. The tubes are of the Howell pattern, using unpowder to project the torpedo
The ship will be lighted by electricity, the plant consisting of two engines and dynamos, each with an output of 200 amperes at a constant potential of 80 volts. In addition to all necessary lights for illumina tion and signaling, there will be three Mangin searchlight projectors. The lights will be arranged in sec tions, on independent conductors, all controlled by a switchboard in the dynamo room, so arranged that
eight of 120 feet rom the ground. The supply ap pears to be inexhaustible, no diminution of pressure having so far been felt at the other wells. Besides th "Sampson" there are two other standpipes, respect ively 80 by 20 feet and 88 by 20 feet, which notonly supply Waco with pure artesian water for domestic and manufacturing purposes, but also for hot, swim ming, and other baths. More important still, indeed, or the future of the city, these supply it, in addition, with a motive power which can be applied to all kinds of manufacturing purposes.

Natural History Notes.
Cats in Egypt.-The first people known to have domesticated cats were the ancient Egyptians, on whose monuments representations of these animals are found as early as 1600 B . C. It is on a tomb erected about $1300 \mathrm{~B} . \mathrm{C}$. that the cat first appears unmistak ably as a domesticated creature, being shown seated beneath a chair. In ancient Egypt, the cat was an object of religious worship, and was even an inmate of the temples. There was actually a cat goddess, named Bubastis, who was always depicted as having a cat's head. Behind the templ dedicated to her at Ben Hassan, great pit: havc been found containing multitudes of mummies of cats.
Tho cat was also regarded as an emblem of the sun, its eyes being supposed to vary in color with the progress of that luminary through the heavens. Likewise its eyes were believed to undergo a change each luna month, and for this reason the animal was also sacred to the moon.
The Mudfish (Protopterus).-Travelers in Central Africa, during the hot season, often follow the dry beds of rivers and creeks for miles to obviate the necessity of cutting their way through the heavy jungles which everywhere abound. Africa is well known to be the native land of many extraordinary things, animate as well as inanimate. This being the case, the first explorers paid no attention to the thousands of balls of hardened mud which were strewed about in profusion in the beds of these dried-up streams. One day, however, when a detachment of the Cameron expedition was exploring what in the wet season would have been a tributary of the Nile, a woodman cracked one of the balls and was surprised beyond measure to see a live fish-like animal fall out of the center of the ball and flounder in the sand.
This curious discovery led the explorers to make an investigation, whereupon every hardened ball of earth was found to contain a specimen of the same animal. These spherical mud dwellings, which, on account of their likeness to the cases made by several species of insects and worms, have been called cocoons, are perforated with many small holes and lined with a mucus from the animal's body, the mucus keeping the dried ball damp upon the inside, and the holes being used for breathing purposes. For want of a more euphoni ous name, this queer animal has been dubbed the "mudfish," which is expressive of the creature's curi ous habits.
The remarkable instinct which causes the mudfish to roll itself in a ball of mud when the dry season ap proaches is a wonderful provision of nature intended solely, it would seem, to prevent the extinction of the species. The most interesting fact about this animal is that it breathes by means of gills when in its native element, and by means of lungs during its voluntary imprisonment in the mud cocoon.
The Dinornis.-Mr. H. O. Forbes states, in a short note in Nature, that he has been able to assure himself from some particularly well preserved bones dis covered in New Zealand that the Dinornis really possessed a rudimentary wing. The coracoido-scapu lar, in fact, has a rounded cavity that could only have been a glenoid cavity that received a humerus of some size.
Some Curious Lobsters.-Visitors to Portland Pier who happened one day not long since to drop into the lobster house of Mr. Lewis McDonald were favored with a view of a bright blue lobster which was caught off Cape Elizabeth by a Peak's Island fisherman. The color was decidedly different from the green of the ordinary lobster. On the back the blue was of that deep variety that belongs to indigo, and toward the extremities and under parts shaded off to a fainter but still unmistakable tint, and thence into a pure white. The under part of one of the claws is almost a pure white. The lobster is about eleven inches long. One claw is of full size, while the other is very small It is said that one other blue lobster has been caugh off the Cape this season. Mr. McDonald thinks of pre serving the specimen.
He has also a pure white lobster caught about five years ago and preserved in alcohol. Mr. McDonald thinks it is the only pure white lobster ever caught.
Some of those who viewed the blue lobster recalled other queer lobsters that have been seen in Portland. Not long ago Mr. W. S. Trefethen had a lobster that was half green and half red. A straight, perfectly distinct line ran from head to tail along the back of the crustacean. Upon one side of the line the color was a vivid green and upon the other a bright red. The lobster was sent to Professor Spencer Baird, and is now in the Smithsonian.
Feeding Habits of the Elephant.-An elephant's digestive functions are very rapid, and the animal, therefore, requires daily a large amount of fodder-600 pounds at least. In its wild state the elephant feeds
heartily, but wastefully. It is careful in selecting the few forest trees which it likes for their bark or foliage. But it will tear down branches and leave half of them untouched. It will strip off the bark from other trees and throw away a large portion.
As it is a nocturnal animal, it selects its trees by the
senses of touch and smell. Its sense of smell is so deli cate that a wild elephant can wind an enemy at a distance of 1,000 yards, and the nerves of its trunk are so sensitive that the smallest substance can be discovered and picked up by its tiny proboscis.
An elephant's palate is very delicate and the animal is whimsical in selecting or rejecting morsels of food Sir Samuel W. Baker, in his "Wild Beasts and their Ways," tells an anecdote illustrative of the whims of tame elephant belonging to the police of Dhubri.
This elephant was fed with rice and plantains. The stems of the plantains were split and cut into transverse sections two feet in length. Three-quarters of a
pound of rice was placed within each tube of plantain pound of rice was placed within each tube of plantain lady offered the animal a small sweet biscuit. It wa taken in the trunk and almost immediately thrown on the ground.
The mahout, or driver, thinking that the elephant had behaved rudely, picked up the biscuit and inserted it in a parcel of rice within a plantain stem. This was
placed in the elephant's mouth, and at the very first placed in the elephant's mouth, and at the very first
crunch it showed its disgust by spitting out the whole mess. The small biscuit had disgusted the animal, and for several minutes it tried by its inserted trunk to rake out every atom from its tongue and throat.

## Fire Horses.

A very interesting story may be told about the horses selected for fire duty in this city. Any one, says Fire nd Water, who has watched one of the crack engine companies tearing through the street in response to an alarm cannot have failed to notice how the horses
strained every muscle to cover the distance as quickly as possible, with scarcely a touch from the driver whip. Some of the horses show an almost human in telligence.
Nowhere can that be seen better than in the house of engine No. 7, at Chambers and Center Streets, where two horses, Jo and Charley, hold the record for the quickest time in getting into harness. Horses and men The foreman sounds the gong in one of these exhibitions, but does not release the horses at once, as the regular alarm does by electrical apparatus. The two big horses, whose stalls are on either side of the engine, strain at their halters and jump in their eager ness to get to their places. The moment the foreman releases them by touching an electric button the pring forward and duck their heads under the colla suspended with the rest of the harness from the
Sometime the foren the colla
test the intelligence of the ho beforehand to test the intelligence of the horses. Then Jo and Charley poke their heads through the closed collar and struggle until they get their heads through them. At an actual alarm of fire the horses will start on the instant, and they vie with the firemen in their eager ness to get to the fire.
It is plain that the horse plays just as necessary part in the autonomy of the fire department as a human member. The more intelligent the horse is the quicker the engine or truck which he is helping to haul will be at the scene of a fire. Horses that enter into the spirit of the work as heartily as the firemen are almost in valuable, for every moment saved frequently counts for much in saving life and property. It follows that the training of the horses which are added every year to the department is as important as the training of the firemen, who must learn to handle the hose, ax, and saling ladder with expertness. Although that branch of the service is heard of seldom by the general public Chief Bonner gives it the strictest attention, and the recruits in horseflesh have to go through an ordeal just as severe as that which their human allies must un

## ergo.

The training stables in West Ninety-ninth Street ar in a quiet neighborhood, and the new building is used also as the department's horse hospital. Foreman Joseph Shea, who is also Dr. Shea, has charge of the stables. He was graduated as a veterinary surgeon, and has been connected with the department for eleven years. His position is one of the most important in the department. He looks after all the sick horses in the engine houses, and is kept busy at the hospital with the horses laid up there. He buys the green horse or the department, accepting them only after they have shown their ability to do the work required.
The commissioners allow $\$ 300$ for the purchase of each horse, and Dr. Shea makes his selection from the big bunches of Western horses in the Bull's Head market. He always selects a horse of good size, generally blocky with plenty of muscle. The horse that has speed and trength in good propor
looking for constantly
There are 800 horses in active service in the depart nent, and about fifty recruits have to be added each year. They usually go up to the Ninety-ninth Stree stable on trial, half a dozen at a time, and Dr. She has a month in which to accept or reject any one or all of the lot. In that time he can tell whether the horse likely to be of any value.
As soon as the green horses arrive they are housed
comfortably in the third story of the stable. Three roomy box stalls are there, too, and their doors indicate hard usage. "Some of these green horses," one of the stablemen said, "don't seem to know anything else but how to kick, and they do that with a vengeance." All of the new recruits do not take kindly to their new quarters, and still less to the training. In the ground story the green horse gets his first lesson. He is usually four or five years old, and barely broken to harness. A part of the story is partitioned off for a tender or hose art. The customary big fire gong is on the wall, and all of the alarms, from Morrisania to the Battery, are sounded. In stalls beside the tenders the raw recruits are broken in, two at a time. At first they must become accustomed to the sound of the big gong. Most horses are so confused by the clanging that they are absolutely intractable for awhile. Some never get accustomed to the noise, and these are rejected. In the course of a day or two the average recruit beginsto understand that it bears a very close relation to his movements.

## Wealth in inventions.

It is an opinion of many that inventors are always poor, but such is by no means the fact. There are poor farmers, poor merchants, poor real estate speculators, poor stock brokers and poor bankers, but by no means are all these operators poor. It may probably be correct that as large or probably a larger proportion of inventors are poor than of any one single class.
One reason probably for this is that gentlemen of wealth are as a class not inventors, specially of those who inherited wealth or a competency. Statesmen and politicians, as a class, are not inventors of useful articles or methods.
Inventors, as a class, are poor men who are desirous of acquiring a competence for support. Very few of them are ambitious for fame. Lawyers are probsbly the most ambitious of any one class to become distinguished'statesmen. But few of them ever become inventors. Nearly every President of the United States went there from his law office. The practice of law qualifies a man for public speaking. We have had a few war presidents like "Old Hickory" Jackson, who defeated Pakenham at New Orleans, and Gen. Grant and Gen. Harrison; but none of these were lawyers, I believe, and I confess were what we might term second or third class presidents. Abraham Lincoln was a selfmade lawyer and a self-made statesman, and as a statesman probably never had an equal except possibly Thomas Jefferson. He tried invention of a steamboat, but as an inventor was a pettifogger.
As wealthy inventors we might name Mr. Bessemer, of England; Colt, of the revolver; Howe, Singer, Wheeler \& Wilson, Grover \& Baker. I think all of these gentlemen were part inventors in their machines. McCormick, of the reaper; and now comes Mr. Edison and a host of others in electric lighting and electric motors too numerous to mention. Most of these are among the millionaires of to-day, while many thousands of others have either a competence or an income rom their genius ample to their support.
To manage a meritorious invention to a financial success requires as much skill as to produce it, and many inventors are very poor judges of honest business managers and allow themselves to be $s$ windled out of what they ought to have.
Some years ago a man in Washington told me that he had no brains to invent, but that he watched every invention that came out, and used his skill to make money by other men's brains. The country is always full of this class, and no sooner is a patent issued, whether for a real, meritorious invention or a gimcrack of no value, than the poor inventor is flooded with a lot of literature that pretends to direct him for $\$ 10$ or $\$ 15$ to make a fortune out of his wonderful invention. The proper place for all this printed stuff is the fire or waste basket.
If an inventor has a good invention of merit and desires means, the safe way is to go to some acquaintance of means, and he will have no trouble in securing enough to develop it and place it on the market. And I am quite sure that nearly all successful inventors have taken in partners with capital. Occasionally one can be sold out and out for a considerable sum, but these are extreme exceptions.
J. E. Emerson.

## The Many-tailed Comet

Prof. Lewis Swift, of Warner Observatory, reports a dispatch dated San Francisco, quoting Prof. Barnard as saying that his recent observations of the new comet reveal a remarkable state of affairs. Spreading out from the head is a complicated system of tails. At least a dozen distinct branches can be counted on the photogr some of which present remarkable curva photog
tures.
One telescopic view exhibited the fact that in less than twenty-four hours the third tail had formed to the extent of about $10,000,000$ miles, while the northern tail had entirely disappeared. Portions of the tail were seen to form an abrupt angle with their original source.

RECENTLY PATENTED INVENTIONS. Engineering.
Link Valve Gear. - William A Winn, White Hall, ill. This improved gear permits of bearing for the outer end of the valve stem to pre permitting of the shifting of the link with greater ease The eliding block has a longitudinal opening through which extends a pivot pin fastened in the sides of the lock, there being a valve stem or estension for it hold ing the extension to the stem and holding the bearing locks in place. The construction is such that th preventing lost motion and at the same time reducin riction to a minimum.
Motor. - George W. Mings, New Castle, Col. This is a motor adapted to be actuated by oo operate a pump for irrigating land adjacent, or fo placer mining, etc. The invention consists principally a water wheel moncly one a frame spported on wo boats hela aajustably one to the other. The frame pivotally connected with the boats, and means are djust their front ends that more or less watermaypas between them.

## Railway Appliances.

Car Brake. - Edward A. Kinley Breesport, N. Y. This brake is of simple construction, four wheel treads simultaneously by the expenditure of moderate manual force. Transverse bars lapping at their inner ends are pivotally supported to swing horizontally, brake blocks being held on their outer ends
and toggle levers pivoted at their inner ends, while inks are pivoted to the blocks and the outer ends of the evers, a draught rod being connected to the pivota

Electric Signal.-John M. Brasingon, Morven, N. C. This invention relates to signa in the track in a more effective way than it could be one by lighte arnal boards The invention cove novel features of construction and combinations of parts, whereby a bell is automatically rung hy the
signal in the cab of the locomotive, the bell continuing or ring until the engineer's attention is attracted. Th construction includes a mechanism for setting a signa and also a portable signal post adapted to be clamped to a rail.

## Mechanical Appliances.

Saw Filing Machine. - George N. Clemson, Middletown, N. Y. The front edge of on taneously by this machine, the stroke of the file feed ing the saw one or more teath as may be required Combined with the frame carrying the file-reciprocating mechanism is a pivoted guide for receiving and guidng the saw, a reversible file holder, and mechanism for the teeth pile to change its angle to adapt it to file a machine, means being also provided for changing the angle of the file with reference to its longitudina

Brick and Tile Cutiing Machine. -Richard A. Drawdy, Jacksonville, Fla. This inventream or bar of clay into bricks, tiles, etc and pro vides a simple machine by means of which the clay may be rapidly cut, and the bricks and tiles left with well defined edges, means being provided for preventing the clay from sticking to the carrying rollers and for reeiving the severed articles from the cutting table proper in
damaged.
Gauge.-Sabin F. Brown, Denver, Col A centrally-pivoted face plate of this gauge is free $t$ gibrate in either direction, and a transverse stop or
guind the face plate serves at its ends to imit the swingıng movement of the face plate in either irection. The gauge is of simple and durable construction and designed more especially for use on sheet metal shears and other cutting machines, being arranged oo gauge for straight work, ordinary gauge, or for angular cuts, without
the sheet over for cutting successive sections.
Pump. - Paden B. Riggins, Sheffield, Iowa. In this pump, the discharge pipe is connected with a lever or other suitable actuating mechanism,
and is mounted to slide vertically, being rigidly conpected with the piston and forming its piston rod, the lower end of the pipe opening into the hollow piston. A valved suction pipe is held in the lower end of the closed casing in which the cylinder is mounted, a valve
in the hollow pistou being alternately seated on the rud
Elevator for Mining Cars. Thomas Wakefield, Ely, Minn. This cage of this elevator is provided with permanent track rails, and a vertically movable frame hung on the under side of the cage carries movable track rails, means being provided between the permanent rails. The construction is other vehicle in place while the cage is in transit in the the shaft, and securely lock the cage in the uppermost position to prevent accident when loading or unloading.

## Musical

Upright Piano. - John U. Fischer, New York City. The case of this piano is completely closed in front by a pivoted key board and adjustable panels, means being also provided or the compare of all parts within a case having no projecting
bulk. A lid-vibrating device is also provided designed to enuble a skilled performer to produce remarkably ine results in the modulation of sound volume, while he hands are employed in the manipulation of the
eys, the escape of the sound volume from the top
he case being controled by foot pressure
Piano Sounding Board.-The same inventor has obtained a patent for a sounding board
designed to be highly resonant, adapted to direct sound oward the top of the instrument, and capable of resist ing injury to resonance due to shrinkage of the ma erial. The board is stiffened by vertical ribs on its front face and is plain on its rear face, being held by its edges against the sides and bottom of the case, and apported vertically by a keeper strip at each side edge independently of a back board, from which the vening unobstructed resonant chamber.
Peg for Violins.-George H. Rowe, Be'ton, Texas. This invention provides a key having surface diagonally downward in the direction of its center, and thence practically in a horizontal and reverse direction, whereby the string may be expeditiously, onveniently, and securely attached and as readily re noved. The angular slot takes the place of the usu tring aperture.

## Hiscellaneous.

Oil Purifier.-Rudolph Metz, Phila delphia, Pa. This purifier is adapted to separate and
purify oil from waste material, the apparatus being of ut while holding the oil so that the easily cleane drawn first. It has a main tank with an inlet pi delivering in jets at the bottom, a strainer over the Inlet pipe and an outlet pipe leading from the tank from within the strainer, a hopper in the upper portion of ownward into the tank bottom, there being a steam ipe around the hopper pipe, and a number of discha other in the side of the tank
Spring Conveyer.-Oliver L. Jones, old Spring Harbor, N. Y. This is a revoluble screw onveyer adapted to be forced into a bank funder con-
tant pressure, so that when kept revolving it will work easily and rapidly, the material being carried by the blade and deposited in the rear of the conveyer, which is adapted for use in either a natural or an artificial bank, as a culm pile. The conveyer, while being forced nto the bank by springs, to maintain a constant end wise pressure, is revolved by meana ulley to which a belt may be applied
Cash Dish.-David M. Perine, Baltimore, Md. This is a shallow dish with a thin flexible
base, its upper surface covered with a series of rigid nipples, the base being inclined downward toward the enter and provided with a drainage perforation, th mall coin returned to a customer as change.
Blank Book. - James W. Burris, valde, Texas. This invention is designed as an im it for use of typewriters and others requiring a book whose sheets or leaves may be readily detached and heets are detachably connected with a binding strip by meaus of a cord or cords, the strip being arranged parallel to the folded edge of the sheets and the co ggs in both the sheet and the strip.
Watch Regulator.-Sirus E. Kochen darfer, Hollidaysburg, Pa. This invention provides a will be opposed and the increased momentum of the balance will be counteracted, in cases of shock or jar, thus permitting of only the normalaction of the balance and hair spring and preventing the overheating or
breaking of the roller jewel. A lever is pivoted to the regulator arm and furnished at one end with two studs, which embrace the outer coil of the hair spring, mally near but not in contact with the outer surface of the outer coil of the hair spring.
Gas Stove. - Frederick W. Bean, Ogden, Utah Ter. This stove has two closed drums, pipes leading to the outer air, there being a burcer ander the inner drum and a water pipe extending hrough the two drums. The stove is simple and inexpensive, and is designed to throw out a great deal of hea with the use of a small amount of gas, heating wate nd affording means for supplying pure arr to a room nd carrying off all noxious products of combustion. Cooking Utensil. - Patrick Lee Boise City, Idaho. A multiple cover device for cook tion. It consists of a series of parallel apertured plates fitted to slide one upon the other, the lowest plate having an overhanging handle, and a pivot ex-
tending through the handle uniting the several plates. tending through the handle uniting the several plates. it is adapted for use as a close cover when desired for
pots, kettles, boilers, and cooking or baking pans, and pots, kettles, boilers, and cooking or baking pans, and
to fit and receive down within it vessels for cooking enerally
Centrifugal Cream Separator. Carl A. Hult, Stockholm, Sweden. The casing of this adapted as a hand machine, although it has a drivin pulley by which the drive shaft may be rotated by power. It is designed to thoroughly separate cream from milk or butter from milk, and the separators have
two movements by which centrifugal force is employed in the separation of the fiuids, or the solids from the fiuid
Bee Escape for Hives. - Granville H. Ashworth, Sedalia, Mo. When honey is to be reto escape therefrom into the brood chamber to facilitate the removal of the honey, and to aid in this purpose a
board is inserted between the two chambers, centrally

In which is a novel passageway forming the subject of
this invention. It consists of a rectangular casing with this invention. It consists of a rectangular casing with
projecting and sloping sides, at one end of which are hung fingers easily raised by a bee to permit of its pasventing the backward passage of the bee
Animal Trap. - William H. Harden, Quitman, Ga. This trap is intended especially for
rats and the like, and the invention provides a simple and novel construction of tripping and self-setting devices, the rat which is caught, in its efforts to escape, resetting the trap for the nest rat.
Faucet. - Samuel I. Merrill, Los ngeles, Cal. This invention relates to lever spout aucets more especially applicable to oil cans, in which
he spout when closed shuts up under cover of the or vessel and whosed shuts up under cover or the can ward. The invention provides for a special construc ion of such faucet in connection with a recess, cavity or chamber in the can or vessel, where the faucet is nd out of the way when the can or vessel is bein

Dispensing Device.-John Neumann, rooklyn, N. Y. The cooling and serving of malt liguors at a bar or counter are provided for by this invention by means of a compact, neat, and convenient device, whereby the liquor will be cooled before serving by the glass or measure, and the drainage from the draw cocks will be collected in proper compartments
of the device. The apparatus is provided with the necessary pumps and draw cocks, and storage coils is portable, to be placed at any desired point within he counter or bar.
S ole. - Ferdinand Ephraim, San rancisco, Cal. This is an improvement in soles for attached to the inner sole a wire gauze plate carrying a series of nails clinched to it and having tapering heads dapted to fit in a series of sımilar tapering apertures the outer sole or tap, the ends of the nail heads being op lift of the heel may also be similarly protected.
Trace Iron.-William J. Dankworth, Gatesville, Texas. Two leaves pivotally connecte ne leaf having a hoopted to fold one on the othe he other leaf and adapted to engage the trace, an being arranged in line with each other on the ear for the passage of the trace. The iron may be he employment of rivets, and may be easily attache

Sash Holder.-Charles Scheibel, San rancisco, Cal. This is a window lock of extrem imple character, capable of application either to upper or a lower sash. The sash has a recess to
which leads a bore in which is a sleeve having a rib a spindle turning in the sleeve, and an eccentric he recess of the sash secured to a spindle, to wh is attached a handle having a lip adapted for en cts as au anti-rattler, and serves to prevent the en rance of dast when the sash is locked.
Sash Cord. - Leedham Binns, Philadelphia, Pa. This inventiou relates to a double loop sash cord or rope composed of a single length doubled over upon itself to form two strands, which are
twisted together, thus forming a loop integral with twisted together, thus forming a loop integral with
the doubled-over twisted cord at either end of the the doubled-over twisted cord at either end of the
latter. A link or hook at the upper end of the cord is adapted to pass down through a bore into a pocket in the sash, a locking ring detachably engaging the link or hook within the pocket and preventing withdrawal through the bore
Medicinal Food. - Andrew D. Mc Kay, Liverpool, England. The combined constituents of this food are designed to make up a perfect ar-
ticle alike for infants, invalids, and generally for ticle alike for infants, invalids, and generally for
sufferers from indigestion, while the food is palatable and nutritious. The food contains dextrin, egg albumen, pepsin, hypophosphite of iron, hypophosphi of calcium, and oher ingredients in prescribed pretaking place of any chemical change.
Note.-Copies of any of the above patents will be end name of the patentee, title of invention and date of this paper.

NEW BOOKS AND PUBLICATIONS.
The Organic Analysis of Potable
Waters. By J. A. Blair, C.M., D.Sc. Waters. By J. A. Blair, C.M., D.Sc.
Edin., L. R. C. P. Lond. Second dition. Philadelphia: P. Blakiston, Son \& Co. 1891.
This little work in very attractive form treats of the albnminoid ammonia and oxygen processes at ordinary emperatures, of the latter process at $100^{\circ} \mathrm{C}$., the sulphuric acid process for organic nitrogen, and the sul phuric acid and permanganate process for organic car
bon. It will be found a useful resume of the well known as summarized above.

On the Modification of Organisms. By David Syme. Melbourne : George Paul, Trench, Trübner \& Co. Pp. vii, 164. No date, no inder

This work is written with the view of showing that the theory of natural selection is not to be absolutely accepted, and that its acceptance is still beset with difticulties of the most serious character. Natural science suffers no greater danger than that from dogmatism
and the infiuence of great names. The theories framed to account for its phenomena aud the laws we attempt to draw for it should be open always to criticism. For this reason such boo

Notes and Examples in Mechanics. By Irving P. Church, C.E. New This is a companion volume to the " Mechanics of Engineering" by the same writer, containing notes and
practical examples, algebraic and numerical, to illusrate more fully the application of fundamental principles in mechanics of solids. It has also a few paragraphs relating to the mehanics of materials and an appendix on the "Graphical Statics of Mechanism."
The American Art Printer for April, published by C. E. Bartholomew, New York City, is, as usual, replete with matter of live interest to every attache of a printing or publication business who de-
lights in noting the possibilities always afforded by artstic typography and perfect presswork. The gem of he number is a haff-one reproduction direct from a photograph and etched on copper by W. H. Bartholomew, the plate being printed in a regular type form, but
presenting a firmness of outline, delicacy of shading, and perfection of detail such as is rarely met with in the finest steel plate work. The numbers of such a magiziee should be kept in every office where pristing路
Isaacs' Artificial Perpetual Calendar. We have examined some very ingenious calendars nvented by Mr. S. H. Isaacs, of this city, whose funcstiff pasteboard, to which sliding cards manipulated from the back are adjusted. By properly working the sliding cards all calendar information can be at once procured in a few seconds. Thus, to determine the day of the week corresponding to a given date in the
presert, in the last or in the next century is an operaion requiring but a fraction of a minute for its performance. Two additional tables explain how the tables can be applied to the entire Christain era, and also as far into futurity as may be wished. One of the calendars shows a calendar for a single month, the other one shows a year's calendar. The latter also hasa most ngenious arrangement for determining the date of
Easter Sunday. In both calendars the leap year is taken full cognizance of, and the data apply for all leap years.

## SLIENTIFIC AMERICAN

buILDING EDITION.
MAY NUMBER.-(No. 79.)

## TABLE OF CONTENTS.

1. Elegant plate in colors of a very handsome residence erected at Sea Side Park, Bridgeport, Conn. Two perspective views, floor plans, etc.
J. W. Northrop, architect. Cost $\$ 17,000$ complete.
late in colors of a summer cottage erected on Diamond Island, near Portland, Me. Perspective ele-
vations and two floor plans, an excellent design. Cost $\$ 2,500$ complete.
2. A very attractive summer cottage recently erected at Great Diamond Island, near Portland, Me. complete.
3. A handsome residence in the colonial style of architecture, at Bridgeport, Conn., recently erected for
W. F. Hobhs, Esq. Cost about $\$ 7,500$ complete. Perspective view and floor plans. J. W. Northrop, architect.
4. A one story brick cottage erected at Richmond, Mo. $\$ 2,300$ complete.

## everal photograph

near New York.
suburban residence of attractive design erected at Bensouhurst, Long Island, N. Y. Cost $\$ 5.800$ complete. Fioor plans and perspective view,
A very tasteful design for a stair hall, for a resiA very tasteful design f
dence in Cleveland, 0 .
Perspective view and ground plan of St. Ardrew's Episcopal Church, at 127.h Street and Fifth Avenue, N
New York.

## ketch and plans of

 house. Cost $\$ 1,100$California residence. Perspective elevation and
fioor plans. A pleasing design. fioor plans. A pleasing design.

## Varieties, Manchester.

xamples of English interior decorations and furnishings. An entrance hall. A Chippendale drawing room.
rescenceus on bricks. : The white stain or eflorescence on bricks.-Household pests.-The key-
note of an auditorium.-Curious foundations.An Albany house.-To keep iron pipes from rust-ing.-The Senate chamber new decorations ing.-The Senate chamber nem the exhaust into the sewer.-Floors and their flisish.-Bedroom furnishing.- Moderate price screens, illustrated.-Improved hot water heater, illustrated. - French observations on
American constructions.-The compensation of American constructions.-The compensation of
architects. - A speaking tube and earıphone, architects. - A speaking tube and eariphone,
illustrated.-Diamoud wall finish.-Fireproofing receited.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages; forming, practically, a large and splendid Magazine of ArchitecTURE, richly adorned with elegant plates in colors and with fine engraving, illnstrating the most interesting
examples of Modern Architectural Construction and examples of M
The Fullness, Richness, Cheapness, and Convenience of any work have won for it the Largest Circulation
ofablication in the world. Sold by
$\mathfrak{B}$ 认siness and Personal.
The chargefor Insertion under this head is one Dolar a line
foreach insertion; about eight words to a lune. Adver-
 For Sale-New grindstone frames made in one casting
Fill furnish castings only it desired. W. P. Davis Rochester, $\mathrm{N} . \mathrm{Y}$.
"U. S." metal polish. Indianapolis. Samples free. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. 6Spindle Turret Drill Presses. A.D. Quint, Hartford,C For coal hoisting engines. J. S. Mundy, Newark, N. J. Portable and Stationary Cylinder Boring machines.
Pedrick \& A yer, Philadelphia, Pa. The Improved Hydraulic Jacks, Punches, and Tub
Expanders. R. Dudgeon, 24 Columbia St., New York. Screw machines, milling machines, and drill presses Centrifugal Pumps. Capacity, 100 to 40,000 gals. pe Crandall's patent packing for steam, water, and ammonia. See a
Palmyra, N. F .
ngine. Has never 6 H. P. "Boston" model Shipman ural College, Ames, Iowa.
Split Pulleys at Low prices, and of same strength and appearance as Whole Pulleys. Yocom \& Son's Shafting Guild \& Garriso
pumps, vacuum pumps, vacuum apparatus, air pump Trunk Protector-Latest plins, etc.
Trunk Protector-Latest invention of vast utility. Se engraving on another page. Rights for sale
patentee, 38 Ashland Place, Brooklyn, N. Y.
Perforated Metals of all kinds and for all purposes,
general or special. Address, stating requirements, Th Harrington \& King Perforating Co., Chicago. For Sale or Wanted Manufactured on Royalty-Wall
and ceiling mop. Patent No. 465,188, issued Dec. 15, 1891. and ceiling mop. Patent No. 465.188, issued Dec. 15, 1891
The best book for electricians and beginners in elec-
ricity is "Experimental Science," by Geo. M. Hopkins. By mail. $\$ 4 \cdot$ Munn \& Co., publishers, 361 Broad way, N. Y
What do you want to buy? We will send without cost you, catalogues, price lists, and information concern-
ng anything you wish. Paret, willey \& Co., 265 Broad ay, New York
Competent persons who desire agencies for a new opular book. of ready sale, with handsome profit, may
pply to Munn \& Co., Scientific American office, 36 apply to Munn \& Co.,
Broadway, New York.
me one manufacturing a good specia some one manufacturing a good specialty in New Yor Send for new and complete catalogue of Scientifi nd other Books for sale by Munn \& Co., 361 Broad

## 

hints to Correspondents.
Names and Address must accompany all letters, or no attention will be paid thereto. This is for our
information and not for pubbication. Thswers should References to former articles or answers shonld
givedateof paper and page or number of question.
nquiries not answere in reasonable time should
be repeated; correspondents will bear in in mind that be repeated; correspondents will bear in mind that
some answers require not a little reesarch, and,
though we endeavor to reply to all either by letter or in this department, each must take his turn.
special hW riten Informatione on matters of
personal rather than general interest cannot be expected without remuneration.
ciements referre
tomitice American Supplements at at one office. Price 10 cents each.
tooks referred to promptly supplied on receipt
price. Is sent for examination should be distinctly
marked or labeled.

\section*{| Ind |
| :---: |
| Calcium light |
| Compressed ai |}




(4274) C. M. P. asks: 1. In using iron rings in the construction of sim ple motor, 641, would
you use the same size as in dynamo, 600? How many would you use? What would be the length of the wood
core of armature? A. In the construction of the simple ootor you should not depart from the instractions hem of a suitable width and diameter to form an a mature of the size given. 2. Am winding cast iron field magnet with No. 20 single-covered wire, 40 convolutions weight, and what number, must I use on armature? In B00, only using a less number of iron rings? A. If you ntend to use your motor as a shunt machine, wind the armature with No. 18 as directed. It will probably require about half a pound. If you desire to make a drum armature, you cau follow the instructions given in Supplement, No. 600. 3. Would it be any advantage were I to shellac each layer of field magnet and ar-
mature as I wound them? Am I correct in my wind ing of field magnet as in question 2? A. It would bo an advantage to shellac the layers as suggested, but wrapping of thin paper would answer just as well, and you save the time required for drying.
(4275) W. B. writes : 1. I am making an armature for simple motor in "Experimental Science"
and would like to know if an armature made of cast
iron and annealed would prove satisfactory \& A. Cast
iron does not answer well for the core of an armature;
better use sheet iron or iron wire. 2 . How can I make ay 5 gallons of oxygen and 5 gallons of hydrogen on mple scale? A. You can make oxygen by heatin hlorate of potash and black oxide of manganese in as hag. In making oxygen to avold explosion yo hould take care to secnre pure materials, and also to uard against the entrance of water from the wa bottle into the retort. You can make hydrogen by placing scraps of sheet zinc in dilute sulphuric acid cid one part, water ten parts. You can convey the hy rogen from the generator to a bag or pneumatic bottle as in the case of the oxygen.
(4276) J. H. R. says: A reservoir to con ain thirty cubic feet of air is first filled at atmospheric sure with an ordinary hand force pump in a reasonable ime? Also how long would said reservoir run a si horse power engine, the pressure kept uniform throug b ut? A. You can compress air into the reservoir by hand, but it will take a long time to put 50 pounds pres are upon tt by hand. It will runa 6 horse power en ine for a few minutes only. You whave to put 1 oget 6 horse power of work ont of it through an en
(4277) W. J. B. says : A cannon is fired erpendicularly from a train moving 60 miles an hour Where will the ball drop, or will it drop in the place the cannon was at the time of firing? A. The ball has the ame forward motion that the cannon has at the in-
tant of firing, and its line fire will travel forward the ame as the gun, less the friction of the air, and will re arn near the gun. See Scientific American Suppl
(4278) C. R. Co. asks: 1. I have a 0.75 kilo-watt dynamo of the Edison type which has an E .
M.F. of 125 volts. Could storage battery described on he 418th page of "Experimental Science" be charge and then be made to light 40 volt lamps? A. Yes
2. Weuld 22 cells of this battery be sufficient? A. Yes . Would the full voltage of the dynamo be too great to charge? A. No. 4. Could you have a box partitioned
into about five parts, with mortised joints to make ight, and then lined with asphalt, and use it instead glays jars? A. Yes, or you can soak the wood in
paraffin or beeswax.
(4279) Electric asks : 1. What are the relative advantages in using silk and cotton covered
and single and double wound magnet wire ? A. Silk is aperior to cotton as an insulator. Single covered wir
either cotton or silk, is liable to become bare in spots and thus to become short-circuited or crossed. 2. What are the best kinds of oil for high insulation purposes? Please name some. A. Probably paraffine oil or heavy
hydrocarbon oils are the beet insulators. 3. What i he chemical composition of vaseline? A. Vaseline heavy hydrocarbon.
(4280) K. H. asks how much wire, and of Blake transmitter induction coil? A. Use four layers No. 24 wire for your primary coil, and 12 or 15 layers
of No. 36 sllk-covered wire for your secondary. Make the core of a bundle of soft iron wires 216 inches long $3 / 8$ of an inch in diameter.
(4281) A. W. T. asks for an explanation raph line. A A simple lightning arrester for a tele graph lines consists of a pair of serrated plates, one
being connected with the line,the other with the ground he teeth of the plates being placed very near eachother
(4282) Subscriber asks : 1 Please state what solution is put in cup of a Leclanche battery. A. A nearly saturated solution of sal ammoniac in water.
. Will one large cell of said battery operate one bell?
(4283) H. W. P. asks : 1. What does phosphorus contain to make it visible in darkness? A
Slow combustion is the cause; the phosphorus combines with the oxygen of the air. 2. Can you give menstruum that 11 corrode iron very fast? A. Th is uone better than acias, such as hydrochloric. ${ }^{3}$
Would the solvent have any effect on rubber? If so how to prevent it ? A. None. 4. How long would it
take to go through six inches of iron or steel? A. With constant renewal it would take many hours. 5. Place dime on your tongue, and a piece of zinc between your lips and teeth, leave space between your teeth for the
two to connect. What do you experience? A. The wo to connect. What do you experience? A. The
sight electric current may decompose the fluids of the saliva. Ordinarily it is attributed to the current, and this may have a part in it.
may contribute to the taste.
(4284) A. S. T. asks (1) for dimensions or a spark coll used in electric gas lighting. A. Use a 8 inches long. Upon this wind 12 to 18 layers of No 8 magnet wire. 2. Amount and size of wire for the electromagnets (about the usual size) for a bell to be
rung over a line of 1,000 to 1,200 feet of galvanized iron wire by five cells of Leclanche battery. A. For a bell eet No. 24 wire on the bell magnet.
(4285) G. W. W. writes : I want to make n illustration by having some perfectly clear liquid to or muddy, then again add another liquid which will make it perfectly clear again in a few seconds. What chemicals and how much of each will be required? A. Use very dilute solution of copper sulphate or iron
chloride. Add dilute solution of canstic soda. This gives a precip
mixture clears
(4286) E. C. S. asks (1) of what silicate of soda is composed and how it is made. A. Of silicic
acid and sodium oxide. It is made by dissolving silica in caustic soda solution. 2. How long has it been in
use? A. For many years. 3. What chemical will
qualities? A. None, except as regar
line dyes and cochineal will do this.
(4287) R. H. of Japan asks : 1. What would be the best means to prevent the steel rails used in the copper wire from corroding in the water satur-
ated with the copper salts? A. You cannot prevent it, except by excluding the water.
$\begin{aligned} & \text { 2. To what dis- }\end{aligned}$ ance will the voice tube be effective? A. About 500 ng m. Or what would be the cheap method of send-
coustic telephone.
(4288) E. W. asks : Have hydrogen, air oxygen, etc., the same mechanical and expansive properties as steam, when compressed ? A. The properties are the same, but differ in degree. Gases all
vary more or less, especially when near their liquefying (4289) C. H. S. asks : 1. Is the calcium ight for magic lanterns, in which ether is used instea fydrogen, a success, Is ether as good as coal gas A. Ether answers very well for the purpose, but we as well as coal gas. 2. Please describe how to make an ether saturator for this purpose. A. The gasoline other fluid is placed in a double-necked bot tie containing pieces of sponge or shreds of cloth, o
ny porous material that will absorb the liquid. Th air to be charged is contained in a bag, which is weighted and connected with one of the necks of the double-necked bottle, the other neck being connected
with the burner. An annular burner is preferable for in coloring lantern slides, and how applied ? I would be obliged for references to any books or articles in the volumes of the Scientific American on the principles and management of the magic lantern and the making nd coloring of sides. A. Transparent oil colors, such as are used by artists, are commonly employed for used for this purpose. They are mixed with varnish and applied quickly to the slide, so as to allow the colors to flow and become smooth. We recommend the ollowing books on the lantern: Wright's "Projecprice $\$ 2$; and "Experimental Science," price $\$ 4$.
(4290) H. W. writes: 1. I have an in duction con which gives $1 / 8$ inch spark with 1 large cell, Grenet; how many cells will it take to make a spark $1 / 4$ and $\not \not y$ inch, and will it charge a Leyden jar? A. If the capack, you cannot increase it much by one-eighth inch pore battery cells. The coil will charge amall den jar. To do this, connect one terminal of the se condary wire with the inside coating of the jar and the other with the outside, placing the jar on an insulating apport. 2. Will you give me a prescription of a paint o put inside of boxes and use them instead of battery acid prof Saturat if imozes with parafine to render them acid proof. 3. If I make a dynamo as large again as
the original, using double the amount of the same size wire as is on the machine, will it have 8 times the capacity and light 8 times the number of lamps? A. You should increase the diameter of the wire in the same ratio in the rest of the machine. By so doing, the ma-
chine will have eight times the capacity. 4. Will you chine will have eight times the capacity. 4. Will you
please tell me how to make a magneto, or is there a please tell me how to make a magneto, or is there a
SUPPLEmENT in which one is described? A. You will SUPPLEMENT in which one is described?
find one form of magneto described in
ind one form of magneto described in Supplemen I tell platinum from silver, German silver, etc. Test it with nitric acid or by heat; platinum is no affected by nitric acid. Silver and German silver will melt in an ordinary flame, while platinum will not. 3. How many amperes does a cell of Grenet give, the inc, 244 inches by 4 inches by $3 /$ inch? A. The EMF of the battery is practically 2 volts per cell. By dividng this by the resistance of the battery and circuit you will have the current in amperes. For instance, if you
have two cells connected in series you will have an E.M. have two cells connected in series you will have an E.M. F. of 4 volts. Now, if the resistance of your battery and
circuit is 1 ohm, you will have 4 amperes of current; if circuit is 1 ohm, you will have 4 amperes of current; if
it is 2 ohms, you will have 2 amperes; if it is 4 ohms, is 2 ohms, you will have 2 ampere
ou will have 1 ampere, and so on.
(4291) H. L. M. asks : 1. What other acia, except sulphuric acid, could be used in construct-
ing a voltaic cell 9 A. Nitric acid is used in the Grove ing a voltaic cell ? A. Nitric acid is used in the Grove
cell, and chromic acid in the Bunsen cell. 2. What ind of battery should be used for a small electric bell the Fuller battery. 3. Wha oughtto be the price of a battery to be used for the same
bell ? A. The price of batteries for bells ranges from bell ? A. The price of batteries for bells ranges from 5 cents upward. 4. Which 18 the most precious metal A. Hts dificult to eay which is the most preciou $\$ 22$ per gramme, lithium $\$ 15$ per gramme, thorium $\$ 20$ per gramme, rubidinm $\$ 20$ per gramme.
(4292) J. K. asks how lantern slides, which have the subject produced on them by means of photography, may be colored, and what are the best
colors to be used? A. There are several differen colors to be used? A. There are several differen
methods of coloring lantern slides. Probably the mos satisfactory for the amateur is to use transparent oil
colors for the broad surfaces, applying them to the colors for the broad surfaces, applying them to the
glass side of the slide, afterward varnishing the slide to glass side of the slide, afterward varnishing the slide to
give the colors greater transparency. Another method is to use the liquid colors commonly employed in coloring photographs. These may be applied to the film covered with bright colors, colored lacquers applied to the glass side of the slide answer very well.
(4293) T. S. S. writes: I have about ${ }_{4}$ pound of No. 32 (B. \& S.) cotton-covered copper wire which I would like to use in making an induction coil
I have also a Crowfoot gravity battery of 4 cells (line size 5 inches by 8 inches) which I wish to use for the
primary current. To get the best results with the primary current. To get the best results with the
above, will you please let me know what size wire to use for the primary, how many layers to wind, how Make the core of your coil of a bundle of soft iron wi \% of an inch in diameter and 6 inches long; insert this
in $a$ thin spool, and on the spool wind two laygrs of

No. 18 wire for the primary, and on the primary place
three or four layers of strong paper, which should be three or four layers of strong paper, which should be your No. 32 wire; there should be at least 10 or 12 ayers of this wire. For particulars as to coudenser
(4294) B. S. E. L. Co. writes : Please explain the three-wire system of incandescent lighting. nected in series and the neutral wire dynamos are conconnection between the dynamos. ing of the apparatus the lamps are arranged practically in series of two, and the current, flowing from the positive of one dynamo to the negative of the other, passes through a number of these series arranged in parallel, so that while the voltage is double that of the two-wire in the two-wire system So posite sides of the nem. So long as the lamps on opral wire conveys no current whatever, but when the it returns the surplas of current.
(4295) J. B. B. writes: Parker's philosoph, 1858, page 302, says magnetic and electric power s confined wholly to the surface of bodies, and is in-
dependent of its mass. If that is a fact, would not hollow wire be a better conductor for electricity, diameter being equal, than a solid wire, and a tube make a stronger magnet than a solid bar, on account
of the greater surface? I never saw tubes recommended or those purposes. A. In the case of frictional elec. tricity and high tension alternating currents, the outer surfaces of bodies seem to convey the greater portion of the current, but in all other cases it is found that the nductivity of a body is in proportion to its sectional . Tubes have been used for conductors, but there
(4296) L. E. J. asks : 1. If a wheel of a pable of withstanding the strain be revolved at the highest possible speed, would a dry atmosphere surounding such a wheel become heated or would the velocity of the wheel cause a cooling of the same? Is
there any limit to the number of revolutions that can be produced in a solid wheel or shaft? A. Air by exce sive friction as you descri be is supposed to increase in temperature. We have no data at hand on thissubject. The speed cf revolving wheels is only limited by me-
chanical possibilities 50,000 revolutions per minute chanical possibilities; 50,000 revolutions per minute has
been claimed for small wheels; 20,000 revolutions is been claimed for small wheels; 20,000 revolutions is
claimed for the driving wheel of the new momentum orpedo.
(4297) S. O. S. writes : I am making the simple motor described in "Experimental Science,"
and would like to know if the shaft can run on oiled ood, and can I make the armature ring out of iron? A you can use wood for your journal bozes if you pre turated with oil. The notor will operate with a ring of soldd iron, but it will not be nearly as efficient as it would be if laminated or
(4298) C. W. Y. asks how to connect the erminals of the winding on a three armed motor arma-
ure. A. You can connect each pair of adjacent termire. A. You can connect each pair of adjacent termi three bars. Comnucted in this manner the current will flow as in a terminals together at one end of the armature and connect the
bars.
(4299) G. P. K. wants a toning solution paper). A
Water

Bicarbonate of soda ........................... 3 g\%.
hloride of gold.
(4300) W. P. D. writes : 1. I have an air pump, the receiver of which is stuck to the brass
plate. When last used some four or five years ago, the edge of the glass was smeared with oil to insure conwill not start it. How can I get it off? A We think will not start it. How can I get it off? A. We think
kerosene oil applied to a joint will soften the hard oil, if allowed to stand two or three days. If you do not succeed with the kerosene, you might try a solution of
caustic potash or soda in water. If this fails, possibly caustic potash or soda in water. If this fails, possibly you may be able to accomplish the desired result by heating the plate slowly and carefully until the oil is
softened. 2. Repairing a battery in which the carbou plates are held in position by soldering to metal plates. the solder? A. Youshould paraffine the ends of the carbon plates to which yon desire to apply the connections, by heating the ends and rubbiug on parafine, allowing it to soak in. Care should be taken to no allow the paraftine to extend to the pari which is to be
immersed in the battery solution. The paraffined ends you can electroplate with copper, and to the copper plate you can solder your connections, or if you desire a simpler method you can cast lead upon the paraffined
ends. In this case care should be taken to pour the
(4301) J. H. J. C. writes : How to asertain if water that flows and stands in galvanized pipes contains a solution of zinc. A. Concentrate filter if necessary, aud pass sulphureted hydrogen through it. A white precipitate indicates thy of zinc.
(4302) N. L. asks : The way in which to put a canvas razor strop in the best condition? A.
Oxide of tin or the putty powder of the shops mixed with sweet oil to a thick paste and spread thinly on the p makes an excellent dressing.
(4303) C. C. L. says: Will you inform me through Notes and Queries as to what is the cause
of the popping of corn? A. The popping of corn is supposed to be caused by the generation of steam from the water combined with the starch and gluten, which by
its pressure ruptares the cells.
(4304) F. K. asks what arsenic is used or in the manufacture of wall paper? What grades of paper is it mostly used in? A. It is used in greenand
other colors; sometimes in those where it would be least suspected. It is also claimed that it finds its way in with the glue sizing, having been used as a preserva-
tive of hides and stock from which the glue was made No grade of paper can be specified in which it specially to be apprehended.
(4305) J. W. asks for a method of cleaning papered walls. A. If not very dirty, the paper in straight lines with a soft broom, covered with clean, soft cloth; if, however, the paper be much soiled very stale bread is the best thing to clean it with. Cut wipe the paper with it in a dond in the lightest manner about a yard at a time, all one way.
(4306) J. B. asks: 1. Can "carbon copies " from typewriter be fixed so as not to rub off the laundress, of such a strength as to form a when cold, and then a apply with as to form a jelly brush, as in varnishing. The same may be done with thin cold isinglass water or size or rice water. In lie of this treatment you may use the fixative commonly employed for fixing drawings. This is applied with a spray tube or automizer. 2. What is the difference in the winding of a direct current dynamo and an alternate current dynamo? A. In a direct current dynamo
all of the coils are commonly wound in the same direction. If wound alternately in opposite directions, the current is made to pass in one direction, over the cir cuit by means of a commutator. In alternating curre machines, the colls of the armature are wound alternately in opposite directions and the curreut is not
corrected.
(4307) J. T. asks for the best and afest method to generate chlorine gas in small quan tities. A. Simply expose bleaching powder to the air nd chlorne win be evolved. Adsion of an acid, such ng on manganese binoxide with operation. By act especially if warmed, chlorine can be evolved in larg quantitie
(4308) C. T. B. asks where "sodium ethylate" (mentioned in Scientific American, No. 24, December, 1889), for the removal of hairy moles, can be procured or how it can be made? A. Address
a wholesale dealer in chemicals. It is made by dissolv ing metallic sodium in alcohol. The latter should be
(4309) J. W. T. asks : 1. How man cells of storage battery and approximateweight of same would be required to run one-half horse power motor or at least ten hours without recharging? A. It re quires eight cells of storage battery for a horse power or running your oue-hal horse power motor for te ing current transformer, what would be the effect on he primary circuit of a short circuit in the secondar with no fuses in circuit? A. The primary and the secndary wires would both become hot.
(4310) E. S. A. asks : What size wire or use for connecting field magnet terminals with described in Supplement, No. 600, also what size conuctors to use in distributing lamps through a room? A. For connecting the field magnet terminals use No. the current you cau begin with No. 16, which you can use throughout unless you desire to reduce the size, in which case use No. 18 for the branch wires, and No. 20 or the conductors leading to the lamps.
(4311) W. B. R. says: I have two pounds No. 30 double cottou-wound copper magnet wire with which I wish to constrict an induction coil. use for the primary? What size core of soft iron wire should I use? How long should the coil be? Could I run the above coil with a magneto-electric machine from the coil to use batteries and a circuit breaker? No. 30 wire is rather large for a small spark coil; however, you will be able to make a coil which will yield a heavy but short spark. You will find the instructions you require in Supplement, No. 160. A magneto of
suitable size, with a winding adapted to the primary coil, would be preferable to batteries.
(4312) F. P. writes: 1. I have made he small dynamo described in Supplement, No. 161, as per instructions. I have tried to run a 12 candle power 20 volt Edison incandescent lamp, without any the machine? If so, can I increase it enough by magnetizing the fields with a battery, and how many cells would it take? A. The dynamo referred to has an E . M.F. of about 12 volts, which is obviously insufficient for rumning a 20 volt lamp. You can run two or three five or six candle power low voltage lamps with the machine, but you cannot increase the voltage to 20.2 . Which dynamo do you think would give the better one described in Supplement, No 600 , or the one in No. 844? A. The Edison dynamo described in Supplement, No. 844, is undoubtedly more efficient than the dynamo described in Supplement, No. 600. 3. Have you any book that would be advisable to study in connection with making a dynamo, in order to learn the fundamental principles ? A. "Experimental Science
will probably meet your wants. Price by mail $\$ 4$.
(4313) C. W. N. says: If you will tell G. E. T. (No. 4223, issue April 16) to leave off or quit his coffee, there is no doubt but that he will have no nonsense to this advice, but it costs ouly a bit of selfrestraint to try the remedy a couple of months, and that can do one no great amount of harm.
(4314) M. D. asks : 1. What is meant by shunt-wound dynamos and alternating current dy-
namos? A. A shunt-wound dynamo is one in which the current divides at the brushes, part of it going from one
brush through the field magnet back to the other brush,
the other part going from the same brush to the external he other part going from the same brush to the external
circuit and back to the opposite brush. An alternating urrent dynamo is one which generates a curren tions occur with very great frequency. 2. Can the motor described in Scientific American Supplemen No. 641 be used on an incandescent lamp circuit of 10 volt circuit 3 . Its resistance is too low for use on 10 volt circuit. 3 . How many feet of Nos. 20,30 , and $19242189 \cdot 32$ and 47 feet respectively. 4. What is the ojject in low-speed dynamos? A. They are designe rectly with the engine shaft. 5. What is a rheosta ammeter, and galvanometer? A. A rheostat is any va riable resistance which may be thrown into a circuit It generally consists of a series of coils of different re sistances, with switches for throwing the coils in and
out of the circuit. An ammeter is an instrument for measuring amperes. It is a form of galvanometer vanometer is an instrument consisting of a magnetic needle suspended within or above a coil and designed for indicating the direction of the current, and for use in connection with a rheostat for measuring currents. . How is soldering fluid made? A. By dissolving zinc in muriatic acid untll it wiil dissolve no more, then diCould Ine solution with an equal bulk of water. iron field magnets of motor 641? Or would it be best to remove first layer of insulation? A. The insulation of office wire is too thick for use on electro magnets. Better purchase magnet wire. 8. Will ten coils do for armature as well as twelve? If not, why? A. By multiplying the number of coils the tendency lo sparking nd burning out the armature is diminished. 9. What hanges would be necessary to use this motor as a dy-
namo ? A. Use a cast iron field magnet and wind the with No. 20 wire.
(4315) J. F. C. says : Within a space of our years two barns have oen struck by lightning and Does this indicate iron or other metals? There are hree stones in an ancient temple in Syria, or near foot of Mount Lebanon, 71 feet by 14 feet by 13 feet and one he same size on pillars at quarry one mile away. Could
ur engineers move this one to the temple. Could they handle the stone forming the overhead ceiling to room in Jerusalem ? Has any analysis of Egyptian mummies determined whether anything more than common salt was used in mummifying process? If so, what? A. We can only add that it is an old saw that lightning never trikes twice in the same place, yet in this case it does not indicate mineral altraction. The great stones
weigh about 1,000 tons. Captain Eads' ship railway was to carry several times this weight across the isthmus engineers ever stumbled on, beside which the stone blocks are pygmies. There were probably other pre servatives than salt used on the mummies. The dry air of Egyft was the principal preservative.
(4316) J. W. K. asks : I would like to know if a telegraph sounder can be so injured by long use of an excessive amount of battery as to afterward
ender it unfit for use with a normal amount of current, say from one cell gravity battery. I have one that has een in use for about a year with three cells gravity batery, and upon trying to use it with only one, it fails to injured can you suggest a remedy? A. The resistance very slightly incease sounder magnet may has use of an excessive current, but we do not think it would be appreciable in the ordinary working of the instrument. If you examine
the sounder and the connections of the wire carefully, the sounder and the connections of the wire carefully, you will probably find a poor electrical connection a lever work with too great friction. If you have used a current which has burned out the insulation, of course the only remedy is rewinding the magnet.
(4317) J. S. S. asks : 1. What is the cause a the baigh speed A. It is generally dueel when running hesion among the particles of the wheel, the wheel having insufficient strength to withstand centrifugal force. The remedy is obviously stronger wheels or less speed. . What effect would the opening of a window have upon vulcanizer, with the pressure above the limit of safety,
the cool air blowing through the window on the vulcanizer ? A. The tendency will be to cool the vulcanizer and reduce the liability to explosion. 3. How is the specific gravity of a body obtained? A. Specific gravity is obtained by weighing the body in air, then
welghing in water and dividing the weight in air by he loss of weight in wate
(4318) C. B. asks how to purify rancid butter. A. This can be done by melting in twice its
weight of boiling water and shaking well. Pour the melted butter into ice water, allow it to regain its consistence. Another plan is to beat up $1 / 4$ pound good
fresh lime in a pail of water. Allow it to stand for an hour until the impurities have settled. Then pour of the clear portion, and wash the butter in that. Butter
(4319) W. J. N. asks : Is it correct to put a globe or any valve in a steam pipe with the presto be qu at top of disk. I say it should be on the bottom of disk. A. You are right. All valves should shut against the source of steam supply, This enables the packing the stuffing boxes with steam on the boiler
(4320) L. W. A. asks why an injector works. The best informed machinists I have met cannot tell. Others say there is more pressure on top than
on bottom of boiler. I thought I had discovered the reason why it works, but was told that the feed pipe is sometimes larger than steam pipe. At any rate, if you
close one cock more than the other on a glass gave you case one cock more than the other on a glass gauge you The theory in regard to the mechanical action of the in
jector is based upon the transfer of the momentum o
steam at a high velocity to the surrounding annulus of
water at the point of contact and the instantaneous conwater at the point of contact and the instantaneous con-
densation of the steam into water. The water of consteam gives momentum to the surrounding water equal to overcoming nearly double the boiler pressure, or, in other words, it is the impact of the condensing steam at a high velocity that carries the feed- water through the nozzle with sufficient force to overcome the resistance from the boiler pressure.
(4321) E. D. W. says: A fence is to be buit over a half circle hill. Another over a straight The being the exact diameter of the above half circle. Which job will require the greatest number of pickets? A. If the pickets are placed vertically, it will require the ame number of pickets for both jobs. Not so with he rails, as is self-evident.
(4322) H. A. U. asks whether he is right his belier that phrenological examination, executed the hands of a competent person, indicate true resience or not. A. Phrenology is not considered an exact science, but there is enough in it to make it very useful as a system by which character and propensities can be known and recorded by persons proficient in the manipulation of the outward signs.
(4323) A. E. L. writes: I have two ieces of gas pipe, one telescoping the other. The large piece I wrap with a piece of flannel, the smaller one I heat over a lamp and insert in the largerjone; the flannel then becomes moist. How can I heat the lannel withont the presence of moisture? A. We sug-
(4324) J F asks 1 Will not a ft ion (4324) J. F. asks : 1. Will not a soft iron
plate answer for an insulator of magnetism for a magplate answer for an insulator of magnetism for a mag-
netic motor or a perpetual motion machine $₹$ a A softjiron plate will cut off the magnetism, but it quires power to remove it from the magnetic field.
What size wire is used on the field magnet of the simple electric motor described in Supplement, No. 641. A. No. 18.

## TO INVENTORS

An experience of forty years, and the preparation of
more than one hundred thousand applications for pa-
tents at home and abroad, enabie us to understand the




INDEX OF INVENTIONS or which Letters Patent of thed

April 26, 1892.
AND EACH BEARING THAT DATE.
[See note at end of list about copies of these patents.]

Acid, making naphthosultondisulphonic, н.




## 





Disintegrator and amalgamator, placer, G. K .
Distill ntion and apparatus used therefor, $\mathrm{A} . \mathrm{W}$.
Ell


Wavtuav




 473,447













Mail bag, J. $\mathbf{F}$. Allen....






Mould. See Ingot mould.











Pipe. See Hose pipe. Tobacco pipe.
Pipe turning tool, J. Hogan........



 Press stripper, H. Schaake.
Printers'
forms, lock-up me

Tucker...........ett $\&$ Boito..................






Railways, safety catch for inclined, D. \& in



Rein holder, H. G. Weath
Ren support, F. C . Kriz..
Rein support,
Ring. See Spinining ring.
Sit.






Sawmill carriage, J. M. Bussey.
Sawmil dog, P. J. Dovle et al...
Saw settingevice, G.Lutzl
Saw teeth, tool for dressing, G.
scalee hydrostatic dressing, G. W. Werguso
S. Neton.......























 Vehicle wheel, A. Rauer.







 DESIGNS.


 TRADE MARKS.








 Periodicanks, J. L. . Oberly.
Pils, Jes.




 sroadway,
Candin
Centors or


${ }^{78,511}$


Wanted, a Mechanical expert To furnish a machine to further a patent. Address
R. M. INGALLS, 58 West Main Street, Louisville, Ky. SOME APPLICATIONS OF ELECTRIO



VULNEY W. MASON \& CO. FRICTION POLLEYS CLDTCEES and ELEVATORS



the gibis patent


 THE ACTION OF HEAT FROM OPEN



BUILDERS OF HIGH GRADE BOATS.


Green River Drilling Machines,







The
1892 Model

## ELECTRIC BELL

in your house? For $\$ 2.00$ we will furnish you a Nowotny Electric Co., Mfrs. of Electrical Novelties,
CIN CIN NATI,
OHIO.

SEND FOR LIST, Closing out Machine shop,
Hetherington Magazine Camera



 CENTRIFUGAL FORCE AND RE





Remington
Typewriter
is now
on the market.
Send for Catalogue.
Wyckoff, Seamans E® Benedict, ${ }_{327}$ Broadway, New York.

HARRISON CONVEYOR :



A New and. Splendia Companion
to all the Metal Industries.
Fully abreast of the latest inventions and discove
Price $\$ 2.50$.

| Meal Wowar' Hamy-Bow <br> RECEIPTS AND PROCESSES. <br> Being a collection of Chemical Formulas and Practical Manipulations for the working of all the Metals and Alloys, incl uding the Decoration and Beautifying of articles manufactured therefrom, as well as their preservation. Edited "Trom various sources Ry weipt Book" and "The Metallic Alloys." Illustrated by 63 engravin scarlet cloth, gilt, closely printed, containing a vast not to be found in any other book in the English language. <br> Price $\$ 2.50$, free of postage to any address in the world. QIP A circular of 24 pages, showing the full Table of Conpostage to any one in any part of the world who will fur- nish us with his address. <br> HENRY CAREY BAIRD \& CO. Industrial Publishers, Books ellers \& Importers 810 Walnut St., Philadelphia, Pa., U .S. A. <br> PROPOSALS. <br> U. S. ENGINEER OFFICE, CHARLESTON, KANAWork for Movable ADas in on the Great Eanawhir iver embracing about 495,000 pounds of wrought iron and will be received at this office until $3 \mathrm{p} . \mathrm{p}$. of May 25 , 1892, and then opened. The attention of biders is inivted to the Acts of Congress, approved February 26 , page 414 , statutes at Large. Full information can be <br>  Colonel, Corps of Engineers, U. S. A. |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

 HAS


3
 LINSEED OIL AND OTHER OILS used in Art Painting.- By Prof. A. H. Church. M.A.


WANTED.-Inventors and owners of patented
IRIP FDRTINEG.
BILLINES KOLS SFENCERCO.

Who has a bright thought out can get mechanical help by writing o us. We send a primer first.


BASE BALL - A DESCRIPTION OF

 ANTI RUST Protects Iron, Brass and Steel from

\$22. FIRST CLASS CURTAIN DESK 1imited variety in atocls and to onder. American Desk \& Seating Co.
$270-272$ Wabash Av.,
CHICAGO, U.S.A.
 4 ATENTS!
 experience, and now have unequalled fad faciltt--ive years
neparation for the

 A pamphet sent free of charge on application, con-
taining full information about itents and how to procure them, directions concerning Labels, Copyrights
Designs, Patents, Appaes, Reissues, Intringenents
Assignments, Rejected Cases. Hints on the sale of
Patents, etc. We also send, free of charge, a Synopsis of Foreign Pa-
tent Laws, showing the cost and method of securing
Patents in all the principal countries of the worlac. MUNN \& CO., Solicitors of Patents.



After being on the Market Six Years The "ACME" sill Leads!
 ROCHESTER MACHINE TOOL WORKS. Brown's Race, ROCHESTER, N. Y.


OIL WELL SUPPLY CO.


THE PENNA. DIAMOND DRILL \& MFG. CO

STEEL TYPE FOR TYPEWRITERS


 SUPPLIES FRROMI
HTDR ANT PRESSURE
HTH
 Has produced more ballast. road
netal, and broken more ore than
 Machinery. Send for Catalogues.
CATES IRON WORKS, 50CSo. Clint on St, Chicago
136 C, Liberty Street, New York,
237 Cranklin St., Boston, Mass CHUCKS. (ayamo



Our new Generai Circular "S. A."." showing specimens
of aral
lars for restimateres.
.ow ready. FOOT POWER LATHES 0 CHOE For Electrical and Experi-
mental work For Gunsmiths Machine Shop Work
High grade tools; elegant in design, superior in construction. The best foot power lathes made,
and quality considered the cheapest. Send for
catalogue and prices.
W. F. \& JNO. BARNES CO. 1999 Ruby Street, ROCKFORD, ILL.

## 

 ELECTRIC POWER APPARATUS, FOR EVERY VARIETY OF MEOHANIOAL WORK. SAFE, SURE, FELIABLE. estimates furnished. THOMSON-HOUSTON MOTOR CO., 620 ATLANTIC AVENUE, BOSTON, MASS.

DEAFNESS, \& HEAD NOSES CURED

## CIEARTE:S

warp dyenotind bigice Machies, POWER WRINGERS POi HOSIERY AND DRYiNG AND MENTLATINGEANS, CEO. Catag. P .
Box L. CEO. P. WLARARK Looks, conn.



MLATIOGAINTY TEAK FOR YACHTS, SPANISH CEDAR THE E. D. ALBROCO. $\left.\begin{array}{l}\text { Eastern } \\ \text { Branch }\end{array}\right\} \begin{aligned} & 200 \\ & \text { Ft. E.6th } \\ & \text { L. St., }\end{aligned}$ H. T. Bartlett, Mg'r. F. W. Honerkamp, Ass't Mg’r

THE NEW ASTRONOMY: ITS ME thods and Results.- By Sir Robert S. Ball. A very in
teresting paper on the striking results that have been obtaine in astronomical research throuqh the sise oo
the spectroscope. Contained is SIENIFIC AMEICAN
CUPPLEMENT No.

## PAINTrioiors <br> DIXON'S SILICA GRAPHITE PAINT

 Water will run from it pure and clean. It Ecoversdoublethe surface of any other paint, and wiill astforuror ive
times longer. Equally useful for any iron work. Send for

BIT Bores SMOOTH, KOUND, OVAI, and SODA REE HOILES. Mortiving Core Boxes,


 33,000 SOLD.
OTTO GAS ENGINE WORKS, PHILADELPHIA.


NOW READY!
A NEW AND VALUABLE BOOR.

,000 Peceipts 650 Pases Price \$5 This splendid work contains a careful compila-
tion of the most useful Receipts and Replies given in the Notes and Queries of correspondents as published in the Scientific American during the
past fifty years; together with many valuable and important additions;
Over Thousand selected receipts
are here collected
nearly every branch of the useare here collected; nearly every branch of the use-
ful arts being represented. It is by far the most
comprehensive volume of the kind ever placed before the public.
The work may be regarded as the product of the studies and practical experience of the ablest chem-
ists and workers in all parts of the world ; the information given being of the highest value, ar-
ranged and condensed in concise form convenient Almost every inquiry that can be thought of,
Alating to formule used in the varius elating to formulæ used in the various manufac Instructions for working many different proIt is impossible within the limits of a prospectus
to give more than an outline of a few features of Uo nder the head of Paper we have nearly 950 re-
ceipts, embracing how to make papier maché; how to make paper water proof and fire proof; how to
make sandpaper, emery paper, tracing paper transfer paper, carbon paper, parchment paper,
colored papers. razor strop paper, paper for doing
up cutlery, silverware; how to make luminous paper, photograph papers, ete.
Under the head of Inks we have nearly 450 re-
ceipts, including the finest and best writing inks ceipts, including the finest and best writing inks
of all colors, drawing inks, luminous inks, invisi-
ble inks, gold siver and brone inks, white inks;
directions fo removal of inks, restoration of faded inks, etc.
Under the head of Allors over 700 receiptsare
hiven, covering a vast amount of valuable inforOf Cements we have some 600 receipts, which
include almost every known adhesive preparation,
and the modes of use How to made o Rubber Stamps forms the subject
of a most valuable practical article, in which the of a most raluable practical article, in which the
complete process is described in such clear and ex-
plicit terms that any intelligent person may readily Farn the art.
For thequer are 120 receipts; Electro-Me-
Lacquen tography and Microscopy are represented by 600
receints. Under the head of Etching there are 55 receipts
embracing practical directions for the production of engravings and printing plates of drawings.
Paints, Pigments and Varnishes furnish. over
800 receipts, and include everything worth knowing on those subjects.
Under the head of cleansing over 500 recipes
are given, the scope being very broad, embracing are given, the scope
the removal of spots and stains from emall sorts
of objects and material, bleaching of fabrics
cleaning furniture, clothing, glass, leather, metals, oleaning furniture, clothing, clacs, leat ther, metals,
cand the restoration and preservation of all kinds In Cosmetics and Perfumery some 500 receipts Soaps have nearly 300 receipts. robably will find in this book much of industry Those who are in their respective callings. independent business or employment, relating to the home manuracture
of sample articles, will find in it hundreds of most
excellent suggestions.

IMUNN \& CO., Publishers, SCIENTIFIC AMERICAN OFFICE,


DO U BFrIE POVFIR？ We can supply it with the




GUITARS MANDOLINS Quatere Maravainte Quarterserveakeside．


 LYON \＆HEaLr， 166 to 164 State St．，Chicago．
THE AMERTCAN BELLTMETHANE GD

95 MILK ST．，BOSTON，MASS．
This Company owns the Letters Patent granted to Alexander Graham Bell，March 7th，1876，No．174，465，and January 30th， 877，No．186．787．
The transmission of Speech by all known forms of Electric Speaking Telephones in－ fringes the right secured to this Company by the above patents，and renders each individual user of telephones not furnish ed by it or its licensees responsible for such unlawful use and all the consequences thereof and liable to suit therefor．



LOVELL DIAMOND CYCLES
$\$ 85$ Pneumatic，Cushion and Solid Tires．\＄85

JOHN P．LOVELL ARMS CO．
147 Washington Street，Boston，Mass


ARTESIAN
The Most Durable in Alignment．



Water Power near Chicago．
THE FINEST WATER POWER IN THE STATE OF ILINOIS，

AT A GREAT BARGAIN

LOCATED AT WILMINGTON，ILL．，ON THE KANKAKEE RIVER
Comprises 113 acres of land and three dams of heaviest masonry，with locks，gates，canals and and
privileges and appurtenances．Main pond twelve miles long and one－fourth to one－half mile wid draining an immense area．Minimum low water power，over 5,000 horse power．Original cost，$\$ 500,000$ ． Unlimited coal supply directly at hand．Railroad facilities good，and can be largely increased

Q Great Place for a Mranufacturing Town．
Only fifty－one miles from Chicago，the greatest distributing point in the world．A rare chance to
purchase a magnificent property at 1ess than one－half its value．Liberal inducements to large manufac－
B．F．JACOBS \＆CO．，Sole Agents， 99 Washington Street，Chicago，Ill．

## ELECTRO VAPOR ENGINE． gas or gasoline for fuel． <br> 

THOMAS KANE \＆CO．， CHICACO，ILL．

## KODAKS

Regular Junior Daylight Ordinary

I4 $\begin{gathered}\text { styles and sizes } \\ \text { for the season of }\end{gathered}$ 1892， $\$ 6.00$ to $\$ 65.00$ ．
Latest improvements，registers for ex－ posures ；glass plate attachments；daylight loading，etc．，etc．Send for catalogue． THE EASTMAN COMPANY，

HOW TO MAKE A STORAGE BAT－



## INCANDESCENT AND ARC LIGHT PLANTS．

Stationary and Railway Motors．－Lamps．－Cables．－Safety Devices．




## 

CoYou will stop using the other man＇s when Pop $\stackrel{\text { Sanhers }}{\text { Safety }} \stackrel{\text { Improved }}{V a i v e}$

 THE LUNEENBEIMRR BRASS MFG．CO．，


WM．READ \＆SONS，

> エ玨玉

establitshed 1846 The Most Popular Scientific Paper in the World

Only $\$ 3.00$ a Year，Including Postage．
Weekly－52 Numbers a Year．
This widely cir culated and splendidy illustrated
paper is published weekly．Every number contains six－ paper is published weekly．Every number contains six－ oricinal engravings of new inventions and discoveries， representing Engineering Works，Steam Machinery， New Inventions，Novelties in Mechanics，Manufactures， Chemistry，Electricity，Telegraphy，Photography，Archi－
tecture，Agriculture，Horticulture，Natural History， ete．Complete list of patents each week．
Terms or subscription．－One copy of the ScIen－
 publishers；six months． 81.50 ：three months， 81.00 ． Clibss．Special rates for severul nandea，and to Post Masters．Write for particulars．
The safest way to remit is by Postal Order，Draft，or
Express Money Order．Money carefully placed inside of envelopes，securely sealea，and correctiy addressed， seldom onees astray，but is at the sender＇s risk．Address
all letters and make all orders，drafts，etc．，payable to ail hetters and make all orderss，drafts，tac．，payable to
MUNN $\boldsymbol{\&}$ Co．，361 Broadway，New York．

> THE
 This is a separate and distinct publication from THE
ScieNTIITC AMERICAN，butis uniform therewith in size every number containing sixteen large pages full of en－ gravings，many of which are taken from foreign papers and accompaniea with translated descriptions．THE
ScIENTIFIC AMERICAN SUPLELEMENT is published week－ ly，and includes a a ery wide range of contents．It pre－
sents the most recent papers by eminent writers in all the principal departments of Science and the Useful
Arts，embracing Biology，Geology，Mineralogy，Natura Arts，embracing Biology，Geology，Mineralogy．Natural
History，Geography，Archeology，Astronomy Chemis－ History，Geography，Archæology，Astronomy Chemis－
try，Electricity，Light，Heat，Mechanical Engineering． Steam and Railway Engineering，Mining，Ship Builling， Marine Engineering，Photography，Technology，Manu－
facturing Industries，Sanitary Engineering，Agriculture Horticulture，Domestic Economy，Biography，Medicine， etc．A vast amount of fresh and valuable information obtainable in no other publication．
The most important
T＇he most important Engineering Worrks，Mechanisms，
and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT．
Price for the SUPPLEMENT for the United States and Canada，$\$ 5.00$ a year；or one copy of the SCIENTIFIC AM－ ERICAN and one copy of the SUPPLEMENT，both mailed
for one year for $\$ 7.00$ ．Single copies， 10 cents．Address and remit by postal order，express money order，or check，
MUNN \＆CO．， 361 Broadway，New York，

Publishers Scientific American
grindaing wation．
The Scientific american architects＇and Single copies， 25 cents．Forty large quarto pages，equal to about two hundred ordinary book pages；forming a large and splendid Magazine of Architecture，richly engravings；illustrating the most interesting othamples engravings；illustrating the most interesting examples
of modern architectural construction and allied subjects． A special feature is the presentation in each number of a variety of the latest and best plans for private resi－ erate cost as well as the more expensive．Drawings in perspective and in color are given，together with full The elegance and cheapness of this magnificent work have won for it the Largest Circulation of any Architectural publication in the world．Sold by all news－ res．a year．Remit to MUNN \＆CO．，Publishers，


PRINTING INKS



[^0]:    The Neuhausen Works...
    Lb. per diem.
    .....1,000
    The Pittsburg Reduction Compa
    The Pittsburg Reduction Company.. ... 600
    .. 300
    The Cowles Company.. 600-700 in alloys.

