
(Entered at the Post Office of New York, N. Y., as Second Class matter. Cobyrighted, 1892, by Munn \& Co
A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

THE GRANT MONUMENT TO BE ERECTED AT RIVERSIDE PARK, NEW YORK CITY,-[See page 27\%.]

Frientific gesmericam

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors published weekly at
NO. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

terms for the scientific american.

 Remit by postal or express money order, or by bank draft or check.
MUNN $\&$ CO., 361 Broadway, corner of Frauklin Street, New York. The Scientific American supplement

Building Edition.
THE ARCHITECTS AND BUILDERS EDITION OF THE SCIENTIFICAMERI-
CANis a large and splendid illustrated periodical. issued monthly, con-
taining floor plans, perspective views, and sheets of constructive details

 P⿸广 The safest way to remit is by postal order, express money order,
draft or bank check. Make all remittances payable to order of MUNN failure delay, or irregularity in receipt of papers.

NEW YORK, SATURDAY, APRIL 30, 1892

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT

No. 852.

For the week Ending April 30, 1892. I. AGRICLTURE.-Principles of Potato Culture.-How to avoid

IV. BIOLOCY.-The Ocean-Recent expeditions for deep-sea dredgv. GEOGRAPHY. - The Grottoes of Meschers.-Curious grottoes on
 Vil MATHEMATICS-The Squaring of the Circle.-By HeRMANN eariest ine to the present ay...............................

exhibition of the new york microscopical SOCIETY.
The thirteenth annual exhibition of the New York Microscopical Society took place on the evening of the 22d of April, at the American Museum of Natural History, and, notwithstanding the pouring rain, the en thusiasm of the lovers of microscopy was not damped and the spacious halls were crowded almost to an un comfortable degree.
Nearly one hundred microscopes were in place, each containing an attractive object. It is obviously impossible to go into the details of the several exhibits, or even to describe the most interesting ones. The display of the instruments themselves was hardly less at tractive than the objects exhibited. Among accessory apparatus shown were several forms of microtome, photo-micrographic apparatus, illuminators, various chemicals, and some of the earlier microscopes and microscopical apparatus. While the general exhibition was in progress there were three exhibitions of thirty minutes each in the lecture room at the end of the large hall. These comprised an exhibtion of lantern slides of photomicrographs, an exhibition of lantern slides of diatoms, and a projection of miscellaneous microscopic objects.
Taken altogether, the exhibition proved a great suc cess, and the officers and members of the society may well take pride in the results of their efforts.

ERICSSON'S DESTROYER AND ITS SUBMARINE GUN

Some trials are to be made, during the latter part of April, of the Ericsson submarine gun, for the testing of which the Destroyer was built by the great inventor in 1878. The little vessel, now lying at the Navy Yard, is 130 feet long, 17 feet wide, and 11 feet deep, and adapted to use a submarine gun of 16 inch caliber and 30 feet long, the muzzle projecting through an opening in the stem, near the bottom. The vessel is designed to be almost totally submerged and have great speed, so that she could approach a hostile vessel with but little danger, discharging her torpedo at a distance of not more than 200 yards from an opponent, at such a depth below the surface of the water that it would not be stopped by the ordinary nettings and would reach the weakest part of the enemy's hull.
Some trials of the gun have been made within a few weeks past at the Erie Basin, but a lighter torpedo was employed than is required for use in actual service, that it might come to the surface at the end of its range and be recovered. The next trials, however, are to be made with torpedoes of the actual service weight, and under such conditions that the line of their passage through such conditions that the water will be accurately marked. For this purpose the vessel has been brought to the Navy Yard, and the torpedoes will be discharged into the basin of the great timber dry dock, the vessel being stationed a few yards in front of the open gateway of the dock Nettings are to be stretched across within the dock, at spaced intervals, through which the torpedo will pass, thus marking its path, the pumping out of the dock permitting the recovery of the torpedoes and the definition of the trajectory of each of them. The range at which the gun is designed to be serviceable is only about 200 yards, and it is the intention that the projectiles shall sink, and not rise to the surface, at the end of their course. The nets were constructed under the direction of Commander A. H. McCormack, the chief ordnance officer of the Brooklyn Navy Yard.
Some alterations have been made in the gun from the designs of Captain Ericsson, the principal change being one by which, when the torpedo is in position for firing, the explosive it contains will be entirely in the water section of the gun, beyond the gasket sur rounding the torpedo and separating that portion from the inner section. This change has been made to prevent any possibility of a premature explosion a the torpedo leaves the gun. The weight of the projec tile is designed to be 1,525 pounds; its length, 27 fee 4 inches; diameter, 16 inches : explosive charge, 300 pounds; propelling charge, 40 pounds. The weight and the balancing of the torpedo have to be carefully looked to in charging it, that it shall have the specific gravity of sea water and may be kept to a true course The arrangements for the trial have been made by th Ericsson Coast Defense Company, under a contrac with the government, and the experiments will be conducted under the supervision of the Naval Torpedo Board, of which Commander G. A. Converse is presi dent.

position of the planets in may.

venus

is evening star. Even more in May than in April is she first among the planets for her marvelous beauty and brilliancy. She is now retracing her steps toward the great central luminary. Her progress at first only slowly reduces the apparent length of the chain that binds her to the sun. Seen through a telescope at the beginning of the month, she presents the appearance turned toward us. At the end of the month she is of a crescent shape like that of the moon when two day
past its third quarter. Venus is now moving rapidly toward the earth. This is a more important factor in determining her apparent brilliancy than the diminution of her phase. On the 2 d of June she will appear at her brightest. The light number of Venus on May 1st is 142 , on May 31st it is 184.
Those who may wish to see Venus with the naked eye in broad daylight should look for her as following the course of the sun and about three hours behind it. When Venus crosses the meridian, which takes place about 3 P. M. throughout the month, she has a high altitude and may be found at about one-sixth of the distance from the zenith toward the horizon.
The conjunction of the moon with Venus takes place at 2 h .15 m. A. M., May 29th, below the horizon. Venus crosses the meridian about half an hour after the moon on May 28th and about half an hour before the moon on May 29th. On each day at that time she is only about 8 degrees from the moon, mainly in right ascension. As she will then be practically at her brightest, the position of the moon will enable the observer to find Venus readily in daylight. On the evening of the 28th, Venus and the three days' old moon with the bright stars in their neighborhood will form a charming picture.
The right ascension of Venus on the 1st is 5 h .48 m ., her declination is $26^{\circ} 50^{\prime}$ north, her diameter is $24^{\prime \prime} .4$ and she is in the constellation Gemini, whose length she very nearly traverses during the ensuing month. Venus sets on the 1st at $10 \mathrm{~h} .46 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31s she sets at 10 h .21 m. P. M.

saturn

is evening star. He crosses the meridian the first of the month at about 9 o'clock, at the end of the month at about 7 o'clock. Taken in connection with his more brilliant rival Venus, he will serve to mark the course of the ecliptic among the stars, that path from which the sun and all the planets can only slightly deviate The motion of Saturn in the ecliptic is very slow. Owing to his great distance from the sun, he passes through but one sign of the zodiac in the course of a year. Since the middle of January he has been retrograding; during May his position will be almost stationary. He may be recognized by the time he crosse the meridian and by his steady red light. The system of rings and eight satellites about Saturn make him the most wonderful member of the solar system. Just now the plane of his rings passes in the neighborhood of the earth, so that the telescope reveals the rings only as a line of light.
The moon, five days before the full, is in conjunc tion with Saturn on the 6th, at $6 \mathrm{~h} .47 \mathrm{~m} . \mathrm{P}$. M., being $2^{\circ} 2^{\prime}$ north.
The right ascension of Saturn on the 1st is 11 h .41 m ., his declination is $4^{\circ} 43^{\prime}$ north, his diameter is $177^{\prime \prime} .8$ and he is in the constellation Virgo
Saturn sets on the 1st at $3 \mathrm{~h} .12 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 31st he sets at $1 \mathrm{~h} .12 \mathrm{~m} . \mathrm{A}$. M

uranus

is evening star. He crosses the meridian on the 1st t 11 h .20 m ., on the 31 st at 9 h .18 m .
Uranus is a star of the sixth magnitude and not easily recognizable under ordinary conditions.
The moon occults Uranus on the morning of May 0 , being in grocentric conjunction at 4 h .32 m . A M. But this occultation will not be visible in New York, as moon and planet will be below the western horizon. Nor will the approach of the moon to the planet present any special interest, on account of the ow altitude and the near approach of daylight.
The right ascension of Uranus on the 1st is 14 h . 7 m., his declination is $12^{\circ} 16^{\prime}$ south, his diameter is $3^{\prime \prime} .8$, and he is in the constellation Virgo.
Uranus sets on the 1st at $4 \mathrm{~h} .37 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 31st he sets at 2 h. 39 m. A. M.

neptune

is first evening star and then morning star. He is ost throughout the latter part of the month in the un's light. He is in conjunction with the sun on he 29th at about 1 P. M., at which time his role of evening star changes to that of morniil' star. His right ascension on the 1st is 4 h . 25 m ., his declination is $20^{\circ} 7^{\prime}$ north, his diameter is $22^{\prime \prime} .5$, and he is in the constellation Taurus.
Neptune sets on the 1 st at 8 h .47 m. P. M. On the 31st he rises at $4 \mathrm{~h} .29 \mathrm{~m} . \mathrm{A} . \mathrm{M}$.

MARS
is morning star. There is little of interest in his May course. He rises the earliest of the morning stars. His distance from the earth and his low altitude prevent his being of value for purposes of observation.
The moon is in conjunction with Mars on the 17 th t $1 \mathrm{~h} .37 \mathrm{~m} . \mathrm{P}$. M., being $3^{\circ} 5^{\prime}$ south.
The right ascension of Mars on the 1st is 19 h .59 m . his declination is $22^{\circ} 8^{\prime}$ south, his diameter is $11^{\prime \prime} .5$, and he is in the constellation Capricornus.
Mars rises on the 1st at 12 h .37 m. A. M. On the 31st he rises at $11 \mathrm{~h} .26 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.

JUPITER

that he may be seen in the early dawn. He rises in advance of the sun about one hour the first of the month and about two hours the last of the month. He is at nearly his average distance from the earth, but monthly coming nearer.
The moon is in conjunction with Jupiter on the 22d at 2 h .45 m. P. M., being $1^{\circ} 48^{\prime}$ south.
The right ascension of Jupiter on the 1st is 0 h .40 m ., his declination is $3^{\circ} 10^{\prime}$ north, his diameter is $32^{\prime \prime} .4$, and he is in the constellation Pisces.
Jupiter rises on the 1st at 3 h .47 m . A. M. On the 31st he rises at 2 h .4 m . A. M.

MERCURY

is morning star. The position of this rapidly moving planet, interior to all so far known, confines it to the immediate neighborhood of the sun. On the 31st of March Mercury was at its greatest eastern elongation of $19^{\circ} 3^{\prime}$. On May 17 it will be at its greatest western elongation of $25^{\circ} 39^{\prime}$. It will not be visible this month, as its light number is small and its low declination, compared with the sun, will permit it to rise but an hour in advance.
The moon is in conjunction with Mercury on the 24 th, at 8 h .36 m . A. M., being $2^{\circ} 42^{\prime}$ north.
The right ascension of Mercury on the 1st is 1 h . 32 m ., his declination is $7^{\circ} 49^{\prime}$ north, his diame1 h .32 m. , his declination is $7^{\circ} 49^{\prime}$ north, his diame-
ter is $10^{\prime \prime} .8$, and he traverses during the month the conter is $10^{\prime \prime} .8$, and h
stellation Aries.
Mercury rises on the 1st at $4 \mathrm{~h} .21 \mathrm{~m} . \mathrm{A}$. M. On the 31st he rises at 3 h .33 m . A. M.

A PARTIAL ECLIPSE OF THE MOON

will take place on May 11, of which the end, but not the beginning, can be seen in the eastern section of the country, the moon rising eclipsed. The middle of the eclipse is at 5 h .53 m. P. M., when ninety-six onehundredths of the moon's diameter is in shadow. The eclipse will be mainly over when the moon rises in New York, at about seven o'clock, although the moon does not leave the earth's shadow until $7 \mathrm{~h} .37 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. The moon leaves the penumbra at $8 \mathrm{~h} .53 \mathrm{~m} . \mathrm{P}$. M. The line of demarkation to be seen in an eclipse of the moon is not so sharp as is seen in an eclipse of the sun, nor is the moon ever wholly invisible when eclipsed, because it is never entirely free from the sunlight refracted to it by the earth's atmosphere.

${ }^{6}$ Poisoned ${ }^{\prime}$ American Apples.

by c. v. riley.
Since Miss Eleanor Ormerod's success in convincing English horticulturists of the value of spraying with arsenicals against the Codling moth, and of its harmlessness when properly done, opposition to the use of Paris green has taken a new form in England. It is now contended that American apples are unsafe to use
because, in the language of one English journal, "arbecause, in the language of one English journal, "ar-
senic . . . is used upon the fruit itself until it is completely saturated, . . . and what is not absorbed by the skin remains on it, forming a fine coating, which must evidently be detrimental to health, especially where the fruit is consumed to any extent."

I have seen no such disparaging statements concerning English apples, though, as they are now beginning to spray English orchards after the American fashion, it would seem that the native fruit must soon be as dangerous as the American product. The report is most likely to have been started by importers interested in retaining for Australian and Tasmanian
apples the market now so largely occupied by American fruit. Any lingering doubts as to the safety of using Paris green in water suspension were so long ago dispelled from the American mind that the revival, at this late date, of this absurd scare has something childish in it.
In spraying for the Codling moth the proportions usually observed are one pound of the poison, either Paris green or London purple, to 150 gallons of water. It is difficult to arrive at any exact estimate of the amount of arsenic deposited on a tree when sprayed with this mixture, but if five gallons of the wash are used upon an ordinary tree (and this is an outside estimate of the amount required), $\frac{1}{30}$ of a pound, or say 053 of an ounce, of the poison will be left upon it, of which perhaps one-fifth will go upon the young apple
themselves, the foliage and limbs receiving the rest.
themselves, the foliage and limbs receiving the rest.
We sherefore have a fraction more than one We should therefore have a fraction more than one-
tenth of an ounce of poison left upon the fruit of an apple tree when five gallons of spray are used. In circular No. 1 of the Division of Entomology, I have recommended that the first spraying be done on the falling of the blossoms, the apples being about the size of peas, and that a second application be made about a week or ten days later. These two sprayings, at the rate of five gallons of wash per tree each time, will therefore put a little more than one-fifth of an ounce of poison on the apples, each apple presumably receiving an equal share of the amount. The quantity of poison upon each apple is therefore very minute to begin with. But between the last spraying and the gathering of the crop three cleansing influences are at work-rain, heavy dew, and the natural growth of the
apple, each of which removes a part of the very small quantity originally sprayed upon it.

If, however, the garnered apple be supposed to have ally sprayed upon it, such poison can have remained in only two places-the calyx and stem ends. Elsewhere it must have been blown off by the wind upon the drying of the spray, washed off by the rain, or rubbed off in handling. If the apple be eaten raw, the calyx and stem ends are precisely the parts which are almost invariably thrown away with the "core," and this is
equally true of the fruit if cooked. So that of the equally true of the fruit if cooked. So that of the
minute quantity of arsenic sprayed upon each apple in spring, only an infinitesimal portion, if any, can possibly remain upon it in the autumn, and that upon the very parts which are not eaten.
The statement quoted above that the fruit is "completely saturated" with arsenic is no less absurd than the rest of the article. Arsenic, in the form in which it is used, is a mineral poison not soluble in water, and as sprayed upon trees is simply suspended, and undergoes no chemical change. It can no more be "absorbed" through the skin of the apple than any other finely divided mineral substance. For example, where an apple tree is exposed to the dust of a road-side, it could hardly be claimed that its dusty fruit would be gritty or of earthy taste inside the skin.
In a recent lecture at the Lowell Institute in Boston, in touching incidentally upon this subject, I made the statement that a man would have to eat many barrels of apples in order to get enough arsenic to poison him. I reiterate that statement here, and as no specific case of poisoning from eating the American apple has yet
been recorded, we may dismiss the case against it until been recorded, we may dismiss the case
the indictment is more closely drawn.

Destruction of Locusts in Tunis.

No. 5, vol. ii., of the Indian Museum Notes contains a reprint of an interesting report by Mr. R. DrummondHay, British Consul-General to Tunis, on the methods of destroying the locusts which invaded that country of that year, and Mr. Drummond-Hay formulates the following rules to be observed on the first appearance of flying locusts :

1. To carefully observe the flights and mark the ground selected for hatching purposes
2. To employ watchmen to give notice when the hatching days commence.
3. To organize in the meantime gangs of laborers.
4. To destroy the eggs either by gathering them or y plowing up the hatching grounds.
5. To collect the necessary fuel around the contaminated spots.
6. After hatching, to take advantage of the first five days to destroy the young locusts before they form into columns.

Enormous quantities of the eggs were gathered, over 60,000 kilogrammes having been collected in the "kaidats," or districts, of Susa, Djemel, and Mehedia; r6,000 dekaliters at Medenine, 6,800 dekaliters around Gabes, and 2,700 around Gafsa.
Migration commences on the sixth or seventh day arter hatching, and the infested country is then divided into sections, with a civil or military officer at the head native laborers are placed under his command. The Zaghouan and Fahs districts, for example, were divided into five sections, with a captain and five lieutenants in charge of the work, and a force of 720 men , with a reserve of 220 men for special service. The line of defense extended over 35 miles along the cultivated plains, and in the early part of July, when the migration was at its height, 25 miles of screens of the Cyprian pattern were in position, and the sections were supplied with 500 yards of zinc for traps and 40 barrels of asphyxiating oil. Oil of creosote 40 parts to water 60 parts was found the best application for killing the trapped lousts, the creosote having some deodorizing properties nd diminishing the stench from the dead insects Carbolic acid in the proportion of 20 parts of the acid o 80 of water was also used with success, and is some what cheaper than the creosote oil.
Themethod of using the screens is the same as that in Cyprus, a column of marching locùsts being headed off by the erection of screens with openings of five yards, across which semicircular ditches are dug. The edges of the trenches are covered with projecting strips of zinc, to prevent the insects from crawling out, and the process of asphyxiation by the application of the chemicals mentioned is very rapid. The campaign at Zaghouan and Fahs is considered to have been successul, and it has been calculated that 600 cubic meters of locusts were destroyed by traps in those sections.

The Banana Trade.

Among the most attractive features to those passing along the lower portion of New York City's water front are the East River piers occupied by tropical fruiters, where the steamers lie discharging cargoes of delicious bananas. From one side of a steamer gangs of men carry the bananas to the waiting truckmen on the large float, on the deck of which, receiving their loads,
are railroad cars especially constructed for carrying bananas in good condition to different parts of the United States. While this is almost a daily occurrence, Sundays excepted, there are probably but few who are familiar with the manner in which the banana is cultivated and of the extensive proportions this productive industry has assumed during the past few years. In the first stage of cultivation the "suckers," as they are termed, are planted, and in one year after the tree beais fruit; each sucker produces from two to four trees, each of which bears one bunch of banana yearly.
Four years ago H. Dumois \& Co. purchased thirtyfive square miles of land in Banes, Cuba, which at that time was a dense forest, and there were only ten inhabitants in the whole district. Through indomitable energy and enterprise and a sufficient amount of capital, they began the arduous work of clearing away the forest and putting the land in a proper state for gricultural purposes and making improvements. Leve oads, ranging from 60 to 100 feet in width, have been laid out so that carriages can be driven over the entire plantation. The company has built a three foot gauge railroad ten miles long and an extension of eight miles is now in progress. They have also built a pier 300 feet long from the hard native woods, and have a saw mill and water works. E. George \& Co., of New York, received the contract and furnished the materials. In making these improvements the company adopted the most modern means and spared no expense in not only urthering the growth of Banes, but in order to make it a credit to the island of Cuba. One thousand five hundred men are employed on the plantation during crop time, and Banes has at present a population of 3,500 , which shows the rapid progress that has been made, and it bids fair to be one of the finest and most thrifty ports in Cuba, besides the most important fruit center in the world. Banes is a beautiful port, favorably situated on the Bay of Banes, which is six miles wide and eight miles long. The entrance to the port is three miles long but very narrow, being at some points only 150 feet wide, but having 16 to 20 fathoms of water at the narrowest points.
The company has about one-half the entire land cleared and 9,600 acres planted with bananas-2,400,000 fruit-bearing trees. There are twenty-six steamers in the banana trade plying between Cuba and New York all the year round. H. Dumois \& Co. control nine large, stanch, and commodious steamers especially constructed for their trade, and they run from Banes to Pier 13 East River, which pier the company has leased. Pier 13 East River, which pier the company has leased. arrives at New York almost daily, and during the busy arrives at New York almost daily, and during the busy
season each steamer will discharge her cargo, which season each steamer will discharge her cargo, which
averages 12,000 bunches, and depart the same day in averages 12,000 bunches, and depart the same day in
ballast. The demand for bananas has reached such ballast. The demand for bananas has reached such
large proportions that H. Dumois \& Co., who control the entire banana crop of Banes, will this year export from Banes to the United States about 1,500,000 bunches. The steamers of this company are each of about 700 tons and bear the following names: Alfred Dumois, Simon Dumois, George Dumois, Hipolyte Dumois, Banes, Henry Dumois, Albert Dumois, Gurly, and Holquin. The four last mentioned are the latest addition to the fleet. The Henry Dumois and the Albert Dumois are $121 / 2$ knot boats and the Gurly and Holquin are twin screw steamers of the latest type.
When it is taken into consideration the brief period (only four years) since H. Dumois \& Co. commenced clearing away the wilderness, it may be said, and not only tilling the land but building an entire town, streets, stores, dwellings, and a railroad, and giving employment to the inhabitants in cultivating enough bananas to keep nine steamers running the year round, in supplying the demands for that nutritious fruit, it is wonderful to contemplate, and it is an accomplishment that has probably never been excelled. -Am. Ship Builder.

The Stealing of Electricity Theft.

The Engineering News says that according to a St. Louis decision the stealing of electricity is a misdemeanor in the eyes of the law. A hardware dealer with some knowledge of electricity placed a fine wire across the connections to his meter and caused it to register in a certain time about 320 amperes less than was actually used. When brought to trial, his lawyer interposed the ingenious defense that as at common law electricity was unknown, and could not, under the code, be made a subject of larceny, and as no statutory law had been passed making it a felony or misdecharact to steal electricity, for the reason that its to asportation as personal property, his client could not be convicted of larceny. It was, however, shown by the prosecution that gas, also unknown at common law, was nevertheless something whose larceny was recognized by the law as a misdemeanor. When the attor-
ney for the defense interposed the plea that the act in question was fraud or deception instead of a larceny, the judge took advantage of the Missouri statute, which makes fraud perpetrated with a view to theft a felony, and set the defendant's bail at $\$ 5,000$.

AN IMPROVED GAS ENGINE

The facility with which an engine run by gas or gasoline can be set up and run in almost any location, being always ready for work, yet costing nothing for attendance and not using any fuel except when it is at work, always carries great weight in aiding the introduction of these most convenient motors. The Improved Charter gas engine, shown in perspective and in section in the accompanying illustrations, is for gasoline, coal gas, natural gas, or producer gas, and it has been perfected by years of experience, until it is deemed to be about as simple and effective as it is possible to make such an engine. In its construction all weak and delicate parts have been avoided, making it economical, au tomatic, safe and clean, while it is, as with all engines of its class, always ready for work. It develops full power at once and does not increase insurance, while the cost of running is in exact proportion to the work done. The supply tank, as will be seen, is lower than the engine, so that as soon as the latter stops work the oil in the pipe flows back to the tank. The engine will work equally well on manufactured or natural gas, calling only for the attachment of a gas valve and requiring no change in the engine. As to the economy of its work, the engine uses only one gallon of 74° gasoline in ten hours to the indi cated horse power when doing full work. The price of the gasoline varies from 7 to 13 cents per gallon, according to the quantity bought and location of the purchaser, but with an average price of ten cents a gallon, the cost of running the engine would be only one cent per hour for each indicated horse power. The engine is so simple in construction and operation that an unskilled hand can always see at a glance whether it is working right and give it all the attention needed.
Instead of attempting to govern the exact charges of gasoline, which has proved so difficult because so delicate in engines, the Improved Charter engine is so constructed that a simple pump draws from the tank a charge of gasoline much greater in quantity than is required for carbureting the present charge of air. The pump remains open or at its outstroke during the time the air is being drawn into the cylinder past the nozzle or pipe. This pipe or nozzle is connected to the gasoline chamber in the pump, and the throttle valve so regulates the gasoline that the air can only carry a fixed quantity with it. The gasoline which remains in the pump and its valve chamber is immediately forced out of the way of the nozzle in the air pipe, and the surplus returned to the tank. In this way all delicate regulation is avoided. It will readily be seen that should there be an the pump mechanism, such wear
will not affect the working of enwill not affect the working of en-
gine, as the quantity of gasoline gine, as the quantity of gasoline
will always be more than sufficient will always be more than sufficient
to supply the small amount needed. to supply the small amount needed.
In the sectional view, A is the In the sectional view, A is the
cylinder, B the piston, C the inlet valve to cylinder, D mixing chamber, E is gasoline pump, F and G check valves, one opening inward, the other outward, \mathbf{H} is the gasoline supply tank, I is the air suction pipe, \mathbf{J} is a connecting rod coupled to the gasoline pump and operated by the governor, K the supply regulating valve. The oilers are automatic, requiring noattention except filling of cups, and the construction insures perfect and permanent alignment of engine. All wearing parts are of materials best suited for service required.
The sole manufacturers are H. W Caldwell \& Son, Washington and Union Streets, Chicago, Ill.

How to Draw Microscopical

There has always been a certain amount of difficulty attending the use of the camera lucida or Beale's neutral tint reflector for the above purpose. The twisting of the head into an uncomfortable position, the great fatigue to the eyes, and the by no means easy task of viewing both image and pencil at the same time, add to the troubles of making a faithful likeness of the object on paper.
To those especially who do not possess a camera lucida or Beale's instrument, and to microscopists generally, I recommend the following arrangement of ordinary apparatus: The microscope body is placed in a horizontal position, and the mirror removed from its sub-
stage attachment. The microscope slide having been placed on the stage, the illuminant (lamplight for choice) is "condensed" on the slide by means of a "bull's eye" in the same way as for photomicrography. Care must be taken to "center" the light. The concave mirror is then attached to the front of the eye piece of the microscope by a piece of thin wood or a spring, and has its surface at an angle of about 45° with the plane of the anterior glass of the ocular. The image is thus projected on to the paper beneath. No distortion will occur if the outer ring of light is perfectly circular. A dark cloth, such as photographers use, is thrown over the draughtsman's head,
bling bleaching powder. Every precaution has to be used in studying its action on other bodies, both on ac count of its dangerously irritating action on the eyes and mucous membrane of the operator and its mar velous energy, far exceeding that of anything hitherto discovered. There is hardly a gas, liquid, or solid that it does not attack, usually, with the greatest violence; in fact, its mere contact with any other substance is nearly always signalized by the sudden evolution of intense heat and light and loud detonations.

As a supporter of combustion, fluorine leaves oxygen far behind. Lampblack bursts immediately into bril

THE IMPROVED CHARTER GAS ENGINE-SECTIONAL VIEW.

 red hot in a current of fluorine gas and charcoal is made to give an interesting exhibition of its porosi ty, by first filling its interstices with the gas and then burning spontaneously with sparkling scintillations. The diamond, however, is able to withstand its action, even at high temperatures. Silicon, a crystalline substance closely resem bling the diamond, gives a very beautiful reaction, showers of bril liant spangles being scattered in all directions from the white hot crys tals, which are finally melted. As they do not fuse under $2,190^{\circ} \mathrm{F}$. some idea can be formed of the immense energy set free during the combination.All the metals, with the excep tion of gold and platinum, ar rapidly attacked by fluorine, and even those in less degree. Iron combines in the cold with splen did energy, becoming white hot and rust, when heated, behave
and also the body of the microscope, and all light excluded save that through the microscope lenses. Any section can thus be easily, rapidly, and comfortably drawn, and accurate representations of objects wag nified up to $500-600$ diameters can be obtained.-A Hopewell Smith, in Jour. Br. Dental Asso.

Fluorine.

by henri moissan

I was the first person to obtain the element fluorine in a state of purity, and this I did for the first time in the year 1887. Since then I have considerably enlarged and improved my apparatus, which is now capable of turning out 160 cubic inches of the gas an hour. I ob tained this result by passing a strong current of elec tricity from twenty-six or twenty-eight Bunsen bat teries through hydrofluoric acid in which was dissolved a metallic compound, to increase the conductivity. Every part of the apparatus is constructed of plati num with stoppers of flourspar, through which pass the wires conveying the current. The purifying ves sels, tubes, and connections are also of the same metal

THE IMPROVED CHARTER GAS ENGINE rs, which, when nd seal any leak.
The tube in which the generation takes place is kept at a temperature of $-9^{\circ} \mathrm{F}$. by the evaporation of very volatile organic liquid contained in an outer ves sel , and the first member of the purifying series at -58° F. by the same means; the greatest care having to be taken that even the vapor of the refrigerating liquid does not enter any part of the apparatus, or else violent explosions occur.
Fluorine gas is of a yellow color, with a smell resem-
n a similar manner. Zinc, if slightly warmed, bursts into gorgeous luminosity, accompanied by bright white flames, so intense as to be almost blinding. Mercury is attacked violently in the cold. I once attempted to pass a quantity of the gas into a tube standing over mercury protected by an inert fluid; but when in clining the tube, the two elements came into contact, there was a violent detonation, and the containing ves sels were broken to atoms; with silver very little action occurs until $212^{\circ} \mathrm{F}$. is reached; at a red heat, however ncandescence is observed, the product melts, and, on cooling has a sheen like satin. Gold, on heating, form volatile fluoride which, when carried to a slightly higher temperature, splits up again into the metal and he gas.
The behavior of liquids with fluorine is usually very energetic, and experiments have to be conducted with much caution. If the gas be passed into the middle of alcohol, the result is very striking; the whole mass is violently agitated, and each bubble, as it appears, be comes incandescent in the middle of the liquid, finally vanishing in flame. If a few drops of chloroform are shaken up in a tube full of fluorine gas, a violent ex plosion takes place, and the tube is reduced to fragments.
Hydrogen combines fiercely with fluorine, even in the dark, and at $-9^{\circ} \mathrm{F}$., the issuing stream burning with a blue flame, bordered by red In every other known case, heat or some form of extraneous energy is required to induce the combination of elementary gases. Oxygen is one of the few bodies that appear to have no affinity for fluorine. Even when they are heated together up to 932° F., nothing is observed to take place between them. If a few drops of water are placed on the floor of the experimenting tube and fluorine gas is passed in, a dark fog is seen surrounding each drop, which presently clears and resolves itself into a characteristic blue va por, apparently more than an inch in thickness, and which is found to be that most interesting condensed form of oxygen-ozone-in a stat of great density.-Annales de chimie et de Physique.

Pomona Electric system.
The power plant of the San Antonio Light and Power Co., of Pomona, will be one of the most interesting in the Pomona,
country.
The power plant will be located, it is said, in the San Antonio canyon, about 15 miles distant from Pomona. At this point is a fall of some 425 feet, with a minimum flow of water of about 1,300 cubic feet per minute, or, approximately, 1,000 hydraulic horse power. This water power will be somewhat expensive to develop, as it is necessary to build a tunnel 1,300 feet long through a spur of San Antonio Peak, which is practically of solid rock.

AN IMPROVED CAR DOOR.

The illustration represents a door of simple and durable construction, which may be readily opened and closed, and is designed to be absolutely air and water tight when closed. The improvement is more especially for use on refrigerating, fruit, box, and other cars, affording perfect protection to the contents of the car. It has been patented by Messrs. Manly T. Carson, of Jackson, Tenn., and James D. Gurganus, of Whistler, Ala. The door frame has shoes or rollers to facilitate readily moving it to or from the car door opening, and in the frame slides a panel to close the opening, the panel haviny on its inner face an offset fitting on to a rabbet in the door opening, as shown in the sectional plan view. The panel is movably supported in the frame by a series of tongued and grooved castings secured to the inner edges of the frame and the outer edges of the panel, the pan 1 being put in place in the frame before the car door is hung on the side of the car. To conveniently give the desired sliding motion to the panel, eccentrics are secured on vertical shafts turning in suitable bearings in the front of the frame, these eccentrics engaging straps on the front face of the panel, so that when the shafts are turned, the panel is moved inward or outward to or from the door openings. Hasp arms on the shafts are adapted to engage a staple on the front of the panel, by which the latter may be locked in closed position, there being a staple at each side of the frame for the engagement of the arms when they are swung outward in opening the door. The inner edges of the panel are formed with a packing to be pressed in contact with the door casing, a similar packing being arranged on the inner face of the offset abutting against the rabbet

CARSON \& GURGANUS' CAR DOOR

of the door opening, whereby the panel h rmetically seals the door opening and makes an air and wate tight joint. The panel may be moved in th frame without unlocking the latter from the side of the car and the interior of the car may be ventilated as de sired without entirely opening the door.

The Filer objects.

If there is one thing more than another that disturbs the equanimity of ithe average genius who pr sides over the filing department of the saw mill, it is carelessness on the part of the laborer who removes the bark from the hardwood log, and does not carefully remove old iron projections from the same, invite death to the workmen, destruction to the mill, disaster to the proprietor and demoralization to the saw by his lack of cautiousness.
The Timberman recently picked over a pile of hitch ing post pins and rings, horse nails, iron slabs and wedges, horse shoes and what not, that had been removed from walnut logs at the mill of the Lesh, Prouty \& Abbott Co., of East Chicago, Ind., or had been discovered when too late to save the saw in use, and damaged this instrument when it bit into the stranger in its progress through the timber. During the writer's visit to the mill named, and but for the fact that the Timberman would have been a witness to the murder, the filer would doubtless have brained the careless Pole who chopped the end off a nail with his ax in taking the bark from a walnut log, but failed to remove the larger portion of the nail from the log, as he should have done before sending it to the logroll.
The band saw is a costly instrument. It is usually made of excellent material, and the filer expends much labor in adjusting it to the work at hand, but he does not fix it to cut iron, hence his indignation when his pet saw is injured, or perhaps utterly destroyed, be-
cause of the carelessness or indifference to the possible consequences from an attempt to cutiron. Serious ac cidents are frequently recorded as resulting from the unfortunate contact of the saw with a wedge or similar instrument found buried in a log, but in most instances these mishaps can be averted by a watchful eye. The price of a band saw, which is about $\$ 50$, is itself enough to suggest the greatest watchfulness on the part of al concerned in placing the timber before the saw.
A few days ago, while a saw was singing through an ash \log at the Copenhagen mill in Xenia, Ohio, a clanging sound was heard, which alarmed the population of the place, and when the cause of it was discovered, it was found that every tooth of the large saw in the mill mentioned was gone, leaving nothing but a round piece of steel. It had struck something hard in the center of the log, and when split open, buried in its very heart was found an iron wedge which the saw had cut in two. The log was $21 / 2$ feet through, and the cut in two. The log was $21 / 2$ feet through, and the
wedge had been in the tree evidently for as many as fifty years. In this case there was nothing on the surface that would indicate that anything was inside and besides, there was not enough left of the saw to cause the filer to mourn the possibility of his being obliged to reconstruct it, but the mill men who faced death for a brief moment fell to their knees in thank fulness for a favorable result, notwithstanding the pro prietor lost $\$ 115$ by the mishap.

The Columbian Exposition.
Inventors and manufacturers who may desire to ex hibit goods, tools, etc., at the World's Columbian Ex position should take note of the following summary of the rules and regulations :
There are nochargesfor space, and a limited amount of power will be supplied gratuitously. All show cases, cabinets, shelving, counters, fittings, counter shafts, pulleys, belting, decorations, signs, etc., must be at the expense of the exhibitor, and conform to the general plan adopted. No single piece or section of greater weight than 30,000 pounds will be accepted, if machinery is required for its installation. The ex pense of transportation, receiving and arranging ex hibits and removal at the close of exposition shall be paid by the exhibitor. Exhibitors may insure goods and employ watchmen, subject to certain regulations. The installation of heavy articles, requiring founda tions, should, by special arrangement, begin as soon as the progress of the work on the buildings will permit. The reception of articles will begin November 1, 1892 and no article will be admitted after April 10, 1893 Space not taken possession of April 1, 1893, will rever to the Director-General for reassignment. Exhibits intended for competition must be so specified, or they will not be examined for award. Articles that are in any way dangerous or offensive, also patent medicines, nostrums and empirical preparations where ingredi ents are concealed, will not be admitted, and any arti cle dangerous or detrimental will be removed. Exhibitors will be held responsible for the cleanliness of their exhibits and the space surrounding the same, and be in complete order at least thirty minutes be fore the hour of opening. The removal of exhibit will nct be permitted prior to the close of the Exposi tion.
All packages containing exhibits intended for the several departments must be addressed to the "Di rector-General, World's Columbian Exposition, Chi cago, Ill." In addition, the following information must be written on the outside of each package :
(a) Department in which exhibit is to be installed
(b) The State and Territory from which the pack age comes.
(c) The name and address of the exhibitor.
(d) The number of the permit for space.
(e) Total number of packages sent by the same ex hibitor, with serial number on each package, list of contents of each package, and freight prepaid.
By addressing the Director-General, World's Colum ian Exposition, Chicago, Ill., an application paper will be sent.

Steam Boilers in out-of-the-way Places.
It may appear to be an extravagant statement, but it is kelieved that, in mechanical plants that use steam the boiler room is, in nine cases out of ten, so located as to insure a waste each day of heat and steam large enough to constitute a respectable sum when figured out in dollars and cents. The men who plan such plants seem to have a mania for forcing steam to pass through ong lines of pipe and to pass numerous bends. In these things they insure two wastes or losses: 1 . Loss of heat and consequent condensation. 2. Loss by friction and by the bends, each of which subtracts from the initia pressure. Is it wise, asks the Iron Industries, to locate a boiler room so that these two wastages must go on just as long as the plant is in operation? Any one with average intelligence would think not. Yet thi plan is everywhere seen, and in every case it implies a waste of money in first cost, a waste of more money in repairs necessarily made greater, a waste of money in steam made and not fully used, and a waste of money for the fuel and labor to make the steam.

A TRACE-HOLDING WHIFFLETREE ATTACHMENT.

A device designed to prevent a trace or tug from accidentally slipping off the whiffletree, yet permitting of its being readily passed to place and easily removed when required, is shown in the illustration, and has been patented by Mr. Gustave Carlson, of Sparks, Neb. A metal cap or tip is made to snugly fit each tapering end of the tree, and a tug or trace-holding lug or dog

CARLSON'S WHIFFLETREE HOOK.

is fitted to work in a slot cut in the end of the tree, and through a corresponding slot in the cap or p, as shown in the sectional view. The lug is fory ed of a spring bent to protrude through the slot, and (when in its normal or raised condition its lowor f ont end catches under a cross bar within the cap. The spring is sloped on its back, that the trace or tug ay be: readily slipped over it, th spring being ther, dey-, pressed, but being thrown outward at its free ecd when the tug has been passed to place. By pressing inward upon the spring the tug or trace may be readily lipped off the tree
For further particulars relative to this improvement address the inventor or C. H. Corwell, Valentine, Neb.

A MOTOR TO DRIVE SMALL MACHINES

A simple motor for driving sewing machines, churns, etc., has been patented by Mr. Charles J. Neef, of Texarkana, Ark., and is shown in the accompanying illustration. In a suitable frame is pivoted an upright lever on which is an adjustable sleeve in which is secured one end of a pitman or link onnected with the secured one end of a pitman or link onnected with the
machine to be driven, the other ond of ${ }^{\dagger}$ he lever being connected by a link with a crank arm on a shaft carry ing a fly wheel and a pinion in mesh with a large gear wheel on another shaft. On the latter shaft is a pinion in mesh with a loose gear wheel carrying a spring pressed pawl engaging a ratchet wheel on the hoisting drum. The outer end of the drum shaft is square, for applying a wrench or crank arm, by which to wind up a rope on the drum. The rope extends upward between two rollers and over a pulley secured to the tween two rollers and over a pulley secured to the
ceiling or other convenient place, a weight being atceiling or other convenient place, a weight being at-
tached to its outer end. One of the rollers between tached to its outer end. One of the rollers between
which the rope passes is held in stationary bearings, which the rope passes is held in stationary bearings, while the shaft of the other roller is mounted in slots, in which extend the ends of a brake beam adapted to bear against the ends of the shaft, the pressurc of the brake beam on the shaft being regulated by a screw rod screwing in a cross beam of the frame. One of the rollers is grooved while the other has a rubber rim and is adapted to clamp the rope and hold it in a fixed position to stop the machine. The crank arm and link may be readily arranged, if desired, to communi-

cate motion to the main operating lever when the latter is adjusted in a horizontal position.

Dr. H. T. Webster, of Oakland, Cal., has cured several cases of persistent snoring by cutting off the uvula and tonsils. When these organs are too large and when relaxed in sleeping, the passage of air through the mouth causes them to vibrate, and noise results,

©orrespondence.

The Recent Earthquake at San Diego

To the Editor of the Scientific American:
I noticed in the last number of your paper a letter from a correspondent from San Diego regarding the recent earthquake in Southern California, from which your readers might in
nd dangerous here.
I have lived here more than twenty years, and the last earthquake was the most severe that has occurred during that time. I was lying in bed, awake, at the time it happened, and I thought at first that it was a sudden and violent gust of wind that was rattling the window frames; but I soon realized that it was an earthquake. The rattling was exactly like, in duration and violence, the effect produced by a heavy and close clap of thunder, but, of cours, without the noise that the thunder makes. I was in a well-constructed, three-story house. No walls were cracked, nor any articles knocked from shelves. A gentleman and his wife, who slept in the room next to mine, were not awakened by the snock. I did not get out oî bed, and was asleep in a few minutes after it was over. During the " boom" times here a few years ago a great many poorly constructed buildings were erected. The clay from which bricks are made in Southern California is generally of very poor quality. Fuel for burning them is very high (wood $\$ 7$ per cord, coal $\$ 1$. per ton), and, in consequence, bricks are very poorly burned. Buildings constructed from such bricks cannot stand much shaking. In some such structures the walls were cracked slightly in a very few instances; but there was not a single case of a crack in any well-constructed building where good, hard bricks had been used.
J. Thomson.

San Diego, April 10, 1892.

Another Mathematical Prodigy.

To the Editor of the Scientific American:
Having read in your last issue an account of what may properly be called a mathematical prodigy, I think it may not be uninteresting to your readers to hear of another, which, in some respects, surpasses anything of the kind ever related.
Reuben Field is a native of La Fayette County, Missouri, a very strong, heavy set man, about forty-five years old. He never went to school, even a day, for He can neither read nor write, and his reasoning powers have never developed beyond those of a child powers have never developed beyond those of a child
of the most ordinary intellect. In the face of these facts, however, he has the keenest perception of the relation of numbers and quantities, and is able, as if by instinct, to solve the most intricate mathematical problems. He does not know figures on a blackboard, but he understands them perfectly in his mind. No one has ever been able to "catch him" in multiplication or in division. He has been given problems as "The circumference of the earth is, in round numbers, 25,000 miles. How many flax seed, allowing twelve to the inch, will it require to reach around it ? ${ }^{49}$ Within a minute he returns the answer : 19,008,000,000. If the distance to the sun or to any of the planets is taken he answers with as great ease. If given the day of the month and the year on which an event occurred, he instantly gives the day of the week. But what is yet more remarkable is that he can tell the time at any minute. If awakened out of a deep sleep in the darkness of night, and asked the time, he gives it at once Once in my office I asked him the time. He replied at once: "Sixteen minutes after three." In order to test him, I drew him off upon some other question, not letting him know my object, and when seventeen minutes had passed, I looked at my watch, and asked him the time. He said: "Twenty-seven minutes to four.?
N. T. Allison.

Columbus, Kansas, Aprii 16, 1892.

Climate of San Diego.

To the Editor of the Scientific American :
Thousands of people searching for a climate neneficial to consumptives have had a great deal of misinformation spread before them concerning Southern California. Laudatory and derogatory statements have been mixed together by writers whose views have been unduly colored by prejudices resulting from bad ${ }^{\circ}$ effects of the climate in certain cases, or by too free an entertainment by shrewd hotel keepers who want to make a writer feel good and write compliments for puiblication. It is difficult for an Eastern man to get absolute facts about Southern California. Allow me to state a few facts within my experience as a consumptive in San Diego since September, 1891. The winter was of exceptional severity, and therefore a good sample of of exceptional severity, and therefore a good sample of
what this climate is at its worst. We had rains, fogs, high winds; once or twice hail stones rattled against the window panes for a few moments. An earthquake cracked walls of buildings one night and thoroughly scared the strong and the weak. On the other hand
we had fully two-thirds more mild, brilliantly sunny
days than I found on the Atlantic slope during all of last summer.
There has been an equability at this sea coast town which delighted me, because, as an extremely delicate man, my system has been susceptible to slight changes of temperature. Only one week throughout the winter did the temperature fluctuate so decidedly as to cause remark. It then went below $32^{\circ} \mathrm{F}$. in the lowlands. At an altitude of 150 feet the green tomato vines were untouched by frost. In the aggregate there have been, as nearly as I can recall, several weeks of cloudy, windy weather, when outdoor life was not advisable for a man in my weakened condition. The remainder of the time I have been able to stay outdoors eight or nine hours daily, sitting down the greater part of the day. Ocean fogs came in at night frequently, in the form of clouds, remaining about 1,200 feet above the town. In the morning they rolled seaward about eight or nine o'clock, to return at sundown. There was no fog low down. These fogs increase the humidity and add to the discomfort of some consumptives. But even so, the relative humidity here averages only 70 the year round, while the cool nights and warm days offer the exact conditions under which humans best thrive, according to such authorities as J. Henry Bennet, Briggs, and others. The fogs exist only a few months during the year. The rainy season does not deserve that name. It has not rained one day continuously since September. Light rains have fallen at intervals, amounting in all to about ten inches. The average fall for the year is eleven inches. The relative humidity records of New York or Boston show a lower relative humidity at those points than at San Diego. The absolute humidity of this point, however, is seldom approached in the East. The dryness of the air here is frequently but a fraction of a grain of moisture to the cubic foot. A reputable physician says meats and fish are cured in the open air here without putrefactive decay.
The difference between sunshine and shade here is more marked than in the East. New comers who sit in the sun and move into a shady corner may, in case they the sun and move into a shady corner may, in case they were too thoroughly warmed, catch cold. Invalids walk-
ing along the sun-bathed streets may suddenly meet an ocean breeze and become chilled instantly. Con sequently prudent invalids always carry a light over coat, and exercise more caution against chilling than is usuai where the differences between sun and shade are less marked. Southern California has been roundly abused by people who have come here, and thinking the climate was almost tropical, have been careless, caught cold and suffered. Two friends of mine were stupid enough to put on light weight underwear on coming here. They caught cold at once. Delicate peo ple must be very cautious all through California.
Climato is merely a helper to a consumptive. Good food and diversion are helpers of almost equal importance. They are found here. As a rule, no climate will the disease. Such cases will find only temporary, if any, relief in the West. Incipient and secondary stage cases may find arrestment of their trouble in California. Thousands of people hereabout claim an arrest of consumption in their systems through life in this vicinity. My experience, as one in the last stage of phthisis, though a case where unusual vigor of the system has been aided by unimpaired digestion, convinces me, in spite of humidity, fogs, winds, and other disadvan tages, that thus far the comfortable living accommo dations, good food, and diversion offered right here on the sea coast overbalance the advantages of climate offered in New Mexico, Arizona, and elsewhere, coupled as those advantages are to the monotony, poor food, and some disadvantages climatically, which invariably attend life at these inland lung Meccas. And most important of all is the fact that here I can be outdoor more days in the year than any other place I know of in the world. Outdoor life and good food have added ten pounds of flesh to my bones and increased the cellu lar resistive power of my diseased lung, then, too, I have not been continualiy on the move in search of the ideal climate, and thus exhausting my vitality.

San Diego, Cal., April, 1892
M. Y. B.

Cen Commandments to Switchmen and Brakemen
First.-Don't take hold of a link to couple cars with wet glove or mitten in frosty weather. If you do, it will stick to the link and your fingers will suffer.
Second.-Don't take hold of the nead of a pin in a drawbar with your fingers back of the pin, or between the pin and the deadwood. If you do, and the pin is crooked or the draft iron is driven back far enough your fingers may get nipped.
Third.-Don't go between cars to couple them where the load (logs, lumber, poles or railroad iron) projects over the end of the car. If you do, you may get crushed
Fourth.-Don't attempt making a coupling between cars moving with force where the lug has been broken
on the drawhead, without taking into your calculations that the drawhead is liable to be driven under the car. If you do, you are liable to have your hand taken off or get yourself crushed.

Fifth.-Don't swing and throw your whole weight n a brake wheel on top of a car, without knowing that the nut is on top of the brake rod. If you do, you and the brake wheel may take a tumble together, and the consequences will be more serious for you than for the brake wheel.
Sixth.-Don't step with the heel of your boot on a frog or on switch rails that are ciose together before or between moving cars. If you do, the frog or rails are liable to hold your foot as in a vise, and the moving wheels have no mercy.
Seventh.-In couping freight cars where one car is higher than the other, always have the link in the highest draft iron; you wili then not have to hold the ink up, and the link will in a measure guide itself.
Eighth.-In coupling cars on a curve always stand on the outside of the curve; thon, if anything gives way, or the oad shifts on a flat car, you stand a bet ter chance of escaping a squeeze.
Ninth.-If you think cars that are to be coupled up re coming together with too much force for safety keep out and let them strike. It is much better for you to be called a "tenderfoot" than to lose some o your limbs.
Tenth.-In coupling a coach with a Miller coupler to car with a common drawbar, always have the link in the Miller coupler, as the link is not near so likely to slip past the drawbar as it is past the Miller coupler. Make the same rule in coupling an engine to a Mille coupler; take the iink out of the tender and put it into the Miller before backing.

Asphalt in India rubber Compounds.
From the beginning of the rubber business manufac turers have appreciated the use of asphalt and tar in a variety of rubber compounds. Especially has this been true in goods cured in what is known as the dry heat. Boots and shoes, clothing and insulated wire compounds to-day all have a certain percentage of what is known as tar, but which is usually purified asphalt. The common belief that the goods are injured by the ddition of this substance is wholly erroneous; a cer tain amount of asphalt compounded with rubber assists in calendering and during vulcanization imparts a cer tain toughness to the rubber which is not to be gained in any other way. The proportion used to-day is but small. For example, what would be known as a rich compound is 18 pounds coarse Para, 11 pounds litharge, 40 pounds whiting, 3 pounds asphalt, $1 / 2$ pound lampblack, $111 / 2$ ounces sulphur. Exactly what asphalt is very few people seem to know, and it is almost invari ably in the popular mind confused with coal tar. Asphalt as a paving material has been known since the Babylonian empire, and to-day paving blocks are found hat preserve their integrity and have hardly begun to xidize in spite of the atmospheric changos to which hey have been exposed. It is only within late year that asphalt has been well known in the United States. It looks very much like pitch, and when ignited burns with a bright flame, giving off a dense black smoke. Alcohol, ether, oil of turpentine, naphtha, and many ther reagents easily dissolve it. Its specific gravity is $2 \cdot 23$.
Until very recently all the real asphalt used in this country was imported. There is in the island of Trini dad a lake nearly two miles in circumference which is he source of the most of it, and it is said that near the shore the asphalt is very hard, but out in the center it is soft and viscid. When imported to the Unised States it comes mixed with sand and gravel and a variety of foreign materials, from which it is separated by heating over a slow fire for a week or more. During this heating process the impurities o a lighter nature rise to the top and are skimmed off, while the heavier sub stances settle to the bottom of the receptacle. There are very large deposits of asphalt in France and Switzerland, and within the last three years quite extensive deposits have been discovered in Utah and California and small ones in Kentucky. For paving treets it is prepared by grinding first to a powder and mixed with crude petroreum and fine sand. It is then moulded into blocks of suitable size, or sometimes it is poured between blocks of paving stones, when it becomes hard, and greatily resembles the natural rock.
Another use for asphast is in the manufacture of black varnish, where it is dissolved in oil of turpentine and linseed oil and makes an exceedingly durable coating. For insulating electric wires this sort of coating has been found of great use, and it is said that one of the best rubbers for wiresto-day manufactured is made of a fine compound containing 30 per cent of India rubber, the compound after semi-vulcanization being dipped in boiling asphalt, which toughens it exceedingly. As asphalt is not affected by acids or gases, and is an absolutely waterproof compound, and as heat and cold do not affect it it is a valuable article to use in connection with India rubbur, although if too large quantities of it are put in it shortens the gum and may during the process of vulcanization cause it to blister. A great deal of the gum roofing sold in the United States which is thought to be India rubber or gutta percha is made simply from a solution of asphalt spread upon prepared paper.-The India Rubber World.

THE GRANT MONUMENT.

The ceremonies attending the laying of the corner stone of the Grant monument, planned to take place on April 27, are not without interest to the people of the entire country, who feel a just pride in the fame of the great commander, but they are of especial significance to the residents of New York City and vicinity who have become impatient of the long delay in providing a suitable memorial to take the place of the temporary tomb in Riverside Park. The design for the monument, shown in our first page illustration, has been approved by a committee of distinguished architects, the foundations are finished, a first course of granite, ten feet in height, has been put under construction, and the date selected for the laying of the cornerstone will be the seventieth anniversary of General Grant's birthday. This ceremony it is expected will be performed by the President of the United States, there being present upon the occasion citizens of distinction in all the walks of life, and the exercises being conducted with a state and solemnity designed to fitly mark a great historic event.
Although General Grant died in 1885, the movement for the erection of a suitable monument in his memory has met with so many obstacles that it is only within a few weeks past that the work of collecting the necessary funds has been pushed with a vigor to give promise of success. The committee first having the matter in charge were not united as to the amount which should be raised for the object, and it was a long time before a generally acceptable design was presented. Subscriptions amounting to about $\$ 155,000$ were obtained, and then the work lagged, and for nearly seven years there has been almost nothing done. Recently, however, the Grant Monument Association, charged with the work of construction, has been reorganized and enlarged by legislative enactment, and a broad and carefully considered plan has been put in operation to interest every business, trade, and profession in the city in the obtaining of subscriptions for the prompt completion of the monument. Of this association, General Horace Porter i president, Frederick D. Tappen treasurer, and James C. Reed secretary, and, under the energetic direction of President Porter, committees of public-spirited citizens, representing all interests, are now actively engaged in the work, there being no salaried officials. The estimated additional amount required for the construction of the monument is about $\$ 350,000$
The design is the work of Mr. John H. Duncan, of New York City, who was also the designer of the Soldiers' and Sailors' Memorial Arch, now nearly com pleted, at the entrance of Prospect Park, Brooklyn. The lower portion of the structure is 100 feet square its four sides facing the points of the compass, and the main entrance being on the south side. The monument is placed on a slight angle to the Riverside Drive, so that it will squarely face the point to the south on that approach where it first presents itself to the ob server. It forms the terminus to the vista on 123d Street, looking toward the west. The height from the base line will be 160 feet, or nearly 300 feet from the water level of the Hudson River,
In front of the main entrance will be a colossa equestrian statue of General Grant, and over the en trance extends a portico, into which are worked the coats of arms of the different States. Further up is another cornice, into which are worked designs of weapons and battle flags. The pyramid at the top ascends by steps or terraces, and below it is a row of windows through which visitors may look from the in side, an outer gallery here being 130 feet above the ground line. The extreme top may be reached by steps above this gallery
Within, the whole space is open, making a large hall and in a crypt below the center of the floor the black granite sarcophagus will rest. This is according to a recent decision of the executive committee, for it wa the original design to use this central hall as a memorial hall, in which also might be held assemblages of Grand Army men, the tomb itself then being a crypt at one side of the main hall. At one side is staircase leading to a gallery 122 feet above the floor from which fine views may be had over a wide region Over four of the six Doric columns forming the en trance will be equestrian statues of four generals who commanded under Grant, and the monument is to be surmounted by an appropriate statue or group Panels on the east and west of the structure will re ceive bas-reliefs of others important in command in association with General Grant.
A more noble and beautiful site probably could not be selected in the whole country, as there certainly is not to be found a location where the monument would be more conspicuous than it will be at the north end of Riverside Park. The ground here is high above the river, laid out in beautiful and carefully kept lawns and walks, and the monument will tower above all structures in the vicinity, being visible from far up the Hudson and far down the bay.

Trinity College, Dublin, was incorporated by roya charter in 1591.

The following memorandum on typhoid fever and its proper treatment was given to Major-General Ellis by the late Sir William Gull, M.D., two years after he was in attendance on the Prince of Wales during his illness in 1872. It was suggested to Major-General Ellis recently that the publication of this memorandum might prove useful, and it appeared in the Times. Sir William Gull's suggestions with regard to the treatment of typhoid fever have been observed in the case Prince George.
I. Typhoid fever is a disease which runs a more or less definite course. It cannot be stopped or cured by medicines.
II. The chief thing to be done at the outset of an attack is to send the patient to bed, so as to save trength from the beginning.
III. No strong purgative medicines are desirable
IV. As the fever develops, and the strength grows ess, light food should be taken at short intervalsi. e., water, toast water, barley water, milk and water light broths (not made too strong, or too gelatinous).
V. If there be restlessness or much agitation of the nerves, wine (port, sherry, or claret) or brandy in moderate doses at short intervals. This must be directed medically, but in general it may be said that the amount required is that which induces repose and the am
sleep.
VI.
VI. The bowels may be left to themselves. If un moved for twenty-four or thirty-six hours, a lavement of warm water may be necessary, but this will be directed medically.
VII. The restlessness or wakefulness in fever is best remedied by the careful giving of wine or spirit with the food, or in water. Sedatives, such as opium, are nadmissible-mostly injurious.
VIII. The bed room to be kept at a temperature of 2 to 64 degrees.
IX. Great care necessary to keep the bed clean and weet. This is most easily done by having a second bed in the room, to which patient can be removed fo two or three hours daily, while the other is thoroughly ired and the linen changed
X. All fatigue to be sedulously avoided. No visitor admitted, and no other person but one nurse and one attendant to help her.
XI. Patient's room never to be left unattended for a moment, as in the delirium of fever patient migh jump from bed and injure himself
XII. As to medicines and the treatment of complicaions, the immediate medical attendant must be re ponsible.
XIII. As it is probable that the discharges from the owels in typhoid fever may be a source of contagion it is desirable that before being thrown down the closet they should be largely mixed with Condy's fluid or some other disinfectant. On the same principle the trictest cleanliness must be observed in the sick-room. XIV. There is no reason to believe that typhoid fever is contagious from person to person in the ordinary way. The largest experience shows that it does not extend, like an ordinary contagious disease, to nurse disease.-National Labor Tribune [England].

The Market Price of Silver.

In the week ending April 2 the price of silver reached he lowest point ever recorded. On March 28 the London quotation was 39 pence per troy ounce, which was quivalent to 85.6 cents here, but the metal was offered by New York dealers at 85 cents per ounce, at which price the gold value of the silver in a silver dollar was worth 65.7 cents. Since then the price rose slightly being quoted April 2 at $871 / 8$ cents. It is absurd to say that silver is suffering any "injustice" or "demonetiza tion," or that any " crime" has been committed against it, to account for the decline in value to these figures.
The value of silver, as of everything else, is governed The value of silver, as of everything else, is governe by the law of supply and demand.
The production of silver has been going on for the past ten years at a constantly increasing rate nd while the consumption has increased, both fo of the United States government (under the act of July 14, 1890), it has been far outstripped by produc tion. In 1890 the United States produced abou $54,500,000$ ounces of silver ; in 1891 the output was prob ably about $58,000,000$ ounces. No statistics of the pro duction of silver elsewhere in 1891 have been issued but Mexico and Australia, the two most importan countries after the United States, undoubtedly made an increase. In New South Wales, alone, the Broken Hills Proprietary Company turned out $9,599,932$ ounce of silver in 1891, against 7,785,000 ounces in 1890.
The future course of the silver market may be pre dicted with as much certainty as that of any othe metal, whether the United States government continues to buy $54,000,000$ ounces per annum or not. The price will decline until the output is restricted, by the weaker mines closing down, and production more nearly ap proximates consumption. How much of a decline will figures in existence of the average cost of producing an
ounce of silver. Already many of the least favorably situated mines and some with low grade ores, like those of Butte, Mont., are closing down. But such a great producer as the Granite Mountain Mining Company, of Montana (which yielded $2,905,158$ ounces of silver in 1891), produces it, according to the reports of its direc tors, at a cost of 51 cents per ounce, while it is well known that the rich mines of Aspen and the San Juan district of Colorado, and the Park City mines of Utah, produce silver for less than 50 cents per ounce. The famous Mollie Gibson mine of Aspen, Col., produced over $2,000,000$ ounces of silver up to December 31, 1891, at a cost of 48 cents per ounce! The Broken Hills Proprietary Company, of New South Wales, produced $9,947,038$ ounces of silver during the fiscal year ending November 30, 1891, at an expense of 52.6 cents per ounce (including depreciation of plant, etc.), and altogether omitting the lead product of 41,687 tons. We shall not be surprised to see the price of silver decline to 80 cents per ounce before the end of this year, and should this country adopt free coinage, it would in time go below this, for that would remove the larges purchaser for the metal who would pay gold for it.Eng. and Min. Journal.

New England in '6Census Bulletin" 175

The population of the New England States, as a whole, in 1890 is $4,700,745$, which, compared with the population of these States in 1880 , or $4,010,529$, show an increase during the decade of 690,216 , or $17 \cdot 21$ per cent. The males in New England have increased 355,032 , or 18.13 per cent since 1880 , the whole number of males in 1890 being $2,313,755$, as against $1,958,723$ in 1880. There has been an increase of females in th New England States since 1880 of 335,184 , or 16.34 pe cent, the whole number of females in 1890 being $2,386,990$, while in 1880 they numbered $2,051,806$.
With the exception of Vermont, there has been a very material increase since 1880 in the number of oreign born in each of the States considered. The largest percentage of increase is found in New Hamp shire, being 56.26 per cent. Very nearly the same per centage of increase was also reported for the decade from 1870 to 1880 , or 56.34 per cent. In Massachusett there has been an increase in foreign born since 1880 of 213,646 , or $48 \cdot 17$ per cent, as against an increase from 1870 to 1880 of 90,172 , or $25 \cdot 52$ per cent. In Rhode Island the increase in foreign born since 1880 is 32,312 , or 43.67 per cent, as against an increase from 1870 to 1880 of 18,597 , or 33.57 per cent. In Connecticut the increase in forpign born since 1880 numbers 53,516 , or $41 \cdot 17$ per cent, while from 1870 to 1880 the increas was 16,353 , or $14: 39$ per cent. In Maine there has been an increase in foreign born since 1880 of $34 \cdot 10$ per cent and in Vermont of $7 \cdot 64$ per cent.
The whole number of foreign born persons in the New England States as a whole in 1890 was $1,142,339$, whil the whole number of foreign born persons in 1880 was 793,612. There has been an increase in foreign born during the decade of 348,727 , or 43.94 per cent, a gainst an increase in native born of 341,489 , or 10.6 per cent, the whole number of native born in 1890 being $3,558,406$, as against $3,216,917$ in 1880 .
For the New England States as a whole, the males in 1890 numbered $2,313,755$, or $49 \cdot 22$ per cent of the total population, and the females $2,386,990$, or $50 \cdot 78$ pe ent. There were in 1890 in New England, therefore, 73,235 more females than males.
The largest percentage of foreign born in 1890 is found in Rhode Island, or 30.77 per cent of the tota population of that State.
The foreign born population of the New England States in 1890 represents 24.30 per cent, and the native born population $75 \cdot 70$ per cent of the total population. Of the population of New England, 99 per cent are white and only 1 per cent colored.
In Massachusetts and Rhode Island hardly two-fifth of the population are of purely native stock, that is, native white of native parentage, the exact percent ages being $42 \cdot 67$ for Massachusetts and $39 \cdot 81$ for Rhode Island, while not quite one-half or 47.87 per cent of the population of Connecticut are so constituted. Two thirds of the population of Vermont and of New Hampshire, or $67 \cdot 76$ and $67 \cdot 36$ per cent, respectively, are of purely native origin, while for Maine fully three fourths are of native stock, or $76 \cdot 65$ per cent. For New England as a whole, the native whites of native pa ents represent $51 \cdot 82$ per cent of the total population.

To Pump Out $800,000,000$ Gallons.

According to the Boston Journal of Commerce, an undertaking of considerable magnitude and importance in mining operations is to be commenced in Ishpeming, Mich., as soon as the weather will permit. The Cleveland Iron Mining Co., the Lake Superior Iron Co. and the Pittsburg and Lake Angeline Co. have signed a contract with B. C. Howell, of New York, for pumping the water from Lake Angeline under which each of the companies has a large bed of ore. The depth of the lake is 43 ft ., and the estimated amount of water is $800,000,000$ gallons. The contract calls for the completion of the work in five months.

TWIN SCREW TRIPLE EXPANSION ENGINES OF H. M. FIRST-CLASS CRUISER EDGAR.-7,350 TONS-13,460 H. P.-SPEED, 21 KNOTS PER HOUR.-[See page 279.]

INTERESTING TRICKS.

The clever trick with billiard balls shown in Figs. 1 and 2 depends for its success on a truly scientific principle. A number of billiard balls are placed in a row against the cushion of the table. The player asks one of the spectators to name a certain number of balls to be pocketed without any apparent disturbance of the others. Suppose the number to be three. Then at the will of the player three balls separate from the others and roll into the pocket. The number is perfectly controllable, and when the hand of the player and one end of the row of balls is covered, the trick appears mysterious. It is hardly less so when the entire experiment is visible. The feat is accomplished by removing from one end of the series as many balls as are to be projected from the opposite end, and rolling them forward against the end of the row remaining. An equal number of balls fly off from the opposite end of of balls fly off from the opposite and roll into the pocket. Three the row and roll into the pocket. Three
balls driven against one end of the series balls driven against one end of the series
will cause three to roll off, two will drive will cause three to roll off, two will drive
off two, one will drive off one, and so on. off two, one will drive off one, and so on.
The principle of this trick is illustrated in the well known class-room experiment in which a series of contacting suspended balls of highly elastic material are made to transmit a blow delivered on the first of the series to the last ball of the series, so that the last ball will fly off without any apparent disturbance of the other balls. In this experiment, the first ball of the series is drawn back and allowed to fall against the first one of those remain ing in contact. The impact of this ball will slightly flatten the ball with which it comes in contact, and each ball in turn transmits its momentum to the next, and so on through the entire series, the last of the series being thrown out as indicated. In the case of the experiment with the billiard balls it is found by careful obser vation that separate blows are given to the series, corresponding in number to the number of balls removed, so that while the separation of the three balls at the end of the series is apparently simultaneous, in reality they are separated off one at a time.
In Fig. 3 is illustrated a method of repeating the experiment with coins in lieu of balls. Dollars or half dollars may be used, and the effect is produced by sliding the coins.

LOGGING IN MINNESOTA.

It is now no uncommon sight during the logging season of each winter in this State to see incredibly large loads of logs moved over a road through the forest by a four-horse team. During last winter the record for big loads of logs was broken by teams in the employ of the Ann River Logging Company, operating on the Ann River, a tributary of the Snake River. The scale of one of the loads, as given by the company's scaler, showed that it contained 63 logs, measuring 31,480 feet; weight of load, including sleds, 114 tons; height of load from the sleds, 21 feet; width of load, 20 feet. The load was hauled by four horses a distance of three miles, on one set of sleds and by one four-horse team. S. C. Sargent, an artist of Taylor's Falls, Minnesota, was present at the time these loads of logs were hauled, and photographed the loads as they came on the landing. We present herewith a cut from a photograph made by Mr. Sargent.

Hange of War Ship Guns.
A 12 inch Schneider gun, under an angle of projection of 20° (average maximum angle used on board ship), will throw a 900 lb . shell $101 / 2$ miles. There are many guns now mounted on battle ships that have the power to throw projectiles ten miles, under maximum ship angles of projection. So says Lieut. E. M. Weaver, in the Journal of the IJ. S. Artillery. At Portland, Me., the ten mile circle passes out to sea circle passes out to sea
some $31 / 2$ miles from nearsome $31 / 2$ miles from near-
est land, at Boston $21 / 2$ miles from land, at Brooklyn $21 / 2$ miles from land off Coney Island. Ships of war, at the above distances, could bombard the

SCIENTIFIC TRICKS WITH BILLIARD BALLS AND COINS

and those of the medium pressure and low pressure are fitted with cast iron liners. All the cylinder covers are of cast steel. Each high pressure cylinder is fitted with a piston valve, and the medium and low pressure cylinders are each fitted with double ported slide valves, all of which are worked by the ordinary double eccentric and link motion valve gear. Balance cylinders are fitted to the intermediate and low pressure valve gear; these valves are also fitted with relieving valve gear; these valves are also fitted with relieving
rings at the back. The reversing engines are of the rings at the back. The reversing engines are of the all-round type with worm and wheel gear, and the low pressure levers are fitted with a slot and adjusting screw to allow of the expansion in the cylinder being altered. The back columns are of cast steel fitted with separate guide faces pinned on, and the front columns are of forged steel. The engines are so arranged that the starting platforms are in the wings of the ship. As is shown on the plate, the main condensers are placed alongside the starting platforms and are of cast brass. The steam is condensed outside the tubes, the circulating water passing through the tubes. There are two large centrifugal circulating pumps of gun metal in each engine room. They are worked by independent engines made by Messrs. Tangye, Birmingham. The feed, bilge, and fire engines are all independent of, and separate from, the main engines, the steam being supplied by a special range of pipes. All the exhausts are led into an auxiliary condenser of cast brass, having a small air and circulating pump, one of these condensers being fitted in each engine room.
The crank, tunnel, and propeller shafting is of forged steel and hollow, supplied by Messrs. J. Brown \& Co., Sheffield. The crank pins are fitted with centrifugal lubricating apparatus. The propellers are of gun metal, each propeller having three adjustable blades constructed to
keep the seas for a long period or make fast voyages to \mid work outward.
distant parts without coaling, so that it was necessary to reduce all weights to enable the vessels to carry a large fuel supply, and the measure of success is the fact that on a displacement of only 7,350 tons they have bunker capacity for 850 tons, so that they could cross at a speed of 10 knots.
Theed of 10 knots. three inverted cylinders and three cranks. There are separate sets for driving each of the twin screws, the engines being fitted in separate compartments. Of the two engines an engraving is here given, prepared from a photograph taken while the engines were in the erecting shop at Fairfield.
The high pressure cylinders are 40 inches in diameter, the intermediate pressure cylinders are 59 inches in diameter, and the low pressure cylinders are 88 inches in diameter, and each is adapted for a stroke of 4 feet 3 inches. The cylinders are all independent of 3 inches. The cylinders are all independent of each
other, and are steam jacketed. The high pressure cylinders are each fitted with a liner of forged steel

LOGGING IN MINNESOTA

Steam is supplied by four double-ended boilers 16 feet in diameter and 18 feet long, each with eight fur naces, and one single-ended auxiliary boiler, 12 feet 11 inches in diameter and 9 feet 3 inches long, having three furnaces. The furnaces are corrugated and are 3 feet 9 inches in diameter. The total number is 35 and the heating surface in all the boiler totals 20,108 quare feet The tubes are of naval brass Th quare fee. The tubes are of naval brass. The vorking pressure is 1 pouns. The boilers are ar ranged in two water-tight compartments, the steam in either boiler room can be used for the engines in either or both engine rooms. There are two funnels one to each boiler room. As usual in vessels of the Royal Navy, the boiler rooms are so fitted that they can be closed and the boilers worked under forced draught when desired.
When the eight hours' official natural draught tria took place, the engines developed 10,178 indicated horse power with 99 revolutions. Before making the ull power trial it was considered advisable to dock the ship and alter the pitch of the propeller. This hav ing been done, the fou hours' full-power forced draught took place, the result being 12.463 indi cated horse power with 104.5 revolutions. The average speed of the vessel during the four hours was nearly 21 knots per hour, thus making the Edgar the fastest vessel in the British Navy. To ascertain the efficiency of the ship and machinery, the vessel was taken to Stokes Bay measured mile, and a series of progressive trials exof progressive trials ex-
tending over two days were tending over two days were carried out, the trials being conducted by Mr. W. H.
White, C.B., assistant controller and director of naval construction, and Mr. A. J. Durston, engineer-in-chief, assisted by other officials from the Admiralty, the Fairfield Company being represented by Mr. Andrew Laing. On the full-speed mile trial the engines developed 13,101 indicated horse power average, or 13,460 indicated horse power maximum.

During the whole of the trials the engines and
boilers worked most satisfactorily, without the slightest hitch, and with an entire absence of vibration when at the highest speeds. The boilers maintained an ample supply of dry steam under an air pressure of about seven-tenths for full power, and on examination at the conclusion of the trials they were found to be in good order and perfectly tight. These boilers are the largest yet constructed for the British Navy ; they are double-ended, and have a common combustion chamber to each two furnaces, and not the slightest trouble was experienced in the working. Altogether the trials of the Edgar have been most successful, and the results obtained reflect great credit on the designer of the ship, Mr. White, of the Admiralty, and on the machinery designer, Mr. Andrew Laing, of the Fairfield Works. The engines were built at the works at Govan of the Fairfield Company, while the ship was constructed in the dockyard at Devonport.-Engineering.

American Boasting.
 br prof. JOHN E. SWEET

None of us think as well of the man of real merit who apears over-conscious of it as we do of him who is less persistent in forcing the fact of his merit upon others. Is not this equally true of communities, States, districts, and industries in this country? Will it not be helpful to pause a moment in the self-glorification to which success has made us prone, and consider a little more humbly just where we stand?
While this is the greatest century of all centuries in the advancement of what we suppose to be general civilization, and of what is certainly industrial progressive civilization, and while this nation is moving on side by side with other nations, does any know less of what others do than we, and are any so stupid about profiting by what others are doing? Or if other nations are as thoroughly convinced of their merits, do they not keep their conviction more to themselves?
That we excel other people in certain lines of industry is a fact, but that they excel us in others leaves us the less to boast of. Great as are our achievements, with our facilities and the added knowledge of centuries, what have we in greatness to compare with the great works in ancient Egypt, with the art and architecture of Greece, with the paintings, sculpture, buildings, roads, aqueducts, and baths of ancient Rome? Where do we compete with the tombs and silks of India, with
the palaces of Venice, with the education of Germany the pottery, tapestry, art, industry, science, engineer ing, iaste, and beauty of France? Are we really in the race with the carvings of Switzerland and Norway, the sculpture and music of Italy, the lacquer work and jadies of Japan, the silks and ceramics of China, and with the world of achievements and supremacy in invention, mechanics, engineering, science, medicine, metallurgy, navigation, manufactories, implements and instruments of war, postal service, civil service, internal improvement, and the local government of England?
Other nations give us credit for those things in which we surpass them. Why are we so reluctant and ungenerous, if not unfair, as not to return the compli ment? Is it because we are too conceited, or is it be cause we do not know, perhaps? But it is not to our credit if it is so. Is it because we blow our own horn
and expect them to do the same? If so, that at least is not a trait to be proud of. Or is it just this, that to do so would not be American
We boast of our great men, of our inventors, of our mechanics, of our workmanship, of our achievements, but how much allowance is made for what was done before by other men, other nations, and for the work done before we began? We may well be proud of our Franklin, but how many great men were there before He demonstrated that lightning and electricity were one, but how much was known about electricity be fore ?
Most of those who read the history as given f the Royal Encyclopedia" will be astonished. We are proud of Morse, and well we may be; but his great achievement was not in the invention of the electric telegraph, for that was done by others at the time or earlier ; but he invented the best one, and with the aid of such men as Ezra Cornell erected and put in operation a telegraphic line. The electrical part had all been preceded by Faraday and other European electricians The mechanical part was crude compared to the pre sent perfect instruments. Among our present electri cians there is a small army or them, each a tooth or a wheel in the great machine. but there are many and many a tooth and wheel in th, great machine besides. The genius of one man seems grear to us to-day, but it is but another step added to the genius of another man who added his step to that ot the others who preceded him. Corliss was a great man, buthe cameafter Watt, a greater one. Our machine tool builders are grea men, but they follow Whitworth, Maudsley, Roberts
and Nasmyth. We excei in wood and Nasmyth. We excei in woodworking machinerynot in every respect; and nine-tenths of every wood-
working machine tool is but the carrying out of Bentham's patents granted in England a century ago. Watt invented and constructed the copying lathe be fore Blanchard. Newbery, of England, invented, and

Perin, of Paris, perfected and introduced the band saw machine.
We manufacture clocks, cheap clocks, good clocks, and Yankee clocks, but few of the best, and the science of timekeeping and clockmaking is old. We manufac ture watches as pieces of small machinery better than others, yes; but as timekeepers, no. The highes priced and best watches are still made in England and Switzerland.

We make fine machine tools-more ingenious than others, yes; better than others, no. We make standards of measure of straight and flat surfaces, standard gauges, after Whitworth's models, and a good while after Whitworth produced and introduced the same things. Darling's scales were ahead and better than al others. Pratt \& Whitney's gauges are better than Whitworth's of twenty or thirty years ago, but Whitworth's were twenty or thirty years ago. Sewing ma chines were an American invention and American dechines were an American invention and American de-
velopment. Harvesting machines are supposed to be, but Bell invented and built a mowing machine years before. McCormick, and the mowing machine is an American development, not an American invention.
The typewriter in its perfected form is American, the lawn mower and bicycle are not. Some things in textile manufacture are American, far more are not. The knit ting machine may be American, the Jacquard loom and the spinning jenny are not. In the iron industry the three high roll train and the repeater are American cast steel, the Bessemer and Siemens processes, the Whitworth compressed ingots, the steam hammer, the hot blast, and the Whitwell stove are not. The sleep ing car and air brake are American; the locomotive, the block system of switch and signal, the point in place of
the switch, are English. The greatest improvements in single cylinder steam engines were American.

The successful multiple cylinder is in both invention and development Scotch or English. The turret on a war vessel is American; the armor plate and built-up guns are not; and while our newspapers make out our vessels and guns to be superior to others, the gun trials seem to be made on a half charge of powder, and the claim based on the assumed full charge, and the armor clad vessels that we are going to build are the ones that are superior.
According to our papers the Pennsylvania depot at Jersey City is the largest single room in the world That would be true if it were not for the Machinery Palace in Paris, which is more than twice the size. We have the largest bridge in the world, or would have, if it were not for the Forth Bridge in Scotland. Our Washington Monument is taller than the Pyramids, taller than St. Peter's, each of which is something be sides what some one has called a "marble railroad spike," and the Washington Monument would be the tallest structure in the world were it not for the Eiffel Tower, which is not quite twice the height. We have the largest statue in the world, but it was made in France. We perform wonders both in large things and small, but there are few things, indeed, after all, either large or small, that are not better done in other countries; so few, indeed, that it seems hardly worth while to boast of them, even if boasting were not a detriment to us in the eyes of other people-a detriment to our selves because such a thing is detrimental to progress, and a thing that is in shocking bad taste at the best.
Among the things most boasted about, and upon which we have the most reason to pride ourselves, are our mechanical inventions and the products of our me chanical engineering establishments.
In noting the things in which we surpass the world it will be well to balance them against the following on the other side :
Lumber is much better sawn and with much less waste in nearly all other countries than here. Joine work was first much better done in Austria. Iron cast ing is a fine art in nearly all countries, except England compared to our productions. Steel in all its forms is as good or better. Steel casting to shape, Muntz meta and Mitis metal are of foreign origin. Solid drawn stee tubes, laminated gun barrels, and Stubs wire are imported. The most economical and best built horizonta engines are built in Switzerland. A better built Cor liss engine than was ever seen in this country was exhibited at the Paris Exhibition, built at Creusot-an engine with work about it that no American could even ell how it was done. There were also exhibited en gines better finished than the highly-finished Brown and Straight Line engines, with even a greater differ ence between the American and the Mulhouse in work manship than between the others. Machine tools with hip than the best of the American.
A few points among tne many : Successful hardened and ground steel journals and boxes: caststeel harden ed and tempered gears and pinions; turret neads on crew machines with hardened and ground tool stee turrets: and here the writer, by way of parenthesis would beg to suggest that perhaps tne number of
American steel makers, machinists, and smiths that court the job of making a piece of tool steel 6 inche thick 10 inches diameter, boring seven or more holes
water will make it, are rather limited, with many another job which we possibly could do, but don't. Of the machine tools we have originated, how many of them butarethe natural outgrowth of the original slide lathe, planing machine, gear cutting machine, drilling machine, shaper, trip hammer, steam hammer, rolls, punchingmachine, shearing machine, bending rolls, and later forging machine, hydraulic press, hydraulic rivet er, cold iron saws, and band saws for iron-none of which originated with us-which shows that the outgrowth from the early machines has not been wholly confined to this country, and that all the bold depar ures do not stand to our credit.
We have done nothing further in advance of prece ent than rolling tubes from the solid bar.
In the foregoing I have intended to be strictly fair and though I may be here and there in error, there ar no doubt scores of things better done abroad than here r not done at all here, that I have not mentioned
Things are done in India, China, and Japan in the way of working metal, and that, too, by the crudest of tools, which we, with all our ingenuity and appliances could not accomplish. It will be said in reply that "we don't want to ;" true, but on the other hand, when we question why everything abroad is not done as we o it, would it not be well to think perhaps they, too don't want to," instead of ridiculing their way, and thus setting it down to inability or ignorance?
In fine, are we legitimately boastful, or are we not? It is the practice among foreign periodicals to publish verything they find of ours that seems to them supe ior, and they do it both that their people may profit by the information and as a stimulus to keep their in dustries up to the times. It is the practice with ou technical journals to copy these notices; but for wha purpose or why it is hard to tell. What it does is to fatter our vanity and cultivate our conceit, neither of which seems necessary
There will be among my readers hundreds who have gained their knowledge from reading, who will set down the above as the chattering of a crank, as a libel n our national greatness, as the prattle of a man void of patriotism ; and, too, there may be scores of other equally as competent to form an opinion as myself, who can find abundance of evidence satisfactory to hemselves that shows the above claims are wrong, and to those I would reply in advance as foliows: Ad mitting it to be so, is not cultivating the notion tha we can learn nothing from other nations detrimental o progress? Is not boasting in every form bad taste -American Machinist.

Large Elcctric Mining Plant.

One of the largest electric mining plants yet installed in the United States has been put in the Virginia group of mines near Ouray, Colo. The water powe plant is located nearly four miles from the mines, and consists of a small duct from which an iron pipe is exended a distance of about $4,000 \mathrm{ft}$. along the side of the canyon, producing an effective head of 485 ft . Two Pelton water wheels, one 5 ft . and the other 6 ft . in diameter, are used, capable of developing 500 horse power and 720 horse power, respectively, or a total of 1,220 horse power. The wheels are connected inde pendently, so that the entire station may be run with ither one. The electric generating plant consists of one 100 kilo-watts and two $f_{j} 0$ kilo-watts Edison dynamos, giving a total output of 295 electrical horse power The machinery which is operated by this current at the mines consists of one pump of 60 horse power capacity and another of 25 horse power, one 25 horse power hoisting machine, two 60 horse power Edison motors running stamp and concentrators, and one 15 horse power blower. The hoisting engine is an Edison motor of standard type, the winding and controlling switch being the same as used on street cars. This motor is geared to the drum through a friction clutch. Coal at the mines, it is stated, costs $\$ 18$ per ton, and before this plant was put in the power cost the mining company nearly $\$ 40,000$ per annum, and they are expecting by the use of this system to practically do away with this expense.

The Cape Hatteras Light

The projected lighthouse on Onter Diamond Shoal, about eight miles off the mainland at Cape Hatteras, which was undertaken by Messrs. Anderson \& Barr nore than two years ago, has been abandoned, and the contractors, after having expended nearly $\$ 100,000$ upon the undertaking, have canceled all orders for urther work. The lighthouse was to have been erected for $\$ 485,000$, the light to be ready January 1, 1892, and to remain continuously lighted a year before any payment should be made. In the effort to fulfill the contract a caisson of iron and steel was built weighing 1,200 tons, and towed from Norfolk to the shoals, but in attempting to sink it in place the structure was totally wrecked and the men at work narrowly escaped drowning. The present light is in a tower 165 feet high upon the mainland, but in running in toward the shore to get bearings from the light, vessels are frequently caught in the currents and breaking seas of the shoals stretching far out to sea.

Tinplate Definitions

From Tin and Tinplate, by Joseph D. Weeks. Tinplate, or to speak more accurately tinned plate or tinned sheets, is thin sheets or plates of iron or steel coated with tin.
Terne plate is sheet or plate iron or steel, covered with an alloy of tin and lead, usually two-thirds lead and one-third tin. It is this union of three metals, iron, lead and tin, that gives rise to the name terne plate, terne being the French equivalent of the English adjective tern, meaning threefold. The oft-repeated statement that terne is from a French word meaning dull is incorrect. Terne plate, because of the presence of lead in the coating, is duller than tinplate, which is frequently called bright plate, but it is not this fact that gave rise to the appellation terne, but the union of the three metals.
Taggers tin is a thin tinplate, 30 wire gauge and lighter. This name is not applied, as is often stated, because the iron out of which the plate is made was at one time and is even now used for tags or marks. The term was originally used to designate the very thin sheet iron which ran below the gauge-"tagged on " to the regular gauge-and hence these thin sheets tinned are called " taggers tin."
There is a question as to whether the tin used forms an alloy with the iron or is only a simple coating. It seems to be more firmly attached to the iron than a mere coating would be, rarely, if ever, when the sheet is properly prepared, scaling off, but requiring absolute rubbing away to remove it. It is probable that the tin coating forms an alloy with the iron.
The plates thus coated form the well known tin and terne plates of commerce, the sheets varying greatly in size, from 10 in. by 14 in . to 40 in . by 84 in .; in gauge of plate from 22 to 30 for tin and terne plate and 30 to 38 for taggers ; put up in boxes containing 14 to 225 sheets, and varying from 714 pounds to 400 pounds a box. The standard size of tinplate is I C coke plate 10 in . by 14 in ., with 225 sheets to a box, and weigh nominally 108 pounds to a box.
Tinplate is thin sheets of iron or steel, 22 w . g. to 30 w. g., coated with tin. It is called also bright tin, tinned sheets, tinned plate. The French name is fer blanc, or white iron, a name that was at one time used in England.
Taggers tin is very thin tinplate 30 w . g. and lighter.
Terne plate is sheets of iron or steel coated with tin and lead. The proportions of these two metals and the consequent quality of the terne plate vary greatly; the more lead, the inferior the plate. Roofing plates, from their almost exclusive use for this purpose; Canada plates, from their extensive use for roofing in that country, are other names for ternes.
Charcoal plates are tinplates, the iron plates of which were made of charcoal iron. But few charcoal plates are now made.
Coke plates are tin or terne plates made from puddled iron plates.
Bessemer plates, Siemens plates, open hearth plates, indicate the kind of steel out of which the plates are made.

A mender or return is an imperfect plate returned to the tin house to be mended or repaired.
Wasters are imperfect plates, sold as such.
Black plate is the iron or steel plates or sheets as they come from the rolling mill, having been cut to the proper size. They are termed black pickled plates after the first pickling or immersion in dilute acid. Cold rolled plates after cold rolling. White pickled plates after the second pickling, and when they are ready for the tin pot.

Large Glass Cells.

Hitherto glass cells have been blown, and owing to this their size has been very limited, the largest being only about 22 inches long by about 12 inches or 14 inches deep, and the same in width. By the process now successfully carried out by Armstrong's Glass Company, of Birmingham, tanks and cells of any dimensions can be constructed. The process consists in welding or fusing plates or sheets of glass together, thus forming a solid glass tank, with all the advantages of having the sides straight, the bottoms level, and the angles all square and to accurate measurements, the blown boxes being frequently quite the reverse in these respects. Armstrong's Company show at the Crystal Palace one tank 4 feet 6 inches long, made by their new process, which is briefly as follows:
A mould of iron of the interior dimensions of the tank is placed into a furnace, and upon this mould are fast ened the plates of glass. The furnace is gradually heated until red hot. Then an oxyhydrogen blowpipe or an electric are burner is introduced to heat the edges. A small roller which is attached to the blowpipe is next brought over the junction, and the joint formed. When all the joints have been finished the cell is left to anneal, and when perfectly cold the glass box or tank, thus formed out of five glass plates welded together, is lifted off the iron mould, being a perfect tank, solid throughout, and capable of resisting acids ground conduit for electric cables, formed of slabs of
glass, grooved with longitudinal parallel grooves. In laying these, after the trench in the ground has been formed, a cement concrete trough is made ; inside this trough a layer of pitch or asphalt is run in. Upon this soft pitch the bottom sections of the glass slabs are placed. Upon these the upper sections of the glass slabs are placed, the joints being broken by each section. The whole is then run in with pitch or asphalt, and covered up with the concrete.

NOVEL TOYS.

On any pleasant day may be found on lower Broadway and other down-town thoroughfares venders who sell almost anything in the way of novelties. Among these may be seen culinary implements, toilet articles, cheap microscopes, magnifying glasses, and various toys. Nothing takes better in the way of articles for this kind of trade than some new toy. Whether a toy

Fig. 1.-acrobat with mercury weight.
will probably have a good runcan be determined by these venders in a very short time. If it takes well, crowds gather around him, and he drives a thriving
business, making money for himself as well as for the business, making money for himself as well as for the inventor. If, however, the article is not wanted, the vender very soon finds it out, and looks for other wares.
Some of the toys are scientific, others are not. We give two examples of scientific toys which have sold very well. They are similar in character, and illustrate what shifting the center of gravity can do. They are both acrobats. The one shown in Fig. 1, and designated "McGinty," consists of a paper figure attached to a tube closed at both ends and inserted in paper disks which are bent down on the tube, forming semicircular end pieces on which the device may roll. A drop of mercury placed in the tube completes the toy. When placed on a slightly inclined surface, with the tube parallel with the surface, the mercury rolls to the lower end of the tube, causing that end to preponderate. The lighter end, by its own momentum, moves forward until it strikes the inclined surface, when the mercury again rolls to the lower end and causes another half revolution, and so on. This toy moves down the incline with a slow and stately movement.
The toy shown in Fig. 2 is made upon the prin ciple just described, but the round ends of the figure

Fig. 2.-TUMBLER.
furnish the rolling surfaces, and a bullet is used for the weight instead of a globule of mercury, the body being imply a straight paper tube with convex ends.

Yearly Tides.

At a recent meeting of the Engineers' Club of Philadelphia, Mr. W. S. Auchincloss read a paper on yearly tides. The author stated that he proposed to show that confined bodies of fresh water are subject to yearly tides of greater or less magnitude, depending upon the nature of the basin or upon the strata to which they are confined, and upon the effect of evaporation if in an open basin.
In March, 1885, we had occasion to sink a well near Bryn Mawr, Pa. Natural anxiety as to the permanence of the supply led us to observe the depth of the water at intervals of about ten days. It soon became evident that the water was receding. In 1886 there was a gratifying rise of the surface and a total gain of 12 feet. Our curiosity was aroused and we determined
to study the law, if such a law existed, of this ebb and flow. These observations have been continued during the past seven years. We found that in normal years the surface of the water reaches its lowest level in December, rises until June, and descends during the autumn.
An examination of the amount of the rainfall shows that while the amount of rainfall was as great or greater during the last half of the year as during the first, the level of the water in the well continually lowered. Atmospheric temperature had practically no effect, as the temperature of the water in the well is practically constant all the year round. The depth of the well prevented evaporation from its surface from having any effect.
The author believes that the true cause is the result of the influences of gravity and of the sun's attraction at different seasons of the year. When the sun reaches its furthest point south of the equator, gravity exerts its maximum influence on the waters of the northern hemisphere. The waters of the earth will be drawn into the minutest crevices and the surfaces lowered, into the minutest crevices and the surfaces lowered,
but in June they will, in a measure, be released and, under the influence of adhesion and friction, will be held at a higher level than during any other season of the year.
Data obtained from the government records, showing the depth of water in the great lakes, show that there is a similar rise and fall, the range of yearly ebb and flow being from 12 to 15 inches in our northern lakes. So far as we are aware, no data exist for the small lakes. More extended research will, we believe, secure as complete a recognition of yearly tides as physical geography has always accorded to the phe nomenon of daily tides.
The author presented two diagrams, one of which showed the rise and fall of the water in the well covering a period of seven years, and also the northing and southing of the sun for the same period.

The Poor Children of New York.

Mr. Riis, in an article on the poor children of New York, in the May Scribner's, says that "in ten years, during which New York added to her population onefourth, the homelessness of our streets-taking the returns of the Children's Aid Society's lodging houses as the gauge-instead of increasing proportionately, has decreased nearly one-fifth; and of the Topsy element, it may be set down as a fact there is an end."
"Half the poverty, the ignorance and the helplessness of the cities of the Old World is dumped at our door by immigration," while the procession of the trong and the able move on to the West.
The police census returns show that in 1890 there were in all the tenements of New York City, 160,708 children under five years of age. This does not imply that there were so many really poor children, by a good many thousand. The census taken more than a year ago, for a special purpose, of the Jews in the East Side Sweaters' District, showed a total of 23,405 children under six years and 21,285 between six and fourteen, in a population of something more than 111,000 . All of these were foreigners, most of them Russian, Polish and Roumanian Jews.
According to the tenement house census in New York, in the entire mass of nearly a million and a quarter of tenants, only 249 children under fourteen years of age were found at work in living rooms by the sanitary police. This is one of the encouraging facts mentioned by Mr. Riis in his article.
Of the 60,000 Hebrew children in New York, fully one-third go to school. "The poorest Hebrew knows that knowledge is power, and power, as the means of getting on in the world that has spurned him so long, is what he yearns for. He lets no opportunity slip to is what he yearns for. He lets no opportunity slip to
obtain it. Day and night schools are crowded by his obtain it. Day and night schools are crow
children, who learn rapidly and with ease.
"There are 5,000 children in the twenty-one industrial schools scattered through the poor tenement districts of New York City. A count made last October showed that considerably more than one-third were born in twelve foreign countries where English was not spoken, and that 10,000 knew no word of our language."
Without doubt, the longest step which has yet been taken in the race with poverty in New York City is the establishing of many kindergartens for the poor children, to which access is made easier every day. There they get their earliest notion of order and harmless play.
The lack of small parks and playgrounds in the tene ment house district of New York, and the consequent perpetual tussles between the children, at harmlesis play in the street, and the police, are the chief forces in the development of the "tough." The germ of the gangs, he says, that terrorize whole sections of the city t-intervals, and feed our courts and jails, may, without much difficulty, be discovered in these early and rather grotesque struggles of the boys with the police. Drunkenness is the vice that wrecks about half of the homes of the poor which do not cause it. It is that which, in nine cases out of ten, drives the boy to the street and the girl to a life of shame.

RECENTLY PATENTED INVENTIONS.

Railway Appliances.

Car Coupling.-William D. Williams, Ogden, Utah Ter. In this coupling the drawhead has formed at its outer end three prongs, an upper, a lower, opposite direction from the other two, while in the drawhead is journaled a shaft to which is attached a link against which a locking device has a bearing. The coupling couples automatically, and when conpled
with another of its kind the two drawheads are with another of its kind the two drawheads are
designed to ride together in a proper manner, not separating under exceedingly heavy lateral strain, while the drawhead may also be used to couple wi
the ordinary link and pin coupling when necessary.
Railroad Tie. - Edward S. Moffat and Theodore G. Wolf, Scranton, Pa. This tie is having near its ends blocks fitting nicely around the rail, to which the blocks are bolted, the blocks having hat tops to which clips are boted, the track rails being held in place by the clips. A plain flat har may be ie bar being embedded in the uual way when the tie re laid, while the blocks project slightly above the are laid, while the blocks project slightly above the
surface to support the track rails at the right height.
Car Under-trussing. - Ferdinand E. Canda, New York City. This invention is designed
o secure a depth of truss that will properly support the center of the car with a minimum of material, and t the same time secure the greatest carrying capacity, the improvement consisting in forming or upsetting a collar on the truss rod, integral with it, at a poin adjoining the position occupied by the queen post. A anchorage is thus formed for the queen post, to hold it ion on the truss rod

Mechanical Appliances.

Phosphate Washing Machine. Yeorge W. Roberts, Chisholm's Island, S. C. This
nachine has a revoluble washing cylinder, an elevator teing arranged to deliver into the cylinder and a conveyor to supply the elevator, a motor driving the
cylnder, the elevator, and the conveyer, and the whole apparatus being mounted upon a portable structure so that it may be conveniently moved from place to place, The machine is adapted to receive the crude rock or into other cars, obviating the necessity of carrying washing of various kinds of ore
Lathe.-Isaac C. Swisher, Coffeyville, Kansas. This is an automatic metal boring and mortisas well for milling, planing and riffing. The bed has the usual parallele, shears or ways, on which the tail
stock, work holder and tool carriage are mounted, the tail stock being adjustable, and having means for clamping it in any position, while the tool carriage
and work holder are reciprocated automatically by the feed screw. The invention covers various improvements connected with the tail stock, work holder, tool carriage, head stock and clutch gearing, enabling the machinist to operate on ohjects of greatly differing shapes and to class of lathes.
Whirl for Filler Frames.-Herbert Allcroft, Paterson, N. J. This invention provides a
simple form of whirl designed to afford an even bearing or the spindle and supportic in such a manner that it cannot possibly stick. The lower end of the spindle [is
flattened where it extends downward into the whirl, in earings within which ara journaled anti-friction ollers, the end of the spindle passing between these
ollers. The spindle is thus held firmly to revolve with the whirl, neither the spindle nor the rollers being worn, while the spindle runs easily, so that as the silk or yarn is wound npon the quill, the winding will be
Ore Roasting Furnace. - Georg F. Bartlett and Augustus J. O'Neill, Butte City, and is arranged to permit of conveniently regulating ndiess cariers are geared tosether one above the other within the furnace, a funnel discharging upon the upper end of the upper carrier to impart motion thereto, while blast pipes crossing the spaces above the carriers are provided with depending apertured branches, having stirring points at their lower ends toward the upper ends of the carriers, a worm geared
to the shaft of the lower carrier being operated thereby to regulate the speed of the carriers.
Cylinder Drain Cock. - Roy P. Capwell, Linden, N. Y. This improved cock is densation from the ends of the steam engine cylinder without waste of steam and consequent loss of power. The valve body is connected with the ends of the cylinder and contains two valve seats adapted to be
alternately engaged by two valves held on stems proalternately engaged by two valves held on stems pro-
jecting from a lever between the valve seats. The enjecting from a lever between the valve seats. The en-
gineer has ready control of the drain cock, being able to set it out of operation or put in into operation when-
Sawmill Carriage Canting Block. Ga. A shaft is journaled on the corriage, and there is a link connection between it and blocks carrying canting dogs sliding in movable guides, the dogs being raised and lowered when the shaft is rocked. The device is capable of convenient attachment to any carriage, and may be expeditiously manipulated to throw the finished lumber from the carriage, while it is so constructed that the blocks may be fed to and from the so located with respect to the head blocks that the head block setter can manipulate the canting blocks without interfering with the regular duties of the

Lubricator. - John Sandall, New York City. This is an improvement in the feed for oin
caps and equivalent lubricators, being a siphon feed sapable of use without a wick to convey the most viscous oil from the lubricating device to a bearing in an efficient manner. The siphon feed has a valv
whereby the quantity of oil to be fed may bect trolled, and the construction is such that the siphon may be removed from the lubricating device and laid
to one side without danger of the oil to one side without danger of the oil oozing out or
spilling, thus destroying the vacuum, the feed tube being always filled and ready to be placed back again when re
repar.
Shingling Gauge.-Chancy Avery, Pleasant Lake, Ind. This is a simple and inexpensive
tool designed to greatly expedite the work of affixiug shingles to form a roof. The gauge comprises a bow imring, with limbs extended in the same direction, one screws which attach the gauge to an elongated strip, the limbs being oppositely apertured for a clamping
screw. In service two of the devices are used, one afixed to each end of a strip of wood orimetal forming a straight edge, made equal in breadth to the weathe convenient to handle, which may be five or six feet.

Agricultural

Sheaf Carrier for Harvesters. Angustus Jewell, Dowayiac, Mich. This is an attachnent for seif-binding harvesters for receiving the
heaves when bound and depositing them in bunches or windrows. It consists of an approximately horizonal rock shaft with suitable axial bearings for carrier
arms journaled therein and provided with cranks which ave their ends removed from the axis of the rock haft, there being a set of suitable stationary keepers he keepers with the cranks. The beams and supporto sed for attaching the carrier to different kinds of barvesters will vary with different machines.
Churn and Butter Worker. Eric Silen, Kelso, Washington. This is a churn of cream agitator, which will afford efficient means to gather and work the churned butter before removal from the churn. The dasher is formed of a spiral web
upon a longitudinal shaft, the web of the spiral being upon a longitudinal shaft, the web of the spiral being
pierced with many small apertures, and there being pierced with many small apertures, and there being
also on the shaft a series of radial beater blades. The dasher is located in the bottom of an elongated churn ody, and on being rotated by a hand crank the conents of the churn are propelled toward one end, there
being also a return upper current, effecting a constant circulation and efficiently disintegrating the butter globules.
Poison Distributer. - Franz L. Richtre, Schulenburg, Texas. This is a machine adapted for attachment to and to be drawn along with any form of cultivator. for distributing pulverized
Paris green, arsenic, and other poisons in a dry state Paris green, arsenic, and other poisons in a dry state
over cotton and other plants. The body of the machine has a fan section and a with means whereby the quantity of powder to be
delivered may be regulated. As the machine is drawn along, the revolution of the drive shaft operates the fan and an agitator in the poison receptacle, and the material is blown through delivery ppouts to an engage-
ment with shields whence it will fall upon the plants, ment with shields whence it will fall upon the plants,

Miscellaneous.

Automatic Grain Scale. - Thomas F. Gray, Monroeville, Ohio. This invention covers an
improvement on a former patented invention of the ame inventor, improving the construction to enable point which will insure an even balance of the scales Means are also provided for cutting off the supply independently of the operation of the discharge valve hus enabling the operator to lock the latter valve and test the scales to see if they are accurate, the machine
being susceptible of very nice adjustment, and the being susceptible of very nice adjustment, and the
arrangement of parts being designed to insure its durarrangement of parta
Trpewriting Machine.-Eugene A. ord, New York City. This is a machire in which large number of characters may be printed with few
keys, the type bars being made to register accurately. The invention also provides a simple and efficient guick acting carriage-feeding mechanism. The invention consists in the novel combination and arrangement of
parts, the fre end of the type bar carrying type for parts, the froce end of the type bar carrying type for proancing three leterers or characters, either of which
may be brought into position for printing by tilting a

Recorder for Cash Tills.-William W. Darbee, Oneonta, N. Y. This is a simple device ar-
ranged to take and keep a record of the amount of money received nnd placed in the till hy different sales men. It consists of a lever carrying a pawl and
adapted to be actuated by the till, a drum carrying a ratchet wheel adapted to be engaqed by the pawl, and fixed bar over which passes the paper to the drum the paper, as it is drawn over the drum ench time the till is opened, being written upon by the operator on each transaction.
Check, Draft, etc. - William T. Doremus, Flat bush, N. Y. This invention covers an
improvement on a former patented invention of the improvement on a former patented invention of the
same inventor, to prevent the changing, altering or raising of a check, draft, or other money order or in having spaces, numerals and words arranged thereon in a manner described, the form benng also adapted for the making of blank receipts and requisitions and for
the filling up of stock certifcotes
Fifth Wheel for Vehicles.-James W. Taylor, Vermillion, South Dakota. A hinge con-
necta the fifth wheel with the wagon body, and the
reach rod has oue end secirred in a bearng on the fifth
wheel, its rear end turning in a bearing on the rear wheel, its rear end turning in a bearing on the rear
axle, while there is also a bearing on the reach rod near axle, while there is also a bearing on the reach rod near
its forward end from which opposite draught rods ex tend to the rear axle. The construction relieves the fifth wheel of strain and permits the front wheel to
pass over obstructions without seriously affecting the wagon body, insuring easy riding.
Construction of Vessele. - Osborn Congelton, Philadelphia, Pa. At each side of the bow, but a short distance back from the stem, a propeller is arranged upon a nearly vertical axis, according to the nclination of the side of the vessel, within suitabl recesest provided herefor, sultable gearning being pro-
vided to rotate these propelers, with their outer sides vided to rowathese propeners, will only to propel the boat, but, being reversible and separately operated, are adapted to furnish steering

Leak Stopper for Vessels. Francis F. Jones, Comber, Canada. This invention consists of a breach plate made in sections and hinged to-
zether, to pass in a folded position through the opening in the vessel, being more especially designed for rapidy and conveniently closing shot holes or breaches Special dom or side of a warship or other vessel folded sections to permit them to swing into position against the outside of the vessel to close the leak.
Wa ChyAns TrME Reco RDER. dial upon which are panels representing periods of time, cleats or clamps on the panels holding checks visible through an opening in the cover, which also
carries a time lock. The mechanism provides for absolutely determining how long the watchman has remained at a central station and the time he has been absent therefrom, and at what stations he has called
and the hour, the lock preventing the dial from being ampered with.
Gate. - Martin McDonough, Winchester, Ill. This invention provides means whereby a gate may be constructed upon a hillside as well as upon ated ground, and be fositively and convenienty oper--
atem either side. Swinging levers are pivoted at their upper ends to the gate, one of the levers having an adjustable sleeve to which is secured a weighted
cord or cable passing over an elevated guide, and the cord or cable passing over an elevated guide, and the
gate rides upon the levers in a horizontal position from its closed to its open position, and vice versa,

Feed bag Support. - John W. Seirfer, New York City. This support is made with 2 tends a chain connected with the suspending rope, a
fastening device limiting the extension of the spring fastening device limiting the extension of the spering,
so that the support adjusts itself to the amount of feed so that the support adjusts itself to the amount of feed
in the bag, and the bag will be held in position for the in the bag, and the bay will be held in position for the
horse to conveniently reach the feed, whether there be horse to conveniently rea,
much or little in the bag.
Hopple. - George P. Cole, Saratoga Springs, N. Y. This is a simple and secure fetter adapted for application to 'wo, three, or four feet of
the guadruped, as may be desired. It has a self-closing loop at each end and keepers embracing loosely one side or ply of each loop, and secured to the opposite side or ply, whereby the loops may be expanded and ongracted without the use of buckles or other fasten-
Harness Нook.-Quintis V. P. Day, Dinuba, Cal. This invention relates more particulary hold the check rein and prevent the horse from dis engaging it by any movement of his head. The hook has a base portion at the rear end of which is a
guard post, a loop attached to the base stradding the Mostredate ofts enda.
Mosquito Bar Frame.-Elbridge G. Holden, Fulton, Texas. According to this invention, vertical bars ane secured to the rears she of the head board, sleeves having hinged connections with the
upper ends of the bars, while a mosguito bar frame has upper ends of the bars, while a mosquito bar frame has
its side bars sliding in the sleeves. An exceedingly into e rame is thus made which may be into a horizontal position over! the bed or as easily
tipped up and made to slide behind the head board.
Photographic Shutter.-Frank R. Hoyt, Watkkns, N. Y. This is a shutter for instantaneous work, operated by a spring and released by a
pneumatic piston. The pivoted and spring-actuated shutter is carried by a support to which is secured a spring catch, its free end engaging a notch of the shutter, the beveled upper end or a piston in a pneumatic
cylinder, operated by compressing a hand bulb, encylinder, operated by con
gaging a stud of the catch.
animal Traf. - Samuel H. Burch, Rositively acting trap, a simple, inexpensive, and small animals, such as moles, being very sure to kill them when sprung. The trap has an open base, on one
end of which is pivoted a spring-presed drop plate having spikes on its under side, a lever operating a
trigger trigger extending beneath the drop plate, and there
being a catch connected with the outer end of the being a catch connected with the outer end of the
lever, the release of the catch allowing the lever to ever, the release of the catch allowing
tip up and permit the drop plate to fall.
Veterinary Parturition Hook.Ephraim H. Graves, Appleton, wis. This hook is
hinged to an elongated shank, and a sleeve is held to slide over the joint of the shank and the hook, which may be folded and easily inserted in an animal, and aickly opened and adjusted.
Support for Chamber Vessels. George R. Rudrof, St. Louis, Mo. This device comprises an extensible frame held to a support, lega
being being secured to the free end of the frame and a
vessel-bolding basket suspended from the frame. It may be secured in a commode or any suitable device and adjusted to suit people of different heights.
Nork-Copies of any of the above patents will be
frnished by Munn \& Co. for 25 cents each. Pleas send name of the patentee, title of invention and date
of this paper.

NEW BOOKS AND PUBLICATIONS.
meNTARy LeSSONS in Heat. By S.
E. Tillman, Professor of Chemistry,
U. Silitiary Acadeny. Second
edition Mevised and enlarged. New
York : John Wiley $\&$ Sons. 1892. York, John Wiley \& $\&$ Sons. 1892.
Yp. $x, 162$. Price $\$ 1.50$. Pp. x, 162. Price $\$ 1.50$.
This work is prepared to meet the West Point curri-
culum, and presents in very good form the generalite culum, and presents in very good form the generalities
of its subject. The experimental illustrations are generaily such as can be reproduced in lectures, and a collection of forty-six problems is given at the end.
Manuel Pratique de Phototypie. and illustrations. Paris 1892 Ch and illustrations. Paris. 1892. Ch.
Mendel publisher.
1 centimes.
This little work on phototype illustrations gives a
good resume of the operations connected with this process, which is better expressed by the term photo-collography. Full directions are given for sensitizing the
gelatine and stripping the film. The illustrationg gelatine and stripping the film. The illustrations are
excellent, exhibiting several entirely new forms of apyexcellent, exhibiting several entirely new forms of ap-
paratus. The first plate, which is a landscape, brings out a remarkable amount of detail and shows conclusively that the process is capable of application to many subjects that are treated in half-tone.
ABROAD AND AT HOME. By Morris
Phillips, editor of the Home Journal. Phillips, editor of the
This pleasant little volume-a traveler's guide bookhas a preface written by the well known Mr. A. Oakey Hall, a former mayor of New York, but who has been also has a chapter on the restaurants of Paris, by Theodore Child, thus giving additional variety. Mr.
Phillips has something interesting to range of topics, including especially the good hotels, the solid boarding houses, the means of traveling comfortably, and the best ways of seeing things which well informed people accustomed to living well most desire to see. The "At Home" portion of the volume in-
cludes sketches in Georgia, Florida, and California, cludes stetches in Georgia, Florida,
pleasantly described by Mr. Phillips.

SCIENTIFIC AMERICAN

BUILDING EDITION

MAY NUMBER.-(No. 79.)

table of contents.

Elegant plate in colors of a very handsome resi-
dence erected at Sea Side Park, Bridgeport, dence erected at Sea Side Park, Bridgeport,
Conn. Two perspective views, floor plans, etc J. W. Northrop, architect. Cost $\$ 17,000$ com-

Plate in colors of a summer cottage erected on Diamond Island, near Portland, Me. Perspective ele-
vations and two floor plans, an excellent design. Cost $\$ 2,500$ complete.
A very attractive summer cottage recently erected at Great Diamond Island, near Portland, Me.
Floor plans and perspective elevation. Cost $\$ 2,000$ complete.
handsome residence in the colonial style of archi-
tecture, at Bridgee tecture, at Bridgeport, Conn., recently arected fo Perspective view and floor plans. J. W. North one story brick cottage erected at Richmond, Mo. Perspective view and floor plans. Cost about
$\$ 2,300$ complete. per hance near New York.
at Bensouhurst, Long Island, N. Y. Cost $\$ 5.800$ complete. Fioor plans and perspective view. a very tasteful design for a stair hall, for a residence in Cleveland, 0 .
Perspective view and ground plan of St. Ardrew's
Episcopal Church, at 127th Street and Fifth Episcopal Church, at 127th Street and Fifth Avenue, New York. H. M. Congdon, architect,
New York. New York.

house. Cost $\$ 1,100$

floor plans residence. Perspective elevation and erspective and pieasing design. Varieties, Manchester
Examples of English interior decorations and
furnishings. An entrance hall. A Chippendale furnishings. An entrance hall. A Chippendal
drawing room.

1. Miscellaneous contents: The white stain or efflo note of an auditorium.-Curious foundations.-
An Albany house.-To keep iron pipes from rustAn Albany house.-To keep iron pipes from rust-ing.-The Senate chamber new decorations.-
Don't turn the exhaust into the sewer.-Floors Don't turn the exhaust into the sewer.-Floors
and their finish.- Bedroom furnishing.- Moderate and their finish.- Bedroom furnishing.- Moderate
price screens, illustrated.-Improved hot water American constructions-The compensation of architects. - A speaking tube and eariphone,
illustrated.-Diamond wall finish.-Fireproofing receipts.-An improved hot water heater, illustrated.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages; forming, practitwo hundred ordinary book pages; forming, practi-
cally, a large and splendid Magazine of ArchitecTURE, richly adorned with elegant plates in colors and with ine engravings, illnstrating the most interesting
examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience this work have won for it the Lareest Circulation ar newsdealers. all newsdealers.

361 Broadway, New York.

Dusiness and Personal.

The charge for Insertion under this head is one Dollar a line
 The charge or Insertion unuer this head is One Donar a lin for each insertion; about eight words to a line. Adver

 for each insertion; about eight words to a line. AdverCutting-off Machines, 3 and $44^{\prime \prime}$, for prompt delivery.
Cutting-off Machines, 3 and $4 \frac{1 / 2}{}{ }^{\prime \prime}$, for prompt delivery
Send for deseriptive circulars a and prices. W. P. Davis, Rochester, N. Y.
Acme engine, 1 to 5 H. P. See adv. next issue. "U. S." metal polish. Indianapolis. Samples free. 6Spindle Turret Drill Presses. A.D. Quint, Hartford,C For foundrymen's metalic pattern letters and figur send to H. W. Knight \& Son, Seneca Falls, N. Y.

Patent Open-Side Planing and Shaping Machines. Stem Steam Hammers, Improved Hydraulic Jacks, and Tub
Ezpanders. R.Dudgeon, 24 Columbia St., New York. Wanted-A patented article to manufacture for th Screw machines, milling machines, and drill pres. The Garvin Mach. Co., Laight and Canal Sts., New York Centrifugal Pumps for paper and pulp mills. Irrigating
and sand pumpingplants. Irvin Van Wie, Syracuse, N. Y. The best book for electricians and beginners in elec tricity is "Experimental Science," by Geo. M. Hopkins
By mail, 84 ; Munn \& Co., publishers, 361 Broadway, N. \mathbf{Y} For the original Bogardus Universal Eccentric Mill For the original Bogardus Universal Eccentric Mill,
Foot and Power Presses, Drills, Shears, etc., addres J.S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y What do you want to buy? We will send without cost
to you, catalozues, price lists, and information concernto you, catalogues, price lists, and information concern-
ing anything you wish. Paret, willey \& Co., 265 Broading anything yo
way, New York.
Competent persons who desire agencies for a new
popular book, of ready scle, with handsome proftt, mat popular book, ^f ready sile, with handsome proft, may
apply to Munn \& Co., Scientific American office, 361
Broadway, New York. Broadway, New York
Send for new and complete catalogue of Scientific and other Books for sale by Munn \& Co., 361 Broadwa
New York. Free on application.

HINTS TO CORRESPONDENTS
Names and Address must accompany all letters,
or no attention will be paid thereto.
This is for our information and not for publication.
References to former articles or on answers should
give date of paper and page or number of question give date of paper and page or number of question
Inquiries not answered in reasonable time should
be repeated correspondents will bear in mind that be repeated correspondents will bear in mind that
some answers require not a little research, and,
though we endeavor to repiy to all either by lette or in this denartment, each must take his turn.
ontte Special Written lifformation on matters of
personal rather than general interest cannot be expected without remuneration.
cienininc Amer ican Supplements referre
tomay be had at the office. Price 10 centseach. Hoks
price.
Mineras ent for examination should be distinctly
marked or labeled.

Index of Notes and Queries

Gold, to detect...

(4268) R. M. asks : 1. I noticed by some est for gold ore to detect the presence of cold, as fol lows: If free oxidized ore, pulverize it and place in a cup. Cover with a solution of iodine and let it stand gives a purple color after being burned, it contains gold, and the deeper the color of the paper the richer the ore. Is there anything in the above? Is iodine a solvent for
gold? What chemical action takes place? A. The iodine dissolves the gold, and the burning forms a besides aqua regia is there for gold? A. Chlorine, iodine, romine, and probably fluorine.
(4269) H. B. asks (1) what Salix nigra Salix nigra, black willow, has been the bark or root of a feeble tonic and anti-periodic. 2. Also is there any such thing as magnetic oil of amber, its properties and
where can it be got? A. The name is senseless; it may apply to some proprietary preparation. 3. What is the name of the largest vessel ever afloat, and how much water did it draw? Was it not the Great Eastern? A. The Great Eastern of all modern vessels. See our SupPlement, Nos. 584, 680, 830, for articles about this ship.
(4270) F. T. M. writes : I want to find out can you recommend me to an authority? A. It is anadid to be made from dried mushrooms, Boletus fomen tarius and others, and to adapt it for use as tinder it is soaked in solution of potassium nitrate or chlorate For a very full account we refer you to the United States Dispensatory, ed. 1886, page 1562.
(4271) "Young America" is mistaken when he states that a platinum rod is required in the dry battery described in "Experimental Science."
(4272) A. E. P. asks : I should be glad to know through the medium of your paper if there is
any known remedy for "water cracks" in steel tools . There is no remedy for water case of rock drills. hardening by any special application. The trouble generally originates in the work of forging. Rock drills have corners that become overheated by the careleseness or hurry of the blacksmith. When this has been once done to a drill point, the structure of the
steel is changed and the only restorative is to cut off a piece and draw to shape again. Great care should also ee taken when heating to harden; a slowiffre and time betaken. Dip in water or salt water at as low temperature as the steel will harden. This can be readily

Known by two or three trials with the quality of steel
that you are using. Hardening from too high that you are using. Hardening from too high heat is (4273) L. M. asks how to straighten orn, not in its entirety, but say a piece seven inche glue would be the best to use, as I am making the to of a horn table? A. Small pieces of horn can b straightened by heating in boiling weter and flattenin in a press or between clamps in a vise. If it does not stay flat the first time, heat the pleces a little hotter ban boiling water, over a fire or in a flame, and pu guickly into the press. Sometimes hot oil is used to as you want to glue the makes the horn very soft; bu better to flatten by hot water or dry heat. Good stron brown glue is the best. Roughen the under side of the horn with a coarse rasp before gluing.
R. J. McK. asky how the bulbs of incandescent lamp may be tinted.-B. J. C. asks how laps are charged with amond dust.-R. L. M. asks: What is the process o clarify molasses?-A. H. A. says: Will you give m imple rules for chemical nomenclature?-C. S. asks Have you a formula for the paste used in making pape into pads?-W. N. E. asks: Can you give me informanerreotypes may be restored.-B. L. P. asks : How German'silver polished $\S-C$. A. W. writes : I am de rous of making a good and cheap boot powder; ca nform me how soap is mottled ?-J. D. G. asks for a ormula for lacquer for sheet metal, also matt lacquer -E. B. L. asks a receipt for a first class mayonnaise dressing for salads, etc.-C. E. M. asks : Where can obtain formulas for the standard perfumes. - R. H. N.
asks for formulas of platinum toning baths.-P.C. T. ks for formulas of platinum toning baths.-P. C. kse : What is the composition
ued by the theatrical profession?
Answers to all of the above queries will be found in he "Scientitic American Cyclopedia of Receipts, Note The advertisement of this book is printed in anothe column. A new circular is now ready.

INDEX OF INVENTIONS

 For which Letters Patent of the United States were Granted
April 19, 1892,

and each bearing that date

 ISee note at end of list about copies of these pater
 am

 Box covers, machine for making, G. A. Barnes.... 473,
Box fastenner, Jinese..................... 473 Bracket. See Shade bracket.
Brike ne brake. Locomotive brake.
Brick and tile cutting machine, R. A. Drawdy

Hivievien

473,055
473,183
47367
473,21
473,314

$\underset{\substack{473,194 \\ 83505}}{ }$
473,301
473,396
47966
43,909 473,035
473,221
473,233
473,281
\qquad

 Clasp. See Pen and pencil clasp.

Cor
Cor
Cou
Cou
ouch and cradle, combined föding, w.........

C

C
D
Her
D
D
D
D
D

Drying machine, J. K. Proctor...............73,201,
Dust
diect
pan

\qquad

uge. See Watchmaker's gaug gauge uge, S. F. Brown \qquad
me apparatus,
e

Handle. See Implerent hander.....
Hanker. See EElectric wire hanger.

473,20 478,218 473.114 47265 472,217 473,232

 Steam heater, cox x Ciark.....

 Tite See Railway tie itbich. Tobacco pipe, E. Dannemberg

 Trap. Soe Anmal trap. Lead trap

grinting, Tōpiiss $\mathbb{x}_{4732}^{473,21}$

Uabrelala support, He. He. Pateee.....

TRADE MARKS.

 pany, Sercombe-Bolte Manufacturing Com-

cots Mafic Clot removing grease tröm

Leather and boots and shoes made thereof, C .

 Water Company;
 Salve, B...P.Parker.......
Speeitic for ehootera infaninum Li. A. Davidiaco.:.

DESIGNS
Bottle, C. Rithter
 Moniment. N. A. Perry.

Guiileaume.......idi4i4isi ${ }^{21}$

 Canadian patents may now be obtained by the in

으ㄲㅑㅑ․
 FOR SALE or TO RENT Tre premises formerly occupied by The Stiles \& Parker
Plackiddeown, Conn.comprising Machine Shop
Blacksmith Shop and Foundry, supplied with new 100 horse power boier, engines, travenng crane, blower
and main lines of shatig. Ererthing in fritclass
order. Photographs and plans furnished on application. E. W. BLISS CO., LIMITED, Improved Screw Cutting
Foot and Power.
 SEBASTIAN LATHE COMIPANY,
$44-46$ Central Ave., CIncinnati, O.

SPECIAL NOTICEI

 THE WARDEN MFG. CO., HORIZONTAL, BERTERS

JENKIIS' UPRIGET CCSHIONED
POWER HAMMER.

LEARN WATCHMAKING.—A Arractioal

"ECONOMY IS WEALTH."

WANTED, A MECHANICAL EXPERT

PETROLEUM ENCINE

 No Benzine. The Cheapest, Best and most ReliableEngine in the market for every desciption of work
Cost abe to

The "VELOX.",
Detective Magazine Came

 FOR LEASE-THE MIDDLERROOK GRANTE

 Of the age. Adapted to all kindsof Spinning. Patented
oct. 20,1891, No. 461,088 .
The entire patent
for sale
 Pi Pneumatic Tire Bicycles.

IS THE BEST IN MARKET.

Simple of Manipulation.
Plates or Films are used. PRICE \$18.00.
end for Catalogue and copy of Modern Photography We make all Kinds of Cameras. ROCHESTER OPIICAL COMPANY, 14 S.

The Sebastian-May Co. 屋

INVENTORS' IDEAS put into practica

THE PREMIER CAMERA

or the shipman automatic steam engine.
KEROSENE OIL FUEL. 1, 2, 4, 6 and 8 HOLSE POWER. No extra Insurance. Efficient, Economical, Durable.
SHIPMANENGINECOMPANY,
200 SUMMER STREET, BOSTON, MASS.

An Encyclopedia of Useful Tech-
nical Knowledge.

 $\substack{\text { tieal men } \\ \text { tor Price }}$

HENRY CAREY BAIRD \& CO. 810 Walnut St., Philadelphia, Pa., U. S. A.
Roper's Engineers' Handy-Book.

 No. 1012 Walnut St., - P Philadelphia, Pa

2nd MACHINERY
DRATENTS!
In hhis ine of business they have had forththe pears

 rights tor Books, Labels, Reissues, Assignments, and
Reports on Infringements of Patents All business in
truste to them is donn with special care and prompt
ness, on very reasonable terms

 MUNN \& CO.,. Soliciciors of Patents,

COWARDS REFUSE TO INVESTIGATE

 "TOUGH AND MILD LIFE" at the new Govd and PAINTED ROCKS a description of aboriginal art work. FATHER JOHN a story of the mines. Boys, the mine's plas

THE GREAT DIVIDE, 1516 Arapahoe St., Denver, Colo.

THE GREAT DIVIDE
FOR
ALL THE WORLD

OIL WELL SUPPLY CO.

HE PENNA. DIAMOND DRILL \& MFG. CO. BIREDSBORO, PA., Builders of High Class
Steam Engine, Diamond Drills, Power and Hand
Cranes, and General Machinery,

STEEL TYPE FOR TYPEWRITERS

GATES ROCK \& ORE BREAKER

A HOME MADE INCUBATOR.-BY
 $= \pm=3$

F. A. SINCLAIR'S

COMMON SENSE CHAIRS, SETTEES, AND ROCKERS

DONT COMPLAIN

Nowotny Electric Co., Mfrs. of Electrical Novelties,

DEAFNESS \& HEAD NOISES CURED

$\underset{\text { for best low priced }}{\text { SPECIAL }}$
CTOMELINGI NSTRUMENT
 Illustrated circular on appplication
JOHN WO HR HON; Manufacturer of Best Grade of
Plumbs ani Leve.l. for the last
b5irty Haverhill st., Boston, Mass.

LITTLE HERCULES DRILL CHUCK

⽟.

CIARIK'S
 POWER WRIVEELS EOR HOSIERY AND DRYiNG AND MENTLATING FANS,

MALLEABLE ${ }^{\text {Nit }}$

MIATIOGANTZ TEAK FOR And all Fancy Woods. THE E. D. ALBRO CO.,
 H. T. Bartlett, Mg'r. F. W. Honerkamp, Ass't Mg'r (Mills, Cincinnati, O.)

PERFORATORS OF ALL METALS

ELECTRIC COAL CUTTERS.

 ELECTRICAL MINING APPARATUS OF EVERY DESCRIPTION.send for hllustrated catalogue m 2 thomson-van depoele electric mining company, 620 ATLANTIC AVENUE, BOSTON, MASS.

GAS alasolime Engines
STATIONARY and PORTABLE. All Sizes. Dwarfs in Size, but Giants in Strength.
 xppense one cent an
hour per horse power
and requires but litte
antention diximz VAN DUZEN GAS\& GASOLINE ENGINE CO. Cincinnati, 0 FOOT POWER LATHES
 To

NOW READY!
A NEW AND VALJABLE BOOR.

12,000 Receipts. 680 Pages. Price $\$ 5$. This splendid wrok contains, acreful compilia-
 Shed in the Scientifice Auerican during the
past f fity years: together with many valuable and important additions. Thousand selected receipts
are her Tolleelve cold; nearly every branch of the use-

 for ready use. inquiry that can be thought of
Almost every ing to formulæ used in the various manufacelating to formulæ used in the various manufac
turing industries, will here be found answered. Instructions for working many different pro-
cesses in the arts are given.
II is It is impossible within the limits of a prospectus
give more than an outline of a few features of oxtensive a work.
Under the head of Paper we have nearly 250 re-
cipts, embracing how to make papier maché; how Uipts, embracing how to make papier maché; how
to make paper water proof and fire proof; how to
make sandpaper, emery paper, tracing paper, transfer paper, carbon paper, parchment paper,
colored papers. , azor strop paper, paper for ooing
up cutlery, silverware; how to make luminous paper, photograph papers, ete.
Under the had of Inks we have nearly 450 re-
ceipts, including the finest and best writing inks of all colors, drawing inks, luminous inks, invisi-
ble inks, gold, silver and bronze inks, white inks;
directions for removal of inks; restoration of Under the head of Allors over 700 receipts are
given, covering a vast amount of valuable inforOf Cements we have some 600 receipts, which
include almost every known adhesive preparation,
and the modes of use and the modes of use.
How to make Rubber Stamps forms the subject
of a most valuable practical article, in which the complete process is described in such ch clar and ex-
plicit terms that any intelligent person may readily Forn Lacquers there are 120 receipts : Electro-Me tallurgy, 125 receipts; Bronzung, 127 receipts; PhoUnder the head of Etching there are 55 receipts, Uf engravings and printing plates of drawings.
Paints, Pigments and Varnishes furnish. Paints, Pigments and Varnishes furnish ove
800 receipts, and include everything worth know-
ing on those subjects. ing on those subjects. are nder the head of Cleansing over 500 recipes the removal of spots and stains from all sorts
of objects and paterials, bleaching of fabrics
cleaning furniture, clothing, glass, leather, metals and the restoration and preservation of all kinds
of obiect In Cosmetics and Perfumery some 500 receipts
are given. Soaps have nearly 300 receipts.
Those who are engaged in any branch of industry
probably will find in this book much that is of probably will ind in this book much that is of
practical value in their respective callings.
Those who are in search of independent business or employment, relating to the home manufacture
of sample articles, will find in it hundreds of most

IMUNN \& CO., Publishers, SOIENTIFIO AMERIOAN OFFICE,

FREE SITES TO SUBSTANTIAL MANUFACTURING ENTERPRISES
 Ruilroad

cunfoumf

\%u USE GRINDSTONES?

 cial purposes.ecting stones for all spe for catalogue.
The CLEVELA ND STONE CO. 2d Floor, Wilshire, Cleveland, 0.

95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877. No. 186,787.

The transmission of Speech by all known forms of Electric Speaking Telephones in fringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnish ed by it or its licensees responsible for such unlawful use and all the consequences thereof, and liable to suit therefor.

LOVELL DIAMOND CYCLES

Steam! Steam!

Quality Higher, Price Lower. 2-Horse Eureka Boiler and Engine, - \$150 The Most Aurable insential

B. W. PAYNE \& SONS,

THE ARMSTRONG MACHINE

ARMSTRONG MFG. CO., Bride and Price Li

FIRE-PROOF. Easily applied by anyone. Send for Samples and Descriptive Price List.
H. W. JOHNS MANUFACTURING COMPANY,
 87 MAIDEN LANE, NEW YORK,
JERSEY CITY, CHICAGO, PHILADELPHIA, BOSTON, ATLANTA, LONDON.
 Manufactured by HARRISBURG FOUNDRY AND MACHINE WORKS Harrisburg, Pa., U. S. A.

ARTESIAN

KODAKS.

Regular Junior Folding Daylight
Ordinary
 1892,
$\$ 6.00$ to $\$ 65.00$.
Latest improvements, registers for ex posures; glass plate attachments ; daylight

THE EASTMAN COMPANY
 YOUR OWN ENGINEERE.

FDIEOMN

GENERAL ELECTRIC CO.

INCANDESCENT AND ARC LIGHT PLANTS.

Stationary and Railway Motors.-Lamps.-Cables.-Safety Devices. DISTRICT OFFICES.
 Eastern.ina....Edison Builidng Broad St, New Mork Mexican and south American Department.
Lurropean

tantieEmery,
Emery Wheels Emery Wheels,
Emery Whetstones, Emery Whetstones,
Grinding Machines, Knife Sharpene
Knife Grinders.
The Tanite Co., Knife Grinders
161 Washington St., New York

$3{ }^{3}$ LTTTE GIANT
PRICE, \$35.00. Only Boy's Safety with a
Spring Fork, preventing inWM. READ \& SONS, 10% Washington Bt.

ESTABLISHED 1846 The Most Popular Scientific Paper in the World

> Only \$3.00 a Year, Including Postage

Weekly-52 Numbers a Year.
This widely circulated and splendidly illustrated paper is published weekly. Every number contains sir-
teen pages of useful information and a large number of teen pages of useful information and a large number of
original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures,
Chemistry, Electricity, Telegraphy, Photography, ArchiChemistry, Electricity, Telegraphy, hotagraphy, Archi-
tecture, Agriculture, Horticulture, Natural History. etc. Complete list of patents each week. Terms of Subscription.-One copy of the Scien-
TIFIC AMERICAN will be sent for one year- 52 numbersTIFIC AMERICAN will be sent for one year- 52 numbers-
postage prepaid, to any subscriber in the United States. postage prepaid, to any subscriber in the United States,
Canada, or Mexico, on reecipt of three dollars by the Canada, or Mixico, on
publishers; six monts. 1.50 three months, 81.00
Clubs. -Special rates for several names, and to Post Clubs.-Special rates for sev
Masters. Write for particulars.
The safest way to remit is by Postal Order, Draft or Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Address
all letters and make all orders, drafts, etc., payable to all letters and make all orders, drafts, etc., payable to
MUNN \& CO., $\mathbf{3 6 1}$ Broadway, New York.
THE

THE

This is a separate and distinct publication from The
SCIENTIFIC AMERICAN, but is uniform therewith in size. every number containing sixteen large pages full of engravings, many of which are taken from foreign papers
and accompanied with translated descriptions. THE SCIENTIFIC AMERICAN SUPPLEMENT is published weekly, and includes a very wide range of contents. It pre-
sents the most recent papers by eminent writers in all sents the most recent papers by eminent writers in all
the principal departments of Science and the Useful the principal departments of Bcience and the Useful History, Geography, Archæology, Astronomy Chemistry, Electricity, Light, Heat, Mechanical Engineering,
Steam and Railway Engineering, Mining, Ship Building, Steam and Railway Engineering, Mining, Ship Building,
Marine Engineering, Photography, Technology, Manufacturing Industries, Sanitary Engineering, Agriculture. Horticulture, Domestic Economy, Biography, Medicine,
etc. A vast amount of fresh and valuable information obtainable in no other publication.
The most important Engineering Works, Mechanisms,
and Manufactures at home and abroad are illustrated and Manufactures at home and ab
and described in the SUPPLEMENT.
Price for the Supplement for the United States and Canada, 85.00 a year; or one copy of the SCIENTIFIC AM-
ERICAN and one copy of the SUPPLEMENT, both mailed
for ERICAN and one copy of the SUPPLEMENT, both mailed
for one yearfor\$7.00. Single copies, 10 cents. Address and
remit remit by postal order, express money order, or check,
MUNN $\&$ CO., 361 Broadway, New York,

Publishers Soientific American

ghutding cudition.

The ScIentific American Architects' AND
BuIders' Edition is issued monthly. $\$ 2.50$ a year Builders' Edrition is issued monthly. \$2.50 a year.
Single copies, 25 cents. Forty large quarto pages, equal Single copies, 25 cents. Forty large quarto pages, equal
to about two hundred ordinary book pages; forming a large and splendid Magazine of Architecture, richly
adorned with elegant plates in collors, and with other fine engravings; illustrating the most interesting examples of modern architectural construction and allied subjects.
A special feature is the presentation in each number A special feature is the presentation in each number
of a variety of the latest and best plans for private residences, city and country, including those of very moderate cost as well as the more expensive. Drawings in
perspective and in color are given, together with full perspective and in color are given, together with full
Plans, Specifications, Sheets of Details, Estimates, etc. Plans, Specifcations, Sheets of Details, Estimates, etc. have won for it the Largest Circulation of any
Architectural publication in the world. Sold by all newsArchitectural publication in the world. Sold by all newsdealers. $\$ 2.50$ a year. Remit to

PRINTING INKS

