
(Entered at the Post Office of New York, N. Y., as Second Class matter. Copyrighted, 1892, by Munn \& Co.
A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

ENGINES OF THE MONTEREY.

finished, so that this splendid vessel will soon be practi- pressure cylinder two of 20 inches, all worked by
The pair of twin-screw vertical triple-expansion en-
gines shown in the illustration were designed for the United States armored coast defense vessel Monterey, now approaching completion at the Union Iron Works, San Francisco. The first armor plate of the water line belt was put in place on the vessel only a few days ago, it being of American manufacture, of a grade of nickel
steel which has withstood the severest tests, and the great twelve and ten inch guns which form the principal portion of her armament are all substantially

(Continued on page 263.)

TRIPLE EXPANSION ENGINES OF THE NEW UNITED STATES ARMORED COAST DEFENSE VESSEL MONTEREY,

多rientific gesmeritan.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors published weekly at

No. 361 BROADWAY, NEW YORK.

O. D. MUNN. A. E. BEACH

The Scientific American Supplement

NEW YORK, SATURDAY, APRIL 23, 1892.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No. 851
For the Week Ending April 23, 1892. Price 10 cents. For sale by all nemsdealers.
 i. ${ }^{\text {Co }}$ int ${ }_{\text {at }}^{\text {to }}$ Iv.

 Continuus Distliation Apnaration for Wine.inhe manuiac-

a proposed congressional resoldtion relating

 to patents.Representative Stout, of Michigan, has introduced in the House a resolution on the subject of the Bel telephone patents. A preamble to the resolution recites that the original patents of the American Bel Telephone Company will soon expire; that the company has been and is now the owner of certain devices, upon one of which, the Berliner transmitter, an application for a patent was filed in 1877 and the patent not issued until November 17, 1891, and that it is alleged that the final adjudication of those pretended rival claims has been delayed by the owners for the purpose of giving another term to an enormously lu crative patent. The resolution, therefore, requests the Committee on Patents to ascertain "whether any modification of the patent law is necessary to protec the public against undue monopoly, and report by bill or otherwise."
It is true, as set forth above, that soon after the Bel Telephone Patent was granted, March 7, 1876, anothe application for a patent for a telephone was made by Emile Berliner, to wit, on June 4, 1877, covering ground almost as broad as the Bell patent. This ap plication of Berliner was sold and assigned to the Bel Co., was then kept back and held pending in the Patent Office for over fourteen years, and then issued, to wit, on November 17, 1891. So that the Berliner pat ent will run for seventeen years from that date.
Notwithstanding the clearest proofs that Phillip Reis, of Germany, had invented and put in successfu operation an electric telephone in 1860, or sixteen years prior to Bell, but differing in form from Bell's ; not withstanding that an electric sound receiver, working on the very same principle as Bell's, had been invented and patented in this country by Royal E. House, in 1868, the Supreme Court of the United States upheld the Bell telephone patent in the broadest possible manner, and by its judgment practically debarred al other persons from making, using, or selling an elec tric telephone. Thus was created by judicial act on of the greatest monopolies of modern times. The Bell patent expires next year, March 7, 1893; but it holders are calculating that the new Berliner patent will practically give them an extension of their monopoly for fifteen years longer, or until the year 1908 and if the Supreme Court should be as willing to sus tain the Berliner patent as it did the Bell patent, then the public will be cornered again and subjected to thi prolonged corporate squeezing.
Bell's original patent consists substantially in con necting two diaphragms electrically in such a manner that when one diaphragm is spoken to, the other diaphragm will coryespondently vibrate, thus produc ing in the ear the sensation of sound. The same thing was done by Reis and House and is done by means of the new Berliner patent; but the Berliner apparatus is different from Bell's, and for transmitting the voice is better than Bell's.
The Congressional resolution requests the Commissioner of Patents to ascertain whether any modification of the patent law is necessary to protect the public against undue monopoly, etc.
By undue monopoly we suppose is here meant such transactions as the holding back of the Berliner patent so as to spring it upon the public about the time the Bell patent expires, with a view to extend the telephone monopoly.
For the benefit of all concerned, we will suggest a will not only prevent all tuch the patent labove bu will save the Patent Office and inventors a world of trouble, put an end to vexatious delays in the grant of patents, and stop the expensive litigations, now rendered necessary in many cases, in order to obtain a patent.
The present statute relating to official examinations reads as follows
"Sec. 4893. On the filing of any such application and the payment of the fees required by law, the Commissioner of Patents shall cause an examination to be made of the alleged new invention or discovery; and if on such examination it shall appear that the claimant is justly entitled to a patent under the law, and that the same is sufficiently useful and important, the Commissioner shall issue a patent therefor."
Our suggestion is that the above section be amended o.as to read:
"Sec. 4893. On filing of any such application and the payment of the fees required by law, the Commissioner of Patents shall cause an examination to be made of the papers relating to the application, and if on such examination the papers are in proper form and the invention claimed is for a useful purpose, the Commissioner shall issue a patent therefor."
The effect of this slight amendment would be to dis pense with the present system of "fficial examinations into the novelty of the invention, and place that duty where it more properly belongs, namely, upon the applicant or his agent. When the present patent laws were enacted in 1836, such examination by the applicant was well nigh impossible, because the patents wer
accessible to the public, and examinations may be readily made by any skilled person.
This proposed change would relieve the Patent Office from a vast amount of labor, enable it to issue pat ents promptly to every applicant, prevent the holding back of cases on legal or technical grounds, and prove of the highest advantage to the public and to inventof th.
ors.

The adoption of the above amendment would in volve the repeal of the section relating to interfer "ses, which reads as follows
Sec. 4904. Whenever an application is made for a patent which, in the opinion of the Commissioner would interfere with any pending application, or with any unexpired patent, he shall give notice thereof to the applicants, or applicant, and patentee, as the case may be, and shall direct the primary examiner to proceed to determine the question of priority of invention. And the Commissioner may issue a patent to the party who is adjudged the prior inventor, unless the adverse party appeals from the decision of the primary examiner, or of the board of examiners in chief, as the case may be, within such time, not less than twenty days, as the Commissioner shall prescribe." The repeal of this section and the doing away of nov elty examinations would put an end to the expensive legal proceedings which the Patent Office is now ob liged to carry on, and relegate the same to the courts, which is the proper place for such adjudications. Th repeal would also render it impossible for any powerfu Bell monopoly to keep an undue grasp upon the public.
The further advantages of these simple amendments we shall take occasion hereafter more fully to discuss.

the seven ages of our world

In a recentissue of the Scientific American we fully illustrated a scientific lecture entitled "A Trip to the Moon," which was given at the Carnegie Music Hall, in this city, for several weeks in succession.
This interesting lecture has been followed by an other entitled "The Seven Ages of Our World, or from Chaos to Man," which is illustrated in much the same way. The lecturer began his discourse by stating the general belief of astronomers and physicists, which is to the effect that the earth must have existed at one time in a state of vapor, that is, it was merely a nebula, that gravitation asserting itself drew the nebulous particles nearer and nearer together until finally the matter assumed the shape of a sphere, that being the form which permits of the nearest approach of every particle of a mass toward the center of attraction.
The first scene, entitled Chaos, when first presented is merely a mass of rushing vapors, accompanied by surging and seething sounds, indicating great activity in the chaotic mass. Gradually, and while weird colors play upon the vapor, it subsides, showing a globe with an unstable crust. The first land then appeared. After an interval, representing millions of years, the Devonian age was illustrated by a scene in which were volcanic eruptions, electrical displays in the form of lightning, and all of the seething, rumbling sound which accompany a volcanic eruption. After anothe which accompany a volcanic eruption. After anothe
interval representing a few millions of years, a mag interval representing a few millions of years, a mag iferous age, in which huge moss and rush-like plants were seen.
This was followed by a scene representng the forma tion of coal. The dense poisonous gases upon the earth at this age having been largely absorbed by veg tation, the supply of carbon in the atmosphere was so far diminished that it was insufficient for the support of these gigantic plants; consequently, they de cayed and fell, forming the foundations for the coal beds which have been discovered in the more recent days of civilization. Next was presented a Permian landscape, which was followed by another scene rep resenting the age of reptiles, and showing the mon sters of the Jurassic time. Some of the creature shown, the lecturer said, must have weighed 20 tons. Many remains of the larger reptiles of this age have been found in the western portion of our own country. Then followed a landscape of the Cretaceous era and a view at the bottom of a chalk sea. Then the audience was presented with a view representing the dawn of the modern world, showing a scene which the ecturer said might well be located in Central Park or some of the environs of the city.
In the illustration of the age of glaciers, which fol owed, was shown and the lecturer described the manner in which the huge mammoths were entombed in crystal ice. Then was given an illustration of the homes of the first men, the lake dwellers.
The last scene of the series represented the age of civilization, showing architecture in a high state of erfection, engineering works and modern dwelling In this and in all of the other scenes the artistic work is very effective, and the mechanical and light effect are striking and sometimes startling
The discourse delivered by Mr. Garrett P. Servis was not only extremely interesting and entertaining but highly instructive.

Car Conpler Legislation.
A correspondent to the Railroad Gazette, while discussing the prospective coupler legislation, calls attention to the fact that most of the bills provide that it shall be unnecessary to go between the cars either to couple or uncouple. He points out that it is necessary, with the M. C. B. couplers now generally in use, to go between the cars to open one of them when two with closed knuckles are approaching each other. He acknowledges that there are a number of couplers in which provision is made for opening them on the side of the car, but as it is desirable to reduce the number of parts to the smallest possible, the point might be covered by adding a clause to the law " making it illegal for the trainmen to go between the cars equipped with M. C. B. couplers while either portion of the train is in motion."
The correspondent's object in making this suggestion is good, for he thinks that it would make the trainmen more careful and would relieve the railroad company from any liability in a suit for damages. We think, however, that if any one will carefully consider the matter he will have some doubts as to the advisability of making the act illegal, and thus giving the railroad company security against a suit for damages. Some railroad companies have rules which compel the men to steer the link with a stick when coupling cars. Who ever saw a switchman make use of one of them? He knows that he cannot do his work in the time required, and he therefore discards the stick to save his position. The probability is that when all cars are equipped with the M. C. B. type of coupler the trainmen will have to open these knuckles when the car is in motion, either from the side of the car or stepping in between the tracks, or they will be unable to perform the amount of labor the railroad company thinks each man should do in a given time. The result would be that to gethis work done and keep his position the switchman would have to go between the cars. In the meantime the law would give the company immunity from damage suits in case he is injured in so doing. This is not the right way to save the lives of trainmen.-Railway Master Mechanic.

Photographing Bullets.

An interesting lecture on this subject was recently delivered at the South Kensington Museum by Pro fessor C. V. Boys.
His apparatus consists essentially of a box adapted from an old packing case, lined with black cloth, in which the photographic plate is exposed, of a con denser formed of a plate of glass about a foot square, of a smaller condenser in the form of a bottle, to act as a starter of the spark, and of a simple system of wire circuits and knobs to give the spark which throws the shadow of the bullet on the plate, and thus takes the photograph
The bullet enters and leaves the box by two holes, covered with paper to exclude the light, and in pass ing the plate the bullet touches the terminals of two wires, composed of thin lead wire, thus partly completing the circuit; a small flash passes from the smaller condenser, causing a larger flash to pass between the knobs of the plate condenser inside the box, and this flash, lasting less than one millionth of a sec ond, takes the photograph of the bullet, no lens being employed. A wet string in the circuit of the small condenser has a powerful effect in damping the electrical oscillations.
Before proceeding to these details Mr. Boys showed experimentally that an electric spark is chiefly con centrated in two points of light on the knobs, the inter mediate path contributing little to the illumination except by phosphorescence and electrical oscillation. This was evident from the double image taken when both knobs threw their light on the photographic plate, but by screening off all but one knob, a clear, distinc image thrown by a single point of light is obtained on the plate and no lens is required. The suppression of the lens is important, as Mr. Boys also demonstrated by photographs that a lens absorbs about 90 per cent of the light.
The first photograph taken was of a pistol bullet, flying about 700 feet a second. This was fairly clear, and a curious obscurity about the base, which seemed at first due to the imperfection of the apparatus, wa revealed in the second photograp
sticking to the base of the bullet.
But the interest began with the photographs of bul lets fired from the modern magazine rifle, with veloci ties of $2,000 \mathrm{f}$. s. and over, far exceeding the velocity of sound. Here was seen revealed most clearly and dis tinctly the front and rear waves of condensation and rarefaction, with the vena contracta of the trail of fol lowing vortices, exactly like what we see on looking down from a bridge at a screw tug on the river.
A perceptible difference could be detected between the angles of opening of the front and rear waves, which could only be due to the superior speed of pro pagation in air of the front wave of condensation, an interesting phenomenon in acoustics hitherto unsuspected. In some cases pieces of paper torn out by the bullet could be seen flying in rear, each accompanied
by its trail of waves, which met and coalesced, and ere reflected on the sides of the box.
By substituting aluminum for lead bullets, Mr. Boys was able to obtain velocities of over $3,000 \mathrm{f}$. s., which showed no defect of clearness of image, but the angles of the wave fronts were considerably modified. The wires appeared on the photographs close to the bullet, showing the exact instant at which the spark passeda cloud at the end of the wire first touched being the image of the dust into which the lead wire was pulverized by the contact of the bullet. Similar photographs were shown of the passage at various stages of a bullet through a sheet of glass, the air waves set up by the lateral vibrations of the glass being very distinct, and affording a very clear idea of the lapse of time in the phenomenon.
There should be no difficulty in the application of this method of photography to the largest projectiles of heavy guns, and much valuable information would thus be obtained concerning the velocity, the resistance of the air, and the degree of steadiness of the projectile.
The photographs showed generally that the bullet had not had time to settle down to a steady flight, but were variously tilted across the path. By boring some holes across the axis of the bullet, the angular position at the photographic instant was determined by the hole which allowed the light to pass through it on to the plate. In this way Mr. Boys was able to in fer that the bullet must have received some 3 per cent of its velocity after leaving the muzzle, at which point the turning effort of the rifling must have necessarily eased. Mr. Boys interested the sporting members of his audience, at the conclusion of his lecture, by a brief account of his experiments on the photographs of small shot. No photograph was ready to be shown, but he mentioned that this method would reveal the essential difference between the cylinder and the choke-bore gun, not only in lateral dispersion-which can be measured at present on paper screens-but also in the longitudinal dispersion.-The Engineer.

John Calvin Moss.

This widely known photo-engraver died at his home in New York City, April 8, aged 56 years. He was one of the first of those who made a practical success of photo-engraving, among many who entered the field about the same time. He first worked at the printer's
trade, afterward becoming a photographer, and at trade, afterward becoming a photographer, and at tching of plates. In 1871, he was interested in the Actinic Company, and subsequently in the Photo-En graving Company, which he left in 1880 to form the Moss Engraving Company, which has made a grea business success of the photo-engraving process. The first "process" pictures, as they were called, were
very faulty, principally from the low relief obtained, which made them especially difficult to print in ordinary type forms, but by years of experiment and hard work this method of making pictures has been brought to such a degree of perfection as to practically upersede the more laborious hand engraving for quit a number of purposes. Mr. Moss was married when he was 19 years of age, and his wife fully sympathized with him in his artistic tastes, actively aiding him in all his long course of experiments.

Starving Rats on a Wrecked Steamship
A correspondent of the Newcastle Chronicle describes striking scene he witnessed in the breaking up of the Gothenburg City, on St. Mary's Island, coast of Northumberland. I was one of a party that went on board that ill-fated vessel a few days before she broke up, and aw a sight to be remembered. I shall never forget it. To all appearance, as we approached her, the vessel might have been sailing comfortably out of harbor save for the absence of any apparent life on board of her. But we had no sooner put foot on deck than we were immediately attacked in such a manner that such of us as had got on board had to make tracks for the rigging, while the rest fell back into the boats. Rats I never saw so many in my life, and never hope to again. Great, hungry, lanky, lean-looking rats, many of them with their tails chewed off, swarmed up from below in never-ending thousands, squeaking and quirming over one another in a mannersickening and horrible to behold, particularly to those of us up in the rigging. At last we cut off some loose ropes, knotted them into convenient lengths, and so armed we descended and attacked the rodents, and eventually succeeded in beating a passage to our boat. Any one would have supposed that they knew by instinct the mpending fate of the vessel, for they no sooner saw us over the side than they began to swarm down the ropes and try to enter the boat, and it was only with difficulty we were able to beat them off before casting the boat clear; and they squeaked in a horrible manner in their anguish and mad frenzy as we rowed away from the vessel's side. They were too far both from the island and the mainland to swim ashore. They could not feed on the timber and coal, and so that was washed ashore to warm the shins of the coast folk.
splinters, the deck-house, strange to say, came ashore on the island intact.

ventilation.

The ventilation of school rooms, churches, theaters public halls and apartments, should be chiefly secured by outlets near the ceiling, for here is where foul air primarily accumulates. An excellent article, by Dr. William Henry Thayer, of Brooklyn, N. Y., is given in a recent number of the Sanitarian. We abstract as follows :
Carbonic acid is much heavier than atmospheric air. But the air expired from the lungs, with $81 / 2$ per cent of carbonic acid, is so much expanded by the anima heat that it is lighter than the atmosphere, and conse quently rises to the ceiling.
Aeriform bodies possess the property of diffusing themselves through each other's masses to an unlimited xtent
ted.
Carbonic acid gas, although fifty per cent heavier than common air, will be gradually diffusod through the atmosphere, at whatever temperature. In the case of the air that is expired from our lungs, surcharged with carbonic acid, it rises at once in an active current to the highest part of the room, because it is expanded by its higher temperature to greater lightness than the air of the room. From the neighborhood of the ceiling it is very gradually diffused through every part of the room, but remains in excess at the top as long as the room, but remain
Dr. Edward Turner, in his "Elements of Chemistry," says: "There is no real foundation for the opinion that carbonic acid can separate itself from the great mass of the atmosphere, and accumulate in a low situ ation, merely by the force of gravity."
Dr. Neill Arnott, in his "Elements of Physics," says "In a very close apartment ventilation must be ex pressly provided for by an opening near the ceiling, through which the impure air, rising from the respiraion of the company, may pass away.'
Walter N. Hartley, in his "Air in its Relations to Life," says: "All the foulest air is near the ceiling; in fact, it is so bad there that unless an easy outlet be provided, it becomes perfectly poisonous."
In 1869 Dr. R. Cresson Stiles, Assistant Sanitary Superintendent of the Metropolitan Board of Health made a report on the qualities of the air of public buildings. He analyzed the air of public schools, hospitals, theaters, and churches, to ascertain the proportion of carbonic acid contained in it, and in some buildings measured the amount at different heights-near the foor and near the ceiling. His results varied with the different conditions of the rooms as to ventilation and air currents; but he says: "Air taken from near the ceiling was always found more highly charged with carbonic acid than that in the lower portions of a oom, and the difference was often very marked
In the hall of the Hamilton Literary Association, on the occasion of a meeting of the Kings County Medical Society, about eighty persons present, air taken within a foot of the ceiling, after three hours' occupation, gave $3 \cdot 1$ parts of carbonic acid per 1,000 , while that taken at the same time within three feet of the floor ave one part per 1,000."
Dr. E. H. Bartley, chemist of the Brooklyn Health Department, made analyses of the air of St. Ann's at different heights, at a time when it was filled by the congregation.
The showing was, under the edge of the gallery, 19 parts of CO_{2} in 10,000 of the air, while on the gallery, mmediately over the place where the first sample was aken, about 40 in 10,000 .
The carbonic acid in the air of our rooms resulting from respiration, in the limited amount in which it exists after diffusion, is not the sole or the chief injurious and dangerous element of that atmosphere. The organic matters which are contained in the expired air are more prejudicial to health; but as they are proportioned in amount to the accompanying carbonic acid, this gas "is taken as a convenient index to the mount of the impurities."
The conclusion, from all the evidence adduced, is that the carbonic acid gas of respiration and illumination will eventually be equally diffused through the atmosphere, although retained at the upper part of a room so long as the high temperature continues; and that it never, under any circumstances, is precipitated in excess to the lower part of the room.
One's ordinary perceptions may be trusted for the extremes of atmospheric conditions of a room ; one perceives at once the difference between a very foul atmosphere and a very pure one. The hall of the Brooklyn Institute-burned last year-when occupied, impressed one on entering as having a delightful atmosphere. It was about twenty-five feet high, and ventilated by large openings in the ceiling over two chandeliers. The only objection to such an arrangement made by well informed people is the waste of heat. But when we take into consideration the immediate comfort and the prospective advantage to the health of the occupants, it is no waste; it is a little more fuel, but it is a great deal less sickness.

AN IMPROVED HAY STACKER.

The construction shown in the illustration is designed to be erected in a mow or shed, or in a barn, or wherever hay or straw is to be stacked, the device receiving the hay or straw directly from the fork, and being manipulated from the wagon to distribute the load to any side of the stack as desired. The improvementhas been patented by Mr. Thomas Collins, of Overton, Bradford County, Pa. At the center of the space to receive the stack is erected a post, on the upper end of which is swiveled a platform, A, upon ears, B, pivoted

COLLINS' HAY STACKER.

to a frame, C, D representing detachable portion of the frame to facilitate the erection of the stacker where space is limited. The platform and its extension frame, F, are held at any desired inclination by rack or toothed arms, E, pivoted one to each side of the platform at its front end to a crossbar, K. The platform has slideways, G, on its under surface, L, N, O, P representing connecting pieces, and Z braces for the main post. The sectional figures illustrate details of construction. The extension frame of the platform is adapted to be manipulated by two ropes or cables, by which the frame is extended or withdrawn, other cables being provided by which the frame and platform are rotated upon the central post to deposit the hay or straw delivered by the fork directly to any side of the stack. All the cables lead to the wagon when it is in position to discharge its hay. The device is designed to symmetrically build up a stack without the assistance of additional laborers in distributing the hay or straw as placed.

EXPLOSION OF A LOCOMOTIVE.

The explosion of which our engraving shows the curious results occurred on the 14th of January, at Soosmezo, in Hungary, on the railway from BudaPesth to Bucharest.

Locomotive No. 4, whose boiler exploded, had just pulled a freight train into the station and was standing upon the track, when a terrific detonation occurred that shook the earth and air with such force that all the windows of the neighboring village were broken. The greater part of the cylindrical body of the boiler, as well as the smokestack, had been projected into the air, and pieces wighing 1,500 pounds had been thrown to a distance of two hundred yards. The irame of the engine, broken under the stress, was bent in two near the earth, while the boiler tubes, remaining adherent to the fire-box, were exposed to view like the entrails of an open cadaver.

Strange to say, the accident caused no loss of life, the engineer having left the platform, while the fireman, engaged in oiling the mechanism, escaped with a few non-fatal wounds.
The inquest that was immediately-held gave no preThe inquest that was immediately held gave no precise results, but appears to have demonstrated that the boiler plates had been weakened through oxida tion.-L'Illustration.

THE total number of newspapers published in the world at present is estimated at about 47,000.

EXPLOSION OF A LOCOMOTIVE BOILER AT SOOSMEZO, TRANSYLVANIA.

Encourage them to learn trades and afterward to rise in them. Having a good common school education for a starter, their native smartness will enable them to master their trades, and by avoiding all unclean or unsteady habits, they need have no fear for the future, for their services will always be in demand.

NEW FLASH LAMP.

To a block of fwood about six inches wide, I nailed on either side uprights about 12 inches high and an inch wide. Across the top of these uprights. and held

WILLIAMS' FLASH LIGHT

in position by small staples, is a stout iron wire. At the center of this wire is fastened a tin dish, shovel shaped, for holding the flash powder. One end of the wire is bent at right angles up, and the other end down. To the upper arm is attached the string or thread by which the lamp is opcrated. On the outside of the upright, next to the lower arm, is driven a nail, against which this arm of the wire bears, and thus prevents the powder dish from turning backward. Directly below this dish, on the block between the uprights, is placed a dish containing a piece of asbestos soaked in alcohol. When all is ready powder is placed in the upper dish, the asbestos lit and the string pulled The cup containing the powder is suddenly turned over, precipitating its contents into the flame below.
By this means the powder is thrown into the flame, which I find gives a better result than with other lamps. Another advantage is that pure magnesium powder can be used. De Witt B. Williams.

World's Fair Notes

A communication has been received from the British Commission asking for space to exhibit the rifle calib \mathbf{r} guns manufactured by the Maxim-Nordenfelt Gun Company. The company wants to erect a building 30 by 15 feet to exhibit its guns in practice. One end of the building will be filled with sand bags, into which the projectiles of the guns will be fired. It is claimed that the arrangements are such as will insure perfect safety, and will be reproductions of a similar exhibit recently given at the Royal Naval Exposition in London. The request was referred to Chief Willard Smith, of the Transportation Department, as the exhibit, if allowed, will come under the head of naval and marine display.
A very complete and doubtless an eye-opening diamond exhibit will be made by Cape Colony, South Africa. The exhibit will include 10,000 carats of uncut stones, a large quantity of very fine cut and polished ones, together with all that is necessary to show the process of mining and washing. For this it will be necessary
tion, therefore let us encourage our boys to learn trades. Where there are trade schools, take advantage of them and every city should have one or more. Teach them that work is honorable. That it is no disgrace to lay brick. That it is not unmanly to be seen on the street carrying a kit of plumber's tools with a clear conscience. Though the work be dirty, the money is a clean as that gained in any other way.
to transport to Chicago 100 tons of pulverized blue earth, 50 tons of unpulverized earth, and a complete washing machine, which will be operated by natives. The exhibit will also include a unique collection of crocidolite, special diamondiferous products ostrich feathers, fleeces, etc. It is reported that \& Bushman and Hottentot in native dress will accomrpany thee exhibit.

AN IMPROVED MAGAZINE HAND CAMERA Light, compact hand cameras capable of holding several plates or films for quick, easy working are those now mostly preferred by photographers. Our illustrations show an instrument of this description which contains many desirable advantages. It is the result of much study and invention, by a practical amateur photographer, Mr. F. A. Hetherington, by profession a mechanical engineer, who, finding it so useful in his own work, induced others to join him to further its introduction to the photographic world.
In taking a picture with the camera only two movements are required : first, the releasing of the shutter ; second, the rapid changing of the exposed plate. Fig.

Fig. 1.-The exterior.
1 is an exterior view. The box is neatly covered with 1 is an exterior view. The box is neatly covered with
black pebbled leather. On the front is seen the lens aperture, which, when not in use, is closed by a felt cap. All of the manipulations are performed by means of a key something like a clock key. One key aperture is on the side of the camera for operating the plates, while of the two on the front, one regulates the diaphragm plate and the other serves to turn the shutter for time exposures. Two finders are provided for taking the picture either way on the plate. On the side is the focusing dial and the smaller aperture near it for recording the number of exposures. There are no doors in the camera.
The top of the camera, having the handle attached, is constructed to slide out lengthwise and ordinarily is locked in position by the upper finder, fitting into a recess cut on the under_side of the cover. To obtain access to the interior for the purpose of inserting or removing plates, it is only necessary to depress the top finder with the thumb and with the other hand slide out the cover. It will be observed that there are no projecting parts. A tripod screw plate is recessed in the bottom of the camera for holding on a tripod when time exposures are desired to be made.
The shutter and its propelling spring are secured to a vertical sliding lens board, just inside of the front end of the camera, and can be easily removed for examination. The shutter is exceedingly simple, consisting, as shown in Fig. 2 (which is a front view), of a vulcanite disk having two apertures, rotated, as shown by the arrow, continually in one direction. It is therefore always self-setting. Thus one of the additional manipulations (the setting of the shutter) usually found in hand cameras is avoided. It is propelled by a clock spring and gear on the rear side of the shutter board, as seen in Fig. 3.
The shutter release lever, shown on the right of Fig. 2, operates in a reverse way to those in general use; that is, by drawing the lever to the right the shutter is held until the lever, on release of the finger, is pushed back to its original position by the spring. back to its original position by the spring. This movement releases the small pin stop
on the face of the shutter and allows the on the face of the shutter and allows the
latter to rotate one-half a revolution, until latter to rotate one-half a revolution, until
the next stop on the shutter strikes the the next stop on the shutter strikes the
release lever. A movement of this kind is release lever. A movement of this kind is
desirable in preventing the sudden side modesirable in preventing the sudden side moing a shutter.
The pivoted hook shown in the recess in the top of the shutter board drops into a notch on the periphery of the shutter when the latter is turned slowly around by a key applied to the center, and holds the shutter open for time exposures in the usual way shutter moves in one direction, after several exposure the spring becomes weaker. To bring it back to its former tension, the half-circular cam against which the shutter release lever rests is rotated from the other side of the board until it permits the lever to fall back out of line with the stops on the shutter. Then the latter is rotated freely in the opposite direction by the fingers or by the key attached to the center, which quickly
winds up the spring. One winding will answer for thirty-six exposures before there will be any appreciable difference in the speed. The lever shown on the left is for regulating or retarding the speed of the shutter its shaft passing through the shutter board as shown at A, in Fig. 3, and, attached by a spring to a brake bears against the periphery of the spring-propelled shutter wheel. Moving the lever to the extreme left (Fig. 2) reduces the shutter to its slowest speed.
The key slot to the extreme left operates the dia phragm plate, seen on the other side more clearly in Fig. 3, by the bent wire spring arm, at right angles, passing through the lower end of the vertically sliding diaphragm plate. A guide, with slight notches
in its edge, arranged on the outer face of the wheel casing, enables the operator when working wheel casing, enables the operator when working
the diaphragm key on the outside to tell, by the the diaphragm key on the outside to tell, by the
friction of the arm while passing over the guide, when the apertures in the diaphragm coincide with the center of the lens.
The lens is held by, and slides in or out, in a brass tube. It is moved for focusing by an eccen tric strap attached to a shaft running to the side of the camera, its crank (shown just beneath the finder) engaging in a slot or guide on the inner face of the focusing disk. The location of this disk is seen in Fig. 1. The lens and shutter com partment is separated from the magazine by two sliding vulcanized rubber divisions, as shown.
The magazine consists of a series of metal plate holders or carriers hinged together at their bas by links something like•a chain, a rod running lengthwise under each carrier and the ends projecting beyond about an eighth of an inch, travel
ing in slots in metal plates as shown just above C in Fig. 3. The slots at a certain distance from the rear turn at right angles downward. The operation is similar to the old fashioned revolv operation is similar to the old fashioned revolv-
ing stereoscope. When a carrier is turned down, the others are advanced forward.
As shown, half of the plates have been exposed, and turned down. Each carrier has a notch in its edge in which two arms attached (one on each end) to an actuating key shaft engage; these arms are kept down upon the horizontally placed carriers by a spring, C, on the shaft. To change a carrier from a vertical to a horizontal position, the key is placed in the key slot and turned backward, which raises the two arms until they slide by and catchi the back of the carrier. Then, by reversing the key, the carrier rotates downward A special stop at the same time darts through an opening in the side of the camera, and holds the ad vanced carrier firmly in the focal plane. While a car rier is moving downward, its corner engages with a star indicator wheel having a friction bearing plate at its center and figures on one side, which are visible on the outside through an aperture in the case of the camera and show the successive number of plates exposed. Each metal holder is flanged back, so that i overlaps and protects the following plate from light. To return the carriers from a horizontal to a vertical position, the key-actuating shaft is turned back as far as it will go and a special catch, B, drawn upward. This locks the shaft and permits each carrier to be drawn back by the hands and enables any particular plate to be selected for development. When the carriers are all thus drawn back, the catch, B, is pushed down, after which they can only be operated by the

Fig. 3.-THE INTERIOR.
THE HETHERINGTON MAGAZINE HAND CAMERA.
to any desiring to do good work with the least incon venience. It is manufactured by Hetherington \& Hib ben, after Mr. Hetherington's patents, at Indianapolis, Indiana, the trade agent for New York being Mr. A. L. Simpson, 66 Broadway, New York.

Relation of Voltaic Electromotive Force to Molecular Velocity.

In a recent research published in vol. viii., p. 63, of the Proc. Birm. Phil. Soc., 1892, it is shown by means of an extensive series of sixty-four tables of measure ments of mean volta electromotive force that the dilu tion of the liquid of a voltaic cell by means of water or

Fig. 2.-THE SHUTTER

alcohol, the liquefaction of either the positive or nega tive metal of the cell by means of mercury, the dilu ion of either of these amalgams by means of mercury the dilution of one solid metal by means of another in n alloy, is universally attended by an increase of mean electromotive force of the diluted and diluting sub tances, and consequently also of the actual electromotive force of the diluted one, provided that in al cases no chemical union or other chemical change ccurs in the mixture. The manifest explanation of his extensive general result is that by the act of solu tion or dilution the molecules of the active substance are separated farther apart, and consequently acquire ncreased velocity of motion. In proportion, however, as chemical union occurs, the gain of electromotive orce diminishes and is converted into a loss, and the oss is larger in proportion as the chemical union is stronger. The method enables chemical compounds in alloys, amalgams, and electrolytes to be distinguished from mere mechanical mixtures.-G. Gore, F.R.S.

Flared Coal Tar for Waterproofing.
According to the Revue des Travaux Publics, the use of coal tar as a means of rendering masonry imper vious to water is much favored in France. There ar two ways of preparing the tar for this use-boiling and laring. The former method is suitable for surfaces in tended to be exposed to the atmosphere, while the lat ter is appropriate for surfaces to be covered up by ma sonry, earth, etc. By adding to the coal tor a past made by dissolving India rubber clippings in benzine, a coating may be obtained which is still more resistant, elastic, and durable. For roofs the heat-absorbing quality of these black varnishes may be overcome by dust ing them with any permanent white earth before they are quite dry. For masonry to be covered up, the use of flared tar is highly recommended. This is prepared by boiling the tar in a caldron, and filling a bucket two-thirds full from it. The tar is then lighted at the surface, and allowed to blaze for 15 or 20 minutes, being constantly stirred the while with an iron rod. When a drop from the blazing bucket upon cold stone has the consistency of thick soup, the flare is extinguished by covering down the bucket with an iron lid. The tar will then be reduced to one-third its original bulk, and it must be spread as rapidly as possible upon the work with a cod-tail brush of vegetable fiber-care being taken to dip often, so as to prevent its cooling and hardening prematurely. If the flaring process is prolonged beyond the proper moment, the result is a brittle product like sealing wax. When the flare is stopped at the right time, the resultant tar adheres very firmly to any surface, and can be immediately covered up with earth. It has a skin both hard and tough, underneath which is a viscous layer about 1-25 of an inch thick, which preserves its integrity for any length of time.

Harvard University had its beginning at Newtown, afterward Cambridge, Mass., in 1636.

Internal Combustion Engines.
At a recent meeting of the Engineers' Club of Philadelphia, Mr. Paul A. N. Winand presented some figures as to the cost of power in using internal combustion engines.
"The attendance in gas and oil engines is probably not more than in the engine part of the steam engine, and in the newer styles of gas engines, working without slide valve, the amount of lubrication is also about the same, and in a comparison between the two classes of engines, these items can be omitted.
"Considering the question of cost of power in a general way, that is, independent of any combination with other apparatus, gas and similar engines are often cheaper to run than steam. Illuminating gas costs generally from $\$ 1.00$ to $\$ 1.50$ a thousand. As shown in the Society of Arts trials, a gas engine of about ten horse power can be run with 22.6 cubic feet of gas per brake horse power. Better results than this have been obtained, but at this figure the cost is 2.2 to 3.3 cents per horse power. This is about equal to 13 to 19 pounds of coal at $\$ 3.50$ a ton. Nevertheless, it is mostly cheaper than steam for powers up to fifteen horse power, especially when the plant is run spasmodically. When a gas engine is used to make incandescent electric light, 22 cubic feet of gas will be used for about nine 16 candle power lamps, or 140 candles. The same amount of gas burned as such would give only about 90 candles. The number of lamp hours per year will decide as to whether it is cheaper to burn gas directly or not.
" In actual work a gas or oil engine keeps more nearly to its original economy than a steam engine, because a steam engine will run with valves and pistons in bad order, while a gas engine refuses to go if the supply of gas is not about properly adjusted.
"In an official statistical inquiry as to the economy of power, made by the authorities of Birmingham, the fuel consumed was much higher than might be expected from published results of tests, on non-condensing engines being not below $9 \cdot 6$ pounds, with an average of eleven pounds of coal per horse power hour.
"Oil or gasoline can be used with about the same efficiency as gas. One gallon of oil is about equivalent to 180 cubic feet of illuminating gas, and, accordingly, it takes about one-eighth of a gallon per horse power hour. This, at 5 to 10 cents a gallon, is equivalent to $71 / 2$ to $31 / 2$ pounds of coal at $\$ 3.50$ per ton.
"With natural gas 15 cents per thousand, one horse power costs about one-fourth of a cent, as it takes only about 16 cubic feet per horse power hour, and it would take three to four times as much gas firing under a boiler for the same power. Using the coal in a producer to make gas and then using it in the gas engine for power is one way of running a gas engine plant. The efficiency of a gas apparatus is from 70 to 80 per cent. With such an apparatus, a consumption of 0.935 pound of coal has been attained in France, and e 0.883 recently per horse power hour in England."

Mr. Strong-One of the most interesting papers I have read on the subject of the cost of power was by Sir William Thomson, in 1881. In this paper the sources of power were divided into four, which were
wind power, falling water, tidal energy, and coal. The wind power, falling water, tidal energy, and coal. The
first two of these are due directly to the sun'sheat, and, what might at first appear strange, the first of these has had more to do with the comfort and progress of this world than any other power, and it is probable that the time will come again when wind power, in con nection with some such apparatus as the storage bat tery, will again do the work of the world.
Tidal energy and water power he regarded as insignificant. The burning of coal he also considered as one of the sources of power which was derived from the sun's energy
Prof. Elihu Thomson read a paper in Boston recent ly, and said that the hope of the electrical engineer was in the steam engine, or that the mechanical engineer would produce cheaper power than by the steam or gas engine.
Clark says that it is possible to use 40 per cent of the energy in the coal through the gas engine, while the best steam engine only uses 13 to 14 per cent.

The difficulty in the way of introducing produce plants and gas engines is the first cost and the difficulty of starting the engines, but this latter difficulty wil probably be soon overcome, and the gas engine wil then supersede the steam engine in many cases. We have been engaged in designing an engine which is to make a horse power on 13 pounds of water, and in the boiler we expect to carry 180 pounds pressure, allowing the gas to escape at 250°, and evaporating 12 pounds of the gas to escape at 250 ,
water to a pound of coal.

Nitrous acid as a disinfectant had been proposed some years ago because of its peculiar property of be ing an oxidizing as well as a reducing agent. H. Borntrager employs the following combination containing 20 per cent sodium nitrite : One part sodium nitrite and one part gypsum are melted together ; after cooling the mass is powdered and preserved in well-stoppered receptacles. Two parts sodium bisulphate and one part gypsum are also melted together and, after cooling
powdered. Both powders are now mixed and preserved
in dry and tightly-stoppered containers. If this powder be thrown into water or substances to be disinfected, a uniform evolution of nitrous acid takes place, which rapidly destroys foul odors.-Pharm. Centralhalle.

A COMBINATION ACCOUNT AND BILLING BOOK. A book which combines within itself three books, such as used in mercantile business, is shown in the accompanying illustration, and has been patented by Mr. James E. Depue, of Oakland, Cal. The combination embraces a general ledger, a sales book or persona ledger, and a billing book, and is designed to lessen

DEPUE'S LEDGER, SALES AND BILLING BOOK.
the labor of the book-keeper, and facilitate the keeping and rendering of accurate accounts, while doing away with a multiplicity of books. The book con tains two classes of leaves bound together, main or entry leaves and intervening transfer or copying leaves, whereby a press copy may be taken of the writing on the main leaves. Each of the latter has its inner end portion ruled to form a column of ledger spaces, the front portion of the sheet having, opposite each ledger space, a space corresponding to the leaves in a sales book or a billhead book, ruled to enter the usual items of ac count, dates, charges, etc., each of these spaces also bearing a special number printed in copying ink. This outer portion of each main leaf is designed to be de tached when desired, for presentation as a bill or memorandum, and this portion of the sheet is therefore separated from the ledger spaces by a vertical row of perforations, to facilitate its ready removal, a press copy of the account being previously taken on the copy or transfer leaf. The latter, remaining bound up in the same book as the main sheets, shows the general ledger account from the inner portions of the main sheet, and the personal ledger or itemized accounts
from the outer portions, and may also be detached for presentation to customers if required, a bill being thu ready to detach and present to a customer at any time.

A DESK INK BOTTLE.

An ink bottle particularly adapted for use on school or other desks is shown in the accompanying illus tration. It is provided with a simple, convenient, and

HALL'S INK BOTTLE.
reliable attachment, affording means for the secure con nection of the filled bottle with an aperture in the desk the orifice in the bottle being flush with the upper sur face of the desk top and the body of the bottle being hung in the desk. The aperture in the desk is made of a size suitable to receive a cylindrical thimble with a adial flange, which, when seated on the desk top, re tains the thimble in place. The neck of the bottle has an exterior thread loosely fitting a thread within the thimble, so that the parts are readily secured togethe in place as shown. The neck of the bottle is designed
to be closed by a cork, and a laterally swinging cover, as shown, may be used if desired.
This improvement has been patented in the United States and Great Britain by Mr. William F. Hall, Box 247, Rapid City, South Dakota.

How Society is Indebted to Invention.
In the "Relation of Invention to the Conditions of Life," in the Cosmopolitan Magazine, Mr. G. H. Knight W:
With each step in industrial progress not only is the greater the number who can be warmed, fed, and clothed and the better are their life conditions, but in default of such progress a vast majority would not have lived at all. It is to industry guided by scientific meth ods, and to science that concerns itself with practical applications of its discoveries, that we are indebted for such magical arts as that which makes light itself de pict for posterity the very features and expressions of the life it once illumined; for the kindred art whereby scenes in the most remote regions are made to pass in realistic panorama before the pleasantly cheated vision for the instrument which, having analyzed the sun beam and revealed the chemical constituents of distant constellations, becomes, in the hands of the metal lurgist, the means of determining the precise instant at which to arrest the process of "conversion" in the Bessemer steel manufacture. It is to invention that society is indebted not alone for the refinements, but for every necessary of modern life; for food, clothing and shelter; for the arts of spoken, written, and print ed speech; for the means of flashing the very voice to a listener in a distant city, or catching the fugitive, tremulous tones and storing them for the delectation of generations yet unborn; for music, poetry, and the plastic arts; for locomotion by land, by sea, and even through the circumambient air ; for the gift of soothing with healing wings the bed of anguish; for the ability from this tiny speck of earthly life to sound the abysses of time, thought, and space.

wormy Tobacco.

In answer to a communication of Mr. E. L. Moore, of Glidden, Texas, relating to insects damaging stored tobacco, Prof. C. V. Riley says :
The question relates to the so-called cigarette or to bacco beetle (Lasioderma serricorne). This is a cosmo politan insect, which feeds, all over the world, on a number of stored food products, and which, curiously enough, seems to have a preference for pungent stuffs, such as pepper, tobacco, etc. It has even been record ed as feeding upon Persian insect powder, probably however, after this useful insecticide has lost some of its power through partial exposure to the air. In this country it has done considerable damage in tobacco actories, particularly from Baltimore southward. The female beetle lays her eggs in exposed tobacco, and from these there are hatched small white larvæ, which feed extensively for some weeks, afterward transforming to pupæ and issuing again as perfect beetles in from two to five months after the eggs were laid. Every precaution should be taken in factories to leave as little exposed tobacco about as possible, particularly at night, as the insects fly by preference at this time and lay their eggs. The factory windows should not be left open, and persons engaged in rolling cigarettes and cigars should cover their tobacco at night, while al waste tobacco should be swept up carefully and placed in some closed receptacle. Where a lot of tobacco has once become infested, the only remedy consists in steaming it thoroughly. The application of any of the insecticide substances cannot be recommended, as their use would injure the tobacco and might prove danger ous to those who subsequently used it

Smoke Turned into Money.

In his inaugural address to the North-East Coast Institution of Engineers and Shipbuilders the other day, Mr. Wigham Richardson referred to the chemical treatment of smoke. He said: "We know how the heated nitrogen and the carbon oxides, which used to be belched forth from the blast furnaces, are now used to raise steam in the boilers which supply the blowing engines ; but Mr. Ludwig Mond, of the firm of Brunner Mond \& Co.-the same who has introduced the Solway process for making soda, and in so doing has hit many of our friends so hard-has, as I understand, gone much further. He burns his coals with artificial draught, and, conveying the gases into a chamber, he washes them with water spray, which causes every particle of soot or smoke to be deposited, and at the same time condenses and recovers the ammonia (a product of nitrogen and hydrogen), as well as the sulphurous fumes. I trust that 1 have not misunderstood Mr. Mond's figures; but I gather that to get an equal efficiency of steam-raising power he has to burn 125 tons of coal in place of 100 tons, and for every 125 tons of coal burned he recovers four tons of sulphate of ammonia. The fuel, if cheap (say $\$ 1.25$ a ton), will cost $\$ 155$, and the sulphate of ammonia at $\$ 60$ a ton is worth $\$ 240$. If results such as these can be attained. the doom of smoke is sealed."

A Sixty Thousand Volt Transformer.
Before a recent meeting of the Old Students' AssoMessrs. H. B. and W. F. Bourne showed some remarkable experiments with a 60,000 volt (4 horse power) transformer. The transformer used was one having a ratio of 800 to 1, the insulation consisting of paper and ratio of 800 to 1, the insulation consisting of paper and
oil. By the aid of this transformer Messrs. Bourne oil. By the aid of this transformer Messrs. Bourne
were enabled to show that many substances which are usually regarded as excellent insulators afford facilities to the passage of the current. For instance, a discharge was shown across the surface of a sheet of ebonite many times longer than the sparking distance in air. Slate, too, was shown to be a partial conductor, two slate pencils acting perfectly as the carbons of an are lamp. A block of salt about the size of a brick, when slightly damped, allowed the current to pass freely through it and play over its surface in a brilliant yel low flame.
The experiment shown by Mr. Tesla, since repeated by Messrs. Siemens, of a sheet of glass interposed be tween two flat terminals was also exhibited. A blazing network of threads of fire darted over the surface, a small hole being finally pierced, the edges of the perforation being melted and the hole filled with liquid glass, through which the current found its way. In the case of a specimen of good rubber-covered cable with bare copper wire wound over a small portion and acting as a concentric cable, the dielectric when subjected to 20,000 volts soon heated, owing not to conduction but to absorption currents, and soon broke down and caught fire, the rubber being quite sof tened by the heat in 15 minutes. Messrs. Bourne had a good deal to say about oil insulation, and it has been found that the heating due to absorption currents is very much lessin liquids than in solids. There seemed to be very little to choose between different kinds of oil, those having a high specific inductive capacity apparently heating the most.

An interesting experiment with two different oils was shown. Colored castor oil was poured intc a glass beaker and a layer of paraffine oil floated above it. Flat ended electrodes were connected to the transformer and the surface of the castor oil was seen to rise or swell in the center. It was suggested that this was due to the tendency for the capacity of the system to increase, the specific inductive capacity of castor oil being greater than that of mineral oil. It wasfound that the sparking distance in oil was greatly diminished by the presence of dust or other impurities.

Transformation of a Cable Road.
Building cable railways in cities and then replacing them with the more efficient electric system is a costly experiment, as the following from the St. Louis Globe Democrat will show :
In about thirty days the curtain will go down upon the last act of that magnificent but costly experiment which was formerly known as the St. Louis Cable and Western Railway. For three weeks workmen have been busy tearing down and removing the great wheels and cable machinery which have stood in the old power house at Channing and Franklin Avenues since 1888. It will take a month to complete the work. When it is done the last vestige of the equipment of the old road will have disappeared, except a few cars in the car house beyond Vandeventer Avenue. It will be remembered only as a victim of the relentless progress of electricity, which has driven it out and replaced it.
The road was not only the first one in the city to be operated by one of the new mcthods, but it was, in some respects, unique. This was particularly true of the iron conduit through which the cable ran. At the time when it was laid, cast iron was worth about three times as much as its present price. The projectors of the road believed that they could find a cheaper ma-
terial. They therefore conceived the novel idea of terial. They therefore conceived the novel idea of using wrought iron. In carrying it out, rails were melted and forged into the shape of the yokes, joined sections of which formed the conduit. The plan proved expensive in the end. Over $3,000,000$ pounds of iron went into the conduits and tracks. It cost somewhere in the neighborhood of $\$ 150,000$. The other day it was sold by weight to Col. Hirsch for about $\$ 30,000$. It was fit for nothing but to be shipped away, melted up, cast into pigs and billets, and sold again as raw material. But the road had, for the time, the distinction of being the only one in the world with a wrought iron conduit

While it was run on the cable system the road used more cables than any system of equal length in exist ence. This proved another very costly feature. The months. The Cable \& Western Company found it necessary to put a new one down every five months. Each cable weighed from thirty to forty tons. The average price was 12 cents a pound. Thus, the cost of cables alone reached about $\$ 20,000$ a year, to say noth-
ing of the cost of transporting and laying them. The number of very sharp curves in the line served to wear out the cables with distressing rapidity. Each cable is composed of a number of interwoven strands of fine wires not more than a sixteenth of an inch in diameter. The strain on the curves was too much forthese. When
the cables wore out, they, too, were useless, except as old steel. They were sold to the iron dealers for 3 cent or 4 cents a pound.
When electricity proved successful as a motive power and proved so much cheaper as a means of operating it became evident that the only method of successfully running the road would be by discarding the cable sys tem and adopting the electric. In this respect the road is also unique. It is the only one in the world which has been completely torn up from end to end and $r e$ placed with an entirely new equipment. At the present time the only things used on the road that were used under the cable system are the two engines which ran the cables and now run the dynamos, with the help of two new ones. For some time after the transformation of the road the immense drum wheels, fly wheels, and other machinery lay idle in the Channing Avenue power house. Under the new system it was useless. Finally it was sold to the original builder, the Walker Manufacturing Company, of Cleveland, O. Under its direction the work of removing it is going on. The great weight of the pieces necessarily renders it very slow. The great fifty-ton fly wheel has to be handled with the utmost care, notwithstanding the fact that it is cast in four pieces. The immense drum wheels have been partially moved with a derrick and pulleys. The outer rims, in which the cables formerly turned, have been carefully removed. The framework, upon which the machinery rests, contains hundreds of tons of iron which will be packed upon cars and shipped to Clevewhich
Although the machinery was sold at a flgure far be low its cost price, it is still in remarkably good condi tion, and will probably be utilized elsewhere for the purpose for which it was originally designed. The thirty-nine old cars of the cable company, stored in the Vandeventer Avenue car house, will probably get into active use during the coming summer. The officials of the road state that they expect a 50 per cent increase in their business during the heated months, and they ex pect to be obliged to put on at least a part of the cable cars. Such as are not used will be sold, and then there
will be nothing upon the streets to remind St. Louis people that the pioneer cable road of the city ever ex isted.

Experiments with Celluloid.

A correspondent recently forwarded us three varieties of articles made from the material known as celluloid, viz., an imitation ivory dice box, an imitation tortois shell hairpin, and a variegated pattern of a toy bounc ing ball. In view of the possible dangers arising from the use of buttons, hairpins, etc., made of this material, w have submitted the above to experiment, and the re sults are perhaps of sufficient interest to justify record The articles were, without exception, highly inflam mable. On applying a light they burst instantly into a brilliant smoky flame like that produced when cam phor is ignited. It was not difficult to blow the flame were quite as inflammable as coal gas, and, on placing a light in the stream of smoke at a distance of six inches above the material, a bright flame instantly ran down and reignited the article.
Portions of the three articles were next placed on pa per at a distance of eighteen inches, in front of a red hot fire, where the temperature was ascertained to be $100^{\circ} \mathrm{C}$. (212 ${ }^{\circ} \mathrm{F}$.) Beyond the softening of allthe pieces and a slight swelling of the tortoise shell and toy bal sections, no signs of ignition could be observed. The paper on which the articles were resting was then placed about twelve inches from the fire, where the thermometer showed a constant temperature of $110^{\circ} \mathrm{C}$ $230^{\circ} \mathrm{F}$.), i. e., ten degrees above boiling point. In ten minutes the pieces of thin celluloid, of which the bal was composed, swelled out, emitted dense fumes of camphor, and charred, without, however, showing any sign of flame, while the paper was only blackened and scorched. In fifteen minutes precisely a similar oc currence happened to the hairpin, the imitation ivory being as yet unchanged. Another hairpin and a fresh piece of the toy ball were then placed along with the et unfired ivory specimen within six inches of the fire The piece of toy consumed rapidly away in little over a minute, apparently without flame, and the hairpin fol owed suit in about three minutes. The paper upon which they lay was charred only, not actually ignited. The imitation ivory showed slight swelling under these conditions, but not until the temperature was raised to
$145^{\circ} \mathrm{C}$. did it puff up and give off abundant smoky $145^{\circ} \mathrm{C}$. did it puff up and give off abundant smoky no case could it be said that the combustion was ac companied by flame, nor was the paper upon which corched and charred
The difference exhibited by the ivory specimen in susceptibility to the influence of heat may possibly be ccounted for by the fact that, first, it is more dense, and, secondly, it contains a fair amount of zinc salt. On ignition the ash was found to consist almost en tirely of zinc oxide.
The addition of this metallic salt serves probably to
appearance of ivory. The tortoise shell pins contained no zinc, and yielded very little ash at all; and while in the toy ball, which was of variegated pattern, tne whit opaque spots contained the metal, none was found in the clear portion of the material. All the specimens emitted a strong odor of camphor on rubbing, and more especially the tortoise shell and transparent va riety. Ether also dissolved out camphor from each of he specimens.
It would appear from these experiments that cellu loid is, generally speaking, not so dangerous as migh be supposed, although, in view of the testimony re cently furnished by Professor Boys, F.R.S., of the in flammability of buttons made of this material, there are exceptions; but probably these exceptions depend upon a variation in the composition of the celluloid, some preparations, perhaps, containing more pyroxylin, and accordingly less camphor, than others. The manufacturers of celluloid would in any case do well to give heir attention to this matter, and by adopting a pro ess which will secure greater certainty in the compo sition and character of this beautiful material, or by in corporating with it some substance which will rende practically non-inflammable, rid it of the one quality which at present would seem to render its general use not quite safe.-Lancet.

World's Fair Progress.

The number of men at work on the grounds and uildings at Chicago is now 5,000 .
Mrs. Potter Palmer, President of the Board of Lady Managers, has undertaken to erect, equip, and main tain a building 90×150 feet, wherein babies and younger children can be left when their mothers are viewing the sights of the fair. Nurses, attendants, games, etc., are to be provided.
It is proposed to run from New York to Chicago, a the time of the dedication of the exposition buildings ten special trains, ten minutes apart, each train to have laborate decorations and music. It is believed that fully 5,000 people will want to make the trip.
Workmen have begun raising trusses to support the roof of the Manufactures Building. These trusses will be the largest in the world. There will be 22 ; each will cover a span of 688 feet. Over the center of the roof, inside, to the ground floor, will be a distance of 206 feet. Each truss weighs 200 tons. A total of 6,000 tons of steel will be used in the roof of the building.
The Reichstag has passed to a second reading a bill granting a supplementary credit of $\$ 500,000$ for the German exhibit at the World's Fair.
The fountain which is to stand at the foot of the main basin in Jackson Park is projected to be the largest in the world. It was designed in Paris by Sculptor McMonnies, of New York. A force of modelers and blacksmiths are working on it night and day. The dea is an apotheosis of modern liberty, Columbia as suming the shape of a triumphal barge guided by Time and heralded by Fame. There will be eight standing figures, representing the arts, science, industry, agriculture, and commerce. Eight mammoth sea horse will form a circle directly in front of the fountain, and heir nostrils will spurt great streams of water. They will be mounted by stalwart young men as outriders, to epresent commerce. The design of the basin is circu lar, 150 feet in diameter and flanked on each side by columns 50 feet high, surmounted by eagles.
Many States are preparing to appropriate more money than they at first intended. The aggregate is now $\$ 3,180,000$. Maryland and New York have voted respectively $\$ 60,000$ and $\$ 300,000$; New Jersey has added $\$ 50,000$ to its appropriation of $\$ 20,000$; Iowa has add ed $\$ 125,000$ to the $\$ 50,000$ already granted ; and Massa chusetts has doubled the $\$ 75,000$ previously appropriated. Minnesota will supplement its $\$ 50,000$ by $\$ 100,000$ raised by subscription, nearly three-fourths of which has already been raised. Minnesota will spend $\$ 25,000$ on a State building.

Creosote in Tuberculosis.

After nine years of experience with small doses of reosote (half a grain daily), Dr. Julius Sommerbrodt in 1887, expressed himself as inclined to the belief that in the first stages of tuberculosis of the lung creosot can cure. After using larger doses (1 to 2 grains daily asting cures were recorded in long-continued and se vere cases, and after continuing his observations he re ports (Berl. klin. Wochenschr., October 19, 1891) that reosote, in large doses (1 to 4 grains per day), is, fo countless cases, unsurpassed as a curative agent in uberculosis of the lung. For a patient over 10 years his minimal dose is 1 grain daily and his maximum dose 4 grains daily. He has never found bad results from his largest doses. The excipient is of importance. He prefers to give it with cod liver oil in gelatine capsules, containing one grain of creosote. It keeps best and is best absorbed and best taken in this form. His patient have no other medicine. It usually takes two or three months before its influence is very noticeable. Grea numbers of his patients have taken five, ten, twent thousand capsules continuously without a bad symp tom, and with excellent appetites, and this in itself is an answer to the objection that it injures the stomach.

THE "ELECTRIC" GIRL

"Electricity is a mysterious agent, therefore everything mysterious is electric." Such is the logic of the masses, rightly observes Mr. Nelson W. Perry in an article in which he exposes the somewhat crude processes employed in an exhibition made recently, at Paris and London, of a girl called "magnetic" or "electric," and possessing, according to her manager, an inexplicable and unknown supernatural power, although it is a question of a simple application of the elementary principles of the laws of mechanics, chapter of equilibrium.
This logic of the masses has already given birth to electric belts, hair brushes, tooth brushes, tripoli and book covers. To this logic of the masses, the logic of the scientist responds, almost under the same form: "All cows have tails, but all animals possessing tails are not cows." The conclusion is that the "electric" girl is electric only in name. If the exercises that she performs provoke the astonishment of a certain portion of the community, it is because the spectators are not, at a distance, in a situation to observe the artifices employed in each of the exercises, or to find a natural explanation of them in the known laws of mechanics. We propose to point out here a certain number of such artifices and to describe a few of the experiments, utilizing for this purpose the data furnished by Mr. Perry, as well as ed by Mr. Perry, as well as those resultin
The first exercises of the kind under consideration date back to 1883. They were presented by Lulu Hurst, of Georgia, and were the subject of a description by Prof. Simon Newcomb published in Science, Feb. 6, 1885. The success of those exercises, then unexplained, was prodigious, and Lulu Hurst soon had many imitators.
Miss Abbott, of London, and Miss Abbett, of Paris are, we believe, the most recent and the first in Europe. They give the same exhibition and have even greatly improved upon and varied the experiments of their initiatrice Lulu Hurst. All these exercises tend to the same end, i.e., to make it believed that there is a supernatural and incomprehensible force, electric or magnetic, by putting in opposition, under equivalent or apparently equivalent conditions, athletes or very robust men and a frail or delicate little girl, who triumphs over them in every experiment.
One of the experiments consists in having a man or several men hold a cane or a billiard cue horizontally above the head, as shown in Fig. 1. On pushing with one hand, the girl forces back two or three men, who, in unstable equilibrium and under the oblique action of the thrust exerted, are obliged to fall back. This first experiment is so elementary and infantine that it is not necessary to dwell upon it. In order to show the relative sizes of the persons, the artist has supposed the little girl to be standing upon a platform in the first experiment, but in the experiments that we witnessed this platform was rendered useles by the fact that the girl who performed them was of sufficient height to reach the cue by extending her arms and standing on tiptoes. Next we have a second and more complex experiment, less easily explained at first sight.
Two men (Fig. 2) take a stick about three feet in length, and are asked to hold it firmly in a vertical position. The girl places 'her open hand against the lower end of the stick, in the position shown, and the two men are invited to make the latter slide vertically in the girl's hand, which they are unable to do, despite their conscientious and oft-repeated attempts.
Mr: Perry explains this exercise as follows: The two

Fig. 1.
men are requested to place themselves parallel with
each other, and the girl, who stands opposite them, places the palm of her hand against the stick and turned toward her. She takes care to place her hand as far as;possible from the hands of the two men, so as to give herself a certain leverage. She then begins to slide her hand along the stick, gently at first, and then with an increasing pressure, as if she wished to better the contact between the stick and her hand. She thus moves it from the perpendicular and asks the two men to hold it in a vertical position.
This they do under very disadvantageous conditions, seeing the difference in length of the arms of the lever. The stress exerted by the girl is very feeble,

Tig. 2.
because, on the one hand, she has the lever arm to her simple traction. When she feels that the pressure ex erted is great enough, she directs the two men to exer a vertical stress strong enough to cause the stick to descend. They then imagine that they are exerting a ertical stress, while in reality their stresses are hori zontal and tend to keep the stick in a vertical position in order to react against the pressure exerted at the lower part of the stick.
There is evidently a certain vertical component that tends to cause the stick to descend, but the latera pressure produces a sufficient friction between the hand and the stick to support this vertical force with out difficulty. Mr. Perry performed the experiment by placing himself upon a spring balance and assum ing the role of the girl, with two very strong men as adversaries. All the efforts made to cause the stick to adide in the open hand failed, and the excess of weight ue to the vertical force alway remained less than twenty-five pounds, despite the very determined and sincere stresses of the

Fig. 4. much the more easily displaced pean reputation.-La Nature.

Aluminum Soldering.

direction in order to resist it, the girl abruptly ceases
the pressure without.warning and exerts it in the opposite direction. Unprepared for this change, the victims lose their equilibrium and find themselves at the mercy of the little girl, and so much the more so in proportion as they are stronger and their efforts are greater. The experiment succeeds still better with three than with two men, or than with one man.
In the experiment represented in Fig. 4, where it concerns the easy lifting of a very heavy person, the trick is no less simple. Out of a hundred persons submitted to the experiment, ninety-nine, knowing that the ex perimenter wishes to lift them and cause them to fal forward, grasp the seat or arms of the chair, and, in endeavoring to resist, make the whole weight of thei body bear upon the feet. If they do not do so at the first instant, they do so when they are conscious of the attempts made by the girl to raise the seat, and they help therein unconsciously. The experi menter, therefore, needs only to exert a horizontal thrust without doing any lifting, and such horizontal thrust is faci litated by taking the knees as points of support for he elbows. As soon as a sligh movement is effected, the hardest part of the work is over, for it is only necessary for the girl to cease to ex ert her stresses in order to have the chair fall back or move laterally in one direction or the other At all events the equilibrium is destroyed and, before it is destroyed again, it requires but little dexterity to move the subject about in all directions with out a great expenditure of energy. The difficulty is not increased on seating two men, or three men, upon each other's knees (as shown in Fig. 4), since, in the latter case, the third acts as a true counterpoise to the first, and the whole pretty wel resembles an apparatus of unstable equilibrium, whose center of gravity is very high and, consequently, so

All these exercises require some little skill and prac tice, but are attended with no difficulty, and, upo the whole, do not merit the enthusiastic articles that have given the "electric" or "magnetic" girl her Euro-

The following methods of soldering aluminum are recommended by the Neuhausien Company. For sheet aluminum an iron-tin solder may be used with a flux omposed of resin, neutral chloride of zinc, and grease The metal should not be cleaned or scraped unless it is absolutely necessary to do so, in which case alcohol o essence of turpentine should be used for the purpose For 5 per cent aluminum bronze tin solder may be em ployed, but.this.is not possible with the 10 per cent alloy, in which case the company recom mends a preliminary copper plating. If is difficult to dip the ends to be plated directly into the so ution, pieces of blot ting paper soaked in a solution of CuSO_{4} may be laid on them and a cur rent passed. The lux mentioned above may be used Another solde which is recommendod is one consisting of copper 56 parts, zinc 46 parts, and tin 2 parts, applied with borax. Some tests made at Neuhausen showed that with these solders plate two men, who, unbeknown to themselves, were exert- of aluminum soldered'together edge to ${ }^{-}$edge, required ing their strength in a horizontal direction.
In the experiment represented in Fig. 3, and which recalls to mind the first one (Fig. 1), the two men are requested to hold the stick firmly and immovable, but the slightest pressure upon the extremity suffices to move the arms and body of the subject. Such pressure in the first place is exerted but slightly, and the stresse are gradually increased. Then, all at once, when the orce exerted horizontally is as great as possible and the men are exerting their strength in the opposite
a aluminum soldered together, edge to edge, required a tractive effort of from $161 / 2$ to 18 tons per square inch
to pull them asunder; if the edges overlapped, $221 / 4$ tons per square inch were required. Pieces of cast aluminum bronze, if placed in sand moulds, can be joined together autogenously by running in some of the moltenmetal. If this operation is properly carried out, the joint is indistinguishable from the'rest of the casting. Thin cylinders of aluminum are made in this way by bending the sheets round end to end, and sol dering with molten aluminum. the port left handed. have about $3,850 \mathrm{sq}$: ft : of cooling surface in each. The circulating pumps are centrifugal, with a capacity of 5,000 gallons per minute each, and connections for working as wrecking pumps. Each condenser has two vertical single-acting air pumps, $143 / 3$ inches diameter by 15 inches stroke, driven by a compound engine with a fly wheel at each end of shaft. There is a valve in the exhaust pipe from each exhaust pipe from each
low pressure cylinder, to low pressure cylinder, to
shut off the connection to shut off the connection to
the condenser and permit the condenser and permit
it to be used as an auxiliary condenser when the main engines are stopped. The engines are fitted with starting valves, a steamactuated throttle, and a combined steam and hydraulic reversing gear, so draulic reversing gear, so
that they can be handled that they can be handled
with ease, and there are with ease, and there are
the usual auxiliary engines.
In order to reduce the weight of the machinery required boiler power is supplied by coil or tubulous boilers. Four boilers of the latter class, to give a with Charles Ward, of Charleston, West Va., after the vessel is also to be supplied are fitted to work at for ordinary uses, for propelling the vessel at ten knots speed, while the coil boilers enable steam to be raised in less than half an hour in sufficient quantity boilers is reduced about one-haif by this combination of the two systems. the kite-shaped and track is a mile long, the start and finish on the kite-shaped track being just before the crossing of the tracks toward the small loop, the mile covered by the large loop by the large loop
being divided inbeing divided in-
to eighths. The to eighths. The
kite-shaped track at Stockton was opened last year, and some of the world's best trotting records were made thereon during the season during the season. Sunol made the world's record of a mile in 2:081/4; Palo Alto made the world's stallion record of a mile in 2:083/4; Arion made the world's record for two-year-olds of two-year-olds of Frou for yearling Frou for yearling champions of 2:253/4. The kiteshaped track is conceded by horsemen generally to be 2 to 3 seconds faster than the oval track, the straightaway dash at the start being a third of a mile, and there being also onethird of a mile of

ENGINES OF THE MONTEREY.
 (Continued from first page.)

6 inches diameter, the starboard one being right and
The condensers are cylindical, of composition, and to the lowest limit the engines have been made|almost directly away from or coming almost directly as light as possible, and about three-fourths of the toward the observer. collective horse power of 4,500, were contracted for careful trials. The two cylindrical boilers with which 160 pounds, and are designed to give sufficient steam

THE STOCKTON, CALIFORNIA, RACE TRACK. | THE STOCKTON, CALIFORNIA, RACE TRACK. | Now when you make arsenical soap you probably |
| :---: | :---: |
| Our illustration presents an effective comparison of | take some cheap soap that has been made out of half | Our illustration presents an effective comparison of take some cheap soap that has been made out of hal

THE KITE-SHAPED RACE TRACK, STOCKTON, CALIFORNIA.
Now this corking up seems to favor the formation of the ptomaine, or keep it from evaporating, as it has always been noticed that matter that has been exposed to the air and then closed up contains more ptomaine
than those just exposed to the air. This ptomaine as soon as it forms unites with the arsenic and forms ptomaine of arsenic.
The poisonous qualities of arsenic and the ptomaine of arsenic might be compared to 1 and 100, besides which the following must be considered : That there is no antidote for the ptomaine, while peroxide of iron, or iron rust, is one for arsenic ; that it is volatile and can be inhaled, while arsenic is not; that it can be absorbed through the pores, while the little arsenic it would be possible to absorb would act only as a tonic, while the ptomaine acts only as a virulent septic poison in all cases; that the lye in the soap favors the entrance of the poison by softening and more or less removing the epidermis of the skin. Many taxidermists have remarked the effects of arsenical soap. I find the following by Maynard :
"It is a fact to which I can bear painful testimony that they are, especially when applied to greasy skins, poisonous to the extreme. I have been so badly poisoned when working on the skins of some fat water birds that had been prepared with arsenical soap as to be seriously ill."-T'he Oologist.

Multum in Parvo.

The electric railway plant at Ottumwa, Iowa, contains some distinct and quite novel features. The plant not only generates the power for the operation of the electric cars, but also supplies electric light for the city and furnishes steam heat to those desiring it, the exhaust steam from two 150 horse power engines supplying most of the steam used for that purpose The steam is carried in mains of $10,8,6,5$ and 4 inches in diameter, according to the number of customers in diameter, according to the number of customers
probable on the line. These pipes are wrapped with
pipe; the logs being tapered at the ends and driven solidly into each other. These mains aggregate about $21 / 4$ miles in length and are placed about 5 ft . below the sur face.
The system requires an initial pressure of 16 pounds, which produces a pres sure of from 8 to 9 pounds at the extreme limit. This of course throws a back pressure on the engines, but as they are of ample power to do all the work re quired of them, no difficulty is experienced from this cause. In weather in which the exhaust steam does not supply sufficient heat live steam is automatically turned into the mains and re tained at the proper pressure. The Railway Review says this is the third year that this plant has been in operation and it has proved very satisfactory to all parties connected with it.

Natural History Notes.

An Albino Lobster.-A curiosity was recently found in a boatload of lobsters that was brought from New Brunswick waters to Eastport, Me. The strange crustacean was like all the others except in color, being of a bluish-white-one of the rare and remarkable albino lobsters. It was packed carefully in seaweed and sent to Washington, where it is to become a part of the exhibit of the United States Fish Commission. Only one other white lobster has been taken in these or any other waters, it is believed, and that specimen was captured some time ago by a fisherman at Welchpool, Campobello, N. B. The Eastport specimen was twelve inc in length, and as lively as any lobster in the lot
Artificial Coloration of Birds.-The distinguished naturalist Dr. Sauermann has published in the Gazette de Francfort a series of very curious observations touching the artificial coloration of birds. The fact is recognized, says he, that Canary birds fed on Cayenne pepper insensibly change color and pass from yellow to red. Cayenne pepper, in addition to a tinctorial substance, contains an irritating principle and an oily mat ter. When these two latter principles are extracted through maceration in alcohol, the pepper loses its coloring property upon the plumage of the birds; but if olive oil be added to the product of maceration the coloring action reappears. It is inferred from this that the oily part of the pepper is the necessary vehicle of the color. Experiments made upon wholly white hens have given an identical result. These hens possess the property of foreshadowing a change in the temperature
by a very marked change of tint. The yolk of their by a very marked change of tint. The yolk of their
eggs is of a very bright red. The same experiment has been tried with the root of the alkanet (Anchusa tinc toria), with the result of a production of violet red.
The Generation of Oxygen by Plants has been studied by Henri Jumelle (Compt. Rend., cxii., 1462) at very low momperatures, and he finds that carbonic acid is de composed at low temperatures, at which respiration has completely ceased, by plants the vitality of which is not affected by a high degree of cold. Thus the assim ilation of atmospheric carbonic acid gas is effected in the light at -35° and $-40^{\circ} \mathrm{C}$. by Picea juniperus and other coniferæ, and by lichens like Evernia prunastri.
The Comb of Scorpions.-Messrs. Brongniart and The Comb of Scorpions.-Messrs. Brongniart and
Gaubert recently presented a paper to the French Academy of Sciences on the pectiniform organ of scor pions, the function of which has up to the present been considered enigmatical, and which Mr. Blanchard, in 1853, supposed to play a part during coupling. Som direct observations by Mr. Andre Mares having fortified this hypothesis, Messrs. Brongniart and Gauber proceeded to a study of the anatomy of the comb, which was found by them to constitute, in addition, an exciting organ. In fact, from the nerve that tra verses the comb start branches that run to each tooth of the comb, on reaching the extremity of which the nerve is completed by a ganlion formed of a bead-like string of cells, each provided with a large nucleus. The nerve fibrils pass between these cells and terminate each of them, in a conical eminence. They are provid ed with a large nerve cell before reaching the external edge of the chitinogenous layer, which is very thick at this point. According to the authors, it results from this structure that the combs of scorpions serve also as organs of touch. In walking the animal is capable of moving them, and makes use of them to ascertain the mature of the ground.
Life among Birds.-The distinguished German bio logist, Weismann, has pointed out that there is less exact knowledge on this subject than might be expected considering how many in number are the ornithologists and the ornithological societies. Small singing birds live from eight to eighteen years. Ravens have lived for almost one hundred years in captivity, and parrot longer than that

Fowls live from ten to twenty years. The wild goose lives upward of one hundred years, and swans are said
to have attained the age of 300 . The long life of birds has been interpreted as compensation for their feeble fertility and for the great mortality of their young.
From the small island of St. Kilda, off Scotland twenty thousand young gannets and an immense num ber of eggs are annually collected; and although thi bird lays only one egg per annum, and is four years in attaining maturity, its numbers do not diminish. Ob viously, as Weismann observes, such birds must reach a great age, or they would long ago have been extermi nated.
Language of Elephants.-The language of the elephant is as well understood by the East Indians and those who have to do with the animal as if the communication were made in their own tongue, though, curious to relate, the sounds in India and Ceylon have different meanings attributed to them. When enraged an elephant utters a shrill cry through the trunk, which may be taken as a warning. A sportsman engaged in
hunting elephants had approached a large tusker, when he found to his chagrin that he had dropped his ammunition, so that he could only lie concealed and feast his eyes upon the huge animal. His disappointment was partly compensated for by observing the elephant informing the herd that danger was lurking
near it. Communication was made in the following way: The tusker was feeding, and moved slowly around until it suddenly came below the concealed sportsman, when, with its wonderful scent, it immedi ately recognized the presence of its enemy. Then it stopped feeding, raised the tip of its trunk cautiously and, in a low, suppressed, but penetrating tone, uttered with its lips the sound "prut," which it repeated so that it somewhat resembled the twittering of a bird The sound would hardly have been noticed had no the sportsman been near at hand; but it was immedi ately understood by the herd, which moved quickly but silently a way, followed by the sentinel.
Pleasure is often expressed by elephants in an excru ciating squeak, far from pleasurable to the auditor When satisfied and contented, the animal purrs gently Fear finds expression often in a remarkable reverbe rating roar, and sometimes in a shrill squeak. A thoroughly enraged elephant utters a deep warning ound in the throat, and often a hollow, reverberating, rumbling sound. When suspicious, or desirous of giv ing a slight warning, the tip of the trunk is tapped upon the ground, while from the trunk there issues a volume of air which at times sounds like a sheet of tin being olled. Young or baby elephants express their wants by singular sounds uttered by the throat. Another sound made by wild elephants is produced by striking the sides forcibly with the trunk. That elephants use these and other sounds as methods of communication r as language there can be no doubt.
The Migratory Locust and its Changes of Color.Such is the title of a memoir presented to the French Academy of Sciences by Mr. Blanchard in the name of Mr. Kunckel d'Herculais. The varied colors that locusts exhibit have been attributed to distinct local varieties. The author of the memoir shows that these colors are successively exhibited by the same individual at various periods of its development, and that they succeed each other at the same time as the moultings. They are connected with the properties of special pig mentary substances which are modified under the influ nce of the light, and with other external causes. The young are greenish-white, but under the influence o ight they become brownish and change to black. A
the second moulting rosy colorations appear, especially he second moulting rosy colorations appear, especially upon the sides of the body ; at the third, the rosy tint augment; and at the fourth they predominate, bu give place to yellow tints. The same is the case afte the fifth and sixth moulting, and the adult insect ap ears in a livery of the most delicate rose color. Upon the whole, says the author, it may be stated that in
the periods that precede and succeed moulting the pignent of the insects is of a rose color, and that this pig ment changes tone, passing successively through vari ous shades to finally reach yellow. The appearance of the yellow tints of the young and adults is, therefore, in re ality a consequence of aging. What is worthy of remark, and what well shows that these modifications in the color of the pigments are the expressions of histolysis and histogenesis taking place at the time of moulting and metamorphosis, is that after each of these phase he acridians void rose-colored excrements. The tegu mentry exuriæ left after each moulting are colorless in
all the parts that are not!black; the black spots or mark ings are alone indicated. The action of light is mani est. Young migratory locusts reared in the shad never acquire the bright lemon yellow tints of their fel lows reared in bright sunshine. It is to be noted that the yellow or adult acridians submitted to rapid desiccation by fire or immersed in alcohol become red again We have here a phenomenon of dehydration which causes the primordial tints to reappear.
Time Sense in Animals.-Time sense is very highly developed in domestic fowls and many wild birds, as well as in dogs, horses and othermammals, which keep an accurate account of days of the week and hours of the day, and have, at least, a limited idea of numerical succession and logical sequence. A Polish artist, re
siding in Rome, had an exceedingly intelligent and faithful terrier, which, as he was obliged to go on journey, he left with a friend, to whom the dog was warmly attached. Day and night the terrier went to the station to meet every train, carefully observing and remembe
Meanwhile he became so depressed that he refused o eat, and would have died of starvation, if the friend had not telegraphed to his master to return at once if he wished to find the animal alive. Here we have a striking exhibition of time sense as well as an example of all-absorbing affection and self-renunciation likely to result in suicide.

Cexico to Build the Tehuantepec Ship Railway. It is reported that the government of Mexico has made a contract with Mr. E. L. Corthell, the wel known engineer of Chicago, Mr. Hampson, formerly of Fairfield, Ia., and Mr. Stanhope, an English resi dent of the city of Mexico, to complete the railway
across the Isthmus of Tehuantepec, between the At across the Isthmus of Tehuantepec, between the At
lantic and Pacific oceans, which was begun by an English company some time ago. The government
it is said will be given to Mr. Corthell and his associ ates as a subsidy, together with the right to organize a company, issue securities, and build the terminals, and the two harbors for the largest class of vessels. Mr Corthell has been in the employ of the Mexican gov ernment for several years, and is just completing the extensive jetties at the harbor of Tampico.

military Ballooning.

A new impetus to ballooning will doubtless result from the following successes of the Germans on the Russian frontier, given in reports telegraphed from St . Petersburg to the New York papers. We think it is probable there is considerable exaggeration in the tatements here made as to the special movements and navigation of the balloons.
The presence of balloons over the forts and encamp ments in Poland is becoming more frequent than ever and this fact is causing much indignation among Rus sian army officers, who are helpless to prevent military secrets from becoming known to the German officers who are known to be taking observations from a heigh hat places them beyond the reach of any bullets aimed at them. One of these balloons from the German frontier recently appeared at Kovno. It hovered above the fortress there until the officer in command became so greatly exasperated that he ordered some of the soldiers to fire at the balloon and, if possible, to bring it to the ground, but the soldiers were unable to hit the big silken bag.
The range was too great, and the powder burned in the attempt was useless. The Germans continued their observation, in no way bothered by the firing, and when they had concluded they returned whence they came. The impression grows stronger daily that the Germans have at last solved the long-studied problem of aerial navigation. These balloons that have ap peared over various places in Poland are under perfect control. They move in any desired direction, and the wind currents have no perceptible effect upon them In fact, in at least one instance, it is known that the balloon sailed directly against a strong wind. Some of the observers accounted for this on the ground that the upper current in which the balloon moved was in an opposite direction from the current nearer the arth.
This argument was rendered fallacious in a very short time by the balloon stopping over the military camp at Dombrowice, and then maneuvering to obtain positions rom which the camp could be studied in detail. The motive power employed and the means adopted for teering are utterly unknown, but all the facts in con nection with the appearance of these balloons go to show that they are under absolute control. The possi bilities of a perfect system of aerial navigation are horoughly understood by Russian officers, but they are absolutely helpless to guard against them. It is the fact of this utter helplessness that renders their in dignation more deep and bitter.
A few nights ago the inhabitants of Warsaw were startled by an intensely bright light that fell from the sky upon the city. All eyes were turned upward, but nothing could be seen save a path of light that ended in a small focus. Many people in their excitement thought it was a comet in close proximity to the earth, and were greatly frightened. Suddenly the ray of light swept in another direction, and when their eyes becam accustomed to the darkness that followed, they could see far up in the sky a balloon. Then it dawned upon the people that it was an electric search light that had caused the brilliantillumination, and that the Germans were continuing their observations of the Russian de enses with its aid. The balloon remained over the city until 1 o'clock in the morning, when the light was extinguished, and the balloon, heading westward toward the frontier of Prussia, disappeared.
Later another balloon was seen over the Proushkorff railway station. It remained stationary for a time and then started in the direction of the fort works near Kelets, where it hovered awhile, when it returned across the frontier.
Reports of similar occurrences have been received rom Sosnovitzy and other places along the frontier The balloons come from Prussian Silesia in the nigh time and project the rays of powerful search lights in very direction. The balloons, which were at a great height, remained stationary sometimes for the space of 40 minutes, and would then proceed in any desired di rection. There is no doubt that the steering apparatus, whatever it is, is admirably adapted for its purposes for the balloons apparently answer to it as readily as does a vessel to her helm.
Russian officials hold that with manageable balloons the whole system of warfare will be changed. It is self evident that none of the present fortifications would be able to withstand an attack from above them. Shells could be dropped with almost unerring certainty, and no city could defend itself from an enemy far up in the air beyond the reach of any missile. Even modern cannon, with their great range, could not at present be used against balloons, fer the reason that gun carriages have not been made that will allow of a perpendicular elevation

ELECTRIC SHOOTING PULL

Trap shooting is becoming a great sport in this country, and gun clubs are springing up in almost every State. The old way of pulling the traps with ropes is gradually being dropped and the new electric pull substituted in its place. With the old way the ropes would very often get entangled, causing a great dea of delay. With the electric pull the trap is sprung in stantly as soon as the shooter calls out "Pull!" The traps are made mostly of cast iron, about 1 foot in height. The elevation arm, containing the trigger, spring, and swinging arm with carrier, is about $21 / 2$ feet in length. This arm can be placed at almost any elevation, being connected by means of a movable bolt to the circular head of the upright post of trap, which rests in a ball socket in the base or stand of trap and can be turned also at any angle. The spring is of steel and is $11 / 2$ inches in diameter and about 9 inches in length, and has a pressure of about 250 pounds.
The traps are set and the birds placed in the carriers by boys. The trigger is connected to the electric trap pull by means of a leather strap which is fastened to pull by means of a leather strap which is fastened to
a bolt passing down through the top of the battery
are $41 / 4$ inches in diameter and 1 inch in height and $1 / 8$ of an inch in thickness. They weigh about 3 ounces each. The birds are saucer shaped and fly with the convex side up. The tops of the birds are painted a bright yellow, giving the shooters a spot to aim at before firing.

The carrier is V-shaped, having on one side a raised slot, in which the flange on the bottom of the bird rests. On the other side is a movable arm, with a spring at tachment. The bird is held firmly in place by the aid of the spring and rubber button on the end of arm The sudden stoppage after the trap has been sprung forces the bird out of the sarrier. The shooters gener ally use 12 gauge shells loaded with No. 7 trap shot. The clay birds cost $\$ 8$ per thousand. The traps weigh about 5 pounds each and cost in sets of 5 , with electric apparatus, $\$ 53$. Single traps cost $\$ 11$.

Skinning and Mounting an Ostrich. by oliver davie.

In the month of January, 1891, three days of my time were consumed in the skinning and mounting of

Lifting the skin along the breast and on the legs the nee joint was laid bare and severed, the thigh remaining attached to the body. All the muscles and tendons were removed from each leg when skinning proceeded in the usual way, over the back and down the neck The head being too large to pass through the skin of the neck, the vertebræ were accordingly severed as close to the head as possible; the head being skinned through an opening made on the back of the head and down the neck for about eight inches.
A center board was now made exactly the shape of the contour of the body, and a large square hole was cut in each end of this board. These openings are made in order that in laying the tow on to build ou the manikin, it can be more firmly secured by sewing through from one side to the other with needle and twine. The next thing to be done was to lay the skin on the floor, and to arrange the legs in the stepping position I had previously decided upon. This being done a heavy piece of annealed wire was used in obtaining the exact position of the legs, following closely and eatly every bend in the joints, clear down to the sole neatly every bend in the joints, clear down to the sole
of the foot. From these patterns my blacksmith made,

THE ELECTRIC SHOOTING PULL.
box, the lower end of the bolt resting on one end of a releasing lever. The other end of lever passes just under the edge of the lever at the side which connects with the battery. When the current is on, the top of side lever draws toward the battery, releasing the bottom lever and causing the bolt with the spring attachment to drop down, pulling the trigger of the trap with it and letting loose the swinging arm which throws the bird into the air. The electric pull is connected to a dry battery on the platform behind the shooters' stand, which is about 20 yards from the traps. The shooters and traps are numbered 1, 2, 3, 4, 5. When No. 1 is ready to shoot he calls out "Pull!" The party in charge of the dry battery touches electric button No. 1, and No. 1 trap throws its bird in the air. Traps No. 1 and 5 throw their birds at an angle of about 30 degrees, traps No. 2 and 4 about 15 degrees, and trap No. 3 straight ahead. Shooters Nos. 1 and 5 shoot at the birds that fly at the greatest angle. Nos. 2 and 4 shoot at the next angle, and No. 3 straight ahead. The birds will fly about 60 to 70 yards from the traps, and to a height of about 150 feet. The shooters fire at the birds as soon as they show themselves above the wooden screen, before they get too far away. This screen is made of heavy planking, to protect the boys attending the rraps from flying shot.
The birds are made of a mixture of clay and coal tar, and are very brittle. The shooting surface when the bird is in the air is about $41 / 4 \times 11 / 2$ inches. The birds
ters of Sells Bros.' menagerie. I had long desired to try my hand on the giant of birds, and this one finally offered ample opportunity. The bird was a male and weighed one hundred pounds, and was undoubtedly in poor condition.
In the skinning and dissection of this specimen I earned more of comparative bird physiology than any opportunity had presented for years.
Its being the connecting link between the birds and quadrupeds, I saw at once how rudimentary the wish bone is, while the shape of the breast bone is like that of a turtle's back, and placed far up in front. Its normous crop, powerful gizzard, the immense muscles and tendons of the legs, calculated no doubt for the support of the bird in running long distances, and, on the whole, the peculiarly shaped contour of the naked runk or body, were subjects which naturally gave rise to the careful study and the comparison of similar parts in the structures belonging to those of the less power ul of the feathered tribes.
After taking some notes and sketches of the four or five remaining ostriches of the group, I carted the dead specimen to my workshop, where I proceeded to skin it. An incision was begun high up on the breast and con tinued to the vent. A cut was then made on the breas directly across to each leg and continued down on the inside of the leg out over the heel, thence down over the back of the tarsus clear down under the foot to the end of the large toe.
rom round, half-inch iron rods, their counterparts in shape. The ends were threaded and provided with nuts and washers, and the ends which were to pass through the center board were bent the proper angle and length, so as to make the thickness of the body, which was obtained by blocking out on each side. The neck was made over a heavy iron wire which was fastened to the center board, and the whole manikin was covered with clay and modeled to represent the natural body of the bird. Before finally placing the skin on this artificial structure it was thoroughly poisoned twice with arsenical soap and once with a paste made with an arsenical solution and common whiting. I used clay in forming the muscles about the head and in many places about the body, legs, and feet which required peculiar shapes. Having seen a number of mounted ostriches, I noted that in most of them, and especially in those where the attitude was that of run ning, the feet were made to lie perfectly flat on the ground, whereas, according to my observations, the ostrich walks or runs on the ball of the foot, as it were. In my specimen I avoided this fault by having the iron od fit closely into the big toe, while the bend which went into the platform came out about the middle of the sole.-The Taxidermist.

Thin belts, as wide as possible, give by far the best not hug the pulleys

RECENTLY PATENTED INVENTIONS. Engineering.
Jet Propulsion.-Erwin J. Meister New York City. This invention provides an improve ment in apparatus for piston propulsion in propelling
vessels by forcing a current of water through the hull of the vessel.and ejecting it at the ends. The strokewith slotted levers pivoted above the cranks, sliding oxes pivoted to the cranks sliding in the levers, and perative connections between the free ends of the evers and the piston rods of the engines, affording means for giving to the water pistons an irregular
stroke, so that they will have a quick outstroke, enstroke, so that they will have a quick outstroke, en-
abling the water to be ejected with great force, and comparatively slow recovery, preventing excessive

Railuvay Appliances.
Tramway Switch. - George A. Mc Menimen, East Cambridge, Mass. This is a simple practical device, affording means to direct a moving rom the car, or to from the car, or to enable an operator on the car
to throw the switch as desired. The shifting rail is moved by a handle bar or by foot pressure operating standards guided in staple loops on the outer side of he car platform, the standard being held elevated by a spring, and there being a tapered foot block on the
lower end of each standard.

Electrical.

Mining Pick and Drill. - John Fish, South Bend, Ind. A drive pulley is fixed rigidly on the extended armature ehaft of an electric motor, outer end a drilling device and operating pulley, while an endless belt extends from the driving pulley to the operating pulley at the outer end for working the drill. The electric motor may be of any preferred type, and
the'machine may be used as a mining drill or pick, as desired, the adjustability of its parts permitting it to be used in any position in which it may be required to drive a cutting.
Lightning Arrester. - Edward G. Miller, Wilkinsburg, Penn. This invention consisis in
a helix provided with a mercury switch at the bottom, and furnished with a movable core or armature for displacing the mercury, while combined with the helix and the circuits is a series of carbon blocks arranged
in a line with narrow air spaces between them. The to the ground, thus preventing it from reaching the dynamo, while also extinguishing any arc that might be formed by the passage of the lightning.
Annunciator.-William C. Dillman, Brooklyn, N. Y. Two patents have been granted this inventor for annunciators for use in connection with
speaking tubes, and which are operated by a current of air passing through the tubes, to announce when a person is at one end of the tube and wishes to talk with
a person at the opposite end. The device is very simple and inexpensive, and may be easily applied to an ed by the breath to momentarily close a circuit in which an electric bell is included, thus ringing the bell and attractung attention to the tube, and also breaking the
circuit quickly, to avoid excessive ringing of the bell nd ex
Musical Instrument. - Charles E. Guerre and Gaston H. Martin, Rouen, France. The
case of this instrument has a sounding board and a keyboard, each having electrical contacts, and a bell or sonorous body mounted to vibrate on the sounding
board having electrical contacts, there being an electric board having electrical contacts, there being an electric the circuit of the battery, and electrical connections beween the keyboard, the electro-magnets and the sonorous body. As the circuit is successively closed
and opened by touching the keys the electro-magnets re alternately energized, one causing the bell to vibrate and the other arresting such vibration, thus giving forth a succession of musical sounds.

Mechanical Appliances.

Pipe Cutter and Threader. ol. This machine is adapted to be readily applied tor different sizes of pipes, without removing the pipes from the places in which they are secured, the machine to be operated by one or more men, and being capable
of quick adjustment to either cut a pipe off or cut a of quick adjustment to either cut a pipe off or cut a
thread upon it. It has a separable hub, the parts having thread upon it. It has a separable hub, the parts having
registering dovetail receeses which a locking key fits, registering dovetail recesses which a locking key fits,
while a slide block mounted on the locking key is provided with a cutter, there being a screw for ad justing the slide block and a ratchet mechanism for turning

Winding Bobbins, etc. - Junius A. Murphy, New Orleans, La. This invention: relates to
means for causing a bobbin to traverse the flier in winding cord or yarn on the bobbin, automatically controlling the traverse movement of the tobbin, so that
the cord or yarn will be wound in parallel or close coils the cord or yarn will be wound in parallel or close coils
throughout. A rotary feed screw has a fixed speed relatively to the flier nnd a nut thereon has a fixed speed relatively to the bobbin spindle, there being connec-
tions between the bobbin spindle and nut, whereby the changing relations between the spindle and flier will result
nut.

Miscellaneous.

Puzzle. - James A. McDougall, Pittson, Pa. This invention relates to that class of puzzles in which a board or box with movabledevices and goals
is designed to be held in one's hand and so manipulated as to direct the movable devices to their respective
goals. The devices are loaded or have a prepondergoals. The devices are loaded or have a preponder-
ance of weight at one end. and a ball or marble is used
to propel and direct the loaded devices to their proper
places. The board has goals representing points displaces. The board has goals representing points dis-
tant from the World's Fair, and in playing the devices epresent passengers starting to visit the fair.
Pużzle.-Daniel V. Brown, New York City. This puzzle comprises a two-part separable case one part of which closes within the other and has
transparent top, while a series of lettered blocks are held within the case, so that when correctly arranged hey will spell a name reading spirally from the center to one corner on one side, and another name reading in

Typewriting Machine.-George M. Beerbower, Washington, D. C. This invention relates perator may depress a key, make an impreasion, and allow the weight of the hand to rest upon the key while thers are depressed without danger of the type interported in the bearing yoke and provided with an out wardly projecting finger, a pitman rod having an inwardly extending ehoulder to engage the finger, while a pin or stud arranged in the yoke is adapted to engage he upper end of the pitman, to the
Grain Conveifer. - Henry M. Hastgre, Cooksville, Ill. The conveying of grain from the eans is provided for by this car by mechanical deans is provided for oby thite the necessity of any one entering the car during the operation of loading. In the conveyer trough leading from the warehouse to the car is journaled a spiral conveyer, operated by a sprocket chain from a main drive shaft driven by steam or other power, and connected with the outer end of the con-
veyer is a reversible elevator chate for discharging the veyar is a reversible elevator chate for discharging the
grain to either end of the car, whereby the loading Water Tiaht Skyicit.
Danzer, Her-ight SkyLight. - Alber skylight designed to embody the elements of simpli city, cheapness, and effectiveness, and which cau be conveniently handled and easily put in position. The cupporting frame consists of wooden end timbers on
sun
ande the inner face of which are held side troughs formed
of galvanized iron bent up, the inwardly projecting of galvanized iron bent up, the inwardly projecting anges serving as end supports for the glass sections. Cap plates fit over the upper face of the frame timbers,
the inner ends of the plates being turned down and fitting against the glass, holding it in place, the inven-

Brick
$\underset{\text { Brick Kiln. - William Sercombe }}{ }$ parallel arches are connected at the ends to form a coninuous arch, which is also adapted to be divided into chambers, a hot air flue extending centrally between and above the arches, and branch damper-controlled
fues extending from the main flue and above the everal chambers of the arches, while vertical openings xtend through the roof of the arches and intersect the nds of the branch fllues, the vertical openings having The heat of the chambers is designed to be so equalized that all will be burned of equal hardness, while perfect combustion will be effected, and the waste heat escaping from chambers which are cooling will be atilized StREET SWEEPER. - Mary S. Kjelltrom, New York City. Two brushes are mounted below the converging sides of a triangular frame, with
pinions on the rear ends of their shafts meshing with pinions on the rear ends of their shafts meshing with bevel gear wheels on an asle provided with track ward end of the frame. From the geared connection of the brushes with the wheels the brushes will sweep the dirt from between the tracks of a railroad, or the surace of any other road if used independently of a car and deposit the refuse in two rows at the sides of the machine, the brushes being adjustable for height, and being adapted to thoroughly clean all the surface
passed over.
Broom Head.-John O. King, Altamont, Kansas. The main portion of this broom head
consists of a sheet metal box flattened on the sides, of suitable width to receive the broom corn or other splints, the top wall of the broom head being secured upon the handle by means of tacks. The lower end of the handle is secured at its terminal end to a stay loop,
formed of a single piece of bent wire rod, whereby the formed of a single piece of bent wire rod, whereby the
head box is also stiffened. When the splints are fully head box is also stifened. When the sphints are fully completed by two or more rows of stitching.
Lamp Wick Raiser.-Harty H. Hipvell, Long Island City, N. Y. This is a novel derice bracket plate being curved slightly edgewise to allow it to lie close to the lamp wick, a sleeve projecting at one side from the plate, and spaced star wheels being rotat ably supported on the plate to engage the wick, while a
shaft adapted to be revolved in the sleeve of the bracket frame carries a star wheel at its lower end, meshin Me spaced wheels
Milk Tester. - Ralph Messenger, Unadilla, N. Y. This invention provides a simple conand water-tight position a number of milk tubes the upper ends of which have gnuge marks to show the amount of cream rising to the top. The milk of each cow, in testing, is to be placed in a separate tube, the frame and tubes being submerged in cold water if magazine Tack Hammer. - Andrew T. Lewis, East Portland, Oregon. The handle of this hammer has a magazine communicating with a chamber in the head, there being tack-receiving racks,
in the magazine, spring cushions at the sides of the in the magazine, spring cushions at the sides of the
racks, and a lever connected with one of the racks to give it a longitudinal movement, the mechanism
being designed to feed the tacks one by one to the striking face of the hammer, and release a tack the
moment it is introduced into the surface in which it moment it is introduced into the surface in which it
is to be driven.

Pencil Sharpener.-Mary E. Worn, Philadel phia, Pa. This device consists of a block formed with a longitudinal recess in its upper side, in
which are removably fitted two round threaded cutters, in mesh with each other, the threads of the cutters being quite fine and having a keen edge, thus formin a solid abrading surface against which the pencil is rubbed. A removable cap fits the top edges of the block, and a partial rotation of the cutters presents a
Touch Reg
light (Eddins V. C. This is an attachment for musical instruments, such as pianos, organs, etc., to enable the performer to
change the feeling of the touch, making it either hard change the feeling of the touch, making it either hard
or soft. A shaft is journaled in the frame of the inor soft. A shaft is journaled in the frame of the in-
strument, and springs secured to the shaft. have their free ends resting upon the keys in rear of their pivots, an adjusting rod pivotally connected with the shaft projecting through an openirg in the front of the key board.
Magazine Camera.-Arnold L'Eplatenier, Brooklyn, N. Y. This invention provides a compact, simple and inexpeusive camera box, designed
to retain in series sectrely separated a number of sensito retain in series sectirely separated a number of sensimove the photographed plate by gravity to a dark chamber, move another plate of the series into focus serial number of the impressed plate or film, the th fixed negative being perfectly protected from light or

Ice Freezing Can. - Albert Smith, ew York City. This can is constructed externally with an airchamber or chambers on or throughout its its other two opposing sides left uncovered or exposed. Such cans are to be used for making ice by immersing the can containing the water to be frozen in brine or other
freezing agent, the object being to produce clear cakes

Wave Power Motor.-Alfred Rosenholz, Wardner, Idaho. A suitably constructed vessel is anchored at its ends to be free to rock sidewise, and
weighted arms are mounted to swing within the vessel, weighted arms are mounted to swing within the vessel,
main shafts to be turned by the rocking motion of the weights, the shafts being connected with air compres-
sors in the vessel whereby dynamos are"operated, and cables leading from the dynamos through the anchors simple and durable in construction is designed to be at any desired distance from the shore to receive the full force of the waves
Coach Door Latch.-James M. Orr, New York City. This lateh is so formed that it may be attached to any vehicle door, the outer end of the latch being flush with the free edge of the door, while the may be quickly and easily removed for cleaning or oil ing when desired. The bolt of the latch and the socket in the door casing are also so shaped that the latch will
not have vertical or lateral play, the bolt of the latch beng thus prevented from rattling and a tie connection being at all times maintained between the bolt and the

Compound Cooker. - Charles McConalogue, Red Jacket, Mich. This invention provides a simple, inexpensive and convenient cooker
which combines a fry pan, a broiler, and a steamer for meats and vegetables, so that the parts of the complete device may be interchangeably assembled as required. The fry pan forming the base of the device is of cast
metal, and has a central draught tube, while the metal, and has a central draught tube, while the
steamer, fitting in the top of the fry pan, also has a central tube, forming a continuation of the draught tube, but slightly separated therefrom. A broiler is anapted to be supported a short distance above it bottom.
BELT.-Charles Scherer, Brooklyn, N. Y. This is a ladies' waist belt, designed to be very
ornamental in appearance, and to combine strength ornamental in appearance, and to combine strength
and durability with economy of material and labor in manufacture. The band has longitudinal cuts extendstrips, which are spread and leng their central portion and secured to a transverse shield, the ends of the band being provided with fastenings.
Dispensing Device. - Martin Itjen, Jacksonville, Fla. This is an improvement in apparatus for dispensing heer or other beverages by weight infrom half a pint to a gallon, according to requirement. A graduated scale beam, provided with a weight adjustin which is kept the beer or other article to be drawn the bucket or receptacle to be hung on the front end of the beam, beneath the faucet. The device is designed to save the time of the vender and better satisfy the with his measure
Figure Toy. - Robert A. Chapman, Glymont, Md. This is a toy of the class in which movable figures representing human beings are em-
ployed. It is preferably made in the form of a wagon, so that the apparatus will properly work as it is drawn over the floor or a table, black and white figures then moving alternately toward and away from a box at onc end of the wagon, while figures with the box rise and
preesent arms, there being also other performing figures, present arms, there being
besides onlooking figures.
Note.-Copies of any of the above patents will be send name of the patentee, title of invention and date of this paper.

NEW BOOKS AND PUBLICATIONS

Shepard's Office and Pocket Trial
Docket. Nebraska edition pared and arranged by Warren Pratt
Esq., of the Kearney Bar. George J. pared and arranged by Warren Pratt,
Esq., of the Kearney Bar. George J.
Shepard, Kearney, Nebraska.

A Preliminary Report on the Coal DEpOSITS OF MISSOURI. From field 890 and 1891. With 131 illustrations. Published by the Geological Survey of Misso
Pp. 226.
This work, although only of a preliminery character, seaks well for the manner in which the Missouri State survey is conducted. Its elegant form and numerous
sectional views of coal dep osits alike testify to the work put upon it from a publisher's and editor's standpoint as well as from that of a geologist.
The Iron Founder. A comprehensive Samuel Balland. Illustrated. with over three hundred engravings. New
York : John Wiley \& Sons. 1892. Pp. viii, 382. Price \$2.50.
The best praise we can give this timely book is that limits. The entire subject of to a review within our limits. The entire subject of making moulds for all kinds of castings is fully treated, the personal aspects
of the subject, such as the appreutice system, are not of the subject, such as the apprentice system, are not
neglected, and a chapter near the end treats of pattern making. Yet the book is mainly a fouuder's manual, not a pattern maker's, and will we believe prove of great use to many workmen and others who are interested in the technique of this art.
Manulito, or a Strange Friendship. By William Bruce Leffingwell. Phila-
delphia: J. B. Lippincott Co.
1892. Pp. 320 .
Why Band Saws Break. Sixteen reaJoshua Oldham. No avoid them. Mork: M. T. Richardson. 1892. Pp. 90. (No in-
dex.) Price $\$ 1$. dex.) Price
This book in its first 46 pages treats of the titular subject in very graphic style; the rest of the work is de-
voted to topic of saws, their history, manufacture and use. The manual we believe will meet with acceptance from the large clientage of
ful hints are embodied in it.
The Sawyer's Own Book, of Emerson, Smith \& Co., Beaver Falls, Pa., has considerable useful information for all who use saws, compressed in a very
sinall space. Although the primary object of the publication is to advertise the saws made by the firm, it has been considered that this object would best be ob-
tained by printing in connection therewith valuable facts tcuching the use of saws, and this little book facts tcuching the use of saws, and this little book
has consequently passed through many editions.

SCIENTIFIC AMERICAN

BUILDING EDITION.

APRIL NUMBER.-(No. 78.

TABLE OF CONTENTS

Elegant plate in colors of a cottage in the American style of architecture, erected at Rochelle Park, N. Y. Perspective view, floor plans, etc. G.
Thompson, architect. Cost $\$ 5,200$ complete.
2. Plate in colors of a residence at Bensonhurst, Long Island, N. Y. Perspective elevations and two floor plans, an excellent design.
3. A summer cottage on the Maine coast, near Portland.
Floor plans and perspective elevation. Cost $\$ 1,470$ complete.
4. A handsome residence at Sea Side Park, Bridgeport, Conn., recently erected for Col. Mason. Cost about $\$ 25,000$ complete. Two perspective views
and floor plans. F. H. Kimball, architect, New York.
5. A residence at Montclair, N. J., from plans prepared by Munn \& Co., architects, New York.
Two perspective views and floor plans. Cost $\$ 8,500$ complete.
6. A mountain side residence erected for W. A. C mountain side residence erected for W. A. C.
Chase, at Montclair, N. J. An excellent design.
Floor plans and two perspective views, also an Floor plans and two perspective views, also an
interior view. Cost $\$ 6,500$ complete. Munn \& Co., architects, New York.
An Asbury Park, N. J., cottage. Cost $\$ 3,000$ com-
plete. Floor plans and pergeective view. plete. Floor plans and perspective view.
8. Sketch for a cemetery chapel of moderate cost.
9. View of the Richmond Hill Congregational church and parsonage.
10. Design for a family 'Jurial vault.
11. Design for organ, All Saints, Compton, Leek.

Miscellaneous contents: The sveed of elevators.-
The secret of a good memory.-Plastering comThe secret of a good memory.-Plastering com-
position.-A vertical double spindle shaping machine, illustrated.-Shadow an element of design -Artificial building stone, illustrated. - Wet screens for ventilating ducts. -- Irrigation in A plumber's blast furnace, illustrated.-An improved wood working machine, illustrated.-The Stearns hinge, illustrated.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies
25 cents. Forty large quarto pages, equal to about 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages : forming, practically, a large and splendid Magazine of ArchitreTURE, richly adorned with elegant plates in colors and with ine engravinge, illnstrating the most interesting examples of M
allied subjects.
The Fullness, Richness, Cheapness, and Convenience of his work have won for it the Lararst circulation
of any Architectural publication in the world. Sold by all newsdealers.

MUNN
381 Broadway, New York

Business and Personal.

The charge for Insertion under this head is one Dollar a line for each insertion; about eight words to a line. Adver
tisements must be received at pubication office as early as

For Sale-One 15 H. P. double celinder double drum friction horizontal hoisting engine, with boiler and fix U. S." metal polish. Indianapolis. Samples free. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. 6Spindle Turret Drill Presses. A.D. Quint, Hartford,Ct Mixing machinery. J. H. Day \& Co., Cincinnati, Ohio For mud dredging engines. J. S. Mundy, Newark, N. J
Universal and Centrifugal Grinding Machines.
For Sale-Patent 460,883 , portable cea, ddress P. O. box 118, Harrisburg, Pa
The Improved Hydraulic Jacks, Punches, and Tube
Expanders. R. Dudgeon, 24 Columbia St., New York. Screw machines, milling machines, and drill presses
The Garvin Mach. Co., Laight and Canal Sts ntrifugal Pumps. Capac Centrifugal Pumps. Capacity, 100 to 40,000 gals. pe
minute. All sizes in stock. IrvinVan Wie, Syracuse, N. \mathbf{Y} Crandall's patent packing for steam, water, and am-
monia. See adv. next week. Crandall Packing Co. Palmyra, N. Y.
Guild \& Garrison, Brooklyn, N. Y., manufacture steam
pumps, vacuum pumps, vacuum apparatus, air pumps pumps, vacuum pumps, vacuum app.
acid blowers, fllter press pumps, etc.
Split Pulleys at Low prices, and of same strength an
appearance as Whole Pulleys. Yocom \& Son's Shafting appearance as Whole Pulleys. Yocon
Works, Drinker St., Philadelphia, Pa.
Works, Drinker St., Philadelphia, Pa. Son's Shafting
The best book for electricians and beginners in elec
tricity is "Experimental Science" tricity is "Experimental Science," by Geo. M. Hopkins
By mail. $\$ 4$; Munn \& Co., publishers, 301 Broadway, N. \mathbf{Y} What do you want to buy? We will send without cost to you, catalogues, price lists, and information concernto you, catalogues, price lists, and information concern
ing anything you wish. Paret, Willey \& Co., 265 Broadway, New York.
Competent persons who desire agencies for a new
popular book. of ready sale, with handsome proft, may apply to Munn \& Co., Scientific American offlee, 36 apply to Munn $\&$ Co
Broadway, New York.
Wanted-A master mechanic and designer to take
charge of the machinery of a large iron foundry and flisishing works. Address, stating砳
CP Send for new and complete catalogue of Scientific and other Books for sale by Munn \& Co., 361 Broadway

HINTS TO CORRESPONDENTS
Names and A ddress must accompany all letters,
or no attention will be paid thereto. This is for our information and not for pubbication References to former articles or answers should
give date of paper and pageor number of question.
Inirles not answered in reasonable time should se repeated; correspondents will bear in mind that
some answers require not a little reeserch, and,
though we endeavor to reply to all either by lette though we endeavorto reply to alt either by lette
or in this department each must take his turn.
pecelal Writen Information on maters of
personal rather than general interest cannot be expected without remuneration.
cienit1ic A merican ${ }^{\text {supplements referre }}$
to may be had at the office. Price 10 cents each. Books referred to promptly supplied on receipt
MInerals sent for examination should be distinctly
marked or labeled.

Index of Notes and Queries.	.
Battery fluid.	
Incandescent filament soldering.	
Ink, to remove.	
Liquid, high specific gravity.	425
Pitch and loudne	
ins, to remove.	

(4246) F. C. L. asks: 1. Why does \mathbf{j} grow colder as you go higher? A. At higher eleva-
tions we are further removed from the heat-radiating surface of the earth, and less protected by the atmo spheric envelope of the earth. 2. Does copper wire contract and expand the same as steel wire ? A. Cop-
per when heated from 320 Fah. to 212° expands 1-582 per when heated from 320 Fah. to 212° expands $1-58$ anything that will remove ink from paper so it cannot be seen and not harm the paper? If so, what is it, and how applied? A. Miz equal parts of ozalic and tar taric acid and dissolve as needed in a little water. Apply, and take up the ink and eraser with a blotter. Al-
cohol will remove the stains of aniline. Red ink can cohol will remove the stains of aniline. Red ink can sometimes be removed with alcohol. 4. If a dynamo and motor were belted together and started, woand how long would they run? A. The power required to run a dynamo is always greater than that developed by a motor driven by the current, consequently such an rrangement as you propose would not run at all. Which is the cheapest-cable or electric railroad? Taking the cost of construction and m
(4247) A. M. asks : 1. Will you kindly nform me, through your paper, regarding the followFaller compound batteries, and will they be sue ient to light a three candle power incandescent light (or must I have four) with thirty feet feet No. 18 copper wire? A. The formula for the solution is as follows: Bichromate of sodium is aissolved in water to saturation; to this solution slowly add one-fifth of its weight of commercial sulphuric acid. Three cells of Fuller battery will hardly be sufficient; use four or five. 2. How can light a aas jet entirely by electricity, and what amount
of E. M. F. will be needed? A. For information on lectric.gas lighters we refer you to Supplement, Nos
(4248) F. E. F. writes: How much
$\underset{\mathrm{H}_{2} \mathrm{SO}_{4}=\text { sulpharic acid theoretically can de produced }}{ }$
from the atomic weights to figure the same? A. The
atomic weight of sulphur is 32 , the molecular weight of atomic weight of sulphur is 32 , the molecular weight o
sulphuric acid is 98 . Hence we have the prontion sulphuric acid is 98. Hence we have the proportion 32 , 98.: 1 : x; giving us $x=3.00$
from one pound of sulphur.
(4249) J. R. M. asks whether the mag nesium light is yet available for burning for two o
three hours, and its intensity as compared with the lime light, and its comparative cost? A. The magnesium light is used to some extent for continuou illumination in a lamp which feeds the ribbon or wire forward as rapidly as it is burned, but its action is uncertain, and it does not compare with the lime light o he electric light. As to cost, we think the expense of running such a light is considerably more than that of
the lime light.
(4250) J. G. asks : 1. On how long a ine will the Bell telephone receiver, described in SUP plement, No. 142, transmit and receive articulat peech? A. Two or hree mies, if the line is hung ad articulate more clearly if the magnet bobbin, an diaphragm were increased one-half? A. We think no 3. Has the patent expired on the above receiver 9 A No. 4. What size and kind of wire is best for a tele ohone line four miles in length? A. No. 12 galvanize ron or steel wire. 5. Through how many ohms re box bell? A. Fifty or more.
(4251) W. H. J. writes : Please explain he trolley system of electric street railway. The wir est the generator does not short circuit the others? Also the method of lighting them? A. The resistance of a motor is such as to permit it to take only the mount of current required for running it. The rest the current goes on for distribution among the othe
ootors. The current for lighting is taken from the cir int in
(4252) J. H. O. says : A discussion arose ecently as to the valne of a contrivance in common in, usually occupying the place of a pane of glass, out of which is cut a circular hole, within which is a whee when a current of air passes through it. Does the wheel in any way favor ventilation? Would a hole of he same size without a wheel serve as well? A. Th wheel adds nothing to the force of the draught; rathe
lessens it. Its only value is as a diffuser. By its action the air is spread ont so that it does not become dan erous to health as a direct draught upon a person.
(4253) J. I. C. -Tin plates wholly made nanufactured to mite estent in this country
(4254) H. S. R. asks: What solution should zinc be treated with to render its surface snita-
ble for pasting labels on? A. Clean the zinc with with caustic po (lye)
(4255) G. H. H. asks : 1. Is there a so ution or liquid whose specific gravity is 2259 A. solution of mercury iodide in potassium iodide or a so-
lation of cadmium borotungstate are the best. Whon of cadmium boro-tungstate are the best. 2 .
Woble glass be poisonous to butter if the buter were put in a package lined with the soluble not be poisonous, but might slightly affect its flavo
(4256) W. A. H. asks: Is clay consid (4257) W. S. writes: I inclose a piece of the twig of a fruit tree (ckerry I believe) infected with
scale. Will you have the kindness to describe in an swer to correspondents, the best means of eradicating the affection? A. Reply by Professor C. V. Riley : In reply to the letter of Mr. William Shackelford of The Dalles, Oregon, I will state that the insect which he sends is the San Jose scale (Abpidiotus perniciosus). This is one of the wort pests of deciduous fruit trees on he Pacific coast. Many experiments have been tried result that the most satisfactory has been found to be wash made as follows:

Resin..
 Caustic soda (70 per cent)

At twice the dilution it will be safe to apply it oliage, but it will not then be so effective. This pre-
paration should only be applied during winter or dur ing the dormant*-period; applied in the growing season, will cause the loss of foliage and pruit.
(4258) W. B. asks: 1. The name of the niver whose bed is not land, but water, and the name of large river north of China, which river must be some re-
lation of Shakespeare's Othello. A. The Gulf Stream ation of Shakespeare's Othello. A. The Guls Stream
and the Amoor we suppose are theprivers meant, Othello being the Moor of Venice 2 What language is spoken in the Argentine Republic and in Brazil? A. In Brazil, Portuguese. In the Argentine Republic, Spanish is the fficial language, but owing to a iarge influx of Italians areat deal of Italian. is spoken. 3. Where can I get a good book, not too expensive, on North American entomology? A. We recommend and can supply you
with the following books relating especially to the with the following books relating especially to the by Packard, price \$2. Packard's "Guide to the Study of Insects," price $\$ 5$.
(4259) W. N. asks : Can common stove pipe be used instead of Russian iron in making a mo(4260) R. H. P. asks: 1. Can you tell emoved from the person without injury or a scars A India ink being composed of finely divided particles of carbon cannot be removed by any chemical means. Try a piece of pumice stone. 2 . I wish to construct a plunge battery of nine cells, connecting five cells to-
gether and nave the other four so I can turn them on ne at a time. A. You will find I can turn them on battories in SUPPLBMEAT, Nos. 157 and 782. 3. Would
nine cells 4×5 with zincs and carbons 234×5 be suitable
to use in electrolysis ? A. They will answer if to use in electrolysis? A. They will answer if
nected in parallel. Larger cells would be better.
(4261) H. H. B. asks: 1. How many 5 volt 16 candie power lampe could I run at one tim with dynamo in Supplement, No. 600 \& A. 16. 2. Can dynamo? If so, how much power would it have? A. The motor was not made for use as a dynamo. It would owever, yield a small current if used that way, pro bably enough for one or two 3 candle lamps. 3. Would work better with a Gramme or Siemens armature. A. The Gramme armature is preferable. 4. Could
light dynamo be run as a plating machine: A. Yes with the changes described in Supplement, No. 793.
(4262) H. D. W. asks whether a block of charcoal made from pulverized charcoal would have ondensing gases as a similar block made from the natural wood \& A. It would depend on how the dust was agglomerated. Any paste or sirup used for the pur pose would
arbonized.
(4263) H. W. L. asks : What is the com England, and also where it is procurable in Americ A. Frankfort black is a high grade of bone black. Yo
(4264) J. G. R. asks : 1. What will tak white muslin? A. By a mixture of en ond on fine hite musin? A. By a mixture of equal parts of it will probably resist all other applications, thoug javelle water might be tried. 2. Will a ball keep it weight in a space where the air is pumped out, the sam the air out of a space, will the pump need more force when the air is nearly pumped out, than in the begin
(4265) C. L. R. asks: Would it be prac tical to run induction coil described in "Experimental Science" (Hopkins) with dry batteries? If so, how any? A. It can be done by allowing 4 cells of dry
battery connected in parallel for each cell of bichromate.
(4266) G. A. B. asks : 1. What is the difference between the pitch and loudness of tone? A.
The pitch is determined by the number of vibrations er second, while the loudness or intensity depends on the extent of the vibrations. 2. What causes a gun bar el to become hotter shooting a blank cartridge than it mnst be due to diffcrence in the rate of combustion
(4267) F. A. S. asks (1) how to make the (4267) F. A. S. asks (1) how to make the wires in incandescent lamps \& A. The filamerts of in-
candescent lamps are secured to the wires by means of electric soldering, by copper as the material for form ng the connection, or by means of carbon. 2. Also
some phonograph company that sell their machines? some phonograph company that sell their machines?
A. We onderstand that the phonographs are not sold, but leased.
E. A. B. asks for the table for the removal of 'spots and stains.-R. L. M. asks for the dimensions of rawings intended for the patent office.-C. C. W in moulding dolls' heads.-N. P. H. asks for the solvent power of glycerine.-B. B. S. asks how hams ar cured.-T. R. L. asks for remedy for headaches.-C. R. O'B. wants the composition for hektograph sheets.-C. W. H. wants information about indicator diagrams natale for a beginner.-H. P. J. wants information on catechol and paramidophenol developers. - N. H. S. wants a table for doses of medicine,called a posological
table.-G. M. B. says : What is the composition of common painter's patty?-P. W. S. says: Can you give me formulas for the following inks-vanadium, invisible yellow, silver and autographic ?--J. McA. asks how to bend glass tubes.-J. J. W. asks : What is the composition of fuller's earth ?-J. T. asks: of what is glaire composed ?-E.D. W. asks: Can you give me reliable is used in staining pool balls, and how are they striped

Answers to all of the above queries will be found in the "Scientific American Cyclopedia of Receipts, Notes The advertisement of this book is printed in another

Replies to Enquiries.

The following replies relate to enquiries recently published in Scientific American, and to the number
(4205) H. D. H. writes : Your reply to question No. 4205 , in your paper of March 26, seems little behind the times, being based upon the law of
Newtou, which law only holds true of bodies falling in Newton, which law only holds true of bodies faling in 1889 you will find given, from F. H. Wenham report for 1889 you will find given, from F. H. Wenham, June, 1866 , of air set in motion in a given time." Professor Lang. ley, in his researches in aerodynamics, Soientific American, February 13, 1892, proves that a body in motion displaces a body of air equal to its greatest
diameter transverse to the line of motion, multiplied by the distance traveled in a given time. Accordingly ake a cannon ball weighing one pound, and three nches in diameter, falling say fifteen feet in one second in a perpendicular line, and the same ball when pro-
jected 1,060 feet per second. In its vertical fall it overcomes a weight of air equal to the area of its greatest circle, about seven inches, by the distance it falls, fifteen reet, equal to 1,260 cubic inches, but when projected horizontally must overcome the weight of three inches, multiplied by one thousand feet, multiplied by fifteen the ground in the same time and as the impulse project ing it acts only horizontally, it is impossible for it to come to the groand in the same time.

To inventors.

An experience of forty years, and the preparation
nore than one hundred thousand applications for ents at home and abroad, enable us to understand the aws and practice on both continents, and to possess unnopsis of thes for procuring patents everywhere. oreign countries may be had on application, and person ontemplating the securing of patents either at homeo broad, are invited to write to this office for prices, ensive facilities for conducting the business. Addre MUNN \& CO., office Scientific American, 361 Broad

INDEX OF INVENTIONS

Por which Letters Patent of the United States were Granted

April 12, 1892.
AND EACH BEARING THAT DATE

 472,84
 472,89

?

iven inden cinier: nimarbee:
window chair.
 ,
 $e^{4725080}$

AEW AND VALUABLE BOOKS METAL WORKERS.

 BLINN.-A Practical Workshop Companion for Tin,
Sheet-Iron and Coppr-Plate Workers.
Containing rulees for deasibing various kinds of Paterns used by
Tin, Sheet-Iron and Copper-Plate Workers. Practical

 with numerous valuable Receipts and Manipulations
for every-day use in the rorkhiop. By Leroy J. Blinn.
A new, revised, and enlarged edition, printed from new
 BRANNT. The Metal Worker's Hand Book of Re
ceipts and Processes.- Being a Collection of Chemiai
Formulas and Practical Manioulation for the Working Formulas and Practical Manipulations for the Working
of all the Metals and Allovs, induding the Docoration
and Beatifying of artices mandactured therfron, as
well as their

 BRANNT.-The Metalic Alloys. A Practical Guide
forthe Manufacture of of kill kinds of Alloys, Amalgam
and Solders used by Metal Workers, together with the

 RTV The above or any of our Books sent by mail, free
postage, at the publication price, to any addressin the worl

 Arts, sont freea and free of postage to any one in ana part
he world who will furnish us with his address. HENRY CAREY BAIRD \& CO.,

PROPOSALS.
U. S. FNGLNEER OFFICE, ARMY BUILDING, NEW

MARINER \& HOSKINS O CTE EIISTS CISSYYERS S S SIARK STREET.

Han Duzen’ Pat. Lioone Pulley Oile A two years' test by conservative
manufacturers of national reputa-
 use. Prices very reasonable. , Send
for our Cutarge vamber 5 ,
V $\triangle N$ DUZEN \& TIT, Cincinnati, 0

[^0]THE "RAYMOND" FLY-RODS Asmade by tho Chub Rod Co. are

DONT COMPLAIN

DEAF MESS \& HEAD NOISES CuRED
 , 663 B way, N.Y. Write for book of of proots FREE

VOLNEY W. MASON \& CO. FRICTION PULLETS CLDTCHES and ELEVATORS PROVIDENCE. 1 . 1.

bARNES New Friction Disk Drill. For Liaht work. \qquad \qquad

H. CHANNON COMPANY,

Contractors' Supplies WIRE ROPE, MANILLA ROPE

Wooden Tackle Blocks, Etc., Hoisting Engines and Hand Powers.

24-26 Market St., CHICACO, ILL

HARRISON CONVEYOR!
 Hanoining Grain, Coal, Sand, Clay, Tar Birk, Cinders, Ores, Seeds, \&C.

ELECTRIC POWER APPARATUS,

 FOR EVERY VARIETY OF MEOHANIOAL WORK.SAFE, SURE, RELIABLE.
bstimatrs furnished. send for catalogues. THOMSON-HOUSTON MOTOR CO.,

620 ATLANTIC AVENUE BOSTON, MASS.

PAINTriörs DIXON'S SILICA CRAPHITE PAINT
 WOOD WORKING MACHINERY

NOW READY!
a NEW AND VALDABLE BOOK.

12,000 Receipts. 680 Pages. Price $\$ 5$. This splendid work contains a careful compila-
tion of the most useful Receipts and heplies given lished in the Scientific American during the
past fifty years; together with many valuable and ©ver Twvelve ; Thousand selected receipts
are here collected; nearly every branch of the use ful arts being represented. It is by far the most
comprenensive volume of the kind ever placed be-
fore the public. The work may be regarded as the product of the
studies and practical experience of the ablest chem-
ists and wo ists and workers in all parts of the world ; the in-
formation given being of the highest value, ar-
ranged and condensed in concise form convenient for ready use.
Almost every inquiry that can be thought of
relating to formula used in the various manufacrelating to formula used in the various manufac-
turing industries, will here be found answered.
Instructions for working many different processes in the arts are given.
It it is impossible within the limits of a prospectus
to exten an outline of a few features of so extensive a work.
Under the head of Paper we have nearly 250 re-
ceipts. embracing how to make papier maché; how ceipts, embracing how to make papier maché; how
to make paper water proof and fire proof; how to
make sandpaper make sandpaper, emery paper, tracing paper
transfer paper, carbon paper, parchment paper
colored papers, razor strop paper, paper for doing up cuthery, silverware, how to make luminous
paper, photograph papers, ete. have nearly 450 re
Under the head of Inss we her ceipts, including the finest and best writing inks
of all colors, drawing inks, , ,uminous inks, invisi-
ble inks, gold, silver and bronze inks, white inks
diretions Under the head of Alloys over 7o0 receipts are
faded ins, etc
given, covering a vast amount of valuahle inforgiven, covering a vast amount of valuahle infor
mation.
Of Cements we have some 600 receipts, which include almost eves of use.
and the mode tamps forms the subject
How to make Rubber Stam How to make Rubber Stamps forms the subjec
of a most valuable practical article, in which the
the complete process is described in such clear and ex-
plicit terms that any intelligent person may readily plicit terms that any inteligent pers
learn the art.
For Lacquers there are 120 receipts: Electro-Me-
tallurgy, 125 receipts; Bronzing, 1227 receipts; Pho tallurgy, 125 receipts; Bronzing, 127 receipts; Pho-
tography and Microscopy are represented by 600 Under the head of Etching there are 55 receipts,
embracing practical directions for the production of engravings and printing plates of drawings.
Paints, Pigments and varnishes furnish over
800 receipts, and include everything worth knowing on those subjects. are given, the scope being very broad, embracing
the removal of spots and stains from all sorts
of objects and saterials, bleaching of fabrics,
cleaning funnture cerian of objects and materials, bleaching of fabrics,
cleaning furniture, clothing, ,lass, leather, metals,
and the restoration and preservation of all kinds of objects and materials.
In Cosmetics and Perfumery some 500 receipts Soaps have nearly 300 receipts.
Those who are engaged in any branch of industry
probably will find in this book much that is of
practical value in their respective practical value in their respective callings. or employment, relating to the home manufacture
of sample articles, will find in it hundreds of most

IMUNN \& CO., Publishers,
SCIENTIFIC AMERICAN OFFICE,
361 Broadway, New York.

DfDertisements．

VICTORS

OVERMAN WHEEL CO．
A．G．SPALDING \＆BROS．，Speclal Agents，

Abstract

 BAIN ELECTRIC MANUFACTURING CO．
MAATEOGANTZ

 V INTEAKWOOD FOR YACHTS， THE E．D．ALBRO CO． $\left.{ }_{\text {Eranch．}}^{\text {Eastern }}\right\}^{\mathbf{2 0 0}} \underset{\text { Ft．Ew．} 6 \text { th st．，}}{\text { St．}}$
H．T．Bartlet
Sprague，Duncan \＆Hutchinson，
FRANK J．SPRAQUE，
LOUIS DUNCAN，Ph．D． ALFRED BISHOP MASON， CARY T．HUTCHINSON，Ph．D．
Consulting Electrical Engineers．
15 WALL STREET， NEW YORK．

DOU BFञाE POUVFIR？

Motor of the 19th Centary

A PRETTY BOLD ASSERTION LUNKENHERMER＇S CHEMECK VALVE the onl reriable valive in the mark
Supplien by deallers everywhere．
THE LUNKENHEIMER BRASS MFG．CO．， Cincinnati，O．，U．S．A
We have a catalogeue or specialities of interest to steam
osers．Mention the scientift A merican and get one．

95 MILK ST，BOSTON，MASS．
This Company owns the Letters Patent granted to Alexander Graham Bell，March 7th，1876，No．174，465，and January 30th， 1877．No．186，787．
The transmission of Speech by all known forms of Electric Speaking Telephones in－ fringes the right secured to this Company by the above patents，and renders each individual user of telephones not furnish－ ed by it or its licensees responsible for such unlawful use，and all the consequences thereof，and liable to suit therefor．

LOVELL DIAMOND CYCLES

AN DUZEN＇S Steam PUMP

PELTON WATER MOTOR．

THE SMITH PREMIER TYPEWRITER

The Most Dulr thbe Esinenential Features greatly perfecte Easiest Running and Most Silent．
All type cle enned in orseconds without soiling the hands
The Smith Pemier Typerwiter Co，Syracuse，N．Y．，U．S．A．
Send for Catalogue． FIRE HAZARDS FROM ELECTRICI

elto vapor engine GAS OR GASOLINE FOR FUEL． NO BOHLER．NO FIICE．NO DANGER
NO ENGINEER．

Enine operated
from
small bater bark
satery

MAS KANE \＆CO． CHICA CO，ILL．

HW．JOHIS＇ assestras SteAM Packing

Building Felt，${ }^{\text {Condiquid Paints，Etc．}}$

BUILDERS OF HICH GRADE BOATS．

 ح
 Cedar Row Boatts from \＄85 upward． $\begin{gathered}\text { Vapor and Steam Launches from } \$ 300 \text { upward }\end{gathered}$ ＊SEND 10c．FOR COMPLETE CATALOGUE． DAVIS BOAT AND OAR CO．，DETROIT，MICH．，U．S．A．

$\underset{\text { Regular }}{ }$ Folding Daylight Ordinary
 1892，
6.00 to $\$ 65.00$ ．

Latest improvements，registers for ex－ posures；glass plate attachments；daylight loading，etc．，etc．Send for catalogue．

THE EASTMAN COMPANY，

INCANDESCENT AND ARC LIGHT PLANTS．

Stationary and Railway Motors．－Lamps．－Cables．－Safety Devices．

ExGBAYRELEVATORS patent jacket kettiles

 NEW MAIL

万T LITTLE GIANT

PRICE，\＄35．00． Only Boy＇s Safety with a
Spring Fork，preventing in－ jury to young riders from
 エエエヨ

The Most Popular Scientific Paper in the World
Only \＄3．00 a Year，Including Postaze． Weekly－52 Numbers a Year．

This widely circulated and splendidly illustrated paper is published weekly．Every number contains six－
teen pages of useful information and a large number of teen pages of useful information and a large number of
original engravings of new inventions and discoveries， representing Engineerling Works，Steam Machinery， New Inventions，Novelties in Mechanies，Manufactures， Chemistry，Electricity，Telegraphy，Photography，Archi－
tecture，Agriculture，Horticulture，Natural History etc．Complete list of patents each week．
Terms of Subscription．－One copy of the ScIEN－ postage prepaid，to any subscriber in the United States． Canada，or Mexico，on receipt of three dollars by the Clubs．－Special rates for several names，and to Masters．Write for particulars． The safest way to remit is by Postal Order，Draft．or
Express Money Order．Money carefully placed inside of envelopes，securely sealed，and correctly addressed seldom goes astray，but is at the sender＇s risk．Address all letters and make all orders，drafts，etc．，payable to
MUNN \＆CO．， 361 Broadway，New York． THE
Scientific Ammerican §upplement
This is a separate and distinct publication from THE SCIENTIFIC AMERICAN，but isuniform therewith in size，
every number containing sixteen large pages full of en－ gravings，many of which are taken from foreign papers and accompanied with translated descriptions．THE ly，and includes a very wide range of contents it pro－ sents the most recent papers by eminent writers in all the princtpal departments of Science and the Useful
Arts，embracing Biology，Geology，Mineralogy，Natural try，Electricity，Light，Heat，Mechanical Englineering， Steam and Railway Engineering，Mining，Ship Bailding， Marine Engineering，Photography，Technology，Manu－ facturing Industries，Sanitary Engineering，Agriculture，
Horticulture，Domestic Economy，Biography，Medictne etc．A vast amount of fresh and valuable information obtalnable in no other publication．
The most important Engineering
The most important Engineering Works，Mechanisms，
and Mancfactures at home and abroad are fllustrated and described in the SOPPLEMENT．
Price for the SUPPLEMENT for the United States and Cangda， 85.00 a year；or one copy of the SCIENTIFIC AM－ ERICAN and one copy of the SUPPLEMENT，both mailed
for one year for $\$ 7.00$ ．Single coples， 10 cents．Address ana remit by postal order，express money order，or check，
MUNN \＆CC．， 361 Broadway，New York， Publishers Scientific Amerioan

Gbuildiag CEditiont．
The Scientipic American Architrctis And BUILDERS＇EDITION is issued monthly． 82.50 a year．
Single coples， 25 cents．Forty large quarto pages，equal to about two hundred ordinary book pages；forming a large and splendid Magazine of Archi ecture，richly
adorned with elegant plates in colors，and with other fine adorned with elegant plates in colors，and with other fine
engravings；illustrating the most interesting examples engravings；illustrating the most interesting examples
of modern architectural construction and allied subjects． A special feature is the presentation in each number of a variety of the latest and best plans for private resi－ dences，citty and country，including those of very mod－
erate cost as well as the more expensive．Drawings in perspective and in color are given，together with full Plans，Speciffcations，Sheets of Details，Estimates，etc． The elegance and cheapness of this magnificent work
have won for it the Largest Circulation of any have won for it the Largest Circulation of any
Architectural pablication in the world．Sold by all news－ dealers．$\$ 2.50$ a year．Remit to

MUNN \＆CO．，Publishers，
361 Broadway，New York

PRINTING INKS

[^0]: Machinists' Tools of every description,
 drop forged from bar steel,
 correct in design and unequaled in finish HARTFORD, CONN.

 TRAL

 TDATENTS!

 MUNN \& CO., Solicitors of Patents, 361 Broadway, New Yo

