

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

APPARATUS USED FOR ILLUSTRATING "A TRIP TO THE MOON," CARNEGIE MUSIC HALL, NEW YORK -[See page 229.]

Šitutifir gimericam.

MUNN \& CO., Editors and Proprietors published weekly at
No. 361 BROADWAY, NEW YORK.

O. D. MUNN. A. E. BEACH

TERMS FOR THE SCIENTIFIC AMERICAN.

 should be charged the same for taking out a patent in the United States that it costs them in England. The Th is said, was favorably received by the committee. The idea of compelling Englishmen to pay more for patents in this country than our own citizens, because the British fees for patents are larger than ours, is very old. Under the law of 1836 and up to the year 1861, the subjects of Great Britain were required to pay $\$ 500$ on filing an application for an American patent, and al other foreigners $\$ 300$. If the application was rejected, two-thirds of the sum paid was refunded and onethird retained by our government.
In 1861 this law discriminating between the inhabitants of the United States and those of other countries was repealed, and the same fees were established for all applicants, namely, $\$ 15$ on filing the application fo patent and $\$ 20$ payable in the event of an allowance of the patent. If no patent is allowed, the applicant loses the first fee of $\$ 15$, which is supposed to cover the cost of the official examination.
Prior to the year 1861, the number of patents granted to Englishmen was quite small, varying from twelve to twenty patents in a year. Dating from the reduction of fees in 1861 to the present time, the yearly number of patents to Englishmen has gradually increased. In 1880 the number issued to them was 275 ; in 1890 , it was 721. Of all foreigners, the English take the largest number. Germany comes next, with 452 granted in 1890. Canada 311. France 178; Austria 71; Switzerland 56; Sweden, 32; very few to other countries.
The total number of American patents issued in 1891 was 23,244 . It will thus be seen that the ratio between patents granted to Englishmen and other foreigners, as compared with the total number of issued patents, is very small. Whether it is desirable to return to the old, abandoned system of discriminating against for eigners is very questionable
The theory upon which we grant patents, and the object of our patent laws, is the promotion of useful arts and industries, not the taxation of inventors. The aim of our patent law is to encourage the study and development of new inventions whereby multiplied and diversified forms of novel industries are made accessible to the people; for by industry they thrive. The American law, as it stands, invites inventors throughout the world to bring hither their new inventions, and set up their new industries; in reward for so doing, it grants them a patent for seventeen years, afte which the invention becomes free to the public.
The larger the number of patents granted, the greater will be the number of new industries established, and our measure of prosperity correspondingly increased. As a people we have everything to gain and nothing to lose by encouraging inventors, no matter where they live or where they were born. The price that othe governments charge for their patents may be proper subject for diplomatic negotiation; but it has no bear ing or concern with the industrial laws of our own country.
The proposed bill we regard as unnecessary and uncalled for. It is unwise. It is legislation for the repression of industry and inventive genius. Nations that are so short-sighted as to adopt such measures undoubtedly subject themselves to industrial losses They are not examples for the United States to follow.

ARTIFICIAL PROPAGATION OF LOBSTERS.

During the past ten years there has been a great falling off in the supply of lobsters, until the price ha alike to the Now York market, to the waters along the New England coast and in Canada and Newfoundland, where lobster fishing and canning is an important industry. The necessity for increasing the supply of lobsters is generally recognized, and two methods ar proposed for accomplishing this object. One is the enactment of laws which will check the depletion of the lobster beds by over fishing and the other is arti ficial propagation.
Marshall McDonald, who is at the head of the United States Fish Commission, says: "I have always felt that the maintenance of the lobster fishery rested more essentially upon proper regulation of the matter by the States than upon any efforts in the way of arti ficial propagation. The most usual regulation is that prohibiting the sale of lobsters below certain dimen sions; the minimum limit, though varying with the different States, being smallest in Massachusetts. In Maine, where the law is enforced and the minimum fixed, I believe, at ten inches, the result has been
marked improvement in the lobster fisheries during recent years."
A law was enacted by the New York Legislature in 1880, prohibiting the taking of lobsters smaller than ten and a half inches, but it was repealed, largely, it is said, by reason of the efforts of a hotel keeper in New York City with political influence, who was determine to serve small lobsters on his table, regardless of the effect of rescinding the regulations.
The difficulty of securing legislation on this subject of enforcing the laws when they are enacted, and preof enforcing the laws when they are enacted, and pre
venting their repeal through the efforts of persons who have no regard whatever for the consequences of their acts, compels those who desire to see the supply of this wholesome food fish kept up to look to artificial propagation as the most available method for securing the object desired.
In the volume entitled "The Fishery Industries of the United States," by G. Browne Goode and associates, the following statement is made regarding the cultivation of lobsters
"The artificial propagation of lobsters has been rarely attempted, either in this country or in Europe, and in no case are we aware of its having been pro ductive of satisfactory practical results. There are so many difficulties to overcome in an undertaking of this character, and the breeding habits of lobsters are so imperfectly understood, that it is not surprising that greater progress has not been made in materially aiding the increase in supplies by artificial culture, as in the case of the oyster and of many of our true fishes. That further study and persistent efforts may yet afford us the means of accomplishing so desirable an object is very probable, and is sincerely to be hoped for, in view of the apparent great decrease in the abundance of lobsters on many portions of our At antic coast."
Since the above opinion was expressed considerable success has been achieved in the line of artificial propagation. The United States Fish Commission's hatchery at Wood's Holl, Mass., provides about three million young lobsters each year, and these are all placed in Vineyard Sound and Buzzard's Bay, owing to the impoverishment of the species in that vicinity.
For three seasons lobsters have been hatched in small numbers at the station of the New York Com mission, Cold Spring Harbor, L. I. Last season 27,700 were placed in the water at that point. The embryos are very delicate, and when lobsters are placed on ice as many are which come to market, the embryo is gen erally ruined for hatching purposes.
Fred. Mather, superintendent of the Cold Spring hatchery and a man of wide experience in fish propagation, said recently that lobsters were not only de creasing in numbers, but also in size. A two pound obster was now considered a fair average.
New York is next to the largest receiving market for lobsters in the country, yet the lobster fisheries within the boundaries of the State are not now important and are confined to eastern Long Island. In forme years lobsters were found in large numbers in New York Bay and at Hell Gate. The disappearance of this food fish is due mainly to over fishing, but also to the establishment of manufactories, which have polluted the waters. Lobsters were taken at Robins Reef, New York Bay, as late as 1879, but they were mall and were not exposed for sale
Lobsters are sold in New York during the entire year, but the demand is five times greater during July, August, and September than during any other three months of the year. The demand is the least during February and March. The consumption of lobsters a Coney Island in summer reaches 3,500 pounds a day.
The experience on the coast of Maine seems to be similar to that already stated. In 1890 twenty milion of lobsters were taken, which was a falling off of five million or twenty per cent from the catch of 1888 and ten per cent from 1889. There has also been a steady decrease in the size of the fish sent to market. During 1889 and 1890 the average length of lobsters offered for sale was $101 / 2$ inches and the average weigh wo pounds. Ten years ago the average length was 13 inches and the weight three and one-half to fou pounds. There are thirty-six factories on the coast of Maine where lobsters, sardines, herrings and mackerels are packed.
Considerable progress has been made by the New foundland Fisheries Commission in the way of lobster propagation. The work was taken up two years ago when the methods of the United States Fish Commis sion were adopted and their experience was made erviceable. A hatchery was located at Dildo Island. In the summer of 1889 4,039,000 lobster eggs wer hatched, and the young lobsters planted around the head of Trinity Bay, the eggs having been obtained from lobster packing establishments in the vicinity In prosecuting this work, Adolph Nielsen, superin endent, made the discovery that lobsters had two dif ferent times for spawning. The larger run of lobster spawn from the middle of July till the middle of Au gust, while the smaller and middle sized ones spaw during the latter part of October and the month of November. The commissioners make the following
statement in their report regarding the importance of which, if duly put into operation, will safeguard our lobster fishery from the injury or ruin which has over taken so many of these industries in other countries, and already threatens our own. By establishing a lobster hatchery, or more than one, in each bay, the stock of lobsters may not only be maintained, but greatly increased; and at the same time, these valuable crustaceans may be planted in waters where at present
they are not found, and their culture indefinitely exthey are not found, and their culture indefinitely extended." At Placentia Bay, Newfoundland, alone, $1,200 \mathrm{men}$ and women are employed in the lobster in dustry. Five million is the annual catch, which repre sents $\$ 180,000$ in value. Superintendent Nielsen has constructed floating hatching boxes by the aid of which it is possible to hatch lobsters when the eggs have reached a due stage of ripeness. By this means the immense number of eggs which are usually de stroyed at the canning factories can be hatched, and thus the supply of lobsters be kept up. The average number of fertilized eggs carried by a lobster in the spawning season is placed at 12,000 to 18,000 . The export of lobsters from Newfoundland has grown from 25,814 pounds in 1874 to $3,360,672$ pounds in 1888, and the value from $\$ 124,997$ in 1880 to $\$ 472,524$ in 1889 .
For the year 1890 the Newfoundland Commission state that success in the artificial hatching of lobsters exceeded their most sanguine expectations. There were 432 floating incubators in use, which were distributed at fourteen different stations. The percent age of loss in the apparatus was 28 , as against 491/2 in 1889. The result of the season's work was $406,005,300$ young lobsters hatched and planted in good condition. "In the method now employed," say the commissioners, "we have obtained an invaluable means of arresting the decline in our lobster fisheries, which in many places threatens entire extinction, and of sustaining the stock of this valuable crustacean."
The depletion of the lobster fisheries has been especially noticeable in Canada. The report of 1888 showed a decrease in the value of exports of $\$ 350,000$, as compared with the previous year, although there had been an advance in the price of 25 per cent. The value of the Canadian lobster fishery in 1888 was $\$ 1,483,388$; in $1886, \$ 2,638,394$; in $1885, \$ 2,613,731$.
Superintendent Nielsen, of the Newfoundland fish eries, is a native of Norway, and his success in propagating lobsters has attracted a great deal of attention. In addition to artificial propagation, he believes in a closed season, when the lobsters will have a chance to propagate.
Lobsters are the more easily exterminated because they frequent shoal water within certain well defined areas, and are therefore the more easily captured. This fact renders the artificial propagation the more rapid and certain.

The Las Vegas Irrigation Convention
 bi h. с. hovey.

An expert agriculturist, in whose company we crossed the great plains intersected by the Santa Fe route, exclaimed, concerning the arid regions of the Southwest, that boundless prosperity awaited them as soon a salubrious climate, wonderful scenery and inexhaust ible soil, where is the water to come from? This very question that perplexed my Minnesota friend drew a convention of about 300 representative men to the opera house at Las Vegas, in the middle of March, whom we fortunately met before they were scattered again to the corners of the Territory. We also were guests at the Montezuma hotel, on the occasion of the grand "irrigation banquet," with which their three days' meeting ended. Thus we had an opportunity not only to discuss the grave problems of political tastic mazes of Mexican dances, and to see the most brilliant society of the Southwest. It should be added that the hotel is located near the noted thermal springs to which the aborigines resorted ages ago, and is at tractive alike on account of its romantic environs and its admirable management.
The Las Vegas convention met pursuant to the suggestion made by the national irrigation congress held last September in Utah. By the courtesy of Governor
Prince and Col. T. B. Mills, chairman of the executive Prince and Col. T. B. Mills, chairman of the executive ceedings, as well as of valuable facts, some of which will doubtless interest the general public. Incidentally it may be mentioned that a prominent place in the extensive library of Col. Mills is assigned to the bound volumes of the Scientific American, which'he re-
gards as an able ally in the work of developing the gards as an able ally in the wo
resources of our entire country.

Few may know that throughout these arid regions are the ruins of an ancient system of irrigation, that ages ago made this wilderness blossom as the rose. (in cliffs and in the jaws of caverns constructed acequias on levels so admirably surveyed as to be hardly improved on by all the appliances of modern science

In the country of San Juan, and elsewhere, the pre
historic aqueducts run side by side with the govern ment ditches, and the cement with which they wer laid is as firm and hard as if it had been spread last year instead of centuries ago. The vast plateaus that were thus made fertile in an era commonly described as barbaric should certainly be redeemed anew by this age of civilization.
Irrigation is no novelty, although comparatively little has been known of it in the Eastern States, and in large portions of Europe. The fact is that, to-day, more than half mankind subsist by means of irrigation, without which they could not till the soil that now yields them ample harvests. This explains the densely peopled areas of Asia. There are said to be $1,700,000,000$ acres of arid land in the United States (not including Alaska); and of this vast area fully $76,000,000$ acres lie within the bounds of New Mexico sixty per cent of which acreage is thought to be sus ceptible of irrigation. Mining, the lumber business, and other important factors of public welfare, are to be estimated at their full value. The same is true concerning the raising of cattle and sheep, and other throughout the Territory seems now to be for water, and many are of the opinion that progress will mainly depend on the answer made by science and liberal legislation. Oddly the successful experiments in irrigation have thus far been in the four corners of New
Mexico, while its great central regions are yet left without the needed supply. More than fifty companies have been organized to utilize and properly distribute the waste water through these thirsty acres. It has been demonstrated that water enough flows in sixty days of each year through the valley of the Rio Grande to inundate the entire arid area to the average depth of two feet. One half of that amount, added to the average annual rainfall, will insure the perfection of all crops, making a total of 33 inches, allowing
for evaporation. There are enough natural reservoirs, for evaporation. There are enough natural reservoirs,
with a little additional outlay, to store all the water that now runs to waste. There is a single basin for such a natural reservoir, west of Albuquerque, thirteen miles long, four miles wide and a hundred feet deep. The water that might be stored between these natural farks would irrigate seventy-five miles of territory a fed from the Rio Grande by a ditch fifty miles long. Another natural basin near Las Vegas, four miles long, two miles wide, and a hundred feet deep, could be filled from the Moro, Sapillo, and Gallinas rivers by ditches from ten to twelve miles long. There are many smaller basins scattered over the Territory. It has also been proved that great bodies of subterranean water underlie a large part of the region, which could
be tapped by artesian wells. Thus it is certain that the land could be well watered throughout by the use of the proper means.

As illustrating possibilities we may refer to what has been done in the Pecos valley, where, from reservoirs (one of which is seven miles long and two miles wide) 400,000 acres are now under successful irrigation. About 100,000 acres of the great Maxwell grant and about 30,000 of the Montoya grant are irrigated. The results for last year were wonderful. The soil of the Maxwell grant is especially adapted for beet culture. But it is found desirable to restrain the growth of the crop Beets are capable of attaining an immense size, but at the cost of sweetness. A beet that weighs three and a half pounds contains all the saccharine matter pos-sible-all above that weight being found to diminish the proportion of sugar. By judicious irrigation Mr. Pelles, the manager of the Maxwell grant, got 15 per cent of saccharine matter from 100 weight, the average yield being 18 tons per acre. It costs but little more to raise sugar beets than corn; but the return, at the above rate, would be from $\$ 75$ to $\$ 100$ per acre. As the basis on which the sugar factories buy the beets is at the rate of $\$ 4.50$ per ton, with 10 per cent saccharine matter, of course the yield in New Mexico, as already stated, would be proportionally more remunerative factories, that produced, in $1891,27,000,000$ sugar bee refined sugar. In that same year we imported $\$ 90$,000,000 worth of sugar. The people of New Mexic claim that that amount could be raised in their Territory alone, with irrigation, and allow a surplus for ex portation. They refer also to the fact that the im portation of raisins in 1891 amounted to $\$ 20,000,000$ and affirm that this entire amount could be raised here with due irrigation. An arid country is needed for drying raisin grapes in the sun; for the cost of artificial drying would be too great. The profit from raisin cul ure is from $\$ 200$ to $\$ 300$ per acre, and the only parts of the United States suitable for it are Southern California, Arizona and New Mexico. In Eddy County, N. M., as the direct sequel of recent irrigation, one grapes. Somewhat similar statements might be made concerning the cereals, alfalfa, and all kinds of fruits The object in giving the foregoing facts is to explain ject that elsewhere may be more safis in this ren a sub-
indifference. In conversation with the governor, sec retary, surveyor-general, and other officials, the opin ion was most positively expressed that the future of the Southwest mainly depended on the solution of the irrigation problem. And the same conclusion was unanimously voiced by the resolutions passed at the Las Vegas convention. The settlers on the great plains have invested millions of dollars, not as speculators but as home seekers, only to discover that the most fertile lands in the world are worthless without water What can a farmer owning but 160 acres, or even 1,000 acres, do individually toward remedying this deficiency? Generally he is powerless. The recent laws of the United States operate to prevent the formation of great monopolies for reclaiming wide regions of arid land. The new States and Territories are hindered in many ways from developing their best resources. Most of the public domain, not yet sold or otherwise disposed of, can only be cultivated by costly canals, eservoirs or artesian wells. The mountain snow fields, the deep canons, and the raging torrents, can hardly become private property, or even the property of or dinary corporations; and yet these are the origina sources of irrigation. The outlay required is so vas that the general government can hardly be expected to reconcile the more favored regions of the North and East to consent to any adequate plan. Yet fears of the complications that might arise were any other method adopted than by governmental control caus considerable opposition, on the part of some persons to plans of a different nature and that commend them selves to the majority of those who are most deeply interested.
Every shade of sentiment was brought out at the Las Vegas convention. But after a three days' discussion a series of resolutions was adopted, with I believe but one dissenting vote, declaring in favor of having the United States cede to the States and Territories within whose boundaries are located the "arid lands," all lands of this description, on condition that each State or Territory shall at once begin the proper work of irrigation, pledging such portion of said lands a may be necessary to raise funds, but finally selling them to none but actual settlers. The resolutions also contemplated having the timber lands, mining lands, etc., ceded likewise, to aid in reclaiming irrigable lands, or to go to swell a general school fund. In brief the resolutions indorse the bill introduced by Senator Warren, of Wyoming, for turning the arid lands ove to the States and Territories on condition that they hall redeem them through irrigation
Other business was transacted of a more strictly ocal character ; and, in an informal way, the conven tion expressed itself as infavor of early statehood for New Mexico, as solving many of the vexing problems hat are now so discouraging and that deter the best class of immigrants from seeking homes within its borders, as they might otherwise do.

Drainage of a small Lake.
From the Cleveland offices of the Lake Superior, Cleveland and Pittsburg \& Lake Angeline mining companies it is announced officially that work on the project of draining Lake Angeline has begun under contract calling for its completion in five months, so says the Marine Review. The lakecoversian area of 153 acres, and has a maximum depth of 43 feet, with a mean depth of 20 feet. The lake is owned by these ompanies, whose mines are already being worked beneath it, the Lake Superior and Cleveland companies controlling about equal portions of all but about one fifth of the property, which is owned by the Lake Ange ine company. This large body of water is being re moved as a matter of safety to the present underground workings, but there is no telling, of course, what may be done in the way of further development of the properties when the water is out of the way. The companies undertaking this work are among the strongest in the mining business of Lake Superior, and there is ittle doubt that it will be carried out successfully. The ontractor is C. B. Howell, of New York. A crib will be sunk while the ice is still on the lake. A centrifugal pump having a 20 inch suction and a 22 inch discharge with a capacity of 15,000 to 20,000 gallons a minute, will be used, and the water will be discharged into the Carp River.

Extermination of the Texas Peccaries.

A recent publication of the National Museum con tains a paper, by Mr. Frederic A. Lucas, on animals recently extinct or threatened with extermination. He finds that in nearly every instance the cause is "reckless slaughter by man." As an instance of the way in which animals may be destroyed, he refers in the introduction to peccaries. In 1885 these little animals were so abundant in several counties of Texas that their well-worn tails were everywbere to be seen, while their favorite haunts could be readily picked out by the peculiar musky odor characteristic of the creatures. Shortly after that date, hogskin goods being in favor, a price of fifty cents each was offered for peccary hides, with the result that by 1890 the peccaries were practically exterminated.

an improved rifle sight.

The illustration represents a rear sight for a rifle, which is adapted to be easily and nicely adjusted, and is especially designed to make proper allowance for the wind in the setting of the sight. It has been patented by Mr. Robert W. Parker, of Camp Huachuca, Arizona Ter. Fig. 1 is a perspective view of the device applied to a rifle barrel, Fig. 2 being a broken plan view, partly in section, showing the construction and operation of the wind gauge and the means for fastening the leaf to the base of the sight, while Fig. 3 is a cen-

parker's rifle sight.

tral longitudinal section. The base of the sight is se cured to the barrel in the usual way, and at its rear it is marked to serve as a wind gauge, indicating the extent to which a supplemental base is moved to one side or the other. This supplemental base slides horizontally in the main base and moves laterally on a dovetail rib, having a transverse toothed rack in front of the rib meshing with teeth on the rear end of a pinion pivoted in a recess in the base. The forward end of the pinion meshes with a transverse worm terminating at one end in a milled wheel, by turning which the supplemental base is moved out or in Hinged to the rear of the supplemental base is a vertically swinging leaf, its pivoted end pressing upon a spring which holds the leaf in a vertical position when it is tipped up. When the sight is used for point blank shooting the leaf is turned down, the peep hole being made elliptical. The leaf is slotted, and a slide is held to move in the slot, the leaf also having counter grooves in which slides a head, moving obliquely when pushed up to counteract the drift of the bullet, the slide and head being connected, and each having peep holes to be used as sights, gauge marks on each side of the leaf indicating the range of the rifle when either peep hole is used. A novel mechanism is provided for raising the slide and holding it at the desired adjustment. If there is but little or no wind, the supplemental base and the mechanism carried on it are centrally held, but if there is considerable wind, the base is moved to the right or left as desired.

EXPERIMENT IN CAPILLARITY.
r. o'conor sloane, ph.d.

A very pretty experiment in capillary force, adapted

experiment in capillarity

for projection by the magic lantern, is shown in the cut. It illustrates the attraction and repulsion between bodies surrounded by like or unlike liquid surfaces. If a body is partly immersed in a liquid which wets it, the liquid surface will rise in a curve all along its wetted
surface, forming part of a concave meniscus. If an other body in similar condition is brought near it, the two will be attracted and, if permitted, will be drawn
together so as to adhere. This is shown by floating a together so as to adhere. This is shown by floating a or later it goes to the side and stays there in contact with the side of the vessel.
If a body not wet by water is immersed in it, the liquid will curve downward where it meets its surface forming part of a convex meniscus. If two such surfaces are brought near together in the same liquid, they will attract each other also. An iron ball floating in a glass of mercury is drawn to the sides of the vessel, because the mercury does not wet either iron or glass.
In the experiment illustrated a straight-walled tube about an inch in diameter, is connected with a funnel by an open tube at its bottom and by a short piece of India rubber tube. The tube and funnel contain water. No air must be'left in the rubber tube. As the funnel is raised or lowered, the level of the liquid in the tube will rise or fall. If the edges of the tube are perfectly dry or, still better, are oiled or coated with paraffine or beeswax, the liquid can be forced up far above the level of the tube, so as to form a meniscus. This, when projected by the lantern, especially if a reversing prism is used, will form in itself a very striking object.
A ball, which may be a Christmas tree ball, with any apertures closed by sealing wax, is floated in the tube. As long as the water is below the top of the tube, the ball will stick to the side of the tube. Now, on raising the funnel, the liquid will rise, carrying the ball with it. As it reaches the top of the tube and rises above it, it forms the convex meniscus. As this occurs, the ball, as if by magic, sails away from the side to the center, and remains there. If displaced, it returns to the center. On lowering the funnel, it again goes to the side as the convex meniscus gives place to a concave side a
one.
Thi

This method of changing the water level is to be recommended, as it avoids the necessity of introducing anything from above, whether water or a solid object, in order to raise the level of the liquid. As shown in the cut, it is mounted for projection by the experimental lantern.

A Word to Inventors.

The following good advice to patentees we copy from the Manufacturer's' Gazette Boston). We commend it to the atten ion of patentees generally, who are too apt to reject very good offers for their patents soon after their issue
We have frequently been asked by inentors who have succeeded in producing small articles of more or less merit, and for which there appears to be a demand
what is the best method to pursue in order to put them on the market.
This is a question which has puzzled a great many, and especially those who with small means are unable to go into the manufacturing of their specialty on large scale, without parting with a controlling interest in their patent to another party in order to raise the necessary capital with which to push the business, a transaction which many object to on account of the possible and probable consequences which of ten follow viz., the loss not only of the patent right, but of al share in future business.
In nine cases out of ten it is far better for the invent or, and he will realize more from his invention, to sel out entirely, and turn his attention to some other busi ness, or the production of a new patentable article That is, in case he has no money with which to develop and place his invention in the market.
The only difficulty in this is that a majority of in ventors set too high value upon their inventions. The think they have the world in their hands, and are disposed to hold on to it, unless some one comes along who is foolish enough to pay an unreasonable price for the patent. This is where they are joften mistaken, and it would be far better for them to accept a bona fide offer, even though it is but a fraction of their ideal value of the article
The fact is that no invention, however valuable at the time it is produced or perfected, is sure of a monopoly or even a fair competing chance for a great while, and the sooner the inventor disposes of it, the better off he is. Thousands of inventions have been dead failures, and never returned to the inventor one dollar, simply because, thinking that he held a monopoly, and that the world was bound to him, he has held on to it, unable himself to put it upon the market, and alike unwilling to allow any one else to do so for a rea sonable consideration, until some one else has come out with something equally good, and possibly an improvement, and he finds himself without a bidder, and another man making money which he might have had, had he used better judgment and good sense.
Another way in which a mistake is made is in star
ing out on too large a scale. If you have a really valu
able patented article, there is very little difficulty about finding a market for it, if you are not too hasty. It is better to begin in a small way and gradually increase than to begin by forming a large stock company and beginning too large. We are speaking in reference to the inventor's interests. If he can get his goods manufactured so that he can handle them himself, even hough in a small way at the start, if his invention is worth anything, he will soon be able to increase his business and can then hold control of it himself. As a ule, we are of the opinion that it is better to contract with some reliable firm for the manufacture of the arti cle than to go to the expense of putting in the neces sary machinery, etc., to do it for yourself. This is es pecially true in relation to the smaller articles.
By doing it in this way, you are saved the care and management of a shop, and have more time to devote to pushing the sale of the article, and the difference in the cost is very little-hardly sufficient to compensate for the possible saving.
It also gives you the use of the capital which would be required to fit up and maintain a shop, with which to push the business, and at a time when it is needed, too.
After the business has grown sufficiently large to warrant it, then there is time enough to put in a plant, and you will be better able to do so, and you will be in a position to know what is required.

AN IMPROVED CRUDE OIL BURNER.

The competition between oil fuel and coal is a most interesting one, and certainly shows an increasing use of oil where the conditions are favorable for its employment. Perhaps the most conspicuous of the advantages possessed by oil over coal as a fuel is the readiness with which the most intense heat can be employed at any special point desired, and the economy with which it can be used for just the period required. In addition there is a great saving of labor in the use of oil, and, as there are no ashes made, all the

AN IMPROVED CRUDE OIL BURNER.

work around the boilers and furnaces can be kept in a much more cleanly condition.
The obvious advantages possessed by oil have led to much experiment in designing the most efficient burner , and the one shown in the accompanying illustration, recently put upon the market by the Shipman Engine Mfg. Company, of Rochester, N. Y., is claimed to practically effect the most complete atomizing of the oil, thus insuring the most perfect combustion. It is also safe, because the oil is sucked up by the burner from the tank below its level, instead of being fed from a tank above, and depending on regulating devices, although it will work in either way. The regulation is effected by means of the lever shown, which is attached to the oil sleeve. In case of clogging, by opening the cleaner valve stearn is allowed to pass through the oil chamber, cleaning the burner, without disconnecting any pipes at all. Likewise, the oil chilled or thickened by cold may be warmed and made to run freely by first closing the oil sleeve and then opening the cleaner valve, which will allow the steam to free its way up the oil supply pipe. The claim is also made that in point of economy in combustion it is unexcelled by any other petroleum oil burner. It is made in six sizes, and, as all the parts are interchangeable, cost of repairs is reduced to a minimum. In the illustration, A represents the steam valve; B, the oil regulating lever; \mathbf{C}, the cleaner valve; D, the mouth of the burner; G, screw for attaching burner to boiler or furnace front.
The economy of using oil is now becoming recognized in many lines of business where it had heretofore been deemed inadmissible, and it has been found suitable for nearly all purposes that coal is used for, working successfully on boilers, brick kilns, forges, ovens, salt evaporators, driers, etc.

Compressed Air in Chicago.

An ordinance has been passed and signed by the mayor of Chicago giving permission to a company known as the Chicago Power, Supply, and Smoke Abating Company to lay pipes in the streets of that city for the transmission of compressed air as a motive power for machinery.

MUIR GLACIER, ALASKA.*

by s. p. baldwin.
The first known of that greatest of Alaska's wonders, the Muir glacier, was reported in the account of Vancouver's explorations about Sitka in 1794, where he describes what is supposed to have been Glacier Bay as completely filled with ice and " terminated by compact, solid mountains of ice rising perpendicular from the water's edge." In 1879 the glacier was first described by Prof. John Muir, who spent some days wandering over the ice, a blanket and a few biscuits on his back and only the ominous roar of the subglacial waters to break the solitude. His vivid description, seconded by the tales told by Dick or "Professor" Willoughby, an old hunter of that region, led the steamer company to explore the bay, and now every steamer makes the extra journey of fifty miles necessary to allow its load of tourists to set foot on this great frozen sea.
As the steamer turns into Glacier Bay, what a marvelous sight appears ! To the west the great St. Elias Alps tower above; Mt. Criblon ' 15,900 feet high), Mt. Fairweather (15,500 feet high), La Perouse Lituya, and others nearly as high, covered with snow and ice to within four thousand feet of the sea, sending immense glaciers down to the ocean on one side and to the bay on the other.

A ring of peaks from eight to ten thousand feet high form the background to the north and east, a few of them bare

Map of Glacier Bay, Alaska, and its surroundings. Arrow points indi-
cate glacial area.. (Courtesy of Prof. G. F. Wright.) sub-glacial streams in a year. vasse. slowly and is consequently much smoother, broken only here and there by
east, a few but only be c
seventy-seven billion cubic feet of ice are discharged into the bay as icebergs every year, and no less than one hundred and seventy-five billion cubic feet of water melt from the surface and flow into the bay as

The most rapid motion is from the north through the center, and so rough is the ice here that it is inpossible to cross it. Immense crevasses, ridges, paramids, and towers are mingled in the wildest confusion as in a stormy sea; moraines and bowlders-all that dare approach are swallowed up in the yawning ere

The ice of the eastern half is moving much more while we speak a so precipitous. And now about one of these bare peaks only to disclose it to view in a few minutes, shrouded in white fresh snow.

From the flanks of these mountains come great frozen rivers, flowing steadily though slowly on to meet in one immense glacier in the amphitheater below, and march majestically on to the front to join in the cannonading of the icebergs.
At the head, the long, narrow bay divides into two inlets. The next one, as yet not named, contains several glaciers which have not been explored. The Muir Inlet, to the east, is perhaps five miles long and two to three miles wide; on either side mountains rise abruptly, often perpendicularly, for the land here is
"all on end," as is the whole of our northwest coast; at the head a wall of blue ice, a mile long and about four hundred feet high, cut into towers, castles, and hundred feet high, cut into tow caverns, threatens with groaning
and thundering, as prisms from the size of a paving stone to the size of the Cologne Cathedral go crashing down to the water, throwing the salt spray hundreds of feet into the air, sending forth waves to lash the shores throughout the bay and echoing among the mountains as a thunder storm.
These icebergs float off down the bay, some stranding and melting where they are confined; others, pushed about by wind and tide, form impassable jams, ringing errill as the waves rock them back and forth.

The ascent of one of the neighboring mountains discovers the home of the mountain sheep, for to the height of three thousand feet there height of three thousand feet there
extends a rich carpet of grass, and extends a rich carpet of grass, and
many: familiar flowers, as the epilobium, goldenrod, and blue-bell, remind one of home, while each little ravine contains its snow bank and the accompanying pool of clear, cold water. The scene from here is magnificent ; high mountains on every side, and nestled at our feet, this great sea of ice thirty miles in diameter and formed of many branches, any one of which is as large as the Gower or Aletsch of Switzerland.
This glacier is as large as all the Alpine glaciers together, twelve hundred square miles, an area equal to Lehigh, Northampton, and Carbon Counties in Pennsylvania combined, and a thousand feet deep at the mouth, three hundred feet above water, seven hundied feet perpendicular below the surface. It contains more water than Lake Erie, and it is estimated that * Abstract from the Lekigh Quarterly for January, 1892.; glacier at a gradual ascent of one hundred feet to he mile until the never is reached.
During the summer the surface disintegrates and melts off two inches a day, forming thousands of little rivers flowing in all directions and joining in larger streams until finally they reach a crevasse or a round deep hole, called a moulin, into which the waters ar precipitated to join the rumbling streams beneath.
While the surface appears white, a glance into a moulin tells a different story, for just below this white ice a clear sea-green appears, which grows darker and clearer as the ice is thicker, until an intense blue beckons us to the crystal depths.
The slower moving ice is often heavily loaded with stones and earth, for of course each branch bears two stones and earth, for of course each branch bears two
loads of moraine in to the great basin, and this pro-
roughness of the central portions; then, after a base line had been established and accurately measured, it was suddenly discovered that the base line was on mo-raine-covered ice and probably moving. Finally a base line was staked off on dry land and measurements taken on certain peculiarly shaped ice pillars at various distances, and the angles read every four various.
The motion found by Professor Wright was in the center about sixty-five feet a day, and less, of course nearer the sides. That seems very rapid when com pared to the Alpine thirty-three inches a day, but here we have an enormous mass of ice all crowding through a narrow opening, but pressing toward that opening from every side. The width and depth of the ice greatly reduces friction.

Since the Muir galaier was measured, a similar rate has been found in a number of glaciers in Greenland and in one case a rat of ninety feet a day was found. In 1890, when Professor Reid measure Professor Reid measur ed the motion, the front was found to have re-
treated more than half a mile, so that the first two branches barely, if at all, added their pres sure, and the rate was increased.
The width of the water front is about a mile, but the whole width between the mountains at the mouth is about two miles. On either side is a triangular patch of moraine
crevasses, so that one may walk for miles up the half a mile wide at the head, in which the glacier ends,

MUIR GLACIER, ALASKA.

(From a photograph by J. F. Morse, Cleveland, o.

moraine forms a ridge, and on this ridge each large stone by further protection is raised on a pillar of ice often several feet above the general level. Here are collections already made for the geologists, and besides granites, some peak many miles back has sent specimens of silver ore, while another has tried to rival Carrara for marble.
When Professor Wright tried to measure the motion n 1886 he found it was practically impossible to set a line of stakes across the glacier, partly because the surface melts off so rapidly, but mainly because of the

 glaciated area, without the great submergence sometimes claimed. Mr. Cushing, who visited the glacier with Prof. Reid in 1890, describes several of these lakes as found near the heads of valleys of the eastern side. The stream which cuts through the moraine of the west side has uncovered an ancient forest buried deep in the glacial sands.
Rooted in the peat and sending their roots far into the blue clay are many stumps or trunks of trees of various sizes, from an inch or two to more than a foot in diameter, quite bare of bark and invariably broken off at a height of ten to twenty feet and the top bruised
in the direction down the inlet. This forest has been covered to a depth of nearly a hundred feet by the fine sand of a portion of the moraine, which extends several miles down the inlet, on that side, at a constantly decreasing altitude. The fact is that since these trees grew the glacier has advanced until it glided over the trees and over this whole moraine, then it has receded again and a little stream is now doing what the great glacier could not do, root out the trees.
How long the ice may have passed over the buried forest, or how old the trees are, cannot be certainly stated, but the ice must have filled Glacier Bay since the trees grew, and that must have been several hun dred years ago-and may have been several thousand Yet the wood is now so fresh that it might well be but a few years old. That the ice filled Glacier Bay within a few hundred years is very evident from thc condition of the vegetation, for there are no trees nearor than Beardslee Islands, though the conditions are very favorable. The smaller vegetation has spread more rapidly and covers the mountains, while it is gaining some foothold on the moraines about the mouth. Here the plants grow less in quantity and variety nearer the glacier, until within half a mile of the ice no plants are found. Again the mountain sides are very handsomely grooved tu a height of 3,000 feet, and even the polish is well shown, though rocks in this atmosphere disintegrate very rapidly. Debris, too, can be found at a height of 3,000 feet, and Vancouver's de scriptions seem to show that the ice in his time, though not filling the bay, extended much farther down. Not only has the glacier retreated a long distance since Vancouver's time, but it is now retreating very rapidly. Photographs taken by Professor Reid's party in 1890 show that the front has receded about 3,000 feet in four years, and the steamer company report that since 1883 it has receded over a mile. The ice front ha decreased in thickness also, for it is now at the same height, abovc water, 300 feet, but back at a point which was 400 feet high in 1886. Mr. Cushing shows that [the glacier is dying out, about the heads, with equal rapidity, so that the ice retreats from the mountains into the basin and the source of supply is cut off.

Railway Rust.

The rusting of rails in long tunnels is the subject of a recent article in the Civil Ingenieur, doscribing the results of observations in the Altenberg tunnel, which is about 1,230 feet long and located on a curve of 2,950 feet radius. The rails had been down for 11 years, and at the end of that time were covered to a depth of 0.16 to 0.24 inch by hard scales, which could only be removed by a knife. They were composed mainly of iron sulphide, and wero found principally on the web. While the weight of the rail was much reduced in this [manner, its \{sectional area was found to have increased, owing to the flaky character of the rust. The new rails have been covered with a mixture consisting largely of tar which is renewed every six months. The gravel bal last has also received a partial covering of broken limestone, and by these means it is hoped that the formation of rust will be retarded. In the Brandleite tunnel, in Thuringen, it was found that rails and metal ties were destroyed by rust as fast as by the passing trains. The ties lost about 5.9 pounds each in six years. This tunnel is nearly 10,000 feet long, and is on a tangent having a 1 per cent grade.

Tropic and Semitropic Fruits and Nuts.
For the first time the Census Officehasmade a special investigation for the purpose of ascertaining the extent and value of the production of oranges, lemons, figs, almonds, cocoanuts, and other tropic and semitropic fruits and nuts as industries of the United States. A preliminary report has been prepared by Mr. J. H. Hale, special agent, under the direction of Mr. Morti mer Whitehead, special agent in charge of horticul ture.
The material from which these statistics are compiled was obtained direct from the growers upon schedules specially prepared for that purpose and by personal visits of special agents to sections of the country where these products are grown.
From the tabulations in Census Bulletin No. 161, it appears that, in addition to the tropic and semitropic fruits and nuts grown for home and family use, there were in the census year 13,515 acres of almond, 677.50 of banana, $169 \cdot 88$ of citron, 9,864 of cocoanut, 4,477 of fig, 550 of guava, $1,362 \cdot 25$ of kaki, 7,256 of lemon, $495 \cdot 58$ of lime, 12,180 of madeira nut, 7,097 of olive, 184,003 of orange, $2,189.50$ of pineapple, $171 \cdot 89$ of pomelo, and $27,419 \cdot 50$ of pecan trees, representing 658,566 bearing and 800,010 nonbearing almond trees, 577,782 bearing banana plants, 4,237 bearing and 14,110 nonbearing citron trees, 123,227 bearing and $1,199,549$ nonbearing cocoanut trees, 138,186 bearing and 285,201 nonbearing fig trees, 32,943 bearing and 120,529 nonbearing guava trees, 58,390 bearing and 124,522 nonbearing kaki trees,

167,663 bearing and 498,784 nonbearing lemon trees 9,096 bearing and 44,255 nonbearing lime trees, 188,40 bearing and 411,248 nonbearing madeira nut trees, 278,380 bearing and 331,022 nonbearing olive trees, 880,890 bearing and $9,705,246$ nonbearing orange trees, $2,750,000$ pineapple plants, 3,279 bearing and 12,867 nonbearing pomelo trees, and 214,988 bearing and 657,980 onbearing pecan trees
Excluding pineapples and bananas, which are all counted as bearing plants, as they commence fruiting within a year of planting, it will be noted that th average number of all nonbearing trees is about double that of the bearing trees, the product of which in the census year was, as far as reported, valued at $\$ 14,116$, 226.59 , divided as follows: Almond $\$ 1,525,109.80$ banana $\$ 280,653.75$, cocoanut $\$ 251,217.41$, fig $\$ 307,271.76$, emon $\$ 988,099.92$, lime $\$ 62,496.90$, madeira nut $\$ 1,256$,
 $\$ 58$, olive $\$ 386,368.32$, orange $\$ 6,602,099.06$, pineapple
$\$ 812,159.17$, pomelo $\$ 27,216$, and pecan $\$ 1,616,576.50$. On $\$ 812,159.17$, pomelo $\$ 27,216$, and pecan $\$ 1,616,576.50$. On rees in fruitage, the next census ought to show a value of product of more than $\$ 50,000,000$. As a forecast of the future growth of these branches of horticulture, in addition to the acreage already planted, the number of acres of land in the United States susceptible of development in plant in any one or all of the fruits and nuts named has been ascertained, and the aggregate figures are also given.

THE LOVELL DIAMOND SAFETY BICYCLE
The accompanying cut shows the 1892 model which the John P. Lovell Arms Company, of Boston, Mass. have just placed on the market. The frame is of the diamond pattern, and made entirely of seamless stee tubing and drop steel forgings. Front wheel 30 inches, with $13 / 4$ inch pneumatic tire; and rear wheel 28 inches, with 2 inch pneumatic tire; ball bearings of the im

THE LOVELL DIAMOND SAFETY BICYCLE.
roved pattern to wheels, crank shaft pedals, and head; gear, 57 or 60 inches. Scorcher saddle and loop addle post furnished, if preferred. Weight, complete 43 pounds ; stripped, 38 pounds. The Lovell wheels ar guaranteed in every respect. They are a reliable and high grade wheel. The Lovell Company have moved heir factory to Fitchburg, Mass., and their works, when completed, will form one of the largest manufac tories of bicycles and firearms in the world.

The Future of Manufacture

Ex-Governor Goodell, of New Hampshire, responding to this toast at the recent hardware dinner in this city, said: We have been told this evening truthfully that we made a year or two ago about ten millions of tons of iron in this country. This is certainly an enormous amount, but it is easily explained, yet, when we remember that, when we make $10,000,000$ tons of pig iron in a year, we are making 27,000 tons in a day and we are making a car load of pig iron a minute for every day of the year counting Sundays and holidays, are we to continue such an enormous production Can this country consume such a quantity? Or are w in the near future to find such a reversion in thi business that many of our furnaces will be obliged to bank their fires and go out of blast? It is a question too much for me, and I think, possibly, too much for you to decide. Yet I have great confidence in the uture. In considering the future we must conside the past. A few years ago our bridges were all made of wood, with the exception of a few bolts and pins Now they are made almost wholly of iron. A few years ago our fences were made almost wholly of wood Now barbed wire is used everywhere and the barbed wire business is one of the largest in the country. It is spreading all over the country, and it is likely to spread more and more in the future. We are contantly designing and discovering uses for iron and steel. Last night, as I was riding in a railway car, a fellow passenger asked what would the railroads do or ties in a short time. I then remember that just put into use and that very soon it would be likely tha
hey would take the place of the wooden ones on every ailroad in the country. Then, when I remember tha invention is going on all the time; when I realize that Morse, Fulton, Edison, and all the greatest inventors of history have been Americans; when I realize that a few years ago a hall like this would have been lighted with sperm oil distributed from New Bedford, then a ittle later by gas, and that to-night we have thi beautiful light, I have great hopes for the future of manufacture.
You tell me that we are living in a generation the like of which has never been known in the earth's his tory, and you will also perhaps tell me that we are iving in a generation the like of which will never be known again, but I believe that we have just begun to discover great things. What they will be no one can tell. We have been told about iron in the blood to-night, how it makes mind and muscle strong. My riend and myself are strong prohibitionists and we believe that the time is spcedily coming when pro hibitionists will have prohibition, and when those who are accustomed to the use of such things as produce intemperance will be seeking it as a substitute. (Applause.)
We can hardly conceive of its various uses. I am told that Edison is just now engaged in putting up wires around a mountain of iron, by which he expect to hear the sound of the great explosions that occu rom time to time in the sun. I am afraid that I shal never hear the sound of the explosions in that great uminary, as I am growing old, and I am afraid, too hat should he be able to hear them, the grea Creator of all things would cause him confusion as he did at the tower of Babel.
We can scarcely imagine, in the midst of all this, what the future is going to bring us. I have grea confidence in her gifts, but perhaps something should be said about the profits in the manufac ture of the future. Are wc going to mak money by them? The price of everything is going down, is cheaper to-day than yester day. A few years ago, the price of stee was 10 cents a pound, and wc can buy jus as good steel now for a third of that sum The price has been constantly decreasing in almost every branch of manufacture. W are constantly being told that the price is so low and the profits so small that we will bo obliged to give up business soon. I tell you that we old fellows who have an oldish way of doing business, a rut in which we hav been accustomed to let things run, and who think that we can do business in no othe way, will be obliged to go out of the trade. We will go to the wall, but the young man with his eyes open, and who is awake to the responsibilities of his position and who is not content to remain in the groove of his father's methods, which were the proper ones thirty years ago, will devise some new method, some new way, and he will produce the good we have been selling at a ruinous loss so that he will be able to make money on them.

Cement Floors.

Recently I visited a newspaper pressroom, says contributor to the Art Printer, which was, like the majority of pressrooms, especially those for newspapers, located in the basement of the building-an essential in placing a large machine or a number of them on a solid foundation. To prevent the dampness arising from the earth and injuring the press and roll rs a concrete fioor had been laid before the press was set up.
After examining the press, the pressman informed the writer that he had swept the floor several times dur ing the day, but that the dust seemed to accumulat rapidly again. No dust was blown in from the outside when the doors were opened, as the ground was frozen and covered with snow. The dust was ground out of the concrete by the tramping of the persons employed in the room.
This dust is not like the ordinary house dust, but is of a coarse, gritty nature, and when blown about the press by the circulation of air through the room is sure to settle on the joints, journal boxes, and in the oil holes and fountain, no matter how carefully they may be covered or protected, and in a short time will do in alculable injury to the machine.
Joists should first be laid and the spaces between them filled with concrete until nearly level with the top, and a well joined, hard wood floor laid over all, which will wear better than the concrete and be more satisfactory than any other floor that can be put in a printing office or workshop. The proprietors of printing offices, who contemplate the erection of new build ings or repairs, would do well to make a note of this. [The trouble above mentioned was due to poor ce ment, which did not bind the sand. First class Portland cement one part, fine, sharp, clean sand two parts, veritable artificial stone, which ordinary use will not abrade.-Ed. S. A.]

A TRIP TO THE MOON."

This is the title of an illustrated scientific lecture presented biweekly at the Carnegie Music Hall, in this city. The Urania Astronomical Society, of Berlin, brought out this unique spectacle three years ago, since which time it has enjoyed great popularity. The managers of Music Hall-founded by Mr. Andrew Car-negie-secured not long since the scenery and apparatus for production at that hall. The lecture, since its introduction here, has been rewritten by Mr.Garrett P. Serviss, the well known astronomer and astronomical lecturer, and it is now presented in a manner which commands great interest and attention. The lecture is opened by some interesting statistics regarding distances, masses, etc., which are well calculated to astonish the unastronomical hearer. The first scene is the reproduction of a solar eclipse as it was seen from the shores of one of the Havel lakes, near Berlin, on the morning of August 19, 1887. On this morning the sun arose with the greater portion of its disk obscured by the moon. As the sun ascended, the crescent diminished, and at the moment of totality the wonderful corona flashed into view. This scene gives the listener an idea of what the astronomers mean when they attempt to describe this wonderful phenomenon. Slowly the moon passes from before the sun until the earth is fully illuminated and the sky and landscape assume their normal appearance.
Interesting as these imitations of celestial and terrestrial phenomena are, the manner in which they are effected is still more so, and our front page illustration gives a peep behind the scenes and explains the means by which the illusion is produced.
The trees and foreground are set in front of a transparent prospect upon the back of which the opaque parts are silhouetted in black, leaving the sky and water translucent.
Two optical lanterns, one of which carries the crescent and the other the corona slide, are mounted upon a box movable along the inclined side of a triangular frame by a drum and cord, and are thus enabled to imitate the appearance and course of the heavenly bodies. The screen immediately below the horizon intercepts the image of the luminary below that line.
The waves that play upon the surface of the lake are produced by a slide in a third lantern. This slide consists of clockwork, governed by a set screw, and actuating three eccentrically mounted rods moving in parallel planes and supporting glass screens upon which waves are painted. The interference of these waves permits ribbons of light of constantly varying position and width to fall upon the screen and give the effect of water ruffled by a breeze.
The play of natural variations in color and intensity of light produced by the revolution of the earth and its passage through the penumbra and umbra of the moon's shadow, and the development of full sunlight, are perfectly co-ordinated with the changing conditions of their source, the sun. This part of the illusion is effected by the management of the foot and border lights. These lights are red, white, and blue incandescent electric lamps arranged in series and controlled by a regulator permitting every possible variation,
combination, gradation, and intensity of tint, and to combination, gradation, and intensity of tint, and to the scene is due.
Our interest in this mysterious darkener of the sun is now gratified by a view from the distance of five thousand miles, showing the lunar mountains and
other prominent features. other prominent features.
The plaster image of the moon viewed through a circular piece of gauze set in a black drop curtain is three meters in diameter. The changes of phase are produced by the light thrown from the lanterns as shown in the illustration.
The vicinage of Mounts Aristarchus and Herodotus and a view of Cape Laplace are shown from a height of two and one-half miles. These splendid scenes are a triumph of science and scenic art.

By trigonometric mensuration of the shadows and application of their values by perspective, the artist is enabled to represent the general features of the landscape with fidelity. These scenes are lighted from behind by four arc lights and a bench and foot lights, having a combined illuminating power of 8,500 candles; and well bring out the contrasts of earthly landscapes, softened and harmonized by the presence of air and life, with those of the moon, which, under a sky of eternal blackness, glitter in a je
of death, for the moon is a dead world.
of death, for the moon is a dead world.
From the same place, and reflects to the moen to occupy the same place, and reflects to the moon a part of the light received from the sun. This earth light is observed when the new moon is first seen, and also when the old moon disappears.
The phenomena of earth light and sunrise on the moon is given by transparent earth painted in the sky and lit up by a lantern. The mountains on either side have a lantern each, whose light is permitted to fall on the drop by gradually lowering a screen.

A modified are light illuminates the front of the A modified arc light illumi
scene and gives the earth light.

Probably the most unique of the cosmic phenomena unfolded is a solar eclipse viewed from the moon.
The earth is an opaque disk, with a red gelatine band attached to its circumference with white muslin, and suspended frcm two hooks set in a shelf extending
across its back. A coat of phosphorescent paint gives across its back. A coat of phosphorescent paint gives
the glow. The sun consists of a box with a cover of isinglass, on which the sun is painted. Semicircular wooden arms inclose a reflector, and support six incandescent lamps, set radially inward.
The box hooks into a piece of leather with a circular aperture coincident with the sun's face and sewed into the drop. Holes in the drop allow the light from an are light to imitate stars.
The surface of the moon is painted on canvas supported on hinged props having spread feet; a stiff rod joins the hinges and forms the horizon. A footlight is placed within this tent-like cover to illumine it.
The drop curtain carrying the sun box is raised by a
windlass, and as the sun rises accompanied by the windlass, and as the sun rises accompanied by the hind the earth the earth's atmosphere, which the footlight transfers to the moon until the extinction of the solar disk. The return to earth is marked by a view of that part of the earth's surface most resembling the moon's, the Tyrolean Highlands. The after glow of sunset, moonrise and a lunar eclipse are depicted with great accuracy.
The gradual movement of a deep red gelatine film across the lantern slide holder causes the moon to ap pear to enter and emerge from the earth's shadow.
A sunset in the Indian Ocean and moonrise on the first scene conclude the lecture. A series of stereopticon views of great beauty are interspersed between the mounted scenes, and thus a continuous and most interesting entertainment is provided.
The scenery and ingenious mechanical effects are designed by Mr. W. Kranz. The regulator is the in vention of Mr. J. Carl Mayrhofer, the electrician of the theater. The stage plugs used for electrical connections enable that part of the work to be effected instantly. The work of this scientific theater is not to be confined to astronomy alone, but is intended to embrace those sciences that can be attractively illustrated.

Caviar.

Caviar, which is made from the eggs of the sturgeon is an important article of exportation for many citie of Russia and Astrakhan, and principally Taganrok. The annual amount is estimated at 40,000 pouds (poud $=35$ pounds). The greater part goes to Turkey, Greece, Italy, and Germany, very little to England, and still less to France. The fisheries are situated at the mouth of the Volga, upon the banks of which stand vast storehouses with basement and cellars in which are found the tubs that contain the brine used in the preparation of caviar. The most profitable fish ing is done in autumn, this season yielding the largest quantity of eggs. In winter, the fishermen make
large holes in the ice and fish with the spear. At all other times they use nets, about 300 feet in length, to which are attached cords provided with hooks. Each of these is strong enough to hold a fish of large dimensions. Each establishment owns a fleet of boats. The fishes brought on board are laid upon boards and covered with salt, and are then opened for the purpose of extracting the eggs and the entrails, which the Russians are very fond of, and which they eat in a fresh state. For exportation, caviar is prepared in two dif ferent ways: 1. The eggs are washed and then immersed in strong brine for three quarters of an hour and finally allowed to drain. In this way "granular" are first cleansed, then pickled and finally allowed to dry slowly. Then they are packed closely in canvas they are ready for shipment. A ruder process, but one much used in the trade, consists in immersing the eggs, immediately after collection, in brine, wherein they are left for several months, after which they are dried in the sun.-La Nature.

A Tar Asphalt Lacquer for Iron
is composed of 30 parts of West Indian copal, 30 parts of American pine resin, 30 parts of mineral asphalt, 30 parts of tar asphalt, 5 parts of yellow wax, and 6 parts of Venetian turpentine. These ingredients are melted and uniformly mixed by stirring. If the mixing is properly done the melted compound runsoff the spatula in a cohesive, uniform, thick stream. The following are then added to the substance while it is still mode ately warm: Twelve parts of resin oil, 30 parts of lin seed oil varnish, 30 parts of turpentine oil, and, finally, from 30 to 45 parts of benzine. If it be desired to make the lacquer thin fluid, the quantity of benzine is increased. Painting must be several times renewed, the more often the finer the appearance.

Flanged pulleys destroy many good belts. A prop erly rounded pulley will retain the belt on the center A belt ought only to have contact with the pulley

Sorrespondence.

Detecting a Mirage.

To the Editor of the Scientific American
In answer to "R. M." (4171), who inquires about means of detecting a mirage, will say : If the mirage be near the horizon, as was the case in each instance ob served by the writer in Southern California, the deception may easily be eliminated from thereal by bending close to the ground and taking a view, then sud denly rising to the full height, keeping the eye on the scene in meantime. Then reverse the plan. Before bending very low, the false view suddenly "shuts out," or disappears as by a screen, while the real scene only disappears as terrestrial objects hide it. In certain instances it is well to add to the upright view by a jump if no object can be utilized. This experience adds to the novelty of a mirage, and is wholly convincing.

John S. Palmer.
Litchfield, Ct., March 26, 1892.

occupation for old People

o the Editor of the Scientific American

I have been much interested in the discussion in relation to the suitable occupation for aged and feeble people, and in the many good suggestions offered I have not seen a word regarding one of the most inter esting occupations that an old or retired person can devote himself to, and that is the breeding of poultry There is nothing more suitable to one with feeble health than the care of a growing flock of poultry, whether it be of common barnyard stock or the purest of pure bloods. There is especially in regard to the latter a fascination that has enraptured many a tired-out business and professional man, and the old men will find in it an ever-changing, an always-interesting, and many times a puzzling topic of study. And there is an incen tive of profit that should not be overlooked. How to feed to get the best supply of fresh eggs, the prope course to follow in setting the old hen, the impatient longing to see how many chicks she will bring off, the pleasure of "counting the chickens before they are hatched, ${ }^{\prime \prime}$ and then to watch the growth and develop ment of the future prize winners-all of these serve to stimulate and keep up the interest of many an old man who is weary with nothing to do. Then there is plenty of opportunity for him to exercise his ingenuity in building houses, fitting up his yards, and the thousand and one things necessary to the proper care of fine fowls, that he need not complain for lack of occupation. Let the old man invest in a pen of Brahmas or Plymouth Rocks; my word for it he will take a new lease of life And when he partakes of an egg laid on his own premi ses, or masticates the juicy flesh of a home-grown broiler, it will be with a keener relish and a sense of satisfac tion that can only be realized by those who have earned their appetites by their own exertions.
W. H. Hamilton.

Danielsonville, Conn., March 23.

Aluminum as a Coin

Sir Henry Bessemer points out the insecurity and inconvenience of the proposed $£ 1$ note, and suggests the introduction of a coin which shall represent a value of $£ 1$, and be redeemable on presentation. He says: The issue of a coin which shall represent a value of $£ 1$, and be redeemable on presentation, would, it seems to me , be in inself as acceptable a security as a promise to pay printed on paper; while the convenience of handling in the daily course of trade, its safety from injury or destruction in the pocket, or from accident by fire or water, and its immunity from the accretion of dirt and the consequent indistinctness of the paper note, are greatly in favor of the coin. The first impression produced on the minds of many persons by this proposal will naturally be the door which it apparently opens to fraud by the casting of such coins in plaster of Paris moulds and the coating of them by the electrotype process, just as base silver coins are now made. Some ten years ago such fears would have been well founded, but the science of metallurgy has given us a new metal which effectually bars the way to this mode of forgery, while its distinctive character is so clearly defined that 'a child could tell, even in the dark, a genuine coin from a spurious one. The new metal-aluminum-may be slightly alloyed, so as to harden and increase its durability, and at the same time raise its fusing point, and thus render the casting of it in plaster moulds quite impossible. The specific gravity of aluminum is $2 \cdot 56$, while that of silver is $10 \cdot 47$, so that an aluminum coin of the exact size and thick. ness of a common florin would weigh a minute fraction less than a silver sixpence; hence, as I before observed, if taken from the pocket in the dark it would be instantly recognized by its extreme lightness, and could never be mistaken for any coin made of gold or silver, while the great weight of all lead or pewter alloys, which are capable of being cast in plaster moulds, would not admit of their being passed off as aluminum coins, however their external surface might be coated or colored in imitation of that metal

INAUDI, THE calculator.

A few years ago we spoke in these pages of a twelve-year-old child who had been presented to the Society of Anthropology as a prodigy of a new kind, and who performed the longest and most complicated calculations in his head. The name of this child was Jacques Inaudi. After going the rounds of country cafes, where he succeeded in earning his living by amusing the curious with his extraordinary calculations, Inaudi, who is now twenty-four years of age, has put himself under the direction of a manager, who gives public exhibitions of him in one of the concert halls of Paris. The faculties of this young man are extraordinary, and it has appeared to us that his history merits a detailed study. We shall have recourse in great part to a very complete work upon the calculator that has just been published by Dr. Marcel Baudoin.
Inaudi was born on the 13th of October, 1867, at Onorato, in Piedmont. In the country of his nativity, he, like Henri Mondeux, another celebrated calculator, began by guarding sheep. He soon followed his father, who played the organ in the various cities of the south of France, and it was by instinct, and without any one having taught him anything, that the faculty of making mental calculations came to him.
He began to exhibit himself in a cafe at Marseilles. His reputation soon increased, and in 1880 he came to Paris. He was then twelve and a half years of age. He was submitted to examination by Broca in the session of the Society of Anthropology of the 4th of March. After this epoch he made the tour of the country, as we have said, and it was brt a short time since that he returned to Paris. He was presented to the Academy of Sciences at the session of the 8th of February, 1892.
Dr. Marcel Baudoin, who has submitted Inaudi to a special examination, describes the latter's astonishing operations in the following words :
We must now make known what extraordinary feats Inaudi is capable of performing. Standing upon the stage near the prompter's box, he turns his back to the blackboards placed in the rear of the stage, and upon which the manager writes the known quantities of the problems given, in order to permit the audience to take account of the calculations effected. With his hands crossed upon his chest, he listens with extreme attention to the question addressed to him, repeats it, and has it repeated, if necessary, until he understands it perfectly. He furnishes a correct solution almost immediately, without ceasing to look straight into the faces of the spectators, without writing anything (he never writes in calculating), and without being disturbed, whatever noise be made. Do you wish an example? He adds in a few seconds seven numbers of from eight to ten figures, and all this mentally, through means peculiar to him. He subtracts two numbers of twenty-one figures in a few minutes, and as quickly finds the square root or the cubic root of a number of from eight to twelve figures, if such num ber is a perfect square. It takes him a little more time when in this extraction of square or cubic roots there is a remainder. He finds, too, with incredible celerity, the sixth or seventh root of a number of several figures. He performs an example in division or multiplication in less time than it takes to state it. What is still more astonishing, an hour after performing all these mental operations, and after finding a solution of problems that are very difficult to solve by arithmetic, he recalls, with most remarkable precision, all the figures that he has had to operate upon.
Our figure represents Inaudi at the moment of his experiments. While the calculators standing behind him are performing upon the blackboards the examples given by the spectators, Inaudi, without ever looking at the boards, talks with the spectators and immediately solves other small problems. Some one asks him, for ex-
ample, "On what day did the 11th of January, 178'7, fall?" He answers at once: "On Thursday." And the answer is correct, as is verified by the spectator who asked the question and who has brought an old almanac with him. At moments, Inaudi stops his conversation, and, with his arms folded, he is observed to reckon upon one of his arms with his fingers, as
shown in our engraving. He then asks for a few shown in our engraving. He then asks for a few
minutes of silence, in order that he may verify the
calculation that he made amid the noise and while he was talking. Errors on his part are not frequent, as Dr. Baudoin remarks.
He is rarely deceived, and when he states a result it has many chances of being accurate. If he is deceived, he quickly recognizes his error, for he says that he always proves the operations that he has had to perform.

Broca, in 1880, was unable to get an insight into his processes of multiplication, and this he confessed without any circumlocution. Now that Inaudi possesses a

a hydrostatic paradox.
well developed intelligence, he explains them without trouble. While we begin to reckon from right to left in multiplication, he proceeds, on the contrary, from eft to right.
Say we have to multiply 345 by 527 . The series of operations performed by Inaudi is as follows :

	$300 \times 500=150,000$
	300
3.	527
	527×5

Altogether, four maltiplications and one addition. All this is done in a few seconds; much more rapidly than if a skilled mathematician had taken the pen But Inaudi is not merely a calculating machine, for he is also capable of doing the work of a true mathematician and of finding by arithmetic and tentative methods the solution of problems that are usually solved only by algebra. The manager insists upon his point, and he is right, and he adds that it has been thus only for the last two years. From this point
presence of the minister of public instruction, Mr. Bourgeois, are truly colossal. The strongest mathematicians of our time, even Mr. Poincare, whose competency in such matters is well known, have been obliged to recognize the fact. Let us add, further, that he is capable of retaining figures for months, provided that it is profitable to do so, or that he wishes to for any reason whatever. Then he classifies them in a special manner. It takes him a minute to commit to memory a number of twenty-four figures. Inaudi has had several predecessors, and it is not the first time that the members of the Academy of Sciences have studied analogous prodigies. As long ago as 1840, Henri Mondeux, a young calculator, was pre sented to them. Like Inaudi, he was a young shepherd. Born in the neighborhood of Tours, of poor parents Mondeux from his earliest childhood had amused himself in counting pebbles while guarding sheep. He combined with them the numbers that he represented in this way, but he was unacquainted with figures. After having for a long time practiced alone in the fields, he offered to those whom he met to solve various problems. Mr. Jacoby, a teacher, remarked him and had him instructed, and a short time after ward took him to Paris and presented him to the Academy of Sciences. The mathematician Cauchy made a report upon him, in which he expressed his admiration to the highest degree. Mondeux was exhibited to the public in his shepherd's costume. He wore a blue blouse, a soft hat, and wooden shoes. A little before this the Academy had examined a twielve-year-old child, Vito Mangiamel, who was born in Sicily Arago proposed some difficult problems to this child, who solved them mentally with the greatest ease.
"Lightning" calculators may claim as their an cestor the Englishman, J. Buxton, who toward the middle of the last century enjoyed a great celebrity He, too, was an illiterate person, who began his reputation in his childhood. He calculated the longest and most complicated interest accounts.
Prof. Charcot, who submitted Inaudi to a close ex mination, was struck with the almost absolute identity of the conditions of birth and precocious development exhibited by "lightning" calculators. Almost all of them have drawn their extraordinary aptitudes from themselves, and have been illiterate. There is here a natural gift, as is, in a way, that wonderful gift that we call genius, and which inspires great artists or great mathematicians.-La Nature.

A HYDROSTATIC PARADOX.

R. w. wood.

A very pretty and instructive experiment, which I have never seen described, consists in floating a vessel with a hole in, the bottom in a fluid specificially lighter han the material of the vessel.
An ordinary glass funnel, open at both ends, is made swim in what appears to be pure water.
The effect is very startling, and even after the conditions are told, the exact cause may not appear to every one. To perform the experiment, fill a beaker six inches high to within an inch of the top with pure water. By means of the funnel, which should be of the same height as the beaker, pour ordinary sulphuric acid (the c. p. is better, being clearer) into the beaker until the water reaches the rim. The funnel should reach to the bottom while the acid is being poured in, and the heavy fluid will remain in a layer underneath the water. The surface of the acid should be stirred a little, so as to cause a partial mixing and render the dividing line more obscure. Then remove the funnel. By placing the glass in a suitable light, it will be next to impossible for a person to see the dense layer at the bottom. Call attention to the fact that there is nothing in the neck of the funnel to prevent the entrance of the water, and lower it into the beaker, where it will float in a most curious manner, and if pressed down a little will bob up like a cork. The reason is obvious. As the bob up like a cork. The reason is obvious. As the
funnel is lowered into the glass, the water rises in the funnel is lowered into the glass, the water rises in the
tube and the level remains constant inside and outside, tube and the level remains constant inside and outside,
but as soon as the stem of the funnel dips into the but as soon as the stem of the funnel dips into the
heavy acid a change of level commences, for the downward pressure of the water outside will not support a column of acid its own height, and consequently the level of the liquid within athe funnel falls below the
level of the liquid outside. This difference of level has the segmental rim by through bolts, a portion of which
practically the same effect that a plug in the bottom of are turned, fitted into reamed holes.
the stem would have; the head of the funnel being The centers, which present a very massive appearnearly full of air, it floats just as any hollow glass vessel would. In a beaker filled with sulphuric acid alone the funnel would sink, the glass being heavier than the acid.
The experiment is a very pretty one for the lecture

The centers, which present a very massive appear
ance, are accurately faced to receive the flanges of the arms, the connection being made by through bolts, half of which are turned bolts fitted into reamed holes. The wheel is shown in the lathe in which it was held
making some similar rope wheels for the Broadway Railway Company, but these wheels will be stil larger, being 32 feet in diamater and 8 feet 4 inches wide over the face, weighing over 100 tons each. The accompanying diagram of the Houston Street power station of the Broadway road, work on the foundations for which is now progressing, shows how these rope traction wheels are employed. The power plant is to be on one floor, all beneath the street level, and it has been necessary to excavate to a depth of 40 feet to obtain the room which will be re quired for the machinery. There are to be four engines of 1,000 horse power each arranged in pairs. Each pair of engines, F, operates a shaft on which is a rope traction wheel, A, but a clutch mechanism allows either of the engines to be disconnected. A series of ropes transmits the power from A to the similar wheel, B, on a transverse shaft, this shaft also being similarly con nected with the other pair of engines, and the arrangement being such that either one of the four engines may be employed to ope rate the shaft.
The smaller rope traction wheels, C, on the transverse shaft, are connected by a similar series of ropes with the large wheels, D, on shafts carrying the cable drums, E, on their outer ends. This means of conveying power from the engines to the cable drum shafts is not as rigid as would be a system of gears and runs with far less friction, while some decided advantages are claimed for it over belt traction. The portion of the cable com ing in is always under a higher tension than accompanying illustration is one of four of

A. B, C, D, Rope Pulleys from Engine, F, to Cable Drum, E

POWER TRANSMISSION BY ROPE PULLEYS TO CABLE DRUMS. of the cable which is going out, and this the same size made by the Walker Manufacturing Co., \mid hub, while the supplemental wheel was turned by $\begin{aligned} & \text { the portion of the cable which is going out, and this } \\ & \text { of Cleveland, Ohio, for the Third Avenue Cable Rail- }\end{aligned}$ road. These wheels are 32 feet in diameter, 6 feet rat 9 fet up to 22 feet, road. These wheels are each 32 feet in diameter, 6 feet 1 inch wide on the a $21 /$ inch provided with 22 grooves each suitable for a $21 / 4$ inch cotton or hemp rope. The
finished weight of each wheel is 75 tons. finished weight of each wheel is 75 tons. anging in diameter from 9 feet up to 22 feet, are being made by the company for the same work. The down town power house of the Third Avenue Cable road will be at the corner of the Bowery and Bayard Street, and at each of the power stations the entire plant will be duplicated to prevent any possible delay from breakare placed in line with the arms, and turned bolts fitted into reamed holes serve to secure these segments to- downs. certain elasticity to the system which will better ac commodate the differences of tension than would be ac complished with either leather belt or cog wheel power transmission. There will be two entirely separate cables laid, the cars being provided with duplex grips, by means of which a change can be quickly made from one cable to another, should any accident occur by which the running cable is disabled.

A GREAT ROPE TRACTION WHEEL FOR THE THIRD AVENUE CABLE RAILROAD.

The Artificial Coloration of Flowers.*
The excitement about blue carnations led my neighbor, Mr. W. Dorrington, and myself to endeavor to solve the mystery by imitating it, and we soon discovered that, although flowers could not be tinted by immersing them in dye solutions, they could readily be mersing them in dye solutions, they could readily
colored by placing their stalks in aniline solutions. colored by placing their stalks in aniline solutions.
Aniline scarlet dissolved in water to about the tra Aniline scarlet dissolved in water to about the trans-
parency of claret has a very rapid action on flowers, colparency of claret has a very rapid action on flowers, col-
oring them pink and scarlet. Indigo carmine produces beautiful blue tints. The two combined dye various shades of purple, with curious mottled effects, some parts of the flowers becoming pink and other parts blue and purple. Greens are produced by using the blue dye with yellow. We also tried indigo and cochineal, with partial success. Lily of the valley flowers became weautifully tinged with pink or blue in six hours; narbeautifully tinged with pink or blue in six hours; nar-
cissi are changed from pure white to deep scarlet in cissi are changed from pure white to deep scarlet in
twelve hours, and delicate shades of pink are imparted twelve hours, and delicate shades of pink are imparted
to them in a very short time. Yellow daffodils are beautifully striped with dark scarlet in twelve hours; the edges of the corona also become deeply tinged, and the veining of the perianth becomes very strongly marked. Cœlogyne cristata, lapageria alba, calla æthiopica, cyclamens, snowdrops, leucojums, hyacinths, Christmas roses, Solomon's seal, tulips, and many other flowers were successfully treated, and many leaves were found to become colored very quickly by leaves were found to become colored very quickly by
the process. I send you herewith a number of exthe proc
The more interesting question of how this rapid change is brought about soon attracted my attention, and proved extremely interesting. The coloration is mainly confined to the vessels.
There is a system of veins in plants, the vein tubes being clearly seen under the microscope passing through the leaves, petals, and other parts of the flower. In these tubes the motion of the colored water can be seen, and it became evident that it was by these that the color is conveyed and left in every portion of the plants. In the case of cut flowers, the action is very rapid, the water tubes beginning at once to absorb the fluid, which was passed along by either capillary at traction, contraction, or possibly by some more active life-force acting within the veins. My experiments in proof of this were made at first entirely with cut flowers. I afterward tried the experiment by taking a Roman hyacinth very carefully out of the soil, and placing the roots in aniline water. In twelve hours the petals began to color, and the flowers gradually became
pink tinted throughout. This experiment was repeatpink tinted throughout. This experiment was repeat
ed on many narcissi and other bulbs. It cannot, how ed on many narcissi and other bulbs. It cannot, how-
ever, be said that the root fibers were unbroken; probably they were so, as I have failed to color any flower by merely watering the soil with colored water. The filtering appendages to the roots evidently prevent the absorption of much of the color, as the petals of the flowers do not become either so quickly or so deeply tinted when the plant has its root as with cut flowers It was, however, clearly seen that the vein tubes pro ceeded from the roots, thus completing the water sys tem of tubes from root to flower.
The veins when colored are beautifully seen unde the microscope as clear tubes running in parallel lines the interspaces filled by cellular matter. The tubes gradually branch out as they proceed, and as they approach the margins they are often finely branched.
When the colored water reaches the margins of the When the colored water reaches the margins of the petals they thus become deeply tinctured, especially in so frequently obtains the deeper color at the edge of the corona. It is the same with the leucojum and the snowdrop
Very singular results were obtained in the variegated leaves of the aucuba and ivy-plants which, at this winter season, one would suppose, had the leaves quite dormant. Single leaves, with their stalks placed in aniline dye water, began to color in about three hours, and in twelve hours had their margins deeply colored. quite apart from the stem.
Another remarkable instance was seen in lapageria alba, which has a very thin wiry stalk and a large waxy flower. With the stalk placed in dye water, the whole flower became beautifully veined with pink in three or four hours-a singular fact, when one considers the minuteness of the tubes through which the liquid has to be drawn. It is difficult to believe that this can be accomplished by capillary attraction only. In eucharis amazonica, which has thick stalks, the flower does not become tinted at all, but the style is dyed a deep red. The pistils of flowers always become deeply colored, which is an important fact, showing that the solid mat-
ter of the coloring solution is thus secreted [deposited ter of the coloring solution is thus secr
in] by the fruiting vessels of the flower.
White tulips furnish excellentillustrations of artificial * Wm. Brockbank in the Gardeners', Chronicle of March 12. The edttor
adds: "Botanists have long since availed themselves of colored liquuds to adas:
sacertain the courre of the juicee of plants, and the particular tissunes throogh which the current pasese, but our correspondent gives some de-
taile of much interest at the present time, and the specimens he eends extaile of much interest at the present time, and the specimens he sends ex-
ceed in interest any that we have before seen. To the botanist they are ceed in interest any that we have before seen. To the botanist hey are
of special value, as showing so clearly
coloring, as they can be readily tinted either pink, blue, green, or purple in a few hours. The vein tubes which are thus displayed in the petals agree with the strongly marked features, known as the "flamed" or "feather ed " varieties of the florist. It is generally known that all tulips raised from seed are self-colored when they first bloom ; they are then called "breeder tulips," and first bloom ; they are then called "breeder tulips", and
the enthusiastic amateur florist grows on his "breedthe enthusiastic anateur florist grows on his "breed-
ers" for six or seven years until they "break," when they become either "flamed" or "feathered " varieties. Now a florist may ascertain in six hours whether his breeder tulip will become a feathered or a flamed sort,
and whether it will be worth growing on for the breakand whether it will be worth growing on for the break ing time, because the veining of the petal is shown by the color, and it is that which makes the feature when the tulip is fully matured. Blue tulips have alway
been desired, and they can thus be artificially produced been desired, and ths
for florist purposes.
Daffodils and narcissi generally can be greatly varied in color, and especially by showing their exquisite vein ing when thus treated. The tube and corona take a darker and richer tone of color than the perianth, thus agreeing with the fact that all daffodils are more or less bicolor. The Christmas rose is also an interesting flowe
when artificially colored. Straight tubes cross the petals from base to point, with numerous cross tubes, and the main ones branch out angularly, thus dividing the snow-white petals into a network of red lines. The interspaces are filled with oval cellules, and as the tubes are permeable, the cellular spaces become suffused with a delicate shade of pink. Snowdrops and leucojums are also very interesting when thus treated. Their pe-
tals are veined with about eight tubes at the base, which pass across the petal to its point in nearly parallel lines, strongly and clearly marked. These are branched near the tip of the petal in fan-like form, producing rich pink margins to the flower. The double white camellia is another very pretty illustration, as it easily assumes a pink shade throughout. It is difficult to imagine how this is done, as the camellia has a small
woody stalk; and in the case of a double flower, with forty or fifty petals, the attachment of each of them to the tubes in the stalk must be very slight, and yet wery petal becomes tinted in a few hours.
White lilac takes the color perfectly, becoming either pink or blue at pleasure. The abutilon has the calyx colored, but not the petals. These are already strongly vein marked, and they seem to tefuse the new comer. Primulas take the color readily, but the common wild primrose will not be changed. Forced leaves of the Swede turnip, grown in the dark for culinary purposes, are extremely susceptible to coloration. They begin to color in about three hours, and in twelve hours are
beautifully fringed vith red, and suffused with rich orange. Thus tinted, they are beautiful objects for table decoration.

How Paper Barrels are Made.

This interesting process, which is the invention of Mr. J. R. Thame, is being carried out by the Universal Barrel Company, London, at their works at Boxmoor, Herts. These premises, which are known as Two Waters Mill, possess a special interest, inasmuch a hey constituted:one of the first paper mills in England having been builtduring the reign of Queen Elizabeth The process, which we were recently afforded the op portunity of inspecting, says Iron, forms another example of the utilization of waste, for the materials use act, any waste substances of a fibrous nature. Thes materials "are first sorted and are then slowly fed into a pulping machine, which consists of a beater running in a circulating tank of water, the waste being by degrees reduced to a fine pulp. When the pulp has at tained a sufficient consistency it is run out into an
accumulating tank on the floor below, in which is placed the apparatus for forming the bodies of the barrels.
In this machine the pulp flows into a tank and impicks against an endless traveling blanket, which blanket. On the upper side of the blanket, and in contact with it, are placed, at intervals, the cylinders upon which the barrel bodies are formed. On these cylinders are placed sheet metal cores, which can be expanded and contracted, and it is upon the surface of these cores that the pulp is deposited from the blanket. Under the blanket, and in a line with each of these cylinders, is a pressure roller, which consolidates the pulp as it is deposited on the upper cylinder. When a sufficient thickness of pulp has accumulated n the cylinder, which occupies an average of fou taken off and the barrel body removed from it and placed in the drying room. And here it should be mentioned that this method of forming barrel bodies has been previously attempted in America. But we believe
it failed on account of the difficulty experienced in removing the newly formed body from the core. This difficulty is overcome by Mr. Thame's ingenious contracting core. The drying room is heated by hot air main for a day, at the end of which time they are per
fectly dry, and are taken to the trimming department, where the ends are trued up by saws, and afterward finished by hand, with sand paper. The bodies are then waterproofed by dipping them in a heated mixture of resin and resin oil. When dry the bodies are hooped up with a couple of American elm slips, and are ready for having the bottoms and heads fitted in and finishing.
The heads are made in two different ways. In one case they are formed from sheets of cardboard produced on a wood roller in the same way as the bodies, the paper cylinder being cut longitudinally and spread out into a sheet, which is dried, and out of which the heads and bottoms are subsequently stamped and finished off in the same way as the bodies. In the other case the heads and bottoms are formed from the pulp in a hydraulic press under a pressure of 750 lb . per square inch, and are finished in the same way as the others. In heading the casks a wood lining hoop is first fixed inside the body near the end, and the bottom is inserted and held in place by a second hoop on the top, the head being fixed up in the same way The barrels are then painted ready for use. So far, the barrels we have been describing are plain cylinders, but bulged barrels of a superior class are also made, and for these the pressed heads are used. The bulged barrels are produced by placing the cylindrical body in an open-topped moulding press, the interior of which is of the necessary contour. Inside the body is placed an India rubber bag, connected up with the hydraulic main, and to which the water is admitted under the pressure before named. The pressure is kept on until the body has set to the desired form when it is removed to the drying room to be dried and finished. All kinds of barrels are turned out, round as well as square, the latter being used for packing matches, but the barrels which were being made upon the occasion of our visit were plain cylindrical cement barrels, measuring 28 inches long by 16 nches diameter, and holding 3 cwt . of cement. The machinery is driven by an interesting example of team engineering, namely, a compound beam engine of 30 horse power, bearing the date 1856. Steam is supplied by two Lancashire boilers, one of which is ept in reserve.
The works were started experimentally some four years since, and have been gradually developed into the practical working factory which to-day finds them. The present plant is comparatively small, there being only one body-forming machine. It is, however, equal to an output of 300 barrels per day of twenty-four hours. Besides the manufacture of barrels, that of cardboard is also carried on, boards of excellent quality being produced. An important feature of the manufacture is its economy, there being absolutely no
waste. The cuttings and trimmings, and in fact all waste. The cuttings and trimmings, and in fact all surplus material at every stage, is returned to the pulping machines. In one department we found an interesting application of the paper barrel to driving machinery. This was a 16 inch driving pulley, the rim of which was formed of a portion of a barrel body, while the arms and boss were made out of a pressed barrel head, the pulley working very well. For the paper barrels thus manufactured many advantages are reasonably claimed, among which are that they are strong, durable, and economical, that the parts are interchangeable, and that they can be made of any
required tare, and to suit almost every purpose for required tare, and to suit almost every purpose for
which barrels are used. From all that we have stated it will be seen that in paper barrels we have not only an interesting process, but a practical manufacture which promises to prove a commercial success.

Ancient Cave Dwellers in Asia.

The Russians have made a singular discovery in Central Asia. In Turkestan, on the right bank of the Amou Daira, in a chain of rocky hills near the Bokharan town of Karki, are a number of large caves;
which, upon examination, were found to lead to an underground city, built, apparently, long before the Christian era. According to the effigies, inscriptions, and designs upon the gold and silver money unearthed back tomon the ruins, the existence of the town dates The edifices contain all kinds of domestic utensils, pots, urns, vases, and so forth. The high degree of civilization attained by the inhabitants of the city is shown by the fact that they built in several stories, by the symmetry of the streets and squares, and by the beauty of the baked clay and metal utensils, and of the ornaments and coins which have been found. It is supposed that long centuries ago this city, so carefully concealed in the bowels of the earth, provided an entire population with a refuge from the incursions of nomadic savages and robbers.

To Clean Corundum Wheels.
Take one-third chloroform and two-thirds alconol. The chloroform dissolves the wax and oil that accidentally gets on the stone; the alcohol removes the shellac and leaves the corundum free to cut as when the stone was new.-Dr. Beacock, Dom. Dent. Jour.

SERENO WATSON.

For the fourth time in the new year death has invaded the ranks of the National Academy of Sciences, taking Meigs, Lovering, Hunt, and now Watson.
Sereno Watson was born in East Windsor Hill, Conn., on December 1, 1826. Of his early life we have no record, but he must have shown evidences of studiousness, for he entered Yale College andfwas graduated in 1847, a member of the largest class ever graduated from that institution prior to 1863.
After graduating his mind seems to have turned to medicine, but the way was not clear, and so, for five years, he taught in various places in New England, in Pennsylvania, and in New York. Meanwhile at intervals he studied medicine, both at home in East Windsor and in the medical department of the University of the City of New York. Then for a time he served as a tutor in Iowa College, in Grinnell, Iowa, but this place he soon relinquished, and spent the years 18531855 in Quincy, Ill., where he completed his medical studies under the direction of his brother, Louis Watmin
He practiced medicine for a short time only, and in January, 1856, accepted the appointment of secretary of the Planters' Insurance Company, in Greensboro, Ala. This place he held until April, 1861. The civil war had then begun, and he retired from this office to return to the North. Subsequently he engaged in literary labors and for several years he was asso ciated with Dr. Henry Barnard in editorial work on the Journal of Education, published in Hartford, Conn.
While in Alabama he became interested in botany, devoting his leisure to the pur suit of that interesting science, but it was not till later that he was able to return to it In 1867 he went to California by way of the Isthmus of Panama. About this time the United States Geological Exploration of the 40th parallel was organized by Clarence King under whom Dr. Watson received an ap pointment as a volunteer aid to the service In March, 1868, William W. Bailey resigned the office of botanist to the exploration and Mr. King promptly nominated Dr. Watson to fill the vacancy.
He continued in the field until 1869, and then settled in New Haven, where he began the examination of the material collected in the herbarium of Professor Daniel C. Eaton in Yale College, but a year later he removed to Cambridge and there completed his work in the herbarium of Professor Asa Gray. His results were published as Volume V., on "Botany," in the series of "Reports of the Geological Exploration of the 40th Parallel" (Washington, 1871). With the publication of this large quarto work his connection with the exploration came to an end.
His ability as a botanist was established and much of the botanical work of the "Geo graphical and Geological Explorations and Surveys West of the 100th Meridian" was as signed to him by Professor Ferdinand V Hayden. His results are scattered through the official reports of the survey and are known to his fellow scientists through his specially reprinted monographs. Again in 1880 the government sought his services and he was intrusted with the procuring of certain botanical information for the forest department of the United States census of that year. For this purpose he made a special visit to the great Northwest, in order to secure the necessary results
Meanwhile he continued to make his home in Cam bridge, and in 1874, when the work of Dr. Asa Gray was divided among his assistants, the special charge of the herbarium was given to Dr. Watson. As curator he continued until his death. During 1881-1884 he also served Harvard as instructor of phytography Subsequent to the death of Professor Gray, in 1888, the active prosecution of the systematic work at the herba rium was carried on by Dr. Watson. He took up the editing of the unfinished "Synoptical Flora of North America," and in association with Professor John M Coulter, of Wabash College, Crawfordsville, Ind., he prepared a revised edition of Dr. Asa Gray's "Manual of the Botany of the Northern United States."
Of his own special work, the "Bibliographical Index to North American Botany," Part 1, Polypetalæ, was published in 1878 by the Smithsonian Institution, and in association with Professor William H. Brewer, of New Haven, and Professor Asa "Gray, he prepared the "Botany of California," in two octavo volumes, issued in Cambridge in 1876 and 1880, as part of the series published under the auspices of the Geological Survey of California. The revising and editing of the "Manual of the Mosses of North America," originally prepared by Leo Lesquereux and Thomas P. James, was intrusted to him, and the volume was published in Bos ton in 1880.

Under the general title of "Contributions to Ameri-
can Botany," he published the results of specialstudies in his favorite science. These appeared for the most part in the "Proceedings of the American Academy of Arts and Sciences," and perhaps the mostimportant were those devoted to the plants collected by Dr. Edward Palmer in Southwestern Texas and Northern Mexico. Besides these, he published occasional papers in the American Naturalist and other scientific periodicals. For a time he was one of the assistant editors of the " Century Dictionary," having special charge of the botanical subjects.
The great value of his work was appreciated by his scientific associates. In 1878 Iowa College, where as a young man he had been an instructor, conferred upon him the honorary degree of doctor of philosophy, and in 1889 he was chosen to the National Academy of Sciences, taking the place made vacant by the death of his older colleague, Dr. Asa Gray. He was one of the resident fellows of the American Academy of Arts and Sciences and in 1873 he became a member of the American Association for the Advancement of Science, at the Portland meeting. Two years later he was advanced to the grade of fellow. Dr. Watson was also a member of other scientific bodies, both in this country and abroad.
At the meeting of the National Academy of Sciences, held in New York during November, he was present, and apparently in good health, but, toward the close of

SERENO WATSON.

the year, he became a victim to the prevalent epidemic form of the influenza, from which he failed to recover. A complication with dilation of the heart ensued, and, on March 9 , he died at his home in Cambridge. His funeral services were held a few days later in Appleton Chapel.
At the time of his death, Dr. Watson was the fifth oldest active officer of Harvard University, but his re tiring disposition prevented his being known personally to but few. He was absorbed in his particular duties at the herbarium, and seldom met others than those who were interested in his work. His familia figure will no longer be seen in the college yard, but his contributions to American botany form a monu
ment to his memory that will last forever. M. B.

Chronic Arsenical Poisoning.

A good example of chronic arsenical poisoning on a arge scale occurred in County Asylum, Berrywood and a short account of it may be both interesting and instructive. In the endeavor to make the wards of an asylum bright and cheerful, and to do this at as little expense as possible, it is not improbable that the nature of the coloring materials used may be over looked, and that some of the gastric and intestina disorders which disturb the peace of mind of medica superintendents may be cases of arsenical poisoning. For a long period the nurses here were in poor health. First one and then another was laid down until, within a few months, nearly every nurse on the staff had cars cars.
been, or was, under medical treatment. Headache, neuralgias, gastric derangements, loss of appetite, constipation or diarrhœa, irritation of eyelids, anæmiathese were the chief symptoms complained of. Drugs did not appear of much avail, but a holiday had a marked effect for good. At last one nurse had the eye symptoms in a more pronounced form, and suspicion was aroused. In each nurse's room was a green baize curtain, used as a covering for dresses, etc. A portion was taken and examined. It was found to be impreg nated with arsenic to an astonishing extent. These curtains were removed; the rooms freely ventilated; medical treatment was stopped; the symptoms disappeared, and, though some months have elapsed, have not returned. The baize was similar to that used for covering doors, etc., and was obtained from two manu facturers. -W. Harding, M.B., in the Lancet.

Plate Glass Manufacture in Belgium.
According to the latest published there were in active operation in the gium 64 factories and 153 furnace glass of all kinds, employing 17,240
 manufacturing value of the kearly, employing 1,24 workpey. Th
In the consular district of Brussels there are eight plate glass manufactories, as follows: S夭ciete nyme of Floreffe at Floreffe; Societe Dién nyme of Floreffe, at Floreffe; Societe Amenyme of ur Sambre; Societe Anonyme of Arivelais sur Sambre; Societe Anonyme of St. Roch, at Anvelais; Societe Anonyme of St. Marie
d'Origines, at Tamines; Societe Anonyme of Hainaut, at Roux ; Societe Anonyme of Charleroi, at Roux; Societe Anonyme of Courcelles, at Courcelles.
The average monthly production of each manufactory is 12,000 square meters. The average monthly production of the eight manufactories is 100,000 square meters, and per year $1,200,000$ square meters, or $12,000,000$ square feet, English measurement.
Crystal and mirror plate glass is not manufactured in this consular district, but is largely imported from Furth, Germany.
Ninety per cent of the crystal and mirror glass is made from blown window glass which is first made into thick cylinders, which are smoothed and polished by machinery until the desired thickness is obtained, which varies from one-eighth to three-sixteenths of an inch.
The method employed in this district for grinding, smoothing, and polishing plate glass is as follows :
The glass, when taken from the furnace, is spread upon a cast iron table; the mas is then rolled into sheets of from 9 to 10 and from 14 to 16 millimeters in thickness. The former is designated as thin, and the latte as thick, plate glass. This operation constitutes what is known as rolling, and the glass thus produced is called rough glass. Afte the glass has been completely cooled, it is placed upon cast iron tables, upon which a bed of plaster of Paris has been prepared to receive and firmly hold the glass in place Particular care is exercised in filling in the spaces between the glass and the table with the plaster, so as to securely seal the glass to the table. It then passes through a series of grinding and smoothing operations until the thickness is reduced to about one-fourth and the face of the glass has been tho roughly polished. It is removed from the table, turned, replaced, and polished in the same manner as above described
The operation of smoothing and polishing costs 6.50 francs ($\$ 1.25$) per square meter. The cost of the rough glass is 7.50 francs ($\$ 1.45$) per square meter. The total cost of glass when finished to a marketable condition is 14 francs ($\$ 2.70$) per square meter ($103 / 4$ English feet).

Jackson Park will retain as one of its permanent attractions the building which Japan will erect for its headquarters at the Exposition. The building will be modeled after one of the most famous and architecturally unique of Japan's ancient temples, and with its surrounding garden will cost $\$ 70,000$. About 40,000 square feet will be occupied. The South Park commissioners have accepted the offer of S. Tegima, representative of the Mikado, to give the structure to Chicago on condition that it be kept permanent and in repair, and that one room in it be devoted to a public exhibit of Japanese works of art, which the Japanese government agrees to replenish from time to time.

Sleeping Cars.

In one of the Pullman Company's suits for infringement, Mr. Jacob Shaffer testified that in 1837 he was employed in the car shops of the Cumberland Valley Railroad Company, and that sleeping cars, with hinged or folding beds, were then in use on that road. This defeats any broad claim to the use of such beds in

RECENTLY PATENTED INVENTIONS.

 Railway Appliances.Electric Signal. - Edgar C. Wiley Bristol, Tenn. This invention provides an improve
ment on a former patented invention of the same in ventor, being a circuit-closing device for use in connec on with a system employing a rotary commutator The invention consists of a peculiar construction an upon by the car wheel is made to adjust the commute tor to position for making the circuits, hold it in thi position for a limited time, and then allow it to be re stored to its normal position.
Elevated Railload.-Elbert D. contemplated by this Ala. In the railroad construction by a power in the car or by hand. Brackets projecting from a line of posts support a cable on the top of which grooved wheels are mounted to travel, a frame carrying the wheels, while upon a downwardly extending rod i hung a car, there being a gear wheelon the shaft of one of the grooved wheels, a spring-pressed pawl engaging of the gear wheel carrying the pawl, and a bell crank lever fulcrumed in the car and connected with the paw lever.

Mechanical Appliances.

SAW SET. - James M. Basket, Leota Landing, Miss. This is a self-acting device in whic the hammer is first raised against the action of its
operating spring by pressing the handles together, and then released by a further pressing together of the
handles to act on the saw tooth, an improved gauge handles to act on the saw tooth, an improved gauge
heing provided by which the angle of the saw and its heing provided by which the angle of the saw and it
teeth may be readily adjusted. The implement may b teeth may be readily adjusted. The impoth to tooth and lock given the tooth not bending it to any great extent but beveling it on one side
Windmill Lubricator. - Benjamin J. Sykes, Sykesville, Pa. This device consists of a ube extending up through the receptacle, and havin a horizontal fixed extension at its lower end projecting
in the direction that the receptacle is to be swung, so hat when the receptacle is swung upward the content of the horizontal extension will flow into and through
the tube. At any moment all the journals or bearings mey be lubricated by simply tilting upwayd the lubricating can.
Clamp. - Walter H. Robinson, St Paul, Minn. This clamp comprises two armsipivote on the same base, and each provided on ils free end
with a fork and a screw rod for moving the arms toward and from each other. The device is simple, and he spring and cap in air brake cylinders or othe similar devices, to clean the same, and to assist in re-
placing the spring and cap after the cylinder is cleaned.

Agricultural

Corn Harvester. - Peter J. Garber, Potwin, Kaneas. This invention relates to a harveste able hinged and obliquely arranged knife, the device being applicable to an ordinary farm wagon. The improvement also consists in a peculiar construction of the knife and the means for connecting it to the wago rame, and also in a carrier or shocker for the cornstalks, to receive and transport them to the sid
field, the land being left ready for the plow.
Tobacco Hanger. - Horace L. Free man, Lexington, N. C. This is an improvement in hangers which consist of a portable supporting stick and to swing, to fold against or swing outward from the stick. Each arm or needle has two adjacent eyes and is pivoted at such poin1s to two parallel sticks or stick sections, which are movable relatively to each other to adjust or allow adjustment of the arms or needles, for

Thrashing Machine Table.-Joseph B. McChesney, Dane, Wis. This table is made in two ongitudinal sections, connected by hinges on the under faces of the table, and the inside edge of the inner section of each table is connected by hinges with the side any other projection at the delivery end of the hopper The table is capable of being supported in a horizontal position when required for use, and of one sectio being folded upon another, and both sections made to occupy a vertical position close to the thrasher when

Centrifugal Honey Extractor.Charles W. Metcalf, Santa Paula, Cal. Vertical shafts
are journaled in the ends of the arms of a frame mounted to turn in a vessel, there being swinging comb holders supported on the shafts, a pin turning and forming a bearing for one end of the frame, a sprocket
wheel on the pin and means for imparting a rotary motion thereto. The filled honeycombs can be readily inserted and the empty ones removed from this extractor, and the complete extraction of the honey from the inside and outside of the comb is assured.

Miscellaneous.

Badge. - Charles A. Tripp, Brattlehorough, Vt . This is an improvement in ornamental
badges or pins to be worn upon the clothing, the invention providing a simple and secure fastening for the The fastening consists of a spiral and a hook projecting from the back of the badge at opposite euds, and is adapted to hold the badge on the clothing in such way that it will be displayed to advantage.
Catamental Sack or Bandage.Emma H. Carpenter, Springield, Vt. This handage is
made with side rolls having a tape fastened in the cen-
er of each roll, so that strain 18 relieved from the ma traps and tapes is emploged to apply the bandage to he person.
Wagon Top. - William Leonhardt Baltimore, Md. Combined with the supporting posed of two horizontal rails and a series of short bow pivoted to the rails, all adapted to fold, with means for olding the bows in a normal vertical position. By his improvement the canopy or upper portion only of the wagon top is adapted to fold, the body or main porton being supported rigidly, although made removable rom the wagon body. This improved top may be

Oil Reservoir. - Frank W. Mosby, r., Birmingham, Ala. This invention relates mor locomotives, the tank being provided with a heating chamber whereby the oil is always maintained in a fluic tate. The tank consists of independent oil chamber each provided with a cover, supply vent, and discharge il chambers, and a her being arranged adjacent to the il chambers, and a steam pipe entering the heating chamber. If desi
Check Controlled Lock.-James R. sucizingham, Mount Vernon, Ohio. This is a simple handles, canes, billiard cues, etc, and which may b nlocked by dropping into the lock a check especiail adapted to the lock, and which releases the lockin mechanism. In the lock case is pivoted a ewinging crooked lever having an arm adapted to fit upon an article to be locked up, a locking lever having a shoulder engaging the crooked lever, and a releasing cate
Sewing Machine Attachment. Mary L. Birdsong, Arco'a, Miss. This is a device fo Itachment to machines operated by a treadle or pedal attachment for the treadles, comprising inclined spring arms provided with a handle at their upper ends and dges of a treadle, whereby the machine may be readily ran by the hand instead of by the foot of the operator. Ruler. - Victor M. Ariza, Maracaibo, enezuela. This is a ruler for the use of draughtsmen nd others which is designed to avoid the blotting and et on the ruler, there being also a stop for indicatin he length of the lines and mechanism for spacing The casing is semi-cylindrical and provided with an the lining, a pawl and ratchet mechanism turning the roller, and there being a scale and an adjustable arm for auging the length of the lines.
Check Perforating Machine.
Albert R. Abbott, Boston, Mass. This is an improved machine for perforating dates and amounts in checks vides a means whereby a table may be conveniently lid beneath any one of a series of punches to presen a check, and the punches be expeditiously and conveniently operated, while the machine has a feed a
once simple and positive, which may be readily thrown out of gear to receive the check or paper and will automatically return to its normal position, in clamping en gagement with the article to be perforated.
Pencil Sharpener. - Orton H. Robinson, Grand Rapids, Mich. This sharpener comside edges of which are sharpened and converge toward one end of the tube, the tube admitting or receiving the end of the pencil at an angle thereto for rotary formed by the sharpened edges. The pencil is sharpen and turning the point end through the oblique shit held. When the pencil is not in use the sharpener may be slipped over its pointed end to form a point pro-

Ink Bottle.-William F. Hall, Rapid City, South Dakota. This bottle has an externally threaded neck in combination with an internally of the bottle and adapted to be screwed on the at its upper end for supporting it in an aperture of the school desks, affording means for securing the filled bottle in an aperture in the desk, the mouth of the desk top and the body of the bottle being hung in the

Spraying Device.-William J. Ruff, Quincy, Ill. This is an improvement on a former simple and durable device in which the sprayed liquids will be well mixed and which will not be liable to clog. The casing has two different sized compartments, a spraying nozzle being held on the end of the smaller one, and a spring-pressed piston valve held in the on the part of the casing between the two compartjects into the opening of the spraying nozzle.
nenter wist ald
Barrow Coat. - Elise Halford, New York City. This invention relates to underwear for provided with separable shoulder straps, a separate skirt open in front having the front edges overlapping one another, with means for fastenirg the overlapping
parts, while a waistband attached to the upper edge of he skirt is adapted to be buttoned on the lower edge of SheL
Shelf Support. - Henry M. Hart, Auburn, Ill. This is a support especially adapted for
supporting the shelves of book cases, being so made that any shelf can be quickly and easily moved to bring it to a desired height in the case, even if the shelf is
loaded. A semicircular plate attached to the under side
of the shelf has curved slots in which slide curved spring-pressed bolts adapted to project from the end of
the plate and extend into apertures in the end walls of the case, the bolts being
attached flush buttons.
Fruit Jar Cover and Lock.-John B. Johne, Findlay, Ohio This invention provides oover and a bail lock, capable of being quickly and
conveniently applied to or removed from the cove causing the jar to be hermetically sealed. The bail is pivotally connected with the jar, and the cap, having a
transverse channel with teeth in its bottom and a lockng lever, is eccentrically mounted on the bail, the lever having a semicircular surface with teeth for engaging

Bed Spring. - Wilbur L. Gillette Yalesville, Conn. This is a simple form of spring and ment to any ordinary bedstead rail to support the slate and form a cheap, simple, and easy spring bed. The backet which supports the spring is adapted to be secured in the notches of the rail where the bedstead slats are ueually inserted, and the spring, which is a common form of spiral bed spring, is readily so at-
tached to the bracket as to be supported in a vertical position, while the upper end of the to form a keeper adapted to receive a slat
Harmony Harp. - George W. Ellsorth, Bowling Green, O. This is similar in all points of construction to the ordinary orchestral pedal har pedals to two. It comprehends all the keys of music both major and minor and by its peculiar stringing and tuning reduces performance upon it to the very
minimum of ease. It is especially intended and adapted for a supplementary harmony instrument in arge orchestra, dance, and street orchestra, and for a ompaniments to vocal or instrumental parlor music.
Nore.-Copies of any of the above patents will furnished by Munn \& Co., for 25 cents each. Please
send name of the patentee, title of invention and date of this paper.

NEW BOOKS AND PUBLICATIONS.

The Ingersoll-Sergeant Drill Company, in their recently issued catalogue No. 8, present very full details of complete plants of mining, tunneling and quarrying machinery, together with a great deal of
useful information touching a great variety of business of this nature. There have been many improvements made within a few years past in mining machinery and outtits, and this book represents th
this line. It is profusely illustrated.

SCIENTIFIC AMERICAN

BUILDING EDITION

TABLE OF CONTENTS

1. Elegant plate in colors of a cottage in the American style of architecture, erected at Rochelle Park, N. Y. Perspective view, floor plans, etc. G.
Thompson, architect. Cost $\$ 5,200$ complete.

Plate in colors of a residence at Bensonhurst, Long
Island, N. Y. Perspective elevations and two Island, N. Y. Perspective elevations and two
A summer cottage on the Maine coast, near Portland.
Floor plans and perspectiveelevation. Cost $\$ 1,470$ Floor plans
complete.
4. A handsome residence at Sea Side Park, Bridgeport, Conn., recently erected for Col. Mason. Cost
about $\$ 25,000$ complete. Two perspective views about $\$ 25,000$ complete. Two perspective views
and floor plans. F. H. Kimball, architect, New York.
5. A residence at Montclair, N. J., from plans prepared by Munn \& Co., architects, New York. $\$ 8,500$ complete.
6. A mountain side residence erected for W. A. C Floor plans and two perspective views, design. Floor plans and two perspective views, also an
interior view. Cost $\$ 6,500$ complete. Munn \& Co., architects, New York.
7. An Asbury Park, N. J., cottage. Cost $\$ 3,000$ com plete. Floor plans and perspective view.
8. Sketch for a cemetery chapel of moderate cos 9. View of the Richmond Hill Congregational church
0. Design for a family burial vaut

1. Design for organ, All Saints, Compton, Leek.

Miscellaneous contents: The speed of elevators.-
The secret of a good memory.-Plastering comThe secret of a good memory.-Plastering comchine, illustrated.-Shadow an element of design. -Artificial building stone, illustrated. - Wet screens for ventilating ducts. - Irrigation in
Nevada.-The Andrews metal chair, illustrated.A plumber's blast furnace, illustrated.-An improved woodworking machine, illustrated.-The Stearns hinge, illustrated.
The Scientific American Architects and Builders 25 cents. Forty large quarto pages, equal to about wo hundred ordinary book pages ; forming, practically, a large and splendid Magazine of architecTURE, richly adorned with elegant plates in colors and with fine engravings, illnstrating the most interesting allied subjects. of this work have won for it the Lareert Circulation of any Architectural publication in the world. Sold by Il newsdealers.

MUNN \& CO.. PUBLIBERR8,
361 Broadway,
301 Broadway, New York

Pusiness and Personal.

 he charyefor or Inert ion umuer this head is one Dolara a line for each insertion; about eight words to a line. Advertisements must be received at pubication office as early asThursday morning to appear in the following week's issue Wanted- 50 second-hand screw-cutting lathes, 8 to $11^{\prime \prime}$
swing, either foot or steam power. Will pay cash. W. . Davis, Rochester, N. F.
"U. S." metal polish. Indianapolis. Samples free. 6 Spindle Turret Drill Presses. A.D. Quint, Hart ford,Ct. Mixing machinery. J. H. Day \& Co., Cincinnati, Ohio For stone quarry engines. J. s. Mund, Newank N. Portable and Stationary Cylinder Boring machines. Pedrick \& Ayer, Philadelphia, Pa
Wanted-Prices on steam plowing outfits. E. F. Wise For first-class patterns writ The Improved Hydraulic Jacks, Punches, and Tube
Expanders. R. Dudgeon, 24 Columbia St., New York. Screw machines, milling machines, and drill presses. Centrifugal Pumps. Capacity, 100 to 40,000 Crandall's patent packing for steam, water, and amPalmyra, N. Y.
Split Pulleys at Low prices, and of same strength and
appearance as Whole Pulleys. Yocom \& Son's Shafting Works, Drinker St., Philadelphia, Pa
Guild \& Garrison, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vacuum app
acid blowers, filter press pumps, etc.
The best book for electricians and beginners in elecBy mail. $\$ 4$; Munn \& Co., publishers, 361 Broadway, N. Y. What do you want to buy? We will send without cost oo you, catalogues, price lists, and information concerning anything you w
way, New York. Competent persons who desire agencies for a new
popular book, of ready sale, with handsome proft, may popular book. of ready sale, with handsome profti, may
apply to Mun \& Co.. Scientific American office, 361
Broadway, New York.
Wanted-Position by a first class mechanical engineer
with thorough technical and practical education with thorough technical and practical education. Ex-
cellent draughtsman and machinist. Address A. B., cellent draughtsman and
care Scientifc American.

Going to California.
A person can take a seat in a palace car at Dearborn Station any afternoon and go over the Atchison, TTopeka
and Santa Fe Railroad to San Francisco, Los Angeles or San Diego without changing cars. The fast express on this line makes at lasatt wenty- $\begin{aligned} & \text { four hours quicker } \\ & \text { time to Los Angeles than any other line, and in fact the }\end{aligned}$ time to Los Angeles than any other line, and in fact the
Santa Fe is the only thoroughly comfortable route to take. The office is at No. 212 Clark Street, Chicago.
The history of the Fall River Line between New York on a grand scale from the time when steam became the great motor in water, as it is in land, transportation.
From the first the Fall River Line has been abreast, and of late years far ahead of the times with regard to the
development, improvement, and utilization of provision for traveling on the water by steam; and its boats long
since became the wonder of the world for their proporsince became the wonder of the world for their propor-
tions, magniflcence, and appliances. But the end is not yet, and this line has still greater triumphs in reserve. RF Send for new and complete catalogue of Scientiflc and other Books for sale by Munn \& Co., 361 Broadway,

\%atuctumpins

HINTS TO CORRESPONDENTS.
Names and A ddress must accompany all letters,
or no attention will be paid thereto. This is for our
information and not for pubhication. information and not for pubication.
Revers should
gerences to fote of parmer and anticees or anser number of question.
Inquiries not answered in reasonable time ehould Inquiries not answered in reasonable time should
be repeated; correspondents will bear in mind that
some answers requir not a little reserch, and,
though we endeavor to reply to all either by letter
or in this department. ench must take his turn.
Special
personal rather than
general in interest canters of cinnot be
expected without remuveration.
Scientifite Amerest cannot bun
tomat be had at the office. Pricenents referred
Price 10 cents each.
Books referred to promptly supplied on receipt of

$\begin{array}{c}\text { price. } \\ \text { Minerals sent for examination should be distinctly } \\ \text { marked or labeled. }\end{array}$

(4212) C. H. G. writes: We have in our school a barometer whose cistern is full of mercury.
The mercury rises about seven inches when it should rise about twenty-six inches. Please state in the columns of your paper the cause and remedy for this.
A. The barometer should be refilled. There is air in the tube. (4213) A. A. writes : I never take up
your journal without finding much to interest me. The your journal without finding much to interest me. The
letter on vision in the issue of March 12 leads me to ask if your correspondents or you will explain why the elevation of objects at a distance seems greate when the head is in its ordinary position upright than
when it is turned to a horizontal position as when lying down and observe carefully its apparent height. Then turn the head down, so that the eyes, instead of being on a level with each other, are one directly above the other,
and observe the difference in apparent height. Is this change due to the influence of some habit in estimating distances? And which appearance is more conforma ble to actual proportion? A. Such effects as you de, scribe are due to changing parallax. In our ordinary
there is vertical but no horizontal parallax, all which is due to the position of the eyes. Elevation ought t t be more accurately estimated with the eyes in a verti-
cal plane, i. . with the observer lying on his side. But this again is offset by habit
(4214) A. D. T. asks : 1. Will the same dynamo or the same electricity that produces an arc light produce an incandescent light? A. Many of the regular arc light circuits include incandescent lamps
adapted to these circuits. Such lamps are used in series with the arc lights, and are each provided with a cut-out which automatically completes the circuit should the carbon filament break. It is common also to use arc lights of special construction in incandescent cir
cuits. 2. Will the dynamo used for operating an alec cuits. 2. Will the dynamo used for operating an
tric street railroad produce an arc light? A. Yes.
(4215) F. O. B. writes: An experimenter would like to know if there is any kind of glue that to a continuous heat not exceeding three hundred de gree of heat, or is there any way to make a cheap com bustible glue, something in the form of mucilage? Possibly a mixture of 9 parts glue and 1 part glycerine would answer your purpose. Sodium silicate (water glass) is somewhat adhesive and resists high tempera
(4216) W. P. S. writes : I have some gun cotton (soluble) which does not dissolve in alcohol or ether, and o would like to have you tell me through
the columns of your paper what is the reason and how can I dissolve it ? A. The trouble may be in the solvents. The alcohol may contain too much water. Th alcohol and ether should be mixed.
(4217) E. A. asks whether there is any metal or composition that is softer than pure lead and suggest any substitute for the purest lead, from the points of view of ductility and cheapness.
(4218) H. J. says: Would you please be kind enough to let me know through your valuable
paper what the seven modern wonders of the world paper what the seven modern wonders of the world
are? A. The wonders of this age or century are but faintly represented by the number seven, if you mean the wonders derived from science and engineering Foremost stands the steam engine and its wondrous work in developing power. The development of elec tric power, light, and transmission of language in the telegraph, the telephone, the phonograph. Then the opening of celestial space by the great telescopes. The
diving into the infinitesimal by the modern microscope And as works of engineering, the Mont Cenis Tunnel the Menai Bridge, the New York and Brooklyn Bridge the St. Louis Bridge, the ocean telegraph lines, modern ordnance, the Atlantic racers, the transcontinental railways, and a long lis of lesser works note.
(4219) C. L. R. asks: What is under stood by the term cellulose wool? A. We presume you nut husks and used for packing ships to prevent cocoa ing when penetrated by shells. The fiber expand nd thus closes the hole.
(4220) W. E. T. asks: 1. I have a one eighth horse power electric motor with a Siemens H the armature $1 / 2$ pound No. 18 wire; can I, by doubling the wire on the armature and winding in this way, make a plating dynamo? If not, what changes would be made . Connect the two arms of your field magnet in par allee. 2. How are connections made in a dynamo that current may be regulated with common switch lo vary speed when used as a motor? A. The are two ways of doing this. According to one method
the field magnet is wound in sections and the switch cuts the current in or out. According to the other, a so as to introduce more or less resistance. 3. How is dynamo constructed so as to give an alternating cur
rent? A. The coils of the armature are arranged to brought under the field magnet poles of different nam commutator. 4. In an induction coil how are connections made so that a single cell runs the coil and any re connected in series or in in circuit? A. The cells requirements of the coil, and a switch is provided to the throws one or all of the cells into the circuit of the primary. 5. How is a rapid and slow vibrator for an induction coil constructed and connected with coil? A. rapid vibrator is merely an ordinary vibrating armaAre like that of a vibratory electric bell. The slow principle, but the vibrating arm is made heavy, and the electrical contact is made by means of a mercury cup frosting done on plated ware? A. It is generally done y means of a brush formed of swinging sharp-pointed needles rotated in a lathe, the needles being brought into contact with the work by centrifugal action.
F. W. A. asks for an incombustible ink.-V. H. L. says: Will you please give simple directions for etching on copper ?-R. M. C. says : Can you inform me of
the method of making gelatin sheets ?-G.M. F. asks the method of making gelatin sheets ?-G.M. F. asks
for a receipt for liquid gutta percha.-B. B. S. asks or the general method of making perfumes and for says: Can you give briefly some of the methods by says: Will you please give me the various synonyms of alcohol and ammonia?-J. G. S. says: Can you inform me where I can obtain tables for converting
United States and metric measures ?-H. B. R. says: Will you please give through the columns of No ta Queries the formula for ground glass varnish used by photographers ?-H. K. B. says: Can you tell me what soy is ?-J.J. H. says. Have you a rale or table by which I can convert the readings of the Centigrade or J. C. V . posed.--O. D. E. says: How can I convert is comTwaddell to specific gravity ?-C. B. D. says: Can you inform me through your valuable paper of an method cf fireproofing timber?-E. P. V. R. would like
pose, used in place of plaster of Paris in casting center
pieces and ornaments.-W. W. S. asks: Can prints o gravings be made on paper with printer's ink from . would like to ind a composition to cement wood to elluloid.-E. N. asks for a receipt for making skeleton leaves?
Answers to all of the above queries will be fond in "Scientific American Cyclopedia of Receipts, Notes he advertisement of this book is printed in another

Replies to Enquiries
The following replies relate to enquiries recently pub her in :
(3980) H. McFarlen, Chicago, says: In the January 30 number of Scientific American, page our inquirer asks if there is a machine for casting sam eights $?$ Also, if it is practical to melt iron with pe oleum. To both these questions I answer yes.
ave at my establishment now a machine with mould in which to cast sash weights. I have also tested in small but practical way the melting of iron with fuel ill, and found it quite satisfactory.
(4092) W. M. B. in query No. 4092 asks or information in regard to black specks on silver prints. I have had some experience with them, and no to the silver bath from the clothing after having bee the mechanic's work bench. Small particles of iron r steel make black specks, while brass makes a pale han the black ones.- larger and more nearly round han the black ones

TO INVENTORS.

An experience of forty years, and the preparation o ore th at home and abroad, enable us to understand the laws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. synopsis of the patent laws of the United States and all
foreign countries may be had onapplication,and persons contemplating the securing of patents, either at home o abroad, are invited to write to this office for prices, which are low, in accordance with the times and our ex essive facilities for conducting the business. Address
MUN N \& CO., office SCIENTIFIC AMERICAN, 361 Bro dway, New York.

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted

March 29, 1892.

and EACH BEARING THAT DATE

 [See note at end of list about copies of these patents.]
Adhesive fabrics, producing, B. Hochman Air brake, H. McNulta. ir compressor motor, Burdon \& Houston

 Battery. See Galvanic battery. Secondary bat
Battery plate and making the same, storage, Don

$$
\begin{aligned}
& 471,817 \\
& 471,726
\end{aligned}
$$

Boiler
Boiler
Bol er
Book

A.

471,894

 electric. J. H

 Paper slot machine, toilet, F. E. Hough
Pencil sharpener, AL Lachenmeyer....

TRADE MARKS.

Bitters, stomach, A. H. F. Goilatiz................
Books of fiction, history, biokraphy, travels, and
poetry, Butler Brothers
poetry, Butler Br
Cigars C. Avarez
Cofer
Collars and curts, wat
Confectionery for cough s.............olds. Smith Extracts for food, favoring, Thomson \& © Tayior

 Medicine for coughs, bronchitis, asthma, and like

DESIGNS

 Gas retorts, mouthpiece for
Hammock I. E. Palmer
Insulator bracket, \mathbf{C}. Wirt.

 25 cents. In ordering pleasestate the name and numbiber
of the patent desired. and remit to Munn \& Co., 61
Canadian patents may now be obtained by the in-
ventors or any of the inventions named in the fore-
 ${ }^{47,567} \mid$

 THE GIBBS PATENT,

 wagon and carriage machinery.

$\frac{\text { No. 1, heavy hub boring machine }}{\text { The NATIONAL. }}$
 Best Fingbe Rever-
ing
5 changes
necluming

 NOISELESS
ROTA

 IRON TANKS CHEAP 4 iron tanks built

ELECTRIC POWER APPARATUS,

 FOR EVERY VARIETY OF MEOHANICAL WORK. SARE, SUTRE, FELIABLE. estimates furnished.THOMSON-HOUSTON MOTOR CO. 620 ATLANTIC AVENUE, BOSTON, MASS.

THE WORLD'S MAGAZINE OF	ING
$\begin{aligned} & \text { SFORT AND } \\ & \text { PASTIME } \end{aligned}$	FISHING KENNEL
$\begin{array}{\|l\|} \text { THE ONLY } \\ \text { ILLUSTRATED } \end{array}$	$\begin{aligned} & \text { YOLING } \\ & \text { ATHLETIOS } \end{aligned}$
$\begin{aligned} & \text { MAGAZINE } \\ & \text { OF ITS KIND } \end{aligned}$	RIVING RIDING
STORIES OF	$\begin{aligned} & \text { YACHTING } \\ & \text { CANOEING } \end{aligned}$
$\begin{aligned} & \text { TRAVEL AND } \\ & \text { ADVENTUR] } \end{aligned}$	$\begin{aligned} & \text { BOATING } \\ & \text { LAWN TENNIS } \end{aligned}$
	er Sports.

THE OUTING COMPANY, "LTD.," 239 FIFTH AVENUE, INEW YORK.

 MUNN \& CO Publishers Office of the SCIENTIFIC AMERICAN, 361 BROADWAY NEW YORK

> Mining and Electrical Alfred Guililaume, Machinery a Specialty.
Electric Lamps for miners. 215 DEARBORN STREET, CHICACO.

ASTRONOMER'S WORK IN A MOdern Observatory- By Dr. David Gill. A very interest
ing paper by the. astronemer at the Cape of Good Hope
observatory, hiving the routine of the modern atron observaror, givig the rountine or the modero astron
omer's work and the results obtained trouh recent
processes Mrecesses in Suvestigation. Contained in Screvtific
AMERICAN SUPLEMEN, No. 833. Price 10 cents.
TO be had at this office and from all newsdealers.
 Han Duzen'e Pat. Toose Pulley Onler

 VVorla Injectors
 operated entirely by a single
hande and therefore the simp.
lest tooperate Single turnof
the handle is all that is required

BUILDERS OF HIGH GRADE BOATS.

THIS ANNOUNCEMENT is tof ive notice that

 STEVENS PATENT
RELIABLE DVVIDER. No. 60
Forreat Arom heavy stock. Oerated with

BEATTY Pianos, \&ing. 日ranas, wh. Want Agents
 THE E. D. ALBRO CO., Eastern Branch, 200 Lewis 8t., New York, U. S. A.
H. T. Bartlett, Mg'r. F. W. Honerkamp, Ass't Mgr.
Mills Cincinnati, Ohio.

教

Wiwands' Worwa on ha Sham Mingine

 M odern American I, ocomotive Engines. Their
Design, Construction, and Management. Mustrased by
78 ingran
 QII Illustrated circulars, showing fill tables of content
of all of the arove valuable books, will be sent free to any on
in any part of the world who wil send his address.

HENRY CAREY BAIRD \& CO., Industrial Publishers, Boorsellers \& Importers
$\mathbf{8 1 0}$ Wainut St., Philadelphia, Pa., U.S.A.
Roper's Engineers' Handy-Book.

 examination, before being com comissioned as an an engineer
in the U. S. Navy or Reverne Service, or Micensed as an
engineer in the Mercantile Masine Ser Descriptive Catalogues mailed free to any a.... add Walnut St., -- Philadelphia,

HARPER'S PERIODICALS
harper's magazine, One Year - - \$4.00 HARPER'S WEEKLY, One Year - . - . 4.00 harper's bazar, One Year harper's young people, One Year

The volumes of the Weerly and Ba zaR begin with the first numbers for January, the volumes of the Young People with the first number for No vember, and the volumes of the MAGA Ine with the numbers for June and December of each year.

Booksellers and Postmasters usually receive Subscriptions. Subscriptions sent direct to the publishers should be accom panied by Post Office Money Order or Draft. When no time is specified, sub scriptions will begin with the current Number.

 Address

HARPER \& BROTHERS NEW YORK INVESTMENT. To persons with qua each gai

THE INTERNATIONAL CYCLOPEDDA
Revised Edition of 1892. Just Out.

The BEST READY REFERENCE CYCLOPEEDIA in the ENGLISH LaNGuaGE

BOLD FOR CASH OR ON EASY PAYMENTS. AGENTS WANTED.

DODD, MEAD \& COMPANY, 753 \& 755 BROADTION DEPARTMENT,
STEEL TYPE FOR TYPEWRITERS/THE PENNA. DIAMOND DRILL \& MFG. CO Stencils, Steel Stamps. Rubber and
M etal Type Wheels. Dies, etc.
Mond
 OIL WELL SUPPLY CO.

TO Inventores.

 ELECTRICITY BELLS, BATTTERIES, PUSHESE, ELECTRICAL SUPPIIES, STANLEY \& PATTERSON Electrical Honse
$32 \& 34$ Frankfort St., Furnishings,
N. \mathbf{Y}. City.

After being on the Market Six Years The 4 A CME E7 Still Leads!
 roceesster maciine tool woris. brown's Race, rochester, n. y.

PAINT $\mathrm{m}_{\mathrm{ol}}^{\text {oide }} \mathrm{Fs}$ DIXON'S SILICA GRAPHITE PAINT.

$\$ 10.00$ to $\$ 50.00$ Hixab ects. Catalogues on application. Part 1 Optical, 2
 PATENT RUBBER COVERED SQUEEZE
POWER WRINGERSH FOR HOBIERY AND DRYINGAND VENTILATINGTANS, CEO. Patalogues free. WIndsor Locks, Conn

EELT \& TARRANT MFG. CO. 62-56 Illinois St. Chioago.

PROPOSALS.
U. S. Engineer 0mice, Armud Buildink, Nev

 To Iron Manufactur ers. OMfice of U. So. Sight

 (W, WLILAM LUULLOW Lighthouse Engine

MALLEABLED

SYLPH CYCLES RUN EASY

 GATES ROCK \& ORE BREAKER Capacity pp to 200 toos per bour.

 CATES Send for Catalogues.

DEAFNESS \& HEAD NDISES CURED

The Remington
Standard
Typewriter
Isto-day,as it hasever been he leading Typewriter. C a refully tested im

provements Send for Illustrated Catalogue. machine.
TRY our para gon brand of typewriter
RIbBons.
Wyckoff, Seamans E Benedict,

Broadway, New York

212° FAHR THE STEAM JACKET
 FEED WATER BDILER Z PURIFIER
 BOILS THE WATER

PfDvertisements．

VIcTORS

OVERMAN WHEEL CO．
A．G．SPALDING a BROS．，Special Agents，

WE manufacture Boilers，Radiators，and
ERECThcr Specialties，and CONTRADT for the
CounpleTE in any part of the HEATING BY STEAM

OR HOT WATER．
We send experienced fitters and guarantee satisfac
tion． Broomell，Schmidt \＆Co．，Ltd．，York，Pa．
DOU EBPME POWVFI？

95 MILK ST．，BOSTON，MASS．
This Company owns the Letters Patent granted to Alexander Graham Bell，March 1877．No．186，787．
The transmission of Speech by all known forms of Electric Speaking Telephones in－ fringes the right secured to this Company by the above patents，and renders each individual user of telephones not furnish－ ed by it or its licensees responsible for such nereof use．and all the consequences thereof，and liable to suit therefor．

Machinists＇Tools of every description

 drop forged from bar steel，THE BILLINGS \＆SPENCER COMPANY， HARTFORD，CONN．

FIRE HAZARDS FROM ELECTRICI

 YOU HAVE A LITTLE MONEY LAID BY

 Eastern Farm Exchange，

THE SMITH PREMIER TYPEWRITER

Important lmprovements．Alt Essential Features greatly perfected． Easiest Running and Most Silent．
All type cleaned in 10 seconds without soiling the hands．
The Smith Pemer Typewter Co，Syracuse，N．Y．，U．S．A．
Send for Catalague．
Sol

ELECTRO VAPOR ENGINE． GAS OR GASOLINE FOR FUEL．

THOMAS KANE \＆CO．， CHICACO，ILL．

표웅ㅇN

GENERAL ELECTRIC CO．
INCANDESCENT AND ARC LIGHT PLANTS． Stationary and Railway Motors．－Lamps．－Cables．－Safety Devices． anadian．．．．．．Edison Building 77 Bay St．TISTRRICT OFFICES．
 Central．．．．．．．．．
Eastern．．．．．
New Englana．

ARTESIAN

H．CHANNON COMPANY，

 Contractors＇Supplies WIRE ROPE，MANILLA ROPE， Iron and Wooden Tackle Blocks，Etc．，Hoisting Engines and Hand Powers． 24－26 Market St．，CHICACO，ILL． Paciffc Northwest．．．Fleischner Building，Portland，OreRocky Mountain.. ．．．．Masonic Building，Denver，Cole

is vicioriaia Street，Westan Building，Broad Street，New York．

KODAKS are always loaded ready for immediate use．They can
be used for roll film or or glass plates．The new

$\frac{\text { Daylight }}{*} \stackrel{*}{\text { Kodak }}$

 $\$ 850$ to $\$ 25$ 으 the eastman company，
Send for Circulars．Rochester，N．Y
 POPE MFG．CO．， 221 Columbas Avo．，Botion．

VITSARESTON

Composed of Asbestos，combined with Water and Acid Proof Materials，Compressed and Vulcanized

cent Lights，Motors，Chandeliers，Dynamos，etc．Special styles and shapes to order．Prices on application．

Hole mandeacturers of
H．W．Johns＇Asbestos Millboard，Sile athings，Building Felts，Fire－Proof Paints，Liquid

 WM．READ \＆SONS，

エエエ戸

ESTABIISHED 1846.
The Most Popular Scientific Paper in the World

$$
\begin{aligned}
& \text { Only \$3.00 a Year, Including Postage. } \\
& \text { Weekly-52 Numbers a Year. }
\end{aligned}
$$

This widely circulated and splendidly Illustrated paper is published weekly．Every number contains six－
teen pages of useful information and a large number of original engravings of new inventions and discoveries．
representing Engineering Works，Steam Machinery representing Engineering Works，Steam Machinery，
New Inventions，Novelties in Mechanics，Manufactures， Chemistry，Electricity，Telegraphy．Photographiy，Arch1－
tecture，Agriculture，Horticulture，Natural History． tecture，Agriculture，Horticulture，Natural History．
etc．Complete list of patents each week． Termplete list of patents each week．
Subscription．－One copy of the ScIEN－
Termis postage prepaid，to any subscriber in the United States，
Canada，or Mexico，on receipt of three dollars by the Canada，or Mexico，on receipt of three dollars by the
publishers；six months．\＄1．50，three months，\＄1．00．
Clubs．－Special rates for several names，and to Post Masters．Write for particulars．
The safest way to remit is oy Postal Order．Drath or Express Money Order．Money carefully placed inside
of envel of envelopes，securely sealed，and correctly addressed，
seldom goes astray，but is at the sender＇s risk．Address
all letter hetters and make all orders，drafts，etc．，payable to
MUNN \＆CO．， 361 Broadway，New York．

> THE
§riendific American ঞupplement

This is a separate and distinct publication from THE
SCIENTIFIC AMERICAN，but is uniform therewith in SCIENTIFIC AMERICAN，but is uniform therewith in size．
every number containing sixteen large pages full of en－ gravings，many of which are taken from forelgn papers and accompanied with tremslated descriptions．THE SCientific American Supplement is published week－
ly，and includes a very wide range of contents．It pro－ ly，and includes a very wide range of contents．It pre－
sents the most recent papers by eminent writers in all
the princinal the principal departments of Sclence and the Useful
Arts，embracing Biology．Geology，Mineralogy．Natural History，Geography．Archæology，Astronomy Chemis－ Steam and Railway Engineering，Mining，Ship Building． Marine Engineering，Photography．Technology，Manu－ facturing Industries，Sanitary Engineering．Agriculture．
Horticulture，Domestic Economy．Biography， Horticulture，Domestic Economy．Bography，Medicine，
etc．A vast amount of fresh and valuable information etc．A vast amo ont or publication．
obtainable in no othe
The nost important Engineering Works，Mechanisms， The nost important Engineering Works，Mechanisms，
and Manufactures at home and abroad are illustrated and Manufactures at home and abroad are nlustrated
and described in the SUPPLEMENT． Price for the SUPPLEMRNT for the United States and
Canada， 85.00 a year；or one copy of the SCIENTIFIC AM－ ERICAN and one copy of the SUPPLLEMENT，both mailed for one year for 87.00 ．Single copies， 10 cents．Address and
remit by postal order，express money order，or check， MUNN \＆CO．， 361 Broadway，New York，

Publishers Scientific American．

Funilding CHaition．

The scientific american Architects＇and BUILDERS＇EDITION is issued monthly．\＄2．50 a year－ Single copies， 25 cents．Forty large quarto pages，equal
to about t wo hundred ordinary book pages：forming a large and splendid Magazine of Architecture，richly adorned with clegant plates in colors，and with otherfine engravings；illustrating the most interesting examples
of modern architectural construction and allied subjects． A special feature is the presentation in each number of a variety of the latest and best plans for private resi－
dences，city and country．ncluding those of very mod． erate cost as well as the more expensive．Drawings in perspective and in color are given，together with full
Plans，Specifications，Sheets of Details，Fstimates，etc． Plans，Specifications，Sheets of Details，Estimates，etc．
The elegance and cheapness of this magnificent wort have won for it the Largest Circulation of any Architectural publication in the world．Sold by all news． dealers．$\$ 2.50$ a year．Remit

PRINTING INKES

