
a WeEkly journal of practical information, art, ScIENCE, MECHANICS, CHEMISTRy, and manufactures.

1. The central gallery of main operating room. 2. Time distributor. 3. General view of main operating room. 4. One of the switch-boards. 5. The dynamos.

THE WESTERN UNION CENTRAL TELEGRAPH OFFICE AND PLANT IN NEW YORK CITY.-[See page 198.]

§rientific ghmericau.
 ESTABLISHED 1845

MUNN \& CO., Editors and Proprietors PUBLISHED WEEKLY AT
No. 361 BROADWAY, NEW YORK.

NEW YORK, SATURDAY, MARCH 26, 1892.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT

No. 847.

congressional inquiries concerning the

 PATENT OFFICE.We have had occasion to speak of the crowded con dition of the Patent Office, and the resulting delays in reaching results in the prosecution of work. The matter has assumed serious proportions, and it is no longer delay in carrying on the regular operations tha is to be apprehended, but a s.
The subject has been brought to the attention of Congress, and two Senate resolutions have been passed, one asking for an account of all money received by the Patent Office and of the disposition made of it: the other inquiring as to the safety and sanitary condition of the building. In compliance with these resolutions reports have been rendered by the Commissioner of Patents which cast a strong light on the neglect with which the interests of inventors have been treated in this country.
One report shows that there is a balance of $\$ 4,041$, 753.10 to the credit of the Patent Office. This balance is now in the Federal treasury. By Act of Congress of July 28, 1868, the money received from the Patent Office was no longer kept separate. but was included with the other amounts from all sources. The office, however, has kept an account of all such money transmitted. Of this money $\$ 358,000$ has been appropriated for building purposes, although only a portion was expended. In addition a little over $\$ 250,000$ has been expended upon the office for work of more or less per manent character.
The other report shows that the portion of the building allotted to the Patent Office is quite insufbuilding allotted to the Patent Office is quite insuf-
ficient for its purposes. The storage of printed copies ficient for its purposes. The storage of printed copies
of patents is inadequately provided for. They have to be stowed away in all sorts of places, any attempt at consecutive order having been abandoned as impossible. The brickwork in places has cracked under the immense weight of the printed copies. It is said that a special training in the geography of the place is requisite to enable a new clerk or messenger to know where to find copies of patents. The sanitary condition is also reported as very bad. Bad plumbing and insufficient cubic contents of the rooms, with in adequate ventilation, not only threaten, but undoubt edly affect seriously, the health of the employes of the office.
The Patent Office should not be conducted as a busi ness speculation. It should be managed in the inter est of the inventors of the country. The four million of dollars credited to it, or a liberal portion thereof, should be expended on perfecting its service. A present, with this amount to its credit in the U. S. Treasury, the Patent Office is hampered for want of funds, its corps of examiners are rendered incapable of doing justice to themselves or to their work, simply on is to be done in the near future to provide storage for printed copies of patents is altogether problematical. The Hon. Commissioner of Patents is to be congrat ulated on having brought this subject before Congress, and it is to be hoped that his efforts in the service of the country's inventors will be well seconded by legislative action.

RECENT LYMPH TESTS AND EXAMINATIONS FOB

 tubercular disease in cattle.An expensive but scientifically valuable series of ex periments was made on March 16 at Clairemont Farms near Philadelphia, when six high-bred Jersey cow were sacrificed by their owner, Mr. Joseph E. Gilling ham, in the interest of sanitary science. Out of a large herd of valuable Jerseys, all of known and registered lineage, a herd that is famous among American cattl breeders, over a score had been selected for slaughter on account of the presence in them of tubercular dis ease. The presence of this dread malady was made known by the use of Koch's lymph used in the way now familiar to all. Out of seventy-nine head of cattle, thirty had responded to the treatment in such a way as to convince Professor Leonard Pearson, of the Veteri nary Department of the University of Pennsylvania that tubercular taint was present.
The killing of these very valuable animals was a voiuntary sacrifice on the part of Mr. Gillingham, for while the State and local sanitary officers and inspectors were present by his invitation, no action had been taken that made the slaughter obligatory upon him. It was entirely in the interests of the continued health of the rest of his herd that they were now sacrificed, and in the interest of a better acquantance with this disease that over a hundred prominent scientific men and others likely to be interested in these researches were specially invited to be present.
In this herd the purity of the stock has been main tained by the use of all the leading Jersey strains Such blood as comes from Coomasie, Stoke-Pogis, Rioter, Guilderoy and St. Lambert sires is here, yet 8 notwithstanding the greatest care having been taken, in some way many of the herd have become tuber culous ; this It is thought was brought about by the recent introduction into the herd of some imported
of them became sick they were killed, and an ex amination showed them to have been suffering with tubercular disease. Mr. Gillingham at once decided that all the herd should be carefully examined by Professor Pearson, with the results above stated.
Having discovered so large a proportion of diseased cattle, 38 per cent of the entire herd, and reasoning that what could so soon come to pass under the most careful management was likely to spring up elsewhere under like conditions, the occasion was made by him one of public education. Professor Pearson and Drs Shakespeare, Guiteras and Abbott were selected as committee to examine the animals slaughtered and report to the assemblage. Among the latter were epresentatives of the State Board of Agriculture, the State Board of Health, the University of Pennsyl vania, Jefferson Medical College, the National Bureau of Animal Industry and many prominent medical men from Philadelphia and elsewhere.
Owing to the time taken in making examinations that were entirely satisfactory to the experts present only six of the doomed animals were killed ; the rest will be killed later in a more private manner, when only those most intimately connected with the cause of sanitary science will be present. The killing of five of these was done by Dr. S. J. Harger, professor of an atomy in the University of Pennsylvania, by a method technically known as "pithing." This is virtually the usual death stroke dealt by Spanish toreadors in the bull fights of that country. It consists of quickly piercing the back of the neck with a stout dagger which is passed directly through the spinal cord at the base of the brain, and results in death so instantaneously that only the natural reflex actions of the muscles are noticeable. The other cow was killed by Rabbi Isaac Stemple, according to the Hebrew rite the jugular vein being severed by a mighty blow from ponderous knife.
Of the six slaughtered animals, the following statis tics were gleaned from the experts and the head herds man:

After the autopsies Dr. Guiteras announced that in five of the cows there were indisputable evidences of tubercular derangement, and that as some doubt appeared to exist as to the other (Juno) a fuller examination would be made by the committee. It was gener ally conceded, however, in after conversation that well formed tubercles were found on her intestines. None of the doomed cows or calves are valued at less than $\$ 150$, and among them Rose, valued at $\$ 1,000$, who gives 43 pounds of milk daily, is yet to die.
In a spacious stall near by was Amber Stoke-Pogis, an inbred bull, out of Waiter Girl by St. Lambert. This noble animal, though only six years old, weighs $1,700 \mathrm{lb}$.; his sire has twenty-seven daughters on the tested list, and is now practically the greatest of his breed now living. Beyond this stall was that of Signal, sired by Amber Stoke-Pogis out of Rose; though a beautiful little fellow outwardly, showing every sign of health and coming great value, he too is doomed, for the lymph has shown that from his dam he has inherited the tubercular taint.

Low Temperature Galvanizing.

The London Metallurgical Company are introducing a new process of galvanizing, which seems to have everal advantages over the older process. The process appears to be one in which zinc is deposited from its solution in the cold on the wire or sheeting to be coated, and the inventors claim that in this way a more even and uniform thin coating of the protective metal is obtainable, while at the same time, in the case of wire, the tensile strength is not diminished, as occurs when thin iron or steel wires are galvanized by the common methods of steeping in molten zinc. At the ordinary temperature, too, there is no appreciable tendency to form a zinc-iron alloy, which causes a considerable waste of zinc in addition to the reduction of strength already pointed out, and may be regarded as a further defect in the present system. Comparative tests on the hardness of the coating on iron sheeting by means of the sclerometer also show that a plate galvanized by this process has a harder surface than that obtained by the ordinary hot method of galvathat ob
nizing.

The Electrical Discoveries of Joseph Henry.
A highly interesting and instructive series of articles upon the electrical discoveries of the late Joseph Henry, of Washington, by his daughter Mary A. Henry, has lately been presented in the Electrical Engineer, of this city. Illustrations were given of the original apparatus employed by the distinguished philosopher, many parts of which are still extant, to gether with copious abstracts from his notes and scientific essays. That Joseph Henry was the maker of the first electro-motor, the maker of the first magneto-electric telegraph, and the discoverer of magneto-electricity is established in these papers by the clearest historical evidence.
The concluding article of the series we have alluded to closes as follows :
A brilliant spark flashes in young Henry's studio in 1829, to betray to him, in the extra current, the secret principle of the dynamo. To-day, this potent instru ment enters factory and home in a thousand ways the effectual slave of man, while tired horses rest in their stables as it drives our cars to and fro. High up in our city street, when night comes down, the electric spark, leaping from wire to wire, burns a carbon point and turns our darkness into day. The lightning, forced to be man's messenger in the telegraph, compelled to do his work in the electric motor, has been caught in its free play from cloud to cloud to do this service; even as the steed once coursing in wild freedom over the plain now threads with patient feet the medley of rolling wheels on the pavement below. To tame the in termittent flash into this steady, cheering ray, Henry developed the magnetic force, and Faraday and Henry both set electricity and magnetism to work, the one producing the other; but that they can do so anywhere is due to the discovery of Henry, which made it possi ble to call them into conjunctive action through any length of wire. Each year, each month, each day almost, adds some new blessing to the world, through the great discovery of the identity of electricity and magnetism. Let England sing her hymn to Faraday ; he well deserves it; but iet not America forget the meed of praise due her Henry. His is surely not the second place in the great discovery.
the sequence
of Discoveries Connected with and Accompanying the Discovery of Magneto-Electricity.

Californla Lumber Enterprise.

The most important timber land deal carried out in California is the recent securing of 28,000 acres of pine timber land in Siskiyou and Shasta counties by Miles \& Brewster, of Green Bay, Wis., and Tatum \& Bowen of San Francisco.
The land lies in sections, scattered over a virgin dis trict which is the largest pine timber belt in the State It is in southeastern Siskiyou and northeastern Shasta The region comprises nearly 500,000 acres of timber. It is all east of the California and Oregon Railroad, and also east of the Squaw Mountain range. Most of the land lies on a comparatively level plateau.
Miles \& Brewster and Tatum \& Bowen have been quietly at work for three years gaining possession of timber land in this region, by buying it from original claimants, who gained possession under the usual government rules. They found nearly all the land not owned by the railroad there to be in the possession of
these small claimants, each of whom had secured 160 acres. It was found necessary to use the greatest secrecy in making these purchases, for had the object of them become known, the claimants would have advanced their prices. As it was, the land was bought at an average price of $\$ 15$ an acre, and it was gradually absorbed, until

After making these extensive purchases they began negotiations with the Southern Pacific Company, bond ing 11,000 acres, which they have now virtually pur chased, and have begun negotiations for the purchase of some 12,000 acres more. As all the land has been or is to be bought at an average rate of $\$ 15$ an acre, the total 23,000 acres purchased from the railroad company will cost the lumber company $\$ 345,000$, which, added to
the $\$ 90,000$ already expended for the lands of private individuals, will make a total of $\$ 435,000$.
A standard gauge railroad, forty miles long, will be built at once; will cost some $\$ 800,000$. The road will start from lower Soda Springs, in Shasta County, on the California and Oregon, and will follow Soda Creek, passing over the Squaw Mountain range, and running by Bigelow's and Bartle's northeasterly up into Siskiyou County. For the first five miles the line will be you County. For the first five miles the line will be
rather difficult of construction, but after the Squaw rather difficult of construction, but after the Squaw
Mountains are passed it will be almost level, and very easy to build. The timber belt will be reached within ten miles, but although cutting and sawing will be begun somewhere within that distance, the road will be extended through the timber, in order that sawmills may be located far enough apart to insure a long period of usefulness for them before removal.
The importance of this new lumber industry to San Francisco can hardly be estimated. All of the pine timber lands of the northern part of the State, beyond Mount Shasta, to reach this city by rail, must be hauled up very heavy railroad grades before they can be brought down through the Sacramento Valley. The new enterprise, however, is one which involves a much less mileage for freights, and there is a down grade from the timber belt to San Francisco nearly all the way.-Pacific Lumberman.

Launch of the Great British Warship Ramil-
lifes, the Largest and Most Powerful Ship
Afloat. Afloat.
At a time when so much is being written on the subect of the relationship of the gōvernment to private manufacturers, and of the necessity of these latter being encouraged to perfect their means of producing munitions of war, the floating, on March 1, from the yard on the Clyde of Messrs. J. \& G. Thomson, limited, of H.M.S. Ramillies, the largest battle ship yet aunched from a private establishment in the United Kingdom, and, indeed, in the world, and costing 843,0007 . $(\$ 4,215,000)$, is, says Engineering, worthy of more than a passing reference. The contention for a closer bond between the army and navy departments and the private establishments in the kingdom is based on the necessity of the government having at their disposal the most extensive resources possible at a time when war is imminent or even probable, and although that would scarcely be a time to lay down battle ships, it is desirable to have yards equipped fior the building of battle ships, on the principle that a works capable of keeping pace with the royal dockyards in the building of large vessels may do similarly well with small craft. Besides, the building of ships of war requires quite an education on the part of the workmen as well as of superintendents. In the building of a cargo steamer or "tramp" "the rule of thumb" is a useful factor; but when a warship is in course of construction drawings must be made almost for every detail. In the case of the Ramillies there have been 5,000 plans in use, and they were constantly in requisition. The men in the Clydebank yard of the Messrs. Thomson, limited, are now quite used to such important work. Indeed, for several years past they steamer, and in the past two years they have had something like a million and a third sterling of work from the Admiralty. Besides, the Messrs. Thomson
have designed and built several remarkably successful craft for foreign countries, including Spain, Russia, and Japan.
The Admiralty had, therefore, confidence in placing an order for a battle ship of over 14,000 tons with the firm in November, 1889, and the work has been quickly done.
The keel of the Ramillies was laid in August, 1890, so that she has only taken 19 months to build, and when we remember that great credit was and is still taken for the building of the sister ship Royal Sovereign in the Portsmouth Royal Yard, with all its resources, in
17 months, and that the Devonport yard took 22 months to the Empress of India, and the Pembroke yard 34 months to build the Repulse, launched on February 27, Messrs. Thomson have to be congratu lated on their performance. In the initial stages 40 tons of steel were built into the ship each day, and now there are a million and three-quarter rivets hold ing the structure together. These weigh 300 tons The plates, previous to their being taken in hand for
working, had to stand for a few hours in a liquid consisting of nineteen parts of water and one part of hydrochloric acid. When the plates were removed from the dilute acid both the surfaces were well brushed by brushes worked by machinery, and washed to remove any scale which might still adhere to them. They were then thoroughly washed with fresh water by the aid of a hose, then placed on edge to dry. This process removed all the black oxide or scale which ad heres to the plates and has the effect of corroding them when placed in communication with sea water.
The ship was ready for the armor plating in August, but the plates were not forthcoming. Owing to the imultaneous building of eight battle ships under the Naval Defense Act, steel manufacturers had their re-
sources severely taxed. Otherwise the Ramillies would have been launched some time ago. The armor ex tends for two hundred and fifty feet along each broad side of the ship, and at each end the two sides are connected by a transverse armor belt. The belt is 18 inches thick, and required special machinery to work it. The drilling of the holes, $51 / 2$ inches in diameter, for the bolts, was done by electric power, with specially devised machinery, the perforation of the hole in the plate and in the teak backing being one operation So complete were the arrangements that $31 / 2$ days served for the preparing and fixing of each armor plat weighing 30 tons. The plates are of compound steel the outer face being of hard steel, while the inside por tion is much softer and more ductile, and prevents the racking of the hard steel face by the impact of shot. As it is important to avoid making any holes in the hard steel face, the plates are secured by bolts $51 / 2$ inches in diameter, having a screw thread in each end. A hole is made in the softer steel in the inside of the rmor plate, and when the plate is put on to the ship's ide the bolt is passed through from the inside of the hip and is screwed into the hole made in the inner part of the armor plate. A long washer is passed over the inside end of the bolt, and rests upon the in side of the skin of the ship, and inside of all a large nut is "hove up" on the end of the bolt, which com pletes the security of the plate.
The 1 inch steel skin of the ship above the armor belt is covered with 4 inch steel armor, which protects the quick-firing gun deck. The 67 ton guns are mounted en barbette, two forward and two aft. The armor in each barbette weighs 643 tons without the backing. The barbette was chosen in preference to the turret because it raised the guns higher and admitted of in creased freeboard-it is 18 feet against 10 feet 3 inches in the Admirals. This, in fee interests of the men, is much needed improvement. The tops of the bar bettes project 2 feet 9 inches above the upper deck The axes of the 67 ton guns are only 4 feet 6 inches above the deck.
There are seventy-eight separate engines in the ship. The main propelling engines consist of two sets of en gines of the triple compound type. They are in separate compartments with the powder magazine between, so that it will be very difficult for a shot to pass through to the explosives, as, in addition to the armor, it will require to penetrate through coal bunkers and the engine compartment with its many obstruc tions. It is not necessary now to enter into details as to the engines, as we hope at a later date to illustrate them. Steel and naval brass have been largely used to reduce the weight, and it is expected that the maximum power of 13,000 indicated horse power will be got with a creditably small ratio of weight. Almost everything in the ship is done by machinery, and the engines incidental to the propelling machinery are all ndependent. Everything, too, is in duplicate, so that should an engine get out of order another engine is available. The steam is supplied by eight singleended return tube boilers, each with four furnaces 3 eet 6 inches in diameter. For the purpose of shutting off each combustion channber from the others, and also or regulating the draught, separate dampers are fitted in the passage from each furnace through the mokebox, and gearing is arranged to work these dampers from the stokehold floor. Each pair of boilers is in a separate water-tight compartment, with independent coal supply. For some time both sets of main engines have been completely fitted up to the smallest detail in Messrs. Thomson's works, with the condensers and all connections and shafts in position complete. In the boiler shop, too, the eight boilers are also all arranged in position with smoke boxes, uptakes, and all boiler mountings, furnace fittings, and firebars, and the two funnels each 8 feet 6 inches external diameter and 90 feet high from the furnace level, lying ready for putting on board, so that when the ship gets under the 120 ton sheerlegs at the company's docks, these will quickly be put on board, and the vessel will doubtless soon attain her guaranteed speed of $171 / 2$ knots.
Medal offered for a Printing Device or Process.
At the recent annual meeting of the American Newspaper Publishers' Association, it was "Resolved, That the Executive Committee be authorized to have pre pared a suitable gold medal, containing not less than fifty dollars' worth of pure metal, to be presented to the inventor or discoverer of any specific device or process, the practical use of which will materially cheapen the production or quicken the printing of newspapers, provided such device or process is in their opinion of sufficient importance and value to be entitled to such recognition."

Sleigh Bells.

In making the bell the jinglet of iron is placed inside a little ball of mud, just the shape of the inside of the bell. Then a mould is made of the outside of the bell. This mud ball is placed in the mould and the metal poured in. The hot metal dries the dirt so it can be shaken out after casting, leaving the jinglet within.

The Clashing of Atom
Professor John Tyndali, one of the highest authoriies on matters of natural philosophy, says of this - It is to the ciashing together of the oxygen of the air and the constituents of our gas and candles that the light and heat of our fiames are due. When steel filings are scattered in this Bunsen's flame, you see the star-like scintillations produced by the combustion of the steel. Here the steel is first heated till the attraction between it and the oxygen of the air becomes sufficiently strong to cause them to combine, and these rocket-like flashes are the result of their collision. It is the impact of atoms of oxygen against atoms of sulphur which produces the heat and flame observed when sulphur is burned in oxygen or in the air; to the collision of the same atoms against phosphorus are due the intense heat and dazzling light which result from the combustion of phosphorus in oxygen gas. It is the collision of chlorine and antimony which produces the light and heat observed when these bodies are mixed together : and it is the clashing of suiphur and copper which produces incandescence when these substances are heated together in a Florence flask. In short, all cases of combustion are to be ascribed to the collision of atoms which have been urged together by their mutual attractions.'

AN IMPROVED ICE PLOW

The ice plow shown in the illustration is very simple and durable in construction, and designed to be very effective in operation. It has been patented by Mr. Hamilton Pray, of Clove, N. Y. Its frame consists of two parallel longitudinal beams, connected by suitable transverse beams, two U shaped runners of different length being held adjustably on the front and rear ends of each longitudinal beam, while cutting blades of different length are heid adjustably on the beams between the runners, extending below the lower ends of the front runners. In beginning to cut an ice field, a first cut is made to serve as a guide for the runners and cutters of the second longitudinal beam, and thereafter the plow is made to travel in grooves already

PRAY'S ICE PLOW.
the runners and cutters of one beam in a groove already formed, so that the animal is prevented from dragging the plow out of its grooves by a sidewise pull All the runners and blades are adjustable, so that the plow may be arranged to cut at regular depths at all times, and can be drawn over the ice field with a steady, uniform pull. This plow has been in practical use for two seasons and is said to have given great satisfaction as a thoroughly efficient ice cutter.

No Scale Wanted in California.
On March 1, in Los Angeles, Judge NicKinley de cided that 325,000 orange trees, which were imported from Tahiti infected with eight different kinds of pests, were to be destroyed. Insecticides were used which destroyed seven of the pests, but the eighth was not killed; hence the decision.
This scale is called the Chinaspis biclavis, a pest hitherto unknown in California, a scale that all efforts to eradicate were unavailing.
The decision was of very great interest to all fruit growers in the State, as it is the first of its kind eve rendered. It is of interest to Eastern nurserymen also as they are at the present time trying to get admitte into the State several car loads of infected fruit trees.
R. E. S.

The U. S. Treasury Department has decided that machinery imported to the Exposition from foreign countries, either wholly as an exhibit or to be shown in connection with the illustration of some manufacturing process, shall be admitted free of duty. Any raw naterial imported for use in such process must pa regular duty, however.
steam space at the heads, the piston also havin

AN IMPROVED ROTARY ENGINE.

The engine shown in the accompanying illustration is designed to be very effective in operation, utilizing he steam to the greatest advantage, while it is adapted to be run at a high rate of speed. It is constructed of but few parts, so that it is not liable to get out of

IYCAN'S ROTARY ENGINE

order, and friction is reduced to a minimum. The in vention has been patented by Mr. William S. Lycan, of Marshall, Ill. Fig. 1 represents a longitudinal section of the engine, and Fig. 2 is an inner face view of one of the cylinder heads. The heads are each provided with a double wedge-shaped abutment extend ing inwardly into the cylinder, while a piston mounted steam in the cylinder has flanged wheels forming slotted projections, gates sliding longitudinally in the webs of the flanged wheels and slotted projections. The steam inlet pipes lead into the steam space near the ends of the abutments, and exhaust pipes lead from this space oppositely, close to the other ends of the abut ments. The driving shaft passes centrally through the cylinder heads and cylinder, the hub of the piston being secured on the shaft, while fixed annular cams have their peripheries fit ting the inner face of the cylinder be tween the wheels of the piston, the inner edges of the cams engaging notches in the gates or valves. In a practical trial this engine is said to have developed great power and shown a very high rate of speed.

Strychnia in Snake Bite. Dr. Wolfgang Hunt, of the Toowoomha Hospital, Queensland, give an interesting account in the Austral asia Medical Gazette of a case which had come under his care. The patient was a child aged sixteen months. An elder sister, while playing with her a little way from home, heard her scream, and saw a snake clinging to her hand. Running to the house she quickly fetched her mother and an uncle, who found the child crying and holding the third finger of the left hand, on which was a small punctured wound. The sn
as it was making off, and found to be a death adder." The child was taken o the house, and the end of the finger removed, the stump being sucked and drenched with ammonia and ligatures renched to the arm She was then pplied to the arm. She was then brought to Toowoomha for the near-
est medical aid, ammonia being apest medical aid, ammonia being ap-
plied to the hand meantime. An atplied to the hand meantime. An at-
tempt was made to give stimulants by tempt was made to give stimulants by
the mouth, but vomiting immediately followed their administration. On ad mission to the hospital, three hour after the accident, the child was almos comatose the body and the extremi ies cold, pupils dilated and insensitiv to light, the pulse rapid and irregular. The child was at once wrapped in hot flannels and heat applied to the limbs, while four minims of liquor strychniz were administered hypodermically and a strong faradaic current applied to the nape of the neck and along the pine. Fifteen minutes later another four minims of liquor strychniæ were injected, and almost at once a change began to manifest itself in all th symptoms, and in a short time the
child recognized and played with its parents. With the exception of a few slight muscular twitchings, recovery was uninterrupted, and the child was dis charged the next day in apparently perfect health and none the worse, except for the loss of her finger The case is very important, especially with refer ence to the means used for procuring recovery, viz. the hypodermic injection of strychnia, and Dr. Hunt is to be congratulated on his success in this case, as wel as in that of another patient whom he mentions a having been admitted in a similar condition after be ing bitten by a brown snake, and in whom also recov ery followed the hypodermic injection of strychnia.I'he Lancet.

A Fortunate Use of the microphone
Prof. D. E. Hughes, F.R.S., writes to the Electricai Engineer, London: "Having been engaged for many years experimenting with my microphone for the detec tion of sounds too feeble for the unaided human ear, am pleased to notice by the following paragraph in the Daily Telegraph of February 25 that it has been suc cessfully applied in St. Petersburg to the saving of human life."

The paragraph says: "Some particulars of a re markable case of revival from apparent death have come to hand from St. Petersburg. A lady who had been suffering from a violent nervous attack sank into a state of syncope, and after a time ceased, as it seemed, to breathe. The doctor who was attending her certified that death had resulted from paralysis of the heart For some reason, which is not explained, another medical man, Dr. Loukhmanow, saw the body, and havin been informed that the lady had suffered from attacks of hysteria and catalepsy thought it worth while to cake thorough examination After trying variou of t of the heart, and was enabled by this instrument to hear a faint beating, which proved that life was not extinct. Everything was done to resuscitate the pa tient, who, shortly afteward, recovered consciousness.

AN IMPROVED DUMP CART.

The illustration represents a cart which is low and easily filled, and at the same time may be easily dumped. The first point is attained by using a crank axle, which brings the bottom of the body to within 6 or 8 inches from the ground. The body is pivoted upon the axle, and when the latter is in the usual position a comparatively slight tipping brings the rear of the cart in con tact with the ground. At this point, when a portion of the load has been discharged, the crank of the axle is made to revolve backward and upward, thus lifting and tipping the body more and more until all of the load is dumped. In this movement the axle turns in the hubs, the arms acting as pivots. This is effected by mean of a windlass operated by worm cear and connected by means of a wire rope to a lever projecting upward from the axle. Sometimes, as in dumping over the string piece of a wharf, it may be desirable to raise the body somewhat before dumping. In this case it is kept steady during the lifting by means of a bar hav ing a parallel action with the crank. The body is pull ed back into position after dumping by means of a lever and chain. All the operation of dumping and of returning the body into position is effected by the dri ver without getting down from his place in front. The great advantage of this cart is the extremefacility with which it is loaded. A saving of a foot and a half in the distance through which every shovelful is lifted means a great deal in the course of a day. It is also especially adapted for removing ashes and garbage. Further particulars relative to this improvement may be ob tained by addressing the patentee, Mr. A. H. Smith Station F, New York City.

sMITH's dUMP CART.

AN IMPROVED WATER REGISTER.

The accompanying illustration represents an apparatus for indicating and recording the rise and fall of a body of water, and is designed to be especially useful in localities where irrigation is resorted to, the machine being placed in a flume leading from the irrigating ditch, and keeping an accurate record of all varia-
alternating current motors devised by Mr. Tesla as long ago as 1888. At present, we shall content ourselves with recurring to his magnificent experiments on high potentials and alternating currents of great frequency, of which we have already given a complete idea in sumarizing the communication made by the autho on the 20th of May, 1891, before the American Insti tute of Electrical Engineers.
In the train of this communication which made a very great sensation in the scientific world, Mr. Tesla, acceding to the pressing solicitations of his friends and admirers, came to Europe and performed at London on February 3d, and at Paris on the 19th of the same month, before the French Society of Physics and the International Society of Electricians, assembled in the hall of the Society of Encouragement, the remarkable experiments of which we were witness and of which we propose to give an idea, despite the dryness of the subject, its very special character, and our inability to make a clear exposition of it.
Mr. Tesla did not content himsel with a simple repetition of the experi ments made in America, but he ex tended them and rendered them complete, and the communications made in Europe may be considered as the second part of a long and remarkabl
tions of the depth of the water. This improvement has study of which the first part was presented in the New been patented by Mr. Don A. Carpenter, of Fort Col- World last year. lins, Col. The mechanism of the machine, as shown in the small sectional view, is preferably inclosed by a case. Upon a shaft carrying a grooved pulley is a cable, to one end of which is attached a float and to the other end a counterpoise, the counterpoise taking up all the slack of the cable, so that the shaft is moved with every rise and fall of the fioat. A pinion on the shaft meshes with a segmental rack on another shaft carrying an arm to which is secured a bar having at its upper end a stylus or pen. The point of this stylus presses against a dial, preferably of paper, secured to a metallic disk by clips, the disk having a hollow hub on its back secured to the spindle of a clock, an eight-day clock being preferably used, and the clockwork being so timed that the disk will make but one complete revolution a week. The dial is divided into seven equal segmental parts, to represent the days of the week, other subdivisions representing the hours, while the dial is also adapted to indicate the height of the water in feet. The dial for use in connection with the machine has also been copyrighted by the inventor, it being designed to furnish a standard size machine to be used with a standard size of weir, say three feet, when the dial slips will furnish the means of determining the discharge of water, in cubic feet, for any desired period.

MR. TESLA'S EXPERIMENTS ON ALTERNATING

 CURRENTS OF GREAT FREQUENCYMr. Nikola Tesla, to whom the English and French scientific public has just accorded a very warm reception, is a pioneer in electric science, and one of those who will have influenced future progress through an almost radical transformation of the old processes and old methods.

Some day we shall have occasion to describe the two

World last year.
In the first place, let us briefly recall the processes employed by Mr. Tesla for the production of alternat ing currents of great frequency. The simplest consists the use of an alternator of special form, which is represented herewith in Fig. 2. This consists of a steel disk 30 inches in dia meter, upon which are mounted 384 mall bobbins, or more accurately 38 mall oobins, or, mis volves in the interior of a fixed ring carrying 384 inductor poles. The result is that the frequency of the alternatng currents engendered by the revolution of the armature before the inducors produces 192 periods per revolution, and that at the normal maximum velocity of 3,000 revolutions per minute, or 30 per second, a frequency of 9,600 periods per second is obtained instead of the hundred solely that ordinary alternators give. The alternating current thus engendered is col ected through the aid of two ring: against which two brushes rub, as in all alternators with movable armature. A separate excitation permits of vary ing at will the alternator's electro-moive force, which, under funl excita tion, may reach 200 ved by Mr . nd process employed by Mr. Tesla for obtaining much reater frequencies, which may reach and even exceed In the experiments of February 19 he atilizes an ordinator In the experiments of February 19, he employed a Siemens alternator, who
fifty periods per second.
The alternating current thus produced is sent to an

Fig. 1.-PARIS-MR. TESLA LECTURING BEFORE THE FRENCH PHYSICAL SOCIETY AND THE INTERNATTONAL SOCIETY OF ELEOTRICIANS.

Fig. 2.-TESLA'S RAPID ALTERNATOR.
reproduce them, but shall dwell more especially upon hose that present a character of novelty.
The first experiments were made with the disruptive discharge apparatus, that which gives the greatest frequencies at present obtainable by the means at our disposal. In these conditions, the electrostatic discharges traverse the air under the form of luminous discharges, as if the air were rarefied. On interposing an ebonite plate, the electrostatic capacity of the system formed by the two balls between which the discharge takes place and the ebonite plate is increased by the interposition of a dielectric whose specific inductive capacity is greater than that of the air, and the brightness of the discharges is thereby intensified. brightness of the discharges is thereby intensified. rarefied gases, which they illuminate with a bright light, each rarefied gas giving to the light its own distinctive color. The discharges occur likewise between two cotton-covered wires insulated from each other and put in connection with the two terminals of the bobbin. These wires emit a violet light throughout their entire length, and even render luminous the space comprised between them.
All the other experiments were made with the alternator shown in Fig. 2, which gives from 9,000 to 10,000 periods per second. Mr. Tesla first showed the discharges in the form of a flame.
In order to prove that these discharges of high potential and great frequency are not dangerous, he was able, on taking in his hands two metallic balls designed to prevent his being burned by the spark, to receive the entire discharge from the bobbin, the discharge passing through his body interposed between the two balls. Mr. Tesla afterward showed that the return wire is absolutely useless for making the discharge current pass. The latter may be established by the air, and pass more easily if care be taken to connect one of the extremities of the wire of the bobbin with a conducting plate insulated in space. The molecular bombardment heats the part which presents but little sur-
face put in communication with the second pole of the bobbin, and it was thus that Mr. Tesla showed us the incandescence of a thin platinum wire or
lament inclosed in a globe of rarefied air
Every increase in the capacity of the system increase the discharge current, and, consequently, the incandescence. It suffices, for example, to bring the hand near the globe containing the incandescent body, and to place a metallic shade above the latter, or even (an effect paradoxical in appearance) to place the shade alongside of the globe, to produce an increase of brightness resulting from the increase of the electrostatic capacity.
The wire to which the filament is attached is connected, as we have said, with the secondary wire of the bobbin, whose other wire communicates with an insulated metallic plate. Such metallic communication is not indispensable. In fact, if the wire is covered with lead, a layer of gutta percha entirely insulating the copper wire and the leaden tube that envelops it, the lamp with a single filament becomes lighted as brillianty when it is put in communication with the copper wire or the leaden tube
Mr. Tesla thus actuated a Crookes electric radiator, and even a special single wire motor, to describe which would lead us too far. He afterward illuminated certain bodies that are but mediocre conductors, such as alumina, carbon, lime, "carborundum," and a few phosphorescent bodies, such as sulphide of calcium, yttria, sulphide of zinc, and the ruby, the marvelous effects of which several times gained the unanimous applause oî the spectators. Mr. Tesla finally terminated with a few experiments in the illumination of tubes of rarefied gases without wires or electrodes, the tubes being simply placed in the periodical electrostatic field produced between one of the insulated poles of the bobbin on the one hand and an insulated metallic plate placed above the experimenter and communicating with the other pole of the bobbin on the other hand
Fig. 1 shows one of these experiments, in which Mr. Tesla is producing the illumination of two tubes a once. In order to effect the extinction of one of these tubes, it suffices to interpose a middlingly conductive screen in the electrostatic field, or to place the tube in a direction sensibly perpendicular to the flux of induc tion of the field. The same tube remains dark in a positions if it is held by its two extremities at once, th body forming a screen. On sliding the hand along the tube, it is possible to render one of its extremitie luminous. Nothing is more curious than to see the light produced by this process thus extinguished and relighted at will.
Such are, very briefly described, the principal experiments which, for more than two hours, deeply interested the members of the two societies mentioned above, who had the good fortune to be present at Mr Tesla's lecture.
It would be difficult as yet to say what future is in store for them from the standpoint of an industrial utilitarian and practical new mode of production of light. The more so as the dream of the inventor is broader and his views more exalted than the experiments that he presented to us allow to be seen. His final ambition appears to be to transform the energy of the medium that environs us, and which is very evident by its numerous manifestations, into light, or at least to obtain therefrom radiations of the same wave length and same frequency as those that pro duce luminous sensations. Crookes' radiometer has already proved that it is possible to convert the radiant energy of a medium directly into mechanical energy, and although, from the standpoint of rendering, this radiometer is the most detestable of all transformation apparatus, it is none the less the most admirable, by the fact that it affords us a tangible demonstration of the possibility of such transformation.
On the other hand, Mr. Tesla, in his memorable experiments, has shown us that, on periodically varying, with very great frequency, an electrostatic field, it is possible to place apparatus of great simplicity therein such as tubes of rarefied gases, which collect a portion of such energy and render it luminous. To the philoso pher and savant nothing more is necessary to establish
the possibility, if not the probability, of the realization of Mr. Tesla's final views. To him the light of the future resides in the incandescence of solids, gases, and phosphorescent bodies excited (if we may use a somewhat vague expression) by high potentials varying with very great frequency.
The young scientist is convinced of this as a precursor, and almost as a prophet. He introduces so much warmth and sincerity into his explanations and experi ments that faith wins us, and, despite ourselves, w believe that we are witnesses of the dawn of a near by revolution in the present processes of illumination. $-E$. Hospitalier, in La Nature.

The philosopher known to fame as Sir William Thomson has joined the ranks of the British aristoc racy under the new name of Lord Kelvin. This lord lately took his seat in the House of Lords, being in troduced by scientific nobleman Lord Rayleigh.

Creede, the New Mining Town of Colorado.
Creede, though only six months old, is to-day th Creede, though only six months old, is to-day the there in October last, but passenger trains did not run until December. The camp is situated in a narrow until December. The camp is situated in a narrow
gulch on Willow Creek, among the mountains, 9,500 gulch on Willow Creek, among the mountains, 9,500
feet above the sea level. The rugged mountains rear their summits 4,000 feet above the town. The new camp is without any definite government, for by blunder of the State officials it is No Man's Land, belonging to no county or town.
The town proper is about one and a half miles long, and varies in width from 100 to 2,000 feet.
The extent of the mineral belt is unknown, but men who have prospected through all this country express the belief that it runs as far nortnwest as Carson, forty miles distant, and at least five miles southwest, by ten miles in width
The principal mines of the camp and the dates o their discovery are as follows: The Last Chance and Amethyst are located on the same vein, adjoining end to end. Both the Last Chance and Amethyst are mines without dumps.

All the ore taken out is shipped, and every bit of mineral between the walls is mined. The vein shows a maximum width of twenty feet, with an average of eight. On the Last Chance a level run from the ore house is 200 feet in length. At the breast five feet of ore are exposed, averaging 185 ounces silver per ton. At the mouth of this tunnel a shaft has been sunk sixty feet, and another level run in from that 130 feet all in pay ore. At the breast of this tunnel the assay value is only $\$ 40$ worth of silver to the ton. A million dollars' worth of ore is now blocked out in this mine, and they are shipping seventy tons per day tha will average $\$ 120$ worth of silver to the ton.
In the Amethyst the ore is identical. They hav been running north, and have a larger body of ore exposed than in the Last Chance. A drift in this mine 250 feet long shows ore the entire distance of an average assay value of $\$ 225$ to the ton, and a width 12 feet be
tween the walls. No stoping has yet been done, as tween the walls. No stoping has yet been done, a
enough ore is mined in simple development to pay handsome dividends. These two mines constitut ne great ore body, showing over $\$ 2,000,000$ in sight.
The Holy Moses was discovered in June, 1891, and has been continuously worked since. The ore is simi lar to Last Chance, but of much poorer grade. It is trongly believed by many experienced miners in the camp that the body of pay ore in the Holy Moses ha
The Ethel mine was discovered in June, 1890. It is shipping a little ore, but of so low a grade that the mine cannot be classed yet as a dividend payer.
The Mammoth was discovered in May, 1890. It has had some very rich ore, but is not shipping at present. It is commonly accounted a huge property, but some of the pessimists express the belief that the ore body is limited.
The camp is named from W. C. Creede. His has been an eventful career. Of all the thousands who have crowded to the new mines not one has a more in eresting history or personality than this modest, un assuming miner. He is as timid and bashful as schoolgirl. He is a reserved, taciturn man, but his whole air is commanding. The few words he speaks are characterized by great good sense.
He is well built and muscular, and is now 49 year old. Fort Wayne, Ind., is his birthplace. At 19 he became a scout in the regular army, and served for seven years in the Indian country. Thus he acquire considerable knowledge of the mining lands of the
West. In 1869 he began life as a prospector, and has ince heard the music of nearly every rill in Colo rado. The mountains possess a peculiar fascination or him.
For months and months he has tramped them over, make him independent. More than once he has lai sick unto death, miles from the nearest human habi tation. Twice when alone in the mountains the pneu monia has had him in its grasp. But fortune had re served him for a kindlier fate than an unknown and unmarked grave. His young nephew lives with him in his humble mountain cabin, and he is the only human being in whom the new silver king confides Mr. Creede has no bad habits. He says himself that he does not know the taste of whisky. Neither knows he aught of gambling. Such is the picturesque character whose name is now on everybody's lips. He is a general favorite among the rough miners and gamblers of this conglomerate settlement. Modest, pure-minded, courageous, generous to a fault, yet the possessor of untold millions and the acknovledged leader of settlement of cutthroats, gamblers and the scruff of civilization generally.
His great find was made in May, 1890. This is his own interesting description of it: "I climbed the mountains along the trail of the float all day. The sun was beating down on me and the glint of the float sky my feet was blinding. Just when the western sometimes, I lifted my head, and there was, project-
ing out in front of me, a huge bowlder of silicate, big as a house. Good God! I almost screamed with delight I knew it was bound to come some day, but the idea of finding it in such shape was appalling to me. I staked off a mine and called it the Mammoth. I slept sounder that night than I had for years before. In June I dis covered the Ethel and the Holy Moses. I gave the latter that name because I like odd names." Mr Creede's income is now about $\$ 1,000$ a day, none too great a reward for a lifetime of toil and perseverance Only a little less remarkable has been the life of Captain L. E. Campbell, Creede's partner. In 1861 he joined the army and did good service during the rebel lion. At the close of the war he became a second lieu tenant in the Indian service. His Western experience has given him a great knowledge of mineral lands. He married the daughter of Colonel Fred Dent, brother-in law and confidential friend of General Grant. As a girl she spent much of her time at the White House She now displays the same charming grace in he husband's rude cabin that she did at the White House For years Captain Campbell has been supporting his family on the scanty pittance allowed an army officer Henceforth he will enjoy an income almost fabulous Creede is a typical Western town. Its seething, diver ified population has come from everywhere. Never since the palmiest days of California in ' 49 has any thing of the like been seen. The scum of Western lif s here, along with much of its sturdiest element. Faro dealers, arm in arm with Denver speculators, may be seen in the streets at any hour. The tenderfoot lately from the East is an easy prey to the gamblers and sports. Assassins and honest men hobnob like old ac quaintances. Desperadoes from Kansas, confidenc men, horse thieves, a Harvard graduate of law, and an escaped convict from Texas, may be seen sitting together on a footing of democratic equality at the faro tables. Such is the drama of Western life as see here. Every one is engaged in a wild scramble for money. The shining metal has attracted all-fallen women, gaming men, lawyers, miners, desperadoes and tenderfeet.
Excitement reigns among all classes. The camp now numbers 15,000 souls, and fully one-half of that numbe are gamblers. It is a gambler's paradise. The table are crowded night and day. Fortunes are made and lost in an hour. Faro, keno, stud poker, and craps are the popular games. The miners make about $\$ 3$ day and 500 out of the 600 employed hereabouts spend very cent of their wages over the green cloth on Sat urday right. Billy Woods, the champion heavy weigh prize fighter of the West, runs one of the gambling hells. Every bartender in the town is an ex-pugilist Thus far fairly good order has been preserved in amp. Beyond the frequent killing of a stake jumper and innumerable saloon 'brawls, the deeds of lawles ness have been comparatively few. It is highly im probable that this quiet state of things shall long con tinue. Bob Ford, the murderer of Jesse James, is here He professes to have come to make money. But in a ecent interview he was careful to let it be known that he is still able to take care of himself in any quarrel Bat Masterson, a noted frontier marshal, is the man ager of a gambling house. He is one of the nerviest men in the West, and it will go hard with any gamble who raises a row in his establishment. Masterson has already killed twenty men. Others equally well known are in town, and the future peace and order of the place does not look assuring.
There are now published in Creede three dailypa pers-the Amethyst, News, and Candle. They are al sprightly little sheets and are a daily reflex of camp ife. Let a new claim be staked off in the snow, and the local papers write it up in the most elaborate style being always scrupulously careful to predict for it richer yield than Comstock or Molly Gibson. Every man and woman in camp of any note considers the re porters slow or incompetent if his or her name doesn't appear in each of the paperseveryevening in some con nection. The editors know what class of news thei readers want, too, and are careful that nothing creeps into their columns calculated to give offense to the most captious. For instance, about two weeks ago there was a shooting scrape in the Orleans saloon, in which one man got seven bullets putinto him and an other had both thumbs shot off. This is the ac count of the affair as it appeared in one of the papers

We understand that several shots were fired near a well known saloon on Cliff Street, last night. One man was slightly wounded and has been carried to Pueblo by his friends. The boys will have fun, but don't mean to hurt anybody.'
Notwithstanding the general prevalence of wicked ness and disorder, there is a strong law and order population in the city. Capitol Hill is the residence of Creede's Four Hundred. The residences are not palatial or pretentious. Three of them are two stories high, but the majority of them are only one, and the nost commodious contains only three rooms. They are built of green lumber, and, of course, when the summer sungets a fair whack at them, there will be a shriveling and a shrinking that will make them all the more ing and a shrinking that will make them all the more
picturesque. And, too, their foundations are rather
groggy affairs, but they fulfill all the present conditions, and that's all the most exacting of the Creede 400 demand at this chrysalis stage of the young metropolis' development. On the evening of February 22 a grand ball was given by the elite of the town.
All the ladies were dressed in handsome ball costumes, and the decollete gown was there in force. The men-or a great many of them-wore the convenThe men-or a great many of
Living in Creede is very expensive. A meal costs $\$ 1$ Beer costs 15 cents a glass, or 80 and 40 cents a bottle. Whisky that will not kill cannot be got for less than 25 cents a drink, and the bartender is careful that your libation is not too large at that. Horses or burros to ride over the mountains are hired at 50 and 25 cents an hour. The streets are so terribly sloppy that one dares not walk around much, and a ride to any part of the city will cost you 50 cents. Cabmen have driven over from Pueblo, a distance of twenty miles, with their rigs and are reaping a richer harvest than the prospectors. Labor is high. Any man who can drive a nail can command $\$ 4$ a day, and in some extreme cases they are paid $\$ 1$ an hour. Boss carpenters get $\$ 8$ a day and are talking of raising the scale of wages. Laundry costs three times as much as in St. Louis, and no Chinamen are allowed in camp.
Hotels are numerous, there being nearly 100. It does not, however, take much for a hotel, as a plain board shanty, 16 ft . square, with a blanket for a door, is dignified with the name "Palace Hotel." Until a short time ago the hotels were similar to this one, although many of them were made larger. In all, the sleeping room held from twenty to sixty cots, the use of which was granted the tenderfoot at $\$ 1.50$ each a night, with blankets furnished, or without blankets only 50 cents. The Pullman company has also entered the hotel business, leaving on the side track from three to ten sleepers, in which the anxious speculator could find a bed on payment of $\$ 1$, provided he could catch the conductor in time to pay in his money and secure his ticket.

A shocking state of sanitation prevails. Water for washing, cooking, and drinking is obtained from Willow Creek, which is also a sewer and dumping place for all the refuse of the camp. An epidemic of dysentery has just broken out. It is claimed the trouble comes from the arsenic and antimony from the ores poisoning the water. There are 200 persons in town afflicted to-night, and many cases are quite serious.
The peculiar cough which catches hold of nearly everybody who comes to Creede is attributed to the arsenic in the air.

Speculation in town lots still continues. The latest report is that the United States land commissioner has ordered a discontinuance of all land sales. Gover nor Routt and other State officers assisted at the sale on February 25. The claim holders intimidated outsiders and had things pretty much their own way Women were among the bidders.
A lot was put up, the minimum price being $\$ 50$. Some one said, "A woman occupies it;" then the crowd shouted, "Give it to her." One man bid $\$ 50$. The crowd groaned and hissed, and the man bid $\$ 1$, announcing that it was for the woman, and that no man had the temerity to raise the bid. The lot was knocked down to the woman amid a storm of cheers.

A lot occupied by a poor woman was bid in by a liberal man and given to her. This established a bad precedent. A corner lot on block 17 sold for $\$ 1,100$. The next lot was claimed for a "lady." One or two people began to bid, but the crowd hissed them down. The lot was knocked down for her at $\$ 160$. It was stated that she made her first appearance only the day before on the grounds.

A few minutes later a woman got up on the Squatters' Committee stand and made her own showing Mrs. Barry was her name. She said she had been begging for two days and was living on the lot. The woman wore an astrakhan fur jacket and her fingers resembled a jeweler's showcase. First she was cheered by a clique, and then a roar went up to give her the lot. She got it. It was certainly surprising to know that there was so many "lady squatters" in Creede. No one was aware that there were half so many in town.

The highest price paid was for a corner, which sold for $\$ 2,700$.
In all $\$ 225,000$ was realized. An attempt was made to rob the State officials of the money. But a mob of $1,000 \mathrm{men}$, armed to the teeth, immediately surrounded the governor's train and guarded it overnight.
Mrs. Marie Love is among the women who are making thousands at Creede. Almost any day, when the sun's rays are playing hide and seek with the snow crystals on the mountains and cliffs, Mrs. Love can be seen astride a burro riding over the hills in soarch leads. She has staked off five claims, some of which Woe to the man who would dare jump one of her claims, for the camp would rise up en masse and tear him limb from limb.

Mrs. Love is a finely educated woman, of majestic
bearing and business-like deportment. She is of magnificent physical development and her face is of a decidedly classic mould. She dresses in severely modest colors, her large hat with its great black plume being the only conspicuous feature of her attire. She is splendidly posted on all current topics, and discusse politics and politicians with the intelligence and orito some of the most distinguished people of Ohio Indiana and Pennsylvania, and as soon as she can convert her newly acquired mining property into any thing like its cash value, she intends to purchase an elegant home in Washington, so that her children may enjoy the advantages of the social life of the national capital.
The law and order element of the population of

Creede is growing stronger daily. At a citizens'meet ing held the other night resolutions were passed pro viding for the public safety. New strikes of silver are being opened daily
Word comes from Criple Creek that that camp i njoying much the same scenes as Creede. There, too gamblers of all sorts are reaping a rich harvest. Neither has it a government. A vigilance committee runs the town.
The foregoing is from the N. Y. Press and the following we find in the Electrical World: Many have read the announcement which has been made that "Creede Colo., has electric lights," but few are aware of the phenomenal time occupied in the construction of the plant, due to that element of vitality and grit which is most noticeable in Western people.
The idea of equipping the plant was conceived at noon, Feb. 1, by John W. Flintham, general manager of the Denver Consolidated Electric Light Company. Before the day was over, the Creede Electric Light and Power Company was organized and incorporated, supplies were ordered and placed aboard a special train of cars at Denver that had been chartered from the Denver \& Rio Grande Railway Company, and every hing necessary for the complete equipment of a mode lectric light plant, for arc and incandescent lighting, by midnight of the same day was on its way to the modern mining camp. Creede was in sight Tuesday night, Feb. 2, and by daybreak the following morning

HUGHES' FURNACE.

gang of laborers was put to work breaking ground and getting the foundations of the power house ready By this time the town was alive with interest in the work and pool sellers were offering odds on the time to be occupied in completing the plant. The work pro gressed night and day and the electric current was urned on at 11:15 P. M. Saturday, Feb. 6. The actu al time occupied in completing the plant, erecting the buildings and placing the machinery in position, was from Feb. 3, 7 A. M., to Feb. 6, 11:15 P. M., less than a
week after the machinery was purchased in Denver,
over 300 miles away, and this young town was given the latest luxury of civilization. Arc and incandescent lamps illuminate gorge and mountain side, and the hum of the dynamo recalls the mind of the seeker after riches to an occurrence without a parallel in electrical history.
The magnitude of the undertaking will be understood from the following inventory of the plant: Two boilers, 100 horse power each ; one Armington \& Sims high speed engine, 100 horse power ; one pump ; one dynamo of 30 arc lights; one 400 incandescent light dynamo and two 50 -foot iron smokestacks.
Since the house was completed another dynamo of 60 arc light capacity has been added, and the company will increase the capacity for incandescent lamps to 1,000 as quickly as the machinery can be set, and the capacity of the plant will be increased as quickly as there is any demand for more light or power. The value of the plant is said to be from $\$ 35,000$ to $\$ 50,000$.

AN IMPROVED FENCE MACHINE.

The illustration represents an apparatus designed to facilitate the building of picket fences, in which the pickets are held between strands of wire secured to suitable supporting posts, one man readily working the apparatus to quickly and nicely build a fence. The improvement forms the subject of a patent issued to Mr. William H. Mason, of East Monroe, Ohio. Fig. 1 shows the apparatus connected with a partially built fence, Figs. 2 and 3 showing details of the wire twister, and Fig. 4 being a sectional view of the tension regula tor. The latter consists of a frame carrying rollers, to which the ends of the wires are attached, one end of each roller being adapted to be turned by a crank, and the rollers being carried in pairs by U-shaped clips Each roller has at one end a ratchet wheel, and at the opposite end a pawl, the pawl of one roller engaging the ratchet wheel of the opposite roller, the two pawls serving to prevent the rollers from turning in the wrons direction. When the tension regulator is secured in position opposite to one of the end posts of the fence, the free ends of the wires are secured to the rollers, and these are turned by cranks to tighten the wires to any desired extent. The twister has project ing main arms, with recesses in their upper edges to serve as hooks to receive strands of wire, and on each main arm is pivoted another arm, having a join recessed to receive a strand of wire. One strand of each wire is placed in the recess of the main arm and the opposite strand in the recess of the pivoted arm, and after the twister is once adjusted it need not be taken from the wires until the fence is built, as it may be pushed along in front of the pickets as fast as they are placed in position. Fig. 2 shows the twister in position to force two wires apart, to allow a picket to be placed, and Fig. 3 shows the wires crossed by the twister after the picket has been inserted. Should the wires become too taut after the insertion of man pickets, the tension may be slackened by loosening the nuts on the bolts to which the roller-supporting clip are pivoted.

AN IMPROVED FURNACE

The furnace construction of which a section is shown in the illustration is designated by the inventor as a steam blower smoke consumer, and is designed for use in connection with steam boilers, puddling and heating urnaces, etc., or for any similar purpose where steam pressure is available. It has been patented by Mr Christian B. Hughes. In the front end of the fire box is the usual inlet door, and at the rear is the usual bridge wall, while in the side walls are arranged longi tudinally extending chambers or channels opening at their ends into the fire box above the grate. In the front wall of the fire box are nozzles for the discharge of superheated steam obliquely above the grate about in line with the longitudinal chambers, there being in the rear of the fire box a similar set of nozzles below the upper end of the bridge wall and in line with the rear openings of the channels. In the wall between the longitudinal channels and the fire box are air pipes or ducts leading from the ash pit into the channels, to supply the latter with heated fresh air. The amount of superheated steam passing to the nozzles is regulated by a valve, the jets from the front nozzles driving the burning gases, smoke, etc., rearwardly, while the jets from the rear nozzies force the smoke, etc., into the rear openings of the longitudinal channels, where they are mixed with hot air from the ash pit, the mixture again entering the front end of the fire box to be passed over the burning fuel. The smoke and gases not thus consumed are again driven through the side channels, to be forced again over the burning fuel by the jets from the front nozzles, the continuous operation insuring a complete combustion of all the gases.
Further information relative to this improvement may be obtained of the Niles Electric Light and Power Company, Niles, Ohio

Belting having joints cemented only is as good s if the belt were formed of solid leather from end to end. It lasts much longer, and drives better than when cut up with sewing.

THE WESTERN UNION CENTRAL TELEGRAPH OFFICE AND PLANT IN NEW YORK CITY.
On July 18, 1890, the upper stories of the main building of the Western Union Telegraph Company, in this city, were destroyed by fire. The experiences of such disasters have shown that water is one of the greatest enemies to switch boards and general telegraph plant. The new portions of the Western Union building replacing the portions destroyed have now been practi cally finished, the operating room is in full operation, and to-day it is the second largest telegraph office in the world, and possesses a plant protected, as far as possible, not only from fire, but also from water. We illustrate more particularly the operating room and electric current generating plant.

Two thousand one hundred and fifty wires at pres ent enter the building through underground conduits. The wires are bunched in cables of 100 conductors each, and are received by a slate terminal board, carried in an iron frame, with the capacity of nearly 1,100 more wires than it at present accommodates. This board is situated in the basement of the main building. The cables are carried thence each through a separate thre inch pipe, by way of two fire-proof shafts, up to the main operating floor, where they are distributed wire by wire.
The floor is of the ordinary fire-proof type, consisting of H -iron floor beams, with brick arches between them Upon the floor, after being leveled up, wooden moulds were laid and concrete was then run in to surround them. The wooden moulds were of shape and length to produce a series of gutters running over the floor in different directions, according to the plan of the operat ing tables and switch boards. After the concrete had hardened, the moulds were removed, leaving open ducts or channels traversing the room in all directions The channels are covered by slabs of slate, 13 inche wide and 1 inch thick, which can be removed for the introduction or removal of wires or for repairs or alterations. The rest of the floor was brought up to the level of the slate by rock asphalt, leaving all level and true.
The ducts thus made are from three to five inches deep and ten inches wide. The intersections come under the center of the operators' tables. At each in tersection a 13 inch square hand plate is placed that can readily be removed for reaching the wires. Even from the tables to the floor where the wires rise to the relays and sounders they are protected by being cased in split iron pipes.
Our general view of the main operating room shows the distribution of the operators' tables and, to that extent, illustrates the general plan of the ducts. The wire is copper of Nos. 16 and 18 B . W. gauge. All joints are soldered and insulated with the same care as is. bestowed upon a cable, a special detail of the company's cable crew having been appointed for thi work.
The current is generated by dynamos which are dis tributed in three groups each of five machines placed in series for the regular work, while for local and special service six other aynamos of 6 volts, 23 volts an
series, so that the terminals from the different machines which are led to the plug disks which regulate the distribution to the switch boards rise in potential for each one. The potentials are named from their numbers the first, second, third, fourth, and fifth potential respectively. The field for the entire group of dynamos is supplied by the fifth machine. All the fields are

SWITCH BOARD CONNECTIONS

connected in parallel, and for each field a resistance box is intercalated for individual adjustment of its field The right hand group in the cut is a reserve group, de signed to replace either of the others when they have to be suspended from operation. It is to be observed that the two left hand groups deliver the current in opposite directions, some wires being supplied with current of one direction and others with that of another. Hence the right hand group designed to replace either of the others has to have arrangements for reversing its po larity. This is effected by reversing the terminal con nections of the fifth machine. This necessarily causes this machine to deliver its current in the opposite
two dynamos being of 70 volts each and the others of 60 volts each. The special dynamos are plugged in as required by special plug switches, shown on the left of the main group.
The current thus generated is received at the switch boards, which are seen in the drawing Fig 3, on the left of the main operating room, and one of which is also shown in Fig. 4 of the drawing and in the special view on this page. For ordinary purposes, the first three potentials only are used, the fourth and fifth being for quadruplex and similar work. As the current comes from the dynamos, it is received by four leads or horizontal bus wire seen at the top of the switch board. The lower one represents a 70 volt potential, the next two represent 140 volts each, and the other one 200 volts potential. From the bus wires leads descend to the disks of the switch board. For
each potential, a special lamp is used, through which the current has to go before reaching the disks, and which introduces resistance. In operation the filaments of these lamps glow with a dull red. Should any abnormal current, due to grounding, go through the line, the lamp immediately burns brightly, showing trouble upon the line in question. This brightening of lamps is always watched for. A special type of lamp is used containing one filament, two filaments in series, and three filaments in series respectively, according to the resistance desired. At the dull red glow, they carry ${ }^{\frac{6}{10}}{ }^{0}$ of an ampere current. By plugs, the disks and bars of this switch board can be connected in the most varied ways, in order to bring about almost any connections. From each vertical bar a wire runs to the lines, and in the course of this wire two spring jacks are placed. Each of these spring jacks can accommodate four wedges. By introducing a

SAFETY
FUSE. center, wedge with two metal faces and an ebonite center, it will be seen that a loop can be put into the line. The switches are so constructed that four of these loops can thus be introduced, each one in series, so that each line can have eight loops all in series connected with it. Thus, by proper connections, it will be seen that there ishardly any limit to the combinations which can be brought about. A single loop leading to a relay is represented in the drawing.
In the cut of the switch board connections will be noticed a safety fuse, shown of about the natural size above. These are known as "W. B. G." protectors. They consist of a short piece of No. 20 fuse wire. Around its end, No. 30 silk-covered German silver is wound a number of times. The current has to go through the German silver wires. Any abnormal current will heat the German silver wire and this heat is relied on to melt the fusible wire. Three-quarters of an ampere is the maximum current that the protector will carry.
In the cut, Fig. 4, the general appearance of the

WESTERN UNION TELEGRAPH PLANT, NEW YORK-DYNAMO CONNECTIONS.
45 volts difference of potential are provided. These are supplied by the current from the fifth one, and as back of the switch board is shown in perspective with dynamos replace all batteries. At present there is not this current is reversed, the current in these machines the bank of lamps appearing above the disks. An ina single cell in operation in the building. Before the is, by the same action, reversed, on account of the fire there were 10,000 cells in use.
In our illustration of the dynamos and of their conchange of polarity of their fields. teresting fature is thearing above the disk. An in-

By means of the disks and plugs the dynamos are nections, the threegroups of fivedynamos are indicated plugged in or out as desired. On the same drawing are | nections, the threegroups of five dynamos are indicated | plugged in or out as desired. On the same drawing are |
| :--- | :--- |
| by being nombered from 1 to 5 . They are connected in | light possible shed upon them. A large hatchet switch |
| indicated the different potentialsfor each wire, the first | |
| is placed on the wall, by which they can all be cut off | |

in case of any accident. This cutting out is to prevent any injurious effects from short-circuiting, in the case of fire in the building, when the switch board, being wet by water from the fire engines, might give occa sion to this trouble were the current turned on.
The general operations of the office are facilitated by the use of the cash carrier railroad and by pneumatic tubes. An elevated gallery occupies approxi mately the center of the main operating room. An extensive system of cable cash carriers, embracing 16 radiating lines, with four to six stations on each line, connects with all parts of the room. By this the mes sages are distributed from and returned to the central gallery. The cash carrier runs at the rate of about 750 feet a minute, enabling the most distant part of the room to be reached in 10 seconds. Twenty-four pneumatic house tubes terminate in this gallery; and four street pneumatic tubes running north to 23 d Street and intermediate offices, and four running south to exchanges below Wall Street, are also operated from this gallery. All messages coming in or going out from the main operating room must go through this central gallery.
Fig. 2 of the drawings shows the time repeater. At noon, every week day, the time is transmitted from the United States Naval Observatory at Washington. This signal has to be sent out over many lines in all directions; at present 60 different lines transmit it. The time repeater includes 92 repeating magnets. These are operated on a local circuit, which in its turn is governed by a relay connected to the Washington circuit. The repeating points of the 92 magnets are connected by loops to the main line switches. This apparatus represents a multiplication of relays, and can be used for sending 92 repetitions of one message over 92 different lines by a single operator, and it is contemplated on election nights and similar occasions to thus use it
The average business done in this office is over 100,000 messages per day. The longest circuit is that extending from New York to San Francisco, about 3,400 miles long. Of the 750 lines leaving the building, the greater part are operated by the Morse system, the majority of the operators' desks seen in the engraving being devoted to this system. Besides this there are four Wheatstone, 42 duplex and 92 quadruplex lines, and two lines occupied by combination printing instruments. The office accommodates about printing instruments. The office accommodates about
800 operators. Our thanks are due to Mr. Alfred S. 800 operators. Our thanks are due
Brown, Electrical Engineer of the Brown, Electrical Engineer of the
Western Union Telegraph Co., for Western Union Tel
courtesies received.

Improvement in Stokehold Ventilation.

By the system of Mr. W. H. Martin the usual unsightly ventilating cowls on deck are done away with, the necessary down draught being obtained by the utilization of the heat radiated from the main boilers and uptakes. This lighter air is allowed to rise up through an enormous space between an inner and outer funnel, causing a powerful down current of fresh air through the stokehold combing, at the same time thoroughly preventing the rising of any smoke or dust to the deck, as is usual when cleaning fires and quenching ashes. To insure the fresh air reaching the stokehold floor, there is a light air-tight screen or bulkhead built in front of each end of the boilers, reaching from the deck right down to within 6 feet from the stokers' floor, the lower part being on hinges to allow access to the smoke box doors. As the whole of the air drawn off by the whole of the air drawn off by the annular funnel space, to which is to be added that needed for combustion in the furnaces, has to pass down in front of these air screens, the result is a powerful draught of fresh air at all times, independent of the direction or force of the wind on deck, keeping the stokehold at a temperature considerably lower than in the sunshine on deck, and but from 5° to 15° Fah. above that in the shade. This system, which is much more economical than the fan, is in use on most Dutch steam ers trading to the East Indies, and has proved to be of great value.

Four electric fans have been placed by the Crocker Wheeler Company in the turrets of the powerful iron vessel Miantonomoh, the intention being that they shall blow away the smoke from the guns.

thomas a. Edison. orange, n. J.

Prof. elihu thomsun, lynn, mass.
DISTINGUISHED ELECTRICIANS,
end of a paper tube 1 inch in diameter and about 1 inch long. The cover of the box is perforated with a $1 / 4 /$ inch round hole. If the material of the cover is coarse and thick, a larger hole is made and over it is glued a piece of fine thin Bristol board, which is perforated with a $1 / 4$ inch round hole.
In the box thus mounted is placed a strip of blotting paper bent into V-shape and rendered nonabsorbent at the bend by means of melted wax paraffin or something of a similar nature. One end of the blotting paper is moistened with hydrochloric acid and the other with aqua ammonia. The particles of ammonium chloride which form by the combination of the vapors of ammonia and hydrochloric acid are so minute as to float in the air like particles of smoke.
When the reed is vibrated, a minute vortex ring is formed at each excursion of the box and thrown off in the manner illustrated. A reed having a low rate of vibration (say 32 or less per second) is required, and the amplitude of vibration must be small.
When the box is attached to a tuning fork, the ac tion is prolonged. It is, of course, necessary to compensate for the box on one limb of the fork by a weight on the other.
In Fig. 2 is shown a cylindrical box considerably larger than those already described. It is divided into two compartments by a thin rubber diaphragm, and closed at the front, with the exception of a $1 / 4 \mathrm{inch}$ round aperture. Blotting paper, charged with hydrochloric acid and ammonia, is placed between the dia phragm and the apertured front, and sounds are uttered in the short tubes projecting from the box. The vibra tion of the diaphragm causes puffs of air to issue from the small aperture at the front of the box, carrying the fumes of ammonium chloride, which render the vortex rings visible. The sounds uttered are necessarily of very low pitch. If the vibrations are too frequent in any of the forms of this experiment, the rings merge into each other and the effect is lost. In the apparatus shown in Fig. 2, a mere flutter of the tongue or lips gives good results.
It is obvious that a burning substance capable of yielding a good volume of smoke will answer quite as well as the ammonium chloride.

DISTINGUISHED ELECTRICIANS.

The portraits here presented represent men who, while they have achieved notability in the electric world, have, in so doing, shown that they possessed the requisites for success in any branch of work. Untiring industry, great ingenuity, and a belief in themselves would have made them great in any of the executive departments of life. Thomas Alva Edison's story has been told so often that it cannot but be a trite one. He was born on the 11th of February, 1847, at Milan, Ohio. He began life at the age of twelve as a train boy, soon advancing to be a news dealer with four young assistants. He then began practicing telegraphy, and at last obtained a position in Port Huron. He soon began to invent, and in 1864 he moved to Memphis and had one of his inventions, an automatic repeater, put into service. He struggled along, inventing, working at his profession, and experimenting, until he went to Boston in 1868, where he was able to open a workshop for developing his inventions. Shortly afterward he was retained by the Western Union Telegraph Company, and started an electrical laboratory at Newark, where he employed 300 men. In 1876 he moved to Menlo Park, New Jersey, and in 1887 left Menlo Park and erected in Orange, New Jersey, what is supposed to be the largest experimental laboratory of its kind in the world. His inventions, which are numbered by hundreds, center largely on electricity, although one of the most wonderful of his achievements, the phonograph, is not an electrical invention at all.
Alexander Graham Bell was born in Edinburgh, Scotland, March 3, 1847, being therefore almost exactly the same age as Edison. His fa.ther and grandfather were both language teachers, and the young Bell's attention was directed to language by the course of studies prescribed by his father. The synthesis of artificial speech, by Helmholtz's method, is said to have early engaged his attention, and he resolved to pursue one of the outcomes of his studies, multiple telegraphy,
to a practical conclusion. It has been said that all this time the idea of speech transmission was an undercurrent of thought with him, and he has testified that, before 1870, he avowed his belief that we would one day speak by telegraph. Going through all sorts of experiments, he succeeded in inventing the telephone. He lectured on it before the Society of Arts, in Boston, May 25, 1876, exhibited it at the Centennial in Philadelphia, and in August of the same year speech, it was said, was transmitted over a telegraph line. He has received numerous honors, and has written numbers of papers on his other scientific work, such as the photophone. He has also, for years, studied the subject of speech for the deaf and dumb.
Elihu Thomson was born in Manchester, England, 1853, and at the age of 5 came to this country with his parents, who settled in Philadelphia, where he was educated, graduating from the Central High School in 1870. He experimented a great deal during his boyhood in electricity and chemistry, photography and similar subjects. Graduating at the age of 17 , he spent six months as an analytical chemist in a laboratory, and was then appointed Assistant Professor of Chemistry and Physics in the High School, and was promoted to the chair of Professor of Chemistry and Mechanics in 1876. He frequently lectured and continually experimented during this period, in the Artisans' Night Schools, Franklin Institute and elsewhere. He was associated with Prof. Edwin J. Houston in some patents relating to dynamos, and upon these and other inventions based the American Electric Com pany, since called the Thomson-Houston Electric Company, organized in 1880, and became chief electrician of the company. His invention of electric welding and brazing has been fully described in the columns of the Sciextific American and Scipplement. His very remarkable experiments in alternating current induction have done much to win for him an international renown. The air blast applied to switches and commutators for blowing away destructive ares is a type of his practical way of reaching results. Like Edison, he holds a great number of patents.
Nikola Tesla was born at Smiljan, a small place on the Austrian border, and is now 35 years of age. Hi education was received at Carlstadt in Croatia; he too showed the experimental bent and eventually entered the polytechnic school in Gratz, Austria. Here he studied engineering and devoted his spare time to studying electricity; on graduation he entered the engineering department of the telegraph at BudaPesth, and in 1881 took up the electric light and the construction of dynamo machines as his especial work He is said to have been greatly impressed by the draw backs incident to the employment of the commutator and collecting brushes on dynamos and motors. But his recent work and that which has brought his name more prominently before the world than ever before has been with alternating currents. Employing a dy namo giving 20,000 alternations in a single second, he has produced what may be properly termed the mos remarkable experimental results recently attained by electricity. With these alternations used in the pro duction of the most beautiful lighting effects, he suc ceeded in showing or at least in indicating the possi bility of producing electric light without any conductor whatever. Two very striking points brought out were the construction of his apparatus. In his transformer he employs a liquid insulator, the point being that th perforations of its material naturally do no harm, as they instantly close up again. Another point was that these currents of high frequency have no effect on the animal system, being apparently perfectly safe, however great their intensity or high the potential difference developed in their circuit.

Production of Quicksilver at Ne

 Almaden.The Quicksilver Mines and Reduction Works of New Almaden are fifteen miles south of the city of San Jose, Santa Clara County, California, in the Santa Cruz Mountains, at an elevation of 1,700 feet above the sea. These mines were first worked for quicksilver in 1845, but the ope rations were on a small scale, and no record exists earlier than 1850. They have been the most productive quicksilver ${ }_{i}$ mines in the world, excepting only the mine of Almaden, in Spain. They are developed to a depth of 2,300 feet, and the workings extend horizontally over an area one mile square
From January 1, 1864, to December 31, 1891, the number of feet of drifting and sinking in the mines of the company, as shown by the record amounted to $49 \cdot 11$ miles, at a cost of $\$ 2,191,831.95$. This does not include the excavation made in extracting ore during the period named, nor any expenses for the same, while for the ground opened up during the previous period (from 1850 to 1864) 15 more miles of drifting and inking can be added.
The reduction works consist of eight furnaces, include
the most improved methods for working quicksilver ores, and may be considered as the most complete and perfect in every respect in the world.
The total product of all the mines on the company's

A BIRD'S EYE VIEW OF THE GREAT EXPOSITION.

property for thirty-eight years has been 924,659 flask

 of $761 / 2 \mathrm{lb}$. each, or $70,736,4131 / 2 \mathrm{lb}$.The total earnings of the company for twenty-one years past have been about $\$ 15,090,000$, and the total profits a little over $\$ 5,000,000$.

AN IMPROVED CARPENTER'S SQUARE.

In this square the arms are pivotally secured together, so that one may be swung with relation to the other throughout an arc of ninety degrees, the joint between the two arms being such that there is a minimum of strain upon the pivotal point, and the bearing of such extent that there will be no liability of the parts wear ing so as to be thrown out of a true perpendicular to each other when opened. The longer arm of the squar
arms may be locked at any desired angle of adjustment. For automatically locking the two arms of the square in the ordinary position for use as a square, a flat bar spring is located in a shallow recess in one side as shown in Fig. 3, a nose or latch on the free end of this spring projecting through in the path of the pivoted arm as shown in Fig. 2, so that when the latter is swung back it will be locked in the position represented in Fig. 1. It will be seen that this square can be readily folded to go in a regular tool box, and that by its use an angle or bevel can easily be measured or marked out with great exactness.
For further information relative to this recently patented invention, address Mr. F. W. Palmer, agent Station F, New York City.

THE DEDICATION CEREMONIES

The ceremonies attending the dedication of the exposition buildings, October 11, 12, and 13, 1892, are to be very elaborate and impressive. The committee having the matter in hand will devote $\$ 300,000$ to that pur pose. It is expected that the President of the United States and his cabinet, many of the senators and congressmen and governors of the States, numerous repre sentatives of foreign governments, and 10,000 militia and several thousand regulars will be present. A dedi cation ode and marches, written tor the occasion, will be rendered with full choral and orchestral accompaniment. Patriotic and other music, a dedicatory oration, a pageant of symbolical floats representing the "Pro cession of the Centuries," and magnificent displays of fireworks will be among the chief features of the programme.
A grand dedication ball, probably in the Auditorium, on the night of October 13, 1892, will conclude the exer cises dedicatory of the exposition buildings. Many representatives of foreign countries are expected to be present, and the event will be, to an extent, interna tional in character.

A New Theory of the Origin of Petroleum.
An interesting compound of carbon with the metal barium, possessing the composition $\mathrm{C}_{2} \mathrm{Ba}$, is described, says Nature, by M. Maquenne in the current number of the Comptes Rendus. It may be considered, per haps, as an acetylide of barium-that is, a compound formed by the replacement of the hydrogen of acetyl ene, $\mathrm{C}_{2} \mathrm{H}_{2}$, by metallic barium. For immediately it is brought in contact with water, pure acetylene gas is evolved with great rapidity. M. Maquenne has oljtained the new substance by the direct action of metalic barium, employed in the form of an amalgan consisting of one part barium and four parts mercury upon powdered retort charcoal. Upon distilling such a mixture in a current of hydrogen, when the mercury had been expelled and the temperature attained red ness, an energetic reaction was found to occur between the barium and the carbon, with production of the new carbide or acetylide. The hydrogen took no part in the reaction, and M. Maquenne has subsequently found that it may be replaced by nitrogen; the latter, however, being less advantageous, inasmuch as the carbide produced is then admixed with more or less cyanide. The new substance, as obtained when hydrogen is employed to furnish the atmosphere, consists of a gray, friable mass, which remains quite unaltered when heated to bright redness. The moment, however, it is thrown into cold water it is decomposed, with a rapid effervescence of a gas which possesses the odor of acetylene, burns in the air with a luminous flame, precipitates a red substance resembling acetylide of copper from an ammoniacal solution of cuprous chloride, and, in short, possesses all the properties of acetylene. M. Maquenne adds that the acetylene thus obtained is remarkably pure. The reaction with water may be expressed by the equation-
$\mathrm{C}_{2} \mathrm{Ba}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{Ba}(\mathrm{OH})_{2}$.
Barium acetylide would appear to be analogous to the compounds obtained by M. Berthelot by heating the metals of the alkalies in a current of acetylene, and also to the acetylide of calcium prepared by Wohler. The direct formation of this substance from barium and carbon, together with its reaction with water, afford another mode of synthesizing acetylene, which M. Maquenne considers to be of interest from the point of view of the formation of the natural hydrocarbons. He considers it probable that other metals possess this same property of forming acetylides under the influence of high temperatures. If, therefore, as M. Berthelot has attempted to show, it is a fact that
has a shallow recess extending in for some distance from one end, the wall of the recess being undercut, and the recess terminating in a curve. In this recess is pivoted an angled extension of the shorter arm of the square, the curved portion being provided with graduated division marks up to ninety degrees, and between the pivotal screw and the curved end is a curved slot
in which is a set screw, by means of which the two
 acetylene forms the primary material, or starting point, for the formation of other hydrocarbons, it is quite possible that such compounds of metals with carbon, upon coming in contact with water under conditions of more or less pressure, may give rise to the production of the immense stores of natural hydrocarbons, such as those which exist in the petroleum wells of Russia and the New World.

RECENTLY Patented inventions.
Hailway Appliances.
Car Coupling. - John P. Kirwan and James E. Kirwan, Jr., Pittsfield, Mass. This is a
coupler of the knuckie type, the body portion of the pivoted knuckie having a downwardy inclined or Develed surface in combination with a coupling pin having at tts lower end an inclined or beveled surface corresponding to that of the knuckle, whereby when
the pin is raised the knnckle will be forced outward to the uncoupled position. The construction is very simple and durable, and the coupling pin is so formed that the knuckle will have more of a bearing on it than
has been heretofore obtained, while it may be manihas becn heretofore obtained, while it may be mank
Metailic Tie. - Edward S. Moffat nid Theodore G. Wolf, Seranton, Pa. The body por-
tion of this tie is formed of a section of ordinary rack rail, which is given an oblique bend in the The end portions of the tie rail sections, with their flanges appermost, the parts being separated by space blockek opposete their
web portions and firmly bolted together. The bearing web portions and firmly boted together. The bearing heads thus formed for the track rails are provided with
clips, held thereon by bolts, the clips being adapted to clasp the flanges of the track rails.

Electrical.

Telegraph Relat.-Charles M. Dyer, Cloverdale, Ind. According to this invention the armature in the relay is supported yieldingly on the front of arminging armature ever, while a belt secured to the the armature lever, the belt heing arranged so that the movement of the armature will impart an opposite
movement to the lever, the improvement providing a novement to the lever, the improvement proviaing adjustment without regard to the variations of the electric current.

Mining, Etc.

Ore Washer.-Samuel C. McLanahan aud William F. Kirk, Hollidaysburg, Pa. This is an or more shafts having radial blades revolve in a box or tank, the blades serving to agitate and carry the ore forward to the discharge. The stirrer shaft is formed with longitudinal sections of angle iron or steel, the radial flanges extended throughout their length, and the sections secured at their ends to cap plates. The
hlades or padiles are preferably formed of flat steel hlades or paddiles are preferably formed of fat steel
plates with t wisted shanks connected with the flanges by bolts, the same bolts connecting the blades with the rangement of the bolt heads and nuts is such that the are but slightly acted on by the ore in the operation or he machin
Safety Keeper for Mining Cars. -inkerman Bailey and Louis Feger, Madisonville, Ky. automatically, and releasing it at the top and bottom of the shaft. A shaft is mounted to rock on the platof the shaft, and a pendent weighted rock arm adanted to rock the kcepers into an upright position, adevice in the nine shaft rocking the arm when the cage is lowered upon it. The improvement is for use on mine cages, whereby coal and other material mined is brought to the top of the shaft in cars, which are transfert from the hoisting cage to a furface track and moved to a point of discharge
directly from the cage.
Smelting Furnace.-Adam J. Schumacher, Butte City, Monana. This invention provides an improved diecharge trough, readily applied, to auto-
matically discharge and separate the products of fusion from the furnace, whereby the furnace may be run with greater continuity and less attention. The invention consists of a pipe formed into a trough and connected with a water sapply to pass water through the pipe. The pipe is continoung, and bent so as st form the
bottom, sides and ends, the bottom haviug an inlet botton, sides and ends, the bottom haviug an inlet
opening, while one end is omemwat less in height than he sides, so as to form a discharge opening.
Car Dumping apparatus. - Maurice M. Neames, St. Patrick's, La This invention relates to improvements in inclined railways and cars, pro-
viding means whereby cars may be drawn ap such railways and antomatically dumped at a certain point, being then placed in position to travel down the incline of its own accord. The construction is simple, durable,
and inexpensive, and means are provided whereby the car may be quickly and conveniently loaded, and Its coutents reudily delivered.

Mechanical Appliances.

Screw Cutting Lathe Feed Me-HANISN.-Wendell P. Norton, Mount Vernon, N. Y. To conveniently and rapidly change the speed of the
feed screw on screw-cutting engine lathes, according to the requirements of the screw to be cut, an improved The shaft is driven from a series of interchangeable gear wheels, a pinion turning with and sliding on the shaft, and a driving gear wheel in mesh with the pinion, while a second series of gear wheels of various diameters is arranged step-like on the feed shaft
Bush Hammer.-Clark Holden, Bar ti. This hammer is composed of oppositely arranged body plates having centrul bosses and transverse gibs
fitted between the plates on the ends of the bosses, each gib having a tongue fitting into a longitudinal groove formed in the bosses, while bolts pass through
the body plates and through the gibs to hold them in position. The construction is simple, and the blades are serarely held in position, while the parts may be
conveniently separated to take out the blades for conveniently separated to take out the blades for
sharpening or other purposes.

Nut Lock.-Ira J. Griffin, Sing Sing, N. Y. Combined with a bolt having a longitudinal grove in one side, and a nut turnished with radial ot the groove of the bolt and adapted to enter into the recesses of the nut. There is also a series of ratchet leeth in the bottom of the groove in the bolt, the key being aapplea to enfage te rutchet teeth. The device is
very simple and effective, quickly locking the nut upon bolt, with means for readily releasing the nut.
Beading Machine.-James P. Howe, Cass city, Mich. The making of beads on eaves
trougha and similar aricicles, the work being done accurately and rapidy, while the machine is easily operated, is the object of this invention, the machine being so constructed that it will not warp if made of wood and will not easily get out of reparr. It consists
of a lixed and a movable jaw hinged together and of a tixed and a movable jaw hinged together and
having registering grooves, a roller with a longitudinal having registering grooves, a roller with a longitudinal
groove being held to turn in the jaw grooves, while a groove seing hela to turn in the jaw grooves, bhine a
block sliding along the outer alde of the movable jaw has its outer face inclined, and a transverse bolt or bar extends from the fixed jaw into engagement with the nclined face.
Can Capping and Crimping Ma-Chins.-Mathias Jensen, Astoria, Oregon. This insame inventor, and provides an improved method of apping both ends of the can bodies wilh rapidity and ertainty. This is accomplished principally by arranging two sets of jaws opposite each other, each adapted oc close and form a tapered hole, the caps being conveyed one at a time to the narrow end of eacc tof, and he can bodies presented dirst one end through one
the holes into a cap and afterward the opposite end through the other hole into another cap, the can bodies ollowing each other, so that the exd of one can body is forced into one cap while the opposite end of another is at the same time forced into another cap, the
ans being released to roll of one after another.

Agricultaral.

Corn Harvester.-John N. Reimers Corn Harvester.-John N. Reimers and wilhelm M. Schneskloth, Calumet, Iowa, This
machine has infeed rolls provided with spiral flates havine their front sides inclined upward toward the
tear the rolls being gared to revolve toward each ther on their under sides, and having their flutes in clined to diverge rearwardly to feed the stalks rearwardly withont tending to crush them to the groand. having gathering devices for stripping the ears from the their uper uusking devices having trougbs pivoted a which the opposite ends of the troughs may be adjuste vertically, as may be desired, according to the grade of the ground traversed by the machine, the troughs being
provided with rolls adapted to tear the husks from the

Hop Press. - Pierce Riggs, Crowley, Oregon. This is an improvement in that clas8 or
preses in which the fullower operates horizontally within a press box similarly arranged. Combined with he press box and follower slidad in it are two sprocke being keyed on the operating shaft, while a chrin attached to the ends of the follower pasees between the sprocket wheels, there being means for rotating the
shaft. Another wheel is provided having a ratchet rim shaft. Another wheel is provided having a ratchet rim ing on the ratchet wheel to produce the initial and practically continuous.
Lawn Mower. - Edward Z. Kidd, Deadwood, South Dakota. To a plate ripially connect. to the front ends of the arms or handes, in front or
the main axles, are secured forwardly projecting spearshaped knives, and a plate fitted to slide transversely over this plate carries other V -shaped knves. The atter plate is attached to a lever pivoted on top of the axle, the rear end of the lever being pivotally connected by a pitman with a crank disk on a shaft whose forward end lis rotated by a bevel gear in mesh with a The power of the driving wheels is readily transmitted to the cutting mechanism, so that the grase is cut with great ease, and the sets of knives may be readily raised or lowered to cut long or short grass.
Pruning Implement. - Jesse M. Morgan, Chetopa, Kansas. This implement has a hook and a reciprocating knife, the shank of the hook having
a longitudinal groove in which the back of the knife i fitted, and the hook proper having a slot through which the knire moves in the forward or cutting movement. The construction is such that the knife is guided and braced against being diverted by the resistance of the
branch being severed, the knife also making a shearing cut while itself having a straight path of movement.

Miscellaneous.

Pneumatic Grain Conveyers. Frederic E. Duckham, Millwall Docks, London,
England. This invention reates to paratus for conveyers, for use in unloading or conveying grain, etc.., between ships, bargee, warehouses and granaries, by the carrying power of a current of air.
The hopper-like chamber into which the suction pipe leads is provided with exhausting apparatus by which a partial vacuum is maintained, and beneath this chamber a twin receiver rocks upon a horizontal axis,
the upper part of the receiver being curved to an arc to make a comparatively air-tight joint with the mouth of the hopper. The oscillating motion of the receiver is controlled by mechanism whereby a filled receiver is
dicconnected from the exhaust and fallis over to discharge, bringing the other chamber into position to b filled. With thio apparatus the grain is transported and
devosited by the air current without the aposited by the air current without the admission of Evaporating Pan.-Jay B. Copeland,
apparatus for purifying saccharine juices in the mannvessel divided by partitions into a series of longitudinal compartments ranging side, by side, the juice being partially heated in one compartment, highly heated in he next compartment, and so on, the temperature in-
creasing until it finally cescapes at the outlet. The scum is automatically removed, and the tendency to mis with the puritited juice is overcome, the sediment being detained in the several compartments, to be removed as it accumulates, whereby the juice is brought oo as clear and pure a condition as is possible with Submarine Boat. - John F. Auer, Nyack, N. Y. This boat has a tubular keel sectio nd ex Y . and exhaust pipes, whereby the admibsinn ar the he keel and its aischarge are controned by the
pressure in the keel section. The arrangement is suc hat the bout may be quickly submerged by compress air and a water ballast, and raised directly to the surace through the medium of compressed air, the water ballast and the action of the air on it being so reguated that either the bow or the stern may be dipped or ele. vated at will. The storage of suficicient compressed air
is provided for in the veesel to meet all emergencies
PIPE CouPLING.-William D. P. Aims, r., Philadelphis Pa, This counling com. having a thickened end which is externally and inter ally screw-threaded, the esterior edge of the thickened end being beveled, a cap having its flange internally scraw-ttreaded and with an aperture in its top and an
apnular ppace around the top, with an apertured packing. A simple form of coupling ss thus provided, for nd in connection with air, steam, water, or gas pipes,
nd one which is designed to make an absolutely tigh joint.
Sample Case. - John E. Hitch, Wilmington, Ohio. This case comprises connected end pieces having interior shoulders, a flexible wall pivoted
between the end pieces and adapted to be rolled upon between the end pieces and adapted to be roiled upon
the sboulders, supports on the interior of the wall, and catches to fasten the wall in a closed position. with a suitable handle. The case is especiaily adapted to ex
hibit auger bits, cutlery, jewelry and various articles of hardware, holding the articles in a very small compass, and so arranged as to exhibit the goods to great advantage without the necessity of handing them.
Notr.-Copies of any of the above patents will be Purnished by Munn \& Co., for 25 cents each. Please
send name of the patentee, title of invention and date of this paper.

SCIENTIFIC AMERICAN

BUILDING EDITION.
MARCH NUMBER.-(No. \% \%.)

table of contents.

Elegant plate in colors of a residence in the Queen Andrews, at Seaside Park, Bridgeport, Conn. Perspective view, floor plans, etc. Longstaff \&
Hurd architects, Bridgeport, Conn. Cost \$7,0co Hurd archi
complete.
complete.
2. Plate in colors of a cottage at Richmond, Mo. Perspective elevation and floor plans. Cost $\$ 1,500$. Floor plans and perspective elevation. Cos about $\$ 6,000$.
A cottage at Gardner, Me., erected at a cost $\$ 1,900$. Perspectiveelevation and floor plans. Floor plans and perspective view of a Colonia
6. Design for an ornamental chimney piece.
7. A cottage at Portland, Me. Cost $\$ 3,500$ ctan Perspective and floor plans.
loor plans and perspective view of a very atrac tive Queen Anne cottage erected at Babylon, L. I. Cost complete, $\$ 2,800$.
View of the proposed Odd Fellows' Temple at Chicago. To be the most im posing structure of
its kind in the United States, and the tallest building in the world. Height 556 feet.
10. Sketches of an English cottage.

An attractive residence recently erected at Belle
Haven Park, Greenwich, Conn., at a cost of $\$ 11,000$ complete. Floor plans and perspective elevation.
A residence at East Park, McKeesport, Pa. An attractive design. Plans and perspective. Cost
about $\$ 4,000$.
A cottage at Asbury Parl, N. J. An excellent design. Cost $\$ 5,300$
elevation.
14 Miscellaneous contents: Lawn planting; how to do it and what to avoid, with an illustration.-A suggestion for inventors. - Acoustics. - Thes
bought burning houses.-Timber in damp places. -The taper of chimueys.--Stained cypress.-Low illustrated.-A fine machine for cabinet shops, illustrated. - Swezey's dumb waiter. - Graphic representation of strains. - An improved door
hanger illustrated. -A new woodworking ma hanger, illustrated-A new woodworking ma-
chine, illuatrated.-The baths of Diocletian.-The Stanley plumb and level, illustrated. - The Diamond Match Company.
The 25 cents. Forty large quarto a pages, equal to about two hundred ordinary book pages ; forming, practi cally, a large and splendid Magazine of architec TURE, richly adorned with elegant plates in colors and with fine engravinge, illustrating the most interesting
examples of Modern Architectural Construction and examples of M
allied subjects.
The Fullness, Richnese, Cheapness, and Convenie nc of any Architectural pablication in the world. Sold by all newsdealers.
monn \& CO.. Pushiekea,

Əusiness and $\Re_{\text {ersonal. }}$.
The chargefor Insertion under this head is One Dollar a line
for each insertion; about eight words to a line. Adverfor each insertion; about eight words to a line. Adver-
tisements must be received at publication office as eariy as Wer Wanted- 50 second-hand screw-cutting lathes, 8 to 12^{\prime}
wing, either foot or steam power. Will pay cash. W. Davis, Rochester, N. Y.
U. S." metai polish. Indianapolis. Samples free. For pile driving engines. J. S. Mundy, Newark, N. J.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. 6Spindle T'urret Drill Presses. A.D. Quint, Hartford,Ct. Mixing machinery. J. H. Day \& Co.. Cincinnati, Ohio. Pedrick \& Ayer, Philadel phia, Pa Minn.
For frrst-class patterns write to Chas. Cassell, generai
Wanted-To buy first class patent. Iron article pre-
ferred. K. M. Scout, 2260 N. 17 th St., Philadelphia Trea. K. M. Scou, 220 N. The Improved Hydraulic Jacks, Punches, and Tube
Expanders. R. Dudgeon, 24 Columbia St., New York. Screw machines, milling machines, and drill presses.
The Garvin Mach. Co., Laight and Canal Sts., New York. Centrifugal Pumps. Capacity, 100 to 40,000 gals. per Crandall's patent packing for steam, water, and am-
monia. See adv. next week. Crandall Packing Co., Palmyra, N. Y.
on, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vacuum a
acid blowers, filter press pumps, et
Split Pulleys at Low prices, and of same strength and
appearance as Whole Pulleys. Yocom \& Son's Shafting appearance as Whole Pulleys. Yocom
Works, Drinker St., Philadelphia, Pa.
d without cost to you, catalogues, price lists, and information concern-
ing anything ou wish. Paret, Willey \& Co., 265 Broadway, New York.
popular book persons who desire agencies for a new popply to M unn \& Co., Scientific American office, 361
apl Broadway, New York.
A middle aged married man, a traveled salesman of
experience, now permanently located at Denver, Colo. (pop., 150,000), where he has extensive acquaintance, desires agency of some Eastern or foreign specialty. Address Brewster \& Co., Mendota Block, Denver, Col Send for new and complete cataiogue of Scientiflc
and other Books for sale by Munn \& Co., 361 Broadway and other Books for sale by Mu
New York. Free on application.

Huct Maver

HINTS TO CORRESPONDENTS.
mes and A ddress muet accompany all letters,
or no attention will be paid thereto. This is for our
information and not for publication. Refrerences to former articles or answers should
give date of paper and page or number of quetion.
quiries not answered in reasonable time should give date of paper and page or number of question.
In quiries not answered in reasomable time ehonld
berepeated; correspondents will bear in mind that
some answers require not a litte research and,
tonug
 Special Writen Information on matters of
personal rather than general interest cannot be
sepected without remueration.
Sciencific American Supplements referred Scientific American Supplements referred
tomay be ad at the office. Price 10 cents each.
Books referred to promptly supplied on receipt of Mincrer
marked or or labeled
med

(4152) G. F. writes : I made the eight light dynamo according to description of Scientific yokes (beariugs) of cast iron; has that any reducing effect on the dynamo? I made the armature core of wire on armature becomes so hot as to melt the shellac varnish; what is the cause? I cannot light two car-
bons between brush and magnet (or a and b on cut); it only gives a large spark and a shock by holding carbons in bare hands by 25 to 30 ohms R . Is there no way to
light a 16 candle power 50 volt light on that dynamo light a 16 candle power 50 volt light on that dynamo?
How can I increase the carrent? I was careful in connecting the coils with the commatator. A. It was a mistake to make the yokes of cast iron as this shor
circuits the magnets, to some estent. In making anything from carefully prepared directions, you should ot depart from the instruction given. However, your machine seems to work very well, and when you learn tory. By placing the carbons in contact in the circuit you have practically short circuited the armature, thus, causing too much current to pass through the armature Place 15 to 20 ohms resistance in the circuit, then touch the carbons together, and instantly separate them one-
sixteenth inch. You will then have the arc, and the machine will run easily. With the carbons long in contact, you are liable to burn out the armature. You honld provide some means for separating the carbous By connecting from three to eight incandescent lamps in parallel yon will have no difficulty in runcing them. You do not need an increased current. Learn how to (153) W. P.
(4153) W. P. asks : 1. If the voltage of an indaction coll can be reduced, and the amperage increased after it has been constructed, and how if it can
be done? A. Only by using an inverted induction coil corresponding to the converter in the alternating system
current. 2. What is the voltage of and amperage of an
eight light dynamo? A. 10 amperes at 50 volts E. M. F. 3. How much lead ought a vertical engine have that takes steam onny on one end? The engine runs an
exhaust fan. A. Only enough to take up the inertia of he piston and piston rod.
(4154) J. O. F. asks (1) how to color incaudescent lamp bulbs a red, white, or blue color, also how to frost them, all by some chemical preparation.
A. For permanent colors the bulbs are made from colA. For permanent colors the bulbs are made from col-
ored glass. To color them for temporary use dip them in thin collodion to which has been added aniline color. For frosting use vapor of hydrofuoric acid.
See query 4142 , taking care to protect all brass parts power lamp for ten seconds at intervals of a to 5 candle power lamp for ten seconds at intervals of 3 to 5 min-
utes, with some form of dry battery without an excessive strain on the battery? How many cells approxi-
mate? A. Possibly 10 or 12 cells of one of the best
(4155) E. H. C. asks : 1. A definition of the term "block system." A. A system of signaling
on railroads. The road is divided into sections or on railroads. The road is divided into sections or
blocks. At the beginning of each block is a signal post nal is kept displayed until it leaves it. The system nd electric agency, or may be worked by operative and electric agency, or may be worked by operatives.
2. Whether telegraph stations at intervals along a railroad are essential to such a system? A. To some sys-
tems; not to the automatic. 3 . Whether there is any tems; not to the automatic. 3. Whether there is any
automatic system in use whereby trains running on the automatic system in use whereby trains running on the
same track may be kept a certain distance apart? A. The block system and the telegraph are used to keep trains at a proper distance. 4. Some receipt for the
gilding of picture frames? A. For gilding receipts see gilding of picture frames?
"Encyclopedia of Receipts.
(4156) H. L. B. says : I saw some time ago in the Scientific American a description, and I think an advertisement, of what is known as a
"mineral rod " for locating gold, silver, and other metals, buried in the ground. While I am writing to you
let me ask for a solution of something that has puzzled let me ask for a solution of something that has puzzled
me for some time. Parties around here report having seen, at night, a ball of fire suspended in air about four one foot from the ground and returning to the ball, which is statoonary. I have not been able to see it as yet, or I would investigate. Will you please tell me
what it is and the cause of its heing in one particular pot. A. There is no known device for locating any minerals or ores, except iron, which is indicated by the magnetic needle when in large quantity. We think
such a device may have been described as the work of a crank. What you describe seems to be the "Will-o"-the-Wisp," or "Jack-a-Lanteru." What it is due to is ancertain. It has been attributed to spontaneously
inflammable phosphureted hydrogen, and also to marsh gas. The latter not being spontaneously infiam-
(4157) L. N. D. asks for the best way to work with oil painting on white silk and satun. A.
Partly remove the oil from the paint by spreading it on a cloth or a piece of blotting paper, then thin it slightly
(4158) J. E. H. asks : What metals are of more money value than gold: A. Caesium, calcium,
barium, cerium, didymium, gallium, indium, iridium lanthanium, lithium, niobium, palladium, rhodium, ruthemium, stronti
yttrium, zirconium.
(4159) O, O. E. says: From a spring 110 rods distant and 40 ft . fall, few bende, what size pipe would I have to lay down to get four horse power
from the motors that are made for such purpose? For two horse power? A. You will require a 6 inch pipe, supplying 66 cubic feet of water per minute, $41 / \mathrm{minch}$
pipe for two horse power, 33 cubic feet per minute. You should know the fiow from the spring for the power that it will produce. A 3 foot diameter motor
will give you four horse power and a 24 inch motor will give you four horse power and a 24 inch motor
Pelton style will give you two horse power with the
uantities of flow as above stated.
(4160) G. H. C. writes : I made myself a cycloidotrope not long since, which draws elegant
figures on smoked glass. Can you tell me how to figures on smoked glass. Can you tell me how to
transfer them to paper? A. Coat the glass with collodion made granular hy the addition of water and stained orange with aniline. Make the tracings on the
collodion surface, or you can print the smoke tracings by means of a camera after the manner of lantern slides. Then print on sensitized paper, using the trac-
(4161) W. A. V. says: I have been taught from scientific books that motion can be pro-
duced from heat, and that heat can also be produced from motion. Now I cannot see how heat can be obtained from motion, other than mere friction. But this
is®oot the heat that I want. I want useful heat, heat that will heat my house and cook my food. Now I
would like to know how auy scientist can obtain this would like to know how auy scientist can obtain this
kind of heat from the motion of a water wheel. Here we have motion without cost of coal; ; but I cannot see
how heat is to be obtained from it. Caan the Scientiric how heat is to be obtained from it. Can the Scientific
American enlighten me on the subject? A. We are as much in the dark as yourself in regard to cheap heat
for domestic use. The abstract notions, as you state, are all right, but as yet we do not see the way clear to realize on the faint gleanings of scientific research. When coal gives out, future generations will find ample
room for economy in utilizing the ways and means of living according to the new conditions, or in the most
primitive ways of the early ages. Mechanical energy primitive ways of the early ages. Mechanical energy
can be transformed into heat enorgy by electricity.
(4162) O. A. C., Monte Vista, Col., says : usual, I think. Time, 7:30 A. M.; mercury 10° above 0 F.; rising sun obscured by clouds, but shining on the
mountains, northwest. Upon looking in that direction mountains, northwest. Upon looking in that direction
(northwest) a mirage was seen, together with what is commonly called "heat waves," and quite distinct or pronounced. Both mirage and heat waves seemed to be
traveling west, and soon disappeared. A. There seems
o have been considerable disturbance in the atmosphere
n :Nebraska and Colorado on the 17th of February, causing halos and sun dogs in Nebraska and mirage in Colorado. We will be glad to hear from other observ-
ers of these phenomenaon that day. 2 . Does the rotaers of these phenomena on that day. 2. Does the rota-
tion of the earth upon its axis influence materially tion of the earth upon its axis influence materially
either the tides, marinecurrents, or direction or velocity of the winds ? A. The attraction of the moon princi-
pally and of the sun slightly are the forces that produce pally and of the sun slightly are the forces that produce rine currents and intensifies tidal flow. The unequal distribution of the heat of the sun, together with the
motion of the earth on its axis, gives direction and ve motion of the earth
locity to the winds.
(4163) J. F. M. W. says : I am building a triple-expansion engine, size $31 / 2 \mathrm{in}$. by $51 / 2$ in., and 9
in. by 6 in. stroke ; boiler preesure, 80 lb .; 200 revoluin. hy 6 in. stroke ; boiler pressure, 80 lb.; 200 revolu-
tions. What size surface tions. What size surface condenser, and also what size
gir pump, will I require? A. Surface condenser, 12 square feet surface; air pump, one-fifth area of high ing and direct connection, or $11 / 2$ in. diameter by 6 in. ing and direct connectio.
(4164) C. B. S. writes : 1. I have constructed the "simple electric motor" described in Sup-
PLEMENT, No. 641, winding armature and fields with No 18 wire charging them on a 50 volt incandescent light circuit. How many and what size cells should be used, and how long would they run the motor when fully charged ? A.
You will require four cells, with 17 plates 6 by 8 inches. You will require four cells, with 17 plates 6 by 8 inches.
Is the way of covering storage battery plates with 2. Is the way of covering storage battery plates with
red lead, as described by C. L. Woolley in Scientific red lead, as described by c. L. Woolley in Scientific
American of November 28, 1891, a good method ? A.
Yee 3. How many gravity cells would be required to charge the storage battery, and how long wouldit take A. Four to each cell of storage battery. The time required is 6 to 8 hours. 4. Would the motor run a 9 in. engine lathe or a small planer 9 A. It is too small.
You will probably require one-hnlf horse power. 5. In charging the battery on the incandescent light circuit, should resistance be put in the circuit ? A. Yes. 6 .
How many amperes can be safely carried through Nos. 22, $24,28,30$, and 36 copper wire ? A. $1.08,0.65,025$, (4165)
(4165) W. M. C. asks: Can an electric light plant large enough to light five 20 candle power inpower, practically speaking? Said power to run four hours without attention. If so, about how much labor would be necessary to wind it up? A. It is impracti-
cable to accomplish what you propose. One horse power requires the fall of 33,000 pounds through the distance of 1 foot each minute, so that this weight would have to fall 240 feet in four hours-twice the
weight half the distance, or half the weight twice the distance. It would take a 1 horse power steam engine engine could do it in a engine in about one hour. One man could wind it in
about four days of ten hours each, but it would be con tant and se
(4166) W. E. H. asks whether electricity has been applied with success to safety bicycles ? A
(4167) C. R. W. asks : What power prevents the bottom course of brick in our large structures
from crushing with the tremendous weight above it Please give me as explanatory reply as possible. What accepted theory is there as cause for the wind blowing ?
A. The resistance or crushing strength of brick and A. The resistance or crushing stren then beer beight derstand this, and spread the foundation to meet the pressure from high buildings. A single common red
brick, when properly laid in strong cement, is equal to a load of 12 tons, and it will require a column of ce ment-laid brick nearly 10,000 feet high to crush the bot-
tom course. The heat of the sun and the rotation of the earth are the primary causes of the circulation of here. See query 4162.
(4168) W. L. U. asks: 1. What is supposed to be the cause of aurora borealis, which is seen
in the northern heavens ? A. The aucora is a display of electricity in the npper atmosphere, and is supposed Scientific American Supplement, No. 372, for theories and description-an interesting paper. 2. Why
does the rainbow always appear in a semicircle? Why not appear in the whole eastern or western heavens, according to the time of the day, instead of in a semicircle,
as it always appears ? A. Rainbows derive their light from the sun as a radiant. Theconditions of the reflecquire a circle or part of a circle to meet the radiant points of the sun and the eye of the observer. 3. Is
there a limited sum which can be paid in copper or there a limited sum which can be paid in copper or
nickel currency? If so, what is the highest sum which can be so paid legally ? A. Silver coin is a legal tender to the amount of ten dollars at any one payment.
Nickel and copper coins are a legal tender to the amount of 25 cents at any one payment.
(4169) G. W. F. S. asks : What provision can be made for properly carrying off water emanating
from a cellar, when the cellar is below point of sewage plant? A. Water cannot be lifted without power. The ed, so that in a general way we can say, if you have gas, a small gas engine and pump is recommended. It is advertised in our columns, is in order. If you have
facilities for accommodating a small windmill away facilities for accommodating a small wind mill away from the honse, with a suction pipe leading to a deep
cespool in the cellar and discharging into the drainage system, you will find it as inexpensive and easily man-
(4170) W. L. M. says : I am building a ing registers in the sides of the walls, the open space shaft. Above the attic floor a tube will connect with shis shaft and be ran either into the chimney flue or ont
answered are these: 1st. Should the ventilators be
placed near the floor or near the ceiling? 2 d . Will the hot foul air ascend this shaft ? 3d. Would it be better to run the tube connecting with the air shaft into the chimney flue or out under the eaves of the house ? A.
For the best arrangement of ventilators in the rooms there should be one at the bottomand one at the top for each room. If you choose to use but one, place it a
the top in rooms that have a fireplace and at the bottom in rooms that have no fireplace. Under no consideration should the ventilatiou be connected with the chimney, for there are times when the rooms will be filled with smoke from back draught, besides the danger
from fire . The ventilator shaft should rise through the from fire. The ventilator shaft should rise through the rocf, with a draught hood on top. Opening the ventila-
tor ander the eaves is not good practice. The pressure or under the eaves is not good practice. The pressure windy weather.
(4177) R. M. says : In looking at an imaginary object created by a mirage, would a telessope
or a pair of field glasses reveal the deception, or or a pair of field glasses reveal the deception, or
would the deception stin seem perfect? A. We have no experience with a telescopic view of a mirage, but
should judge that as the telescope is only a larger ere the effect would be the same; but the field of vision being so small in the telescope, the scope of a mirage,
due to the larger field of the eye, would be lost in
(4172) H. V. K. asks: 1. I have at tempted to make a Leclanche cell: filled porous cup piece of regular battery carbon. Filled in with MnO_{2}. Set cup in strong solution of $\mathrm{NH}_{3} \mathrm{Cl}$, in which was bar of zinc. After settling for hours current is not atrong should use the best quality of graphite and manganese binoside with the dust sifted out. 2. Has trinitrate of tismuth (art. on p. 87, February 6, 1892) another name Large wholesale drug house in city claim no knowledge of it. Where can I get it ? A. It is the neutral his muth nitrate, and any reputable drug house should supply it. 3. Is stannous chloride and stannic chloride
the same? A. No. The first is SnCl_{2}, a solid, the second the same? A. No. The first is SnCl_{2}, a solia, the second
is SnCl_{4}, a liquid. 4. Has the "Scientific American
Cys metallurgy is treated in it. For eeneral electrical topic see our Supplement catalogue or Hopkins' "Experi-
mental Science," \$4 by mail. 5. Tell me where I can mental Science," $\$ 4$ by mail. 5. Tell me where I can who deal in scientific apparatus, such as Queen \& Co., Philadelphia, Pa. 6. What is a concentrated solution A. Heat the water with excess of borax and then pour off and heat with powdered shellac. 7. What is meant by the brush circuit and field circuit from a dynamo?
A. The brush circuit should mean all the circuits taken from the brushes; the field circuit is the circuit which xcites the field magnets.
(4173) J. W. C. asks : 1. Given a hollow air-tight body which with the superadded weight of one
ton will he exactly submerged in water, what additional ton will he exactly submerged in water, what additional
weight will be required to sink it thirty feet below the surface"of the water? A. The compressibility of water is
0.00004663 of its own bulk at 15 lb . pressure, so that your apparatus displaces one ton water,then 0.0004663x 2,000 pounds $=0.09326$ of a pound to sink it 34 feet after it is under water. This will also be somewhat modified by the elasticity of the hollow vessel, which is also subject to compression, and if it has as much or more com-
pressibility than water under the increasing pressure of enth it will go to the bottom without additional weight.
(4174) D. R. F. asks : 1. Please inform me whether glass cells would not answer the same pur-
pose or be superior to gutta percha cells in the con"Experimental Science") plange battery described in Experimental Science"? A. A glass cell is prefera-
be to a gutta percha cell on many accounts. 2. Also kindly state how many cells would be required to rur eight incandescent lights? A. It depends something upon the voltage of the lights. Six cells will run two
or three 10 volt lamps. 3. Would the current from such or three 10 volt lamps. 3. Would the current from such
a battery be as steady and the light as bright as
(4175) T. H. B. asks : Will a wrought iron collar shrink in heating ? To explain : Suppose I
turn a collar large enough to just slip over an inch bar turn a collar large enough to just slip over an inch bar
when it is cold, will it by heating make it tight on the when it is cold, will it by heating make it tight on the
shaft ? (After it is cold.) Does a bullet have the same velocity on returning to ground as it had when it left
the barrel of the rifie? Suposing it to be shot up vertically. A. Wrought iron rings will become slightl smaller.by heating and cooling, so that if made just to fit a mandrel, it will stick if put on hot and cooled.
See Scientific American Su pplement, No. 830, "Gun Wrinkles," for answers to various questions in relatio
(4176) A. asks: 1. Will the dynamo described in Supplement, No. 161, light an incandescent
lamp? if not, why? What changes would have to be made? A. The dynamo referred to will light two 5 plement, No. 641, run thedynamo? A. It is hardly sufficient for running the dynamo up to its full capacity. 3. Can dynamo described in Supplement,
No. 161, be used as a motor? A. Yes. 4. Could number 18 or 20 wire be used for the armature instead of 16? What difference would it make in motor? A. Yes, it would give a higher electromotive force, but it will
be necessary to modify the field magnet correspondingly.
(4177) "Andes" asks: What is the most simple method of testing the existence of borax when panied by baggage? A. Pulverize the mineral, moisten with sulphuric acid and cover with alcohol and ignite. A green flame will show the presence of boracic acid provided other substances (barium or copper) are not
preseut. If present, separate by well known processes. A good test is to moisten the mineral with sulpharic acid and glycerine and ignite on a platinum wire in
an alcohol lamp or blowpipe flame. A green flame is to dissolve the mineral, first pressing with sodium is to dissolve the mineral, first pressing with sodium
carbonate if necessary, then to slightly acidify with
hydrochloric acid, to dip a piece of tormeric paper in it
anddry the paper at a low heat. A browrish red color shows boracic acid. This test is also interfered with but the two are pretty good proof. See Cornwall's "Blowpipe Analysis and Determinative Mineralogy," $\$ 2.50$ by mail. Study and experience
(4178) J. W. P. asks: Can you tell me of any acid or liquid that will eat or burn up tinfoil
sample inclosed) in the same way that brass door (sample inclosed) in the same way that brass door
plates are protected in parts by wax and then the rest plates are protected in parts by wax and then the res
etched with acid? A. For etching tin use a mixture of 1 part nitric and 2 parts hydrochloric acid and 3 parts
water; 1 part potassium bichromate may be added. All parts are by weight.
(4179) P. H. asks : How much storage battery should I require for say 20 lights, not over half to recharge the battery oftener than once in two or three months8 A. It is impracticable to retain the
charge in storage batteries for two or three months as you suggest. The batteries will have to be recharged once every ten days or two weeks. To light 20 lamps
you will require 26 cells, provided the lamps are 50 you will req
volt lamps.
(4180) A. B. asks : 1. I made a con denser for the induction coll shown in Supplement,
No. 161, and same would not work satiefactory. I atNo. 161, and same would not work satisfactory. I at-
tached same to the primary wires, and the vibrator works all right, but the coil will not give any spark
when the condeuser is attached. In making the condenser I used 12 sheets of tin foil 5 inches by 5 inches and connected them at each end $1,3,5=2,4,6$, etc.,
and separated each sheet by well shellacked paper. A. and separated each sheet by well shellacked paper. A.
You will probably find that there is a cross connection You will probably find that there is a cross ono glass
or leakage in your condenser. 2. I have two glo cella 6 by 8 by 9 , and each cell. has two zincs and three carbons, 6 by 8 inches by 14 . What is the ans, How can I compute the capacity of a plunge cell with reference to the square inch of plates? A. The amperage of a
battery is computed by dividing its E.M.F. by its resist-
(4181) S. M. I. writes: 1. I want to heat a German silver wire about 12 inches or 15 inches ith an electric current of 8 amperes with E.M.F. of 5 060 volts. What number of wire should I use? A heat about 14 feet of No. 19 German silver wire could 1.500° amperes fix boluty the diameter of the wire; the relation of amperes to volts fixes its resistance, i.e.. its leugth; hence the calculation cannot be
carried out for the incompatible conditions of length given by you. 2. Why on standing close to an incan-
descent electric lamp do the filaments apper descent electric lamp do the filaments appear as fin threads of white light, and on receding from the lamp
they seem thicker until they appear as a ingle flame? they seem thicker until they appear as a aingle
A. The phenomenon is known as irradiation.
(4182) G. T. L. asks: What is the process of making the smalt or rough, sand-covered paint, when lettering on cloth, from spreading around the margins of the letters and turning to a dark color A. The ground is painted the same color as the smalts. The smalts are then thrown on in the same way a sanding paint. The figures or letters are painted on he cloth with a thin mucilage of gum tragacanth and (4183) A. F. O. writes: I have some where heard of a process for roughening the surface of

glass by applying something strongly adhesive, which by subsequent drying and contraction, tore off the sur particulars of the process? A. Make a thick solution of gelatine, pour it on the glass, let dry on a level. In | $\begin{array}{l}\text { of gela } \\ \text { shrinki } \\ \text { glase. }\end{array}$ |
| :--- |

(4184) A. W. says : 1. I wish to know what number of wire should be used on a magnet to
draw the armature with the greatest force and how much wire, using three cells of Fuller battery. A. For your magnet use soft iron cores $5 / 8$ of an inch in diame
ter, aud upon them wind 140 feet of No. 20 magnet wire re, aud upon them wind 140 feet of No. 20 magnet wire
2. If be balance or fly wheel on a buzz saw or othe the air kept out by a small pump operated from th main shaft, would there not be a considerable saving of power? It seems to me the speed would be more easily attained and a great deal harder to check. What ar your views on the subject? A. It is doubtful if the
plan suggested would effect any saving, as considerable plan suggested would effect any saving, as considerable
power will be required to maintaic a vacuum. You power will be required to maintaí a vacuum. You
could, however, save something by inclosing the whee in a practically air tight box. By this means the air would be prevented from being thrown off by centrif gal action. 3. Can you give me the ormula Yor a com
position that is a non-conductor of electricity, light in weight and will not warp by being put for hours in
liquid heated to 80° Fah.? A. We know of nothing bet for for your purpose
(4185) W. E. B. asks: 1. Would you o purchase a non-magnetic watch, or is the ordinary watch as good as a non-magnetic one? A. If you ar liable to visit places in which your watch would be enb
jected to magnetism, we should certainly advise the pur chase of a non-magnetic watch, as the poorest watch o this kind will keep better time than any magnetizable watch when magnetized. 2. Where is the most desira ble non-magnetic watch made, and by what company
Some jewelers tell me that the non-magnetic watch is a Some jewelers tell me that the non-magnetic watch is a
fraud; while others say the time is coming when a non magnetic watch will be necessary if a person wants reliable watch. A. There are several non-magnetic watches in the market, which are about equally good
We think that jewelers generally believe it to be impos sible to make an absolutely perfect timepiece on the non-magnetic principle, but they are sufficiently arcurate for all ordinary nses.
(4186) C. M. P. asks : 1. Is the simple lating ? In other words: You say it is $1 / 6$ horse power,

Now, could I take half the battery required to run it at
its fullest capacity, and run it as a one-sisteenth horse its fullest capacity, and run it as a one-si steenth horse
power machine? A. The motor would require more than one half the battery to run at one-half its full capacity. 2. Where the instructions are to use wood, would it be any better were I to use type or babbit
metal? A. Type metal or babbitt would not do for the core for the hub of the armature, unless you provide commutator cylinder separate from the hub. 3. Pleas let me know what is meant by the word shunt as ap pled to electrical machines. A. Shunt ie a term ap
(4187) E. D. H. asks : 1. Please give the solution of the Leclanche batteries. A. saturate olution of sal ammoniac and water. 2. What siz torage battery would be required to run a smail motor for operating a wood turning lathe? A. Your query indeinte to admit of direct reply. It requires what it costs and how much would the rost be in renew ing it? A. The cost of a storage buttery is $\$ 15$ per cell. The cost of charging, of coarse, varies with the cost of the motive power used in driving the charging dynama
(4188) M. W. writes: Suppose two ele tical storige batteries ench having capacity enough to run a dynamo for several hours of several horse power, the one being charged and the other not. How long a ne equilibrium between the two, that is, will the charges the two become equal in an instant or will it requir me time? A. The charging of storage batteries by eeans of other storage batteries is practically the same as charging them by the current from a dynamo, and
they shoild be charged at the fame rate. For elabor te tables on charging and diolargng ayn Supplement, No. 838
(4189) H. R. writes : I am making som ene enamel for enameling iron ware made of sand pulp, there is a white scum on the top of the enamel Can you let me know the cause of it? Can you give me a receipt for blue enamel? Is there any book pabished Fuse the mixture, pour while fused into water and re grind it. This will give it greater uniformity and
avold the scum. The "ScientIfic American Cyclopedia avold the scum. The "Scientitic American Cyclopedia
of Receits," $\$ 5$ by mail, gives a great deal of informaof Receipts," $\$ 5$ by mail, gives a great deal of informa
ion on this subject.
(4190) W. P. D. writes : During last fall's drought we dug a cistern, at a depth of ten feet
found moisture. It was walled up with brick and cement and bottom laid wihh same. (Star brand cement eiog ueed.) Later on, when the ground became tho wo feet deep. It was pumped out and another laye of brick and cement was put down, making the bottom double, but it filled with water just the same. Wha had we best do to secure good results and make it hold fill up? Would the water go out during drought as came ing It it now half to three.fourt ha full. All come hrough the bottom. A. The water will doubtless dia appear in the dry season. The remedy will be to pump
out the cietern, plaster walls and bottom with best Portland cement, neat, then put in another bottom and
(4191) R. M. asks : 1. Please give chemi-
 A. The iron would oxidize very slightly and the bait tery would become volarized. The ealt would merelg act to accelerate oxidation. 2. Also E. M. F. of the
same. A. It would be very slight; practically only a action of a volt
(4192) E. L. writes : I have a silver wash made by dissolviny silver chloride in a solution of hy-
posulphite of soda. When first made tie solution worked very well and deposited silver nicely. Now, afte a lapee of several months, it will not work at all, and
there is a conssderable amount of black sediment in it. Can you tell me how it can be made to work, or how the silver can be reclamed, if that is impossible? A. Possibly your solution is exhausted. To get rid of black sediment, filter. To recover silver add a few pieces of zinc, acidify in open air with sulphuric acid, and even
tually dissolve all the zinc. The silver will be left in tually dissolve all
the metallic state.
(4193) G. H. C. asks: If the rings used in the armature of motor No. 641 were so made that a segment of iron came between each pair of coils so tha hecrease the power of the motor, and are such ring ade9 A. It would increase the power of the mor
(4194) W. T. B. asks : 1. If the carbon sticks used for arc lamps be used for carbon element
in bichromate plunge battery, should enough sticks be in bichromate plunge battery, should enough sticks be nsed to make the carbon surface equal the zinc surface
A. You should use enough of the carbon rods to make he carbon surface nearly or quite double that of the zinc surface. 2. How many half gallon pravity battery
cells are required to run motor described in No. 761 , Supplement? A. The gravity battery is not suitable equire 20 or 30 cells to run the motor up to its full c pacity. Better uee a plunging battery or a Bunsen. Would not said motor be just as efficient, if a circular ron band, say $3 /$ inch wide, $1 / 8$ or three-sixteenths inch hick, fastened to a wooden disk, were substituted for
the iron disk to which the armature spools are at he ined the spool cores to pas through theow are dood disk and be screwed to the iron band? A. There is no ob-
(4195) E. H. asks: What is meant by a ilicated carbon filter? What is its composition, ho does it purify water, etc.? A. Sllicated carbon filters may be any mixture containing silica and carbon. This may be eand and charcoal mixed or a porous sandatone may also be made from pulverized retort carbon, sand, action is pricicipally as a filter or strainer, with a slight
endency to deodorize the water by the absorptiv
action of the carbon.
(4196) W. E. K. says: Will you please ot take away warts? A. Latent heat is the heat that ha been absorbed and which becomes hidden in the chang of fluids to vapor, or in the fusion of solids. It is also ne heat that is derived from the condensaticn of vapors and from fluids when passing into the solid state. A shown by change of temperture. Try a drop sene oil on the warts twice a day.
(4197) J. H. K. asks : 1. How are school ackboards mace? A. The best mixturee contain pumice to give "tooth," and lampblack or other amice ogive "tooth," and lampblack or other pis
ments, often with a littie Prussian blue. See the "scientific American Cyclopedia," $\$ 5$ by mail. 2. How can gas be lit by electricity and what is a simplo y a spark coil, three or four Leclanche batteries in each burner. The latter are sold by electrical dealers. . How can small bombs be made, which, when thrown the ground, co not make much of a report ? A pulminate of mercury is the explosive of ordinary to
(4198) F. W. P. asks : Can a fish of any kind or eel shoot or swim up a ten-foot dam or falls? Does the bottom of a wagon wheel go slower than the
top? Is it better to write a leiter for information to he publishers of any paper, or send an article before doing so? A. Salmon are known to jumpa considera be fall with deep water below. They jump all the fall of the Columbia below Spokane. We have no figures See Scientific American Supplement, No. 275, for an iteresting acconnt. Eels crawl around falls or dams. See ScIentific American Supplement, No. \%ob, for and article together.
(4199) C. C. B. writes : Will you allow e to add a little to your directions for reinking typ writer ribbons. lycerine, with aniline dye, makes the ribbon to of my ribbons for a day or two inked as above, I ven ured to run a hot iron over it, having first put it be ween two blotters. This remedied the trouble at once
(4200) W. D. R. says : I wish to convey water through a pipe 260 feet from a ditch. I have 2 ize pipe I can use and have a supply of 3 gallons per minute. A. A $3 / 4$ inch pipe will give you about 5 gal ons per minute. We do not recommend smaller pipe
(4201) H. G. G. asks : What occupies解 space in the top of the barometer tube? Is it vacuum? If is not a complete vacuum, what fills ble. In a barometer that has no spot at the top when it stipped down so that the mercury touches the top of the tube, there is good proof that it contains no air or ases. There is only a possibility that an infintely mall amount of vapor of mercury rises in the open pace that condenses as the mercury rises to the top in pping th
(4202) W. S. T. says : Please give me he proper weight fur a flywheel for an engine 3 夜 nch bore, 6 inches stroke, running 90 revolutions, cuting off $1 / 3$ stroke, or give rule in next issue for find $\left.\right|_{\text {ing }} ^{\text {ing }}$
mean piston pressure \times stroke in feet Rev. per m. ${ }^{2} \times \cdot 003$
or for your engine, assuming 40 pounds mean piston

$40 \times 8.29 \times 1 / 2$

$-90 \times 90 \times 0003=34 \cdot 6$ pounds

(4203) H. M. asks : What is the red or corrugated lenses for semaphore signal lamps and ho it made to adhere to the glass? From close observ ance I notice that green and blue lenses are not made in this way, but apparently the coloring matter, what lass. From this the question arises, can green or blue lenses be made in the same manner as the red Colored glaze is used and baked on as with glazed earthenware. Otherwise the coloring is made at the glass house by using colored glass in blowing. Colored varnishes may be used for cheap work. The principal colors in sheet glass are sold by the trade, consisting ordinary glass glazed on one side with colored glass

(4204) W. B. says : Suppose there is a the other. The air being exhausted in the hole a les ball is dropped in; will it fall past the center9 will its velocity increase or diminish in the first 2,000 miles? A. The lead ball would not drop through the hole reely unless the hole was from pole to pole. The moion of the earth decreases from the surface toward the locity would hug the east side of the the surface velocity would hug the east side of the hole, because it motion as it moved toward the center. With a polar hole the ball would drop with an increasing velocity to the center, and pass to an equal distance to the other side with a decreasing velocity, from the effect of
gravity, and would vibrate from surface to surface, no
(4205) C. P. M. asks: If a cannon be fred at a horizontal and another ball be dropped from the same height at the same instant, which will reach the ground first ? I say there will be no difference. A says that is an old theory, and that modern science has
proved that the hall that is dropped will reach the
ground first, and if the
three with him he will not accept it as authority. Will
the best modern riffe fired at 100 yards throw a ball in straight line that or any part of that distance? sighted, and at what point along the line actually be be farthest above a direct line, and how far? A says has sighted rifles as a business, and that a rifle will hrow a ball in à straight line for a given distance varyof A? A. You are right as to the time of direct fall ard the fall of the horizontal shot. A ball fired hori zontally does not move in a straight line after it leave he gun. It is a downward curve. The sighting is depressed from the line of the bore to meet the curve of ine of sight, but not on the line of the bore the think well of A's opinion. The depression in sighting depends upon strength of as well as lenyth of barrel or distance between the (4206) W. E. MacK. writes: 1. I made n induction coil as described in your 1. I but can only get about a one-half inch spark. There ar wo pounds of secondary wire wound perfectly, each
ayer shellacked, with two layers of thin paper betwee ach layer I feel positive that the insulation is perfe hroughout. The condenser is made from leaves of a old ledger, every leaf examined for imperfections and hen dipped in paraffine. How can I test to find out your induction coil by mea heostat, and see if it has the resistance due to it ength. If the resistance of the coil is less than that he wire, your iusulation 18 deficient at some points. not pass at all, it indicates a break. Possibly you are not using sufficient battery to develop the fuli power of th oil. If you are using small cells, try connecting them rom the zinc of a bichromate of potash if the w nected directly with the carbon it becomes red hot,
while if connected at the binding post or to anothe iece of wire from the carbon it is not made eve sensibly warm? A. By connecting the wire directly carrent you can obtain from the battery. Any addiarrent you can obtain from the battery. Any add current. 3. I have three cells of carbon and zinc bat ery which I charge with a saturated solution of b chromate of soda and one part sulphuric acid to flve olution. Why is it that when this battery is set u resh it becomes so hot that the paraffine is melte rum ends of the carbons, although everything is quit incs becoming warm in your battery indicates poo ation. You should amalgamate thoroughly in every part. 4. On page 321 of Mr. Hop does he mean? A. Sulphurous acid water is water which sulphurous acid (which is a gas at ordinary temperatures) has been absorbed. 5 . How shall I go to wor diameter with journals 3 inches by $11 /$ projecting fro ach end I wid the joub brd as posible to get it. I have mad: three, but all crack in the hardening? A. For your roller take steel hat has been worked as little as possible, and never
heated above a low cherry red. Heat the roll to a tem perature required for hardening and dip it straigh down into cool water, holding it there until cool; afterward draw the temper of the jouruals.
roll of this kind is almost sure to spring in hardening. It sho
lathe.

Marlboro asks: For a variety of whitewash receipts. tain? How made and applied ?-F. H. E. says: there any way in which short hair may be curled without the use of curling irou, and without doing any injury o either hair or scalp?--E. W. says: Please give me cement to fasten glass and brass or glass and tin, so that it can stand hot water?-H. W. F. says: Will you y Lea \& Perrins ?-R. C.C. eays: Please give formula or rubber mixture to repair rubber coat.-A. H. R says: Can you inform us of some lacquer to use on brass signs to keep them from tarnishing $9-$ R. F. M. says: Could you kindly give us a recipe for hard transparent cement for sticking glass, insoluble in water?. B. A. says : How can I remove mud stains from Is there any way to remove initials badly put on wit he black puint generally used for that purpose $9-$ C. . Oblige me with a receipt for making color a solution for removing ink is made p-T. F. McD. say Please give a receipt to make an easy-running bismut solder?-T. J. says: Can you furnish me with the receipts by which billiard balls are colored? Also how are the stripes on poce int that will stick brass to glass oo that when a heavy charge of electricity comes over the wires it will not melt the cement? 2. Can yon temper a drill so that you could drill a hole in glass, and hows-A Reader asks how o clean wall paper.-C. H.
C. asks for tin and zinc plating baths.-E. C. W. asks a durable whitewash.

Answers to all of the above queries will be found he "Scientific American Cyclopedia of Receipts, Note dhe aderies," to which our correspondents are referred. The advertisement of this book is prin
column. A new circular is now ready.

Replies to Enquiries.
The following replies relate to enquiries recently pubherein given
Removal of Wiite. Incrustation from Bricks.-Large 4054, Febrary pressed bricks referred to in query No. acid, dilute 1 in 3 water, and put on with a whitewa-h bruah, will take off the white referred to.-W.D. B.

NEW BOOKS AND PUBLICATIONS.
The Mechanical Engineer's Pocket Book of Tables, Formula, Rules,
and Data. By D. Kinnear Clark, AND Data. By D. Kinnear Clark,
M. Inst. C.E. New York : D. Van
Nostrand Co. 1892. Pp. xxxii, 656. Price $\$ 3$.
A book of this character, provided with an extended table of contents and also with a full index is always
welcome. The work covers the ground designated by ts title, with one noteworthy feature. This is the inngineering incudinerable part devoted to electrical ampe, conductors, telephones, and lighting conductors
 for the use of the mechanical engineer, and its numerof the greatest use to members of the profession in

Notes on Building Construction Part IV. Illustrated with
folding plates. Londgy and
York Lond
Pp. xix, 364. Price $\$$. $\$ 4.50$.
This large and beautifully mad volume is yritten int
meet the requirements of the sylabus of the solidide and Art Department of the com hattee of counction education, South Kensington, Enhtand, for zwhat is ermed the course for honors. Whetben .the English the cause of education is an open question - If influnce on the world of books is in some ways bad astending to restrict the scope of books to the limited "requirements" of the examinations. This volume, however, while avowedy writen for , ich va, tre9te ncident thereto, that it will be found yalomis to many Kensington examination
How to Run Engivis ave Roilees.
By Egbert P. Watson. New York. 1892. Pp. 125.

This is a little hand book of useful information and direction by the editor of the Engineer, designed to be particnarly serviceable to young engineers and steam
users. It treats of cleaning the boiler and removing scales, boiler fittings, grate bars and tubes, bridge walls, tc., and several short chapters are given to the slide valve throttling engine. Many valuable practical hints relative to engine running and management are given, and the information contained in the book is set out so not fail to understand and appreciate its contents.

TO INVENTORS
An experience of forty years, and the preparation of more than one hundred thousand applications for palaws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. A synopsis of the patent laws of the United States and all foreign countries may be had on application, and persons abroad, are invited to write to this ofice for prices, which are low, in accordance with the times and our extensive facilities for conducting the business. Address
MUNN $\&$ CO., office Scientific Ambrican, 361 BroadMUNN \& CO., 0
way, New York.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted

March 15, 1892.

AND EACH BEARING THAT DATE.

A New and Important Bxa on Steam Engineer
THE INDICATOR．
The Steam Engine And the Indicator：Their
Origin and Progresise Development including he
he

 HENRY CAREY BAIRD \＆CO． JUST PU BLLISHED．－‘＇Ways and Means，＂for
Machinists and MetalWorkers．
Dew work，thoroughy

NOW READY！

A NEW AND VALUABLE BOOK．

This splendiat ork contains a areful complia－
 past fifty years；together with many valuable and Over Twelve Thonsand selec ed receipts
are here collected；nearly every branch of the use－ are here collected；nearly every branch of the use－
ful arts being represented．It is by far the most
comprehensive volumeof the kind ever placed be－ fore the public．
The work may begarded as the product of the
studies and practical experience of the ablest chem－ sts and workers in all parts of the world ；the in－ formation given being of the highest value，ar－
ranged and condensed in concise form convenient
for ready use． for ready use．
Almost inquiry that can be thought of
relating to formula used in the various manufac－ Instructions ind for will herking many different pro－
Intion and cesses in the arts are given．
It it impossible with of the a prospectus
to give more than an outline of a few features of so extensive a work．Paper we have nearly 250 re－
Under the head of
ceipts，embracing how to make papier maché；how to make paper water proof and fire proof；how to transfer paper，carbon paper，parchment paper， up cutlery，silverware；how to make luminous Under the head of Inks we have nearly 450 re－ of all colors，drawing inks，luminous inks，invisi－
ble inks，gold，silver and bronze inks，white inks； faded inks，etc．
Under the had of Allors over zoo receipts are
given，covering a vast amount of valuable infor－ Of Cements we have some 600 receipts，which
incluclue almost every known adhesive preparation，
and the modes of use． netucie almost every lnown adhesive preparation，
and the modes of use．
How make Rubber Stamps How to make Rubber Stamps forms the subject
of a most valuable practical article，in which the complete process is described in such clear and ex－
plicitit terms that any nitelligent person may readily For Lacquers there are 120 receipts：Electro－Me－ tallurgy， 125 receipts；Bronzing， 177 receipts；Pho－
tography and Microscopy are represented by 600 receipts．
Under head of Etching there are 55 receipts，
embracing practical directions for the production Paints，Pigments and Varnishes furnish over Paints，Pigments and Varnishes furnish over
800 receipts，and include everything worth know－
ing on those subjects． ing on those subjects．Cleansing over 500 recipes
Une giver the head of the scope being very broad，embracing
the geen， the remoral of spots and stains from all sorts
of objects and materials，bleaching of fabrics cleaning furniture，clothing，glass，leather，metals，
and the restoration and preservation of all kinds of objects and materials．
In Cosmetics and Perfumery some 500 receipts are given．
probably will find in this book much that is of practical value in their respective callings．
Those who are in search of independent business or employment，relating to the home manufacture

MUNN \＆CO．，Publishers， SOIENTIFIC AMEEICAN OFFICE，

361 Broadway，New York．

和

 STEEL TYPE FOR TYPEWRITERS

 ＂THE KRIEBEL＂STEAM ENGINES．

 VELOCITY OF ICE BOATS．A COL

CTAREXIS

 WOOL WASHERS，WARP DYEINGANDSIZINGMACHINES
PATENT RUBBER COVERED SQUEEZE POWER WRINGERSIFOR HOSIERY AND DRYING AND VENYENAGTING FANE，
WOOL AND COTTGN DRYERS，Etc
 Conn ARCHITECTURAL ENGINEERING－

TO Inventors．

$\$ 10.00$ to $\$ 50.00$

HARRISON CONVEYOR！ Harimg Grain，Coal，Sand，Clay，Tan Bark，Cinders，Ores，Seeds，\＆C．
zend send fing
cirdura．｜
HORDEN，

PURE TEMPERED COPPER ：

CUITARS｜MANDOLINS Quartemarauate

VOLNEY T．MASON \＆CO．，
FRICTION PULLETS CLOTCEES and RLEVATORS

ELECTRICITY
BELLS，${ }^{\text {send }}$ ，for our special Price List 2 ELECTRICA A fuil ine of seneral

FOR SALE，Patant Rlpht for n nem stam

\qquad U．S． Tis inntion，
 ELECTRO MOTOR．SIMPLE．HOW TO

NEW CATALOGUE

 VALUABLE PAPERS mUNS © C Co．． 361 Irondwar．New York．CHUCKS．
 GATES ROCK \＆ORE BREAKER

BAILEY＇S RUBBER

HEEL CUSHION

 ＂Send 6 pairs more；they are a arand sucess．＂
＂ Entirely satisfactory；end 4 pairs more．＂
＂They give instant relief，send me 3 pairs more．＂ C．J．Balle \＆CO．， 22 Boliston street，Boston．

The Remington
 The Remington

Standard

	YPEWRITE
Isto－day，as it hasever been the leading Typewriter． C a refully tested im－	
provements Send for Ilustrated Catalo	
are constantly added to this famous machine．	
TRY OUR PAK	ON BRANDC
	ns

327 Broadway，New York．

ゆூDvertisements．

 OVERMAN WHEEL CO．
Boston．washinaton．DENvER．SAN rancisc
A．G．SPALDING \＆BROS．，Special Agents．

 BAINELECTRIC MANUFACTURING CO DOU GFFIT POWVFR？ W Motor ot thi 19 th Chentary

THE AMERTGANBELUTEETHFONE CD
95 MILK ST．，BOSTON，MASS．
This Company owns the Letters Patent granted to Alexander Graham Bell，March 7th，1876，No．174，465，and January 30th， 187T．No．186．787
The transmission of Speech by all known forms of Electric Speaking Telephones in fringes the right secured to this Company by the above patents，and renders each individual user of telephones not furnish－ ed by it or its licensees responsible for such thereof，and liable to suit therefor．

ICE－HOUSE AND COLD ROOM．－BY R

ELECTRO VAPOR ENGINE． GAS OR GASOLINE FOR FUEL．
NO BOILER．NO FIICE．NO
Engine operated by spark
from small batery

THOMAS KANE \＆CO．， CHICACO，ILL．

Canoe to a Steam Ya，
 WEND 1Oc．FOR COMPLETE CATALOGUE． DAVIS BOAT AND OAR CO．，DETROIT，MICH．，U．S．A．

SMOKELESS GUNPOWDER．－AN IN－

LOOK！LOOK！

Unusual chance for young men in every state in Union

FDDISOIN

GENERAL ELECTRIC CO．
INCANDESGENT AND ARC LIGHT PLANTS．
Stationary and Railway Motors．－Lamps．－Cables．－Safety Devices．
Canadian．．．．．．Edison Building， 77 Bay st．，Toronto，Cand OFFICES

 Mexican and So
European Ofice SCIENTIFIC AMERICAN SUPPLE－

YOU HAVE SOMETHING

$C E N T U R Y$ COL UMBIA
with Pneumatic Tires．Light，Strongs，
Durabie，and fully guaranteced． POPE MF．CO．， 221 Columbun Ave．，Borton．

The NATIONAL INDEPENDENT．
UNIVERALIN
COMIBINATION．
Strongest．Fasiest to change．Best Finish．Rever－
sible jaws（patented）fiving 5 changes incluaing
 PELTON WATER MOTOR． PELTON WATER MOTOR．

ARTESIAN

KODAKS

are always loaded ready for immediate use．They can
be used for roll fims or glass plates．The new $\frac{\text { Daylight }}{*}$ Kodak can be loaded in daylight． $\begin{aligned} & \text { Registers exposures and } \\ & \text { locks automatically when a } \\ & \text { pew flace．}\end{aligned}$ fim is turned into
$\$ 850$ to $\$ 2$ 500 THE EASTMAN COMPANY，

SY LPH CYCLES RUN EASY

After being on the Market Five Years The＂ACME＂sill Leads！
Sizes One．Two．Three，and Four Horse Power．Arranged for pither NATURAL OAS
or Lerosene Oil ire，as orderea．No ROCHESTER MACHINE TOOL WORKS．BTOWn＇s Ract，ROCHESTER，N．Y．

 ＂OTTO gas and gasoling ENCINES， Can be usead incovities or in cuntry inde－ onden pendent of ras wo or ${ }^{\text {rasamachines．}}$ Boile 33，00

BALL AUTOMATIC
MADE ONLY CUTOFFENGINE
THE BALLENGINE COO．

士理玉

ESTABLISHED 1846.
The Most Popular Scientific Paper in the World

Only \＄3．00 a Year，Including Postage． Weekly－52 Numbers a Year．

This widely circulated and splendidy illustrated
paper is published weekly．Every number contains six－ teen pages of useful information and a large number o oricinal engravings of new inventions and discoveries，
representing Engineering Works，Steam Machinery New Inventions，Novelties in Mechanics，Manufactures， Chemistry，Electricity，Telegraphy；Photography，Armhi－ ecture，Agriculture，Horticuliture，Natural History c．Complete list of patents each week，
THIC AMERICAN will be sent for one year－ 52 numbers－ postage prepaid，to any subscriber in the United States， Canada，or Mexico，on receipt of three dollars by
publishers；six months， 81.50 ；three months，$\$ 1.00$ ． pubishers；six months， 81.50 ；three months， 81.00 ．
Clubs．－Spectal rates for several names，and to Pos Masters．Write for particulars．
The safest way to remit is oy Postal Order，Draft．or E press Money Order．Money carefully placed inside
of envelopes，securely sealed，and correctly addressed seldom goess astray，but is at the sender＇s risk．Address
sider seldom goes astray，but is at the sender＇s risk．Adaress
all letters and make all orders，drafts，ett．，payable to
MU NN \＆CO．，361 Broadway，New York．

THE

Stientific \｛ancrical ঞupplement
This is a separate and distinct publication from THE
SCIENTIFIC AMERICAN，but is uniform therewith in size every number containing sixteen large pages full of en ravings，many of which are taken from foreign papers
and accompanied with translated descriptions．TTEE ScIENTIFIC AMERICAN SUPPLEMENT is published week ly，and includes a very wide range of contents．It pre－
sents the most recent papers by eminent writers in all the principal departments of Science and the Useful History，Geocing Biology，Geology，Mineralogy，Natura try，Electricity，Light，Heat，Mechanical Engineering Steam and Railway Engineering，Mining，Ship Building，
Marine Engineering，Photography．Technology，Manu－ facturing Industries，Sanitary Engineering，Agriculture， Horticulture，Domestic Economy，Biography．Medicine．
etc．A vast amount of fresh and valuable information etc．A vast amount of fresh and valuable informatio The most important Engineering
and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT．
Price for the SUPPLEMENT for
Price for the SUPPLEMENT for the United States and ERICAN and one copy of the SUPPLEMENT，both maile for one year for 87.00 ．Single copies， 10 cents．Address and remit dy postal order，express money order，or check，
MUNN \＆CO．， 361 Broadway，New York，

Publishers Scientific American
Building Editiou．
The Scientipic american architects＇and Single copies， 25 cents．Forty large quarto pages，equai to about two hundred ordinary book pages；forming a lagge and splendid Magazine of Architecture，richly adorned with elegant piates in coto and with other fine of modernarchitectural construction and allied subjects． A special feature is the presentation in each number of a variety of the latest and best plans for private resi－
dences，city and country，including those of very mod－ dences，city and country，including those of very mod－
erate cost as well as the more expensive．Drawings in perspective and in color are given，together with fuL
Plans，Specifleations，Sheets of Details，Estimates，etc． The elegance and cheapness of this magnificent work Architectural publication in the world．Sold by all news－ dealers． $8 \% .50$ a year．Remit to

MUNN \＆CO．，Publishers．
GEAR CUTTING
1，eland，Faulconer \＆Norton Co．，Detroit，Mich

PRINTING INKES

