

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

Vol. LXVI.-No. 9. Establiseed 1845	EW YORK, FEBRUARY 27, 1892.	¢3.0才 ${ }_{\text {WekLy. }}$

MAP OF THE OIL FIELDS

general view of central refinery at cleveland.
TEE TRANSEER OF OIL BY MAIN TRANSIT PIPE LINES FROM OIL REGIONS TO PRINCIPAL REFINERIES.-[See page 134.]

Surutific Ammerican.
 ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
 No. 361 BROADWAY, NEW YORK.

O. D. MUNN. A. E. BEACH.

NEW YORK, SATURDAY, FEBRUARY $27,1892$.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT No. 843.

difrovement

fe Das been well epitomized in the following extract: Do you know that the wheel is the connecting link between barbarism and civilization, poverty and reat that by it the world moves, and-upon it all which staggers with 500 pounds upon his back trots off easily with 2,000 pounds loaded on wheels? Do you know that if you were chained to 500 pounds of iron in the form of a cube you would die if bread was but one-eighth of a mile off ?-that in a cask you could roll 2,000 pounds around the earth? Do you know that every time you step you lift your weight (say 100 pounds) one inch, which, added up, makes a lot at the end of a day ?-that on a bicycle you can go farther, faster, and easier in the same time? Take the wheel from the locomotive, and one-half the world's industry would die. Remove it from the car, carriage, and fac tory, and the wealth of the world would dwindle nine tenths. You would hear of no Goulds, no Astors, no Vanderbilts. Wall Street would go down a tradition to future generations."
Like many other important facts, the above is very well known and is very imperfectly realized. But the wheel without a proper surface to roll upon is badly dis counted. The railroad only attains its speed by having a smooth steel bed for its wheels to roll over. On a less perfect surface the speed of the slowest train would be unendurable for the passengers. The locomotive, that seems instinct with self-contained life, becomes th most helpless of organisms when its wheels leave the rails or when snow accumulates little by little on the track.
The question is now one of the great issues of he day. Of all civilized countries, the United State probably hold the palm for bad roads. The annua messages of governors of States have taken cognizance of the need for better roads; the roads of a district have been made a subject for indictment by a grand jury. In the daily papers we read of a mud blockade when farmers were connined to their houses because the roads were impassable. Their produce was locked up money became scarce, the local merchants suffered in their business, so that a local financial crisis was th effect of bad roads. We read that a farmer in Pennsylvania, last spring, while using a six-horse team to haul a single load of hay, had one of his horses fall in the road, and the horse was drowned before he could be got out. The question, "How are the roads?" so fre quently put in country places, tells a whole story of the dependence of farmers on roads for their prosperity comfort, and even for social recreation and enlighten ment. Without practicable transit, there can be no support for family gatherings, lectures or lyceums, and the very schooling of the children of the country de pends on the same thing-good roads.
Occasionally it is found that people in a given dis trict rise to the importance of this subject. In New Jersey, a group of adjoining counties have positively transformed the face of the country by constructing many miles of macadamized or telfordized roads. In Kentucky, in parts of New York, in the suburbs of Boston, and other places the same movement has pro gressed. In Parke County, Ind., a road enthusiast out of his private purse, built one mile of good road At this time the county in question was said to con tain the muddiest road in the State. But the objec lesson of the mile of roadbed had its effect, and now the same county is celebrated for its roads.
Without going into statistics as to the number of horses owned by the farmers of this country, it is plain that a condition of affairs which exacts the labor of two horses to do what should be the work of one is disastrous in the business sense. Good roads are the best possible investment for a State that cares for the prosperity of its greatest producing class. They are of the utmost importance to railroads. Good roads would easily double the width of the belt or zone of supply of railroad lines, and would maintain such supply winter and summer. This would avoid the trouble some glut of freight when the mud dried up, and the want of business when the frost, leaving the ground, produces impassable roads.

All this seems clear enough, but is hard to impress upon those most nearly concerned. How far State or federal aid should be devoted to the end of securing good roads is a question for political economists. It seems clear that, without some such aid, the end will never be reached. In Europe, the state is the road maker. The great carts of the French farmer with broad tires roll smoothly over splendid Telford surfaces, a tandem team drawing immense weights withou painful effort. A parallel picture is presented in other countries, England and Italy among the rest.
The work of road improvement is being furthered by constant agitation, by publication of manuals on the subject, and by an excellently edited monthly magazine, published in this city. All this work will even tually have its effect. It has been found that roads can be laid under the bond system without overburdening the tax payers, and it seems probable that, fifty
amazement the condition of things that permitted a whole region of farming industry to be paralyzed by a "mud blockade."

Naval and Seaboard Weakness of the United

The outbreak of war with Chile would have disclosed he weakness of the country. Before an army could have been transported from California to Valparaiso, lleet of transports would have been required, and owing to the decline of the American commercial marine hese would not have been available. No maritime nation can be considered in a proper state of prepara ion for war, offensive or defensive, unless it has a fleet of fast merchant steamers which can be converted into an auxiliary navy. If hostilities had arisen Chile would have employed the fine vessels of its national line a cruisers and transports, and the United States would have had no merchant vessels on the Pacific seaboard equal to them for war purposes. If there should be a similar emergency on the Atlantic side, there would be no merchant fleet under the American flag available in a war with any European maritime power.
If an army, moreover, had been sent to Chile and the American naval resources had been concentrated n that quarter for active operations and blockade duty, the California coast would have been defense ess, San Francisco exposed to attack from the mos formidable Chilean war ships, and the Atlantic ports without adequate means of resisting long-range fire rom such battle ships as the Prat. Coast defense would become an issue of paramount importance in any foreign war. It has seemed impracticable during the last decade to arouse public interest in this ques ion or to secure wise and comprehensive action from Congress upon it.
A great nation, with unprotected cities on three eaboards, invites war by its lack of preparation for it The United States not only ought to place its chie ports in a proper condition of defense, but it ough also to have a fleet of cruisers and battle ships large nough to meet any requirements of foreign warfare a military system well ordered for sudden emergencies, and an auxiliary navy of requisite speed and tonnage in its merchant marine. With these preparations for national defense, the risks of war would be hardly worthy of serious consideration. Every one of these measures can be advocated in the interests of peace The barbarism of war, which Americans justly hold in unspeakable abhorrence, cannot be averted by condi tions of helplessness and insecurity produced by sys tematic neglect of comprehensive measures for na tional defense. $-N$. Y. Tribune

Finishing Silver Prints.

by henry sturmey.
The following method of finishing silver prints, when ntended to be kept unmounted, may be new to some readers of the Year Book, though I expect it to be an old idea to the majority. Still, as I have never seen it mentioned in print before, and as I chanced on the exact method myself, perhaps it may prove of interest. It is well known that to squeegee the wet print face down upon glass or polished vulcanite, and allow it there to dry, results sometimes in the total loss of the print by its sticking to the glass, and generally in a quickly drying print with a very high surface gloss. This gloss is all very well in its way, but I imagine, to most lovers of the beautiful, it is rather too much of a good thing. Now it struck me that I might obtain good results by squeegeeing the prints on to glass or vulcanite, and removing them while wet. I tried the experiment, and the results so fully answered my ex pectations that I have since adopted the system in all cases where I am dealing with prints for my unmounted portfolios.
My plan is to remove the print from the vulcanite directly I have pressed it on, and finish the drying under pressure between blotting paper. I find the squeegeeing presses the water out, and that the prints dry in less than half the time they take ordinarily, while they come out when dry with a much smoother and more even surface than can be obtained by ironing, which process is saved; and that while possessing this finer surface, they have not that high and inartisic gloss which is given them if left to dry upon the vulcanite.

Electric Motors Burned.

An accident occurred on the morning of January 19, at the Robinson electric street railway barns in Toledo, by which thirty-five electric motor cars were burned. A coal oil lamp had been left burning in a car which had been brought in but a short time before, and in some manner the lamp became overturned, the oil catching fire and the flames spreading and gaining such headway before being discovered that nothing could be done to save the car. The fire spread through the barns with such rapidity that by the time the fire department reached the spot, me fire wasbeyond emtrel, resulting in a loss, it is estimated, of $\$ 150,000$

POSITION OF THE PLANETS IN MARCH.

 SATURNis morning star until the 16th, and then evening star. His opposition with the sun occurs on the 16th, at 4 h . 30 m. P. M. He then rises at sunset, is on the meridian at midnight, and sets at sunrise, being visible the entire night. He may be easily found in the eastern sky, as soon as it is dark enough for the stars to come out. He shines with a serene light and a leaden tint as he makes his way between Beta and Eta Virginis, two third-magnitude stars in Virgo. His motion is retrograde or riestward, and, though he moves at a slow pace, careful observers will see that, at the close of the month, he is perceptibly nearer to Beta Virginis. The best period for the observation of Saturn extends from February to July. He is. an interesting object when seen by the unaided eye, but in the telescope he is an object of surpassing loveliness even in his present aspect, for his rings are beginning to reappear, and his satellites gleam like points of gold as they circle around their great primary.
The moon is in conjunction with Saturn six hours after full moon, on the 13 th, at $1 \mathrm{~h} .48 \mathrm{~m} . \mathrm{P}$. M., being $1^{\circ} 38^{\prime}$ north. The full-orbed moon and the radiant planet, not far away, will form a lovely celestial picture when they rise, soon after sunset, at nearly the same time.

The right ascension of Saturn on the 1 st is 11 h .56 m his declination is $3^{\circ} 6^{\prime}$ north, his diameter is $18^{\prime \prime} .4$, and he is in the constellation Virgo.
Saturn rises on the 1st at 7 h .1 m. P. M. On the 31st he sets at 5 h .18 m . A. M.

MERCURY
is morning star until the 6th, and then evening star. He is in superior conjunction with the sun on the 6th, at 1 h .18 m . A. M., when, appearing on the eastern side of the sun as evening star, he
commences to oscillate eastward from the sun. On the way he meets Jupiter, apparently bound westward toward the sun. The planets meet on the 12th, at 3 h .53 m . P. M., Mercury being 14 north of Jupiter. The conjunction is a close one, but will be invisible, both planets being so near the sun as to be entirely hidden in his light.
Mercury reaches his greatest eastern elongation on the 31 st , at $7 \mathrm{~h} .8 \mathrm{~m} . \mathrm{A}$. M., being $19^{\circ} 3^{\prime}$ east of the sun. The conditions are favorable for a good view of the planet with the unaided eye, when at elongation and for nearly two weeks before. The observer must command a view of the western horizon, and note the point where the sun went down. He must commence the search about three-quarters of an hour after sunset, and, with the aid of an opera glass, sweep the sky about $91 /{ }^{\circ}$ northeast of the sunset point. If he make diligent quest, he will surely be rewarded by finding the planet shining with a peculiar brilliancy on the still bright sky. This is his position at elongation when he sets an hour and a half later than the sun. Before that time, he is farther south, but shines with his greatest brilliancy. The present is the most favorable opportunity that the year affords for a view of Mercury as evening star.
The new moon of the 28 th is in conjunction with Mercury on the 29 th , at 1 h .11 m. P. M., being $4^{\circ} 25$ south.

The right ascension of Mercury on the 1st is 22 h .40 m ., his declination is $10^{\circ} 33^{\prime}$ south, his diameter is $4^{\prime \prime} .8$ and he is in the constellation Aquarius.

Mercury rises on the 1st at 6 h .33 m . A. M. On the 31st he sets at $7 \mathrm{~h} .57 \mathrm{~m} . \mathrm{P}$. M.

MARS

is morning star. He is in quadrature with the sun on the 29 th , at 8 h .28 m. A. M., being 90° west of him. His great southern declination, apparently slow progress toward the earth, and the inconvenient hour at which he makes his appearance above the horizon are diffculties in the way of northern observers. It is not until May that his movements begin to be of absorbing interest, but from that time until November he will be a target for all the telescopes in the civilized world, and no effort will be spared to increase our knowledge of what is going on in the comparatively small domain of our ruddy celestial neighbor.
The moon on the day of her last quarter is in con junction with Mars on the 21st, at 6 h. 19 m. P. M., be ing $3^{\circ} 32$ south.

The right ascension of Mars on the 1st is 17 h .28 m . his declination is $23^{\circ} 5^{\prime}$ south, his diameter is $7^{\prime \prime} .2$, and he is in the constellation Ophiuchus.
Mars rises on the 1 st at 2 h .10 m. A. M. On the 31st he rises at 1 h .31 m. A. M.

JUPITER
is eveningstar until the 20th, and then morning star. He closes his brilliant career as evening star on the 20th, at $11 \mathrm{~h} .3 \mathrm{~m} . \mathrm{P}$. M., when he is in conjunction with the sun, passing beyond him and reappearing on his western side to play his part as morning star. He will be too near the sun to be visible for a few weeks, but will then become the radiant star in the east, attracting the attention of obs:vers of the heavens when the morning Hght is breakic. This princely star will continue to increase in size and brilliancy as he treads his path
across the celestial sphere until his opposition on Oc
tober 12, when he will be visible under nearly the best conditions, not long after perihelion, and in north ern declination. The lustrous light and majesti grace of Jupiter since his opposition last Septembe have drawn forth tributes of admiration from all lovers of the stars. He will be larger and brighter at the coming opposition in October, and it is not impossible that something may be found out concerning the great red spot which is again deepening in color and becoming more distinct in outline. The close conjunction of Jupiter and Mercury, on the 12 th, has been referred

Th
The moon is in conjunction with Jupiter the day $2^{\circ} 52^{\prime}$ south.
The right ascension of Jupiter on the 1st is 23 h .48 m ., his declination is $2^{\circ} 29^{\prime}$ south, his diameter is $32^{\prime \prime} .0$, and he is in the constellation Pisces.
Jupiter sets on the 1st at 6 h .56 m. P. M. On the 31st he rises at 5 h .28 m. A. M.

vends

is evening star. Words are powerless to give expres sion to the fascinating grace with which she wields her starry scepter, and, holding her court in the west shines with peerless luster on the twilight sky, and then among the myriad hosts that spangle the firma ment. She reigns alone, for Jupiter, her rival, has disappeared, eclipsed in the sunlight, and, on moonless nights, she is the glory of the evening sky. Her greatest elongation from the sun is the first goalin her path, as she advances rejoicing in her course, and when the month closes she sets nearly four hours later than the sun.
The moon makes two conjunctions with Venus dur ing the month. The three-days-old moon is in con
junction with the bright planet, on the 1st, at 2 h. 41 m. P. M., being $2^{\circ} 54^{\prime}$ south. She makes a closer con junction on the 31st, at 9 h .30 m . A. M., being $1^{\circ} 27$ south.

The right ascension of Venus on the 1st is 1 h .14 m ., her declination is $7^{\circ} 58^{\prime}$ north, her diameter is $14^{\prime \prime} .8$ and she is in the constellation Pisces.
Venus sets on the 1st at 8 h .58 m. P. M. On the 31 st he sets at $10 \mathrm{~h} .3 \mathrm{~m} . \mathrm{P}$. M.

URANUS

is morning star. He is visible to the naked eye, and may be easily found not far from Lambda Virginis, a tar of the fourth magnitude in Virgo.
The moon makes a close conjunction with Uranus on the 16 th at $8 \mathrm{~h} .53 \mathrm{~m} . \mathrm{P}$. M., being 35^{\prime} north of the planet and serving as a guide to point out his position.

The right ascension of Uranus on the 1st is 14 h . 15 m. , his declination is $13^{\circ} .0$ south, his diameter is $3 " .8$, and he is in the constellation Virgo.
Uranus rises on the 1st at 10 h .14 m. P. M. On the 31st he rises at $8 \mathrm{~h} .12 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.

NEPTUNE

is evening star. His right ascension on the 1st is 4 h . 19 m ., his declination is $19^{\circ} 49^{\prime}$ north, his diameter is $2^{\prime \prime} .5$, and he is in the constellation Taurus.
Neptune sets on the 1st at 0 h .47 m. A. M. On the 1st he sets at $10 \mathrm{~h} .53 \mathrm{~m} . \mathrm{P} . \mathrm{M}$
Mercury, Venus, Saturn, and Neptune are evening stars at the close of the month. Mars, Jupiter, and Uranus are morning stars.

Speech in the Lower Animals.

A meeting of the Nineteenth Century Club was held in the assembly rooms of the Madison Square Garden on Tuesday, February 16. The occasion of the meet ing was an address by Mr. R. L. Garner on "Speech in the Lower Animals.
The president, Mr. Brander Matthews, in introducing the lecturer of the evening, made some brief refer nces to Darwinism, in which he said that Darwin's Descent of Man" was the most important scientific work since the "Principia" of Newton, and that Mr. Garner's brilliant researches were well calculated to sustain the views introduced by Darwin.
Mr. Garner in opening his address gave an interest ing account of his early experiments which commenced some eight or nine years ago. His experiments have been to a large extent among the monkeys, though other classes of animals were also experimented on. The first principle to be understood in beginning the study of the speech of animals is to associate the act with the sound, when the notes in. All researches of this nature must necessarily be crude, but about two years ago Mr. Garner conceived the idea of using the phonograph to record and analyze the sounds. The phonograph affords an unquestionable proof that certain sounds are accompanied by a definite act or ges
ture, as when the phonocraph gives the note of fear ture, as when the phonograph gives the note of fear, the monkey gives unmistakable sign- of fear. The phonograph thus relieves the difficulty of having no standard or phonetic base upon which to work. The analysis of sounds on the phonograph is accomplished which may be increased or decreased from 40 or 50 to

225 revolutions per minute. Human laughter on the phonograph cylinder by proper manipulation easily deceives animals.
Mr. Garner's description of his method of obtaining record of the sounds was very interesting. A mirro was hung on the horn of the phonograph, which in duced the monkey to believe that another monkey was present, when the phonograph began to utter sounds. When anything suspicious occurred, the monkey warned his friend in the mirror, of whom he seemed very fond, lavishing caresses upon him, monkey fashion. A point of great value in Mr. Garner's esearches is that monkeys have three or four inflec tions of the same sound, each with a meaning of its own. If the value of the sounds are considered as Mr. Garner states, it is true speech. Mr. Garner makes no laim that monkeys or other animals have definite sounds for the kinds of food, as bananas, but that the divide food into sweet food, etc. This speech of animals is a marked contrast to the redundancy of human speech. Monkeys speak, if the term may be allowed, in syllables, the word for food having five or six sylla bles.

Mr. Garner states on the authority of Frank Cushing, the celebrated white Zuni chief, that the Zuni Indians not only know the language of animals, but put this knowledge to practical use. In conclusion the ecturer gave a brief outline of his projected trip to Africa. Special cages are being made, which will not nly afford protection for the impedimenta, but serve also to carry home the captured monkeys. An ingenious arrow has been devised by Mr. Garner, which is fired from an air gun. The tip of the arrow on striking the animal drops the shaft, and being charged with anhydrous prussic acid, produces instant death The cages are provided with electrical fittings, which will give shocks to the thief whether animal or human A fine phonograph with telephone attachment is being constructed specially by Mr. Edison for Mr. Garner Some specimens of the monkey speech were given on the phonograph, including a love duet, which, though interesting, did not entirely resemble the love duet of Tristan and Isolde.
The paper was ably discussed by Dr. Daniel G. Brinton, of the University of Pennsylvania, who took the view of an anthropologist, and Prof. E. D. Perry, of Columbia, who viewed the subject from a philologica point of view.

Electrotechnics.

Examples are not wanting of the scientific isolation that is caused by not possessing that familiarity with foreign languages which is a characteristic of diplo matists and hotel waiters. Take, for instance, the fact that, whereas manganin was manufactured on a commercial scale in Germany, and German resistance coils have for the last three years been constructed of this material with a temperature coefficient of nearly zero, the very existence of this alloy was unknown to many English electrical instrument makers a few weeks ago; and even now most of them are still un acquainted with the composition of manganin, and it peculiar properties, as well as with the results of the extensive and striking experiments that have been carried out at the Reichsanstalt at Charlottenburg on the temperature coefficient and specific resistance of al sorts of manganin-copper-zinc-nickel-iron alloys.
This Physikalisch-Technischen Reichsanstalt, I may mention, is an establishment totally distinct from the Technical High School in Charlottenburg, some phoographs of which I showed you this evening. The Reichsanstalt is not an institution with students, but a vast series of imperial laboratories, presided over by Prof. Von Helmholtz, solely used for carrying out re searches in pure and technical physics. The investiga tions are conducted under the direction of Dr. Loewen herz, aided by forty-six assistants.
We have no establishment in Great Britain at al comparable with this Reichsanstalt. The origina work turned out there in electrotechnics alone is con siderable. Here are some of the published accounts of esearches immediately bearing on your profession which Dr. St. Lindeck has been so kind as to send me "Hardening Steel Magnets," "Standard Resistance Coils for Large Currents," "Tests of Commercial Am meters and Voltmeters," "Mercury Standard of Reistance," "Photometric Investigations," "Compensa tion Apparatus for Use in P. D. Measurements," Alloys for Resistance Coils," and so on.
Surely it is part of the technical education of the lectrical engineer to be taught how to read such pamphlets as these with comparative ease?
A working knowledge of French and German can be obtained without the necessity of learning to express neself fluently in epigrammatic French, or to imitate with facility the word-building of a native German and with such a working knowledge the average tech nical student may rest content. But as regards his own language he should aim at something higher, and herefore, the electrical engineering students of our country should be, I urge, practiced in writing-yes, and also speaking-vigorous English.-Prof. W. E. Ayrton.

AN IMPROVED DENTAL PLUGGER.

This is a dental instrument capable of use as a hand and mallet plugging implement, the device being also adapted for use as a handle for various instruments. It has been patented by Mr. George W. Geitz, of No. 127 Water Street (room 14), New York City. The tubuiar casing of the instrument is preferably made in one piece, its upper and lower portions of two diameters, and the bore also has two diameters, forming thereby a shoulder at the bottom of the upper section, as shown in Fig. 1. A plunger rod held to slide in the casing has at its lower end a threaded or other suitable

GEITZ: DENTAL PLUGGER.
socket to receive the shank of a tool, and the upper portion of the rod, in the upper section of the casing, has a collar normally resting on the shoulder, while one side of the rod, below the collar, has a longitudinal slot into which a screw is passed through the casing to prevent the turning of the rod. A cap having a threaded bore screws into the upper end of the casing, and a spiral or coil spring resting at one end on the collar of the plunger rod bears at its other end against the bottom surface of the cap. An adjusting screw, passing through the threaded bore of the cap i passing through the engagement with the engagement with the upper end of the
plunger rod. When plunger rod. When the instrument is to
be used for hand be used for hand
plugging, the adjusting screw is carried out, as shown in Fig. 2 , and then, as the instrument is reciprocated, the upper end of the plunger rod is carried up, against the tension of the spring, into violent engagement with the lower end of the screw, at every downward or inward stroke of the casing, when the screw acts as a hammer, the spring also re-enforcing such action and returning the plunger rod to its normal position, with its collar in engagement with the internal shoulder of the casing. When the device is to be employed as a tool handle or as a mallet-plugging implement, the screw is carried down into positive engagement with the plunger rod, as shown in Fig. 1 , whereby all the parts are held in fixed position.

A New Blowpipe.
At a recent meet ing of the Academie des Sciences, M. Paquelin exhibited a new blowpipe of a single tube, connect ed by an India rub ber tube with a car buretor. A cylinder of wire gauze prevented the flame from reaching t.he carburetor, The air

AN IMPROVED WOOD BENDING MACHINE,

A SILK SPINNING SPINDLE SUPPORT
The device shown in the illustration provides for the perfect lubrication of the spindle in its supporting box, while thoroughly preventing the escape of any oil to the possible injury of the delicate material operated upon. It has been patented by Mr. Robert Atherton, of the Franklin Mill, Mill Street, Paterson, N. J. The spindle box is of the usual form, and is adjusted in place upon the spinning frame in the ordinary way

ATHERTON'S SPINDLE SUPPORT
and formed upon the box near its lower end is an oil cup having an annular recess in its upper surface around a vertical extension, as shown in Fig. 2. This vertical extension is cylindrical, and has an oil cham ber above an axially formed step socket, in which the spindle is supported, a small perforation or oil passage for the introduction of the lubricator extending from the bottom of an annular recess into the oil chamber The spindle has an enlarged portion to form a seat fo spun yarn, and near its lower end is a grooved whir for the band, by which the spindle is rotated. The en larged portion of the spindle is hollow and has a central leg whose lower end is formed as a conica step, seated in the step socket near the bottom of the box Around this centra leg is an annular channel, against the outer walls of which loosely fits the verti cal extension, while within the extension just below its upper edge, and around the central leg, closely fits a bushing sleeve hown in Fig 3 On the exterior of the sleeve are spiral grooves forming channels for the lu bricating material which, as the spin dle revolves, works upwardly around the spindle leg and lubricates the portion of the latter which has the later contact with the bore of the bushing sleeve As the upper end of the sleeve is below the edge of the vertical extension of the box, no oil can work over the latter, but the oil is conducted downwardly into the oil chamber below the sleeve.

To remove a wart, cover the skin around the wart with lard, apply over the surface of the growth one or two drops of strong hydrochloric strong hydrochloric or nitric acid; then keep the part coserseparates.

INDOOR CURLING.

The illustrations of this subject are taken from the Thistle Association club house, Hoboken, N. J. Indoor curling is a new idea in this country. Formerly the curling clubs played their games at the different parks around New York and vicinity. The accommodations being so poor at these places, the different clubs formed themselves into an organization known as the Thistle Association and built a large club house where they could have their games day and night all winter long. The floor of the curling hall is 100 feet in width and 150 feet in length, and is the largest floor for that purpose in the United States. The floor is raised from the ground about 4 feet and is made of narrow strips of yellow pine about 1 inch in thickness. The floor is sprayed to facilitate coating it with ice. The attendant in charge of the building on every freezing night starts in one corner and sprays the whole surface, the process taking about one hour. This practice is continued all through the winter. The spray falling on the ice freezes instantly. Under each window, on a level with the floor, are 4 feet by 2 feet swinging traps, which are opened on freezing nights to let in the cold air. The ice during the latter part of the winter, after repeated sprayings, becomes about 2 to 3 inches thick.
The circles at each end are painted in black on the bare floor, and can be seen through the ice. The rink from tee to tee is 38 yards in length. The circles around the tees are 2,8 and 14 feet in diameter. Seven yards from each tee is a "hog line," every stone not clearing this line being called a "hog." There is also a line running at right angles to the rink half way between the tees, called the middle line.
The game is simple at first. The leader first tries to get as near the tee as possible, and his opponent has a similar object. During the game, if two or more stones have been well planted, the supporters of those who placed them are directed by their skips or captain to guard the winning stones rather then venture too near them, which may injure their position. The opposite players then try to knock off the guards and drive the well-planted stones away, so that they can get their own in a good position. Sometimes the stone nearest the tee is so well protected that it cannot be touched directly, and will take a master stroke to remove it. To do this, inringing is resorted to, which drives the stone stone and becoming the winner instead. When theice is blocked up so the tee caunot be seen, rebutting is re sorted to. The player is told by his skip to put plenty of muscle into his arm, and the stone is sent with tre mendous force, and goes crashing through the guards, sometimes changing the complexion of the game. Brooms are used by the players to sweep the ice dust which is scratched up by moving stones. By sweeping in front of a moving stone it gives it more power to move forward.

The curling stones weigh about 40 pounds each and
are 12 inches in diameter across and about 5 inches in thickness. The best stones are made of Ailsa Craig granite. The best and hardest stone is taken from under the water. They are now being made by machinery, and cost $\$ 15$ per pair. They are very highly polished. Formerly they were made by hand, at a cost of from $\$ 20$ to $\$ 30$ each, according to finish. The club house is built on piling, and cost about $\$ 18,000$.

NEW ELECTRICAL GOVERNOR.

We give an engraving of an electrical governor for controlling the current on a circuit, by introducing re sistance into the circuit or removing it therefrom, or by

'BRIAN'S ELECTRICAL GOVERNOR

changing the exciting current in the field magnet of

This instrument, as will be seen by reference to the rawing, is operated by a curved solenoid, in which is suspended a curved armature, so that it may swing reely in the solenoid. The armature is made taper ing, to secure regular action, and its movement is damped by means of a dash pot. The arms which support the curved solenoid are attached to a rock shaft, which carries a shorter arm, connected with a double roller by an adjustable rod. The double roller rolls on two series of electric contacts, one set of which is connected with wires leading to resistance coils an
the other set to a switch mechanism, which sends th
current into storage batteries or other translating de vices, when it is not required on the main line; that is to say, whenever the current in the main circuit is above the normal, the armature is drawn into the solenoid, moving forward the contact roller upon the contacts, cutting out one or more of the resistance coils and cutting in one or more of the switch magnets, thus shifting the circuit so as to allow the surplus current to go through storage batteries or other translating de vices when it is not needed in the main circuit. When the current in the main circuit diminishes, the roller is returned by the armature, and in so doing cuts ou one or more of the switch magnets, thus cutting out one or more storage batteries or other translating devices, and at the same time cuts in one or more of the resistance coils seen in the lower part of the apparatus, thus keeping the resistance of the governor constant.
This invention has recently been patented by Mr John T. O'Brian, of Kearney, Nebraska.

Purification of water by Metallic Iron
Metallic iron, in the form of either cast iron borings or steel punchings, is placed in a cylinder so arranged that by a slow rotation the iron may be continuously showered through the water, which is being passed a a moderate speed through the same cylinder. The chemical action consists in great part in the conversion of the iron into ferrous carbonate, through the agency of the carbonic acid, which partly dissolves in the of the carbonic acid, which partly dissolves in the
water and partly remains suspended in the form of dark green turbidity. On exposure to air the iron is converted into ferric hydroxide, which, settling rapidly carries down with it and oxidizes the organic matter The flocculent sediment permits of rapid and perfect filtration through a simple sand filter. For evidence of its success and efficiency it is only necessary to point to the continued successful use of the process at Antwerp, Dordrecht, Paris, Nancy, and other places.

Mounting Paste for Lantern Slides.
For attaching lantern slide bindings to the glass nothing is better than bichromated paste, which is used for attaching paper to glass in the manufacture of electric machines, and which is a most useful paste for many purposes in damp climates. It is made as follows : Flour, 2 teaspoonfuls; water, 4 ounces; bichro mate of potash, 5 grains. The flour must be rubbed to a smooth batter with the water, then placed in a saucepan over a fire and kept stirred till it boils. Add he bichomate slowly, stirring all the time Then stand to cool. This paste must be kept in the dark; and used as soon as possible
Soak the paper in it, attach to the glass, and then place in direct sunlight for a day. This sets up a che mical change in the bichromate and renders the paste insoluble.-M. V. Portman, Jour. Photo. Society of India.

Tesla's Wonderful Electrical Experiments. Mr. Nicolas Tesla, of New York, has lately re-
peated in London, at the Royal Institution, the repeated in London, at the Royal Institution, the remarkable electrical experiments first shown in this in London. The proceedings are described by Engineering as follows: Wednesday, Feb. 3, saw another of those successful meetings for which the Royal Institution is famed. This time, however, the audience were not able to congratulate themselves that they were the first to view in public the striking experiments which were performed before them, as it is the custom of Royal Institution audiences to do, for on one occasion before, in America, Mr. Tesla, the lecturer of the evening, had been over the same ground. This was probably no disadvantage either to him or to the numerous members and associates of the Institu-
tion of Electrical Engineers who crowded to hear him, tion of Electrical Engineers who crowded to hear him,
for the fame of his researches had had time to spread, for the fame of his researches had had time to spread,
and their significance to become more or less appreciated. Not that Mr. Tesla needed this to render him welcome in this country, for the man who shares with Professor Ferraris the honor of having invented the self-starting alternate current motor requires no introduction in England, nor, indeed, in any country where scientific ability is appreciated.
Our account of the previous lecture will have rendered our readers familiar with the line of Mr. Tesla's researches. We may, however, briefly state that he has devoted himself for the last year or two to the investigation of the effects attending the use of alternate currents of very high frequency and of high potential. This matter of the frequency of alternation seems to have been neglected by former experimenters
with vacuum tubes. They took great pains to get imwith vacuum tubes. They took great pains to get im-
mense potentials, but paid little attention to the rate at which the current vibrated to and fro. It now appears, however, that the rate of alternation is as important as potential in evolving certain phenomena, and by increasing it to a very great extent perfectly and by increasing it to a very great extent perfectly
new and unexpected results can be obtained. This can new and unexpected results can be obtained. This can
be done in various ways, of which Mr. Tesla employs two. He has an alternate current dynamo, the armature of which consists of a steel disk, having arrayed on its rim 380 poles. This runs within a ring of magnets of corresponding number, and with the machine rotating at 2,000 revolutions, gives 13,000 complete alternations per second. The current thus produced is sent through the primary wire of an induction coil, and its potential raised from 50,000 volts to more than a million, although, of course, the exact amount is a matter of conjecture. In another method of obtain ing currents of high frequency there was employed an alternator lent by Messrs. Siemens Brothers. The cur rent was sent through the primary of a large induction coil, in the circuit of which a special break was interposed. This consisted of two balls, between which
the current sparked, and two powerful magnet poles, the current sparked, and two powerful magnet poles,
which blew out the spark as fast as it was formed, and thus greatly multiplied the effect. The current from the secondary coil was then sent through the primary coil of one of Mr. Tesla's oil-insulated induction coils coil of one of Mr. Tesla's oil-insulated induction coils;
in the circuit of the secondary coil there was interposed in the circuit of the secondary coil there was interposed
a battery of Leyden jars, which was constantly charged and discharged, the discharge being of an alternating character, with a frequency of immense rapidity.
Mr . Tesla's coils are of peculiar form. The primary coil is on the outside, and is separated from the secondary by some little space. The whole is immersed in oil, and the inventor insists most strongly that a solid dielectric can never be used successfully in this position. If this be damaged, it is spoiled irre-
trievably, while the oil may be struck through time trievably, while the oil may be struck through time
after time, and instantly repairs itself. Any bubbles after time, and instantly repairs itself. Any bubbles
of air that the oil may contain are soon warmed and rise, and thus the defects are rapidly expelled-an event which cannot occur in a solid substance, in which defects tend to aggravate and not to eliminate themselves.
Mr. Tesla began his lecture with a tribute to the work of Professor Crookes, which, he said, had fired his imagination when at college, and had given a bent to his studies. He then turned to his own researches, distance which separates himself from his predecessors, by taking in one hand an exhausted tube, 4 ft . long, while the other hand was connected to one terminal of a coil. Instantly the tube glowed with a brilliant lambent flame from end to end, and recalled to every one the idea of the magician's enchanted wand. When the gas was turned out, the light was sufficient to rebeen enough to enable him to read newspaper print. It was a most striking experiment; the old ideas of electric circuits, metallic electrodes, and all the rest of time-honored notions, seemed to be flatly contradicted. From a single terminal of the coil the electro-magnetic radiations were conducted through the body of the lecturer to the tube, and entering through the glass, they put the few molecules of air that it contained
into such active oscillation that they glowed in their into such active oscillation that they glowed in their mutual bombardment.

It was a breach of the dramatic canons to begin with	$\begin{array}{l}\text { ton of carbon resting on the end of a wire or a filament. }\end{array}$
This wire is screened by being surrounded by a tube of	

an experiment of such brilliancy, and then to descend aluminum, which forces the radiation to follow it to to others of less importance, but it was an indication of the power of the lecturer, and evoked rounds of ap plause. Indeed, the reception accorded to Mr. Tesla was one that must have raised feelings of pride in any breast. Both seats and standing room were filled, and on the front benches were to be seen most of our leading electricians and electrical engineers. All through the evening there was rapt attention, which
never flagged, even during the less striking experinever fl
ments.
Putting down the tube, Mr. Tesla attached an exhausted bulb to one terminal of a coil, and showed that phosphorescence was immediately set up in phorescence was immensely increased, and the lamp filled with a vivid glow. This was repeated in other ways with different bulbs, and then two plates were attached to the terminals of a coil, with a sheet of vul canite between them. The current then endeavored to spark across, and beat itself in purple rays on the sheet, branching out in streaming brushes to make its way round the edges of the plate. Turning to his
audience, Mr. Tesla exclaimed: "Is there anything audience, Mr. Tesla exclaimed: "Is there anything
more fascinating than the study of alternating curmore fascinating than the study of alternating cur
rents?" It was evident to all in the room that use had not rendered the lecturer insusceptible to the beauties of the experiments that he showed, and that his mind was as completely filled with wonder and enthusiasm as that of the merest novice present, and probably far more so, as he saw further into the inner nature of the phenomena which he displayed, and grasped more of their significance.
The next experiment was the passage of sparks between two balls, to simulate the discharge from a
Wimshurst machine. This was done most successfully, and it was difficult to believe that the well known disks were not being turned in the ante-room. At first a 2 inch spark was shown, and then one of 6 inches, the balls being changed, for the size of the balls appears to have a distinct effect on the appearance of the are set up between them. Next came
another of those brilliant sights which are always so effective with an audience, especially when it is in a cordial mood. Two wires were stretched across the wall of the theater, about a foot apart, and were connected to the poles of a coil. When the current was turned on they glowed for their entire length with a blue light, which streamed from one to the other, and was of sufficient intensity to reveal the faces of the audience. Here there was no case of exhausted globes; the light was given off in the open air, and if no enough for the ordinary domestic purposes, was at any rate of very appreciable intensity. In this case the alternations were obtained by aid of the Leyden
jars. The same idea was developed in another way in the next experiment. A wire ring, 3 feet in diameter, was connected to one terminal of a coil, and a second ring, 6 inches in diameter, was connected to the other, the two being concentric. The light streamed radially from one to the othe
Speaking on this
Speaking on this subject of phosphorescence, Mr. substances, if currents of sufficient frequency and potential were employed. He was also of opinion that exhaustion of the air was not necessary. Hitherto it
has not been possible to drive the molecules on to the has not been possible to drive the molecules on to the
substance unless a fairly clear road were prepared for them, by removing all but an infinitesimal number. They could not get through the melee. But with sufficient initial velocity they will be able to proceed in straight lines, just as a cannon shot will pierce a crowd that would stop or deflect a cricket ball. All that is wanted is that the atoms shall fly fast enough and often enough to raise the surface, even of metal, to the phosphorescing or at least to the glowing stage. With extremely rapid alternation, also, the molecules never
get far away from the substance they bombard, and so their heat is not diffused. Crookes' phosphorescent tubes give a magnificent glow if only held in the hand, while the other hand is applied to a coil working with sufficient frequency and potential.
Visible light and heat are not necessary to prove the existence of the electric radiation, and Crookes' radio meter placed near a ball connected to one pole of a
coil rotates very briskly-curiously, however, in the opposite direction to that which it follows under the influence of light. This is explained as being due to unexhausted radiometer was made to rotate; the fans were covered on one side with mica, and the spindle was connected to the coil. The effect of the mica was to prevent the molecules heating one side of the vanes. As the current was increased, the speed diminished on account of the electrostatic action between the mica In a certa
In a certain sense the most interesting part of the ecture was that dealing with lamps, because here we seem to get nearer to some practical result. Mr
Tesla's lamps mostly consist of a bulb inclosing a but
the button, and not stream off sideways. When the single conductor, which this lamp contains, is connected to one terminal of a coil, the carbon glows with a light the intensity of which varies with the character of the current. On Wednesday the light seemed to be about equal to 5 candle power. When a metal screen was put over the lamp, and the radiations that fell on it were deflected back on to the sphere, the light was doubled, and reached a perfectly useful limit. Wonderful as this was, a greater marvel appeared when two zinc plates, one at a height of 10 feet and one on the floor, were connected respectively to the poles of the coil. Then it only needed that a lamp of this construction should be brought into the intervenng space to glow brilliantly without any electrical connection whatever. The radiation between plate and plate was so active that, in passing through the ttenuated atmosphere in the globe, it evolved the molecular bombardment which made the carbon glow.
The practical man asked as the lecturer finished, "What is the use of it all?" Nearly fifty years ago he was present when Faraday explained the laws of elec ro-magnetic induction, and then he also asked the same question. It was not till the Paris Exhibition of 1878 that he got his answer, but we shall be much mistaken if he has to wait so long this time. Wait he must, and in the mean time he cannot do better than join in honoring such men as Mr. Tesla, who engage in esearches which promise no immediate pecuniary benefit. He must, however, be dull if he cannot discern in the few experiments we have described, out of the many shown to the audience, a clew tending toward a great discovery that would entirely revo lutionize our methods of artificial illumination. If a space measuring several feet in each direction can be brought into such a condition that an attenuated atmosphere introduced into it instantly becomes self luminous, it does not call for any great stretch of magination to see the whole of the atmosphere of our ooms in the same condition, and filled with the same cear light which bathes our planetary system. Just as the sun puts the ether into vibration of the kind re vealed to our senses as light, so does electric energy also put it into vibration of the same kind, but of a different degree. Wednesday's lecture marks one step in the progress toward luminous electric radiations possibly some of us may live to see the remaining stages covered.

Experiments on the Solubility of Metals.
The insolubility of pure metals in acids has been in vestigated by Dr. Weeren, a German chemist, who tates that chemically pure zinc, as well as many other metals in a state of purity, are insoluble or only very slightly soluble in acids, because at the moment of thei introduction into the acid they become surrounded by an atmosphere of condensed hydrogen, which, unde normal circumstances, effectually protects the metal from further attacks on the part of the acid. In the experiments which established this conclusion, the amount of chemically pure zinc dissolved by the acid was first determined; it was next sought to ascer tain what difference would follow by performing the experiment in vacuo, when, of course, the escape of hydrogen would be greatly facilitated; and under these circumstances the solubility was found to be increased sevenfold. In the final experiment, namely, to learn the effect of introducing into the acid a small quantity of an oxidizing agent capable of converting he hydrogen film to water, it was found that when a ittle chromic acid was thus introduced, the solubility was increased one hundred and seventy-five times, and when hydrogen peroxide was employed, the solubility was increased three hundredfold.

How to Take Silver Stains out of a Gelatine

 Negative.Soak the plate for five minutes in clean water; meanwhile, make a solution of iodide of potassium, 20 grains to an ounce of water; now put the plate in this solu ion, and let it stay for ten minutes. If the stain is very old, keep it in for half an hour. Now dissolve half drachm of cyanide of potassium in one ounce o water. Take the plate and put it into this, and gently rub the stains with a tuft of cotton wool, free from grit, until they are quite gone. If the stains are very old, make the solutions stronger, and soak for a longer time.

According to Herren Lubbert and Roscher, alum num cannot be used for articles which have to withstand the action of water at its boiling point, and con sequently is not suitable for vessels intended to hold reserved foods, as these have commonly to be heated n order to sterilize their contents. The same experi menters also find that such mildly corrosive liquids as claret, tea, coffee, and herring brine act on it appre ciably. As it is also attacked by phenol salicylic acid, and boric acid, it is unavailable for many surgical pur poses.

©orrespondence.

The Great Sewers of St. Joseph, Mo

To the Editor of the Scientific American
In your issue of January 30, in the description of the Brooklyn sewer, you mention it as probably the third largest sewer in the world. We have a sewer here which will place it fourth if not fifth or sixth in the list. I send you blue print of "Blacksnake sewer," in this city, commenced in 1884. We have this last season extended it 1,766 feet, and have now a total length of 2,486 feet. The blue print shows sections at different points as constructed this last season. It is egg-shaped and the same size, 17 feet high by 14 feet 6 inches wide in ternal diameter, is carried through its length. It has two curves, one of 573 feet and one of 192 feet radius, the angles being each about 70 degrees.
We have another sewer here, 14 feet diameter, circular, changed to egg shape in its extension, with a height of 15 feet and width of 13 . This sewer we expect this season to extend 700 feet and then reduce to 14 by 12 feet for 2,000 feet further. I have alwaysclaimed for this Blacksnake sewer especially that it was the larg est brick sewer in the world. If wrong, would like to know where its superior is.
F. Fanning. Saint Joseph, Mo., Feb. 8, 1892.

How to Extract Burs from Wool
 To the Editor of the Scientific American:

I read an article in the last number of the Scientific american (February 6) on "Carbonization of Wool." The object is to rid wool of burs. The process seems to be tedious and not likely to leave the wool either clean or uninjured. Forty years ago I lived near an old farmer cotton planter, who owned a small flock of sheep from whose wool he had manufactured the clothing and bed covering for the family. On his farm there grew an immense quanty of cockle burs.
The sheeps' wool was perfectly matted with them every year. He told me that he ginned them out as he did the seed from cotton. The breast of the gin must be raised, so as to let the teeth of the saws just come through the ribs. In this way they would catch a few fibers of the wool at a time and draw them away from the burs, when the revolving brush would firt them into the "lint room." When the burs were thus re lieved they would fall under the gin as cotton seed does. The wool thus freed from the burs was in the best pos sible condition for carding.
Athens, Ga.. Feb. 8, 1892.
Williams Rutherford.

'Scientific American" versus Encyclopedia.

 To the Editor of the Scientific American:Run to an encyclopedia for information! and thenwell, close the "ponderous tome" in disappointment, for that is almost sure to be the result of your quest if the object be to clear up a mooted point in scientific in quiry. Most of us are willing to concede that, with re gard to historical matters, a reference to an encyclopedia will lead to conclusive results. But much confidence even in that field is hazardous in these days of "rich leads" in archæological diggings. About a year ago the Scientific American published the report of a discovery of a Babylonian cylinder, in the Palmyrian plains. An inscription on the cylinder cleared a point in history upon which Herodotus and Thucydides were at variance, and credit accrued to the latter, to whom it hạd been adverse for more than two thousand years. "What then, what rests!" Consult the cyclopedia less? No! but read the scientific journal more. It seems, in many views, that-
" Science moves, bat slowly, slowly,
On the other hand, a little incident, in a twinkling turns out of doors the theories of ages.
Although unknown to the Scientific American as a subscriber, having taken it through newsdealers, I mand, for thirty-five years. All the volumes have been promptly bound and kept where they are as easy of access as is my dictionary; and I know them to be a treasure house of the richest treats. All three of the publications, the Builder's Edition, the Suppiament, and Scientific American proper, are thus
kept bound and convenient. I know of nothing $\in l$ ise to which I would so strenuously recommend the young as to do likewise with these valuable journals.

A few days ago, within my hearing, a group of young people were eagerly seeking information about theconjunction of the planets Jupiter and Venus when
one of them, the youncest of the party, said, "Here is one of them, the youngest of the party, said, "Here is the SCIENTIFIC AMERICAN. It always has ever

A scientific journal, with its columns freely open fo controversy, for the number of years with which the Scientific American has been favored, winncws and assays, with an almost unerring precision, every current topic until the truth is reached. Controversy directs the blasts of that adversity by which alone science may be sublimated. For that reason text-books, of science, so called, cyclopedias and the like should be
wery charily regarded, and a journal like tho ScIEN
tific American should be in every household as a check and counter check. That which is considered science to-day may be held quite otherwise the nex
week or the next year.
Auglaize. Defiance, Ohio.

A Needed Invention.

To the Editor of the Scientific American:
It is, probably, not generally known how injurious the electric street lights are to accurate work in astro nomical observatories situated in or near cities where this system of lighting is adopted. No new nebulæ or
faint comets can be discovered, and the sky illuminafaint comets can be discovered, and the sky
tion fogs the plates in photographic work.
If the top half of the globes could be painted, a large percentage of the trouble would be obviated, and this could easily be done were it lot for the varying height of the light as the carbon is consumed, reaching nearly to the top of the globe at ignition, and sinking almost to its base at the time of extinguishment.
The invention desired is one that will maintain the light at one level, and that near the bottom of the globe, during the entire night. Could this be done and the upper half of the globe be painted white, it would benefit the street not only, but would also pre vent nine-tenths of the light from ascending skyward.
The inventive genius who shall accomplish this feat will go down to posterity with honor, while astrono mers and photographers of celestial scenery will, in par ticular, have cause to bless his name.
Warner Observatory, Rochester, N. Y., Feb. 11, 1892

Wind Power for Electrical Pur

To the Editor of the Scientific American:
Talking of powers, why may not the winds that forever blow over these vast plains be used to develop and store electricity? At every point from an elevation of some fifteen hundred feet it may be said there is never an hour of the day when the winds are not blowing.
Think what an enormous force could be created by Think what an enormous force could be created by
some twenty large windmills co-operating. The cost would be nominal only. It has always seemed to me that if the winds blew with as much regularity in the Eastern States as they do where I mention, great use would be made of their power. From the Missouri River west for five hundred miles the winds are incessant, day and night, every hour and minute, no let-up, at the altitude I mention up to five thousand feet and higher. I make the suggestion. You may see objections, but I think none that are insuperable.

Holr.
[Our correspondent's suggestion is practical. In the Scientific American of December 20, 1890, he will
find illustrations showing the use of the windmill for driving electrical machines for lighting dwellings. Our engravings show all the mechanism and details as actually employed.-Ed.]

Sugar in Mortar.

To the Editor of the Scientific American:
I wrote to you some time ago for a paper giving in formation about using sugar in plastering mortar; you sent me one, but the article in it did not suit our case, so we determined to experiment on it. Thinking the result of our experiment may be of some use to you or your readers, we will send it. We use the cheapest grade of beet sugar, costing here four cents a ting in the mortar. The mortar must be dry or "stiff" when the sugar is put in, as it makes it very soft when when the sugar is put in, as it makes it very soft when
mixed thoroughly. We put the sugar in when we temmixed thoroughly. We put the sugar in when we tem-
per it for putting on the walls, and put it in the hair mortar only, or first coat, and use about forty pounds sugar to the hundred yards. It is a little harder to put on than without sugar. But the result is we have a wall that cannot be easily damaged. We can draw a trowel corner over it, and bearing on hard can merely mark it. It does not crack by pounding on it, nor can the clinches be easily broken off. It does not color the white coat any, and we can find no fault with it, while on the other hand it is far superior to the unsweetened Would like to know of some one else's experiments. We hgure the extra.cost at four cents per yard. Our sand
here is very poor and loamy.
C. E. Spalding.
Big Stone Gap, Va., February 10, 1892.
The Architect of the Great Mormon Temple-
Honor to whom Honor is Due. To the Editor of the Scientific American:
In your issue of February 6, 1892, is an illustrated article relating to "The 'Temple Block,' Salt Lake City," in which mention is made of the men who superintended the construction of the Tabernacle and its world-famed organ, but the architect of the temple, which when finished will be one of the most beautiful and costly structures in the world, and is famed for the unique features of its architecture, is not given. It was Truman O. Angell, the father of the writer, and his work in connection with this structure proves him to have been possessed of rare genius as a designer of buildings. He died Oct. 16, 1887. Salt Lake City, Utah, Feb. 13, 1892.

Magnitude of Molecules and Light Waves. by president morton.
When we hear that the successive vibrations in a light ray of average wave length number about 600 million of millions in a second the natural impression is that they must be submicroscopic in dimensions.
This, however, is far from being the case. The actual length of the waves in such a ray is about one fiftythousandth of an inch. The parallel rulings on the glass plates known as Nobert's test plates, which are employed to test the defining powers of lenses, have been not only "resolved " but photographed when only one one hundred and fifty thousandth of an inch apart (i. e., 150,000 to the inch). In other words, four such lines, spaced as in these rulings, could be drawn within he length of an average wave of light. This shows that the size of the ultimate particles or molecules of the glass must be very much smaller than the waves of light, since several furrows may be plowed through them within the width of an average wave.
All these magnitudes are, however, far beyond our direct perception or powers of realizing, but we may at least get at some sense of our shortcomings in mer of conception from the following:
A maker of these "test plates," named $y / e b b$, many years ago, made for the Army Medical fuseum at Washington a specimen of microscopic writ gon grass/ This writing consists of the words of the Lon ('s Prayer,
 of an inch, or an area of ${ }_{\text {IT }}{ }^{\frac{1}{6564}}$ of a square inch.
The lines of this writing are about as broad as The lines of this writing are about as broad as They are, therefore, about as wide as average light waves. Now then to get some idea of the magnitude or minuteness of this writing.
There are in the Lord's Prayer 227 letters, and if, as here, this number occupies the ${ }_{129} \frac{1}{654}$ of an inch, there would be room in an entire square inch for $29,431,458$ such letters, similarly spaced.
Now the entire Bible, Old and New Testaments, con tains but $3,566,480$ letters, and there would, therefore be room enough to write the entire Bible eight times ver on one square inch of glass, in the same manne as the words of the Lord's Prayer have been written on this specimen.
Such a statement, without doubt, staggers the magination, but the figures are easily verified and are certainly correct, and the whole statement at least serves to bring home to us the limited nature of our mental capacities as compared with the facts of the universe.
It also furnishes an interesting suggestion in a very different subject.
It has been often stated that a physical basis of memory may exist in permanent structural modification of the brain matter constituting the surface of the fur rows. In a highly developed brain thissurfaceamounts to 340 square inches, and it would, therefore, appear that the entire memories of a lifetime might be written out in the English language on such a surface, in characters capable of mechanical execution, such a those of the Webb plate at Washington. See The Lens December, 1873, p. 225 (Chicago). Also Trans. of Micro Soc. (London), 1862, III., Vol. X., p. 69.-The Stevens Indicator.

A Soiling Experiment.

The indications from this experiment are:
The average cow will eat about seventy-five pounds of green feed a day, kept in the stable with grain ration added.
That cows fed on oats and peas, clover and corn, fed green in the stable, in midsummer, will give more milk than when feeding on a good blue grass pasture.
That a cow fed on green feed in a stable darkened and ventilated will gain in weight more than she will in a well shaded pasture
That the cow responds as promptly to a well balanced ation of grain while eating green feed as she does on dry feed.
An acre of peas cut green weighed 13.5 tons.
An acre of peas and oats cut green weighed 24 tons. An acre of corn cut green weighed $33 \cdot 6$ tons.
The second cut of clover in a drought was 3.1 tons.
It is not necessary to cut green feed oftener than twice a week, if it is spread to avoid heating.
Articles on. "Time of sowing grass seeds, winter wheat and oats."-James Wilson, Director lowa Experiment Station.

Manganin

Manganin is an alloy of copper, nickel and manga nese, and has remarkable electrical properties. Its re sistance hardly varies at all. Even at a range of temperature varying from 15° to 97° C. the mean variaion of resistance is only from 20 to 30 millionths of the original value. The resistance slightly decreases with the rise of temperature. Its specific resistance is very high, as much as 0.42 ohm per centimeter. These properties render manganin a superior material for the construction of artificial resistances, for which purposes it is now extensively used.

THE TRANSPORTATION OF PETROLEUM،
Petroleum was discovered at a very early date in the United States. In western Pennsylvania oil had long been observed floating as a film upon the surface of some of the streams. The Indians and the early settlers used to collect it by placing blankets in the streams, which absorbed the oil, which subsequently was wrung out of them by hand. Even remains of excavations made by the aborigines have been taken to indicate crude "oil wells" made to collect the surface oil. The oil thus collected was used by the settlers to mix with paint, as an illuminant and medicinally. As a medicament it was sold as Seneca oil, and can still be procured in the drug stores.

Prof. Benjamin Silliman, the elder, described in 1833 what he termed a "fountain of petroleum" in western New York. It was a muddy, dirty pool of 18 ft . diameter, without outlet. On the surface of the stagnant water the oil collected, and was removed by skimming somewhat as cream is removed from milk. A board was used as skimmer, and when coated with the thick adhesive oil was freed from it by scraping. It was collected for use as a liniment or ointment. In the beginning of the present century oil had been collected from the West Virginia salt wells, and in 1849, or there about, an enterprising person named Kier bottled petroleum and sold it as a "natural remedy," sometimes selling as much as three barrels a day. In 1852 he distilled the oil and made a lamp oil, but one of very bad odor, and his efforts were entirely experimental.
Meanwhile coal oil was being introduced into commerce. This was prepared by the distillation of cannel coal and bituminous shales. From 1840 to 1850 the industry was developed until it had attained consider able dimensions, there being fifty or sixty refineries at work. The name of kerosene was given to thei product by the Downer Company, at Boston, Mass. In 1853 Mr . George H. Bissel saw a bottle of petroleum in the office of Prof. Crosby, of Dartmouth College. The oil had been sent to Prof. Crosby as a curiosity by Dr. Brewer, of Titusville, Pa. Mr. Bissel induced his partner Mr. J. E. Eveleth, to prospect the ground whence the oil came, and they purchased one hundred acres and rented for ninety-nine years another tract of about the same size, all for the consideration of five thousand dollars. They organized the "Pennsylvania Rock Oil Co.," with $\$ 500,000$ capital, notable as the first petroleum oil company, and the actual predecessor of the great Standard Oil Co. of to-day. They dug shallow wells and trenches for collecting the oil, and had it analyzed by Prof. Silliman. By accident Mr. Bisse came across one of Kier's showbills. Kier advertised hi specific as coming from a well 400 ft . deep, and gave a picture of the derrick. At once Mr. Bisse conceived the idea of drilling artesian wells. After much trouble and a delay of two years the arrange ments for drilling were completed, and the work was put in charge of Mr. E. L. Drake, known now to fame as Col. Drake. The well was drilled, and on Saturday, August 28, 1859, the workmen quit for the day, the drill having penetrated a cavity. The total depth was 69 ft .6 in .
On Sunday one of their number, looking into the well, found it filled with fluid within 8 or 10 ft . of the surface. With an improvised tin dipper he dre up a sample and found it was petroleum. On Monday a pump was adjusted and some twenty-five barrels a day of oil was obtained.
The news spread far and wide, and occasioned in tense excitement. Mr. Bissel, who was notified by tele graph, bought up all the stock he could get at in his own company, and the petroleum epoch was inaugu-

The present article is principally concerned with the ransportation of the crude oil to the seaboard. The process of carrying petroleum from the wells to the distant refineries has been greatly modified within re cent years, and new engineering methods have bee devised to effect the transportation in question.

LEAD JACKETED PIPE CROSSING THE EAST RIVER.

METHOD OF LAYING PIPE LINE UNDER THE HUDSON
RIVER AT NEW YORK.
The transferal of petroleum from the wells to the ocal refineries and depots was, originally, very labori ous, and had to be carried on by teams and wagons ver the very bad roads and wagon tracks of the parsely settled region. From the oil regions to the seaboard or to the large cities of the interior, the oil was originally shipped by rail, in barrels or on tank ars, or on boats, by a species of slack water naviga

GO-DEVIL FOR CLEANING PIPES AUTOMATICALLY.
tion, down Oil Creek to the Alleghany River. In 1862 it cost about eight dollars to send one barrel of oil to New York, while oil, at the same time, was selling at the wells for fifty cents a barrel. The original tank cars carried two circular wooden vats. These were re placed by horizontal cylindrical iron tanks, 26 ft . long and 5 ft .6 in . in diameter, holding about 2,000 gallons each. A number of these cars are still in use. In 186
patrol of armed watchmen. At this period it cost be tween five and six dollars to send a barrel of oil to New York.
At the present day the entire oil region is covered by pipe lines. Small pipes, of ten of two inches diameter do local service for wells, and collect the oil for ship ment to the distant cities. To effect the latter, trans portation trunk lines have been laid to New York Philadelphia, Baltimore, Cleveland, and other points These lines are for the most part owned by the Na tional Transit Co., which is, really, a branch of the Standard Oil Company, which controls practically all Standard Oil Company, which controls practically all
of the refineries, as well as the oil business of the United States. The map which we publish shows the trunk lines and their size as operated by the company in question.
The New York City line may be taken as typical. It is about 300 miles long, and consists for most of its length of two parallel lines of six inch lap-welded, taper screw jointed pipe. This pipe is made for the purpose and is sold as pipe line tubing. To force the oil through the pipe powerful pumps are used, and pumping station are established all along the line, at about 28 miles apart. The plant at each of these stations comprise one or more receiving tanks, 90 ft . diameter and 30 ft height being standard dimensions for them. Boilers and Worthington pumps sufficient for the work com plete the equipment. The work of a pumping station consists in forcing the oil through the pipe to the next station. Although this is the usual practice, loops have been laid around stations and the oil has been pumped through 110 miles of consecutive pipe line.
At the station hourly readings, day and night, are taken of the levels of oil in the tanks. To enable this to be done at night a reflector and distant lamp are employed, so that no light need be carried over the tank's roof.
The Worthington high service pump, which we illus trate, was designed especially for this work. It has four steam cylinders, two high and two low pressure steam jacketed, each set working tandem, and is direct acting. Each pair of cylinders actuates two single troke rams of the exterior packed type. This bring the only possible source of plunger leakage under the eyes of the engineer. Between the high and low pres sure cylinders the steam passes through a receiver where the steam from the high pressure cylinder is heated before admission to the low pressure cylinder. The general dimensions of one of these pumps are as follows : Diameter of low pressure steam cylinder, 66 n. ; of high pressure ditto, 33 in . ; of plungers, $91 / 4 \mathrm{in}$. troke, 373 in. Forse power, 440 ; average duty 10

000,000 foot pounds per 100 lb . of coal. The rated capacity is one and one-half millions of gallons, against a pressure equivalent to 2,000 feet head of water.
The extraordinarily high duty record is the most striking feature of these engines. The great disproportion of diameter between the steam pistons and pump plungers indicates the nature of the service they are called on to perform. The deliv ery of oil at pressures of 900 lb . to the square inch was one of the early difficulties in the way of pipe transit, and the problem has been completely solved by the Worthington pumping engine.
For such high pressures it was found disadvanta geous to use an air vessel, and to take its place and maintain an even pressure a pair of compensating cylinders and plungers are connected at the outer end of the rams. As shown in the drawing, these appear as two vertical cylinders, their position being the one occupied at half.stroke. Each cylinder is mounted on

valve pit of pumping station

sounding cil tanks at night.
rated. To-day the petroleum industry represents one and 1864 the first suggestions toward transporting oil trunnions near its center. A heavy pressure is mainof the greatest industries of the world. With gas and the electric light to compete against as illuminants, it is every year acquiring more importance, and holds a position as one of the three great sources of artificial light.
by lines of pipe were made, and in 1865 a pipe, $3,200 \mathrm{ft}$. tained by an accumulator, and fluid on the rear of long, was laid from Pithole toward Oil Creek, at Mil- the plungers tending to thrust them dut. As the rams ler Farm. It could pass 81 barrels a day. It was often of the main pump move outward from the center cut and damaged by the teamsters, who regarded it as position, the compensating cylinders swing on their a deadly rival, and had eventually to be guarded by a trunnions and take increasingly oblique positions m
the pump gets nearer the end of its stroke. The compensating rams are forced out during this period, and re-enioree the action of the steam, whose pressure is getting lower, owing to expansion. On the return stroke the compensating rams are pushed back against the accumulator pressure, their cylinders swinging back to the vertical position. In this period, therefore, the action of the steam at a high pressure in the steam cylinder is resisted by the rams. As the stroke returns from center in the other direction, the compensating rams act as in the other half stroke. By thus opposing the action of the unexpanded and re-enforcing the action of the expanded steam, an almost even action is preserved at all periods of the stroke, and a nearly constant pressure is exerted on the liquid pumped. Thus there is no need for a fly wheel or air vessel. The spring accumulator and compensating cylinders effect all the regulating.
Eight horizontal return tubular boilers, $5 \times 14 \mathrm{ft}$. with one high power and another often low power pump for use in emergencies, or when the main pump is being repaired or adjusted, represent the main plant of a station. Six boilers are fired at once, and a single pump is kept at work. A usual practice is to have one low and one high service pump, and to use the latter for most of the work, the low service pump serving as an alternative in case of repairs or accidents.

The distribution of the oil is effected by valve connections contained in a cellar called the valve pit.
Where the pipe crosses the Hudson River, a system of chain protection is employed to prevent damage from anchors. Two lines of chain are laid across the river parallel with the pipe and about twenty-five feet distant from feet. Lateral chains it. Lateral chains
and anchors hold and anchors hold
these in place these in place
Any vessel which anchors near enough the pipe to be in danger of fouling with it, were it unprotected, can only catch the chain with her anchor. A diver is kept on the New York shore by the Transport Co.,
who, when a veswho, when a ves-
sel catches her anchor, goes out and arranges with the captain to cut his vessel loose and provide a new anchor This done anchor. This done and the old anchor being buoy-
ed, it is dived for ed, it is dived for if necessary, and is raised and kept in exchange for the other one. The pipe runs across the city and passes under the East River to Long Island City, where the refineries are situated. This portion of the pipe has a second pipe outside it with tight-fitting sleeve joints. The jacket pipe has its ends separated by a space of twelve inches, to permit the inner pipe to be screwed home. The sleeve is pushed over the twelve inch gap and the whole space between the pipes is filled with lead, run in while melted. The object of this lead jacket is to protect the pipe from corrosion.

Recently it was found that a portion of the eastern end of the line which crosses the salt marshes back of Jersey City was being corroded by the action of the salt water. This portion is being gradually replaced by a sirgle eight inch pipe laid in a rectangular wooden box, which is filled with hydraulic cement.
To clean the interior of the pipes an instrument which we illustrate and which is called the scraper or "go-devil" is employed. A spindle with ball and sncket joint near its center carries steel blades set radially. In front and rear are three arms with guide wheels to keep keep the spindle co-axial with the pipe into which it is inserted. A set of oblique vanes serves to rotate the blades and a piston in the rear approximately fits the pipe in which it is used. To clean the pipe it is inserted at a pumping station into the line. As the oil is pumped in it forces it forward at about three miles an hour, the blades turning as it goes and scraping the interior of the pipe. A catch box is provided at the other end of the line, at the next pumping station, to catch it in as it reaches that point. Formerly when a "scraper" was started its course was followed by the pipe patrol, the sound it produced being audi-
ble above ground. It was reported that it went faster
pu hill than down, but this was probably a subjective to let it go unaccompanied, and to time its arrival by he hours it normally consumes in its journey.
The entire pipe line is patrolled to watch for leaks, which show very soon at the surface. A footpath worn by the feet of the patrollers extends over hundreds of miles of the lines that stretch across the east rn territory.
It sometimes happens that the oil tanks are struck by lightning, and the oil catches fire. In such cases the oil may be pumped out from the bottom of the tank, so as to be saved as far as possible. Sometimes water is pumped in to keep the level of combustion at the top, so that ouly the upper segment of the iron of the tank is injured by the heat.
The statistics of the production of oil indicate an increasing production. For 1891 an average monthly production of over 93,000 barrels was recorded. The nearest approach to this was in 1882, when the month ly average was 82,303 barrels. Over 3,300 new wells were completed in the past year-a rather low showing, as in $1890 \cdot 6,358$ wells and in 18895,489 wells were completed. The prices of crude oil have now attained a comparatively steady basis, compared to the old
times of fierce speculation. For the past year a differ ence of twenty cents a barrel would cover the general range, the price fluctuating from fifty-eight to seventy four cents a barrel. With these figures the average of former years may be contrasted. In 1865 the range of former years may be contrasted. In 1865 the range
was from $\$ 4.621 / 2$ to $\$ 8.25$ per barrel, monthly average,
season. This would leave a short piece to be put in at or near the bed of some waterfall, when the rivers fell to a size that the flume could convey. As a rule, they would buy their lumber and provisions, to be paid for out of the first gold taken out, so that we, who trusted them, took part of their risk. But with all of their peculiarities, a more honest set of men never lived on earth than the California gold miners, nor a set of harder workers. At one time-I forget the year now but I had furnished a large amount of lumber for flume above Oroville, and was quite well acquainted with one of the managers-I took my wife and clamb ered down over rocks and ledges, among rockers and sluices, to one of the richest spots, of about four mile of river bed. The gentleman took his pan, and after a short search, said: "Here, I think, is a rich crevice." So, with his narrow-pointed pick, he dug out a pan ul of dirt from a seam in the ledge; the naked ey could see the gold all through the gravel. He then washed it out, and there was a full half pint of the yelow metal; from this he selected a beautiful specimen which I had soldered to the head of a gold pin that my wife wore. The gentleman then scraped up a pan of dirt, and gave it to my wife, which she panned out, and the contents we kept; and one of my daughters still has it. Before the rainy season came that year, mor than $\$ 300,000$ in gold had been taken from opposit this one flume. It was contrary to all mining laws then to wear a "biled shirt," as they called it, but hysicians, lawyers, preachers, doctors of divinity, who lived in the mining regions, wore gray shirts, and worked with pick and shovel, play ed cards, and som of them gambled and if a mine had bad luck and got dead broke, go to a lucky miner or even a gambler and he would giv him a lift, as they then called it.

DANGERS OF LOS IN GOLD MELT iNG.
Gold melts at from 2016° to 2590° Fahrenheit, so it is stated by good authority. But it evaporates and passes off a much less than a melting heat, and also if held in molten state for any considerable time before it is cast into an ingot Soon after the San Francisco mint went into operation, the United States in spector visited it

HIGH POWER WORTHINGTON OIL PUMP.

eached for the first time in 1873 and in Novembe 1874, the monthly average price fell to fifty-five cents. These prices are stated in value of pipe line certificates or crude oil at the wells.

California Gold and Early River Mining.
It was January 7, 1853, that I landed in San Francisco, and thousands of gold seekers then thronged that wooden village. I arrived in the rainy season, with the valleys flooded, so that it was quite difficult and very expensive to reach the mines. I spent seven years, lacking one day, in these wonderful regions, and witnessed the most heroic enterprises ever engaged in by mortal man.
Hydraulic mining was infantile, as compared with fluming the rivers. I soon engaged in the saw mill business, in Grass Valley, Nevada County, and being near the Eaubar River, a stream of considerable size winding its crooked way down among the golden hills During the dry season, this and Feather River becam very low, so that prospectors and miners could pan ou considerable of the yellow metal along the edges of the rivers by digging out the ore from the crevices in the slate rock, and would follow it into the water sometimes two or three feet in depth. This soon led to the dea of constructing a wooden flume, made of lumber of sufficient size to carry all of the running water of the river, sometimes for miles along the bank and sometimes for many miles in length. Companies were formed for this purpose, and they would order often millions of feet of lumber sawed to special
dimensions, and delivered along the banks, and the lower portions of the flumes would be built during high water, or, as we used to say, during the rain
to take stock
nd there was about $\$ 160,000$ of a shortage. Thi amazed every one, and arrests were threatened for theft. Finally, some one suggested that evaporation had caused it, and that it had gone up chimney. So some one climbed up, and, upon examination, it could be seen in scrolls of gold lining on the slate, where it had evaporated as it came in contact with the air. The slate was all taken off, also from a church roof and other buildings near ; these were ground to powder, and the gold saved ; so was also the furnace and chimney brick, and, after all that could be profitably saved in San Francisco, the dust was sent to the Philadelphia mint, and worked over more closely, and then the dust was all sold to French chemists and shipped to Paris and worked over again. I think, now, that more than one-half the deficiency was saved. I was in San Francisco when the loss was discovered, and the excitement was next to that of the Vigilance Committee when Casey and Corey werehung
J. E. Emerson.

Railroad in the Holy Land.
The first railway to Jerusalem will, it is reported, be opened in the spring of the coming year. It is a short line, running only from Joppa, the nearest port on the Mediterranean, and intended to accommodate the growing passenger and other traffic between that place and the Holy City. The work of construction is being carried out by a French company, who began laying down the line in April, 1890. It is stated that over eight hundred vessels of various kinds annually land 40,000 persons at Joppa whose destination is Jerusalem. On the completion of the railroad, tourists will be able to buy a return ticket from the port to Jerusalem for twenty francs.

PROFESSOR JOSEPH LOVERING.

Death has again invaded the ranks of the National Academy of Sciences, and now claims for its own Professor Joseph Lovering, of Harvard University, who fell a victim to the prevalent influenza at his home in Cambridge, Mass., on January 18, 1892.
This eminent scientist was the son of Robert Lovering, a surveyor by profession, and his wife, Elizabeth Simonds, and was born in Charlestown, now a part of Boston, Mass., on December 25, 1813. He studied in the public schools and under the direction of his pastor, Rev. James Walker, afterward president of Harvard College, who fitted him to enter the sophomore class at Harvard in 1830. Three years later he was graduated, standing fourth in his class, and at commencement delivered the Latin salutatory oration. Two years later he took the degree of A.M., and on that occasion delivered a valedictory oration in Latin. Among his classmates in college were Francis Bowen, Henry W. Warren, Jeffries Wyman, and Morrill Wyman, all of whom subsequently became professors in Harvard, and Robert T. S. Lowell, the elder brother of James Russell Lowell.
After graduation he taught for a year in Charlestown, but his inclinations were toward theology, and he spent two years in the Harvard Divinity School. He had early shown a fondness for mathematics, and while in the divinity school continued to pursue studies in that science during his leisure. Accordingly in 1836, on the illness of Professor John Farrar, he was appointed tutor in mathematics and physics, and two years later, on the retirement of Professor Farrar, he was succeeded in the possession of the Hollis chair of mathematics and natural philosophy by Mr. Lovering, who then continued in the active occupancy of this chair until 1888, when, having completed fifty years' service as professor, he retired and was made emeritus.
Professor Lovering was the first member of the faculty at Harvard to have passed half a century in the service of his alma mater and the second in the length of his service to the university, Henry Flynt having in the earlier history of Harvard been connected as tutor to the university for the period of fifty-five years. In other ways Prof. Lovering served his college. In 1853-4 he was a regent, during the absence of Prof. Cornelius C. Felton, and when that scholar was advanced to the presidency of Harvard, Prof. Lovering succeeded him permanently as a regent, which post he then held until 1870. Also in 1884 he became director of the Jefferson Physical Laboratory, which office he retained for four varn
The growth of the Harvard Astronomical Observatory was largely due to Prof. Eovering. He was associated with Prof. William C. Bond, in 1840 , when, with but few instruments and indifferent facilities, a beginning of the astronomical work was made in the Dana house in Cambridge. From this small effort the present as tronomical observatory has been developed. It was at this time that the great scientist, Alexander Von Humboldt, induced the Royal Society of London to make simultaneous observations on terrestrial magnetism in Great Britain and the colonies. The co-operation of the United States was sought, and one of the three stations in America was located in Cambridge, where the making of the observations was under the direction of Profs. Bond and Lovering. Several of the undergraduates of the university lent their aid to this work, and among these was Thomas Hill, who subsequently became president of Harvard, and Benjamin A. Gould, the famous astronomer.
Prof. Lovering was associated with Benjamin Peirce in the publication of the "Cambridge Miscellany of Mathematics and Physics," to which he contributed articles on "The Internal Equilibrium of Bodies," "The Application of Mathematical Analysis to Physica Research," "The Divisibility of Matter," and similar subjects, which attracted wide attention throughout this country and the scientific world. In 1867, when Prof. Peirce was called to the superintendency of the U. S. Coast and Geodetic Survey, he intrusted the computations for determining transatlantic longitudes from telegraphic observations on cable lines to his colleague, who then had charge of this work until 1876.

As a lecturer, Prof. Lovering was well known. He gave nine courses, each of twelve lectures, on astronomy or physics, before the Lowell Institute of Boston. Five of these courses were repeated on the days following those of their original delivery, to another audience according to the original practice of that institution. He delivered shorter courses of lectures at the Smith sonian Institution in Washington, D. C., at the Peabody Institute in Baltimore, Md., and at the Charitable Me chanics' Institution of Boston, and one or more lecture in many towns and cities of New England.
He was an indefatigable contributor of scientific ar ticles to contemporary literature, and his papers, more than one hundred in number, may be found in the file of the "Proceedings of the American Academy of Art and Sciences," the "Proceedings of the American As sociation for the Advancement of Science," the Ameri can Journal of Science, the Journal of the Franklin Institute, the American Almanac, the North Ameri can Review, the Old and New, and the Popular Sci-
ence Monthly. His most important researches are in cluded in several papers on the aurora, terrestrial magnetism, and the determination of transatlantic longitudes, which appeared in Volumes II. and IX. of the "Memoirs of the American Academy of Arts and Sci ences;" also Volume X. consists of his results on "Aurora Borealis" (Boston, 1873). Besides the fore going he edited a new edition of John Farrar's "Elec tricity and Magnetism" (1842),
The degree of LL.D. was conferred on him by Har vard University in 1879, and in 1873 he was chosen member of the National Academy of Sciences. In 1839 he was elected to the American Academy of Arts and Sciences, of which he was corresponding secretary from 1869 to 1873, its vice-president from 1873 to 1880 , and president thereafter until 1888. He joined the American Association for the Advancement of Science at its Cambridge meeting in 1849, and from 1854 till 1873 he wa its permanent secretary, during which time he edited fifteen volumes of its proceedings. This abundant ser vice to the greatest of our American scientific associations was then rewarded by his elevation to its presi dency, and at the Hartford meeting, in 1874, he deliv ered his retiring address, in which he reviewed the development of the physical sciences. He was also a member of the American Philosophical Society and of the Buffalo Historical Society.
His long life was mostly spent in Cambridge, but during 1868-9 he was given leave of absence by the university for a year, and he spent the great portion of that time in Europe with Prof. William W. Goodwin, the well known occupant of the Eliot chair of Greek

PROFESSOR JOSEPH LOVERING.
literature at Harvard: Prof. Lovering was an active member of the Cambridge Thursday Club, and one of the trustees of the Peabody Museum of Archæology and Ethnology.
Soon after his retirement from the active duties of is university work, his colleagues, classmates, and many friends sought in some way to express their appreciation of his distinguished services. At first it was proposed to give him some:valuable token of this esteem, but this plan gave way to one of his own suggesting in the proposition to sit for a portrait to be hung in Memorial Hall. The incident was commemorated in an elaborate banquet held at the Hotel Vendome on
January 15, 1889, at which President Charles W. Eliot January 15, 1889, at which President Charles W. Eliot
Rev. Phillips Brooks, Thomas W. Higginson, Charle Rev. Phillips Brooks, Thomas W. Higginson, Charle were speakers. A few weeks later the Harvard Club of New York, entertained him in a similar manner Since then he lived at his home on Kirtland Street in retirement, although maintaining to the last his keen interest in the affairs of his alma mater.
His wife and four children still survive him. Th funeral services were held in Appleton:Chapel, in Cam bridge, on January 20, and the day following his re mains were interred in Mount Auburn Cemetery.
It has been well said that: "In his death Harvard has met a serious loss, as has the scientific world him, however, he has left the results so well organized that the students of the present day can press forward to a consummation of the results which their teache and exemplar did an incalculable amount to bring about and for the perfection of which he had given the vita ty of his mind and body."
M. B.

The highest railroad bridge in the United States the Kinzua viaduct on the Erie road- 305 feet high.
mail train to run from New York to Chicago in about 18 hours, over the New York Central \& Hudson River and the Lake Shore \& Michigan Southern, has been discussed in the newspapers during the past week, though nothing seems to have been decided upon, and the post office authorities at Washington on one side and the officers of the New York Central on the othe seem to be each inclined to throw upon the other the responsibility of having first suggested the idea. Such a train is doubtless practicable, and the only question as Vice-President Webb says, is whether the govern ment is willing to pay the necessary cost. The'speed would be practically the same as that made by the Em pire State Express, and that train has made a ver creditable record thus far. A summary of the train sheets for the 58 days from October 26 to December 3 shows that it arrived in Buffalo on time on 40 days and not over five minutes late on 7 other days. There were 5 days on which delays of over half an hour occurred slight mishaps to freight trains having occasioned these in each case. On December 25, 28 minutes lost time was made up between Albany and Buffalo, and consid erable losses have been made up on other days. The schedule of this train is 8 h .40 m . for $4391 / 2$ miles, equa to 50.75 miles an hour, including the four stops. The distance through to Chicago is 965 miles (calling the Lake Shore via the Sandusky and Air Line divisions $5251 / 2$), and the Empire State's route would make the schedule through 19 hours, equal to 18 hours apparent time, and 30 minutes longer than the time mentioned by the newspapers.

As regards track and grades, the Lake Shore is doubt less as good as the New York Central for fast trains, and in freedom from curves even better; but it has not three extra tracks on which to run the other trains, and some of the way it has not even one; that is, it is a single track road. But there are two separate road most of the way where there is not a double track, so that the conditions can be made quite favorable every where. It is, of course, incumbent upon a manager to make them as favorable as possible in such a case, eve for a mail train, for to kill six mail clerks, as at Kipton last April, is as bad either ethically or in a busines sense as to slaughter the same number of passengers The use of the absolute block system, on both double and single track, at least for this train, and the equip ment of all facing points on double track and of al switches on single track with distant signals, should, therefore, be regarded as imperative prerequisites to making this further attempt to beat the world.
But after safety comes the question of cost; ani though the government may conclude to pay a very liberal price, the question with the road is whether the real cost can be determined at all. To make very high speed with regularity, other trains, especially freigh trains, must be run so as to clear the fast train by a large margin-more than 10 minutes in many casesand the losses, direct and indirect, by the delays caused in this way are not easy to calculate. A train of this kind would be of value to people sending letter through between New York and the Missouri River and places west of there, but it is still a somewhat question able improvement for business between New York and Chicago proper, as letters must be mailed in New York about three o'clock and cannot be delivered in Chicago until about 11 or 12 the next morning. To really cover the 965 miles "between two business days" would require a decided advance on the "Empire State" schedule.-Railroad Gazette.

Process for the Manufacture of Metallic Nickel.
Mons. J. Garnier, Paris, France, has recently patented new process for the manufacture of metallic nickel It consists in purifying the crude nickel resulting from the reducing fusion of nickel oxide or roasted nickel mattes by charging the crude nickei with the addition of coke and lime, magnesia or baryta, together with fluorspar or sea salt, in a water-jacketed furnace having a basic lining or a lining of chrome iron ore, the bed of usion being so prepared that the bases enter into the slag formed in the proportion of 75 per cent to 25 per cent of silica and fluorspar or silica and sea salt, the product obtained consisting only of nickel and the metals of the bed of fusion, viz., iron, and sometime copper, from which the sulphur, arsenic, silicon, and phosphorus have been eliminated. The product thu formed may be energetically oxidized and deoxidizing gents added to get rid of the iron, so as to obtain pur nickel or nickel alloyed with copper, or it may be employed in the manufacture of alloys of nickel and ron.
"I have lots of fun in a quiet way," said an ex-telegraph operator to an Electrical Review representative 'I was dining at the Murray Hill Hotel the othe night, and while waiting to be served I began to tick on a plate with my knife. In a few minutes I got an answer in the same way from the other side of the room Conversation was maintained for some time, and finally names were exchanged. I stood up and, looking acros the room, saw an old side partner of mine whom I had not met for years."

A BAMBOO BRIDGE IN SIKKIM, INDIA.
This picturesque but frail structure is one of those extraordinary feats of native engineering to be seen spanning the mountain streams in all parts of the Himalayas. More commonly they are made of cane work, but where bamboos are to be had in plenty and the engineer has genius, their form takes the bolder outline to be seen in the picture. During our autumn holiday last year we one day reached this spot after a long but very enjoyable ride over the road that skirts the lower reaches of the River Teesta. The day had been indeed one succession of lovely vistas of winding sunlit river and dark forest-clad hill, and this bridge and its wooded surroundings seemed a fitting end to our morning ride; so we dismounted on a turf-clad rock overhanging the stream, and, having seen to our jaded ponies, proceeded with keen appetite to discuss the contents of our tiffin basket. The scene was a lovely one. Up stream the waters leapt suddenly and noisily into view at a sharp bend, and with a crest of white foam, raised in many a tuissle with the glistening bowlders that strewed the banks, rippled into a soberer calm as they flowed through the deep pool under the bridge. Below this it disappeared into the dark over-hanging foliage of the lower reach. Our after-
means of a long hose, which admits of 40 cubic meters of air per hour, and allows of the free respiration of natural air. The dome is furnished with an optical tube $161 / 2$ feet long, and slightly over 4 inches in diameter, within which a set of mirrors reflect the image of the object to be observed and magnify it before it meets the eye of the observer. The special advantages claimed for the new boat over all others are its absolute stability, even when submerged in a strong current; free respiration, without the necessity for reservoirs of free respiration, without the necessity for reservoirs of compressed air, and consequent ability to remain unoptical apparatus which permits of a good lookout being kept when the boat is under water, and of distances being accurately measured. The boat is intended solely for coast defense, and is armed, with torpedoes.The Steamship.

Astronomy Graphically Portrayed

At the Carnegie Music Hall, in New York, there was recently given the first of a series of illustrated astronomical lectures on an entirely novel plan. The spectators saw a realistic display of lunar and solar eclipses from the standpoint of observers on the earth, then on
the moon, and again from space. This is the first time

80,000 miles away. They see the earth hanging in space, a large globe, with stars shining about it. The ray of the sun coming from the right illuminate half of it surface. The moon is seen to come into the sun's ray and its shadow falls upon the earth and advance across its surface. The phenomenon of a solar eclipse is thus graphically explained.
The next scene depicts an eclipse of the moon in space, and in the fourth scene the spectators are looking from a distance of 4,800 miles at the moon suspended in space. From behind the scenes the sun's rays fal upon the moon, and the shortening shadows of the mountains on the moon indicate sunrise.

In the next act, for the representation is divided into acts, the observers are supposed to be actually on dif ferent portions of the moon's surface, looking on its mountains and craters. The barrenness of the moon's surface is sharply defined in the sunlight striking across it.

In another scene the earth is seen hanging over the moon and casting its reflected light upon it. The sun rises on the horizon of the landscape, and is eclipsed by the earth itself, the strange red glow cast upon the moon's surface being very well reproduced. The last act has scenes upon the earth again, one a lunar

A BAMBOO BRIDGE IN SIKKIM, INDIA.-PLATE BY THE PAPYROTINT PROCESS

noon journey was upward, and we could see afar off, through the tangle of foliage, the hill we had still to climb, beginning, even then, to lose the strong coloring lent it by the midday sun, for those softer violet tints that betoken the declining day in the Himalayas. But we dawdled over our tiffin and then over our camera until our syces, who saw only a long march in the dusk before them, aroused us into action. So we picked our way with cautious steps over the ricketty bridge to our fresh ponies awaiting us on the other side and got safely over. But hardly a day too soon, for we subsequently learntthat it had come down with a crash about a week after, its remains disappearing in a sudden rise of the waters below.-Jour. Photo. Soo. of India.

A New Submarine Boat.
A submarine boat has been designed by a Portuguese engineer, Don-Fontes Pereira de Mello, and it possesses several novel features. The boat has a length of 78 feet, a diameter of 11 feet 2 inches, and a displacement when submerged of 100 tons. Power is furnished by a motor working from accumulators, which drive a pair of screws and give a speed of six knots, maintainable for 14 hours. The boat is submerged by introducing water ballast into reservoirs, and by horizontal propel lers, its perfect stability under all conditions being insured by a special arrangement. When submerged, di rect communication is kept up with the outer air by
that the effort has been made in this country to depict these astronomical phenomena by scenic and mechanical means. Similar representations have been given in Berlin by the Urania Society, which was organized for the purpose of spreading astronomical knowledge among the people. Andrew Carnegie is reponsible for the reproduction of this unique form of entertainment in America, and he has imported all the necessary theatrical properties from Berlin to establish the en terprise here on a similar basis, it being intended, if this kind of educational amusement is appreciated, to have kind of educational amusement is appreciated, to have
it repeated in the leading cities. The first scene shown to the spectators was one of the most interesting of the whole evening. It represented a landscape near Berlin, with a lake in the background. It was dark ened at first, and then the clouds in the sky began to take on a rosy hue. It was a very good simulation of an approaching sunrise. The !sun appears above the horizon as a blood-red crescent. It is being eclipsed, and as it ascends less and less of the crescent is seen, until the sun is totally eclipsed. It appears then sim ply as a black disk with the corona about it. The landscape is involved in the curious darkness which results from an eclipse. The sun's reappearance is faith fully depicted, until it becomes a full round ball of pure white light, a very good counterpart of the original.
In the next scene the spectators are viewing the same solar eclipse from a point in space supposed to be
landscape in the highlands and another a sunset in the Indian Ocean.
H. G. Ketchum, engineer of the Chignecto ship railway, is credited as the author of a scheme by which vessels drawing upward of 20 feet of water can be pushed through the present $S t$. Lawrence canals from Port Arthur to Quebec, and through the Soo Canal now being excavated, without deepening the canals or enlarging the locks, thus obviating the expenditure of millions of dollars upon canal deepening. Mr. Ketchum proposes that large vessels be placed upon steel rafts or pontoons, and thus floated through thecanals and over river shallows, the vessels to be placed upon the pon toons by means of hydraulic lifts. established at the en trance of each canal. He says $\$ 500,000$ would provide pontoons and lifts for all the existing canals; but these ifts could be used as graving docks; but little time would be lost in placing the vessels upon the floats, and the plan has been successful elsewhere.

THE new 12 inch naval gun made a successful trip across the continent in eleven days, arriving at San Francisco January 23. The attendants who accom panied it state that the gun has attracted great atten tion on its tour across the continent, crowds of peopl gathering at the stations along the line to view it, and in many places school children were given a half holi day for the purpose.

RECENTLY PATENTED INVENTIONS.

Engineering

"Glory Hole" Glass Furnace.Henry Hageriing, St. Louis, Mo. An improvement in glass bottle finishing furnaces is provided by this in
vention, whereby the entire bottle may be evenl heated, to prepare it nicely for the tempering oven instead of the neck of the bottle only being heated causing breakage, as has been frequently the case here
tofore. The furnace has a main combustion chamoe from which leads a horizontal flue extending around within the furnace walls, there being a series of work and flues leading from the horizontal flue to the work ing holes, in which are sliding dampers, with means fo supporting and evening the bottles.
Pulling or Lifting Machine. or bed supports a puling mechanism in which, com bined with a main wheel provided with a worm wheel is a main worm meshing with the wheel and provided
with a worm wheel with which meshes a drive worm a worm wheel formed of sections being arranged on opposite sides of a chain wheel, and the invention in cluding various other novel features. The machine is adapted to be easily convertible to either an elevated
wrecking machine or a fiat pulling machine, and ar wrecking machine or a fiat pulling machine, and ar
ranged for extraordinary power or a medium power and a higher or lower speed, and may be advantageousl used to remove wrecked cars from a track, in pulling
Feed Water Filter and Separa Tor.-Elwood P. Mandigo, Brooklyn. N. Y. This is an apparatus for purifying feed water, more especially
the water of condensation from the condenser of a condensing engine, to remove the oil and other deleteriou matter. It consists mainly of a vessel having a series of compartments connected by pipes, which have open-
ings at their lower ends near the bottom of one compartment and their outlets extending into the adjacen compartment at about the water level. The water pro from the oil, the latter being left entirely in the sepa rator when the water passes to the boiler.

Railway Appliances.

Car Coupling.-Frederick H. Brown, West Pittston, Pa. This invention relates to an im jaw interlocks by a lateral movement with a similar jaw on another coupling, the invention providing a improved locking pin and means to retain the pin in
elevated adjustment until the vibratile coupling jaw i rocked by the impact of a mating coupling jaw wit which it becomes interlocked automatically, improved means being also provided to lock the jaw in a couple condition. There is a joint leaf on the swinging jaw
with a cam slope on its inner edge to sustain the lock ing pin, which is adapted to drop through a notch in he cam slope at its lowest point.
Car Door.-John Smith, Pooler, Ga This is a ventilating door in which the frame has edge of each slat and a shouldered projection on one slat end of each slat joining the base of the trunnion, slide bar beng notched edgewise in series to receive the shouldered projections, with means to move the sllde bar longitudinally. It is a freight car door
designed to afford free ventilation to the interior of the car while the ventilator may be close sealed whe necessary, av
late the car.

Electrical.

Electric Motor. - James T. Wilson, Tyrone, Pa, In this motor a continuous rotary motio plicable to bicycles, cars, tricycles, drilling machines plicable to bicycles, cars, tricycles, drilling machines
the driving of saws, and other uses. The motor mounted on a reciprocating frame and has its armatur journaled in side bearings,there being cranks on the ends of the armature shaf $t s$, pitmen connecting both cranks
with a fixed frame, and a transmitting rod connecting with a fixed frame, and a tr
with the reciprocating frame.
Magnetic Extractor. - Horatio W. specially designed to facilitate the removal of particle f iron and steel from paper pulp, and is also adapted for similar use in varions industries. The pulp or othe which is arranged a series of magets past which the pulp flows, so that the magnets may take up any conained particles of steel or iron and hold them until the end of the run, when the apparatus is cleared of the pulp and the magnets are discharged of the adhering

Annunciators. - Ralph A. Schoen berg, New York City. This invention provides an attach ment whereby the annunciator may be pneumatically
reset without jarring and the annnnciator may be placed upon any desired support without interfering with its proper manipulation. The attachment may b hereby, before ringing and causing a drop finger to isclose the number of the room or floor, the operato may be assured that every drop finger is elevated and
concealed from view in front of the annunciato window. The attachment is very simple and inexpensive, and can be readily applied.

Mechanical Appliances.

Valve Seat Grinder. - Hiram H. Swallow and Mathew T. Jones, Carbondale, Kansas
n connection with a frame on which a clamping plat is adjustably held is a shaft monnted to turn and slid in the frame, a chuck on the shaft carrying the valve with means for imparting a rotary motion and a sliding notion to the shaft. The device is very simple and urable, can be readily applied to the valve, and permit examining thegre whe the senat any time during
held in perfect alignment, so that the seat is ground in
Drawing Frame.-Junius A. Murphy New Orleans, La. According to this invention a comb-
ing belt is arranged above a supporting apron, and has a forward movement beyond the apron, drawing rolls arranged in advance of the apron and beneath he forward end of the combing belt. The improve combing animal fibers, particularly horse hair, whic has a peculiar tendency to entwine itself in and follow e combing fingers in ordinarily arranged drawing frames, instead of leaving the fingers in obedience to
the action of the drawing rolls. By this improvement provision is made for releasing the hair by gravitation in the clearan
Wrench. - Thomas A. Ferguson, yons, Neb. This is a simple for dapts itself fo mench or a nut of nuts or pipes. has a slotted shank with one end inclined and terminating in a fixed jaw, the shank also having teeth on one
edge in which interlock the teeth of a movable slide edge in which interlock the teeth of a movable slide
block. Means are provided for securing the block in lock. Means are provided for securing the block in
the shank, and a movable jaw is connected with the ock by a ball joint, the jaw having its free end curve able jaw is such that the distance between the oute portions of the two jaws is greater than the distance
between their inner portions, so that the wrench may e instantly applied to objects of very dissimilar size

Agricultural.

Poison Dust Distributer. - Enoch B. Norton, Hartford, N. Y. This is a device to b carried along rows of potatoes, corn, or other plants to
be powdered, and an upward joltng movement given to he powder-holding chamber, causing a dust guard to protect over each hill successively, so that the dust frown out will be confined and directed upon the
leaves aud stalks of the plants operated upon, to kill bugs or similar insect pests. The dust holder is cylindrical and has a foraminated conical bottom, in combination with a concentric air escape tube attached
to the bottom and terminating above within the hamber, while a downwardly projec
envelops the plant when being dusted.

Miscellaneous.

Center Support or Hanger. Thomas W. Snell, Chicago, Ill. This is a device for supporting centers for masonry, arches, floors, etc. ort the center at the proper place. It consists of a chai dapted to engage the center, a bolt provided with ook to be engaged by the chain, and a cross beas
adapted to carry the bolt. The hanger always passe through the center of the arch in the tile course, and a hole is always left from nine to eighteen inches lon y six to nine inches wide, this hole being filled up fter the centers are dropped.
Heating, Cooling and Ventilat Y. Thi d for use in atl architectural structures having in recllular spaces in side walls and between floors ipe coils connected with the steam or hot water pipe re located in the intercelluar spaces, and in the oute of cold air from the outer atmosphere, there being also egisters to afford exit passages for foul air or any acess of heat in the upper part of the rooms. Rod are adapted to move slide gates to regulate the flow o ot or cold air in the intercellular spaces, the system or a building, and giving a uniform heat and pure ai ll as ventilation
Radiator Loop. - George H. Burley yrone, Pa. This is an improvement for conveniently ontrolling the steam and water of condensation so as desired to regulate the heat of a room. Two members are separated from each other on top and bottom and have inlet openinge on opposite sides, with valve in the lower ends of the legs, plugs held in the lower
ends of the radiator loop in communication with outends of the radiator loop in communication with outvalves connected with a water return pipe are arrang the inner ends of the plug.
Weight Lifting Attachment. James W. McHenry, Aspen, Col. This is a device to
be applied to express and delivery wagons for lifting nd dropping the weight attached to the halter an a conical frame attached to the axle by means of the king bolt, for receiving and holding the weigh hen drawn up, with an angled lever fulcrume halter rein-holding weight, while a releasing lever pivoted to he wagon body is adapted to retain the weight-holdin when the horse starts, the weight will be released an fall to the ground, to act as a backward pull on the reins. Holdback for Vehicles. - Patrick eallane, Moline, Ill. A simple, strong, secure, and
easily manipulated holdback is provided by this in vention. It consists of a metal band attached to vehicle shaft and having a lateral keeper for the breeching strap and a hinged tongue which serves to secure the strap detachably. The looped free end of the strap passes beneath the keeper and the hinged tongue while in use, yet permitting it to be easily and quickly etached.
Combined Trunk and Bed.-George W. Snaman, Jr., Allegheny, Pa. This invention pro of the same inventor. The combination device com-
section having a removable wall at the hinged end, and
one of the walls having binding hooke engaging the ne of the walls having binding hooke engaging th with staple loops, into which enter the tenons of legs that also have shoulders extending under the botto Flour Cabin Albert A Tink Madison, Wis. This cabinet onstruction, designed to be neat in appearance, and Kept in its bins. A moulding board or leaf is pivote the framing in a manner to facilitate ready use, an all the parts are so arranged as to afford easy access to
the flour and prevent waste.
Oil Can and Lamp Filler.-Charles W. Proctor, Lake Forest. Ill. This invention is may be kept, and which may also be used to fill lamps ithout danger of spilling the oil. It consists of is an open basin adapted to hold about the necessary quantity of oil to fill a lamp. Leading from this basin s a pipe which connects by a swinging joint with a winging pipe through which oil is delivered to the amp. This pipe has a faucetnear its free end, and is atter is laid on its back, so that there will be eakage of the onl.
Bicycle.- Felix Clément, Salins rance. This invention provides for bicycles, veloc that is designed to be durable and also easy to the rider with. It is a ted, the saddle springs may be dispense tiall y triangular shape, hinged together near the bottom, one member being mounted on the rear wheel and the ther on the steering fork, while sockets are formed in he upper adjacent portions of the members and he spring being such that it receives directly th hock transmitted by either of the wheels.
Cash Carrier. - Charles Frederick, Columbiana, Ohio. This is a carrier of the type carriage, and improved means are provided to remo ably hold the carriage at a station, with novel mechanism to actuate the carriage in propelling it from one
station to another, improvements being also effected station to another, improvements being also, effected
in the means for removably attaching the cash rein the means for removably attaching the cash re ach stalion is achers from the floor, to permit th tion of the mechanism
Clasp. - Antenor Assorati, New York City. A simple and inexpensive article capable of use for closing and locking the pockets of garments, is provided by this invention. It is made in two sections, one having a locking contact with the other, the keeper ction having a trip and a keeper post, and the latc pring. It is impossible for a pocket to be opene hen locked by the device without warning or notif

Pencil Attachment. - Joseph H Hamill, Globe, Arizona Ter. This is a little device to b scaping from the pocket. It consists of a rod attache o the end of the pencil, a funnel-shaped rubber cup on the rod opening toward the end of the pencil, and metallic slide for closing the cup. A socket is also
provided for receiving the eud of the pencil and sup provided for receiving the

Nursing Bottle.-Gabriel A. Bobrick New York City. This bottle has projecting lugs on it aving perforations to receive the lugs, the materia being re-enforced around the perforations, and the ar The uipple may be easily placed in position upon or hoved from the bottle.
Sign.-William R. Garner, Galveston, Texas. This invention provides an improvement in ngular in cross section, having at its top an openin with movable cover and being conformed at its base to the top of the car to which it is to be fitted, there being o the car. The sash signs held in the main frame o asing are arranged so that the front sign can he rea by persons in the rear or on the sides of the car
Note.-Copies of any of the above patents will be urnise send name of
ot fhis paper.

NEW BOOKS AND PUBLICATIONS.
Perfumes and their Preparatio
By George William Askinson, Dr.
Chem. Translated from the third German edition by Isidor Furst. Illustrated. New York: Norman W.

The subject of the manufacture of all classes of pe umes is the topic of this attractively printed volum Its opening chapters treat of the history of the art and ell about the nature and properties of the original sub tances in the animal and vegetable kingdoms as pre Next the extraction of odors, giving materials, the special characteristics, their adulteration, and the special extracts and essences used in the arts are treated. Adulteration of the valuable essences and extracts aking them follow. All kinds of finished perfumes or the handkerchief, sachets, fumigators, etc., are given. The hair and skin and preparations for appli-
cation to them are given liberal space, including coscation to them are given liberal space, including cos-
metics of all kinds, hair dyes and depilatories. The
general as well as professional interest, meeting the
wants not only of the druggist and perfume wants not only of the druggist and perfume manufac
turer, but also of the general public. It has been revised by Dr. Charles Rice of this city a reasnized authority in pharmacy and allied topics. The book should be warmly received by the public as well as by A Manual of the Steam Engine. Part II. Design, construction and operation for engineers and techni-
cal schools. By Robert H. Thurston, A.M., LL.D., Dr. Eng. New York: Price $\$ 7.50$.
All that is necessary to say of this second, volume of Professor Thurston's great work is that it upholds fully
he promises of the first volume. Design, regulation of speed, construction and erection, operation, care and management, engine and boiler trials, specificaions and contracts, and finance of steam engineering are the topics more particularly covered. The work is oo large and ample for us to pretend to review it within the limits of the space at our command. Itssize, style and author are enough to make it a sine qua non present day. It is excellently indexed, and while containing many calculations and formule, dots not by any means miss the practical side of the topics show ing and explaining accepted structures and designs. Evolution in Science, Philosophy, And Art. New York: D. Appleton
$\&$ Co. 1891. Pp. ix, 475 . This bookcontans a series of popular lectures before the Brooklyn Ethical Association. It includes fifteen papers on all kinds of evolution, in many cases the
modern fashionable name for what used to be called progress. In it we find evolution of chemistry, elecric and magnetic physics, botany, zoology, optics, art.
etc. It is to be hoped that the picturesque process of evolution is still going on, as there is much yet to learn. Among the authors are Prof. John Fiske, Arthur E. Kenelly, Prof. Edward D. Cope, and others more or less known in their respective capacities.
Short HaND AND TYPE Writing. By
D. McKillop. New York : Fowler \& Wells Co. Pp. 123. Price 40 cents. This little pamphlet is one of a series to be called the Self-Culture Library. It seems to be well written and to present its subject very graphically and practically.
It has a number of cuts illustrating different type It has a nu
writers, etc.

SCIENTIFIC AMERICAN

buildina edition.

FEBRUARY NUMBER.-(No. 76.)

TABLE OF CONTENTS.

legant plate in colors of a cottrge at Short Hills ion, floor plans, etc.
2. Colored plate illustrating a cottage at Great Dia mond Island, Me., erected at a cost of $\$ 900$, com plete. Floor plans, elevations, stc
residence at Portland, Me. Cost, $\$ 11,000$ complete in every
tion, etc.
The very attractive residence of E. T. Burrows, Esq., at Portland, Me. Cost, $\$ 9,500$ co
spective elevation, floor plans, etc.
deeling at Augusta, Me., erected at a cost of $\$ 3,200$ com
elevation.
handsome dwelling at Carthage, Ill., designed in Perspective and floor plans.
residence colonial in treatment and recently erected at Belle Haven, Greenwich, Conn., for Mr. Chas. A. Moore, at a cost of $\$ 14,000$ complete.
Two perspective elevations, floor plans, etc. A colonial residence recently erected at Brookline, Mase., at a cost of $\$ 18.000$ complete. Wm. T.
Sears, architect, Boston, Mass. Perspective eleSears, architect, Boston,
vation and floor plans.
. An architect's home, with sketches showing the hall, drawing roon, terrace, entrance front, din-
ing room, together with ground plan. A dworling.
Sketch for a suburban chapel. Submitted by O.
M. Hokans in the St. Paul Architectural Sketch Club competition.
11. View of the Washington Street tunnel at Chicago. iscellaneous contents: Architecture and poetry.-
Waterproof wall coatings.-Colored woods.The planning and construction of American frame honses.-Church spires.-Ownership of plans.-
Simplicity in furnishing and decorating.-Utility Simplicity in furnishing and decorating.-Utility
and art. Improved door hanger, illustrated.and art. Improved door hanger, illustrated.-
The Madison Square Garden weather vane, the The Madison Square Garden weather vane, the
huntress Diana, Illustrated.-Schmidt's window frame, illustrated.-Sackett's wall and ceiling board.-An improved mitering machine, illug-
trated.-A combination folding bath tub, illus-rated.-Japanese interiors.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies, 5 cents. Forty large quarto pages, equal to about cally, a large and splendid MAGAZiNe or A pcHerc CURE, richly adorned with elegant plates in colors and with fine engravinge, illustrating the most interesting examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largest Circulation
of any Architectural publication in the world. Sold by af newsdealers.

MUNN \& CO.. Pbblishress,
361 Broadway,

Business and Personal.
The charge for Insertion under this head is one Dollar a line
for each insertion; about e cight words to a line. Adzertisements must ber erecived at pubbication office as eanly as
Thursady morning to appear in the folloving weeks's issue. For Sale-Several very pood second-hand planers of
medium sizes. Yirst class order and prices low. W. P Davis, Rochester, N. Y.
For mining engines. J. S. Mundy, Newark, N.J.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N.J. Mixing machinery. J. H. Day \& Co., Cincinnati, obi
niversal and Centrifugal Grinding Mach
Pedrick \& Ayer, Philadelphia, Pa.
The Improved Hydraulic Jacks, Punches, and Tu Job lot of small electro motors. Send for circula,
oodnow $\&$ Wightman, 63 Sudbury St., Boston, Mass. Screw machines, milling machines, and drill presses,
The Garvin Mach. Co. Laight and Canal Sts, New York Centrifugal Pumps. Capacitr, 100 to 40,000 gals. Finp. Capay, mo to d,00 gale per spit Pulleys at Low phes, and of same stronth an appearance as Whole Pulleys. Yocon.
Works, Drinker St., Puiladelphia, Pa.
The best book for electricians and beginners in elec tricity is "Experimental Science," by Geo. M. Hopkins.
By mail. $\% 4 ;$ Munn \& Co., publishers, 3 gil Broadway, N. X. Wanted-A manufacturing company to take hold of practical invention and put it on the market. Investiga
tion solicited. c. w . Walker, Strang, Fillmore Co.

Competent persons who desire agencies for a new popular book. of ready sale, with handsome proft, may
aploty to Munn $\&$ Co., Scientific A merican office, 361 Maxic Lanterns and Stereopticons of all prices. Views A proftabile lusisiness for a man with small capital. Also lanterns for home emusement. 220 page catalogue
free. McAlister, Optician, 99 Nassau St., N. X. A middle aged married man, a traveled salesman of
experience, now permanenty located at Denver, Colo. (pop., 150,000), where he has extensive acquaintance, deress Brewster $\&$ Co., Mendota Block, Denver, Col
WF Send for new and complete catalogue of Scientifc
not other Books for sale by Munn $\&$ Co., 361 Broadway, New York. Free on application

Hints to correspondents.

(4050) H. W. G. asks : 1. Is there any preparation in existence which will produce oxygen
gas? If so, what? A. No preparation known gives off oxygen gas without the application of heat to some exent in any practically neeful way. 2. Aleo is there any
preparation that will absorb carbonic acid pas, such we eject from our lungs in breathing? A. Caustic soda, potash, or lime will do this. To absorb injurious organic matter, potassium permanganate is useful. Simple absorption of carbonic acide gas will not suffice for
(4051) W. A. S. asks: Can you tell me what the actuating element in the common form or netall of steel and brase The differential componn spiral of stel and brass. The differential expansion
causes the rotation of the needle connected with it. It st the principle of the Breguet thermometer, described text booke on physic
(4052) O. P. asks: Will kerosene oil enetrate and rot rubber: And if so, is there any that can be prepared so it will not penetrate or rot it? A
Kerosene oil will have some effect upon India rubber, which will be more percepptible in proportion to the time of action. It cannot be prevented. A go
quality of vulcanized rubber will be least affected.
(4053) J. M. U. de G. asks (1) for a cheap method of making hydrogen gas. A. Pass steam over
white hot iron or copper contained in a tube. 2 . How many cubic inches of pure hydrogen gas will it take to lift one pound avoirdupois weighte A. Allow for pure
gas, 70 pounds to 1,000 cubic feet, or 14 feet to one (45) O.
(4054) O. S. E. says: I have laid some of. I would like to know what causes it, and what
will remove it and other stains from pressed brick. The white stains are chiefly due to the presence of salen
of magnesia, and no satisfactory cure has as yet been
(4055) F. W. asks: 1. Does a cubic
(4055) F. W. asks : 1. Does a cubic oes at a depth of 10 feet under the surface of the sea . The lead would weigh slightly less by the decreas gravity at great depths. 2. Which will reach bottom first of two balls, one weighing 100 lb ., the other 1 lb .?
A. The 100 lb . ball will get to the bottom first, because is weight is greater in proportion to its surface exposed the friction of the water. 3. Is water harder to density of the bottom or surface of the sea? A. The but very slightly greater than at the surface. At one mile in depth it is 1-130 more dense than at the surface. 4. Will a small stone or sand sink to a depth of three miles? A. All substances that will sink at all will go to the bottom of the deep sea. Sand, mud and shells re found there
(4056) C.
(4056) C. J. B. asks: 1. To what use is the metal palladium put? A. It has been used for graduated scales. It has very little use outside of the
laboratory except as a constituent of alloys used for hair springs of watches. It is the base of a aseful reag ent ard is used in gas analysis to absorb hydrogen. 2 What is its market value? A. It is quoted at $\$ 2$ pe rain. 3. To what extent is it used: A. In very smal mounts. 4. Where is it found? And how extracted rica the ore? A. In Rusia, North and South Ame cid and precipatan and isition. heap or costly? A. It is not very costly, An excelent rticle on the subject is given in appleton's America
(4057) H. G. M. asks: Will loadstone old its power of attraction if not interfered with? A.
(4058) O. W. asks: 1. Is the flickering in arc lamps caused by impure carbon or unsteady eeding apparatus, or if neither of them, what causes F. ard current. Aoth; and also to variations of E.M. in series as in the Brush system? What size iron wire would be best for a resistance coil in a line where high voltage is used? A. Arc lamps are generally connected in series. The size of wire depends on the current. Iron has about six times the resistance of copper.
3. Did Wilde (the inventor of the well known Wilde dynamo-electric, machine) ever take out a patent on his rc lamp, known as Wilde's candle, in the United States
of America? A. We think not. 4. In his apparatus of America? A. We think not. 4. In his apparatus,
while burning, the carbons stood side by side, and I should think the current would have jumped across he space near the metal carbon holders instead of going to the points of the carbons, which would hrow in additional resistance in the circuit. What the reason it did not? A. The carbons stand at an angle, the points being nearer together than the clamped prevented the arc from running along the carbons.
(4059) E. S. F. asks : 1. How large storage battery would be required to light one 10 candle he lamp to be a 20 volt lamp, 10 or 11 cells of storage battery will be required to secure the necessary voltage; but this number is sufficient to run 10 such lamps. 2. How much would such a battery cost, and would you tell me how I could make one? A. For cost of storage batteries, address the manufacturers and dealers. For directions for making, consult Scientific American, vol. 61, page 2. . 3 . How much power can 1 obtain
from a steam engine with piston $11 / 4$ inch diameter, 234 stroke, with 50 and also 100 lb . steam? A. If the and $1 / 2$ h. F . approximately at a speed of 300 revoluand $1 / \mathrm{h}$. F . appr
tions per minute.
(4060) B. I. T. asks whether there is any advantage or gain in wetting down the coal. Some
claim the dry coal produces more heat, while other claim the wet coal produces most heat. A. The wet-
ting of coalduast 18 for the purpose of holding it together and preventing waste by dropping throngh the grate.
(4061) M. L
ook " L. writes: I received your with it. I am making the simple motor described in its pages, and would like to ask a few questions through
Notes and Queries about it: 1 . How many pounds of wire will be required for motor, when used either as a motor or dynamo with cast iron field magnets, using
No. 18 for fields and No. 20 for armature? A. It requires about 2 lb . No. 18 and $1 / 2 \mathrm{lb}$. No. 20. 2. Should the wire be single or double covered? A. Double
covered. 3 . Will the above sizes of wire be light to be used on a dynamo circuit when placed in a shunt? A
Itdepends on the kind of currentused. It would be right it depends on the kind of current used. It would he right
for a current of low voltage. 4. How many cells of the secondary battery described on page 418 in "Experimental Science "" will be required to run the motor?
A. Four. 5. If it requires a stronger current to charge A. stora. 5. Ir it requires a stronger current to charg gained by using it? A. Convenience and constancy It can be charged at night and used during the daytime, than was used in charging it.
(4062) G. D. writes: I have taken the berty of forwarding a sample of brown animan grease which I am desirous of bleaching. A. Try following parts good vinegar. 2. Agitate 50 parts tallow with 80 parts water and 12 parts salt. 3. Agitate 50 parts with 1 part calcined magnesia. 4. Agitate with weak solu
tion of caustic alkali, or with strong solution of an tion of caustic alkali, or with strong solution of an
alkaline carbonate. 5. Prolonged agitation with water. 6. Agitate 10 gallons with $1 / 2$ gallon $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $1 /$ gallon water. In all cases apply heat during process chemicale.
(4063) J. W. C. asks where the gelatinelike composition used instead of glass for holding he film for plates is manufactured. Also is it a pa-
tented article? A. The componnd is a mixture of gun-
cotton and camphor, and is called celluloid. It is made by the Celluloid Company, Newark, N. J., under pa
(4064) J. L F asks. What number (4064) J. L. F. asks : What number cotton-covered magnet wire should I use to make a
magnet of about 20 ohms resistance? Also how much 61 f. A. 4865 feet of No. 16, 19242 feet of No. 2 , 761 feet of No. 24, 189.32 feet of No. 30, or 47 feet of
No. 36. The size of the wire must be in proportion to current to be carried.
(4065) L. A. P. asks: Is sewer gas dorless? By what chemical process can you detect sewer gas in a room? A. It generally has a depressing odor and usually contains sulphureted hydrogen. In
the latter case it can be detected by paper dipped in the latter case it can be detected by paper dipped in
lead acetate solution. It turns the paper brown. Thi all infallible. It phould be tried in the night. (4066) A. J. O. writes: I desire to paint my roof with a coat of lead color instead of the customary red mineral paint. Some of my neighbors
maintain that there would be danger of lead poisoning rom such a roof. Will you kindly inform me if there would be any such danger? A. We should advise painting.
(4067) J. D. H. writes: In relation to he induction coil described on page 548, "Experimen1. Is it any advantage to varnish the layers of the secondary coils A. Yes; but the advantage will hardly compensate for the trouble. 2. About how much more than one pound of No. 36 wire is called for? A. It re-
quires nearly 2 lb . 3 . Can I purchase platinum-pointed quires nearly 2 lb . 3 . Can I purchase platinum-pointed screws of electrical supply dealers? A. Yes; or you
can easily insert the point yourself. 4. Are the contact can easily insert the point yourself. 4. Are the contact
points of the ordinary call bells protected with this metal, platinum? A. Usually. In the cheaper kinds, however, makers are apt to substitute silver or German silver, which are, of course, not so good. 5. Why does a condenser of a capacity of 75 square feet command
such a high price, $\$ 20{ }^{\text {A. The }}$. They are carefully made and well mounted and protected, and besides this, the dealer musi necessarily make a profit. 6. Should the be large or small? Does the size of sheet make any difference? A. The size makes no material difference but they should not be too small. Make them of size suited to the base of your instrument.
(4068) C. E. W. writes: 1. I made an induction coll a la Hopkins. Used two one gallon bichromates, made interrupter with platinum points, burnt out fast, made mercury breaker, worse than feet tin foil, bunched together and wired as pqer di rections: this made one-half; rund wired as per ditin roof for the other, thus electrically separating the two sections. Sparked as much as before, thought surface must be deficient, so run wire to water pipe, hoping all creation would furnish at least one-half the neces-
sary amount, mercury kept burning up all the same. sary amount, mercury kept burning up all the same.
The books say the mercury breaker prevents the spark, The books say the mercury breaker prevents the spark, at least decreases it, and the condeuser helps consider-
ably, and if I have two large metallic surfaces insulated from each other, why is not that sufficient? A. Try connecting your battery in parallel. Use kerosene oil or alcohol on the surface of the mercury in the contact breaker. Have it deep enough to always cover the platinum point. 2. Is it absolutely necessary that sheets of fil should be piled together in order to secure the best
eff so, why? A. Yes; in order that they may effect? If so, why? A. Yes
act inductively on each other
(4069) G. A. M. asks: 1. Does it hurt he meter or converter on an incandescent system to the meter is connected in the circuits upon the way current that is used to execute criminals at Sing Sing? 4. A circuit including an E.M.F. of 1500 to 1700 volts. . Could an induction coil be made with No. 36 doublewound cotton-covered? If so, how much should be used
for the secondary coil? A. Yes; it would take two
(4070) H. K. asks : How many cells of (4070) H. K. asks : How many cells of storage batery (such as described in Experimental No. 641, also how many cells of gravity battery require battery to run the motor, and four cells of gravity batery are required for each storage cell for charging.
(4671) A. C. W. writes: I have been trying to counect two buildings, about 1,300 feet apart,
by two bells over one outside wire (No. 18 copper), using the ground as a return wire so they will reply to each other. I have used three closed circuit, Crowfoot batteries at each end (5×7 inches), using 1 pound of blue
vitriol to each jar. Used double contact buttons. The grounds are: One pipe about 4 feet long driven into moist ground filled with water, the other is a well pipe about 25 feet long. Can you tell me where I have made my mistake? A. You have probably failed in your grounds; they should have a much larger surface. We thmk a better plan would be to connect all the bat teries together at one end of the line and keep the whole ine normally closed, simply opening the circuit for
signals. If the bells are of the vibrating style, you might make the bell ring by connecting it up on an independent local circuit with one cell. Then when the main line is open, the hammer will fall
(4072) R. A. W. asks: 1. What is the best and quickest mode of poiishing ornamental wood
turning? Is it possible to mix a color with shellac to make the turned wood appear like mahogany and polish at same time? What process is used to put color on
and polish articles such as leadpencils and ladies' toilet brushes and work boxes, such as appear enameled? A For mahogany stain on light woods use an extract of cam wood. The stain is to be applied to the work while it is in the lathe. It is then removed and allowed
to dry. Polish with shellac varnish to which has been to dry. Polish with shellac varnish to which has been
added 50 per cent of boiled linseed oil, or better, use French sprit varnish in the same way. Apply with a cloth. For pencils and boxes a logwood stain is often
used. The varnish is flowed on and often not polished 2. Is there any book published which treats on polishing, wood turning, staining, and graining, etc.? A.

You will find a great deal on wood stains and polishes in the "Scientific American Cyclopedia of Receip
Notes and Queries," which we can mail you for $\$ 5$. (4073) A. S. asks (1) how to prepare the loth for a small balloon intended to contain hydro entific American Supplement, No. 726. 2. Can hydrogen be used in a balloon of India rubber? A. Yes; but hydrogen will always rapidly escape. 3. How with a capacity of a 1,000 cubic feet, lift? A. For 1,000 cubic feet pure hydrogen allow 70 pounds of lifting power; from this subtract the weight of your balloon
(4074) G. H. L. asks : 1. How can I nake a cheap reliable air pump for experimental pur this we refer you to Hopkins' "Experimental A. Fo $\$ 4$ by mail. 2. Have carbons been made to show different colors of light ? Is it possible, owing to the great heat which they must undergo while carbonizing? A. To the eye the white rays will always predominate athough they have been caused in spectrum analysis to volatilize metals to give the characterıstic flame. 4
Would colored carbons be in demand A . We doubt Would colored carbons be in demand 9 A. We doub (4075) C. B. asks : 1. A formula reads solution chloride zinc "(U. S. Pb.), 1 quart. What make proper strength to quart of water so as to be like above U.S. Ph.? A. For one quart of solution allow about 1 pound of the solid salt. 2. Solution chloride sodium ($\overline{\mathrm{vj}}$ to O j), 2 pints. Does this mean 6 ounces sodium chloride to 1 pint water? A. We suppose so; it
is not very explicitly stated. 3. Will arsenious acid 1 not very explicitly stated. 3. Win arsenious acid part, dissolved by using carbonate potassa, 6 parts, re-
main colorless or turn brown after tanding A. It should remain colorless. 4. What is the beat A. It make alum mix with arsenious acid solution and re main clear! A. Acidify if necessary with hydrochlori acid. 5. In making solution of bichloride mercury with muriate ammonia, should they be dissolved together in old water or bot, or separately in hot or cold water Dissolve bot onia salt first arm the water, do not boil it
(4076) H. J. S. asks: 1. Will you please The best method of ventilation is that in which the foul air is drawn from the upper and lower portions of dows, dore, and other openings or through a numbe of small openings distributed around the room, but not located near the ventilating ducts. 2. Should rooms b ventilated at top or bottom of room or at both points A. See answer above. 3. Can a school room be proper y ventilated (that is not cooled off) by lowering the top when draughts are not created, is better method when draughts are not created, is better than no
method. 4. Does carbonic acid gas settle to bottom o room or rise to top or is it diffused through the room generally when heated to ordinary living temperature and are there any other gases deleterious to health, and
how best to ventilate for them? A. Carbonic acid rises how best to ventilate for them? A. Carbonic acid rises to the top of a room because it is always evolved in a
heated condition. It then difues all through it. heated condition. It then diffuees all through it.
There are other gases and emanations from the body, as well as dust
by ventilation.
(4077) S. T. C. asks the difference beween a square foot and a foot square. A. A square of area. A foot square is a square surface of the length one foot on each of its four sides.
S. C. M. I. asks for a waterproof cement.-J. C. says Will you please tell me how to repair the back of a
mirror where the silvering has scaled off?-A. G. H. asks for a receipt for a good hard washing soap.-F. H W. S. says: I wish a paint mixture for ontdoor work nor turn yellow.-J. J. M. says : Do you know of any way I can get a formula for making a dressing fo ladies' shoes?
Answers to all of the above queries will be found in
he "Scientific American Cyclopedia of Receipts, Note and Queries," to which The advertisement of this book is printed in anothe column. A new circular is now ready

TO INVENTORS

An experience of forty years, and the preparation of more than one hundred thousand applications for pa-
tents at home and abroad, enable us to understand the laws and practice on both continents, and to possess un equaled facilities for procuring patents everywhere. A synopsis of the patent laws of the United States and all foreign countres may be had on application, and person abroad, are invited to write to this office for prices, tensive fa muNN \& CO., office Scientific American, 361 Broad

INDEX OF INVENTIONS

or which Lettere Patent of the
February 16, 1892.
AND EACH BEARING THAT DATE.

 к. ${ }^{46}$

 nvelope or case, P. J. Fish
Extension table, Coberan
Eyenasses,
E. E. Gregory

NOW READY!

A NEW AND VALUABLE BOOK.

12,000 keceipts. 680 Pages. Price $\$ 5$.
This splendid work contains a careful compila-
tion of the most useful Receipts and Replies given
in the Notes and Queries of correspondents as pubin the Notes and Queries of correspondentsas pub-
lished in the scientific American during the
past fifty years together with many valuable and
important additions.
over Thousand selected receipts are here collected; nearly every branch of the use-
ful arts being represente. It is far the most
comprehensive volume of the kind ever placed becomprenensile volume or the kind ever placed be-
Tore the worklic. may be regarded as the product of the
Tudiesand practical experience of the ablest chemists and workers in all parts of the world ; the inists ana workers
formation given being of the hig whest value, ar-
ranged and condensed in concise form convenient for ready use.
Almost every inquiry that can be thought of, relating to formulx used in the various manufac
turing industries, will here be found answered.
Instructions for working many different pro Instructions for working many different pro-
cesses in the arts are given.
It is impossible within the limits of a prospectus
to give more than an outline of a few features of to give more than an outline of a few features of
so extensive a work.
Under the head of Paper we have nearly 250 re-
cei, ts, embracing how to make papier maché: how cei, ts, embracing how to make papier maché : how
to make paper water proof and fire proof ; how to
make sandpaper, emery paper, tracing paper, transfer paper, carbon paper, parchment paper,
conred papers. razor strop paper, paper for doing
up cutlery, silverware; how to make luminous paper, photograph papers. ete.
Cnder the head of nearly 450 re-
ceipts, including the finest and best writing inks ceipts, inclucuing the finest and best writing inks
of all colors dring inks, luminous inks. invisi-
ble inks, gold, silver and bronze inks, white inks: directions for removal of inks; restoration of
faded inks, tct.
Under the head of Allors over given, covering a vast amount of valuable infor-
mation. Of Cements we have some 600 receipts, which
include almost every known adhesive preparation,
and the modes of use. How to make Rubber Stamps forms the subject
H a most valuable practical article, in which the omplete process is described in such clear and ex-
plicit termsthat any nntelligent person may readily learn the art.
For Lacquers there are 120 receipts; Electro-Me-
tallurgy 125 receipts; Bronzing, 127 receipts; Pho-
 Under the head of Etching there are 55 receipts,
embracing practical directions for the production of engravings and printing plates of drawings. 800 receipts, and include everything worth know-
ing on those subjects. ing on those subjects.
Under the had of Cleansing over 500 recipes
are given, the scope being very broad, embracing are given, the scope being very broad, embracing
the removal of spots and stains from all sorts
of objects and materials, bleaching of fabrics, cleaning furniture, clothing, glass, leather, metals,
and the restoration and preservation of all kinds
of of objects and materials. Soaps have nearly 300 receipts. Those who ara engaged in any. branch of industry
probably will find in this book much that is of practical value in their respective callings.
Those who are in search of independent business or employment, relating to the home manufacture
of sample articles, will ind in it hundreds of most
excellent suggestions.

MUNN \& CO., Publishers, SCIENTIFIC AMERICAN OFFICE,

361 Broadway, New York.

SMOKELESS GUNPOWDER-AN INteresting article by Hudson Maxim on the manufacture

[^0]
After being on the Market Five Years The "ACME" sill Leads!

Sizes One. T Two, Three, and Four Horse Power. Aranged for either NATURAL GAS
or Eerosene Oil itre, as ordered.

OIL WELL SUPPLY CO.

OCEAN STEAMSHIPS.
a popluar acoount
CONSTRUCTION, DEVELOPMENT, MANAGEMENT AND APPLIANCES.
by various authorities.
With 96 Illustrations, 8vo, - - $\$ 3.00$

\qquad OHARLES SORIBNER'S SONS,

PURE TEMPERED COPPER

ELECTRIC POWER APPARATUS, FOR EVERY VARIETY OF MECHANIOAL WORK.
SAFE, SUFE, RELIABLE.
EStimates fHOMSON-HOUSTON MOTOR CO. 620 ATLANTIC AVENUE, BOSTON, MASS.
 COMPTDMETER, $\$ 10.00$ to $\$ 50.00$ fatian

get one?
Send for circular. 52-56 TIIRRANT MFG. CO.

OTAARIXIS

 POWER WRIGGERSFGR HOSIERY aND DRying and verilating fans,

SCIENTIFIC AMERICAN SUPPLE-

保 in volume and qualilty of tone are
the BEBT IN THE world. WarSold by all leading dealers. Beau-
tifully illustrated souvenir catalogue with portraits of famous
artists will be Malled FREE. LYON \& HEALY, CHICACO.

HAN Duzen' Pat. Toone Pulley Onle
 SMALL ELECTRIC MOTOR FOR AM

The Dingee \& Conard Co's

ROSES

Are on Their Own Roots, and Thrive We where Others Fail. We are (and have been for years) the larges Rose growers in America. Mail trade is our great specialty. Wherever the mail goes, Our NEW GUIDE for 1892 is now ready. Our NEW GUTer handsomer than ever. It describes up-
wards of 2,0oo Roses, Bulbs, Hardy Plants and Seeds ; offers many Exclusive Novelties, and points
the way to success with flowers. Free on request. YHE DINGEE \& CONARD CO
Cose Growers and Sedsmen, WEST GROVE, PA.

PROPOSAL.

GEAR CUTTING

SEWING MACHINE MOTOR FOR AMA

BRICK, TERRA COTTA WD TILE MACHINERY

VOLNEY W. MASON \& CO.
FRICTION PULLEES CLUTCHES and ELEVATORS

Machinists' Tools of every description, drop forged from bar steel, orrect in design and unequaled in finish THE BILLINGS \& SPENCER COMPANY

GATES ROCK \& ORE BREAKER

Has produced more ballast. road

LIQUID FUELS FOR STEAM ENGINES

 238. Price 10 cents. To be had at this office and from
all newsiealers.

1 EATNESS \& HEAD NOISES CURED

 53 B'wwy, N.x. Write for book of proocs

Seientific Rook Go atalogue RECENTLY PUBLISHED.
Our new eatalogue containiny over lou pages, includ-
ing orks on more than ffty difiterent subjects. Will be
mailed tree to any adress on appliction.

$$
95 \text { MILK ST., BOSTON, MASS. }
$$

This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th 1877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnish ed by it or its licensees responsible for such unlawful use, and all the consequences thereot, and liable to suit therefor.
COAL TAR OR ANILINE DYES.-A
 CAN SUPPLEMENT, No. OU1. Price 10
at this office and frum all newsealers.

ELECTRO VAPOR ENGINE. GAS OR GASOLINE FOR FUEL. NO BOII.ER. NO FIRE. NO DANGER. NO ENGINEER.

Engine operated by spark
from small battery.

 pacity.

THOMAS KANE \& CO., CHICACO, ILL.
ICE-HOUSE AND COLD ROOM.-BY R

PATENT JACKET KETTLES

 Plain or Porcelain Lined.Tested to 100 li. pressure. Send for Lists.
BA RROWS SAVERY Cor

FPATENTS!

In this line of busintors.
 Co, also

 Patents in all the principal countries of the world.
MUNN \& CO., Solicitors of Patents,

KODAKS

 re always sold loaded ready for immediate use. They can be used for roll films or glassplates. The newpe pac of Daylight Kodak
can be loaded in daylight. Registers exposures and locks automatically when a new film is turned into place
$\$ 850$ to $\$ 25$ 으
\qquad THE EASTMAN COMPANY, Rochester, N. Y.

VAN DUZEN S Simep PuM
 THE SMITH PREMIER TYPEWRITER

ICE HOUSE AND REFRIGERATOR Directions a nd Dimensions for Construction with on

 LEARN WATCHMAKING of W. F. A. Woodeock, Wi-

1 mivez=

HRDIEOIN

GENERAL ELECTRIC CO.

INCANDESCENT AND ARC LIGHT PLANTS.

Stationary and Railway Motors.-Lamps.-Cables.-Safety Devices. DISTRICT OFFICES.
Canadian......Edison Building, Tr Bay St., Toronto, Can: $\left\lvert\, \begin{aligned} & \text { Paciffc Coast.. Edison Blding, } 112 \text { Bush St., S. Fran, Cal }\end{aligned}\right.$

 COMMON SENSE CHAIRS, SETTEES, AND ROCKERS Are just what their name implies. You cannot buy more sensible, easy seats.

 THE MODERN 1CE YACHT. - BY Geo. W. Polk. A new and valuable paper. containin
full practical directions and specifeations for the con
truction of the fastest and test sinds of Ioe Yachts hrt latest, most approved forms. Illustrated with en
graings mrawn to scale, showing the form, position
and arragement of all the parts. (oontained in scien
\qquad

NICKEL-IN-THE-SLOT MACHINES NICKEL-IN-THE-SLOT MACHINES
By W.L. Aughmbayh- An interesting descrition or
the variou coincontrolied aparatus now es common in

The Remington

Standard

pro \qquad are cons
$\substack{\text { TRY our PARAGON BRAND of TYPEWRITE } \\ \text { IIBDONS. }}$
Wyckoff, Seamans \& Benedict,
327 Broadway, New York.

Kghy finclevatons

The Most Popular Scientific Paper in the World

This widely circulated and splendidy illustrated aper is published weekly. Every yumber contains six-
een pages of useful information and a large number of original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures Chemistry, Electricity, Telegraphy, Photography, Architecture, Agriculture, Horticulture, Natural History, etc. Complete list of patents each week. Terms of Subscription.- One copy of the ScIENpostage prepaid, to any subscriber in the United States, Canada, or Mexico, on receipt of three dollars by the publishers; six months, 81.50 ; three months, 81.00 . Clubs.- Special rates for several names, and to Post
Masters. Write for particulars. The safest way to remit is by Postal Order, Draft, or Express Money Order. Money carefully plaeed inside of envelopes, securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk. Address seldom goes astray. but is at the sender's risk. Address
ail letters and make all orders, drafts, etc., payable to MUNN \& CO., 361 'Broadway, New York.

Scicutitic Americay Supplement
This is a separate and distinct publication from The SCIENTIFIC AMERICAN, but is uniform therewith in siza everyings, many of which are taken from foreign of enand accompanied with translated descriptions. THE IV, and ly, and includes a very wide range of contents. It prethe principal departments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural History, Geography. Archæology, Astronomy Chemistry, Electricity, Light, Heat, Mechanical Engineering,
Steam and Railway Engineering, Mining, Ship Building, Marine Engineering, Photography, Technology, Manufacturing Industries, Sanitary Engineering, Agriculture, Horticulture, Domestic Economy, Biography, Medicine, otc. A vast amount of fresh and The most in important Engineering
and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT.
Price for the SUPPLEMENT for the ERICAN and one copy of the SUPPLEMENT, both mailed for one yearfor 87.00 . Single copies, 10 cents. Address and MUNN \& CO., 361 Broadway, New York,

gruilding Editiom.

 The Scientipic american Architects' andBUILDERS' EDition is issued monthiy. $\$ 2.50$ a year. Single coples, 25 cents. Forty large quarto pages, equal large and splendid Magazine of Architecture, richly adorned with elegant plates in colors, and with other fine engravings; illustrating the most interesting examples
of modernarchitectural construction and allied subjects. of modern architectural construction and allied subjects.
A special feature is the presentation in each number of a variety of the latest and best plans for private residences, city and country, including those of very moderate cost as well as the more expensive. Drawings in Plans, Specifcations, Sheets of Details, Estimates, etc. The elegance and cheapness of this magnificent work have won for it the Largest Circulation of any
Architectural publication in the world Sold dealers. 82.50 a year. Remit to

MUNN \& CO., Publishers,
361 Broadway, New York.

PRINTING INES

[^0]: Mariner \& Hoskins, Assayers \& Chemists

 81 S. Clark Street (Top Floor), Chicago.

