
(Entered at the Post Office of New York, N. Y., as Second Class matter. Copyrighted, 1892, by Munn \& Co
A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES

Vol. LIXVI.-NO. 7.7 ESTABLISHRD 1845	NEW YORK, FEBRUARY 13, 1892.	$\left[\begin{array}{c} \boldsymbol{\$ 3 . 0 0} \\ \text { WEEKLT. } \\ \text { A YEA R } \end{array}\right.$

DR, \&, P, HANGLEY'S EXPERIMENTS IN AERODYNAMICS.-[See page 101.]

Stinutific Ghmericau.

MUNN \& CO., Editors and Proprietors

 UBLISHED WEEKLY A
No. 361 BROADWAY, NEW YORK.

D. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN
 MUNN \& CO, 361 Broadway, corner of 'Frauklin Street, New York.
The Scientific Ammerican Supplement

THE ARCHITECTSA BD BUILDERS EDITION OF THE SCIENTIFIC AMERI-

NEW YORK, SATURDAY, FEBRUARY 13, 1892.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT NO. 841

A VIOLENT ERUPTION OF THE SUN.

A very remarkable eruption of a solar prominence was observed on June 17 of the past year, at the Haynald Observatory, Kalocsa, Hungary, by the eminent astronomer, Julius Fenyi. At about a quarter to six in the evening the first signs of the eruption were seen and eighteen minutes later the great mass of intensely heated matter was found by spectroscopic observation to be in rapid motion. The enormous displacement of the spectrum toward the blue indicated an apparen shortening of the ether waves due to rapid motion of the glowing matter toward the earth. The prominence was essentially hydrogen. Several observations for velocity were taken, a direct maximum of 890 kilometer per second, equal to 553 statute miles, being obtained. The mass represented a suspended column, subtending 111 seconds, and rose while observed to a height sub tending 256.9 seconds of arc. But the velocity was not only in the direction toward the observer, it also moved laterally and also in the meridian. Combining two of the different velocities, a probable resultant velocity of 1,014 kilometers, or 630 miles, per second is obtained leaving out of account any movement in the meridian This is sixteen hundred times faster than a cannon bal moves, and is enough to indicate the projection of the hydrogen into space out of the sphere controlled by the sun's attraction.
The cause of the outbreak and its final result are mysteries. M. Fenyi even appeals to electricity as the possible cause. The next query would be, Where did the great mass of hydrogen go? Did it fly through space like a drifting cloud, to be torn to pieces and dis tributed to different orbs as a constituent of their atmo sphere? If it possessed quality enough of gravitation to keep its mass together, it might, when appropriated by some distant orb, gravely modify its atmosphere. It might find oxygen enough in such atmosphere to com bine with and produce a conflagration to be revealed to our astronomers years hence, when the ether wave annou
From the magnetic records at Greenwich Observa tory, in England, it appears that there was a marked magnetic disturbance, very short lived but clearly registered, at the time of a similar disturbance observed from Paris on the same day. But this was slight in ex tent compared to other perturbations.

THE CONGRESSIONAL REPORT OF THE COMMISSIONER

 of PATENTS.Two annual reports are made by the Commissioner of Patents, one in the middle of the year, July, to the Secretary of the Interior, the other in January, to the Senate and House of Representatives. The latter ha just been presented by Commissioner of Patents W. E Simonds, late Member of Congress from Connecticut. It is his first report, and is a most able and interesting document. The value and importance of the services rendered by inventors are eloquently set forth, and the measures necessary to enable the public to reap benefits from these services are described. Among the means to these ends the improvement of the Patent Office i shown to be essential. Its present crowded condition is disastrous to all concerned. The health and efficiency of employes are sacrificed for want of room for air and action. The report concludes with severa valuable suggestions for modifications of the existing patent laws in the interest of inventors and the people We make the following abstracts from the report .
The total number of applications for patents during the year 1891 was 40,452 . Total number issued 23,244. Total receipts, $\$ 1,271,285$. Expenses, $\$ 1,139,713$ Balance now in the United States Treasury on account of the patent fund, $\$ 4,004,317$. The Commissione says:
"As regards the rooms occupied by the examiners, the need is urgent. The cubic feet of space per occu pant is 916 feet. Dr. John S. Billings, in his work en titled 'The Principles of Ventilation and Heating, gives 4,200 cubic feet as necessary for each person in a room with 'ordinary ventilation' for two consecutive hours of occupancy. These examiners' rooms are oc cupied seven consecutive hours each day, with the exception of half an hour for luncheon. These rooms hardly attain what might be called 'ordinary ventilation,' for all of them are dependent upon the doors and windows for fresh air, except that one of them has a small ventilating register, which cannot be used, and five of them have grate fires, which to a degree assist the ventilation. The heating is attained in some rooms by the steam pipes, in others by hot air registers, and in still others by stoves. It is the rule rather than the exception in these rooms that the floor space is so occu pied by desks and cases for papers that the occupants move about in them through tortuous lanes. Cases of drawings belonging to the patented files are necessarily located in large number along the sides of the corridors, where the public passes to and fro. This is unsafe and unsightly. This state of affairs not only puts unneces sary discomfort upon the examiners, but it also unfav orably affects their health, and, to a degree tb $\dot{\sigma}$ is nıre
than noticeable, prevents them from d ing work to than noticeable, prevents them from d ing work to

The public benefits resulting from the policy of granting patents are sketched by the commissioner a follows: "The vast majority of our great manufactur ing industries were originally based upon inventions recorded in the United States Patent Office. The following are a few and only a few of the American inventors whose reputation has become national and whose improvements have formed the foundation of manufacturing industries of great magnitude: John Fitch, Robert Fulton, and James Rumsey as to steam boats ; Eli Whitney, as to the cotton gin ; Oliver Evans as to milling machinery; Amos Whittemore, Erastu B. Bigelow, and Barton H. Jenks, as to looms; El Terry, Ira Ives, Noble Jerome, and Chauncey Jerome, as to clocks; Peter Lorillard, as to tobacco making E. I. Dupont de Nemours, as to gun powder; Jesse Reed, as to nail making; William Edwards, as to leather making; Jethro Wood, as to iron plows Thomas Blanchard, as to lathes for turning irregula forms; Asa Spencer, as to geometrical lathes; Richard M. Hoe, Isaac Adams, Stephen P. Ruggles, Andrew Campbell, Moses S. Beach, and G. P. Gordon, as to printing presses ; Samuel W. Collins and Elisha K Root, as to ax making; Oliver Ames, as to shovels William Woodworth, as to wood working; Thaddeus Fairbanks, as to scales ; John J. Howe and Chauncey o. Crosby, as to pin making ; Eliphalet Nott and Jor dan L. Mott, as to stoves; Robert L. and Alexander Stuart, as to sugar refining; Matthew W. Baldwin and Ross Winans, as to locomotives ; Cyrus H. McCor mick and William P. Ketchum, as to mowing and reaping ; Samuel Colt, Ethan Allen, Christian Sharps Edmund Maynard, Rollin White, Christopher M. Spencer, Horace Smith, and Daniel P. Wesson, as to fire arms; Alonzo D. Phillips, as to friction matches Henry A. Wells, as to hat making ; Charles Goodyear Nathaniel Hayward, and Horace H. Day, as to India ubber; John Ericsson, as to naval construction and hot air engines; Elias Howe, Jr., Allen B. Wilson Isaac Singer, J. E. A Gibbs, William O. Grover, and William E. Baker, as to sewing machines; S. F. B Morse Royal E. House, and David E. Hughes, as t telegraphs; Henry B. Tatham, as to lead pipe ; Cullen Whipple, as to wood screws; Jonas Chickering and Henry Steinway, Jr., as to pianos; Henry Burden, a to horseshoe machinery; Linus Yale, as to locks ; John A. Roebling, as to cables, chains, and bridges; George H. Corliss, as to steam engines; Asa Whitney and Nathan Washburn, as to car wheels; Gail Borden, Jr. as to condensed milk; William and Coleman Sellers, as to shafting and iron working; Hemry Disston, as to saws; James J. Mapes, as to fertilizers; John Stephenson, as to horse cars; R. P. Parrott, as to cannon Richard J. Gatling, as to Gatling guns
These men and thousands of others like them enjoyed for a little time the ownership of the property the produced by their own brains and their own hands out of materials belonging to no one else, and that property of vast and peculiar value has been given to the American people forever. Even during the few years that they enjoyed the ownership of the property which was theirs by the best and highest of all possible titles-that of creation-they realized but a small frac tion of the benefits flowing from their improvements Even during that limited period the lion's share inured to the public benefit in added comfort and lowered prices.
The patent law does not exist for the benefit of in ventors. It exists for the benefit of the public. The enlightened public selfishness which called that act into being was expressed in the organic law-in the Constitution of the United States-when Congress wa therein authorized to secure 'for limited times to au thors and inventors the exclusive right to their re spective writings and discoveries, in order 'to pro mote the progress of science and useful arts.' The magnificent degree in which the progress of science and the useful arts has been promoted in America by wise patent laws ought to be clear to the dullest com prehension.
The benefits of the patent system are by no mean confined to the manufacturing industries. It may wel be doubted whether the larger benefits do not flow to that portion of our people who seem to have the east connection with those industries. It was Whit ney's improvement in the cotton gin which made pos ible the marvelous cotton culture of the South, ducing thirty-six hundred and twenty-t $\hat{0} 0$ pounds of the staple in 1889, which without the school master's invention would have required the labor of three millions of men for a year simply to clean it.
The settlement and cultivation of the great West have been made possible only by patented improve ments in agriculture and in transportation. Unde the old order of things it would have required the labor of all the men and boys in the United States some twenty-four millions in number, to plant and till and harvest the American corn crop of 1889, it being more than two thousand millions of bushels, raised upon seventy-eight million acres of land, leav ing to take care of itself meanwhile four hundred and ninety million bushels of wheat and seven hun dred and fifty million bushels of oats produced in that
same year. And under that old order of things the value of each bushel of this grain would have been consumed in transporting it three hundred miles, while now it is carried across a continent and across an ocean and still sold at a living profit.
There is no class or condition of men in the whole There is no class or condition of men in the whole
country which has not felt the blessings of American country which has not felt the blessings of American
inventive genius, fostered into its fullest flower by wise and kindly patent laws.
That same inventive genius has greatly enlarged the employment of manual labor and enhanced its wage. Every calculation to the contrary, based upon doing a modern volume of business by the number of men who would have done it under the old order of things, has the fatal defect of forgetting the inevitable relation between lessened price and increased consumption. The man who, at the meeting of the American Social Science Association in 1878, calculated that on a single great modern daily newspaper a few men, using modern machinery, had practically displaced more than five thousand printers, using the press of Benjamin Franklin, omitted to note that the wages of this army would have so raised the cost of the journal as to annihilate its circulation and destroy the enterprise. It is an absolute condition of the doing of any modern volume of business that it shall be done in the way it is done.
"No greater labor-saving device than the sewing machine was ever invented, or is ever likely to be; but its introduction into common use greatly enlarged the field of manual labor. In 1838 Walter Hunt had all but perfected a practical sewing machine; but upon the protest of his wife as to its effect upon tailors and sewing women he gave his invention over to darkness and oblivion. Nevertheless, the sewing machine was made a common thing between 1850 and 1870-a period of time in our national life more important and interesting in most particulars than any other similar period. In 1850 there were fifty-two thousand tailors in a population of twenty-three millions, or one tailor to four hundred and forty-two inhabitants. In 1870 there were one hundred and six thousand tailors in a population of thirty-eight millions, or one tailor to three hundred and fifty-eight inhabitants. Population in these two decades increased sixty-five per cent; but the number of tailors increased more than one hundred per cent. Meanwhile the manufacture and sale of sewing machines had given profitable employment to at least forty thousand persons, and millions of sewing machines had gone into use in factories and families, effecting a saving well-righ neasureless in that labor which is performed with the needle
"The locomotive is another immense labor-saver which first became common in America in the period between 1850 and 1870, and while in those two decades the population increased sixty-five per cent, the makers
of common carriages and wagons increased in number of common carriages and wagons
more than two hundred per cent.
"Among the English-speaking peoples, never, since they crept out of the twilight of the Middle Ages, has the beneficial effect of wise patent laws been seriousl questioned."

The Whitening of Wool

We owe to M. Hofmann, of Dresden, an interesting communication on the process employed for producing a pure white on wool. It is well known that it is impossible, even by the aid of the most active bleaching
agents, to remove from the wool a faint shade of yelagents, to remove from the wool a faint shade of yel-
low, which becomes specially noticeable when the material is contrasted with silk or cotton. The neutralization of this yellow by a complementary blue, such as is used for cotton, linen, paper, etc., only gives poor and unsatisfactory results. Attempts have long been made to give wool a better white by means of white
topping substances, such as magnesium carbonate. topping substances, such as magnesium carbonate.
This method has had, however, to be given up on account of the dust formed after a short period of storage. The author proposes to obtain a better result by
vegetalizing the wool, that is to say by impregnating vegetalizing the wool, that is to say by impregnating it with a solution of cuprous oxide in ammonia, and then passing the fiber into a solution of sugar or dilute
acid, acid, which precipitates the cellulose in an insoluble
form, and thus fixes it. To render the gelatinous celform, and thus fixes it. To render the gelatinous cel-
lulose thus deposited opaque and white, the material is dipped into ether. The same result is obtained by F. V. Hallah, by the use of hyposulphite (the old hydrosulphite) of soda and indigo. The effect produced is of two kinds: The hydrosulphite produces decolorization by its energetic redueing action, and by dissolving the indigo mechanically deposited on the surface of the tissue, causes the coloring matter to penetrate uni formly into the fiber. The blue color is restored to the indigo by a subsequent exposure to the air, and, being
complementary to the yellow of the wool, completely destroys it. It is very doubtful whether, even under destroys it. It is very doubtful whether, even under
these conditions, a perfect equilibrium is attained between the yellow shade which is to be removed and the blue of the indigo. We have already observed that the numerous attempts previously made in this
direction, with various coloring matters, have resulted in failure. However this may be, the method as given by the Deutsche Farb. Zeit. is as follows:

The hyposulphite solution should be prepared imme diately before use. For this purpose, 7 parts of zine dust, or 20 to 30 parts of granulated or sheet zinc, are sodium, representing about 100 parts of the dry salt. The operation is carried on in a well closed vessel, which must be shaken up at intervals during an hour.
The clear liquid is decanted, and contains hyposulphite of sodium, together with some of the zinc salt. The woolen material, carefully purified, washed, and freed from fat, etc., is thoroughly moistened in a bath of cold water, in which indigo is suspended in a very fine
state of division. The best quality for the purpose is state of division. The best quality for the purpose is vat process. The material emerges from the bath covered over with particles of indigo deposited on the surface. It is then passed into the bleaching solution, which is composed of water and hyposulphite solution at 1° to 4° Baume. Just before passing in the material,
a quantity of acetic acid, equivalent to the hyposul a quantity of acetic acid, equivalent to the hyposu-
phite present, is added. It is essential that the stuff be properly manipulated, so that the reduction of the indigo proceeds with perfect regularity.-Le Mon. de la Teinture.

Dr. Crerar's Cure for Influenza.

"There can be no question," says the London Lancet, "as to the advantage of having prompt recourse to rest in bed and a persevering administration of easily assimilable food, together with such special reme-
dies as may be, called for by the type of the disorder. Every practitioner knows that the manifestations of influenza are by no means uniform, that in some the headache, pains, and prostration, in others gastric or pulmonary catarrh, predominate, and he has to regulate his choice of remedies accordingly. Few all precautions, it is possible to ward off the supervention of severe bronchitis or pneumonia, which carries off so many of the weakly and the aged, or to prevent the protracted convalescence and the nervous sequelæ that characterize a certain number of cases. When, however, we attempt to realize the extent to which influ enza prevails, and estimate its gravity in proportion to its morbidity, even the long list of fatalities dwindles to almost insignificant proportions. Still, this is butsmall consolation, and the demand for some truly specific or antidotal remedy is perhaps natural. Many such have been introduced-some, to be sure, with little reason, and all based more or less upon theoretical considerations. There is, however, one remedy which, from its simplicity and from the very confident opinion ex-
pressed by its introducer, may be singled out, in order pressed by its introducer, may be singled out, in order,
if possible, to get some more general opinion as to its merits. We refer to the use of large and repeated doses (thirty grains every two or three hours) of potas sium bicarbonate, which Mr. Crerar, of Maryport, in troduced to the notice of his fellow practitioners in an address he delivered in 1891, as president of the Border Counties Branch of the British Medical Association.
"We need not concern ourselves with the somewhat strained analogies and arguments adduced by Mr . Crerar in that paper, or dwell on the fact that it is not possible from his address to perceive why he should have come to the conclusion that the influenza poison
could be neutralized by increasing the alkalinity of the blood. We may fail to be convinced of his logic, and yet not refuse to accept his facts; and the evident sincerity of his statements, which, in a paper he has ust forwarded to us, are supported by the experience of others, and particularly by the personal testimony of a well known teacher in Edinburgh University, to gether with the results of the treatment in the wards of the Edinburgh Infirmary, seem to warrant some at tention being paid to them. It is not necessary to give
the text of this paper, which mainly consists in the citation of such testimony, but in justice to its author we may quote his conclusions as to the advantages of the method. They are :
"' 1 . If used before the attack, it prevents the disease . It destroys the power of the disease within twenty our hours, generally within four or six hours. 3. The strength is conserved, and the convalescence is short
añd satisfactory. 4. Sequelæ are conspicuous' by their absence. 5. The death rate is reduced to a minimum I have not had any death in more than one thousand
cases. 6. It has more power over influenza than I have cases. 6. It has more power over influenza than I have any other disease, and I have had an extensive practice for upward of a quarter of a century. 7. If adopted by the whole profession, it would make influenza non-existent in one

"The foundation."

The last two conclusions may be open to question but the preceding are statements which no medical practitioner of standing would venture to put forward
without good cause. Therefore, without without good cause. Therefore, without in any way desiring to bias opinion, we have, after due considera-
tion, deemed it only right to call attention to these statements in order that they may be put to the test No doubt one's first impulse is toward incredulity, but prima facie it can hardly be asserted that the method
is unreasonable, although the administration of such large doses of a salt that has undoubtedly a depressing action on the circulation is surely a step to be taken with circumspection and care, especially in a disease so characterized by depression as influenza."

The Earth an outer Shell with a Fluid Filling. Just why the magnetic needle, instead of pointing ue northward, inclines to one side to a greater or less degree, and why the region toward which it is directed keeps shifting slowly, is a problem which has for ages baffled the wisest men. But a solution of it which, if it is not accepted by the scientific world as complete and inal, at least has much to commend it to instant favor, is now offered by Henry Wilde, F.R.S. It is briefly discussed in the American Meteorological Journal for January by that new, though already eminent, au thority on terrestrial magnetism, Professor Frank H Bigelow.
Mr. Wilde has come to the conclusion that the outer shell of the earth and the great mass within rotate somewhat independently of each other. The interior portion, still in a liquid condition, he conceives as continuing to revolve about the axis which our planet had in its infancy; that is, one perpendicular to the plane of the ecliptic. Somehow, in the great cataclysm in which the moon was thrown off from the earth, the crust of our globe was, he thinks, skewed over to one side about twenty-three degrees; and this part of our sphere, therefore, revolves about what we call "the geographical pole." The inner mass, like the other planets and the sun, he regards as electro-dynamic; while the shell is electro-magnetic. Furthermore, two causes are supposed to render those portions of the earth's exterior underlying the oceans more highly magnetic than others : the permanent low temperatures at the bottom of the ocean, and the greater amount of iron here included, the crust being thicker under the seas than elsewhere.
For purposes of demonstration Mr. Wilde constructs machine, consisting of one sphere within another lightly larger one, both converted into magnets by coils of wire encircling them. Upon those portions of the shell which correspond to the oceans he attaches magnetized sheet iron. And by means of proper gearing he makes the inner and outer spheres rotate on axes $231 / 2$ degrees apart. Finally, for test purposes, he provides for temporarily fixing a magnetic needle at any point on the surface of globe. With this ingenious apparatus, he declares he can reproduce every known variation of intensity and direction in terrestrial magetism of which he can find a record; and, what is the convincing feature of his experiment, the real magnetic history of all parts of the world for the last four centuries, so far as he can learn it, is actually repeated in the minutest details when the inner sphere is made to fall behind the outer one, in their revolution, at the rateof $221 / 2$ minutes of an arc annually ! That exceedingly well informed and cautious expert, Dr. Charles A. Schott, of the United States Coast and Geodetic Survey, tells Professor Bigelow that he has records of magnetic variations of which Mr. Wilde is evidently ignorant; and that when these are used as tests, in addition to the vast number of verifications Mr. Wilde has pre-
sented, the theory still holds good. The period of time here required for one whole "secular" change is 960 years, which agrees with the values of Sir William Thomson, though differing somewhat from tradition. The only doubt which will remain in any scientific mind regarding the soundness of Mr Wilde's explantions, after studying this magnificent demonstration, will probably spring from the notion, now widely entertained by physicists, that the earth is solid to its core. Sir William Thomson has expressed the belief that the whole globe is as rigid as glass, if not as firm as steel. Yet Mr. Wilde declares himself thus confidenty: "From the various movements of the declination and inclination needles, correlated with each other in direction, time, and amount, on different parts of the earth's surface, the theory of a fluid interior may now be considered to be as firmly established as the doctrine of the diurnal rotation of the earth on its axis."-N. Y. Tribune.

Walter A. Wood.
The Hon. Walter Abbot Wood, the inventor, and founder of the manufactory of harvesting machines, well known all over the world, died, aged seventy-siz, at his residence at Hoosick Falls, New York, on the 15th ult., from the effects of influenza and pneumonia. He was one of the earliest and largest makers of reaping and mowing machines, beginning in 1852, since which time he and the company of which he was president have made nearly a million machines. They made the first wire and string self-binders ever sold. Mr. Wood had had conferred upon him the Legion of Honor, by the Emperor Napoleon III., at Paris, in 1867, and the Francis Joseph Cross by the Emperor of Austria at Vienna, in 1873. He represented his district in Congress for four years from 1878 to 1882.

The first theater in the United States was at Wil-
lamsburg, Va., in 1752.

NEW SYSTEM OF MARITIME NAVIGATION

At a recent session of the French Academy of Sciences, Mr. Gustave Trouvé presented a paper upon a new system of maritime navigation with which he has for some time been experimenting. In this system locomotion is evidently possible only through the aid of floats, but as regards methods of propulsion there exists an infinite number. Now, Mr. Trouvé has always been struck with the great difference observed between the speeds of locomotives and ships. Although the latter are provided with engines that are much more powerful than those employed in terrestrial propulsion, they nevertheless attain a speed half less than that of the former. This great kinematic inferiority of ships he attributes to the enormous resistance offered to them by the water in which they are partially submerged, and it is to the diminishing of such resistance, by transforming the submerged floating portion, that he has devoted himself. But do the two functions of sustentation and propulsion each necessitate, in reality, its own particular organs? May not a single apparatus suffice for them both? It was in order to solve these questions experimentally that $\mathbf{M r}$. Trouve, as long ago as 1885 , designed the apparatus of which a side and front view is given in Fig. 1.
A light boat is carried by a sort of A light boat is carried by a sort of
tricycle, whose large wheels have a subtricycle, whose large wheels have a sub-
merged volume sufficient to maintain, of merged volume sufficient to maintain, of themselves alone, the entire system upon
the surface of the water. These wheels the surface of the water. These wheels
are hollow, and the circumference alone enters the water. In order the better to ascertain whether the thrust of sustentation should be divided between the boat and the wheels or reside solely in the propeller, and, if the first case is the best, in order to determine the exact ratio of the volume non-submerged, the small boat in which the experimenter is seated may, at the will of the pilot and by means of screws, be submerged by insensible degrees in the water, and the wheels thus be relieved, or it may be raised wholly above the water along with its passenger. The two large forward wheels are set in motion through the intermedium of an electric motor placed upon the boat. The third wheel is movable at the stern and serves as a rudder. All three are provided with paddles, after the fashion of mill wheels. The results obtained with this apparatus and an accident encouraged Mr. Trouve to complete it. In fact, at a soiree at the Paris Observa tory, he was exhibiting the propelling apparatus of his electric boats to Admi ral Mouchez's guests, when he perceived that all his measurements had been badly made, and that his generators of electricity were too heavy for the little boat constructed for the occasion, and caused it to sink. As it was not possible to forego his exhibition, he resolved to have recourse to an artifice.
In the first place he suppressed the two heavy generators, and, under pretense of causing his boat to produce a useful effect, he formed, through alternate platos of zine and copper supported by corks, a small float which he connected with the boat and propelling apparatus by the conducting wires themselves. As for the liquid, wishing on the one hand to allow it to preserve the aspect of ordinary limpid water, and, on another hand, recalling the fact that sea water had already been used as a liquid in certain'batteries he contented himself with saturating his liquid with sea salt. The boat and float then sailed as well as could be desired.
A short time afterward Mr. Trouve renewed his experiments upon a larger scale, with a sea water battery, and his new experiments showed him that the water of the ocean furnished a much higher potential than did the artificial saline solution, the electro-motive force of a single element sensibly reaching one volt. They taught him also that the water of the Mediterranean was more electrogenic than that of the ocean, owing to a greater evaporation under the influence of a warmer climate, and consequently to a more perfect saturation than that of the Atlantic, the mean temperature of which is lower. He found that the electro-motive force is, moreover, variable from day to day for the same source, and that the solubility of the salts plays here again the principal if not the only role
In the application of this system on a large scale, a battery float is placed astern of the vessel (Fig. 2), and the elements, united in a battery, being submerged, the current is led to the motor on the vessel through th aid of two cables containing the conductors. At least five or six volts are thus obtained without any trouble. Moreover, in order to prevent breakage, care must be
taken to render the connecting cables and the conductors independent, as the latter never have to undergo direct traction. During a violent tempest, and in all cases where a stoppage is usually made, the battery may be taken on board, its weight being relatively light. In order to lighten the weight of the elements in the water, Mr. Trouve bends the copper plates upon themselves and closes the hollow mass thus formed, so that the thrust of the liquid perfectly balances the total weight of the couples.
As for the floating battery, that possesses a great advantage over steam, in that it can be immediately exchanged in a port of supplies. The exchange is effected much more quickly than is the ordinary loading with coal. Floating batteries already prepared may await the ships in a dry place.
The power of such a battery is much greater than might be thought at first sight. In fact, if we take, for example, a vessel 100 meters in length and 16 in breadth, and suppose that the elements and their electrodes are 1 decimeter distant from each other, and that they
plunge to a depth of 4 meters in the sea, the total active

Fig. 1.-SIDE AND FRONT VIEWS OF TROUVE'S ELECTRIC BOAT, IN WHICH THE PROPELLER AND THE FLOAT ARE COMBINED

Fig. 2.-FLOATING BATTERY TOWED ASTERN OF A BOAT, OR ARRANGED UPON THE FLOAT PROPELLER

Electricity in Paper.

No discovery has yet been made, and no contrivance has been introduced, says the American Art Printer, that will absolutely dissipate or nullify the disturbing effects of electricity in paper, either latent or generated by the revolutions of the press. Many employers have paid out considerable money to electrical experts and others who claimed to have discovered or to be in possession of infallible remedies for this trouble; but not one of them has squarely fulfilled the terms of this contract. We have studied the effect of wires connected with batteries and of wires connected with gas or other pipes leading to the ground; the latter on the principle of the lightning rod. While these do to a certain extent help to modify the action of electricity or the generation of it, they fall far short of doing it effectively and completely, and for that reason do not justify the outlay of much money upon them
Again, many printeries throughout the country beyond the reach of those who could help them with the appliances described, are at an expense which as we have just said, the modicum of benefit tha would be desired would not justify. It is for this reason that we recommend to all who have trouble with electricity in paper the adoption of the simple and inexpensive but surprisingly effective remedy we now present.
In nearly every printery a bottle of glycerine is kept for one purpose or another. Take this bottle and a clean rag or other cloth, wet the cloth with water and wring it out well until it is only damp, then pour a little glycerine upon the damp aloth, and wipe the sur face of the tympan sheet with it, only on that part of the sheet where the impres sion is, as it is there that the reaction is effected-at the point of pressure. Do not put on too much glycerine, as it will wrinkle the sheet too much. Simply go over it as you would in oiling the sheet to prevent offset, but do not saturate it. If you find that one application or wiping will not stop the trouble, go over the im pression parts again in the same manner Some kinds of stock are more susceptible than others, and call for an additiona application.

This is the simplest and cheapest of al the remedies, and ascood as any hither to known.-American Art Printer.

Irrigation in Montana.

Census Bulletin, No. 153, the fifth of the series devoted to irrigation in the arid States and Territories, has been pre pared Mr. F. H. Newell, special agent of the Census Office for the collection of statistics of irrigation, under the direc tion of Mr. John Hyde, special agent in charge of the Division of Agriculture and relates to the State of Montana, in which there are 3,706 farms that are irri gated out of a total number of 5,664 The total area of land upon which crops were raised by irrigation in the census year ending May 31. 1890, was 350,58 acres, in addition to which there wer approximately 217,000 acres irrigated for grazing purposes. The average size of the irrigated farms, or, more strictly, of irrigated portions of farms on which crops were raised, is 95 acres. The average first cost of water right is $\$ 4.63$ per acre, and the average cost of preparing the soil for
uperficies will be 800 square meters (since the two sur faces are utilized), or, at the rate of five plates per run ning meter of width of float, 4,000 square meters, and or the 16 meters of breadth, 64,000 square meters. Ad mitting, now, that we have at our disposal an electromotive force (and it is minimum) of 6 volts, and of an intensity of 10 amperes per square meter, let us say, in word, 60 watts per meter of superficies, or practically 6 kilogrammeters, and we shall have at our disposal a power of more than 5,000 horses. Mr. Trouve remarks that the energy discharged can but increase with the speed, since the hydrogen of the electrolyte is driven way by the current of water that is created between the elements, and induced currents have hardly the time to form. There is, then, in short, no polarization and this redoubling of energy is comparable to that which we observe in a battery when the liquid is agi tated.
Mr. Trouve asserts, in conclusion, that his new system of maritime navigation with sea water battery is based upon solid data verified by the experiments that he has made, in company with Mr. De Nabat, on a boat 8 meters in length running at a speed of 8 kilo meters per hour. He employs the geometrically perfect screw constructed after a new process that he present
ed to the Academy of Sciences on the 12th of July, 1886
cultivation, including the purchase price of the land, is $\$ 9.54$ per acre. The average presen value of the irrigated land of the State, including buildings, etc., is reported as $\$ 49.50$ per acre, showing an apparent profit, less cost of buildings, of $\$ 35.33$ per acre The average annual cost of water is $\$ 0.95$ per acr which, deducted from the average annual value which, deducted frease an average annual return of $\$ 12.01$ per acre
The farms or stock ranches in Montana irrigated merely for grazing purposes have therefore not been taken into account in this bulletin beyond the foregoing statement as to their approximate total area.

The Proposed Columbian Tower.

We have received from Chs. Baillarge, C.E., one of the competing architects for the London tower, a communication favoring the idea of a gigantic globe for a monument instead of the servile imitation of the Eiffel tower. By inclining the axis so as to lie in parallelism with that of the earth the visitor would, at the highest point, emerge out at Chicago, and see near him the models of Columbus' galleys approaching the unknown coast. He proposes that the interior should represent the firmament; with incandescent lamps of varying power representing the stars.

a Straining and measuring pot

The straining and measuring pot shown in the illustration is designed to be especially useful and convenient in families, drug stores, etc. Upon its body, at spaced distances, are ribs or rings to afford means of measuring the contents of the vessel. A removable funnel strainer, A, has a flange or rim fitting in an annular recess around the top of the pot, to offer no obstruction to the closing of the cover, and the liquid with which the pot is supplied is passed through this strainer. The funnel-shaped outlet is also supplied with a strain-

stantons straining and measuring pot.
er, B, by which the contents are strained while being poured out, two strainings being thus effected. The spout of the discharge pipe has a cap stopper to prevent the entrance of insects, dust, etc.
This improvement has been patented in the United States, Great Britain, and France, by Mr. George C. Stanton, of New Iberia, La., to whom application may be made for further particulars.

AN IMPROVED CULTIVATOR

A cultivator especially adapted for working sugar cane and similar plants is shown in the illustration. It is of simple and durable construction, and the rotary hou consists qf a sexies of teeth whose upper ends are contact with the cane stalks they will yield sufficiently contact with the cane stalks they will yield sufficiently by Mr. William H. Waggoner, of Patterson, La. The frame of the machine is centrally braced by a longitudinal angle beam, and on each end of the axle, near the supporting wheels, are ratchets engaged by springpressed dogs on the wheel hubs, the dogs being readily held out of engagement with the ratchets by bolts

WAGGONER'S ROTARY CULTIVATOR.
when desired, as when taking the machine to or from the field, etc. Just front of the axle, journaled in the longitudinal brace beam and one of the sides of the franie, is a transverse shaft, on which is a pinion meshing with a spur gear on the axle, the transverse shaft having on its inner end a bevel gear meshing with a bevel pinion on a vertical shaft, to the lower end of which the hoe is secured. The hub of the bevel pinion turns in a suitable opening, and has a bearing at its lower end upon a yoke rigidly held to the bottom of the frame, the vertical shaft having a longitudinal key-slot and the hub of the pinion having a key extending into the slot, whereby the shaft may be vertically adjusted to raise or lower the hoe. The adjustment is effected by a lever fulcrumed on a standard, the lever having a spring-pressed pawl and auxiliary thumb lever, and the pawl engaging the teeth of a vertical rack. The hoe consists of a series of radial arms, as shown in the small figure, each of the arms consisting of two longitudinal
sections, each having a longitudinal channel in its in ner edge, with semicircular upper and lower aligning re cesses for the teeth, the upper recesses being larger than the lower ones. The teeth are round, each having near its upper end a collar, and in the upper recesses of one section rubber sockets are placed, into which are introduced the upper ends of the teeth, the collars being located in the channels, and the other section being then bolted to place. With this arrangement the teeth will yield as they come in contact with obstacles, and may be swung in any direction, automatically returning to their normal upright position after passing the obstruc tions.

A Wreck-Indicating Buoy.

A new device to indicate the position of wrecks by Mr. A. F. Ward, of Detroit, Mich., consists of a hollow ball of two halves, the bottom one being attached to a bed by a soluble glue joint. This bed is fixed to an iron plate which is screwed to the deck of the vessel or in any suitable position. As soon as the dissolution takes place the buoy rises, a cord, which can be of any length $-1,000$ feet and upward-and which is fixed on a reel in the hollow ball, reels off through the bottom of the ball. As soon as the latter reaches the surface the line stops paying out, the core of the reel being controlled by springs. The soluble joint is protected by a flange, which prevents water reaching it before the buoy has which prevents water reaching it before the buoy has
been submerged for some time, seas washing over the been submerged for some time, seas washing over the
deck having no effect on it. The soluble joint can be arranged to dissolve within any time desired from 24 to 48 hours, and the cord may be replaced by copper wir when used in salt water

AN ENSILAGE HARVESTER AND CHOPPER.

The illustration represents a machine designed to be taken out into a field of standing corn, and, with three horses and two men, cut down the corn, elevate it to chopping knives, cut it into half inch lengths, and then convey the product into a cart accompanying the machine. This work is designed to be effected at the rate of speed of a self-binder-from eight to ten acres, or 150 to 200 tons per day-thus practically putting en silage within reach of farmers of very moderate means.
Cutting or harvesting knives are located at the front of the main frame, at the foot of a conveyer connecting at its upper end with a chopping box supported on a rear extension of the frame. Within the chopping box, immediately behind the upper conveyer-shaft, are two horizontal feed-rollers adapted to grasp and carry the fodder to a series of cutting blades, spirally ar ranged in a manner to form an open cyïnder.

An inclined chute is located in the chopping-box just below the knife cylinder, and carried downward and outward near the bottom, its projecting end extending nearly to a second rear conveyer leading up ward and outward, in position to permit of a cart being driven beneath it to receive the chopped feed for transportation to the silo. All the mechanism is actuated by the drive-wheel journaled at the right hand side of the center of the mair frame, there being erected around the wheel an upright framing, on the front upper portion of which is a bracket in which is journaled a reel shaft, the reel being of any approved construction and adapted to feed the standing grain to the harvester knives. The harvester knives are also actuated by a crank and pitman connected through the medium of shafts having bevel pinions and gears with one of the two spur wheels on the drive axle. The pinions may be readily disengaged from the gears to discontinue the motion of the harvesting knives and reel, as well as that of the chopping knives and both con veyers.

This one machine is intended to take the place and do the work of several machines now used in harvest ing and chopping corn, oats, or other green fodder for ensilage. It is adapted to be drawn by horses or pro pelled by steam power, any farmer employing it being able, with his own help, to fill his silo at his leisure, and at far lower cost than at present. It is also adapted for use as a soiling machine, cutting all kinds of green crops for soiling cattle with the greatest ease.
For further information relative to this improvement, address W. J Conroy, the patentee, Aylmer, Que bec, Canada.

Beet Sugar in Canada.
Following the example of the United States, the Canadian government has passed a law offering a bounty of one cent per pound on all beet root sugar produced in the Dominion between July 1, 1891, nd July 1, 1893, with an additional Ju the and cents per one hundred pounds for each degree, or fraction of degree, over 70 degrees polariscope test.

AN IMPROVED CLOTHES LINE PULLEY.

The device shown in the illustration is of simple and urable construction, the line passing freely around the pulley and carrying with it a hanger to which the clothes are attached. The improvement has beei patented by Mr. John J. Leuzinger, of West New Brighton, N. Y. The block in which the grooved pulley is pivoted has a semicircular recess in its under face, the recess extending through one edge of the block, and its side walls being concave. The pulley is of slightly less diameter than the diameter of the recess, leaving sufficient space between the peripheral surface

LEUZINGER'S CLOTHES LINE PULLEY.

of the pulley and the edges of the concaved walls for the line with the hanger to pass freely. The head of the bolt on which thc pulley is pivoted is at the upper face of the block, and its lower end is provided with a suitable washer and a nut. The block has at one edge a lug or ear, with an eye or aperture, by means of which it may be secured to a hook or staple in a pole or other proper support, the pulley being on the under side of the device, while to the other support an ordin ary pulley block may be attached. The hangers, any desired number of which may be secured upon the line are of very simple construction, and may consist, as shown, of a ring screw, the ring of the required size for the line and the screw adapted to screw into the top of an ordinary spring clothes pin, the clothes being clamped in the pin by moving down upon it a clamping ring.

Traced Lantern slides.
When dealing with the production of lantern slides rom book illustrations, it has occurred to me that were I to relate a very neat and simple way in which a particular class of illustrations may be readily produced by a mere tracing operation, it might tend to cause some beginners to practice this neat way of turning out a hand-made slide
In my practice I always keep a stock of gelatinized glasses ready for my collodion work, and I find that with such I can trace over and make excellent produc tions by using a fine etching pen and ticketing ink. If any of my readers should have difficulty in procuring this kind of ink, they can make a very good substitute by dissolving a piece of lump sugar in ordinary writing ink. When doing this tracing operation the main thing is to get the ink to take kindly to the glass. If a worker will prepare a very weak solution of gelatine and flood the face of the glass plate, and then carefully dry the same free from dust, he will find he can write or sketch with the greatest of ease on its surface, and this being so it becomes a very easy matter to copy some rough sketches by hand, which, when projecter on the screen in the shape of a lantern slide, will give unbounded satisfaction.-T. N. Armstrong.

Sorrespondence．

The Progress of Electrical science

To the Editor of the Scientific American：
I have been almost a constant reader of your most valuable paper covering a period of more than twenty years．I have always taken great interest in your ＂Notes and Queries＂department．Twenty years ago the most important queries and answers related to steam power，boilers，etc．，interspersed with how to make cements，inks，paints，comparative velocity of the rim of a buggy wheel as compared with the hub，etc． While admitting that the queries and answers were in－ teresting and valuable，and highly appreciated at the time．I would ask your readers to compare the twenty years＇ago Scientific American with to－day and note the wonderful change that time has wrought．Take any number of the Scientific American issued dur－ ing the last six months，and from five to fifteen queries and items will be found bearing on electricity and elec－ trical machinery in some form．If I am to judge from the great interest taken in electrical currents and ma－ chinery，a vast army of men are to－day engaged on electrical inventions alone．The inventive genius of almost the entire world seems to have centered on elec－ tricity，and it is endeavoring to solve further hidden mysteries．Such being a fact，what may we not expect during the next decade？I predict that electrical in－ ventions will be brought forward that will astonish the world．Are we not only just now in the dawn of great inventions？
The Scientific American has certainly done its full share in the good work．
Somerset，Pa．，Jan．26， 1892.
W．m．M．Schrock．

Ferns：Their Preservative Properties and Varied Uses．
People generally speak of the beauty of ferns，de light in collecting them for a herbarium or for orna－ mental purposes，and when the splendid specimens are exhibited in flower shows or conservatories，they deservedly call forth expressions of pleasure and ad－ miration．They are known for their exquisitely formed and often daintilý delicate fronds，but they are not generally credited with possessing economic value．
Ferns，lightly as they are valued，have always held an exalted rank in the community of plants；in fact，a dominant place in the past ages of the earth，when they formed one－fourth of the flora in the carbonifer ous period．Their use began early，for they entered largely into the formation of the coal we now use in so many ways，and on which so many industries de－ pend．
To come down to modern times：every farmer is familiar with the common fern，the brake or bracken that grows so abundantly on open waste lands．Doubt－ less it is mostly only looked at as a weed to be rooted out．Yet，like many another simple wild plant，it has infinite uses in other countries，and perhaps，with a more extended knowledge of them，some of them might advantageously be adopted here．
The bracken，Pteris aquilina，has most wonderful preservative powers．The peculiar odor of this fern， like many others，renders it repugnant to insect life， and must be familiar to every one who has wandered among them，especially in open land on the border of woods，where it luxuriates in the bright sunlight，so different from many of its order，that prefer shade and seclusion．This Pteris possesses，moreover，some subtile quality inimical to the growth of the varied fungi known as mould．Both the odor and the anti－fungoid qualities are said to emanate from a peculiar essential oil and resin which very probably render the fern dis tasteful to most insects．Bees have，however，been seen
to suck the moisture exuding from the stems of the to suck the moisture exuding from the stems of the young，undeveloped fronds．
It is well known that essential oils prevent fungoid growths，as may be easily seen by mixing a few drops in a common flour paste，and they will keep it from mould sporules for a long time．It has been suggested that a frond of the bracken be boiled in the paste and it would answer the same purpose
The above mentioned properties are so well known in Europe that they are taken advantage of in many ways．In the shops of fruiterers in London and Paris and elsewhere，apples and pears are packed in hampers containing fern leaves，the venders all as serting that they preserve the fruit fresh and good， and free from mould and decay．In the Isle of Man the bracken is in great demand for packing fresh caught herrings to be sent to the Liverpool market，
and in Cheshire the farmers put up their new potatoes in hampers lined with bracken to send to Manchester and other cities．
The custom of keeping potatoes for winter in a ＂hog＂or＂bury＂is general all over England．A large hole is dug and lined with straw and then filled with potatoes，a thick layer of the straw is also put over them and then covered with earth trost．A gentleman who had been studying th
qualities of the bracken recommended a farmer to line his＂hog＂with the fern instead of straw．The old So he made two＂hogs，＂one with straw and the other with fern．The winter proved a very severe one， and when he opened out his potatoes he was disgusted and when he opened out his potatoes he was disgusted to find that those in the former were so badly decayed
they were not worth the trouble of removing，while the others were，to his great astonishment，good and sound．In Somersetshire they use bracken altogether for their＂buries．＂
In many parts of Germany and Denmark beech leaves and bracken fronds are used to stuff mattresses and cushions．Fleas and bugs，the household pests of the poor people，they say，cannot exist in such beds． Would it not be well for our farmers＇wives to try bracken for their mattresses in change for corn husks， and be free from their midnight tormentors？In some of the country places in France small beds are stuffed with fern for children affected with scrofula．In the Western Highlands of Scotland the cottages are thatched with bracken fronds，but in other parts only the strong stems are used that are bound on by ropes made of either birch bark or heather．The Scotch peasantry burn great quantities and sell the ashes to the manufacturers of soap and glass，and the thrifty housewives burn the dried fronds in their ovens， as it makes so quick and brisk a fire，especially for their oaten cakes，as it has no offensive qualities when well dried．
At Pont－y－Pool in Wales，where it grows most abund－ antly on the mountain sides，it is cut down in summer and burned in large heaps，then sprinkled with enough water to make the ashes adhere，rolled into small balls and sold in the market for its valuable alkali． The washerwomen prize it greatly，as it economizes soap．When used a ball is put in the fire till red hot， and then thrown into a tub of water，which in an hour becomes lye and is fit for use．Though the first frosts of autumn turn the bracken brown，it stands erect all winter without decaying．The hardy W elshwomen are often seen going out in sleighs to bring home loads of bracken．It is used as litter for the horses and mules employed on the tram roads，and is chopped up in their food also．When this fern is young it is greedily eaten by the far－famed Exmoor ponies，and donkeys delight in it．Swine also are fed by the cottagers in some counties on the boiled roots mixed in their wash，which is very serviceable in spring，when garden produce is scarce．
The bracken was put to a singular use in ancient times． In the Isle of Anglesea，North Wales，an urn was dug up many years ago containing the bones of a woman and child．Certain filaments were found adhering to the sides of the urn，and when microscopically examined they proved to be the remains of bracken fronds，that had evidently been used as a lining to the urn and covering for the bones．This fern grows in great abundance in the district where the urn was buried． In Normandy，France，the very poor peasants mix the succulent rhizomes with their bread in times of scarcity and in Siberia they are used with malt when brewing beer．In some places it is used for dressing kid and chamois leather．
The bracken grows in every quarter of the globe．In North America it extends across Canada and is in every State of the Union as far as Mexico，south．According to locality it grows from one to ten and twelve feet high If cut while green and left to rot on the ground，it improves the land and is very good for potatoes．Here the fronds are mostly tripinnate or winged．The name Pteris is derived from pteryx，a wing ；and aqui－ lina，from a supposed resemblance to a spread eagle， when the vessels in a transverse section of the under ground stem are cut across．Everywhere legends
linger round ferns－they sang of them in Eastern lore linger round ferns－they sang of them in Eastern lore Druids of old used them in their incantations．
Many kinds of ferns besides the bracken are eaten in India，especially by the hill tribes，but not as a sta－ ple article of diet，only as an accompaniment to othe ood．The Asplenium nidus，or birds＇nest fern，is eaten in all the islands of the Indian Ocean，the young un curled fronds being boiled in bundles like asparagus，
and eaten as a salad．One of the Polypodiums mixed and eaten as a salad．One of the Polypodiums mixed covering from inflammatory maladies．The common adder＇s tongue fern serves in the preparation of an ointment；a Scolopendrum as a pectoral and for spit ting of blood；Gleichinia roots are fullof fecula，slightly bitter and aromatic，and are used in Japan，Persia，and Australia for food．The poor of most nations seem to turn to ferns in some sort as a substitute for other lack ng necessaries of life．
Many of these plants have astringent as well as aro matic properties，especially some of the Adiantums From the Canadian maiden hair，sirup of capillaire is said to be made with an infusion of orange flower water
and sugar．Not alone are ferns in use in modern days． In Pliny＇s time the frail stems of Adiantums received the name of Cheveux de Venus，and were used by ladies for strengthening and increasing the growth of their
using some preparation of these dainty ferns as a cos－ metic．I believe no poisonous plants are known in the

The Sandwich Islands have always been noted for their ferns，among others a Cibotrum，that grows very tall，and the foliage of the perfect ones，as they wave in the balmy winds，resembles an Oriental palm．From this noble tree the natives gather a soft，silky yellow substance resembling the finest merino wool，called pulu，and this they stuff their pillows and cushions with．A Polypodium is said to be of service in the pre－ paration of cocoanut oil by the South Sea Islanders， and the bruised leaves of the fragrant Angiopteris erecta，also a graceful tree fern，are employed to per－ fume the oil．
Some of the Blechnums are used in making beer The Lastroea filixmas，the male shield fern，is looked upon as a powerful vermifuge，for certain parasites of the human body．The Yakoots，of Siberia，take the fragrant wood fern，Aspidium fragrans，and make a decoction of it in place of more expensive Chinese tea The Asp．noveboracense，the New York shield fern，has a sweet－scented variety，and if plants are taken and dried out of doors，they can be used to perfume a room， and the odor will last a long while．
The Ceterach officinarum cures affections of the chest；the down of P ．barometz effectually stops he morrhages；another of the Lastroeas contains starch， saccharine matter，tannin，green fixed oil and resin． The rhizome has been used for tanning，and the ashes contain carbonate of potash
One could go on ad infinitum，but enough has been said to prove of how much use the ferns are and have been．Truly one－half the world does not know how the other half lives－and it is very doubtful if doctors allow all the curative powers said by the natives of various nations to reside in ferns．I will only mention one more，viz．，the Osmunda regalis．
This fine fern is well known as the＂king fern．＂ Several interpretations of the name are given from the old Saxon．Osmunda is said to come from Osmund meaning＂domestic peace，＂and the roots of the fern were boiled and put into some kind of liquor and given to those who were wounded or bruised．The name also signified mind and strength，in allusion to its invig orating qualities．A pretty legend is told of how it got the name of regalis．At the time the Danes were ravaging England，after burning the monastery of Avondale，they destroyed all the surrounding country Avondale，they destroyed all the surrounding country．
Osmund，the Waterman，took his beautiful wife ond child to an island to hide them from the Danes．There were no caves，but the whole place was covered with his fern that grew very tall．He took provisions，and made mother and child lie hidden in the ferns while he went to help King Alfred to drive out the Danes．His arms at this time were successful and Osmund returned in triumph．When all had settled down again in peace，Osmund＇s fair child named the fern after her father and called it the king fern after Alfred．It is also said that the heart of the waterman may be seen in a section of the root．

Hops．

Census Bulletin 143 shows the production of hops for the year 1889 to be $39,171,270$ pounds，grown upon 50,212 cres of land in seventeen States．The five leading States in the production of hops are：

	．	Pounds．
New York．	0	20，063，029
Washington	5，113	8，313，280
California．	3，974	6，547，338
Oregon．	3，130	3，613，726
Wisconsin．	967	428，547

The aggregate production of these five States was $38,965,920$ pounds，being $99 \cdot 48$ per cent of the entire crop of the United States．New York produced $51 \cdot 22$ per cent of the entire yield from 73.03 per cent of the entire acreage．California produced the highest average per acre， 1,648 pounds．Washington followed closely，with an average of 1,626 pounds，and Oregon stands third in rank with 1,155 pounds．New York produced an ave－ rage per acre of 547 pounds，or less than one－third that of California，while Wisconsin，with 443 pounds，stands the lowest of the five hop－growing States．The value of the crop of the United States for 1889 was $\$ 4,059,697$ ． The crop of 1890 amounted to $36,872,854$ pounds，which was worth $\$ 11,105,424$ ，or nearly three times the value of the crop of the previous year．This great advance in value is due to the fact that the average price．of hops in 1889 was about 10 cents per pound，while in 1890 it was over 30 cents．

Freckles．

Some people are born freckled and otherhave freckles thrust upon them．The former class might as well accept their freckles as a dispensation of Providence， for nothing can be done for them．The latter can always get rid of their affliction by using a couple of drachms of sal ammoniac with an ounce of German cologne，the solution mixed with a pint of distilled water．Applied two or three times a day，states one of ur contemporaries，it will cure the worst case of acquired freckles on record．

DR. S. P. LANGLEY'S EXPERIMENTS IN AERODYNAMICS.* ments, the heavy metal plane suspended by a spring
"So far as the mere power to sustain heavy bodies' in the air by mechanical flight goes, such mechanical
fight is possible with engines we now possess." These words, coming as they do from the Secretary of the Smithsonian Institution, a gentleman who prominently represents the dignity of official science in this country, and who is everywhere recognized as a physicist of known reputation, carry with them a weight of authority. Nearly five years ago Prof. S. P. Langley, then the director of the Observatory at Allegheny, Pa . commenced there a series of experiments in aerody-
namics, the results of which he has recently placed namics, the results of which he has recently placed
before the public, and of which we here give abstracts. Mr. Hiram S. Maxim, inventor of the well known Maxim machine gun, has been conducting in England within the past two years experiments in some respects similar, and has independently and with remarkable coincidence reached some of the same important conclusions as Dr. Langley. The experiments common to each have been to determine the lifting power of inclined aeroplanes when driven horizontally through the air at high velocities. In the experiments of Mr. Maxim the aeroplane used had a spread of 12 feet, and was thus relatively large with respect to the radius (30 feet) of the circle in which it was moved. In Dr. Langley's experiments, though the whirling arm was of approximately the same length, the aeroplanes wer designedly made so small that, for any small portion of their path, the whole would move approximately in a
straight line, and the disturbing effects of centrifugal straight line, and the disturbing
force be rendered quite negligible.
As only Dr. Langley's novel experiments and discove ries are as yet before the public in any detailed form, these only can here be particularlyd described. They were made with the object of taking nothing on trust, but of putting everything to the test of actual trial, even at the risk of superfluous experiment, and they were concerned with the scientific aspect of the subject rather than with the particular new art of aerodromics or air running which they pointed to.
The whirling table which was used as an auxiliary in all th e experiments (see engravings) consisted essentially of a horizontal arm thirty feet long, driven ordinarily by a 10 horse power engine, at varying speeds up to one hundred feet per second, or about 70 miles an hour, its rate of rotation being registered on a stationary chronograph, by the action of quadrant electric contacts placed around the axis of the revolving arm. The exactrecord of the velocity of rotation for every revolution and quarter of a revolution throughout every series of experiments. By means of a series of step pulleys, all velocities at the end of the arm from rest up to this 70 miles an hour were actually attained in experiment. It was also possible by means of the re action of the wind from a small propeller at the end of the arm to drive it independently of the engine, but the latter was generally used.
With this apparatus a number of different accessory pieces of mechanism were devised for measuring the power expended, and for recording resistances overcome while driving through the air aeroplanes placed at the end of the rotating arm. The subjects of investigation covered phases of pressure and resistance on inclined planes of different form, size, and weight, to gether with power necessary to sustain and propel them through the air.
The description may be inaugurated with an illustrative experiment giving one factor of demonstration. In this case a heavy metal plane was suspended from when all was at rest, was drawn out a distance corre sponding to the weight. It had been a tacit assumption underlying the calculation of previous investi suspended, but also dragged along in rapid motion, the tension or strain would be increased, and that the spring balance would be drawn out still further. Applying this idea to the flight of birds, Navier and other eminent men of science had calculated that it would take nearly fifty times the power which a bird expended in sustaining its own weight in the air by hovering over one spot, to not only sustain the weight, but move it along in rapid flight; and on this very natural but erroneous assumption they reached the conclusion tha the flight of a model na bigger than a swallow, and by the flight of a model na bigger than a swallow, and by
implication it followed plainly enough that no known mechanical power could be strong enough consistent with the necessary lightness to ever make a flying ma chine. In Dr. Langley's illustration, which is essentially an introduction to more demonstrative experi $*$ In the preparation of this article the editor has been placed ande
obligations to Mr . George E . Cartis, of the Smithan has exhibited apparatus and placed at his disposal the literature of the Bnbject. Among the latter the following have beon freely consulted;
"Recherches Experimentales Aerodynamiques et donnees dexpereinence,

 des Sciences, eeance du 13 juillet, 1891; small 4 to. 4 pp. ledge, 801, Aus., 1891; large Ato, 115 pp.. 10 plates. ". The Possibibitw
 Navigation; the Power Required," Hiram S. Maxim, Century, Oct., 8891
5 pp. illus.
from the motionless arm drew out that spring to a carefully noted distance by its dead weight; but, as
soon as the whirling table was put in motion, and the soon as the whirling table was put in motion, and the
plane was not only suspended but dragged along with the lateral movement, the spring was seen to contract more and more instead of lengthening, showing that the pull diminished with each increment of speed.
It does not appear that this experiment, simple as it is, has ever before been tried, though, as soon as it has been tried, the result is seen to be so immediate a con sequence of a known principle that it is apt to appear self-evident and superfluous. It becomes evident, by Dr. Langley's experiment, that the faster the motion in the air the less is the pull, contrary to what is obtained in transport on land or in water. The faster the inclined plane goes, the more it tips forward, and the smaller is the effective resisting surface that it offers.
Now, since the power exerted is measured, not by the tension alone, but by the product of tension into the distance through which this is exerted in a given time, this experiment, while noteworthy for the simplicity of its illustration, proves only that one of these factors diminishes while the other increases, as higher velocities are attained, and is so far incomplete. But it suggested to Dr. Langley the inquiry whether the second factor might not increase less rapidly than the first diminished, so that the product of the two factors, stress and distance, namely, the power expended, might not also diminish with increasing speed, with the startling consequence that, except for friction with such heavy planes, the greater the horizontal speed, the less would be the power required to main tain it, a conclusion which, if reached, would be apparently paradoxical in its novelty and of far-reaching mportance in its consequences.
So novel a conception as that there might exist a practicable mode of transport in which, through a wide range of velocities of horizontal motion, the greater the speed, the less the power required to maintain it, evidently demands the most convincing experimenta demonstration. For this purpose a number of pieces of special apparatus were devised so as to test the fact,
if true, and repeat the demonstration in numerous different ways. The first quantitative experiments were made with an instrument devised by Dr. Lang ley and called by him the "resultant pressure re corder" (see cut), for measuring the total normal pressure on an inclined plane moving in the air, and to exstood in the way of previous investigators. This as sumption (see Principia, proposition xxxiv, book ii) was that this pressure varies with the square of the sine of the angle between the surface and the direction
of advance. From the results obtained by it, Newton's of advance. From the results obtained by it,
assumption is shown to be widely erroneous.
It has always been known that an inclined plane can be supported in the air by being pulled along on it, as a kite by its string, and it is theoretically possible that the kite could be moved without a string by propellers or other means worked by an engine, if the latter were light enough, in proportion to its strength, to be supported by the upward air pressure in question. •By Newton's formula and Smeaton's constant of wind pressure, each square foot of a kite or plane held at the angle of five degrees with the horizon, and moved
along at a rate of 35 miles an hour, would support, by the reaction of the air, a weight of only about one twentieth of a pound. If the engine, then, weighed even an ounce for each foot of supporting surface, it could not sustain its own weight. One conclusion of the experiments with the Langley resultant pressure recorder was that Newton's assumption was wrong and that in the supposed case the actual weight capble of being supported is twenty times as great as that so computed, while for smaller angles and bette disposed rectangles the error is still larger. It followed,
then, that if reasonably light engines could be built, what was before impossible now becomes possible; and to demonstrate that within certain limits the power required for horizontal flight actually diminished as the speed increased, a piece of apparatus called the plane dropper" was devised (see cut). It is designed to show (1) that a horizontal plane falls slower in horizontal motion than when at rest; (2) to make actual measurements of the time of fall of variously shaped planes; (3) to determine for different angles of inclina tion the speed necessary in order to derive an upward thrust from the air just sufficient for sustaining the planes.
With this appreatus, with planes horizontally disposed, a plane 36 mehes long, 4 inches wide, and of pound weight, was driven horizontally in the direction of its width. When allowed to fall from rest, the time of falling was 0.53 second, the retardation due to the resistance of the air being 0.03 second. When driven orward through the air, the time of fall increased until with a velocity of 66 feet per second (45 miles an hour) the time of fall was 2 seconds. The results with the planes inclined at various angles are presented in Dr. Langley's memoir in graphic curves which show at a
glance, for the differently shaped planes used, the speed necessary in order that they shall be supported
in the air at angles of inclination ranging from 2° to 30° The resistance of these planes to advance while thu supported, and the horse power necessary for main taining the motion, are derived from the preceding ex periments. These results confirm by experimental demonstration, up to velocities of 50 miles an hour, the proposition of which the first experiments with the suspended plane gave a prevision, namely, that in the horizontal flight of an aeroplane it takes less power to maintain a high speed than a low one.
For further demonstration an entirely different instrument, called the component pressure recorder, (see cut) was next devised. This instrument gave a di ect measurement of the horizontal resistance to the nclined planes while being driven through the air with speeds at which the vertical pressure of the air sustained the weight ("soaring speeds"), and the motion became as if they were entirely free from support or constraint. A long series of experiments was made with this apparatus in which hundreds of observations were obtained, the quantitative data of which render he conclusions very striking. Dr. Langley observes Since effective steam engines have lately been built weighing less than 10 pounds to one horse power, and the experiments show that if we multiply the small planes which have been actually used,or assume a larger plane to have approximately the properties of similar small ones, one horse power rightly applied can sustain over 200 pounds in the air at a horizontal velocity of ver 20 meters per second (about 45 miles an hour) and till more at still higher velocities."
Having determined the power necessary to be ex pended in driving forward differently shaped aeroplanes, at soaring speeds, methods and apparatus wer devised for investigating the efficiency of propellers in furnishing the end thrust shown to be requisite. This is accomplished by means of the "dynamometer chronograph" (see cut) used in connection with the component pressure recorder. The former instrument is a complete, self-registering dynamometer (placed at the end of the arm of the turntable with the propeller), which gives indicator diagrams, showing the amount of power expended in driving the propeller and the re turn in end thrust which this gives back. The powe or driving was furnished by a small electro motor ocated on the rotary arm, but actuated by a stationary dynamo. For this experiment, it is necessary that the propeller shall drive itself through the air at high speeds, while attached to the heavy, massive arm of the turntable, this latter offering a resistance out of all proportion to that of an aerodrome, such as the little propeller is adapted to drive. In the auxiliary use of the component pressure recorder, mounted at the end of the great whirling arm, Dr. Langley has overcome this last difficulty. The instrument has an arm of its own, six feet long, susceptible of oscillation about a vertical axis. Upon the end of this arm is placed the dynamometer and propeller, and the whole is set in motion at a high speed by the rotation of the great whirling arm. Then the propeller is actuated by the dynamo at increasing speeds, until its end thrust is so great as to actually begin to drive it ahead of the turntable, this critical instant being observed and recorded by the motion of the recorder's arm about the vertical axis. At this instant, then, the propeller and its aeroplane are no longer being carried forward by the turntable, but the propeller is driving itself ahead independently of it, but at exactly the same speed. The product of this speed by the end thrust, meas ured on the dynamometer, furnishes the performance of the propeller, and when compared with the power expended, shows its efficiency.
This is an outline of the principal steps in the investigations. Dr. Langley concludes his memoir with the following words: "I am not prepared to say that the relations of power, area, weight, and speed, here experimentally established for planes of small area, will hold for indefinitely large ones; but from all the circumstances of experiment, I can entertain no doubt that they do so hold far enough to afford assurance that we can transport (with fuel for a considerable journey and at speeds high enough to make us independent of ordinary winds) weights many times great er than that of a man. In this mode of supporting a body in the air, its specific gravity, instead of being as heretofore a matter of primary importance, is a matter of indifference, the support being derived essentially from the inertia and elasticity of the air on which the body is made to rapidly run.

I wish, however, to put on record my belief that the time has come for these questions to engage the serious attention, not only of engineers, but of all interested in the possibly near practical solution of a problem, one of the most important in its consequences of any which has ever presented itself in mechanics; for this solution, it is here shown, cannot longer be considered beyond our capacity to reach."

According to Dr. H. A. Kelly, permanganate of poassium and oxalic acid are harmless to the hands and are germicidal. Soap and water plus the permanganate of potassium and oxalic acid are the only true ge
cides, and the best disinfectants we possess to-day.
the electrical transmission of power between LaUfFEN ON THE NECKAR AND FRANKFORT ON THE MaIN.
Among the many important exhibits at the recent Frankfort Electrical Exposition, a prominent place was given to the arrangements for the transmission of power between Frankfort and Lauffen. It formed the main feature of the exhibition, and is an important step in the development of electricity.
As is well known, we understand transmission of power to mean the methods which utilize the electric current for carrying any energy-whether derived from coal, from falling water, from the force of the wind, or from the ebb and flow of the tide-any requìred distance.
If, for instance, the energy of great waterfalls is to be transmitted, the following arrangement is usually employed: By means of turbines the falling water is made to drive the queen of all mechanisms, the dynamo; the latter generates electricity, which is carried to a distant station by wire conductors. There it enters a second dynamo, causing the movable part, the armature, to operate. In this way machinery can be driven or the electric current can be used for lighting, etc.
rotary current, which is generated by a dynamo in which the field magnet rotates. Its discoverer is the Italian Professor Ferraris, of Turin, and among the constructors who have brought it into notice by building practical machines, we will mention the following engineers: Tesla, Hasselwander, and Von Dobrowolsky.
The rotary current may be described as a system of connected alternating currents of different phases. The invention of the rotary current motors makes it possible to use also the economical alternating current for driving motors. On the Lauffen-Frankfort line about 300 h . p. have been effectively transmitted by means of an alternating current of very high tension (30,000 volts), and this energy is applied by means of the new rotary current motors. This striking experiment can scarcely have been tried before. The entire cost is about $\$ 20,000$. The three conductors which carry the current to Frankfort have a total length of about 310 miles, and about $13,200 \mathrm{lb}$. of copper were used in their manufacture ; $1,500 \mathrm{lb}$. of oil are used for filling the insulators over which the conductors pass. All this goes to prove that the technologist is now pre pared to transmit strong currents over great distances,
of the flue which enlarged toward the top. On partially shutting off the access of air to the fire, the difference became much more marked; the current in the flue apering upward diminished, and finally stopped altoether, the smoke finding its way entirely through the flue with the wider top.-The Builder and Decorator.

The Ruling of Diffraction Gratings.

A word should be said as to the difficulties of ruling gratings which may explain why so many orders for gratings remain unfilled. It takes months to make a perect screw for the ruling engine, but a year may easily be spent in search of a suitable diamond point. The patience and skill required can be imagined. Most points make more than one "furrow" at a time, thus giving a great deal of diffused light. Moreover, few diamond points rule with equal ease and accuracy up hill and down. This defect of unequal ruling is es pecially noticeable in small gratings, which should not be used for accurate work. Again, a grating never gives symmetrical spectra; and often one or two par ticular spectra take all the light. This is of course de sirable if these bright spectra are the ones which ar

electrical transmission of power-primary station at lauffen on the neckar-rotary current dynamo from the oerligon works.

The transmission of power over such long distances is a new thing for the electrician, and from it he has gained the idea of utilizing the water power which is supplied so abundantly by nature in some countriesas, for instance, in Switzerland-throughout whole districts, and at great distances from the source. A notable instance of this was the transmission of the energy of Niagara Falls to Buffalo, a distance o nineteen miles. The last obstacles to work of this kind have been removed by the achievements of the Frankfort Exposition, by which a force of falling water equal to $300 \mathrm{~h} . \mathrm{p}$. is transmitted a distance of about 108 miles to Frankfort, and the experiment has proved a brilliant success.
Connected with the realization of this plan there are a great number of important innovations, to which we will briefly refer.
Dynamo machines generate two different kinds of currents according to their construction : the continuous current and the alternating current. The continuous current machine, which generates a current that flows continuously in one direction, has surpassed, in many respects, its sister, the alternating current machine, the impulses of which change their direction many times in a minute. When the direct current is used for the transmission of power a conductor having a spepial cross section is required, but, although the alternating current is much more economical in this respect, it has not been possible heretofore to utilize it for driving motors. To the direct and alternating current already described has lately been added the
bringing the power which is now wasted in regions re-
mote from the channels of trade to the machinery mote from the channels of trade to the machinery
which is busy in the service of man in the large cities. which is busy in the serv
-Ueber Land und Meer.

areas for Chimneys.

The old rule about chimneys was that they ought to have the flue tapered to the top, on the theory that, as the hot gases in them ascended, they cooled, and, in cooling, contracted; and that it was important to re duce the size of the flue in proportion to the reduction in volume of the gases, as otherwise cold air from the top would descend to fill the vacancy left by the con traction of the gases, and the draught would be checked. Reasonable as this theory seemed, practice has shown that cylindrical boiler or furnace flues are at least as good as the tapered ones, and within a few year practical engineers and architects of experience in such matters have inclined to make them slightly larger at the top than the bottom, the increase in diameter being, perhaps, half an inch to ten or twelve feet. Recently Swiss engineer has made experiments to see whethe he facts bear out the old rule or support the more modern practice. To make the test, he built a chim ney over a furnace grate, the stack having two flues. One flue tapered upward and the other downward, and the flues opened side by side over the grate, with openings of the same size. On lighting a fire on the grate, with unlimited access of air under it, the smoke was een to issue nearly equally from the top of both the flues, but with an unmistakable preponderance in favor
to be used. Generally it is not so. It is not easy to tell when a good ruling point is found, for a "scratchy" grating is often a good one, and a bright ruling point always gives a "scratchy" grating. When all goes well, it takes flve days and nights to rule a 6 inch grating having 20,000 lines to the inch. Comparatively no difficulty is found in ruling 14,000 lines to the inch. It is much harder to rule a glass grating than a metallic one; for to all of the above difficulties is added the one of the diamond point continually breaking down. For this reason, Professor Rowland has ruled only three glass gratings. One of them has been lost, and the other two are kept in his own laboratory. These two were used by Dr. Bell in his determination of the absolute wave length of the D lines.-Joseph Sweetman Ames, in Astronomy and Astro-Physics.

According to the report of the statistician of the In terstate Commerce Commission, the total number of persons reported killed on the railroads of the United States during the year ending June 30 , 1890, was 6,334 , of whom 2,451 were employes, 286 were passengers, and 3,597 were classed as "other persons," the last class including suicides. The total number reported injured was 29,025 , of whom 22,394 were employes, 2,425 were passengers, and 4,206 were unclassified.
During the year 369 employes were killed and 7,842 injured in coupling and uncoupling cars. There can be no doubt that a large proportion of these fatalities and injuries would not have occurred if automatic couplers had been in universal use.

CALIFORNIA'S FAMOUS BIG TREES

In some twenty irregular groups, extending through a distance of about two hundred miles on the western lope of the Sierra Nevadas, from Calaveras through Tulare County, California, are found what are known as the famous "big trees" of California, one of which forms the subject of our illustration, and, wonderful to relate, although a passageway has been cut through it through which stages regularly pass, the tree still lives. This tree is in the Mariposa grove, and is 28 feet in diameter. A still larger tree in the same grove is known as the "Grizzly Giant." It is 34 feet in diameter The highest of these trees is in the Calaveras grove, and it is 325 feet high.
This tree, the Sequoia gigantea, should not be con-
than a pity, but rather a matter calling for severe on this grove for a number of years, and has turned criticism, that the lumbermen should be permitted to its attention almost entirely to the sequoias
destroy, as they are doing, with a few exceptions, these groves of Sequoia gigantea. These trees grow nowhere else in the world, and their beauty, grandeur, and marvelous age combine to make them objects of such surpassing interest that the folly and neglect of he government in permitting their present destrucion,will pass the comprehension of succeeding genera tions. The Calaveras grove, north of Yosemite valley, is still untouched, and the Mariposa grove, thirty-five miles south of the valley, is safe, because included in the Yosemite grant, but the Fresno Flats grove, the next one in the belt, is a scene of destruction. It belongs to the California Lumber Company, of San

If the big tree lumber brought higher prices than any other sort, the zeal which is shown in the destruc tion of the groves could be understood. But it rates no higher in the market than the sugar pine, with which the mountain slopes are densely covered. The lumber companies could have made just as much money and been at no expense for blasting powder if they had let the big trees alone and turned to the ugar pines.
In the groves further south the same scene is repeated time after time. In that portion of the sequoia belt between the north and south boundaries of Tulare County alone there are at least ten mills, every one of

THE TREE "WAWONA" (SEQUOIA GIGANTEA) IN MARIPOSA GROVE, CAL.
foumed with the California redwood. Sequoia semper-| Jose. Their policy has been to slaughter the trees \mid which is industriously working away at the big trees. virens, a tree which quite frequently reaches a diame- without regard to age or size, beauty or grandeur. Their owners evidently fear that the national gover ter exceeding 15 feet and a height of 300 feet. The This was once one of the most beautiful of the groves, ment will some day awaken to the wisdom of throwing largest specimen of this tree is seven miles south of but to-day it is a pitiful wreck. Giants of the forest, protection around these unique groves, and they are Santa Cruz ; it is 20 feet in diameter and 366 feet high. fifteen, twenty, and thirty feet in diameter, lie on the determined to get just as much money out of them as The redwood is found from the boundary of Mexico ground in every direction. The largest trunks, those possible before that day comes
northward, forming vast forests upon the Coast Range that are too large to be handled easily with the saw, In the Fresno grove, which is on the line between of mountains, never very far from the Pacific. The have been shattered with blasting powder. Stumps of Fresno and Tulare Counties, the General Grant wood is light and close grained, much resembling the trees, six, ten, or a dozen feet high, are all about, National Park preserves a few of the big trees. It is red cedar in appearance; it splits with remarkable an army of witnesses to the malevolentavarice of men. only a square mile in extent, and does not include the facility, is eminently durable, and is used for building Occasionally there is a mighty tree still standing, with whole of the grove. The rest of it is rapidly disappurposes, cabinet work, and almost every variety of a great gash, perhaps five feet deep, cut and sawed pearing. A little to the southeast the Sequoia National general wood work, forming the principal staple of the into one side. This grove has been almost annihilated. Park includes the North Kaweah and South Kaweah California lumber trade. When the company cleans up the trunks and limbs groves, which were withdrawn from sale in time to With such abundant supplies, therefore, of one of that now cover the ground, its work of destruction save them from destruction. Through the remainder the finest varieties of lumber, it seems something morel will be just about completed. It has been engaged of the groves one cones upon the same scene again
and again. Everywhere ax, saw, and blasting powder are doing their detestable work with speed and thoroughness.
It has been proposed to extend the boundaries of the Sequoia Park so that it will embrace all the sequoia groves in Tulare County and cover the mountain slope from the summit of the Sierras nearly to the lower timber line. If the proposition included the whole belt of the sequoias from the most northern grove to the most southern tree, it would be still more heartily approved by all those-excepting always the mill
owners-who have visited the groves and know how owners-who have visited the groves and kno
hopeless is their preservation in any other way.
For an excellent photograph from which our picture is made we are indebted to Mr. I. West Taber, a Yosemite commissioner, of No. 8 Montgomery Street, San semite com

Allotropism in Alloys.

In his presidential address before the chemical section of the British Association, Prof. Roberts Austen spoke of the consequences of allotropic changes which result in alteration of structure as being very great. The case of the tin regimental buttons which fell into a shapeless heap when exposed to the rigorous winter of St. Petersburg is well known. The recent remarkable discovery by Hopkinson of the changes in the density of nickel steel (containing twenty-two per cent of nickel) which are produced by cooling to 30 deg . affords another instance. This variety of steel, after being frozen, is readily magnetizable, although it was not so before; its density, moreover, is permanently reduced by no less than two per cent by the exposure reduced by no less than two per cent by the exposure which would be produced by a visit to the arctic which would be produced by a visit to the arctic
regions of a ship of war built in a temperate climate regions of a ship of war built in a temperate climate
of ordinary steel, and clad with some three thousand tons of such nickel steel armor; the shearing which would result from the expansion of the armor by ex posure to cold would destroy the ship. The molecular behavior of alloys is, indeed, most interesting. Mr. W. Spring has shown, in a long series of investigations, that alloys may be formed at the ordinary temperature, provided that minute particles of the constituent ele ments are submitted to great pressure. Mr. W. Hallock has recently given strong evidence in favor of the view that an alloy can be produced from its constituent metals with but slight pressure, if the temperature to
which the mass is submitted be above the melting point of the alloy, even though it be far below the melting point of the more easily fusible constituent. A further instance is thus afforded of the fact that a variation of either temperature or pressure will effec the union of solids.-Popular Science Monthly.

The First Locomotive Run in America.
It was in 1829, the same year in which Stephenson, with his Rocket, demonstrated the practicability of rupid steam traction on railways. The engine was named the Stourbridge Lion. It was made in England and imported by the Delaware and Hudson Canal Company, and designed to draw coal from their mines in Carbondale to the head of their canal in Honesdale, Penn. On its arrival, it was placed on the railway and run from Honesdale to Șeeleyville, a little over a mile. It was found to be too tall to go under a highway bridge over the track at that place, and was reversed and run back to Honesdale. All parts of the railway above the surface of the ground were built on trestles, and the heavy engine racked them so much as to en danger safety. For these reasons the locomotive wa set off by the side of the track, and a board shed built over it. The railway was planked, and horses employed
to draw the cars. The engine stood there safe for to draw the cars. The engine stood there safe for several years.
The writer was personally acquainted with these
facts. Two men who rode on that trip are living at facts. Two men who rode on that trip are living at
In 1840 and 1841, while I was a student in the Honesdale Academy, I found the boards on one side of the shed torn off and the engine exposed to view. I spent many hours in trying to study out its mechanism and movement. No published description of a steam engine was then within my reach. The Stourbridge Lion had four wheels, three or three and a half feet in diameter, and the boiler rested directly on the axles. The cylinders were vertical, one on each side of the boiler near the hind wheels. There were two heavy iron walking beams a few feet above the boiler, and to one end of each a piston rod was attached by Watt's parallelogram. The other ends of the beams were joined by swinging rods to cranks at right angles to each other on the forward wheels. There was no whistle or bell, I think. The engineer stood on a small platform behind the boiler.
Soon after 1841, the engine began to be carried off piece by piece, mostly by blacksmiths and machinists; and I am told that only one small piece of the iron is now in existence in its primitive form. If the engine had been kept intact, it would be worth almost its M. H., Science.

Modern Progress in Naval Engineering. Sir Edward J. Reed, in a recentaddress to the Junior Engineering Society, said :
Prior to 1863, the consumption of fuel in H. M. ships was 4 pounds per I. H. P. per hour. In the case of the Sultan it was $11 / 2$ pounds when developing the full power with forced draught. Now, a vessel with the old type of engine, weighing 920 tons, would develop about $4,900 \mathrm{I} . \mathrm{H} . \mathrm{P}$., and burn in four days of her fullest steaming 840 tons of coal. The total weight which her designer had to provide for was 1,760 tons, to enable her to develop say 5,000 horse power for four days continuously. But in the case of the modern ves sel, just before referred to, if her indicated horse power were to be the same, viz., 5,000 , the weight of her machinery would only need to be one-twelfth of this, say 420 tons, and this with the same aggregate weight of machinery and fuel (viz., 1,760 tons) would leave 1,340 tons available for fuel. But her consumption would be only 80 tons per day, so that she would carry fuel enough to steam for no less than 16 days at the fullest speed, or more than four times the time, and therefore more than four times the distance over which the earlier vessel could have steamed. During the period over which my own responsibility for large steamships extends, I have, therefore, seen the steaming power multiplied more than fourfold.
This single illustration furnishes, I think, so striking n example of recent progress that it will not be neces sary for me to trouble you with references to the many other examples of like nature with which marine ex perience abounds, otherwise I might adduce, as one of the most interesting among them, that elfish creation (due to the genius and perseverance of Mr. Thornycroft) the swift torpedo boat, which animates the military harbors of the world by its lightning-like movements. In this case we have developed to a degree never dreamed of until quite recent years the principle of securing a very large development of power with a very small weight of machinery, by means of an im mense number of revolutions.
These are some of the things which were before me, although but dimly seen, if seen at all, when I commenced my public work. What may not be before you who are now of the age that I was then? I remember that many years ago, when presenting prizes to the Science School at Liverpool, I pointed, as to a dream that might be realized, to the possible reduction of weight of material in a vessel and her machinery so great in amount as to provide for the complete lifting of the vessel to be propelled above the surface of the water, by means of a set of propellers with inclined axes, which should simultanoously elevate her and foree her head through the air only. I aduait that, notwith standing the great advances in this direction to which we have just been attending, we are still far from this result; but I for one am satisfied that we are advancing rapidly toward a time when the transformation which steam and steel and electricity have already efected will be looked back upon as but the initial stage of the transformations that are to come, and are to come soon.

Roads in France

The excellence of French roads is well known. The United States consul at Bordeaux describes how they are made. The materials are brought from the nearest quarries and placed at either side of the route surveyed. In order that the full amount contracted for may be delivered, the stone must be heaped in angular piles of prismatic shape and fixed dimensions. These heaps, placed at a given distance from one another, are after-
ward visited by an official inspector, and must in all instances fit exactly beneath a skeleton frame carried by him. The material is usually marble, flint, stone, or gravel, and whatever is used must be of the best quality and cleansed from all foreign substances. The stone ing be broken so that each piece may pass through a ing $21 / 2$ inches in diameter. It is then spread evenly over the road, the interstices being carefully filled in with smaller pieces, so that the whole is smooth and free from abrupt eminences and depressions. A steam roller then crushes and further evens the whole, after which superficial layer of clay and earth completes the work. Roads are classed as national roads, which are the main arteries of the system connecting most distant parts of the country, and are constructed and mainconnect different points of the same department or of two adjoining departments, and are constructed and maintained by the department; highways and public roads, which are the property of the commune through which they run, but are in practice made and repaired by the department from taxes levied on com mune, supplemented by a department subsidy; cross roads, which are maintained by sums derived from the
ordinary revenues of the commune, occasionally supplemented by additional taxation; and country roads, which are kept in order by the commune, except they are injured by unusual traffic, when an indemnity may be claimed by the communal administration. For habitants living in the district are obliged to work
three days in each year or pay an amount equivalent to the compensation of a laborer for three days. The consul at Havre says that French pavements increase in excellence with age. In France, he says, all roads have perpetual attention. If from weight, rain or other causes a hollow, rut or sink is formed, it is repaired at once. Where the space to be repaired is of limited area the rolling of the new coating is left to the wide tires of the heary carts, but in the case of extended areas a steam roller is brought into use. Every carrying and market cart in France is a road maker instead of a rut maker, for it has tires usually from 4 inches to 6 inches in width.

The Meeting of Jupiter and Venus.

Everybody must have noticed during the past few weeks the gradual drawing together of the brillian planets Jupiter and Venus. Outshining all the other tars, they have added greatly to the beauty of the evening sky. During the present week they will continue to approach one another, until on Saturday morning, February 6, they will be so close that to the naked eye they will actually seem blended into one. Unfortunately the hemisphere of the earth which we inhabit will be turned away from the place they occupy in the sky at that time, so that we shall be unable to witness this interesting conjunction. But on Friday vening the two planets will already have drawn so near together that their aspect will be that of a most splendid double star.
The observer will notice at once the uriquestionable superiority of Venus to her giant brother in brilliancy. This, of course, is an effect of distance, for although apparently so near together that they almost touch, the two planets are really more than four hundred millions of miles apart, their conjunction in the sky arising simply rom the fact that Venus, in swinging around its orbit, happens to come almost exactly into the line of sight from the earth to Jupiter. Jupiter is more than 1,400 times as large as Venus, and if it were really placed side by side with Venus, would be at least 130 times as bright as the latter is. In short, it would resemble a mall but dazzling moon.
But it is only when one considers what these two planets are that the true interest of this week's celestial spectacle is developed. They represent respectvely the two great types or groups into which the sun's family of worlds may be divided-the terrestrial group, whose members, like the earth, are of comparatively moderate dimensions, while th faces haye become cool and encrusted with a ? d, on which a great variety of life flourishes, isy flourish, and the Jovian group, to adopt a name from their greatest representative, Jupiter, in which a much earlier stage of planetary development evidently exists, so that their surfaces have not yet cooled down or assumed a permanent form. These half-developed globes are all of gigantic dimensions and low specific gravity.
During the past year Jupiter has shown signs of tremendous disturbance in the dense cloudy atmosphere by which it is sarrounded, and the fact has been noted that such disturbances upon Jupiter show a tendency to coincidence with the return of the maximum sunspot period. Just now the sun is becoming from month to month the scene of more violent activity than it has displayed since 1883 or 1884, and at the same time the great belts and spots upon Jupiter brighten and glow with color, and exhibit changes of wonderful rapidity and variety. We cannot yet precisely interpret the processes of world making which are going on there, but they are intensely interesting to watch.
Venus, too, attracts particular attention just now, because observations to be made during its present visit to our side of the sun may settle the question that has been raised as to the correctness of Schiaparelli's conclusion, announced less than two years ago, that Venus always keeps one side turned sunward, or makes but one rotation on its axis in the course of a revolution around the sun. If this strange state of things really exists upon a planet whose size entitles it to be called the twin of the earth, so many consequences follow bearing upon the question of its habitability, that there is hardly any direction in which investigation and discovery could prove more fruitful and interesting.
They are in every way a wonderful pair of planets which now attract all eyes to the sunset sky.-N. Y. Sun.

Coloring for Glass.
A substance apparently used for imparting a yellow color to glass had the following composition

Moisture .	171
Carbon	$29 \cdot 96$
Silica.	1065
Ferric oxide and alumina	4:38
Manganese dioxide.	37:92
Sodium chloride.	$13: 55$
Sulpharic acid.	$0 \cdot 22$
Magnesia.	0-23
Lime, traces	138

It is probably compounded of 45 parts of graphite, 1 parts of pyrolusite, and 14 parts of common salt.G. Hattensaur, Chem. Zeit.

TROUVE'S AVIATOR.

At one of the August sessions of the French Academy of Sciences, Mr. Gustave Trouve presented a memoir, the principal object of which was to show what motor, in order to solve the question of aerial navigation, is best qualified to simultaneously fulfill those two conditions of great power and extreme lightness which are so difficult to reconcile, and which, nevertheless, are strictly exacted by the very nature of the problem.
In the first place, after discussing their value, Mr. Trouve eliminated steam motors, electric motors, accumlators of energy, such as rubber and steel, and compressed air and gas motors, since none of them completely answered the questions and none of them fulfilled the desired conditions. There does not to-day, added he, exist any motor provided with its accessories, generator and propeller, that we can immediately employ, or at least complete for the object proposed. Now since the generator and propeller are both absolutely necessary, and consequently cannot be done away with, Mr . Trouve has conceived the idea of merging them into the motor and of thus creating a new organism dependent upon itself, which he has named a "gener-ator-motor-propeller." This organism is constituted through the aid of the well known Bourdon tube, the essential part of the manometer of the same name. Electricity plays merely a secondary although necessary role in it.
We know that if the pressure of the gas that this tube contains increases, the tube bends and tends to spread its branches, but if the pressure decreases, on the contrary, the phenomenon is reversed and the branches approach each other. If, then, through any means whatever, we cause a series of alternately condensed and dilated pressures in the interior of the tube, the latter will undergo a series of oscillations, of powerful vibrations, utilizable as a motive power. For the purpose of still further increamishing the volume of the chamber in which the explosions of the detonating mixture take place, Mr. Trouve has fitted in the interior a second tube similar to the first. This addition increases the elastic force of the gases engendered, and, at the same time, diminishes the consumption of the combustible. To the vibrating extremities of the tube are fixed directly, but with a rotary motion, the wings, A and B, of the apparatus, so as to suppress all intermediate frictional or rotary transmission gearings. The lowering of the wings corresponds to the condensed pressures, and their elevation to the dilated pressures. The chemical combination utilized is the oxidation of hydrogen. This gas is easily and quickly obtained in large quantity, even in a pure state, and oxygen, its combustive, is found already prepared, so to speak, in the atmosphere. The artificial bird (or aviator-generator-motor-propeller as the inventor stylesit), like the genuine bird, thus draws a large part of its aliment from the air. The detonat ing mixture is regulated at will, but it is of very nearly the following proportions : hydrogen 25 per cent, at mospheric air 75 per cent. The ignition of ture is effected by electricity, as in gas motors.
In the small model constructed by the inventor, the generator of the explosions is a revolver magazine loaded with twelve cartridges, the charge of which is determined with care Two clicks cause it to revolve utomatically, but in order that these may operate and the magazine may revolve, it is indispensable to leave the aviator to itself for the hammer is kept cocked only by the weight of the apparatus.
The starting is effected in the following manner: The aviator (Fig. 8) is suspended by a thread from the arm of a support, and the pendulum thus formed is moved from the vertical and is held by a second thread against the support. Two candles, one of them (A) movable, and the other (B) fixed, placed in the vertical of the point of attachment, serve to set fire to the two threadls. If, with the first flame A, the first thread be burned, the aviator, like the Foucault pendulum, will begin an oscillation. It will move from the position, 1 , to the position, 2 , in describing an are o a circle, but, having reached this point, its acquired velocity is horizontal, and the flame, B, will burn the other thread. The hammer, at liberty, immediately falls, the cartridge explodes, the tube vibrates violently, and consequently the wings strike the air energetically on lowering. At the same time the aviator leaves the original horizontal plane, and, owing to the inclina tion of the tail, takes an ascensional motion, that is to say, the position, 3 . Then the disengaged gases escape into the atmosphere in a direction opposite that of the
motion, and exert a force of reaction. The vibrating tube resumes its original form and the wings rise a little more slowly than they descended. The magazine moved forward by its click work, promptly brings a cartridge to the hammer, which drops and causes second explosion, and the same phenomena occur again in the same order. During the third, fourth, and following explosions up to the twelfth the aviator travels a horizontal distance comprised between 245 and 260 feet, in struggling against gravity and pro gressively ascending. Finally, having reached the end of its flight, the aviator does not fall perpendicularly

Fig. 2.-METHOD OF starting the aviator.
but the wings, kept raised by the approaching of the branches of the tube and by the silk aeroplane, C (Fig. 1), whose surface is proportional to the weight of the apparatus, act like a parachute, so that the ap paratus descends obliquely and slowly to the ground. The aeroplane, represented by dotted lines, connects the rudder with the head, the first joint of the wings the rudder with the heaa, the irst joint of the wing the tail of the aviator. Mr. Trouve thinks that
and and the tail of the aviator. Mr. Trouve thinks that the use of the aeroplane will remain very serviceable, since its surface, constantly proportionate to the total weight of the apparatus, must prevent any acci dent in case of a sudden stoppage of the motor.
In an apparatus of large dimensions a reservoir of ridges of the smagll would be subst use of aluminum would be indicated, as much by its lightness as by its reasonable price. It should be remarked that the wide cooling surface of the vibrating tube and its conwide cooling surface of the vibrating tube and its con-
tact with the air (which is so much the more intimate tact with the air (which is so much the more intimate
in proportion as the velocity is !greater) would keep it at a medium temperature
Upon the whole, Mr. Trouve considers his apparatus as the lightest aviator that it is at present possible to construct, as its weight does not exceed $73 / 4$ pounds and as possessing every guarantee of ascensional powe and performance.

The Art of Drawing.
To be able to draw well imparts to a person accuracy

Fig. 1.-TROUVE'S AVIATOR.
nd correctness of observation ; it is a valuable adjunct to an education; it conduces to make us more correct and certain as to what we do; it is a great helpmeet to me memory. How frequently it happens that in making an explanation of a new idea or object, if im mediately placed on paper in the shape of a rough sketch or diagram, the whole thing appears clearer to the mind than if described without anything to give an
idea of the shape of the object. To the young we say mploy all your spare time in learning to draw. Allow no idle minutes.

Scientific Hydraulic Gold mining

In 1856 I was chosen as one of a committee of three to witness a test of hydraulic mining, for the purpose of deciding a dispute which had arisen between differ ent manufacturers of hose nozzles. One of the parties had more than a half dozen made, in order to satisfy himself which was the best. The nozzleman generally stood from 20 to 30 feet from the gravel bank. On this occasion the water came down through wrought iron pipe about 8 inches in diameter, which ran down steep hillside; to this was attached a canvas hose of eight thicknesses, and this was wound solid with about a $3 / 4$ inch manila rope, the lower end being tapered for say 50 feet to about 4 inches at the lower end; to this the strong rubber-lined woven hose of eight or ten thicknesses, and to the end of this the brass hose. Th hoseman on this occasion was a short-set, very strongly built man, with a strap of leather over his shoulders and attached to the hose. The perpendicular fall of and attached to the hose. The perpendicular fall of
the water on this occasion was 196 feet, this being the most powerful pressure ever used for the purpose to that date. The gravel was what we called cemen gravel, so hard that it could scarcely be picked up The extreme end of each nozzle was from $11 / 4$ to $11 / 2$ inches in diameter, varying in order to determine which would do the best work, or rather the most of it. In addition to the gravel the ground contained large bowlders of various sizes. One of the contesting par ties claimed that the best results would be obtained by having the brass hose tapering from the canvas to within about 6 inches of the end, and that 6 inches to be of exact size; but the other party contended that the best results would be produced by having the noz zle tapered from the butt to the point as a true radial from 20 to 30 feet from butt to point; and that, if the radius was shorter than this, that the water would scatter after it reached the radial point. The man holding or operating the nozzle would quiver and tremble as the water poured from the nozzle and be compelled to stand with his feet braced apart to keep from being thrown down. On the bank stood a knurly white oak, about 18 inches through. Some gravel had been washed from under the roots of it. I suggested to the nozzleman to try each nozzle at 25 feet distan on the bark of the oak. This he did. The first nozzle with the 6 inch parallel point took off some of the coars outside bark. We then took the nozzle tapered to a radius of 25 feet, and it peeled the tree wherever it struck it, even cutting into the wood and tearing out small splinters. This nozzle we decided to be the best for hard gravel washings. The victor published ou decision all over the State and sent out circulars. He offered each of us $\$ 100$ in gold, which we, of course declined, we only allowing him to pay our expense and $\$ 10$.
I lost $\$ 5$ of that $\$ 10$ on a bet with a gentleman who knew more than I did. I bet him $\$ 5$ that I could split the stream at the end of the nozzle with my penknif blade. So I went into the blacksmith shop and on an oilstone whet my knife as sharp as it could be. I scratched the end of the nozzle across the center so as to have a channel for my knife to run in, but after working for over half an hour and getting as wet as a drowned rat, and rather a laugh ing stock, I gave it up and handed him his $\$ 5$ gold piece It was singular to put one's hand against the stream at the very end of the nozzle, for it seemed as smooth as oil, and the end of one's finger merely made an apparent dent in it.

Many miners were badly hurt and some of them killed, by being careless in using hose, by being knocked down, by stum bling over rock, and getting caught in front of the stream and driven against the banks o into the gravel. On this trial I saw immense bowlders turned over by the water from the noz zle of the hose that I do not think five men could roll over by hand
J. E. Emerson.

The Compagnie des Hauts Fourneaux, Forges et Acieries de la Marine et des Chemins de Fer are experimenting with a new al loy for armor plates, projectiles and guns, viz., a steel containing 1 per cent of chromium, 2 per cent of nickel, and not more than 0.4 per cent of carbon. The steel is first melted in an open hearth, and in the ordinary way When the silicon and manganese in the metal have attained their proper proportions, the nickel and chromium are added successively in the form of ferro nickels and ferro-chromes, or in the shape of a double ferro-chrome and nickel.

The average annual rainfall in the United States is 29.6 in., the variations ranging from 0 to about 125 in.

RECENTLY PATENTED INVENTIONS． Engineering．
Steam Generator．－Frank C．Rom－ key，Toledo，Ohio．This invention consists principally rate resting upon a revolving grate，while connecte ith the combustion chamber 18 one or more evapora－ ore，and a water jacket held on the furnace discharge ino the evaporators．The construction is designed to be simple and durable，and the water in jets is evapor ated to mix with the products of co
from the burning fuel in the furnace．
Generating Motive Power．－The same inventor has been granted another patent on a ting motive power from oil as and water，for drivin ngines or other motors It consists water，for drivin mixing air with a liquid fuel，sach as oil，in an air com－ pressor，then forcing this mixture under pressure in a burner in which it is burned，passing the products of ombustion into water to generate steam，and mixin he latter with the products of combustion．The ap paratus consists principally of a boiler connected wit mixture of air and oil or gas into the burner to b burned，the products of combustion passing into th

Screen and Conveyer．－Micajah T． Singleton，Arcadia，Fla．This is a combination ap maratus for screening sand，and conveying the naterial at one and the same time．The screen，mounted on a suitable frame is formed of series of longitudinally aligned wedge shaped links，rabbeted and overlapped at their adjacei ends，rods extending through the ends and connecting n the rods space the series of links apart，the oute series being spaced by wider links．A traneverse im－ perforate carrier belt extends between the upper and
ower runs of the endiess screen，and the entire ap． paratus is adapted to be bosed in to prevent waste The screen is universal in its application and may be hilaced upon
Ditching Machine．－Ottis Hughes， lock Spring．Ind．A machine designed to automat anly dig a dich and lay the in in provided by this ounted in a portable frome and acraper arran bein push the earth from the shovel，with earth shields pivoted on the sides of the frame．An engine and boiler are located on the front portion of the mai frame，and the shovel blade is caused to elevate th earth from the bottom of the trench and carry it op posite the ejector or shovel scraper．The tiles are laid
by being adjusted and dropped down through a depend y being adjusted and dropped down through a depen
Coffer Dam．－Elmo G．Harris，Little ock，Ark．This improvement is designed to combin with the efficiency the pneumatic caisson．The dou has at the bottom of its walls a contunuous chamber pen at the bottom，the outer wall reaching to a greate depth than the inner wall，and connections are pro vided by which air can be forced into the chamber to rive down the water and enable men to enter an operate．By this means built，and existing submerged structures conveniently trengthened or enlarged．
Water Wheel．－James C．Walker， Waco，Texas，The wheel casing，according to this im and opening into the same inlet pipe，there beng tw inged gates with valves for opening the ports alter nately by the action of the gates，and a wheel having inclines upon its periphery for acting upon the gates．
The wheel is a solid steel disk，with buckets attached to its outer edge and supported by inclined webs or that the Acergy of the water shall act upon a derigne periuheral buckets on the principle of hydraulic pres sure，in contradistinction to that of mere impact an momentum．

Hailway Appliances

Car Coupling．－Alfred R．Heath， ovington，Ind．This improvement relates to tha employed having a vertical movement for engaging ransverse pin or shaft on an opposing car．The coup－ ling hook is carried by a rock shaft on which are
weighted arms to normally maintain the hook in posi weighted arms to normally maintaiu the hook in posi ion to corple，and a presser arm or cam on the shaft a he point engaged of the shaft serving to depress the hook hereon，while the presser arm on the shaft serves to isengage therefrom the hook of an opposing car，the invention also embracing other novel features．
Rail Crossing．－Smith S．Leach， ambridge，Mase．This invention is designed to pro ide a simple practical device adapted to form a rai ing contrnuous when in service and also connectable to switch or signal stand for manipulation．Combined with a base plate and intersecting track rails thereo points of intersection，is a sliding block for each rail oints oction and a triangular projection which may be moved with the block to align with either of the crossed ails on their inner edges，guide flanges being connect－ ed to the rail sections and blocks and devices that will

Agricultural

Plow．－Ocran D．Bunt，Bowdon，Ga A spring fender which will readily accommodate itsel oo the varying surface of the soil is provided by this and adjusted npon a plow or removed therefrom Upon a bar projecting laterally from the beam is ad－
justably secured the rearwardly bent portion of the
spring fender bar，which is bent vertically npward and earwald at ks the fender being carrie pon the rear end of the bar，and being vertically tansversely，and longitudinally adjustable
Hay Stacker．－Thomas Collins， wiveled a frame is a platform adapted to receive has pivoted on the frame，and having a sliding and exten－ sion frame to which cables are attached，ore drawin the frame outward and the other forcing it upward， while a locking mechanism connects the platform with ine swiveled frame．The device is adapted to be erected traw is to be stacked，receiving the latter directly from the fork，and being manipulated from the wagon to without the assistance of a man on the stack direct the distribution．
Calf Weaner．－Francis G．Powers， ew Salem，Kansas．This device consists of a skeleto nd the extremities provided with soft pads or balls， while an apron is pivoted to the lower portion of the frame，and a spring－controlled shaft is．held therein， hereby．the two pads may be carried outward or in tion the apron falls down over the mouth and effectu ally prevents the animal from nursing，but when the nimal holds its head in the natural position for feeding or grazing the apron swings outward，out of the way．

Miscellaneous．

Music Recorder．－Juan B．Calcano Paniza，Caracas，Venezuela．This is a recordin mechanism for musical instruments，planos and organ specially，in whici a series of levers have link connec tion with the keys and are provided with marking ween the levers，and a tape being held to revolve unde ension beneath the crayons．As each key is pressed a mark indicating the note produced is made upon the ay e，and the length or duration of the sound is indi the marks made may be quickly and conveniently read and transcribed in the usual notes employed in readin d writing music．
Distance Measurer and Register Victor Ml．Armenta，Santa Marta，Colombia．Thi vides an instrument in which a wheel，journaled in uitable frame has on one or both faces graduatio ndicating linear measurement in meters and sub ivisions or yards and subdivisions，whereby accura neasurements are made as the wheel is moved ove the ground．On every revolution of the wheel a
projection engages a lever forming part of a regis－ projection engages a lever forming part of a regis－
tering device，another projection operating a striker， o that a bell is sounded simultaneously with th be connected with or form part of a vehicle moved by animal or other power over the ground．
Carpenter＇s Level．－Herman R． Winkelmann，Oakland，Fla．，and Adam C．Perkins， wacon，Ga．This is a combination plumb and leve herefor，to indicate the degree of bevel to be given he ends of diagonal braces in framed structures，an he slope of cuts for the ends of rafters having differen also provided to facilitate the location of foundation walle，side walls，etc．The level stock is preferably made of hard wood，two feet long，longitudinally divided into two pieces of equal thickness，detachably securc

Drawing Board．－Junius D．McCabe Coraopolis，Penn．This board consists of a stationary rame provided with a head supporting a quadran adjacent to the edge of a circular drawing board turn ing on the frame，and provided at its outer edge at
each ninety degree point with a vernier reading to minutes．The board is designed to be simple and arable in construction，arranged convens op while also serving as a revolving drawing board for dif

Frame Building．－John A．Boyd， Houston，Texas．This invention provides a method of onstruction designed to be inexpensive，the frame of
he structare consisting essentially of stnds，wall plates，sills，ioists，tie beams and rafters，so formed hat the several parts may be readily detached one from hus formed is substantial and adapted to eithe emporary or permanent purposes，while being readi erected and quickly taken down without injury．It especially adapted for erection in out of the way place
where skilled labor is not to be had，as skilled work－ men are not required to locate the parts and put up the

Vapor Burner．－Logan W．Everhar Chanute，Kansas．This improvement comprises placed in the fire pot of a stove，range，or boiler furnac or cooking and water－heating purposes．The retort i passages therein，with exit in a discharge pipe adjacent號 tmosphere jets，and the vapor，steam，and externa suction draught and produce an intense and smokeles
flame．The generator is of simple construction，ver DISH WASher．－Eliza A．H．Wood deceased；John P．Gallaway，Tavares．Fh．，admini trator）and Minnie Wood Gordon，Bloomfield，Fla
This is an oblong sheet metal receptacle，having a losely fitting removable cover，and a heavy loose lid bind them sufficiently to prevent disarrangement low－down fancet is provided for the drainage of wate
and the receptacle is adapted for ready connection with
a simple form of cradle，with the aid of which the
entire device is rocked，so entire device is rocked，so as to cause a thorough and dishes and other ware thorough other way

Shovel．－Hanford Reynolds，Gifford，
Shovel．－Hanford Reynolds，Giford， cleaning out tank heatere and feed cookers．Ithas base plate having a flange or side wall on its back and handle extending vertically from the base．The shov is strong，durable and cheaply made，and is adapted cooker to inseorted beneath the
Tag Holder．－John W．Barton and William J．McNabb，Blue Rapids，Kansas．This narrow fluted strip，bent over at its ends，and fas oned intermediately to form a tag－holding plate，with slideway or pocket for the entry of a card or oth tag．It is particularly adapted to be slipped on pant oons kept in stock and piled up for sale，promoting convenience of handing by
Construction of Legged Articles －William J．Humphreys，Crozet，Va．This inventio ， icles self－adjusting to floor inequalities，comprisin etween which is a horizontal equalically sliding rods， here being operating devices at the ends of the bar an upper ends of the sliding rods to permit the bar to be oo the by one rod when the other rod moves oppositely cause tirst ron．＂he use orthe is do and solidly upon the fioor at all times
Vehicle Spring Seat Attachment －John W．Haney and William A．Owens，Garden Valley，Texas．This improvement is designed to be eadily applied and afford a simple means of holding pring seats perfectly steady without in the least inter
fering with the action of the springs，such seats gen fring with the action of the springs，sach seats gen－號 eat．On the inner sides of the spring bars are keepers through which slide vertically uprighte，und diagona braces extend from the uprights to the under side of the eat，the braces moving through
Wagon．－Paul H．Munroe，Plainfield， II．The body of this wagon is mounted on crank being connected directly with the wagon body by spir prings，a novel form of fifth wheel being mounted on prings are secured to the cranto of the forward axte and to a frame on the fifth wheel．The spiral springs are adjustably connected to the body，which has the advantages of being low down and open at the sides，so
that the wagon may be easily loaded and unloaded． that the wagon may be easily loaded and unloaded
The construction of the fifth wheel and the frame an springs connected with it is designed keep the spring Sleigh．－Olaus A Nont She MG．－Ola A．Normann，St side a bolster to which the knees are pivoted，spring being secured to the ends of the bolster and connect－ ed by cross bars secured to the body，while there are rods secured to the runners and links pivoted to the
ods and springs，springs being also hinged to the apper ends of the runners and to the forward part of he body．This sleigh is designed to be cheaply buil ies of the road without jumping while being fexible that it will ride very easily．
Side Apron for Buggies，etc．－ Thomas H．Joyce，Bath Beach P．O．（Unionville），N． Y．This is an apron designed to be attached to the bows and seat of buggies and light vehicles，to pro－ independent of the lap robe，etc．，while being easily moved out or the way．
Nore．－Copies of any of the above patents be will furnished by Munn \＆Co．，for 25 cents each．Please
send name of the patentee，title of invention and date send name of
of this paper．

NEW BOOKS AND PUBLICATIONS

The Centennial Anniversary of the City of Gallipolis，
19， 1890 ．，October 16
Columbus，O．：The Ohio Archæological and Historical Society
Vol．III．1891．Pp．326．
The report of the recent centennial celebration of this growing Western city is contained in this volume，the red cording the early history of the State of Ohio．
Cornell University：Her Gfineral
and Technićal Courses．By Frank
C．Perkins．New，York ：John Wiley
\＆Sons， 53 East Tenth St．1891．Pp
By the liberal ase of very beautifal photogravure this little manual presents us with an excellent view of ife and work at Cornell University．It includes view and description of the prominent lecture rooms，la boratories，etc．．，with portraits of many of the pro
fessors，instructors，and founders．A short descriptio ccompanies each plate
The Separate Sistem of Sewerage ITS Theory AND Construction son．Second edition．Revised and
trand．1891．Pp．281．Price $\$ 3$
The essence of the separate system of sewage is the roduction of a certain amount of roof or sarface water may appear desirable for flushing parposes．This work，
with its numerons tables，illustrations，rules of good
practice and examples of specifications，seems eminently
practical and well adapted for the practical engineer The financial question receives，too，ample treatment，it being recognized that finance and good engineering are
very intimately related．The agitation very intimately related．The agitation for sewage sys－
tems is fast spreading a mong our smaller towns，hith－ erto deprived of such adjuncts to health and conveni ence．It is belleved that this work is most timely，and will prove of the greatest value．
Electric Toy Making for Amateurs． By T．O＇Conor Sloane，Ph．D．New
York ：Norman W．Henley \＆Co．Pp． 140．Price $\$ 1$.
This is a little book designed to be very helpful to the amateur in the line of experimentation and con－ following out special ideas in many directions，and howing the limitations within which electric toy mak－ ing is at present pursued．The book has chapters giv ng comprehensive and concise information upon bat－ eries，magnets，motors，spark and induction coils，etc． ancer the toys epecially described are the electnc rric insects．A very practical portion treats of electric batteries from common materials，and how to manage $\begin{array}{cl}\text { Practical } & \text { Typewriting．By Bates } \\ \text { Torrey．} & \text { New York：Fowler\＆Wells．}\end{array}$ Torrey．New York：Fo
Pp．156．8vo．Price $\$ 1$.
Thisis a book arranged for self－instruction，school ase，and leseons by mail，containing also general advice， subjects．The book is primarily devoted to a lucid presentation of the＂all finger＂method，which leads to operation by touch．Many forms and examples are given of reportorial，legal，business and figure work， and there is a chapter on typewriting for the blind．
 Price 25 cents．
This elegantly illustrated catalogue will，we believe， be warmly welcomed by the world of fishers．The manu－ our columns．In the presenteady been treated of nd the miscellaneous present catalogue not only rods cribed，but eight colored plates of artificial flies give standard value，which it is unusual to find in cata－ fully portrayed in chromo－lithographs．

SCLENTIFIC AMERICAN

bUILDING EDITION．

FEBRUARY NUMBER．－（No． 76.$)$

TABLE OF CONTENTS

Elegant plate in colors of a cottrge at Short Hills N．J．Estimated cost，$\$ 5,000$ ．Perspective eleva tion，floor plans，etc．
2．Colored plate illustrating a cot＇age at Great Dia－ plete．Floor plans，elevations，etc．
3．A resideuce at Portland，Me．Cost，$\$ 11,000$ complete in every re．
tion，etc．
The very attractive residence of E ．T．Burrows，Esq．， at Portland，Me．Cost，$\$ 9,500$ complete．Per－ d at a cost of $\$ 3,200$ complete．Floor plans and perspective elevation．
he style of modern Romanesque．Cost，$\$ 8,000$ Perspective and fioor plana
residence colonial in treatment and recently erected at Belle Haven，Greenwich．Conn．，for Mr． Two perspective elevations，floor plans，etc．
A colonial residence recently erected at Brookline， Mase，at a cost of $\$ 18,000$ complete．Wm．T．
Sears，architect，Boston，Mass．Perspective ele－ vation and floor plans．
An architect＇s home，with sketches showing the hall，drawing room，terrace，entrance front，din－ ing room，together with ground plan．A
thoroughly cozy，comfortable，and complete dwelling．
Sketch for a suburban chapel．Submitted by 0 ．
M．Hokanson in the St．Paul Architectural Sketchen M．Hokanson in the St．Paul Architectural Sketch Club competition
1．View of the Washington Street tunnel at Chicago． Miscellaneous contents：Architecture and poetry．－
Waterproof wall coatings．－Colored woods．－ The planning and construction of American frame Simplicity in furnishing and decorating．－－Utility nd art．Improved door hanger，illu The Madison Square Garden weather vane，the
huntress Diana，illustrated．－Schmidt＇s window rame，illustrated．－Sackett＇s wall and ceiling oard．－An improved mitering mẽchīne，illus－ trated．－A combination folding bath tub，illus－
trated．－Japanese interiors．
The Scientific American Architects and Builders Edition is issued monthly．$\$ 2.50$ a year．Single copies， two hundred ordinary book pages；forming，practi－ cally，a large and splendid Magazine of Architec－ TURE，richly adorned with elegant plates in colors and wamples of Modern Architectural Construction and examples of
allied sabjects．
The Fullness，Richness，Cheapness，and Convenience of this work have won for it the Largest circunald
of any Architectural pablication in the world．Sold by of any Architect
all newsealers．

MONN \＆CO．．Publiengrs．$\quad \mathbf{3 8 1}$ Broadway，New York

PBusiness and Personal.

 The charge for Insert ion under this head is ome Dollar a linefor each insertion ; about eight words to a line. Adver isements must be received at pubbication office as early as

For sale-One Payne engine and boiler. Automatic cut-off. In frst class order. But little used. W. P. Davis, Rochester, N.

Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. 6 Spindle Turret Drill Presses. A.D. Quint, Hartford,Ct 2d hand drills and shapers. Amer. Tool Co., Clev., O. Mixing machinery. J. H. Day \& Co., Cincinnati, Ohio
For pile driving engines. J. S. Mundy, Newark, N. J. Portable and Stationary Cylinder Boring machines. -hand Woodward Pumps.
(i), N. Y. City

Waited-2d hand Nash gas engine, 1 H. P. 2d hand Gap Steam Hammers, Improved Hydraulic Jacks, and Hxpanders. R. Dudgeon, 24 Columbia St., New York. Screw machines, milling machines, and drill presses.
The Garvin Mach. Co., Laight and Canal Sts., New York. Centrifugal Pumps. Capacity, 100 to 40,000 gals. pe Patent for are or parner line pulley, patent, May 12, 1891. For description, see

Wanted-2 steam jacket kettles, 35 to 70 gallons each,
lower drain. G. W. Hoffman, 69 E. Wash. St., Indian-
apolis.
Guild \& Garrison, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vacuum app
acid blowers, filter press pumps, etc.
Split Pulleys at Low prices, and of same strength and
appearance as Whole Pulleys. Yocom \& Son's Shafting appearance as Whole Pulleys. Yocom \& Son's Shafting Works, Drinker St., Philadelphia, Pa.
The best book for electricians and beginners in electricity is "Experimental Science," by Geo. M. Hopkins
By mail, $\$ 4$; Munn \& Co., publishers, 361 Broadway, N. Y. Competent persons who desire agencies for a ne popular book. of ready sale, with bandsome profit, may
apply to Munn \& Co., Broadway, New York.
Magic Lanterns and Stereopticons of all prices. Views
illustrating every subject for public exhibitions, etc illustrating every subject for public exhibitions, etc.
A proftable lusiness for a man with small capital. Also lanterns for home amusement. 220 page catalogu frre. McAllister, Optician, 49 Nassau St., N. Y
QTV Send for new and complete catalogue of Scientific
nd other Books for sale by Munn \& Co., 361 Broadway and other Books for sale by Munn
New York. Free on application.

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our information and not for publication.
References to former articles or answers should give date of paper and page or number of question.
Inquiries not answered in reasonale time ehould
be repeated; correspondents will bear in mind that be repeated; correspondents will bear in mind that
some answers require not a little research, and,
though we endeavorto reply to all either by letter
 expected without remuneration.
cientif Amemer Amen Supplements referre

to may be had at the office. Price 10 cents each. Books referred to promptly supplied on receipt | $\begin{array}{c}\text { price. } \\ \text { merals sent for examination should be distinctly } \\ \text { marked or labeled. }\end{array}$ |
| :--- |

(4007) M. L. asks : 1. What is a good charge for tin assays? A. Tin ore 5 grammes, potas-
sium cyanide in powder 25 grammes. Besides this the crucible is lined with a layer of the cyanide, and the charge is covered with the same. Fuse and cop fuse 10 , poisons known, but this gives about the best results of any of the fire assays. A nou-poisonous charge is:
Tin ore 5 grammes, charcoal 1 gramme (mixed with the Tin ore 5 grammes, charcoal 1 gramme (mised with the
ore), 12.5 to 15 grammes black flux, 1 to $1 \cdot 25$ grammes borax glass. Cover with salt and a small piece of coa mercury to soak through a copper plate in a mill so a to ooze out in drops underneath? A. Yes. 3. Why are old plates so valuable $?$ A. On ascount of the precious metal they retain. 4. 1t is stated that horse
power will be furnished (or can be) over the distance from the Niagara to Chicago for about half the cost of steam power. Is this true? A. The exact proportion
cannot be given. The interest on the installation and cannot be given. The interest on the instaliation an
cost of maintenance will probably make it impossible. 5 What size current is necessary and how is it used to remove superfluous hair by
Pi.ement, Nos. 176, 353, 834
(4008) A. E. G. writes: In the Scientific anerican for August 1, Professor Henry Rowland is quoted as saying "the voltage of stroke of
lightning is roughly estimated at about $6,000,000,000$ volts." What sa thetige of a stroke as nearly in his " Dynamo-Fiectric Machines," says that the E M. F. of lightni.s is $3.5(t), 000$ volts, and the current about $14,000,000$ amperes. The energy is estimated be equal te a 100 hore j: ©wer engine work ing 10 hours.
थ. Where can I lear the tome sol fa notation or systen 2. Where can I leare the twac sol fa notation or system
of writing mucic? I would like to buy a book to learn it from. A. In most schools where music is taught.
3. A the 3. A the patent laws are now, can any one make a pa
enteci artic, ${ }^{3}$ or machine, if they make it themselve and uer it osclusively for their own benefit, without be coting hable for infringement? A. No. 4. How is plied with a brush or sponge, the carbon or other plg $\mathrm{m} \cdot \mathrm{nt}$ being mixed with glycerin or vaselin, with a mixtuye of beeswax and oil or some similar medium. 5 .
when a metailic spring is compressed it contains latent eqercy, representing the power expended in compress
mf it. If it is dissolved in acid while still in a com preseed state, what becomes of the iateni mechanica
energy it contained ? A. The energy expended in
pression is given out in heat, which is dissipated. (4009) L. M. C. asks (1) how to make corage battery suitable to run a $1 / 2$ or $1 / 4$ candle powe coat pocket? If this subject has enough to carry in any of your papers, will you please refor me to such ny of your papers, will you please refor me to such
A. We expect to publish a deecription of a storage bat tery suited to your purpose at an early date. 2. What is the fluid used in those "electric inhaler" bottles Consist of a small bottle with a screw top, and a piece flannel. The fluid completes it. When placed near th ostrils a strange sensation is felt, extending to the back the head. A. Oil of mustard is the principal ingredilike cement and will harden in a few minutes? A. For weak acids use oxide of zinc and a solution of chloride of zinc. Chloride of zunc is poisonous, but the cement is inert after hardening and washing. For strong acid melt together pitch 1 part, resin 1 part, and plaster of you please tell me how to compute the quantity of wit oft iron? A. For this information we refer you to Sloane's "Arithmetic of Electricity," \$1, and Thomp n's " Electro-magnets," \$6, by mail.
(4010) Subscriber wishes to know the following: At his place of business there is a 20 horse
electric motor, 500 volts. The writer while thoughtlessly djusting brushes caught hold of all the lower brushe nd pressed them upward, this having the desired effect. He also took hold of the upper set and was quickly
thrown backward. Now what amount of current passed through me, the machine running a load of about 12 horse power? After catching hold of brushes I felt nothing except the after effect, which was a sligh shaking of the hand and a slight soreness of finge onds. A. It is impossible to form any idea from the ata sent as to the amount of current passing through your body, as it is wholly a question of resistance. Th prevented anything more than a small fraction of the arrent from passing through you. For instance your ands may have been very dry or very oily. On the ther hand, your hands may have been moist and the ontact with the brushes good, in which case you ormal resistance of your body, which would
(4011) H. W. G. asks how to construc a steel triangle to be used in lieu of a bell. I want
with sides from 3 to 4 ft . long. Please state what kind of steel to use? What shape, whether square or round Proper form of construction, and should angles be bent sharp or rounding? How should it be hung, and
with what should it be struck to obtain the beet sound! am informed that to strike a bell with wrought iro will ruin the bell. Is this true, and would the same firect be produced upon a triangle by use of a simila
etriker? A. For a steel triangle with sides as stated use a square bar of tool steel one iuch diameter and from 10 to 12 feet long. Balance the bar in two loops of strong twine about one-third of its length from eac nd. Strike the bar between the end and one of the arings. Move both strings toward the center a little a time to get the tose that suits you, and when the bend to a triangle at bend. A wrought iron hammer would not injure a trian mer of any other metal.
(4012) J. E. H. writes : I wish to make ong battery. Battery is to have 10 plates 6 inche welfth inch thick markedin squares of one-elghth inch with holes punched at each corner of squares and cov red with a coating of red lead paste mado by mixing ed lead with diluted sulphuric acid. In what pro A. Use 1 'part of acid to 10 of water. 2. About how nuch current will such a battery yield for three hours working constantly, after being ciarged! A. About 22 mperes. 3. How many gravity batteries should I ue in forming the plates and afterward in charging the battery? I only wish to use storage battery once wo days. The zinc and copper of the primary batter each has an active surface of about 18 square inches,
Sulphate of copper and sulphate of zinc are used in charging the cells. A. The forming as well as the charging may be done with four cells. The formin however could be facilitated by the use of four time that number.

Replies to Enquiries.

The following replies relate to enquiries recently pub ished in Scientific american, and to the numbe
herein given:
(3889) Referring to Notes and Queries No. 3889, C. E. H. has ro cause for alarm, as the milk,
ppearance in the water from his hot water boiler caused by a foaming from the air it contains. This it eadily shown by drawing a tumblerful and holding it ap to the light, when it will be seen that the water clear from the bottom, and what appear to the eye to b white particles rises inetead of falls.-W. G. Busse.-LI well known that the vesices of ar and steam rise heclearing of water drawn from the hot water fance his does not account for the sediment that settle This goes to the bottom every time.-F.D.] C. A. G. asks for a black ink.-J. H. G. asks for a cid-proof cement for nickel-plating tanks.--L. B. ask or a receipt for fining wine.-T. T. M. asks how to makeand ink typewriter ribbons.-A. C. G. asks for a cement or mucilage to stick labels to tin.-C. W. F. or a good bay rum and sea foam.-G. F. L. asks fo astes for mounting photographs.--F. C.
make a dipping solution for silvering.
Answers to all of the above queries will be found in and Queries," to which our correspondents are referred The advertisement of this book is printed in another colnmn. A new circular is now ready.

INDEX OF INVENTIONS Por which Letters Patent of the United staten were Granted February 2, 1892. AND EACH BEARING THAT DATES. [See note at end of list about copies of these patents.]	
\&sh	
	Feead
	Hemos materais, mach ne for rashing, E. Gum-
Sata	${ }_{\text {Fintin }}$
dind	
, Biois im	
	Gas
bride	
	ins
mainin	Grip
come	Guard
	Hampers sed
mabine	
dita	Hea
astiction	
Rain	
	app
apoastro ${ }_{3}$ Did man	
	tabie, com
couphng, H: \qquad	Iron
Uueie uioin iniciiin	
ate com	
Ster	
Comen	
Hmas.	
	${ }_{\text {Knit }}$
g iron pigs, ingots,	${ }_{\text {Lam }}$
,	
alaifls. St	Mea
Concrete post, door step, table top, etc., O. A. 468,268 Stempel..	,
	Misisia
tor	Nout
Win itita ikemp	
Dounilif and windins berrcee forcr domeesticuse, E.	
Draught eaualizer. E. T. Carter.	
che	

TRADE MARKS.
Antiseptics and deodorants, fluid, o. A. Beck-
 Chucks Oneida Manuanacturiñ Chuck Compan

DノDvertisements.

Patent Foot Power Machinery
 U. S. INFALLIBLE METAL POLISH.
 $\underset{\sim}{\text { Improved Screw Cutting }}$
Foot and Power. ATES
 SEBASTIAN LATHE COMPANY

FRET SAW or MODDS BRACKET MOS

Planed Ready for Use. Books of Design.
CABINET Send stamp Wor
Qantalogee.
VENEERS THE E. D. ALBRO CO.

 Best Foundation for Plaster

ELECTRIC POWER APPARATUS, FOR EVERY VARIETY OF MEOHANIOAL WORK.
SAFE, SURE, RELIABLE. THOMSON-HOUSTON MOTOR CO.,

620 ATLANTIC AVENUE, BOSTON, MASS

$\left(\begin{array}{l}\text { Factory } \\ \text { (Titet } \\ \text { Withower) }\end{array}\right)$

WOOD WORKING MACHINERY

SMOKELESS GUNPOWDER.-AN IN-

Hatch Chickens by Steam. IMPROVED EXCELSIOR IIICUBATOR

NOW READY!
A NEW AND VALUABLE BOOK.

12,000 Receipts. 650 Pages. Price $\$ 5$. This splendid work contains a careful compila-
tion of the most useful heceipts and Replies given ished in the Scientific American during the past fifty years: together with many valuable and over Twelve Thousand selected receipts are here collected; nearly every branch of the use-
ful arts being represented. It is by far the most
comprehensive volume of the kind ever plaed beThe work may be regarded as the product of the
fudies and practicalexperience of the ablest chem-
stur ists and workers in all parts of the world; the in-
formation given being of the highest value, ar-
ranged and condensed in concise form convenient for ready use.
Almost every inquiry that can be thought of, Almost every inquiry that can be thought of,
relating to formulxz used in the various manufac-
turing industries, will here be found answered. cesses in the arts are given.
It it impossibe wittin the limits of a prospectus so extensive a work.
Under the head of Paper we have nearly 250 re-
ceipts, embracing how to make papier maché; how ceipts, embracing how to make papier maché; how
to make paper water proof and firc proof; how to
make sandpaper, emery paper, tracing paper, make sandpaper, emery paper, tracing paper,
transfer paper, carbon paper, parchment paper, colored papers, razor strop paper, paper for doing
up cutlery, silverware; how to make luminous paper, photograph papers, ete.
Under the head of Inks wee have neary 450 re-
ceipts, including the finest and best writing inks ceipts, including the finest and best writing inks
of all colors, drawing inks, luminous inks, invisi-
ole aince or ainksorsol, siller silver and bronze inks, white inks
directions for removal of inks; restoration of Under the head of Alloss over roo receipts are
Given, covering a vast amount Qaluable inforgiven, covering a vast amount Q valuable infor-
mation.
Of Cements we have some 600 receipts, which
include almost every known adhesive preparation, and the modes of use.
How to make Rubber Stamps forms the subject complete process is described in such clear and explicit terms that any intelligent person may readily
learn the art. learn the art.
For Lacquers there are 120 receipts: Electro-Me-
tallurgy, 125 receipts; Bronzny, 127 receipts; Photography and Microscony are represented by 600 Under the head of Etching there are 55 receipts,
embracing practical directions for the production of engravings and printing plates of drawings. Paints, Pigments and Varnishes furniing over
Po receipts, and include everything worth knowing on those subjects.
Unde the head of Cleansing over 500 recipes
are given, the scope being very broad, embracing are given, the scope being very broad, embracing
the removal of spots and stains from all sorts
of objects and spaterials, sleaching of fabrics
cleaning furniture, clothing, glass, leather, fatios,
cetals, cleaning furniture, clothing, glass, leather, metals,
and the restoration and preservation of all kinds
of objects and materials. of objects and materials.
In Cosmetics and Perfumery some 500 receipts are given.
Those who are engaged in any branch of industry
probably will find in this book much that is of Those who are in search of independent iusiness
or employment, relating to the home manufacture
of sample articles, will tind in it hundreds of most

MUNN \& CO., Publishers,
SOIENTIFIC AMERICAN OFFICE,
SEWING MACHINE MOTOR FOR AMAple and etfectivc motor. with liminated armature, ot
suffcient power to actuate a sewing machine. With 11

A Griat Adrortising Medinim.

[^0]A New unc Valuable American Book for Prospectors mawn minuma In the Search for and the Easy Determination of Ores
and other Usefur Minerals．By Prof．H．Sosborn，LL．
ant

 bif the same author．
A PRACTICAL MANUAL OF MINERALS， MINES，AND MINING．

 WP．Deserppt iue circulars giving the full tables of con－
oprits other thove books sent free to any one who will send
his aulidess．

 HENRY CAREY BAIRD \＆CO．

ROPER＇S PRACTICAL
Handy Books．
BY STEPHEN ROPER，Engineer．

PELLTON WATER MOTOR．

THE INTERNATIONAL CYCLOPEDIA Revised Edition of 1892．Just Out．

The BEST READY REFERENCE CYCLOPEDIA in the ENGLISH LaNGUAGE

DODD MEAD \＆COMPANY ，

STEEL TYPE FOR TYPEWRITERS

 eyesight ：its care during in－

OIL WELL SUPPLY CO．

清本

ARTESIAN

 ICE HOUSE AND REFRIGERATOR

HE PENNA．DIAMOND DRILL \＆MFG．co．
 Stean Gnatines．Diatanond butilis，

PURE TEMPERED COPPER 菲

 HARRISON CONVEYOR！

 After being on the Market Five Years The＂ACME＂sill leats！
 ROCHESTER MACHINE TOOL WORKS．BTOWn＇s Race，ROCHESTER，N．Y

OTARTESE WARP DYEING AND SIZING，MACHINES
PATENT RUBBER COVELEED SQUEEZE OOWER WRINGERS FOi，HOSIERY AND DRYING AND VENTLATING FANS，

SCIENTIFIC AMERICAN SUPPLE

 jects．Catalogues on application．Part 1 poptical． | Mathematical， 3 Metenolosical， 4 Mapic Lanterns，etc |
| :--- |
| L．MANASSSE， $8 \mathbf{~ M a d i s o n ~ S t r e e t , ~ C h i c a g o , ~ I l l ~}$ |

 ANEW CATALOCUE
A VALUABLE PAPERS

VOLNEY W．MASON \＆CU．
FRICTION POLLETSS CLOTCHES and ELEVATORS
 HAS

Machinists＇Tools of every description， drop forged from bar steel， THE BILLINGS \＆SPENCER COMPANY

STEVENS PATENT PENCIL DIVIDERS ．only．．．．．．．．．．．．．．．．．．．．．．．．．．．． 8175
 eal and Leader Spring Calipers and Divi

STORY OF THE UNIVERSE－BY DR

A high dase，beuntifully illustrated monthly magazine

HARPER＇S
 PERIODICALS

HARPER＇S MAGAZINE，One Year－－$\$ 4.00$ HARPER＇S WEEKLY，One Year－－－． 4.00 HARPER＇S BAZAR，One Year－．．． 4.00 HARPER＇S YOUNG PEOPLE，One Year－ 2.00

Pristage free to all subscribers in the United States，Canada，and Mexico．

The volumes of the Weerly and Ba－ zar begin with the first numbers for January，the volumes of the Young People with the first number for No－ vember，and the volumes of the MAGA－ zine with the numbers for June and December of each year．

Booksellers and Postmasters usually receive Subscriptions．Subscriptions sent direct to the publishers should be accom－ panied by Post Office Money Order or Draft．When no time is specified，aub－ scriptions will begin with the curren Number

The MAGAZINR is an overfowing store of good hitera－

 Address

HARPER \＆BROTHERS，

 NEW YORK．

INVENTIONS Practically DEVELOPED

ICE－HOUSE AND COLD ROOM．－BY R

DEAFNESS \＆HEAD NOISES CURED

PATENT JACKET KETTLES

HW．JOHMS assetyis STEAM PACKING
 Boller Coverings，Millboard，Roofing

 H．W．JoHMS MFG．CO．， 87 Maiden Lane，N．Y．

 GATENTS！

In this line of business they areparation have mave had forty－fine qurors preparation of Patent Drawings，Specitceations，and the
proserution of Applications for Patents in the United
ptates，Canada，and Foreign Countries．Messrs．Munn
 Reports on Infringements of Patents．All business in－
trusted to them is done with special care and prompt－
ness，on very reasonable tepms

 MUNK \＆CO．．Sollcitors of Patents． 361 Broadway，New York．
BRANCH OFFICES．- No． 622 and 64 F ．Street，Pa－

H

King of Kameras． ＊

＊＊

 The new model Folding Kodak，with glass plat attachment，Asbury Barker frictionless shutter Greatest range of automatic exposure ever attained No sticking on slow speeds．Accurate，reliable．Best combined tripod and hand camera ever made．Best workman ship．Best Finish．Send for circulars．

THE EASTMAN COMPANY，

DEFIANCE MACHINE WORKS，

 NCE，OHIO，U． mod－woriling Macinnery

Hoop，
Nectr－
Yoke，
Single Handle
Pacories． $\stackrel{\substack{\text { conppete } \\ \text { ontrust }}}{\overline{2}}$ eximisu

The Remington
Standard

Isto－day，as it hasever been the leading Typewriter． Carefully

Typewriter tested im
 provements are const
machine．

THE SMTH PREMER TYPEWRITER
 DOUEFPK FOVFIFR？

$S_{J E T}^{\text {Stam PUMP }}$
KIND OF LIavid．
dil brass Every order．
d． 10 sizes．Capacity
 $\underset{\text {（PUMP DEPARTMENT）}}{ }$

NICKEL－IN－THE－SLOT MACHINES．

 ELECTRO VAPOR ENGINE． GAS OR GASOLINE FOR FUEL．
NO BOIIER．NO FILE．NO DANGER．

Engine operated by spark
from small battery

THOMAS KANE \＆CO．， CHICACO，ILL．

HDIEDIN

GENERAL ELECTRIC CO．
INCANDESCENT AND ARC LIGHT PLANTS．
Stationary and Railway Motors．－Lamps．－Cables．－Safety Devices．

エエエコ

G）

The Most Popular Scientific Paper in the World
Only $\underset{\text { Weekly }}{\$ 3.00}$ Year，Including Postage．
This widely circulated and splendidy illustrated This widely circulated and splendidly illustrated
paper is published weekly．Every number contains six－ teen pages of useful information and a large number of original engravings of new inventions and discoveries，
representing Engineering Works，Steam Nechincry， representing Engineering Works，Steam Hechincry．
New Inventions，Novelties in Mechanics，Manufactures，
Chemisry Chemistry，Electricity，Telegraphy，Photography，Archi－
tecture，Agriculture，Horticulture，Natural History， etc．Complete list of patents each week．
Terms of Subucription．－One copy of the Scien－
TIMIC AMERICAN will be sent for postage prepaid，to any subscriber in tor Unted Staies． Canada，or Mexico，on receipt of three dollars by the
publishers；six months，\＆1．50；three months， 81.00 ． publishers；six months， 81.50 ；three months， 81.00 ．
Clubs．- Special rates for several names，and to Post Clubs．－Special rates for several names，and to Post
Masters．Write for particulars．
The safest way to remit is by Postal Order，Draft，or Express Money Order．Money carefully placed inside of envelopes，securely sealed，and correctly addressed，
seldom Koes astray，but is at the sender＇s risk．Address seldom goes astray，but is at the sender＇s risk．Addre
all letters and make all orders，drafts，etc．，payable to MUNN \＆CO．， 361 Broadway，New York． Scientific Gancrican §upplement

This is a separate and distinct publication from Thi every，number contanirg ；ixteenticre pages tull of en－ gravings，many of which are taken from forelgn papers and accompanied with translated descriptions．a The SCIENTIFIC AMERICAN SUPPLEMENT is pubished week－ sents the most recent papers by eminent writers in all the principal departments of Science and the Useful Arts，embracing Biology，Geology，Mineralogy．Natural
History，Geography，Archæology，Astrong try，Electricity，Light，Heat，Mechanical Engineering，
then Steam and Railway Engineering，Mining，Ship Ruilding． Marine Engineering，Photography，Technology，Manu－ facturing Industries，Sanitary Engineering，Agriculture，
Horticulture，Domestic Economy，Biography，Medicine Horticulture，Domestic Economy，Biography，Medicine，
etc．A vast amount of fresh and valuable information obtainable in no other publication．
and Manufactures at home and abroad are illustrated and described in the Supplement． Price for the SttPPLEMENT for the United States and
Canada， 85.00 a year；or one copy of the ScIENTIFIC AM－ ERICAN and one copy of the SUPPLEMENT，both madled
for one yearfor 87.00 ．Single copies， 10 cents．Addreess and remit by postal order，express money order，or chect MUNN \＆CO．， 361 Broadway，New York Publishers ScIentific American． Buildixg Cidition．

The Scientific American Argititects＇and BUILDERS＇EDITION is issued monthly．$\$ 2.50$ a year
Single copies， 25 cents．Forty large quarto pages，equa to about two hundred ordinary book pages：forming a large and splendid Magazine of Architecture，richly engravings；illustratit plates in colors，and with other fine engravings；illustrating the most interesting examples
of modern architectural construction and allied subjects． A special feature is the presentation in each numbe of a variety of the latest and best plans for private resi－ dences，city and country，including those of very mod－
erate cost as well as the more expensive．Drawings in perspective and in color are given，together with full Plans，Specifications，Sheets of Detalls，Estimates，etc． The elegance and cheapness of this magnifcent work have won for it the Largest Circulation of any dealers． 82.50 a year．Remit to

MUNN \mathcal{A} CO．．．Publisher

GEAR CUTTIING

PRINTING INEX

[^0]: (Established 1885.)

