(18)
a Weekly journal of practical information, art, scievce, mechanics, chemistry, and manufactures.

NEW YORK, NOVEMBER 28, 1891

PROGRESS OF WORE ON THE CHICAGO WORLD'S FAIR BUILDINGS AND GROUNDS.-[See page 340.]

Frientifit esmmerican.

ESTABLISHED 1845.
MLUNN \& CO., Editors and Proprietors PUBLISHED WEEKLY AT
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMG FOR THE SCIENTIFIC AMERICAN.

The scientific American Supplement
is a distinct paper from the SCIENIFIC AMERICAN. THE SUP SULEEMENT
is issued weekly.

Building Edition.
The Architects And Builders Edition of The Scientific Ameri-
AA is a large and splendid illumstrate periodical, issued monthly, on-

NEW YORK, SATDRDAY. NOVEMBER 28, 1991.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT No. 830.
For the Week Ending November 28, 1891.

II. CH
 tions

v. GUNNERY-Gun Wrink iles.ByG. D. Hiscox. How to examine
 givins Vertical compone

X. TECRNOLOGYY. Cotton Seed Oil and the Products of the Cotton

\qquad

plates for secondary batteries.

A solution is made by boiling litharge in a very con centrated solution of caustic soda and potash. A lead plate boiled in this solution will receive a coating of spongy lead $1 / 2$ inch in thickness. This can be pressed down so as to occupy only one one-hundredth of an inch. A plate thus prepared yields readily to the form ing process. This method is due to Edison.

IMPORTANT IMPROVEMENTS IN SORGHUM SUGAR
 \section*{MANUFACTURE.}

By the recent introduction of the alcohol process in the manufacture of sugar frow sorghum, the industry takes on a new aspect and promises soon to rival if it does not surpass in value the cane and the beet root products. H. W. Wiley, director of the government surghum sugar station at Medicine Lodge, Kansas, reports the yield of first sugar to be 150 pounds per ton of the plant, which latter costs $\$ 2$ to $\$ 2.50$ per ton, against $\$ 4$ to $\$ 5$ per ton for beets or cane, yielding the same amount of first sugar.
The Louisiana Planter says: The process, until the semi-sirup is ready for the strike pan, is the same as in the ordinary sorghum mill. After the juice has been evaporated to a semi-sirup, ready for graining in the strike pan, it is drawn off into large tanks and mixed with an equal volume of alcohol, a pipe at the bottom of the tank conveys a current of air through the mix ture, and the sirup and alcohol are thoroughly mixed. It is then allowed to stand about twelve hours.
The alcohol combines with the impurities in the sirup and a mass of gummy substances is precipitated to the bottom. The clear mixture of sirup and alcohol is then drawn into the distilling column and the alcohol recovered. The sirup, being freed from impurities and alcohol, is then conveyed to the strike pan.
The residue left in the bottom of the tanks is run through filter presses, and after the sirup is obtained from it a thick, gummy mass is left which somewhat resembles rubber in appearance, but lacks its consist ency, and readily breaks apart.
The loss of alcohol is less than one per cent.
The masse cuite contains no gums and is swung through the centrifugals in a remarkably short time, a charge being run through in less than two minutes, while masse cuite from sorghum sirup by the ordinary process requires from seven to ten minutes.
By the alcohol process actual sugar to the amount of from 148 to 160 pounds per ton of cane has been ob tained.
In all the industrial arts there is perhaps nowhere a more striking illustration of the ability of science to remove difficulties than in this case of sorghum sugar manufacture. Chemicals failed to rewove the gummy substances from the juice, mechanical means failed. Mark how simple the remed y-convert the gummy sub stances into alcohol, and use the alcohol to separate the gummy substances. It is simply to make the gummy substances remove the gummy substances. It is simply to cause the juice to clarify the juice, the impurities to remove the impurities. There is nothing simpler, except the wand of a magician.
And now sorghum sugar manufacture, having the diffusion process and the alcohol process, enters a new era, an era of success. It has now a business basis, instead of a theoretical basis.
There are many millions of acres of land in the South west whose soil and climate are admirably fitted Southwest whose soin and conce sorghum cane containing 246 pounds of
to sugar in a ton of trimmed cane, that is cane cleaned of leaves and of seed, and of this 246 pounds of sugar, 150 pounds is known to be easily obtainable; so that with the second sugar the total yield will not fall much short of 200 pounds of sugar per ton of clean cane. The cultivation of sorghum is much easier and less expensive, in the Southwest, than the cultivation of sugar cane or of sugar beets.

POOR ENGINEERS AND GOOD BOILERS

Boiler explosions are constantly taking place which ordinary precautions would have served to prevent such disastors. about twenty times a month, at least this has been the rate for the past two years, during which time the writer has carefully noted them. One potent cause is undoubtedly to be attributed to the employment of ignorant or careless men in the engine room, and an ther to the parsimony of some steam users, who "cannot afford" to get new boilers, though the old nes have been rendered dangerous by ill usage first set in.
A few, happily the minimum, come from cause which the most painstaking manufacture and the ost skillful handling would not always avail to pre ent, for there are conditions of generation and ex pansion of gases within boiler shells which
this late day are not thoroughly understood.
Let us inquire into the causes of some of the recen xplosions. There were twenty-five serious ones be-
tween October 15 and November 15. In the case of the disaster in the boiler house of the Louisville (Ky.) Electric Power Co., the exploding boiler was connected with another by a large steam drum, so that when one had a certain pressure, the other had the same. Each had an independent feed pipe entering at the top, and also separate gauge cocks and glass water gauges. They were connected at the bottom with a two inch qualizing pipe. It was shown conclusively that there was plenty of water in one, and none in the exploded boiler. Close inspection of the inner sides of the plate showed this. The feed valve had become closed and the equalizing pipe stopped up by scale and sediment The indications of the back head and the flue, which howed the blue line, indicated low water, and even the ngineer admitted that that was the cause. The result of this explosion was the death of one man, the wounding of several others, and a disastrous fire.
The engineer trusted to the equalizing pipe, and did not even trouble himself to keep his boilers free of scale and to watch his gauges. Even his brother engiheers in Louisville condemned him in a special meet ng.
A somewhat similar case occurred at the Enterprise Mills, St. Jacob, Ill. The boiler that exploded let go long the horizontal seam of the first sheet, just below the water line, one flue was collapsed its full length There were two boilers set in battery, connected at bottom with mud drum with seven inch legs, and on top with four inch pipe only. The boiler that did not explode showed no signs of low water, while in the ther they were unmistakable. This seems to hav been a clear case of driving the water from one boile nto the other. There had been a big fire under the one that exploded, and but little under the other. That and the small steam connection is thought to be sufficient to account for it.
Here is a fairly representative list of explosions for thirty days, with the causes given where known :
Bessemer, Ala. : Electric Light Works. Cause : low ater.
Anderson, Ind.: Am. Straw Board Co. Engineer ent out for his lunch. He " thought it would be all ight."
Tifton, Ind. : Coleman's Mill. Cause : not known.
Medina, N. Y.: Sanderson's Mill. Cause : boiler caled an inch thick.
St. Paul, Minn. : Kansas City Lime Shops, locomo ve boiler. Cause : unknown.
Manchester, N. H. : Amoskeag Mill. Fly wheel ex ploded. Cause : imperfect casting.
Chicago: Tug boat Parker. Foaming, caused by sing Chicago River (sewage) water
Whitcomb, Wash.: Str. Evangel. Engineer forcin boiler beyond safety limit.
Pottsville, Pa.: New locomotive, cause unknown
Brookhaven, Miss.: Brookhaven Machine Company Boiler hadn't been cleaned and examined in three months.
Highland Park, N. J.: Raritan Brewery. Gauges topped up and safety valve out of order.
South Stillwater, Minn.: Stillwater Lumber Co.'s Mill. Improperly constructed boiler.
Marion, O.: Schaffner's furniture factory. Low water. Philadelphia, Pa.: Conroy Boiler Co. Boiler thick nd cumbered with incrustation.
Sanborn, N. D.: Thrashing machine. Low water.
Tokio, O.: Portable engine. Engineer "didn't know
it made any difference how much steam he got up."
McDonald, Pa.: Drilling engine. Engineer playing ards with a friend.
Eckelson's, N. D.: Thrashing engine. The water was ow, and engineer couldn't remember just how much steam he was carrying.
Kildare, Tex.: Steward's Saw Mill. Scale and lack of water.
Van Wert, O.: Steam picket saw. Engineer had to out for his lunch
Sundridge, Ont.; Tookey's Planing Mill. Boiler worn out.
Venedocia, O.: Saw mill. Low water.
In most of the cases where there were deaths, the coroner's inquiry brought out the fact of gross incom petence. Indeed, the evidence in many of these cases is calculated to amaze the reader. It seems to be a fact that there are those who employ; steam in their business without the smallest idea of its dangers. They hire an engineer as they hire a wagon driver, and trust to luck for the rest.
In some sections the laws bar out incompetence from the engine room, and such laws should be in force

The Stationary Engineers, of Louisville, Ky., who met recently to consider the cause of the explosion in that city, declared it as their belief that "engineers as well as boilers should be inspected." A sentiment, it may be said, which does credit to their intelligence.

To prepare transfer paper, take some thin post or issue paper, rub the surface well with black lead, ver wilion, red chalk or any coloring matter. Wipe the preparation well off with a piece of clean rag and the paper will be ready for use.

position of the planets in december.

 mercuryis evening star until the 28th, and then morning star. He is the most active member of the solar family during the month, playing a part on no less than ten oceasions. We call attention to the most important. He is in conjunction with Venus on the 5 th, at 10 h .3 m . A. M., being $1^{\circ} 15^{\prime}$ south. The platets are invisible at the time of conjunction, the event occurring in the daylight, but they will be visible, on the evening of the 5 th, to bright-eyed observers. They set on that evening a little more than an hour after the sun, and are about 2° south of the sunset point. The great southern declination of both planets is, however, unfavorable for northern observers. Mercury reaches his greatest eastern elongation on the 11 th , at 10 h .12 m. A. M. when he is $20^{\circ} 36^{\prime}$ east of the sun. He is then, and for week before and after, visible to the naked eye, if the weather conditions are favorable, setting at elonga tion, about an hour and a quarter after the sun. Mercury is in inferior conjunction with the sun on the 28th, at $4 \mathrm{~h} .53 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. , when, passing between the earth and the sun, he closes his course as evening star
The new moon of the 1st is in close conjunction with Mercury on the 2 d , at $8 \mathrm{~h} .39 \mathrm{~m} . \mathrm{P}$. M., being 30^{\prime} south. The waning moon, a few hours before her change, is in conjunction with Mercury for the second time in the month, on the 30 th, at 1 h . 29 m . P. M., being $6^{\circ} 6^{\prime}$ south.
The right ascension of Mercury on the 1 st is 17 h 49 m ., his declination is $25^{\circ} 49^{\prime}$ south, his diameter is $5 " .6$, and he is in the constellation Sagittarius.
Mercury sets on the 1 st at $5 \mathrm{~h} .26 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31st he rises at $6 \mathrm{~h} .37 \mathrm{~m} . \mathrm{A} . \mathrm{M}$.

venus

is evening star. It is still the day of small things on her calendar, but before the month closes she will be far enough east of the sun to be recognized by every observer who turns his gaze to the southwestern sky soon after sunset. This radiant evening star sets an hour and a half later than the sun on the middle of the month and two hours later at its close.

The new moon of the 1st is in conjunction with Venus on the 2 d , at $9 \mathrm{~h} .13 \mathrm{~m} . \mathrm{P}$. M., being $1^{\circ} 54^{\prime}$ south
The right ascension of Venus on the 1st is 17 h .51 m . her declination is $24^{\circ} 24^{\prime}$ south, her diameter is $10^{\prime \prime} .8$, and she is in the constellation Sagittarius.
Venus sets on the 1st at 5 h .34 m . P. M. On the 31 st she sets at $6 \mathrm{~h} .33 \mathrm{~m} . \mathrm{P}$. M.

JUPITER

is evening star. An interesting event occurs in his De cember course. He is in quadrature, or 90° east of the sun, on the 1st, at 5 h .2 m. P. M. He is then on the me ridian near sunset and sets about midnight. He is resplendent in the western sky, and in fine position for telescopic observation. A new red spot has been dis covered on Jupiter's disk, having been first seen by Mr Stanley Williams in 1889. It is not as large as the famous red spot that appeared in 1878. It is in the samelatitude as the dark belt south of the great red spot. A fresh subject for investigation and speculation is now pre sented to the inen of science, who are as far from com prehending the meaning of the mighty changes going on in the Jovian domain as they were thirteen year ago, when the great red spot first appeared.

The moon is in conjunction with Jupiter on the 7th the day before her first quarter, at $10 \mathrm{~h} .50 \mathrm{~m} . \mathrm{P}$. M. being $4^{\circ} 12^{\prime}$ south.

The right ascension of Jupiter on the 1st is 22 h 46 m ., his declination is $9^{\circ} 12^{\prime}$ south, his diameter is $38^{\prime \prime} .8$, and he is in the constellation Aquarius.
Jupiter sets on the 1 st at $11 \mathrm{~h} .28 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31 st he sets at 9 h .51 m. A. M.

SATURN

is morning star. He is in quadrature, or 90° west of the sun, on the 21st at $6 \mathrm{~h} . \mathrm{P}$. M., when he rises about midnight. Observers, who have telescopes, will find it most interesting to watch the reappearance of the rings, as they gradually change from threads of silver to the larger proportions that make Saturn the mar vel of the heavens.
The moon is in conjunction with Saturn the day be fore her last quarter, on the 22d, at $8 \mathrm{~h} .10 \mathrm{~m} . \mathrm{P}$. M., being $2^{\circ} 21^{\prime}$ north.
The right ascension of Saturn on the 1st is 11 h .59 m., his declination is $2^{\circ} 24^{\prime}$ north, his diameter is $16^{\prime \prime}$ and he is in the constellation Virgo.
Saturn rises on the 1st at $1 \mathrm{~h} .3 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 31st he rises at $11 \mathrm{~h} .11 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.

MARS

is morning star. He makes a close conjunctiou with Uranus on the 15 th at 4 h .58 m. A. M., being 29^{\prime} north The planets rise on the 15 th about a quarter after 3 o'clock, and a good opera glass or a small telescope will bring them to view as they hang side by side in the morning sky, the distance between them being a ittle less than the diameter of the moon.
The moon makes a close conjunction with Mars our days before her change, on the 26th, at 9 h .56 m A. M., being 25^{\prime} north. The waning moon and the ruddy planet will be near together as they approach conjunction on the morning of the 26 th.

The right ascension of Mars on the 1st is 13 h .36 m ., his declination is $9^{\circ} 0^{\prime}$ south, his diameter is $4^{\prime \prime} .6$, and

Mars rises on the 1 st at 3 h .23 m. A. M. On the 31st he rises at $3 \mathrm{~h} .2 \mathrm{~m} . \mathrm{A} . \mathrm{M}$.
neptune
is evening star. He is in excellent position for obser
vation with opera glass or telescope, being visible nearly the whole night. He must be looked for in the eariy evening, in the east, a little northwest of Aldebaran.
The right ascension of Neptune on the 1st is 4 h . 24 m ., his declination is $19^{\circ} 58^{\prime}$ north, his diameter is
. 6 , and he is in the constellation Taurus.
Neptune sets on the 1st at $6 \mathrm{~h} .52 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 31 st he sets at $4 \mathrm{~h} .51 \mathrm{~m} . \mathrm{A} . \mathrm{M}$.
uranus
is morning star. His right ascension on the 1 st is 14 h. 7 m ., his declination is $12^{\circ} 22^{\prime}$ south, his diameter is $3^{\prime \prime} .4$, and he is in the constellation Virgo.
Uranus rises on the 1st at $4 \mathrm{~h} .2 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 1st he rises at $2 \mathrm{~h} .13 \mathrm{~m} . \mathrm{A} . \mathrm{M}$
Mercury, Mars, Saturn, and Uranus are morning lars at the close of the month. Venus, Jupiter, and Neptune are evening stars.

How to Make a Good Floor.
Nothing attracts the attention of a person wishing to rent or purchase a dwelling, store, or office so quickly as a handsome, well-laid floor, and a few suggestion on the subject, though not new, may not be out of
place. The best floor for the least money can be made of yellow pine, if the material is carefully selected and properly laid.
First, select edge grain yellow pine, not too "fat," clear of pitch, knots, sap, and splits. See that it is thoroughly seasoned, and that the tongues and grooves exactly match, so that, when laid, the upper surfaces of each board are on a level. This is an important feature often overlooked, and planing mill operatives fre quently get careless in adjusting the tonguing and grooving bits. If the edge of a flooring board, especi ally the grooved edge, is higher than the edge of the next board, no amouut of mechanical ingenuity can make a neat floor of them. The upper part of the groove will continue to curl upward as long as the floor

Supposing, of course, the sleepers, or joists are prop erly placed the right distance apart, and their upper edges precisely on a level, and securely braced, the most important part of the job is to "lay" the flooring correctly. This part of the work is never, or very rarely ever, done nowadays. The system in vogue with carpenters of this day, of laying one board at a time, and "blind nailing," is the most glaring fraud practiced in any trade. They drive the tongue of the board into the groove of the preceding one, by pounding on the grooved edge with a naked hammer, making indenta tions that let in the cold air or noxious gases, if it is a bottom floor, and then nail it in place by driving a six penny nail at an angle of about 50° in the groove. An awkward blow or two chips off the upper part of the roove, and the last blow, designed to sink the nail head out of the way of the next tongue, splits the lowe part of the groove to splinters, leaving an unsightly opening. Such nailing does not fasten the flooring to the sleepers, and the slanting nails very often wedge the board up so that it does not bear on the sleeper We would rather have our flooring in the tree standing in the woods than put down that way.
The proper plan is to begin on one side of the room lay one course of boards with the tongue next to, and neatly fitted to, the wall (or studding, if a frame house), and be sure the boards are laid perfectly straight from end to end of the room and square with the wall. Then ail this course firmly to the sleepers, through and through, one nail near each edge of the board on every leeper, and you are ready to begin to lay a floor. Next, fit the ends and lay down four or six courses of boards owing to their width). If the boards differ widely in color, as is often the case in pine, do not lay two of a widely different color side by side, but arrange them so that the deep colors will tone off into the lighter ones gradually. Push the tongues into the grooves as close as possible, without pounding with a hammer, or f pounding is necessary, take a narrow, short piece of looring, put the tongue in the groove of the outer board, and pound gently on the piece, never on the flooring board. Next, adjust your clamps on every hird sleeper and at every end joint, and drive the floor firmly together by means of wedges. Drive the wedges gently at the start, and each one equally till the joints all fill up snugly, and then stop, for, if driven too tight, the floor will spring up. Never wedge directly against the edge of the flooring board, but have a short strip with a tongue on it between the wedge and the board, so as to leave no bruises. Then fasten the floor to the sleepers by driving a flat-headed steel wire nail of suitable size, one inch from either edge of every board, straight down into each sleeper. At the end joints smaller nails may be used, two nails in thickness of the sleeper will permit. Proceed in this
manner until the floor is completed, and you will have a floor that will remain tight and look weil until worn out.
Such minute directions, for so common and simple a job, sound silly, but are justifiable from the fact that there are so many alleged carpenters who either do not know how or are too lazy to lay a floor properly-The Builders' Gazette.

Durability or Redwood.

The Santa Barbara authorities recently investigated the lasting qualities of redwood, in order to decide whether to use redwood or stone for a buikhead for the proposed esplanade.
The following are the questions and answers received in regard to Santa Cruz redwood:
From E. L. Van Kleck : How long will this redwood ast under ground or in salt water? Answer-Without any decay at all, it will last 25 years. Some will las much longer; 6×6 posts have been removed perfectly sound, after being in the ground over 30 years.
How long would it remain sufficiently sound to hold spikes, or until one-third of a 6×8 timber would decay, while constantly wet with salt water? Answe -In some cases, 30 years. I am told by some that the kind of lumber described will last forever.
How long would 6×8 piles last, where they are constantly wet with salt water to four or five feet above ground? Answer-Salt water being a good preserva ive, I should think they would last 35 years.
How long would it remain sound in the ground where there is salt water, or where it would be alter nately wet and dry? Answer-Thirty years.
How long would 2 -inch plank last in a retaining wall with earth more or less damp or wet on one side, and the other side dry, or exposed to the weather? Answe -Dampness does not seem to have any decaying effec on redwood. I should say such plank would last 20 years. All of this without any preservation. Coal ta as a preservative, applied hot, is as good as any I

From Charles Pierce: I have known some heavy black heart Santa Cruz redwood to lie under ground as long as 30 years without decay. This was in th case of a piece of 6×6 redwood used by myself for gate post on my own premises.
Russell Heath : I have fence posts of redwood on my arm, the same having been in the ground 32 years, and they are sound, free from decay.
John P. Stearns: I know of a timber of Santa Cruz ed wood that was 41 years under and in moist ground, and remained sound, free from decay.
G. P. Tebbetts : I know of common redwood post hat have been set in Santa Barbara over 25 years and are sound to-day.

Insufficiency of the Marine Subsidy

The International Navigation Company has decided not to compete for the American mail contract unde the Postal Subsidy act, in accordance with which bids have been opensd by the Postmaster-General. The president of the company, Mr. Griscom, says: "It wa deemed inadvisable to enter into competition, because under the rates given by the act, a transatlantic line of steamers, built in America and sailing under the A merican flag, would not pay. The establishment of ine of ships built in the United States and flying the American flag would cost too much. We doubt whether ships can be built in America as cheaply as abroad. The act allows but $\$ 4$ per mile for a first class 20 knot liner for carrying the mails on the out ward voyage only. No provision is made for the home voyage, because the government believes that Ameri can built vessels on the lines established by the act could secure the return mails at a remunerative figure This supposition betrays want of familiarity with the subject. In the first place, foreign nations are very likely to discriminate in favor of vessels flying thei own flag, and would not send the mails on board American ships unless the letters were especially directed to be sent that way, and not always then. That has been repeatedly demonstrated. In the second place, under the provisions of the act requiring that the vessels shall be of peculiar construction, with a view to their conversion into auxiliary cruisers, which must be approved by the Secretary of the Navy, the cost of building, with the requirement that they shall be run during the winter season, when there is no passenger traffic, would be too burdensome."

Steam Fire Pumps.

According to a circular recently issued by the Associated Factory Mutual Insurance Companies of New Engand, very few pumpsare found upon inspection to meet the requirements of an efficient fire service. Of two or three thousand tested by the companies' inspectors each year, a great number prove to be defective; some cannot be started promptly, and some are incapable of delivering anywhere near their alleged or rated capacity without violent hammering. These tests have made it plainly evident that an improvement in the construction and installation of firepumps was greatly needed.

A NEW STREET CLEANER.

In the improved street sweeper shown in the annexed engraving the usual diagonal broom is used, but instead of throwing the sweepings to one side of the street, forming windrows to be taken up by hand, the machine carries an endless belt on which the sweepngs are delivered. One of the driving wheels is similar in construction to the paddle wheel of a steamboat, and the endless belt is carried on the edges of the paddles, entirely inclosing the space between the two rims of the wheel. The edges of the paddles are not allowed to come quite to the surface of the rims, so that the belt is protected from actual contac with the ground at the bottom of the whee The endless belt passes round a guide whee in front of the drive wheel, which is ar ranged in such relation to the drive whee as to permit the lower portion of the bel lying between these wheels to lie upon the ground, but without dragging ; it is simply laid down by one wheel and taken up by the other. The sweepings being received upon this part of the belt are carried up between the paddles to the top of the wheel, wher they fall toward the center, and are carried by a chute into bags (Fig. 2), and are deliv ered by an elevator to a cart drawn alon with and behind the machine. This ar rangement, which is extremely simple, add but a trifle to the size of the usual machine and does not increase the weight more than 250 to 300 pounds. All the parts of the machine are constructed with a view to durability.
The belt is three-ply cotton belting; it is very strong and will last a long time, and when worn out can be replaced at a trifling expense.
The machine is drawn by two horses, and is in strik ing contrast to the cumbrous devices heretofore pro posed for gathering up sweepings from the street. It can be operated with as much ease as the ordinary sweeper, and cleans close to the curbstone. There i absolutely nothing that drags upon the pavement.

In streets in which the traffic is not great the ma terial is received into bags, eight of which, holding three bushels each, can be carried on the machine. When these are filled, they are set off on to the curb stone to be removed by carts. Strong bags suitable for this purpose can be had in unlimited numbers for 7 cents each, and they can be used many times over. In these bags the sweepings have a commercial value.
Where the traffic is greater and the bulk of sweepings larger a narrow carrier is substituted in the place of the bags, and the sweepings falling upon this are conveyed into a cart following the machine.
Unlike the usual sweeper this can be used in the day-time, as there is no windrow of dirt left upon the street to be scattered by passing vehicles.
Apparently this device solves the problem of economical street cleaning.

The manufacturer is George B. Marx, Inventor's Industrial Works, 412 East 13th Street, New York.

The Aroma of Wine
At a recent meeting of the Paris Academy of Sciences, M. Rommier read a paper on the yeast of wine -the bouquet, or aroma, of the wine made from rapes of the same specie but grown in different districts being quite distinct. The characteristic bouquet seems to be due to the district, and wine from shifted vines or cuttings does not necessarily possess the special flavor of the original when planted in other districts. It is well known that the best wines are produced from rapes raised on volcanic soils.

COAL HANDLING DEVICES

In a recent article in the Railuay Review a descrip tion is given of the various devices used in handling coal at the coaling station of the Chicago and West Michigan Railway. We make the following abstract
The distinctive feature of the plant is the conveyor

THE CHARLTON STREET CLEANER.
throughout Pennsylvania and forms the basis of the immense coal storage plants, whose capacities range from 100,000 to $1,000,000$ tons each, recently built for some of those Eastern roads which handle coal in such largequantities. The coal in this form of conveyor is drawn along in a smooth steel trough by peculiarly curved scrapers attached to the conveyor chain. This chain is what is known as the Dodge cable chain, the essential feature of which is that the links, instead of bearing directly upon each other and thus wearing out very rapidly, have malleable iron wearing blocks interposed at each articulation. These blocks not only take the wear butalso fill in the end of the link
in such a wanner as to keep it in shape-a matter of no small importance. The scrapers which are at ached to this chain are of steel plate, and are of somewhat peculiar shape, these peculiarities being the result of a long experience, and which have been found essential to the success of this scraper. The curved hape given to the scraper makes it most effective in carrying the coal along and entirely obviate the noise which would occur if the plate wa perfectly flat.
The operation of the plant is briefly as follows : The coal is shoveled from the cars in which it arrives directly to the conveyor at the bottom of the incline, which carries it up and deposits into any one of a number of chutes, according to the position of the dis charge gates. Each gate serves two chutes, and the coal is directed into one or the other of these two by the deflecting plates, each o which is controlled by a vertical shaft, th end of which is bent to form a lever. The chutes are of the well known Clifton form and hold varying amounts up to five tons They automatically and instantly delive their contents to the tender when the bal anced apron is pulled down by the fireman on the engine. If, when the coal is being de livered from the cars, the chutes happen to be full, the contents of the cars, instead o being sent to the conveyor, are shoveled into the storage bin, from which they can b drawn by gravity to the conveyor. By ex tending the conveyor forty or more chute could be equally well used should the num ber of locomotives require it. The conveyo fed to its full capacity will handle about 120 tons per hour Owing to its practically noiseless operation caused by the peculiar curving of the scrapers it is wel itted for use in cities. The cost of conveying the coal is less than one cent per ton, which makes the total cost of placing it on the locomotive below six cents, about five cents per ton being paid for shoveling it from the car If the coal could be delivered on the track from car ith hopper boltoms the total cost of handling th oal would be reduced to about two cents per to With men working at intervals during the day are required three men night and day being necessary prior to it installation. The conveyor is driven by a single $11 / 2$ inch manila rope, a form of transmission coming ra pidly into use.
The great saving in cost which is effected by the use of a conveyor destines it to supplant past methods in the handling of coal at lo comotive coaling stations The crane and buckets are very slow and make the ex pense of handling the coa from 17 to 20 cents per ton In addition to this, it may be said in general that the amount of space required for inclined tracks, etc., is generally much more than is required for a conveyor A number of plants simila to the one here illustrated have been put in by this same company on road where the locomotive burn anthracite coal. In some cases other conveyors were provided for remov ing the ashes from the as pits and supplying sand to the engines.
vaccination for the Reliet of Whooping cough.
Dr. Emile Müller reports in the Gazette Médicale de strasbourg, No. 7, 1891, the case of a young child suffering from pertussis, in whom a cure was made by means of vaccination. Dr Cachazo (Wiener Medizin Cachailter, Octa ische Blatter, October 15 1890) had previously noted the favorable influence of inoculation with vaccine material in a case of whooping-cough under his care, and subsequently employed the method in four other cases with great success.

A PIPE DIE STOCK FOR VARIOUS SIZES OF PIPE. This new die stock has recently been placed on the market by the Wiley \& Russell Manufacturing Co., of Greenfield, Mass. The stock which we illustrate holds five sizes of pipe, $1 / 4,3 / 8,1 / 2,3 / 4$ and 1 inch, and is always ready without any picking up and fitting. The five sizes of dies are so set in the circle that the hole

AN EFFICIENT KNIFE-GRINDING MACHINE.

The machine shown is especially designed for grind-

 ng knives for cutters of various descriptions, and per mits of readily examining the work as it progresses without disturbing the adjustment. It has been patented by Mr. Eugene J. Wheeler, of Millington ann hand screw thread engaged by a shoe on the lower end of a shaft turning in bracket secured to a longitudinally slid ing table, the carriage with the cutter head carrying the knife to be ground sliding in guideways on the table. When the shoe stands in one direction it engage one of the screw-threads to move the table toward one end of the frame, and when the shoe is turned to point oppositely it engages the other thread to carry the table toward the other end of the frame, whereby the knife will be carried forward and backward over the grinding wheel. The shaft turning the direction of the shoe may be shifted by hand by means of a handle, not shown, but this is effected automatically by an arm on the shaft engaging spring-pressed blocks held in collars on a longitudinal rod, the col ars being placed where desired on the rod, and the blocks being held yieldingly in the collars, so that the shoe will readily change its position at the crossing of the threads. To move the carriage and knife toward or from the grinding wheel, a shaft is held in links pivoted to the front part of the table, the shaft hav ing at its outer ends eccentrics engaging vertical slots in offsets on top of the carriage, while from one of the eccentrics extends outward a reduced part of the shaft on which is secured an arm carrying a weight. By swinging the arm upward the knife is drawn from the wheel, and when the arm is swung down to a normal position, regulated by a screw, the carriage slides to
bring the knife in contact with the wheel. On one of the trunnions of the knife head is a loosely rotating worm-wheel on which is a spring-pressed pin adapted to engage one of a series of apertures in a plate on the trunnion, the worm-wheel being in mesh with a vertical worm, and the outer end of the pin having a suitable knob by means of which it may be manipu lated. When the pin is in engagement with the plate and the operator turns the worm, the knife is swung toward or from the grinding wheel to enable the operator to adjust it according to the bevel desired.

AN AUTOMATIC GRAIN MEASURING MACHINE

The improved grain measurer shown in the illustra tion is more especially designed for use in connection with thrashing machines, to measure the grain as it leaves the machine. It has been patented by Mr. John W. Kershaw, Jr., of Burnside, Iowa. The cylindrical grain receptacle, open at the top and bottom, is preferably divided into three compartments, and is adapted to be revolved upon a fixed bottom, part of which is cut out to discharge the grain from one com partment at a time. The receptacle is intermittently revolved by a vertical shaft whose upper end has a bearing in the hopper above. The hopper has a cross section corresponding to that of one of the compart ments of the measuring receptacle, and within the hopper a rimless wheel is revolved by means of a sprocket chain passing over a sprocket wheel turning loosely on a drive shaft, as shown in the sectional view, the drive shaft being held to rotate continuously in bearings at one side of the receiving trough. One face of the sprocket wheel has clutch teeth adapted to be engaged by clutch teeth on a spring-pressed wheel mounted to turn with and slide on the drive shaft, but the tension of the spring is such that, on the accumula tion of grain in the hopper, to impede the rotation of the rimless wheel therein, the clutch teeth will slide by
each other, and the motion of the sprocket chain wil be stopped. At the same time the sliding movemen of the spring-pressed wheel on the drive shaft oper ates a longitudinally sliding rod engaging a spring pressed trigger on a gear wheel meshing into a beve rear wheel on the lower end of the shaft of the grain receptacle, whereby the latter is turned so that its

KERSHAW'S ROTATING GRAIN MEASURER.
filled compartment is brought over the cut-out por ion of the fixed bottom, the grain flowing through into the receiving trough, while an empty compartment at the same time comes under the hopper. The inflowing grain not only fills each measuring compartment completely, but also occupies some of the space of the hopper, before the movement takes place by which the measured grain is discharged into the receiving trough.

AN IMPROVED WINDOW FRAME.

The accompanying illustration represents, in front elevation and vertical sections, an improved construc tion of the sash slideways of window frames designed to effectually prevent draughts and the rattling of the sashes, which, when closed, will be firmly wedged in place. It has been patented by Mr. August Schmidt of No. 1768 Amsterdam Avenue, New York City. The frame is of the ordinary pattern except in the slideways of the upper and the lower sash, of which the parting rail, instead of extending vertically from top to bottom of the frame, is placed diagonally, so that the uppe portion of the slideway for the upper sash is narrowe than the top portion of the slideway of the lower sash, while at the bottom the slideway of the lower sash i narrower, and that of the upper sash wider. The width of the slideway of each sash at the top and bot tom approaches as nearly as possible that of the thick ness of the top and bottom rails of the respective sashes In the wide portion of each slide way a spring is placed in a recess in the parting rail, in such position that when the sashes are closed they will be firmly held to prevent rattling and the wind from entering the room. As the taper of the sash slideways is very gradual, the sashes are designed to be freely moved without bind ing, so that they can be easily raised and lowered while the springs enable the sashes to be'held in any desired position in the wider portions of the slideways without exerting tension at all times on the sash cords.

SCHMIDT'S WINDOW FRAME

THE EXHIBITION OF 1892-93.

The site of the next World's Fair, as it now appears, with the water surfaces, grounds and buildings laid out, and the work thereon in various stages of proThe view is taken looking south from the Fine Arts Building, the ground to the north, not shown, and which has heretofore been the most improved portion of Jackson Park, having been allotted to the different States. It is expected that this portion of the grounds will be covered with scores of buildings, presenting an exceedingly picturesque array, in which will be embraced every variety of architectural taste or fancy.
At the beginning of the work on the grounds, all the land south of the "branch," where the lagoon and wooded island have been formed, was a stretch of sand dunes, with stunted oak trees and sweeps of marsh grass. This is where the main buildings of the Fair are now being erected, and for the foundations of which the high ground has been made higher, while the lower levels have been scooped out to form the la goon, canal, and basin, the landscape gardener's art having been employed contemporaneously with that of the engineer, so that the previous barrenness will be superseded by lawns, terraces, flower beds, etc. When the sites of the various buildings were settled and their limits staked out, then the grade had to be raised to the regulation height previously determined upon before the foundations could be commenced, the dredger being largely employed to furnish the neces sary filling.

The main building of the Palace of Fine Arts, the design for which has been but recently accepted, is to be a most imposing structure, occupying a space 320 by 500 feet, and to the rear, on each side, will be an annex, reached by a covered passage, each of these ad ditional buildings covering a ground space of 120 by 200 feet. Fifty brickmasons and a large force of car penters are at work on the building; the lake border ing on the building site has been pumped out, and on the spot where the boathouse stood last summer the masons have put in the brick and concrete founda tions.

The Woman's Building is in the most advanced state of all the structures thus far commenced, and is about ready for its roof. The design for this building was made by Miss Sophia G. Hayden, of Boston, who won a $\$ 1,000$ prize offered for the best plan. The structure measures 200 by 400 feet , and is to cost $\$ 200$, 000. The architecture is classic, with end and cente pavilions, connected by an arcade. The center pavil Ion contains the main entrance to the building, from
which the visitor enters the main gallery, 60 by 240 feet, which the visitor enters the main gallery, 60 by 240 feet,
to the left of which is a room 80 by 200 feet, in which to the left of which is a room 80 by 200 feet, in which
there will be a retrospective exhibit, while a similar space at the other end of the building will be devoted to reforms and charities. Portions of the building are also allotted for a model kindergarten, a model hospital, a library and record room, a bureau of informa tion, club rooms, committee rooms, parlors, etc. Th main portion of the building is three stories high.

Beyond the Woman's Building, facing the lagoon on the land side, is the Horticultural Building, 1,000 feet long and with an extreme width of 286 feet. It wa designed by W. L. B. Jenney, of Chicago, and in front will be a flower terrace for outside exhibits, including tanks for nympheas and the Victoria regia, while the front of the terrace will have a low parapet between large vases bordering the water, with a boat landing vilion and two connected end pavilions, forming two interior courts each 88 by 270 feet, the courts being beautifully decorated in color and planted with orna mental shrubs and flowers. The center pavilion will be roofed by a crystal dome, 187 feet in diameter and 113 feet high, under which will be exhibited tall palms, bamboos, and tree ferns. The exhibits will include all the varieties of flowers, plants, vines, seeds, horticultural implements, etc., those requiring sunshine and light being placed where the roof is entirely of glass, while provision will be made for furnishing heat where required. The exterior of the building, and that of nearly all the buildings on the grounds, will be in staff or stucco, the process of making which in the various forms required is shown in the views at the
top of the page. The appropriation for this building top of the
is $\$ 400,000$.
Opposite the southwestern corner of the lagoon, beyond the Horticultural Building, is now rising the Transportation Building, on which considerable work has been done, the irregular columns and frawing in dicating its great extent. The main structure will be 960 by 256 feet, with a triangular annex of one story buildings covering about nine acres. There will be a rail way track every sixteen feet, and provision will made to exhibit entire freight and passenger trains.
It is expected there will be an immense display of loIt is expected there will be an immense display of lo-
comotives, all placed end on to the central avenue or comotives, all placed end on to the central avenue or everything devoted to transportation, from the crudest carriages to a mogul engine. It is intended to make this building very refined and simple architecturally, but rich and elaborate in detail. The main entrance
will consist of a great single arch, enriched with carv
ings, bass reliefs, and mural paintings, treated entirely ings, bass reliefs, and mural paintings, treate
in leaf, so that it is styled the "golden door."
The structure devoted to mines and mining, immediately south of the lagoon, is pretty well advanced in construction. Its lofty roof will be supported by ron columns, which are now in position, while al around are heaped great piles of sawed material, and groups of men are busy on every part of the struc-
ture. The style of architecture is classic, and the dimensions are 350 by 700 feet, the height to the main cornice being 65 feet. There is an entrance on each side of the building, but the grand entrances are at the north and south ends, and are 110 feet high by 32 feet wide each, opening into a vestibule 88 feet high and elaborately decorated. At each corner is a pavilion 68 feet square and 90 feet high, surmounted by a dome. The roof will be of glass. The cost of this building i placed at $\$ 350,000$.
By the side of this building, and covering the same space, is the site of the building for the electrical exhibit, which is not nearly so far advanced in construction. The structure now presents only a broad stretch of swooth flooring, littered with bits of wood, kegs of ails, trestles, work benches, etc., with a fringe of tudding around the margin, and a derrick lifting posts into place. It is intended that this building shall be one of the handsomest in the group south of he lagoon, its cost being placed at $\$ 650,000$. Its exerior will be finished to represent granite, and a statue of Franklin will be conspicuous before the south en

But the greatest building of all, the Hall of Manu actures and the Liberal Arts, between the lagoon and the lake, has only its floor laid, there being near by a large temporary eating house for the men, whilt
trung along the borders are piles of sawed stuff, with which numerous workmen are engaged, while num berless others with spades and wheelbarrows are busy on the grounds around. This building will be 788 feet wide by 1,688 feet long, having two interior courts. It wide by 1,688 feet long, having two interior courts. It
was designed by George S. Post, of New York, in the was designed by George S. Post, of New York, in the
French Renaissance style, and will be surrounded on ll sides by a porch two stories in height, affording a promenade and view of the other buildings and of the agoon covered with craft of all descriptions. This building covers more than thirty-one acres and is said to be three times as large as the largest building at the Paris exposition.
To the south of the Mines and Mining and Electri city Buildings may be seen the foundations, in the orm of a Greek cross, of the Administration Building the outer sills at present awaiting the sleepers and connecting beams. This building, one of the most im posing and expensive of all the structures upon the
grounds, will be adorned with scores of statuary figures, and will have a gilded dome rising 250 fee above the ground. Richard M. Hunt, of New York, President of the American Institute of Architects, is its designer, and the building will be the headquar ters of all the numerous officials connected with th management and administration of the exhibition.
Fronting this building, and on its side farthest from he lake, will be the terminal station of the railway ines, on which no work has yet been done, and stil farther to the south comes Machinery Hall, covering a
space of 500 by 850 feet, with an annex of 450 by 550 space of 500 by 850 feet, with an annex of 450 by 550
feet, besides a power house. The uprights are mostly in place along the sides of the main building, and the floor is mostly laid, the floor laying in most of the structures appearing to follow first the fixing of the foundation posts. The interior of this building will present the appearance of three railroad train house side by side, surrounded on all four sides by fifty-foot galleries. In each of the three long naves will be an elevated traveling crane to facilitate placing ma chinery, etc., and after the exhibition opens platforms will be placed on them from which visitors may view the exhibits without the trouble of walking around Shafting for power will be carried on the same posts by which the traveling crane bridges are supported, al The extrior hibit and the railroad will be very plain, but on the wo other sides it will be rich and imposing.
To the left of Machinery Hall, across a narrow arm of the basin, is the Agricultural Building, occupying a space 500 by 800 feet, and having an annex, 300 by 500 feet. The floor of the building is completed, and a vast quantity of lumber for the superstructure is on the ground. It will be almost entirely surrounded by water, and will be one of the handsomest structures on the exposition grounds. It will have five pavilions, one at each corner and one in the center, and the grand entrance on the north will be sixty feet wide. At the entrance are Corinthian columns 5 feet in diameter and 0 feet high, beyond which is a rotunda 100 feet in dia meter, surmounted by a glass dome 130 feet high.
The roof will be principally of glass. The roof will be principally of glass.
Beyond the annex of the Agricultural Building is to Be a sawmill, 125 by 300 feet in size, and across another
rm of water, toward the lake, is the site of the For estry Building, the foundations of which are complete
and the laying of the floor is in progress. This building will be 200 by 500 feet in extent, and beyond it farthest south of all the buildings, will be a dairy building, occupying a space of 95 by 200 feet.
On the Government and Fisheries Buildings, near he north end of the lagoon, but little has been done but the salt water reservoir for the Fisheries Building is under way.
The Government Buiiãing will be 350 by 420 feet in ize, with a dome of 120 feet in diameter and 150 feet high. It will be constructed of stone, iron, and glass, and cost $\$ 400,000$. The exhibits shown here will b rom the war, treasury, agricultural, interior, pos office, and navy departments, the Smithsonian Institu ion, the national museum, etc.
The Fisheries Building, 700 feet in length, will be flanked at each end by a curved arcade, connecting it with two octagonal pavilions in which will be aquaria and exhibits of fishing tackle. The building will be Spanisb in style, and color will be liberally used in its decoration. It was designed by Henry Ives Cobb, of Chicago.
On the lake shore, east of the Government Building, there will be a gun battery, a life-saving station and apparatus, a lighthouse, and an exhibit of war bal oons, while the full-sized model of a battle ship will be built on piling near the adjacent pier, the structure being of brick coated with cement, and being made to ppear in every way like a real ship, fully manned and quipped.
Comparisons are constantly and almost necessarily made of the prospects for the attainment, by the man gers of the Chicago World's Fair, of a success equal to that achieved by the French exposition of 1889 It is already certain that the buildings will cover twice the area and cost twice as much as did those at Paris in 1889, and the grand total of all the appropriations or the Fair promises to be from three to four times the amount expended on the French fair. The actual cost of the latter has been variously stated, but the ollowing figures, only recently published by the Lon don Economist, showing the appropriations and re ceipts (counting five francs to a dollar), may be conidered as authoritative: "The receipts were estimated at $\$ 8,600,000$, including subventions of $\$ 1,600,000$ from the city and $\$ 3,400,000$ from the state. But they real ized $\$ 10,000,000$. Only $\$ 2,900,000$ had been counted upon as receipts frow admissions, but these were $\$ 4,300,000$. The credits opened $\$ 9,300,000$, with the real outlay under $\$ 9,000,000$. The surplus was about $\$ 2,-$ 000,000 . The exhibition of 1867 cost $\$ 4,688,000$, and realized, with subventions, $\$ 5,250,000$. The exhibition f 1878 cost $\$ 11,080,000$, including $\$ 2,800,000$ for the Trocadero Palace, still preserved, and there was a de ficit of $\$ 6,340,000$."
It is estimated that about thirty thousand tons of staff will be used in the finishing of the buildings, this material being employed on nearly all the structures. The upper picture on the first page represents one of the rooms of the Staff Decorative Co., who are now employing about two hundred men making this material, which is fireproof and is furnished in shapes and forms suitable to be nailed to the frames of the buildings, inside and out. Fig. 1 represents the raising f the gelatine mould from the cast, and Fig. 2 shows the fluting of the large columns for the Electrical Building. Gelatine is now more largely used than any other material for the moulds, although when there is no undercut, plaster, wax or sulphur moulds may be employed, or wood or metal forms. The staff itself is a composition of plaster of Paris and fiber, with some other materials, as alumina, glycerine, dextrine, etc., according to the special casting which is to be made or the kind of mould employed. To prevent brittleness, the material is cast around coarse cloth bagging or oakum. This material was first used in the Paris Exposition buildings of 1878 . Its natural color is a murky white, but other colors may be produced by external washes, while the castings may be made to accurately represent cut stone, rock-faced stone, mouldings, and the most delicate designs of every kind. For the lower portion of the walis the material is mixed with cement to make it hard.
For courtesies extended our thanks are due Messrs. A. L. R. Van den Berghen, of the Staff Decorative Co., and Dion Geraldine, Chief Superintendent Construction Department of the Exposition.

soapstone.

Soapstone, or steatite, can be made into anything. Very beautiful stoves are made of it, and stationary washtubs and sinks are important products. Not an ounce need be wasted, for the dust is used to adulterate rubber goods, giving so-called gum rubbers their dull finish, and in paper, too, it is used to give weight, while all waste can be ground up into a flour which can be made into a fireproof paint for the interior of mills or the roofs of buildings.

A German chemist has succeeded in producing artificial silk, which has all the qualities of the natural article except strength, wherein it is deficient, being only two-thirds as strong.

Sorrespondence.

Hedge Trimmer Wanted.

To the Editor of the Scientific American:
A machine is much needed for trimming hedges. It should be mounted on a wagon, midway between front and hind wheels.
The cutting part should be capable of guidance independent of the wagon, to an extent of one or two feet, up, down, and sideways. The cutter must run by power independent of the team that pulls the wagon.
The cutter may be a sickle or a set of whirling disks, very strong.
The power may be a gas or steam engine, on the wagon, or an electric motor, or anything that will not bother or burst (a tread power might do, but a horse would be heavy to haul around).
The whole business should be cheap, strong and convenient. Such a combination is not impossible these days.
A common farm wagon slightly modified would do. The power could do other work when the hedges were all trimmed.
Can't some of your mechanical readers build such a machine? Not much invention required on it.

Dangers of Galvanized Iron water Pails.
To the Editor of the Scientifcc American:
In Notes and Queries (No. 3545) W. S. inquires about galvanized vessels for water. For the benefit and perhaps the safety of others, I will relate my experience with them. Some few years ago I purchased a new galvanized water bucket and filled it with water to be used for drinking and cooking. I was living alone at the time, so was not using very much water; consequently there was some water in the bucket a few days after it was put in, but it had been used down quite low. One morning I got up early and got my breakfast by lamp light, not thinking to look at the water I was using to mix my batter for griddle cakes and steep wy tea. Well, I ate my breakfast with a relish, having a good appetite, but I did not have it down long ing a good appetite, but I did not have it down long
before it had a strong desire to come up, and up it before it had a strong desire to come up, and up it
began to come. I commenced throwing the contents began to come. I commenced throwing the contents
of my stomach up in a way that for power or speed would put to shame any "jet propulsion" ever tried yet. I vomited violently in succession, at short intervals between, about a dozen times, which cleaned wy stomach out quite completely. I knew that something I had eaten or drank was the matter. I looked in the water bucket, and behold! the water in there was nearly as white as milk and quite thick. I knew then that I had taken an overdose of zinc poison, and I think that I was lucky that it was such a quantity for if I had not taken enough to vomit me, it would have, most likely, produced my demise.
I have lately bought another new galvanized bucket and have tested it to see what and how much comes off by the action of water. I filled the bucket with water and let it remain one week, stirring round the inside occasionally with a stick; then I turned off the clear water frow the top and found at the bottom, in thick solution, four fuid ounces of carbonate of zinc, dissolved by the water, which, in this section, contains much carbonic acid. But for all this, I think that if such vessels were thoroughly soaked say two or three weeks, scraping the inside occasionally, and thoroughly washed afterward, and the water not allowed to stand long in them, there would not be much danger in using them; but what effect it would have on the general health of the users I am unable to say.
A. Josselyn.

Crescent City, Florida, November 5; 1891.
[It is evident that wooden pails would be safer to use for your water.-ED. S. A.]

How to Make a Storage Battery

To the Editor of the Scientific American:
I have read with interest the communication from Dr. J. E. Stanton, of Boston, Mass., in a recent issue of the Scientific American on the subject of storage cells charged by primary battery. As you request fur ther correspondence on the subject, I will give you my own results.

A short time ago I arranged a "plant" for a physician of this city, Mr. Wm. E. Moseley, consisting of two storage cells connected in series and charged with six 5×8 gravity cells. Each of the storage cells contains six lead plates coated with red lead composition and connected alternately in the usual manner, the total active surface of the plates in the two cells being about 580 square inches. The storage cells are used for operating, through a suitable resistance, a smal incandescent lamp, rated at two candles, but giving rather wore light when worked to its full capacity and also for heating the platinum loops of a galvano cautery. It operates perfectly, giving daily, during office hours, all the current required for the lamp and platinum loops, which are used at intervals.
A switch is provided by means of which the circuit of the charging cells may be opened when required,
that they may not do useless work in forcing current through the storage cells after the cells are thoroughly charged.
The gravity cells require little attention save in the matter of adding water lost by evaporation, drawing out at wide intervals a portion of the solution of zinc sulphate at the top of the cells, and dropping in crystals of sulphate of copper from time to time.
This battery, connected experimentally with a sewing machine motor, drove it continuously for two hours; by adding more plates to the storage cells, a greater number of working hours could easily be obtained if required. It is usually advisable to purchase the storage cells, but they can be constructed, and if their manufacture is attempted, the following wrinkle way be of service: Cast the plates rather thick, that they may not bend too easily; roughen them thoroughly and deeply, on both sides of the plates, with a piece of coarse file, or special rough-faced punch, driven into the lead. Punch out half-inch holes through the plates at regular intervals, and cut or trim the holes so that they bevel on each face of the plate. Now coat the plates carefully with a stiff
paste of red lead mixed with water two parts, sulpaste of red lead mixed with water two parts, sul-
phuric acid one part, taking care to fill the holes completely. Allow to dry twenty-four hours, and then wrap the portion of each plate to be immersed in the acid solution with a layer or two of winte cotton cloth, bound firmly to the plates with thread. Arrange plates in the cells in the usual manner, separated and held in position by insulating strips; fill up cell with the mixture of sulphuric acid and water; connect the
charging battery, and charge well in one direction; discharge through a resistance, and recharge in same direction as before. Keep cells well charged, and at the end of a week carefully remove the cloth coverings, and the paste will be found to adhere strongly to the plates and fill the holes completely. When the cloths are not used, nearly all the paste falls off as soon as the plates are immersed in the fluid previous to charging Rating each storage cell at two volts, a sufficient num ber of charging cells must always be used in series to give a voltage at least 10 per cent in excess of the sum of the voltage of the storage cells in series. Bichromate cells are best for forming the paste when the cells are new; afterward the gravity cells answer ever
413 Robert St., Baltimore, November 14, 1891.

Leprosy: Its Spread and Causation.

To the Editor of the Scientific American:
My attention has been called to an article in the Scientific American on the subject of "leprosy," and having devoted some attention to the causation and increase of this dreadful and incurable malady in our various colonies and dependencies, as well as in the Pacific islands, I shall be glad, with your permis sion, to offer to your readers, in the interest of the public and public safety, a brief statement of my con clusions. The belief that leprosy is contagious seems to have taken possession of a certain section of the public mind, and this fact, it is alleged, is clearly de monstrated by the case of Father Damien. While not disposed to contest the possibility of this theory, I wil state that it is not in accordance with two inquiries o the Royal College of Physicians or of my recent obser vation and investigations. A medical resident of six teen years' standing in British Guiana told me that the disease was being extensively disseminated in som unexplained way, as the infected population had greatly augmented of late years; you encountered them in churches, at balls and public meetings, in the streets and the market place. Several leprous patient were pointed out to me at the Colonial Hospital Georgetown, in close proximity to the other inmates and I may observe that only the worst cases (and thes belonging to poor families) are segregated at the leper hospitals. The lazarettos at Gorchum and Mahaica, British Guiana, at Trinidad and Barbadoes, were full to overflowing; new wings were in progress, or had recently been added, and the demand considerably exceeded the present accommodation in every instance No one, however, appeared to be afraid of contagion and I could not learn of a single case so communicated After going through the various buildings of the lepe asylum at Mucurapo, Trinidad, and seeing the unfor tunate patients in every form of this hideous and mutilative disease, I said to the lady superintendent (of Dominican Sisters), who had been in charge of the institution for seventeen years, "Have you no fear of contagion?", "Not the slightest," she promptly re plied. "And you and your assistants do all that conscientious nursing requires?" "Certainly, and feel it a joy and privilege to be of service to these afflicted people." "Has any case of infection by contact to doctor, nurse, attendant, or laundress ever been re ported during your superintendence?" " Not one."
This experience was confirmed at the lazaretto in Bar badoes, Colombo, Kalili, Honolulu, and elsewhere, and some of the nurses and attendants have been employed
from ten to thirty years. The result of my inquiries may be briefly summarized as follows

1. That evidence from all authorities shows tha
leprosy is seriously increasing in India, the Mauritius, Hawaii, the West Indies, Russia, and South America 2. The theory of contagion put forward to accoun for this increase is doubtful, and is denied by the high est medical authorities, both at home and abroad, and if true, would only account for an infinitesimal portion of such increase.
2. All authorities, including the Lancet and the British Medical Journal, admit that leprosy may be communicated by inoculation.
3. That the only method of inoculation extensively and increasingly practiced is by means of arm-to-arm vaccination, and that leprosy has been distinctly traced to this source by medical practitioners in the West Indies, British Guiana, in Norway, and in the Sandwich Islands; by medical superintendents of the leper asylums; by distinguished authorities, as Dr Tilbury Fox, Sir Erasmus Wilson, Dr. Gavin Milroy Professor W. T. Gairdner, of Glasgow, Dr. John D Hillis, Dr. Edward Arning, Hamburg, Dr. Bourne Swift, Professor Montgomery, Dr. A. M. Brown, Dr Blanc, Professor of Dermatology, University of New Orleans, Dr. Hall Bakewell, Dr. Bechtinger, and others. Proofs of the spread of leprosy by vaccination in various countries have already been laid before the Royal Vaccination Commission now taking evidence in London. These proofs will be found in the third eport of the proceedings. William Tebb.
Devonshire Club, St. James', London, Nov. 6, 1891.

The Electric Headlight.

The use of electric headlights has now become quite general in Indiana, nearly all the roads entering In dianapolis now having several in service.
A representative of the Railroad Gazette made a trip over the Indianapolis, Decatur \& Western from In dianapolis to Decatur lately on an engine equipped with the light. Its power is approximately 2,500 can dle power, and it gives the engineman a light which on a straight track will often reveal objects at a mile or more, and for fully one-half a mile all objects of the size of a cow can be distinctly seen in ordinary weather The greatest distance at which an object was seen was $21 / 2$ miles. This was a window of a station house in which no lamps were burning. When the light was first reflected from the window, the appearance was that of a locomotive headlight about a mile away. The window seemed to increase in size until at a distance of about three-quarters of a wile the effect was that of a burning structure. At this distance the outlines of the building could be distinctly seen. These dis tances were easily computed by counting the tele graph poles, which are 200 feet apart on this road. A water tank was sighted at nearly a mile, appearing much larger than it really was. Bridges with overhead trusses could be seen at half a mile. The highway crossing fences along the line had been freshly white washed and with little effort could be seen a mile
Collisions have been prevented by the use of these ights.
The expense of running the light is nominal. The emand for steam from the locomotive is small, and he carbons, which last eighteen hours, cost but 70 cents per 100.

Fathers of Electrical Science.

At a meeting of the Committee on Electricity, Elec trical and Pneumatic Appliances, of the World's Columbian Exposition, the following names were decided upon as those of eminent electricians not now living, to be placed over the Electricity Building a the Exposition, namely :

Franklin,	Page,	Joule,
Galvani,	Weber,	Saussure,
Ampere,	Gilbert,	Cooke,
Faraday,	Davenfort,	Varley,
Ohm,	Soemmerıng,	Steinheil,
Sturgeon,	Don SIJva,	Guericke,
Morse,	Arago,	La Place,
Siemens.	Daniell,	Clanning,
Davy,	Jacobi,	Driestley,
Volta,	Wheatstone,	Maxwell,
Henry,	Gaues,	Coxe,
Oersted,	Vail,	Thales,
Coulomb,	Bain,	Cavendish
Ronald,	De la Rive,	

In a recent article descriptive of the stone-breaking industry, as carried on in Weehawken, N. J., allusion was made to the breaking machine as being of the Blake pattern. This was an error, as the device em ployed is the Smith hydraulic crusher. This remark able machine, which, by the way, is on exhibition a the American Institute Fair, this city, has been greatly improved, and is now probably one of the most safe and powerful instruments for the purpose ever pro duced. In connection with the hydraulic cylinder it carries a relief or safety valve, which is set to open at four tons to the square inch, this enormous pressure being available for crunching the blocks of stone. The relief valve protects the machine from breakage the result being that the mechanism endures for years, Machinery Co., 16 Court St., Brooklyn, N. Y., makers

STATIC ELECTRICAL MOTORS.

In our issue of August 1, of this year, we published a brief account of a static electro-motor devised by Mr. James Wimshurst, of England. Mr. Wimshurst is the author of the static or influence machine which bears his name, and his motor is but a modification of the machine. To quote from the account to which we refer: " It consists of a glass disk, mounted on a vertical spindle, and carrying on one face a number of tinfoil sectors. The upper face of the disk is touched at two places by brushes connected by wires to the poles of the influence machine, while at right angles to the diameter joining these brushes there are two other brushes connected by an equalizing rod. Below the rotating disk is a stationary one, having upon it two sectors of tinfoil extending about 90°. These sectors are also in communication with the poles of the influence machine. As soon as the latter is put in motion, the glass disk begins to rotate and rapidly attains a very considerable speed, turning with an amount of force which is quite remarkable." Those of our readers who are familiar with the well known pith ball experimeuts, and who also have a knowledge of the construction of the Wimshurst ma chine, will have no difficulty in forming a mental picture of the motor in operation.
Taking the above somewhat meager description of Mr. Wimshurst's production, Mr. William McVay, of 19 East Sixteenth St., New York, has constructed a motor which is very gratifying and instructive in its operation. We illustrate it in Fig. 1. Mr. McVay employs two glass disks, each 12 inches diameter. The upper one, which rotates, bears upon its upper surface sixteen tinfoil sectors, 3 inches in length, aud in width from a quarter of an inch at the inner ends to five-eighths of an inch at the outer ends. The lower disk, which is stationary, carrying the 90° sectors, is supported four inches above the base by a piece of hard rubber tubing. The spindle to which the upper disk is attached is also of hard rub ber. The me tallic conductors, supported at either side of the disks by $t h e$ standard of the frame have each two arms, bearing at their extremities small brushes made of tinsel. One of tinsel. One arm of each conducto passes under the lower disk, and presses its brush against one of the 90° sectors of the stationary lower disk, and the other arm is extended over the upper disk and presses its brush lightly against the sectors of the rotating disk as they pass. When the sectors of the rotating disk are brought into contact with a brush carrying a charge of electricity of one sign, they become similarly charged, and are, consequently, attracted by the sector on the lowerdisk, which is constantly charged with electricity of opposite sign. The equalizing rod, the position of which may be seen in the illustration, serves to discharge the sectors and put them in a neutral condition preparatory to their being recharged.
The motor may be made to turn with equal velocity in an opposite direction by connecting both sets of
charging brushes with one pole of the machine and
attaching the conductor from the opposite pole to the ciple upon which it works can be understood at a equalizing rod or by "grounding" the rod. In fact, it glance. In the construction of this device a glass is a very accommodating motor, willing to do any- shade is also employed. It carries upon its surface thing within its power to oblige. It occurred to Mr_{r} eleven strips of thin sheet brass about six inches in McVay that there was no good reason for an adherence length and half an inch in width.

In this case the pillars at either side serve the same purpose as the 90° sectors in Figs. 1 to 3, as they are constantly charged with electricity of opposite sign, and consequently there is a strong attraction between them and the sectors carried by the cylinder when they become charged in turn by coming in contact with the brushes, which are so situated that they come in contact with the sectors when the latter are about an inch away from the pillars, which, by the

Fig. 2. way, are also of brass. Th speed attained by Fig. 4 is remarkable, and when it becomes thoroughly charged it shows such a decided inclination to leave its base that it has to be held down. In Fig. we have the static electro motor in its most efficien form. It does actual work, and is here shown rotating a Geissler tube, which is lighted by the same machine that urnished the power for the motor. The optical effect of the rotation of the tube is shown in Fig. 6. This motor is constructed entirely of brass, rubber, and wood, and consequently is less fragile in appearance, and is suggestive of real power.
The cylinder of this motor is of hard rubber, and is six inches in length and about four and a hal inches in diameter with brass sectors $3 /$ of an inch in width running along the full length of th cylinder. The cylin der has a ${ }_{1}^{3}{ }_{6}$ inch iron rod passing through it. The rod has stee ends where it come in contact with the brass bearings. The supports for the cyl inder are of hard ubber, as are also the supports for the pole pieces, which will be seen at eithe side of the cylinder The dielectric used as a covering for the pole pieces is sheet rubber The points t which the sector receive their charge may be seen at the right hand side
 Fig. 1.

STATIC ELECTRIC MOTORS-CONSTRUCTED BY WILLIAM MC VAY. of the cylinder at the rear and at the left hand side of the front end. The position of the Geissler tube is wel shown in the accompanying illustration The projec tions from the ends of the pole pieces are for the purpose of lighting the tube, which presents a very weird appear well that further explanation of the construction is ance in a darkened room. The subject of the motive not deemed necessary. A more elegant design is shown in Fig. 3. This motor stands ahout nineteen inches in height and has the appearance of being anstructed entirely of hard rubberand brass. A glas hade is also used in this case, but instead of utilizing nother shade as a carrier of the 90° sectors, as in Fig an inverted battery jar serves the purpose and at the same time furrishes a support for a glass spindle upon which the cylinder turns; thin brass brushes are substituted for the tinsel used in making contacts in the previous motors. When one sees this motor in operation, running as it does at a high rate of speed, it seems incredible that the motive power is static Fig. 4 is s
Fig. 4 is so simple in its construction that the prin-
power of static electricity is one filled with interes for the student and well worthy of attention.
Mr. McVay has in mind a modified form of Fig. 5 rom which he hopes to obtain greater efficiency and a decided improvement in appearance.

THE Engineer, London, in an article on high speeds on railways, speaks of the dangers which attend the working of the present style of locomotives, when running above 60 miles an hour. The centrifugal stresse in the reciprocating parts and counterpoises are enor mous, and increase with the square of the speed. The Engineer thinks some form of rotary steam engine yet to be invented may prove best for high speeds. Here is a nut for inventors to crack.

Merchant Navies of the world.
The estimate of the Bureau Veritas with regard to the merchant navies of the world for the present year puts the total number of vessels at 43,514 , of which 33,876 are sailing vessels of $10,540,051$ tons, and 9,638 steamers of $12,825,709$ tons gross and $8,286,747$ tons net The figures as regards the steamers stand as follows:

Nationality.	Number of Ships.	$\begin{gathered} \text { Gross } \\ \text { Tonnage. } \end{gathered}$	$\begin{gathered} \text { Net } \\ \text { Tonnage. } \end{gathered}$
English.	5,312	8,043,872	5,106,581
German.	689	${ }^{9} 930,754$	- 6854.1890
French....	419	${ }_{533,333}$	375,950
Spanish.	${ }^{350}$	423,677	- $27,3,819$
$\xrightarrow{\text { Italian, }}$ Norwegian	200	-	185,996 176,419
Dutch.....	164	220,	149,355
Russian.	230	177,753	115,742
Swedish	${ }_{197}^{403}$	172,013	-126,612
Danish....	111	154.497	$\xrightarrow{103,578} \mathbf{9 0 , 5 0}$
Austrian.	147	123.279	76.412
Belgian...	55	98.056	71.658
Brazilian.	129	75.970	${ }_{44}^{48,901}$
Greek.....	${ }_{41}^{68}$	\%0,435 49,364	- 49,564

BESSEMER'S FLUID METAL ROLLING MILL

In a paper by Sir Henry Bessemer, recently read be fore the British Iron and Steel Institute, is described a rolling mill for producing sheets and plates of malleable iron and steel direct from the fluid metal. This mill, shown in the accompanying illustration, is an improved form of one patented by him in 1857, and allowed to rest without development on account of the difficulties attending the perfecting of the steel-making process.
The rolls consist of two hollow drums, L and M, to each of which a tubular steel axis conveys water for keeping the rolls cool. The brasses supporting one of the rolls are fixed, while those of the other are movable and are pressed upon by a hydraulic ram in communication with an accuwulator, whereby, should the feed of metal be excessive, one of the rolls will yield to prevent undue strain, and the only fault will be a slightly only fault will be a slightly increased thickness at that part of the sheet, to be re-
moved by subsequent rolling. moved by subsequent rolling. to four feet in diameter, and each has a flange at one end only, thus forming, when they are in position, a trough with closed ends to receive the fluid metal. For the regular and quiet supply of the metal, a small iron box or reservoir is employed, having a bar or handle at each end, by which it is supported on the side frames. This reservoir, the construction of which is shown in Figs. 2 and 3, is lined along its bottom with plumbago or fire clay, some ten or twenty holes about a quarter of an inch in diameter each being here neatly moulded by a row of conical brass pegs. The reservoir should be well dried, and its interior surface heated to redness prior to use, and in this state it is placed in position only when the first ladleful of metal is ready to be supplied. The ladle, R, is conveyed to the reservoir on rails, and has one or more valves or stoppers for regulating the flow.

An almost constant quantity of metal is thus delivered to the rolls, without splasking, through the several apertures of the reservoir, and these streams do not fall directly on the rolls, but into a small pool formed between thin films solidifying against the cold surface of the rolls, the metal at all times being free from floating slag. The speed of the rolls also affords a means of regulating the quantity of metal retained between them.
The sheet of metal as it emerges from the rolls is received between curved guide plates, S and T, to one of whieh a cutting blade, U, is bolted, the piece so cut passing between a second pair of rolls, V V, and thence to a third pair, W W, from which it is delivered on a table, or may be allowed to slide into a cistern of water. The construction allows for the cooling and stacking of the plates without labor or trouble.
The thickness of the plates it will be possible to make in this manner will depend largely on the size of the rolls, it being estimated that rolls of ten or twelve feet diameter will be capable of producing plates of about three-quarters of an inch in thickness. In the production of the thin sheets, as described, their exposure to the oxidizing influence of the atmosphere, prior to their immersion in the water, is for so brief a period that they will not acquire any scale, and in consequence of there being no overlapping of plates
in rolling, there will be but little loss of metal in shearing.

The Boot and Shoe Industry

Special Examiner Hyer, of the Patent Office, has just returned from a tour of inspection through the great boot and shoe factories of Lynn and Haverhill, in Massachusetts, which may be said to turn out footgear for pretty nearly the entire people of the United States. He was much impressed with the gigantic scale on which the manufacture is carried on at these establishments, some of which have a capacity of from eight thousand to ten thousand pairs a day. A large percentage of the goods thus produced are sold to retailers at from eighty-five cents to $\$ 1.50$ a pair, although the "stock" used costs from eighty cents to $\$ 1.10$. Inasmuch as the labor averages thirteen cents on each pair, there is necessarily an actual loss on the cheapest grades, which are merely intended to serve as "leaders." It is an interesting fact that sixty per cent of all the shoes and boots worn in this country are retailed for less than $\$ 2$ a pair
"Machinery," said Mr. Hyer recently to a Washington Star reporter, "has nowhere been put to more effective use for the saving of labor than in the manufacture of shoes. It is a wonderful thing to see a pair of boots turned out within a few minutes from the raw material, finished and all ready to wear. At the time of the Centennial Exposition in Philadelphia there was a contrivance exhibited which was called by its inventor the 'iron shoe maker.' It made shoes and turned them

Roman soldiers were studded with nails. Heliogabalus had his shoes covered with white linen, and Caligula ornamented his with precious stones. Sandals were worn by both sexes among the Romans in the house, as we wear slippers. At one time the parliament of Great Britain regulated by law not only the quality of the leather, but the number of stitches to be taken in every shoe. Top boots were introduced in the sixteentl century. In China the cobbler goes from house to house and announces his coming with a rattle. In all history, as shown in pictures and bass reliefs, the shoemaker seems to have assumed the same attitude as now in doing his work. It is a very unhealthy one, and few of the craft live to old age. A hollow at the base of the breastbone is often produced by the continual pressure of the last."-Washington Star.

Ancient Egypt.

Mr. Flinders Petrie recently delivered at the Owens College, Manchester, a most interesting address on exploration in Egypt. It had been thought, he said, that the immense mounds of rubbish indicating the sites of towns had been made on purpose, but they re sulted from the natural decay of the mud brick build ings. These heaps of ruined walls and earth and potsherds rose even to eighty feet high in some places but other ancient sites were much less imposing, and might even not attract notice on the open desert. The higher the mound the longer the place had been inhabited; and if the surface was of a late period, the earlier parts, which were most needed, were unde such a depth of rubbish as to be practically inaccessible. Much could be known at first sight; and prospecting had now become as scientific a matter in antiquities as in geology. Knowing, by a glance at the sherds on the top, what was the latest period of occupation of the site, and knowing the usual rate of accumulation of a mud brick town-about five feet in a century-we could guess how far back the bottom of the mound must be dated. Other remains had different indications. If the midst of a great mound there was a wide flat crater, that was probably the temple site, surrounded by houses which had accumulated high on all sides of it. Speaking of the results of exploration, Mr. Petrie said that we nov realized what the course of the arts had been in Egypt. In the earliest days yet known to us-about 4000 B. C.-we found great skill in executing acccurate and mas sive stone work, such skill as had hardly ever been exceed-
out complete, but they were clumsy affairs, and the process was a slow one. It has been found best to employ for the purpose a number of different machines, which together perform the operations necessary.
"With the aid of one ingenious device one man can sew together soles and uppers for four hundred and fifty pairs a day. On what is known as the 'standard nailer' a single operator can nail three hundred pairs, the machine making its own nails by wire, pointing them, driving them and at the same time automatically regulating the length of each nail to the thickness of the sole. With loose nails or pegs one person can do six hundred pairs a day, though the toes and heels must be made additionally secure afterward. One pegging machine will peg two pairs of women's shoes per minute, cutting its own pegs from strips of white birch at the same time. A thousand cords of wood are cut into shoe pegs every year in the United States. The wooden peg was invented in 1818, by a Massachusetts man named Joseph Walker.
"The Yankees have always been years ahead of Europeans in the art of making shoes, although the French excel to this day in the finest work for women's ootwear. All machines for sewing shoes are of Ameri can invention. The last census showed that the manufacture of boots and shoes was the greatest single industry in America, employing the largest amount of capital and the greatest number of individuals. The employes of the trade are about equally divided as to sex. Men do the heavier part of the work, while women sew uppers, bind and fasten on the buttons. Each New England factory-most of them are owned by Boston men-has its specialty. One makes ladies' shoes ex clusively, another slippers, another men's boots, anther children's footgear, and so on
"The oldest form of shoe was the simple sandal, which was nothing but a sole. Egyptian priests wore sandals of palm leaves and papyrus, while those of the
common people were made of leather. The shoes of
ed. We found elaborate tools used, jeweled saws and tubular drills. We saw the pictorial arts as fully de veloped as they were for thousands of years later. Bu what led up to this we were still feeling for.
nfluence of Surroundings in Producing Insanity
In the last number of the Journal of Medical Sci ence Dr. Savage discusses this question, and begins by protesting against the acceptance of what is a too widely spread notion, viz., that nearly all insanity is the outcome of direct neurotic inheritance. The influnse of heredity is not denied or minimized, but the reat importance of environment is insisted upon. To quote the words of the author: "We are what we are in mind and body, to a great extent, as organic re sults of our forefathers; but that we are no longer naked savages is some evidence that progress and develop ment in the individual and the race may take place as the result of changing surroundings." There can be no two opinions as to the encouragement to be got from such a view. A too great insistence upon heredi ty as the determining cause of insanity must land us in a hopeless pessimism as regards treatment; whereas a recognition of the influeuce of surroundings is the first step toward the construction of a reasonable and efficacious system of therapeutics. The author also cites many examples of hallucinations and delusions which are suggested by surroundings; and while al will not be inclined to accept his dictum that disorder of function may lead to disease of tissue, there will be few who will not share his opinion as to the efficacy of restful, pleasant surroundings in the treatment of nental disorder, as compared with the virtues of "med icine out of a bottle."

BELTS running over pulleys of small diameter at high speeds ought to be as thin and as wide as possible Orange tan leather of uniform thickness answer remarkably well.

PHOTOGRAPHIC NOTES.

To Transfer Ordinary Albumen Prints to Wood, Metal, Glass, or Porcelain, it is, according to Photographie, sufficient to thoroughly clean the surface to which the image is to be transferred, if it is a polished or a glossy one, and to smooth it if it is a rough one. It is then coated with a thin layer of copal varnish, and the toned and fixed albumen print is placed upon it while still wet. All the air bubbles and the excessive varnish should be pressed out by means of a squeegee or an India-rubber roller, and then the whole allowed to dry for about four hours. After this time the back of the print is moistened by means of a sponge, when it may be lifted off its support, while the albumen film, together with the picture, remains on it. The image is then coated once more with copal varnish in order to protect it and to render it more brilliant. A reversed transfer is obtained in this way. If, however, gelatine negatives which can be stripped from their glass support, or transparent films, are used, a reversed print may be made on albumen paper, and this one trans ferred in the manner described above.
Orthochromatic Collodio-Bromide Emulsion.-At the suggestion of Professor Eder, Dr. A. Jonas has worked out a method for making orthochromatic col-lodio-bromide emulsion similar to that introduced sowe years ago by Dr. E. Albert. The results of this im portant work have been published by Dr. Jonas in extenso in No. 370 of the Photo. Correspondenz. The following two solutions are prepared :

Solution No. I.

Bromide of ammonium	64 grammes.
Distilled water.	80 c. c.
Alcohol (absolute).	800
Thick 4 per cent collodion.	1,500
Acetic acid.	65 grammes.
Solu	
Nitrate of silver (crystal).	80 grammes.

Distilled water
80 grammes
The silver nitrate is dissolved by heat, and an aqueous concentrated solution of ammonia (specific gravity 0.91) is carefully added in small portions, until the brown precipitate first formed is again just dissolved. About 75 c . c. of ammonia will be required for this purpose. Finally, 800 c. c. of warm alcohol (113° F.) are added. Both solutions may be prepared by daylight. In the dark room, which should be illuminated by orange light, solution No. II. is poured into solution No. I. in a thin stream, shaking violently all the time. The temperature of solution No. II. should be kept at from 104° to $122^{\circ} \mathrm{F}$., because otherwise ammonio-nitrate of silver will crystallize out. A drop of the emulsion thus prepared is then brought into contact with litmus paper, and if it be alkaline, acetic acid should be added drop by drop until the emulsion gives a slightly acid reaction. It is then shaken for a quarter of an hour allowed to stand for an hour, and then poured into five or six times the quantity of water. The precipitat ed emulsion is collected on a clean linen cloth, and the latter hung in running water for one or two hours Finally, the superfluous water is gently pressed out the emulsion washed several times with distilled water pressed out once more, and spread out on thick blot ting paper to dry. For use, dissolve :

> Dry collodio-bromide
> Alcohol
> $40 \mathrm{c.c}$.

To render the emulsion color-sensitive, a certai quantity of picrate of ammonia and glycerine and the solution of, the dye is added to it. In the case o cyanin, the following mixture should be prepared :

Collodio-bromide emulsion.
Solution of cyanin, $1: 150$
The action of excess of silver nitrate in the dyed mulsion is very remarkable also in the collodion process. If 51 milligrammes of silver nitrate are added to each 100 c.c. of the emulsion, the sensitiveness of it will be increased at least two times. To obtain a highly color-sensitive emulsion dyed with eoside of silver, pro ceed as follows: A raw emulsion is at first prepared by dissolving 6 c.c. of collodio-bromide in 40 c.c. of abso lute alcohol and 66 c.c. of ether by frequent agitation Then the following three solutions are prepared :

Solution No. I.

This eoside of silver solution is allowed to stand for one or two days and filtered, and 20 c. c. of it are mixed with each 100 c. c. of the raw
emulsion. This dyed emulsion requires only about one-third of the exposure of wet collodion, but it keeps only one or two days. The glass plates, before being coated with the emulsion, are provided with the following substratum : 5 grammes of white gelatine are dissolved in 500 c. c. of distilled water, and to this solution are added 15 c . c. of acetic acid and 10 c. c. of alcohol. The solution is filtered at a temperature of 100° to 110° F., and while still warm, poured twice upon the plate. After being coated with emulsion, the plates are placed directly, without washing, into the dark slide, and can be at once exposed; they will, however, keep damp for thirty to forty minutes in not too hot a room. When exposed, the plates are washed by dark red light until all greasiness has disappeared, and allowed to drain in an upright position for some time. This draining must continue the longer the larger the plates are; if they are not sufficiently drained, streaks will be produced on the film during development. Develop ment takes place by copiously pouring the develope over the plate, as in the case of the wet collodion pro csss. The following concentrated hydroquinone de veloper is recommended as the best for this purpose:

Solution A.	
Distilled water.... 500 c.c.
Sodium sulphite... 200 grammes.
Potash............ 200
Solution B.	
Hydroquinone.	25 grammes.
Alcohol (96 per cent). 100 c. c.
Solution C.	
Bromide of ammoninm	25 grammes.

The concentrated developing solution consists of
The concentrated developing solution consists of Solution A.. 100 c. c.

In the case of hard negatives, solution B is increase to from 6 to 7 c . c. The actual developar is prepare by mixing :

Concentrated developer. 150 c. c.
The plates can be intensified with pyrogallic acid and silver by preparing the following two solutions: Solution A.

When dissolved, add :
Acetic acid...
Solution B.
Nitrate of silver
Distilled water.
........................... 10 grammes.

Just before use, 100 c . c. of solution A are mixed with c. c. of solution B. If it is desired to intensify the plates after fixing, the same pyro. and silver intensifie may be gsed, but the hydroquinone and silver intensi fier also answers very well. For reducing the nega tives the hypo. and ferricyanide of potassium reducer as used for gelatine plates, may be used
Increasing the Sensitiveness of Asphaltum.-E Valenta has found that the sensitiveness of asphaltum may be materially increased if it is incorporated with sulphur. He dissolves from 7 to 10 grammes of sulphur in a sufficient quantity of bisulphuret of carbon, and adds 100 grammes of Syrian asphaltum. The solution is then freed from the bisulphuret of carbon, and fo about one hour heated up to $100^{\circ} \mathrm{C}$. ; it is then trans erred to an air bath, and gradually heated up to about $180^{\circ} \mathrm{C}$., until sulphureted hydrogen is escaping At this temperature it is kept for about five hours The asphaltum forms, after this treatment, a black and hining mass, which does not dissolve in alcohol, and only to a small degree in ether, while it dissolves per ectly in turpentine, benzole, chloroform, and bisul phide of carbon. Four parts of this preparation ar then dissolved in 100 parts of benzole, and the solution is applied in the usual manner to a polished zinc plate It for:n a light yellow, thin film of comparatively high sensitiveness to light, and gives, therefore, beneath a negative of good density clear and sharp impression after the development with turpentine, even with com paratively short exposures.-H. E. Gunther, in Photo News.

Lightning Conductors.

Dr. Hess, who has been collecting statistics and has examined the tips of many lightning rods, finds that fusion of the points never occurs. A fine smooth point receives the lightning in a concentrated form, while angled or ribbed, as well as blunt points, divide it into threads. Dr. Hess considers that platinum needles and tips are entirely unnecessary, for they have no advantage over copper points; but as there are lightning strokes which are capable of making wire 0.20 in . thick incandescent, unbranched copper conductors should never be of less diameter than this, though in a good lightning rod the main point is to secure perfect communication between it and the earth.

Rapid Progress of Electric Railways.

The address of President Watson at the recent Pitts burg meeting of the American Street Railway Associa tion was a discussion of the present condition and prospects of the various methods of street railway tracti
"It is a sou ree of no iittle satisfaction to us to know that, in the development of the electric railway America leads the world. Three years ago there were only 13 electrical roads in the United States; now there are over 400, and the advices from every part o the country indicate that before the close of the present year the number will be increased to 500 . The capital now invested in American electric railways ex ceeds $\$ 75,000,000$. 'Horse serıse' counts for but little in this age of rapid transit. We old dogs have been obliged to learn new tricks, and without the usual privilege of serving an apprenticeship. Our stables are bsing converted into power houses; the electrician has taken the place of the veterinary surgeon; our drivers are being educated as motor men, and most o us have horse cars for sale.
"Our cities and large towns are becoming as hungry for street railways as the people of the West are for steam roads, and the bulletins of the new censu reports show that in 54 of the largest American cities the mileage was nearly doubled between the years o 1880 and 1889, the figures being 1,983 miles in 1880 , and 3,150 miles in 1889.
"The following statistics have been compiled from returns made by street rail way companies in the United States and Canada to the middle of September, and ar believed to be as reliable as it is possible to make them:

" It is interesting to note that since November, 1890, the number of horses employed on street rail way lines has fallen from 116,795 to 88,114 ; that is, 28,681 in one year. At this rate, it will not take long to emancipate the horse from street railway business.
"According to the official figures taken from one of the street railway journals for the month of October, 1891, Philadelphia leads with 510 miles of single track and after the Quaker City comes Chicago with 45 mıles, New York with 289 miles, Brooklyn 285, Boston with 283. St. Louis 275, Baltimore 207, San Francisco 205, Cleveland 192, Cincinnati 180, Pittsburg 168 Kansas City 141, New Orleans 139, Louisville 132 Buffalo 110, Minneapolis 101, Los Angeles 99, Detroit 94, Birmingham, Ala., 92, St. Paul 90, Washington 85.
"The official figures of the census just completed show that in December, 1889, 476 cities and towns pos sessed rapid transit facilities; and it is now difficult to find any town of 5,000 inhabitants without one or more street railways.

Since the introduction of cable and electric transit, the government, in its wisdom, has found a new use for the street cars. Some of our lines have been elevated to the dignity of United States mail routes. The plan, in bold outlines, is to place on all the cars convenient ittle boxes for the collection of mail, which is taken up and sorted at some central point and the city letters sent to the sub-stations, without any of the delays in cident to the handling of the mails at a general post office. As an illustration of the workings of such a system there is on record a well authenticated instance of the travels of two letters, one of which was dropped into a letter box on a lamp post in a largecity, and the other sent from the same point at the same time to the general post office on an electric car. A comparison of the envelopes subsequently made shows that the last named letter actually reached Washington, 400 miles away, at almost the same time that the letter dropped into the box was received at the general post office, only two miles away. In the city, where all the cars come to a common center, the plan seems most feasible, and companies who have not given this matter due consideration will do well to consult their local postal authorities at an early day."

Preserving Wire Ropes.

For preserving wire ropes carried under water or under the earth's surface a mixture of 35 parts of laked lime and from 50 to 60 parts of tar is recommended. The compound is boiled and applied to the article hot. For dry-lying cables a thick mixture of graphite boiled in tallow, and one of arude linseed oil and vegetable tar, have both been tried with success.

A TELESCOPE FOR SCHOOLS AND GENERAL USE. The teiescope shown in the illustration is designed and arranged especially for educational purposes, and, as will be seen, is mounted on a handsome and substantial equatorial stand, which is exceedingly portable and at the same time firm, supporting the telescope without the slightest tremor or vibration. The tripod is made of polished black walnut, and is so arranged that the legs can be spread out or closed, so as to accommodate the instrument to the height of the observer. It is also provided with a clamping device, which holds it securely in any position. The right ascension and declination axes are carefully ground and fitted, so as to secure smooth and uniform motion. Hence a star can be kept in the field of view by a simple movement in right ascension. Suitable clamps are also provided, by means of which any degree of friction can be placed on the axes; if necessary, they can be clamped tightly, each independent of the other. A balance weight is attached to the declination axis, so that the telescope is perfectly balanced in any position.
The tube is of brass, handsomely finished and provided with a fine, smooth-working rack motion for focusing. Each instrument is furnished with one erecting and four celestial eyepieces, giving powers from 75 to 280.
The object glass is a compound achromatic lens of full 4 inches aperture and 50 inches focal length, and is made in the most approved wanner. It is guaranteed to show all the delicate test objects given in Webb's "Celestial Objects for Common Telescopes.
By this instrument may be seen the spots on the sun, the rapid formation and disap pearance of which show the tremendous physical action going on in that great luminary; the mountains and their deep shadows thrown across the valleys on the surface of the moon, the evident result of fierce volcanic action in the distant past; the belts of Jupiter, demonstrating its very rapid rotation, and the four satellites of the planet alternately advancing and receding as they revolve about their great primary, ex hibiting the phenomena of eclipses, transits, and occultations; the moons and rings of Saturn, which at the present time are in a most favorable position for observation, the rings being thrown with their surfaces toward the earth, thus giving a fine view of these most extraordinary appendages to the planet the crescent of Venus, which increases and diminishes as it revolves about the sun, one of the most satisfactory proofs of the cor rectness of the theory of Copernicus; to gether with the asteroids, Mars, Uranus, Neptune, comets, various double stars, and nebulæ. Very fine terrestrial observations may also be had by using the erecting eyepiece.
The value of such an instrument in teach ing and studying astronomy cannot be overestimated, as, in fact, a telescope is a neces sity in the pursuit of this grand science.
In order to put this instrument within the reach of all persons its inanufacturer, Mr. F. W. Gardam, of No. 58 Ann St., New York City, has spared no pains to perfect every part and to reduce the cost to the lowest possible figure.

Armor Plate Trials.

Important and gratifying as were the results appar ent at the recent tests of American armor on the Naval Ordnance Proving Grounds, other deductions of great interest and value have since been obtained through detailed investigation
One thing which attracted attention was the irregularity of the penetrations in all three plates. Of two successive and similar projectiles fired at different corners of the same plate with exactly the same charge, from the same gun, one might enter more than onethird further than the other. For example, the first shot at the Bethlehem high carbon nickel plate, at the upper left-hand corner, showed a penetration of $13 \cdot 25$ inches; the second, at the upper right hand corner, a penetration of only 10.07 ; the third, at the lower left hand corner, a penetration of 13.90 inches; a fourth, at the lower right hand, a penetration of only 10.37 . Differences of a fraction of an inch were, of course, looked for, but not differences of nearly four inches.
It was observed, in the instance just given, that these contrasts were presented by alternate shots, and further, that the firss and third shots were about alike in penetration, while the second aud fourth were also about alike and much less than the other two. In other words, the right half of the plate showed much more resisting power than the left. Similar inequalities were observed with the Pittsburg low carbon nickel plate of Carnegie, Phipps \& Co., except that there one end showed greater resisting power than the other.

A study of these facts soon disclosed the reason for the lack of uniformity in results. The cranes used both at Bethlehem and Pittsburg for dipping the plates in oil were so slow in action that in the case of the Bethlehem plate one side was tempered harder than the other, while in the Carnegie plate one end was tem pered harder than the other. It was, therefore, evident that hereafter the cooling liquid must be applied simultaneously to all parts of the plate. The quality noted in the best parts, as shown by the results, will then presumably become uniform throughout.
This principle was illustrated very strikingly in the all-steel Harvey plate, which had been sprayed with water on both sides. Being held perpendicularly between the two sprays, the discharged water from the upper portion of the spray, running down over the heated plate, was itself heated, and thus to a certain extent protected the plate from the chilling action of the lower portion of the spray. The upper part of the plate was distinctly harder than the lower, as shown in the trials, and, in fact, was the only portion in a proper condition for yielding the best results of the Harvey process.

The uniform chilling of a plate at all points of its surface will accordingly be the aim at both the armor making establishments hereafter. But we must expect lack of uniformity in penetrations in the remaining plates to be tried. We may, indeed, look for better
conclusion that, in applying the Harvey process, both Bethlehem and Carnegie will probably try to intro duce the carbon on one side of the ingot prior to any forging. This change alone, it is said, would save no only a great deal of time, but nine-tenth of the entir cost incident to the new treatment. In a new proces of manufacture like this the successive stages of im provement depend on trials like those now going on. Yet the fullest and most successful development of the Harvey process may be expected within the next twelve months, and a year of further progress in naval armor making may also be looked for, possibly not less re markable in its way than the one whose results are be ing shown at Indian Head. $-N$. Y. Sun.

Edison's Electric Railway Motor

Mr. Edison has explained to the New York Herald his belief that the locomotive will be displaced on steam railways, and that his electric motor will be used instead. He said the economy would be large; he would get one horse power out of from one to two pounds of cheap coal, while the locomotive only got the same one horse power out of six pounds of dear coal. He intends to demonstrate that there need be no such thing as waiting for trains between cities now considered a long distance apart. He intends to run a train, say of two cars, every twenty minutes
"I cannot go into details," said Mr. Edison, "for fear of injuring my rights on the othe side-though, by the way, I never made side-though, by the way, I never made will say briefly that the current will pass from the stationary engine to a central rai between the tracks, thence through the mechanisin attached to the bottom of the cars or motor. A freight train, of course would need a motor, because of the num ber of cars, although a single passenger car could be run carrying its own motor be neath it-thence to the wheels, and thence back by the side rails to the power hous or stationary engine."
"And how many of these stationary en gines would be needed?"
"Three of them, with a horse power of 10,000 or 12,000 each, would run the whole Pennsylvania railroad system between here and Philadelphia.'
"Freight, local, express trains and all?"
"All of them, and at a great reduction of expense. Not only is each horse power produced at much less expense, but the depreciation of rolling stock and roadbed is much less. Every exertion of steam power is in the nature of an explosion, and when you take into consideration the fact that fou or five hundred engines are on a road like the Pennsylvania at one time, each exercising a different degree of this explosive power, the depreciation is a great factor But with electricity, it is always the smooth rotary motion, imparted in the same way by the same men at the stationary engines.' "Can equipment be devised which wil stand the strain of this system at full speed?"
The Wizard smiled. "Full speed of thi system," he said, "is, or I see no reason why it should not be, 200 miles an hour. But as for practical purposes, I feel sure that a 100)-pound rail on a rock-ballasted track would stand the speed of 100 miles an hour.'

Whitened Cape Diamonds.

It is stated that artificially colored diamonds have been sold lately in Belgium. A French chemist finds out that on being dipped in a weak aniline solution the diamonds lose their yellowish tinge, and appear a pure white as the Indian or Brazilian stone. The pure white as can neither be seen by a magnifying glass nor rubbed off with a chamois leather; so Mr. Guillo thinks that the dye must lodge in the sharp angle o the facet which remains unpolished, and so affect the light as it falls on the flat surface. A bath of nitric acid will show the fraud, or a little alcohol, which M Guillot recommends diamond merchants to use for testing.

The Steam Jet Pump, made by the Van Duzen \& Tift Co., of Cincinnati, Ohio., has been for many years before the public, and is in successful use in nearly every country in the world where steam pump are used at all, and for the widest possible variety of service. It is extremely portable and compact, re quiring little skill to set it up or take it down, and it quiring little but very little for maintenance and repairs, and requires neither oil nor packing. The same company requires neither oil nor packing. The same company also manufacture other specialties for steamboats,
machine shops, factories, mills, tanneries, etc., includmachine shops, factories, mills, tanneries, etc., includwater gauges, and they are also the proprietors of the Buckeye Bell Foundry, established in 1837.

RECENTLY PATENTED INVENTIONS

 Engineering.Link Valve Gear.-William A. Winn, White Hall, Ill. The link is, according to this invenion, pivoted near its middle with the reversing mechan the draught, the link block being fitted to slide in the slot and pivotally connected with the valve stem connection, while eccentric rods are pivotally connected with the sides of the link at its upper and lower ends.
ine Ink block has a U-shaped flanged body part hre link block has a U-shaped flanged body par and a cap for holding and adjusting the body part in he link, the improvement being designed to reduce friction and strain to a minimum, and facilitate the convenient adjustment of the several parts to com

Engine Tender Scoops. - Caleb N. Deviuney and Simon Hafner, Philadelphia, Pa. This nention provides a mechanism for automaticall loat piston is located within a domanks are filed. tank, and there is a rod and lever connection between he float pistor. and the lifting device of the water is filled. A mechanism is also provided whereby the engineer or fireman may, by means of compressed air, guickly raise or lower the scoop independently of th utomatic apparatus, the improvement being designe or ready and hispen apdiury
Furnace. - Absalom Backus, Jr Detroit, Mich. This furnace has an arch connected he fire chamber some distanc over the grate there being an opening beneath the arch between the grat and the bridge wall, the opening being provided wit dampers operated by a special mechanism The con truction is such that the arch serves as a superheate, adding to the intensity of the heat below the center o he boller. The air admitted is uier perfect control, nd the heat is denigned to ler againet being adapted to insure perfect combustion and economy of fuel.

Railway Appiances.

Car Signal. - Mahlon A. Gerber, Mahony Plane, Pa. The signal designed by this invento enable the rear brakeman to signal to the engineer.
The car or caboose in which the signal is located carries an air pump and reservoir, the pump being so connected with the axle that the reservoir will be kept full of compressed air by the motion of the car. The
reservoir has a safety valve aud a gauge, and is connected with a whistle at the top of the car, whereby the whistle may be blown by the brakeman or conductor whenever necessary. The pump can be worked by hand to supply compressed air to the reservoir when he car is at a standstill.
Automatic Car Dump.-John Story, Lonaconing, M. Mining work is the especial object
of this improvement, devices being provided whereby, as the loaded cars travel down to the dump, they will have their gates first automatically unlocked, when the car will be dumped and switched by gravity to another
track for return to the mine. A tipple section of track is arranged at the intersection of two track sections, both on a down grade, but running in reverse directions, and the tri, ple section is pivotally supported in such manner as to engage the loaded car passing down from ne track, tilt it, and at the same time shift the section to come in line with the other track section, as the car
falls back in position after discharging its load, to dmit of its return to the place of filling
Railway Track Brake.-This is anther patent of the same inventor for a brake which and may be made act successively on all the cars. The and may be made act successively on all the cars. The bars arranged parallel to the track and just above the rails, while swinging links are pivoted at one end to the brake bars and at the other end to a tixed support, with means for giving the bars a parallel motion. This brake is adapted to clamp the edges of the wheels r stop it altogether
Car Brake. - Augustus J. O'Neill, Butte City. Montana. This device is more especially plate adapted to extend into the slot of the cable conduit, and having brake shoes to engage the conduit, is an arm pivoted on the brake and carrying the pivot of
the plate, the arm being under the control of the operator, while bell crank levers are pivotally connected with the arm and links are pivotally connected with the bell crank levers and the plate. The brake is of advantage of holding the car to the track when braked.

Hechanical Appliance Centrifugal Force Pump.-Edward . Nicholas and Joseph R. Turner, Greenville, Ohio. in this pump a hollow revoluble inverted duplex cone is mounted to turn near the top of and within a casing which combines a water receiver and an air chamber.
The constructicn is designed to be simple and durable, and to reduce friction to a minimum, so that the motive poiver employed is utilized to the greatest Sawing Machine. - John B. and James P. Coan, Vincennes, Ind. In an adjustable
rame is mounted a rocker supporting a platform and eat for the operator, while handles are connected with levers whereby the clatform may be cansed to rock body the motion imparted to the levers. The front end of the platform has a head pivotally connected
Cotton Gin Feeder.-Ralph Hatha
lever controlled from the gin lid and controlling the eed pawls of the feed roller. When too much cotto has been fed into the gin, the speed of the roller
automatically reduced about one-half, while in case of an obstruction in the in the fed is, being set in motion again when the surplus cotton ha been worked off. The improvement constitutes

WRENCH. - Cicero T Hammack
anmack ard in one side of one of the jaws is a dovetail rece rom which an opening extends through to the outside the jaw. An auxiliary juw with a dovetail tongue dapted to fit iu the recess and be locked in position auxiliary jaws the wrench is readily adapted to all classes and kinds of work.

Agricultural

Mower and Reaper.-Tom. O. Sun det and Salve W. Brekke, Neilsville, Minn. Combined with the frame and cutting apparatus is an operating wheel rigidly mounted on the axle, a tubular sleeve capable of longitudinal movement being also mounted
on the axle, while a vibratory lever is pivoted to the tubular sleeve and adapted to be moved in and out of ngagement with the operating wheel. The mechanism is exceedingly simple and easily operated, and is designed to give powerful leverage and insure lightness

Frame for Mower and Harvester. Samuel M. Pryor, New Caste, Ky. This improve ment is more especially designed for a front cut reaper and mower, to take the place of the usual heavy and
cumbersome frames now employed. The improved rame is simple and durable in construction, and easily bunt, while it is so made that the various parts of the also provided for placing the machine under the easy control of the driver.
Cotton Chopper.-Henry P. Tobin nd March Holman, Allendale, S. C. A gear wheel held to turn on the axle rotates a disk provided with
radial cutter carriers, supporting cutters arranged diagonally to the axis of the disk, the blades revolving as the machine moves forward to thin out the plants.
One or more covering plows are secured to rearwardly One or miore covering plows are secured to rearwardly
extending beams for turning up the soil, and the machine is designed to be simple, inexpensive, and very effective in operation.

Miscellaneous.

Gyroscope. - George E. Sire, Besan con, France. This is a simple device which may be used as a scientufic toy and as an instrument of mechanical demonstration. It consists of a block having a central recess and a grooved face, a suspension cord
being secured in the grooved portion of the block while an axis carrying a disk is pivoted in diametrically oposite sides of the recess.
Cover for Sap Pails.-Titus Stowe, Readsborough, Vt. This cover has a supporting and thaching device, formed of a single piece of wire,
whereby it may be readily placed in the desired position on a tree, and swung down to cover the pail or swung up for inspection or when the pail is to be removed. It is designed to protect the sap collected
within the pail or bucket from rain, dust, dirt, etc., fom exposure to the sun.
Adding Machine.-Joseph E. Black haw, Pittsburg, Pa., and George H. Rogers, Birmingham, Ala. This is a simple and compact machine adapted to readily add small or large sums. Within circular metal casing pivoted on a base plate is a ring ng hundreds and on its inner edge with units up to hundred, while a cenitral toothed disk has graduation and teeth corresponding to those on the inner edge of the ring, there being means for rotating the disk, and an index hand at the outer circumference of the ring,
gears connecting the disk to the index hand. The adjusting or counting arm is centrally pivoted, and ent up to form a handle and then outwardly, having tooth from the notches of the disk.
Calendar. - George H. McKee, Darlington, S. C. A casing made of two hinged secing a stamp box or compartment, while the other has a main dial, a mouthplate, and a lock dial and detent. The device is designed to be carried in the pocket, and to enable the user to quickly determine the day of the week of any date in the period comprehended in the onveniently carrying postage stamps, etc.
Educational Tor. - Milton H. Row land, Gladstone, Mich. A toy sled, wagon, chair, or Arabic numerals marked on it, and perforations and made through the characters to receive different colored pegs or pins, which may be arranged to mark out words and indicate numbers, the device being also mployed as a toy.
Album.--Bernard Branner, New York Gity. This album is adapted to open oppositely and is centrally supported to revolve on a fixed shaft, whre folding picture holder has a hinged and a swiveling
connection with a folding album case. The invention is an improvement on a former patented invention of the same inventor, providing additional novel features device is rendered more conventent and the exhibition of the contents of the album is facilitated
Musical Instrumant.- Willam Van vides a tail plece for stringed instruments which simple and durable in construction, and permits of conveniently and quickly attaching or detaching the
strings. The tail piece has on its npper end a series of
which are fastened the ends of the strings, which can
thus be quickly and securely fastened and are readily od to replace a worn out string by a new one.
Derrick.-Charles E. Swift, Tonica, Ill. This is a strong and simple construction more particularly designed for conveniently hoisting and
setting various structures, such as towers for wind mills, electric lights, etc. It is adapted to be readily set up near the structure to be hoisted, and has a suit ably constructed base on the front end of which are bearings in which is journaled a cross piece supporting in its middle the dertick boom. The boom is preferobly made in several sections spliced t.ogether, and is strengthened by a series of plates arranged one above
Weight Releasing Device.-Elias B. Birge, St. Paul, Minn. This invention provides a improvement in mechanism for opening or closing
doors of fire engine houses, etc. A plate on a side wall doors of fire engine houses, etc. A plate or a a
supports a pipe into which projects an arm of a catch ever, a bar in the pipe supporting at its lower enc the catch lever, there being also attached to the weight rope connected with a sliding bolt or other fastening or the door to be opened. A trip wheel actuates t Range Boiler. - Ira G. Lane, New York, and Arthur H. Lovejoy, Whitestone, N. Y. The boiler is supported by brackets at the ends and near he back of the range, and is inclosed by a vertically connecting with the boiler at the top and with the water back, the connection being very simple and such as to insure a free circulation of water, while the boiler
and the connections are entirely concealed, the boiler also assisting to heat the hot air closet located betwee

Lamp Burner.-Charles Pabst, Philadelphia, Pa. A wick suspending and adjusting device
is provided by this invention, consisting of a pair of is provided by this invention, consisting of a pair of
spring arms having integral lateral projections at their ree ends, and a cross bar pivoted for limited vibration in the projections, the cross bar having pointed finger The device is designed for use with burners in which flat wick is used, facilitating the adjustment of the wick, and affording improved means for increasing he oil feed of the wick when in service.
Latch. - Benjamin Edwards, New York City. This latch has a sectional casing, in which
is a spring pressed bolt having lugs at each side, is a spring pressed bolt having lugs at each side,
while the follower has a cam projection and a guide block secured in the casing and projecting partially over the follower, with other novel features. The latch is designed to be simple, durable, and inexpensive to
make, haviug but few parts and operating with very

Transom Lifter. - Robert F. Hat field, New York City. This is a simple device by means light may be held or locked more or less fully open as desired, the device also assisting in holding the transom light closed. It consists of an upright rotatable rising and falling rod applied to the casing, and having an apper radially bent branch arm in connection with the spring catch to receive the branch arm when the rod

Ro
Road Cart. - Annie R. Chittenden secola, Iowa. This invention relates to a two wheeled
vehicle, to the axle of which are secured bars havin their rear ends bent upwardly and outwardly, while spring secured to the rear part of the seat and foot boz support is connected to the ends of the bars by link connections, a epring secured to the foot box also having its end connected the bars by link connections. The construction is simple and durable, and is designed lieving the animal of all strain and obviating the dis lieving the animal of all strain and obviating the do

Horse Arrester. - John Siebel Haloosa, Iowa. This is a simple and inexpensiv cally arrest an animal standing hitched to the vehicle ir the animal attempts to start or run away, obviating the necessity for hitching the horse to a post, or the r.se of
a heavy weight attached to a halter. A toothed whee a heavy weight attached to a halter. A toothed whee
is formed on the inner end of one of the wheel hubs is formed on the inner end of one of the wheel hubs,
and a gear segment adapted to engage the toothed and a gear segment adanted to engage the toothed
wheel has an upwardly extending bar carrying a fork or loop to which the driving reins may be secured. A cam lever is pivoted on the side of the bar, and a down ward movement of its handle causes the
Animal Trap.-Hans H. Thiellesen, Custer City. South Dakota. This trap consiste of a receptacle having a counterbalanced trap door in its
top, there being a mirror above the downward swing ing end of the trap door, and a perforated bait box in front of the mirror, open at its inner end to permit its conteuts to be reffected in the mirror. The trap
ranged to reset itself after an animal is trapped.

Note.-Copies of any of the above patents will be furnished by Munn \& Co., for 25 cents each. Please of this paper.

NEW BOOKS AND PUBLICATIONS

The History and Development of Roads. By William Fletcher. Lon$\begin{array}{lll}\text { Roads. } & \text { By William Fletcher. } & \text { Lon- } \\ \text { don: E. } & \& \text { F. N. Spon. 1891. } & \text { Pp. }\end{array}$
xv, 288. Price \$3.
The history of the traction engine in this work is
divided into the following periods: The periods of
culation. of experiment, of successful application, and finally the modern period. An introduction gives the early history of steam traction, and a chapter toward
the end of the book gives practical notes on the design
tains such an amount of interesting matter that our room is not enough to adequately review it. It will be of peculiar value at this day, when the spreading move-
ment for good roads makes the road traction engine near possibility in this country. The English law practically prohibits them, but even in England they are made for export to foreign countries and to the Eng-

Essentials of Bacteriology. By M. M. V. Ball, M.D. Philadelphia: W. B. Saunders. 1891. Pp. 159. Prics B.

This work, although nominally one of a series of quiz compends, really makes an excellent presentation of
its subject. It is designed especially for use by the medical student, but from its low price, numerous illusrations, and generally attractive style, will have many other readers. The subject of bacteria culture is of nt will do much to and it sudy

Common Sense in Making and Using Steam. Facts for the consideration of proprietors of steam plants, by one
who has paid for his experience. The Mason Regulator Company. Boston, Mason Regulator 1891 . Pp. 60. Price 25 cents. This little work, so graphically described in the title page, is due to Mr. W. H. Bailey, M.E., of Rochester, N. Y. It treats of all the generalities of the steam quired to pation, boilers, their qualifies, and care thngine, indicator cards, and by no means least interest. ing, the management of firemen and engineers. The and facts, and brief items of useful information. A six-page index sets a good example to more pretentious manuals. It is sufficient to say that the subject is attractively treated, and we are sure will prove entertaining as well as useful reading to many mill owners and liquid gaseous fuels. Any of the above books may be purchased through his office. Send for new book catalogue just pubished. Muns \& Co., 361 Broadway, New York.

SCIENTIFIC AMERICAN

buIldina EDITION.

NOVEMBER NUMBER.-(No. 73.)

TABLE OF CONTENTS

 olored plate of a very attractive cottage erected at elevation, floor plans, etc.2. Elegant plate in colors showing a residence in the Colonial style of architecture, recently erected New York. Floor plans, two perspective elevations, and interior view.
cottage at Plainfield, N. J. An excellent design. Plans and perspective. Cost $\$ 6,500$ complete
Messrs. Rossiter \& Wright, architects, New York

A neat cottage at New Dorp, Staten Island. N. Y handsome cottage at Rochelle Park, N. Y., erected at a cost of $\$ 10,000$. Perspective elevation and
floor plans. Plans and elevation of an attractive dwelling at Asbury Park, N. J. Cost $\$ 4,300$ complete.
model cottage at Chester Hill, Mt. Vernon, N. Y.
Floor plans and perspective view. Cost $\$ 4,000$ Floor pla
complete.

Heights, N. Y. Cost $\$ 5,800$ cottage at Fordham
Helive Heights, N. Y. Cost $\$ 5,800$ complete.
9. A cottage recently erected at Asbury Park, N. J.
Cost $\$ 2,700$ complete. Floor plans and perspective.
Rugg, St. Paul. Mr. A. H. Stern, architect, St. Rugg
Paul.
Perspective and ground planfor a memorial church. Accepted design for the completion of the South iscellaneous contents: Clover honey.-Fire pre cautions in building.-What taste with a little money may accon lesigning.-Simple precautions against fire and rats. - Floor painting.-The bricks.-Architecture in relation to hygiene.Fireproof buildings.-Some novel effectsin paper hangings, illustrated.--An improved wood work-
ing machine, illustrated. - An improved mechanical stylus, illustrated.-An improved tenoning machine, illustrated.-An improved swing
cut off saw. illustrated. - The Byrkit-Hall sheathing and lath, illustrated.- Power hack saw, illustrated.-An improved dumb waiter, illusThe Scientitic American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages : forming, practically, a large and splendid Magazine of architec rure, richly adorned with elegant plates in colors and with fine engravings. illnstrating the most interesting
examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largest Circulation
of any Architectural publication in the world. Sold by all newsdealers.

MUNN \& CO.. PUblibherb, 361 Broadway, New York

Business and Persomal.

The charge for Insertion under this head is One Dollar a line for each insertion; about eight words to a line. Adver

 for each insertion; about eight words to a line. Advertisements must be received at pubtication office as early as
Thursdoy morning to For Sale- $28^{\prime \prime} \times 12^{\prime \prime}$ and $32^{\prime \prime} \times 16^{\prime}$ engine lathes. Ne with compound rest and power cross feed. W. P. Davis, Acme engine, 1 to 5 H. P. See adv. next issue.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Best 15 in. Sbapers, 8245. Am. Tool Co., Cleveland, O Steam Hammers, Improved Hydraulic Jacks, and Tub
Expanders. R. Dudgeon, 24 Columbia St., New York. Screw matines, milling machines, and drill prese The Garvin Mach. Co., Laight and Canal Sts., New York Beach's Improved Pat. Thread Cutting and Diamond
Point Lathe Tool. Billings \& Spencer Co, Hartford, Ct Centrifugal Pumps for paper and pulp mills. Irrigating a digester or converter, For Sale-A vacuum pan, a digester or converter,
still. All copper. Apply to J. Edw. Crusel, New Orleans For Sale-Patent 445,891 , Cotton Scraper. New an
valuable. Send 2 cents for circular. Jas. Hobbs, Lagart exas.
Wanted-Machine for cutting old style through dove tail to lock bones. Address Boxmaker, care of Scie tiffc American.
Scale removed and prevented in boilers; for each 5
horse, 10 cents a week. Pitsburgh Resolvent Co.
Have mill and power. Want to associate with on
having patented article to manufacture. Address " B., are Scientific Am
For Sale-A quantity of scrap rosewood, averaging in ddress The James ICunningham, Son various length chester, N. Y
The best bock for electricians and beginners in elec
tricity is " Experimental Science,"by Geo. M. Hopkins. sy mail, \$4; Munn \& Co., publishers, 361 Broadway, N. For the original Bogardus Universal Eccentric Mill,
Foot and Power Presses Drils, Shears etc J.S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y. Wanted-A frrst class man as assistant to superintendshops. Address, stating age, references, and salary ex . Send for new and complete catalogue of Scientific New York. Free on application.
Aut omatic Springless Door Latch. Patent for saleen
re, or arrangements made to manufacture on royalty. Patent dated Nov. 10, 1891. See page 339. Address f The Akron Iron Compars
The Akron Iron Company, of Akron, Ohio, have re
cently issued a new catalogue (for their Eastern depart ment) of shafting, pulleys, friction clutches, and othe power transmitting machinery. As a special feature, it ontains numerous millwrights' tables and other techn endents, engineers, and machinists. These specia
eatures make this catalogue well worthy of preserva tion as a handbook on the subject of power transmis-
sion. It is furnished with special indexes to facilitate sion. It ation to Akron Iron Company, Akron, Ohio, provid

HINTS TO CORRESPONDENTS
Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our Eeferenates to former articles or answers should give date of paper and page or number of question.
In quiries not answered in reasonabele time should
be repeated; correspondents will bear in mind that some answers require not a little research, and,
though we endeavor to reply to all either by letter or in tis department. ench must take his turn.
pecial W Writen Information on matters of
personall rather than yeneral interest cannot be expocted without remuneration. Cientific American supplements referred
tomay he had at the oftice. Price 10 cents each. Books referred to promptly supplied on receipt of
price. marked or labeled. 3674) V. E. H. asks : How are spira brass springs cannot be recuperated. Get new ones when the old weaken.
(3675) F. P. C. asks for the formula for Supplement, No. 259, for the original formula, which gives off injurious vapors. To avoid this another formula gives potassium bichromate 2 parts, potassium nitrate 1 part, white sugar 3 parts. Pulverize each ingredient separately and mix without further pulverizing. En
close in little paper cones. Do not inhale the dust close in little paper cones. Do not in
in pulverizing the potassium bichromate.
(3676) H. H. G. asks for the cheapest as well as the least complicated way of making fuel gas on a small scale. Also the material used in the
making of the gas. A. It is made by blowing air and steam mised through incauldescent coal. Either anthracite or bituminous coal may be used. Sometimes the air and steam are blown alternately, the products of
the air blast being allowed to escape. This gives a gas the air blast being allowed to escape. This gives a gas
of more intense heating power. You will find articles on the subject in our Supplement, Nos. 276, 278, 531, 654, and many other
(3677) E. B. N. asks: What solution that will be a cheap and good one can be used to clean dirt off from geological specimens aud that will not in
jure the specimens? the specimens and of the dirt, Good soap nature of with a scrubbing brush, or a wirc brush such as foundry men use, are available.
(3678) E. D. asks for the composition of
struck a slight explosion takes place and the tlame i
extinguished. A. It is a compound of silver, probably xtinguished. A. It is a compound
fulminate, gummed to the match.
(3679) W. O. B. asks: How can I purify nitric and hydrochloric acids and pure gold leaf, in order to use the same as a tanning solution for photo more water and re-evaporate, and repeat until it is neural in reaction. If you evaporate to full dryness, there is danger of producing a basic salt.
(3680) G. H. asks : 1. How is gasoline as made for illuminating purposes? A Gas can madef rom gasoline by passing air over its surface. The ir takes up enough of the vapor to burn. The temperature of the gusoline tends to fall on account of the aratus shouldeat by the evaporation ; hence the ap possible. 2. Is the gas referred to very dane as far . No; it is used in a great many country houses with access. 3. Is the gas very easily blown out. If so here any protection for the light? A. It is more easil extinguished than pure coal gas. It is burned Argand burners with chimneys or in special open and he light? 1 . Hes. 4. Ha tend to ient cold m . Heat would tend to improve i , and sumipes extingnieh it Under ordinary conditions it give o trouble. . 5. What is the cost of gasoline light pe not measured. It is a cheap form co filluminant. (3681) S. A. A. asks how to make old plating solution (the best), how to couple and use it with my dynamo which I made like that described in Field is wound with No. 16 and armature with No. 18 double covered magnet wire. It works well. I would can make it myself. I am a practical watchmaker and a subscriber. A. For information on plating solutions we refer you to Supplement. No. 310. A dynamo wound as you have it is not euitable for plating, as it
gives a current of too high an E. M. F. Probably an rmature wound with No. 10 or No. 12 wire would answer. Consult
information on small plating dynamos.

TO INVENTORS.

An experience of forty years, and the preparation of
more than one hundred thousand applications for paents at home and abroad, enable us to understand the laws and practice on both continents, and to possess unsynopsis of the patent laws of the United States and all foreign countries may be had on application, and persons contemplating the securing of patents, ether at home or which are low, in accordance with the times and our exensive facilities for conducting the business, Addres MUNN \& CO., office Scientific American, 361 Broadway, New York.

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted

November 17, 1891.

AND EACH BEARING THAT DATE

[See note at end of list about copies of these patents.]
Air compressor, E. Hill
Alarm. See Fire alarm
Alloy

\section*{
 | Boile |
| :--- |
| Boile |
| Boot |
| Boot |
| Bori |
| Bot |}

 Box fastener, J. C. Walker. WarBracket. See
Brake. See Car brator bracket.

$.463,386$
$.463,427$

 man, archite., locking device for,

Commode, F. Koskul, J. Mr. Larim Condound engine, . F. Prine, Jr.

Cult alo..... Hiestand...................
Cutivatororand weed cutter, E. S. G. Gerow.
Curling iron, M. Campbell

 $\pm=+$

 | 463,54 |
| :--- |
| 46321 |
| 463,199 |

 elepobonic reilis. E.E. Weave
 Texti, w. J. Shbhortitea. material, machinine for foriding extioe eobs, meachinine tor openinn out the curle
 Thread seidining machinie, wi. Düǜiemin
 ongs and pinchers combined, w. F. Wiiiiai
 orpado uard, Lynch \& Midigiey

Jalve, b.alancen hitater.

Vaive puppet, W. . st. John engine, Bar

Valve, steam engine, J. Fre

\qquad paraici

TRADE MARKS.

 DESIGNS.

Cana dian patents may now be obtained by the in-
ventors for any of the inventions named in the fore

DJvertisements Inside Page, each insertion --75 cents a line Back Page, each insertion -- $\$ 1.00$ a line

USE A damant Wall PLaster

OTATRIEAE

WARP DYEINGAND SIZING,MACHINES,
PATENT RUBER COVERED SQUEEZE POWER WRINGERS FOF HOSIERY AND WRYING AND VENTHLATINGEANS, CEO. P. ${ }^{\text {Catalogues free. }}$ CLRK, Box L. GEO. P. WIndsor Locks, conn. $\underset{\text { Geo. W. polk. A new and valuable paper. contaning }}{\text { THE }}$

DEAFNESS \& HEAD NOISES CURED

SPECIAL NOTICE!

A CONNECTICUT PEACH ORCHARD. - By J. H. Hale An interesting deseription of a tarm

A NEW EDITION OF

TMUNN de $\mathbf{C O}$.
Publishers of Scientific ambrican,

A NEW LIGHT

Atkinson "Cycle" Gas Engine
Uses less zas per H. Uses less gas per H. P. P. than
Has a working stroke at every revolun
 ensine made
Henry Wa Henry Warden, Manufr
1824 Allegheny Av., Phila,

of the Scientific American. (Established 1885.)

 Engineers, Contractors, and Constre Owners.

 The rates for advertising are moderate. For terms
address MUNN \& Co., Publishers, 301 Broadway, N. \mathbf{Y}.

NOTV READY:

A NEW AND VALUABLE BOOK.

THE SCIENTIFIC AMERICAN

厄yclopedia of Receipts, NOTES AND QUERIES.

680 PAGES. PRICE $\$ 5.00$.

This splendid work contains a careful compila- Under the head of Alloys over 700 receipts are tion of the most useful Receipts and Replies given, covering a vast amount of valuable inforgiven in the Notes and Queries of correspondents mation.
as published in the SCIENTIFIC AMERICAN \mid Of Cements we have some 600 receipts, which during the past fifty years; together \llcorner with many include almost every known adhesive preparation

Over Twelvent additions.
Over Twelve Thousand selected re the useful arts being represented. It is by far the most comprehensive volume of the kind ever placed before the public.
The work may be regarded as the product of the studies and practical experience of the ablest chemists and workers in all parts of the world ; the information given being of the highest value, arranged and condensed in concise form, convenient for ready use.
Almost every inquiry that can be thought of relating to formulæ used in the various manufac turing industries, will here be found answered. Instructions for working many different pro cesses in the arts are given.
It is impossible within the limits of a prospec tus to give more than an outline of a few feature of so extensive a work.
Under the head of Paper we have nearly 250 receipts, embracing how to make papier maché how to make paper water proof and fire proof how to make sandpaper, emery paper, tracing paper, transfer paper, carbon paper, parchment paper, colored papers, razor strop paper, pape for doing up cutlery, silverware; how to mak
uminous paper, photograph papers, etc. Under the head of Inks we have nearly 450 re eipts, including the finest and best writing inks f all colors, drawing inks, luminous inks, invis ble inks, gold, silver and bronze inks, white inks directions for removal of inks; restoration o faded inks, etc. and the modes of use.
How to make Rubber Stamps forms the subject of a most valuable practical article, in which the complete process is described in such clear and explicit terms that any intelligent person may Fo lan
For Lacquers there are 120 receipts; Electro-相 hotography and Microscopy are represented by

Under the head of Etching there are 55 receipts, mbracing practical directions for the production of engravings and printing plates of drawings. Paints, Pigments and Varnishes furnish over 800 receipts, and include everything worth knowing on those subjects.
Under the head of Cleansing over 500 receipts are given, the scope being very broad, embracing the removal of spots and stains from all sorts of objects and materials, bleaching of fabrics, clean ing furniture, clothing glass, leather, metals and objects and materials.
In Cosmetics and Perfumery some 500 receipts e given. Soaps have nearly 300 receipts.
Those who are engaged in any branch of in ustry probably will find in this book much tha is of practical value in their respective callings. Those who are in search of independent busi factur employment, relating to the home manuf most excellent suggestions.

MIUININ de CO., Publishers, SCIENTIFIC AMERICAN OFFICE, 361 BROADWAY, NEW YORK.

ARCHITEECTURAL ENGINEERING--

Our Shop Is a highly organized and well-equipped institution for furthering the mechanica periments and the construction of models. A primer free
 FERTILIZER MACHINERY, rushers, Mills, Mix C. H. DEMPWOLF \& CO., York, Pa

 STEEL TYPE FOR TYPEWRITERS (274iving Metal Type Wheels, Dies, etco. andModel and Expermental Work Small Machinery, Novelties, etc... man-
ufactured by special contrat.
New York StencilWks. 100 Nassau St., N.Y MARINE ENGINEERING.-BY A.

 GAF TITGTINIE, STATIONARY, LOCOMOTI Daimler Motor Launches, Safe, Spedy, Clean, reeliable, Couvenient Office, 111 East Fourteenth St., N. Y., next door to Steinway Hall.

 Double Brace, Self-Oiling, Adjusta ble Ball and Socket Hangers, Pillow Blocks, Post Hangers, Etc.
 EDISON GENERAL ELEOTRIO 00., SCHENECTADY, N. Y.

 WhaTis HoM

 Useful Books!

free stits to to substantial

 MANUFACTURING ENTERPRISESchanics, Builders, men of leisure, and professional
men, of all classes, need good books in the line of men, of all classes, need good books in the line of
their respective callings. Our posto ofice department
permits the transmission of books through the mails at very small cost. A comprehensive catalogue of
useful books by different authors. on morethan ffry
different subje free circulation at the office of this paper. Subjects
classifed with names of author. Pers. a copy, have only to ask for it, and it will be mailed to them. A

PELTON WATER WHEEL

and

S3 PRINTING PRESS. $\begin{gathered}\text { Do all your own } \\ \text { printing. } \\ \text { logave for two stamps. Kelsey \& co } \\ \text { money }\end{gathered}$
MUSICAL INSTRUMENTS, T H E I R

INVENTIONS Practicall| DEVELOPED

NO SKILLED ENGINEER.
The Shipman Automatic Steam Engine STATIONARY AND MARINE
$2,4,6$, and S Horse Power, Single.
, and S Horse Power, sing
210 Sumufart
For Elevating Water, Creameries, and all Manufacturing Purposes.
SHIPMAN ENGINE CO. 210 Summer St. BOSTON.
U. S. INFALLIBLE METAL POLISH,

THE PENNA. DIAMOND DRILL \& MFG. CO
 ICE-BOATS-THEIR CONSTRUCTION

 OIL WELL SUPPLY $C 0$.

The Scientific American PUBLICATIONS FOR 1892.
The prices of the different publications in the United
RATES BY MALL,
The Scientitic American (weekly) one year
The scientific American Supplement (weekly), one The Scientific American Supplement (weekly), one
year,
5.00
 The Scientifc combined rates. The Scientific American and Supplement - - ${ }^{-1 / 2000}$ The Scientifif c American, Supplement, and Archi-
tects and Buiders Edition tects and Brovortionate Rates for Six Months. This includeos postane which he pepar. Remit by postal
or express money order, ord draft to order of MUNN \& CO., 361 Broadway, New York

GATES ROCK \& ORE BREAKER

apacity up to 200 tons per hour.
 all other Breake seombined.
Mainiders of High 6 rade
Mining

Finest Opening for Manufacturers. COAL OIL, COALH:
NATURAL GAS, RESIDUUM.
Address formemarket. No competition. BANK OF FLORENCE, FLORENCE, COLO.

THE WORLD AND GLEN CAMERA
 ITes, Blakeslee \& Willlamis io., New York inty GEAR AND RACK CUTTING. Grost Self-Regulating Steam Pump,

CATENTS!

 mUNN \& CO., Solicitors of Patents,

Pfovertisements.
Inside Page, each insertion - - 75 cents a line
Back Page, each insertion -- $\$ 1.00$ a line Thre above are charges ier agate line anout eifht

STEAM LAUNCHES,

STEAM YACHTS \& TOW BOATS,

ADJUSTABLE STOCKS AND DIES, universally acknowledged to be rrism merser. ARMSTRONG 1891 Illustrated Catalogue and Price List

 Printing

 95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465. and January 30th, 1877. No. 186,787.

The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use. and all the consequences thereof, and liable to suit therefor.

 LEADING ENGINEERING WORKS

THE INTERNATIONAL CYCLOPAEDIA.

NEW EDITION READY FOR DELIVERY DECEMBER 15, 1891

and
It is prepared for honest service and careful criticism, and is today The Best Ready-Reference Cyclopædia in the English Language. DODD MEAD \& COMPANY NEW KODAKS Steam! Steam!
 we do the butt

Seven New Styles and Sizes
Transparent Films.

THE EASTMAN COMPANY,
Quality Higher, Price Lower. 2-Horse Eureka Boiler and Engine, . $\$ 145$ B. W. PAYNE \& SONS
\qquad ou USE GRINDSTONES? If son we can supply you All size

 2 ad Floor, Wilshire, Cleveland, 0 .

ELECTRIC MINING PUMPS

 ELECTRICAL MINING APPARAPUS OF EVERY DESCRIPTION. THOMSON-VAN DEPOELE ELECTRIC MINING CO., 620 ATLANTIC AVE., BOSTON, MASS.SIEMENS' + CABLES.
SUBMARINE,

telegraph,

 UNDERGROUND, $* * *$ TELEPHONE, INTERIOR, * ELECTRIC LIGHT.SIEMENS \& HALSKE by THE EDISON GENERAL ELIECTRIC CO. their SCHENECTADY WORKS
Cable and Wire Department, Elison General Electric Company,

TANITEEmery,
Emery Wheels, Emery Wheels,
Emery Whetstones, Emery Whetstones,
Grinding Machines, Grinding Machines,
Knife Sharpeners, Knife Grinders.
The Tanite Co., G, PA.
Stroudsburg, PA.
161 Washington St., NEW York

ESTABLISHED 1846 The Most Popular Scientific Paper in the World

Only \$3.00 a Year, Including Postage.
Weekly-52 Number
This widely circulated and splendidy illustrated paper is published weekly. Every number contains six-
teen pages of useful information and a large number of original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures,
Chemistry, Electricity, Telegraphy, Photography, Architecture, Agriculture, Horticulture, Natural History, etc. Complete list of patents each week.
Terins of Subscription.-One copy of the ScIENpostage prepaid, to any subscriber in the United States, Canada, or Mexico, on receipt of three dollars by the publishers; six months $\$ 1.50$; three months, $\$ 1.00$. Clu bs.- Special rates for several names, and to Post
Masters. Write for particulars. Masters. Write for particulars.
The safest way to remit is by
Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk. Address seldom goes astray, but is at the sender's risk. Address
all letters and make ali orders, drafts, etc., payable to MUNN \& CO., 361 Broadway, New York.
§rientific Gumerican §upplement
This is a separate and distinct publication from THE SCIENTIFIC AMERICAN, but is uniform therewith in size, every number containing sixteen large pages full of en-
gravings, many of which are taken from foreign papers and accompanied with translated descriptions. THE Scientific American Supplement is published weekI, and includes a very wide range of contents. It prethe principal departments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural History, Geography, Archæology. Astronomy Chemis-
try, Electricity, Light, Heat, Mechanical Engineering, Steam and Railway Engineering, Mining, Ship Building, facturing Industries, Sanitary Engineering, Agriculture, Florticulture, Domestic Economy, Biography, Medicine,
etc. A vast, amount of fresh and valuable information obtainable in no other publication. and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT.
Price for the SUPPLEMENT for to
Price for the SUPMEMENT for the United States and ERICAN and onecopy of the SUPPLEMENT, both mailed for one yearfor $\$ 7.00$. Single copies, 10 cents. Address and MUNN \& CO., 361 Broadway, New York, ublishers Scientific american.

Gfuilding EEdition.

The Scientific American Architects' and BUILDERS' EDITION is issued monthly. \$2.50 a year. to about two hundred ordinary book pages; forming a large and splendid Magazine of Architecture, richly adorned with elegant plates in colors, and with other fine of modernarchitectural construction and allied subjects.
or A special feature is the presentation in each number
of a variety of the latest and best plans for private resi dences, city and country, including those of very moderate cost as well as the more expensive. Drawings in perspective and in color are given, together with full
Plans, Specifications, Sheets of Details, Estimates, etc. Plans, Specifications, Sheets of Details, Estimates, etc. have won for it the Largest Circulation of any Architectural publication in the worla. Sold by all news dealers. $\$ 2.50$ a year. Remit to

MUNN \& CO., Publisher
361 Broadway, New York. BARNES'

BARNES' New Friction Disk Drill. FOR LIGHT WORK. Has these Great Advantages: The speed can be instantly changed from 0 to 1600 without stopping or shifting beets. Power appliied smallest or largest drills within its range-a won- derful econmmy in time and great saying in drill 1999 Ruby St., - Rockford, I114

PRINTING INKS

