
a Weekly Journal of practical information, art, SCIENCE, MECHANICS, CHEMISTRY, and Manufactures.

NEW YORK. AUGUST 8, 1891.
$[\$ 3.00 \underset{\text { WEEKLY. }}{ }$ AR.


## siriutific efmericau.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, for the U. S., Canada or Mexico..
One copy, six months, for the U.S., Canada or Mexico

Remit by postal or express money order, or by bank draft or check.




NEW YORK, SATORDAY, AUGUST 8, 1 s91.


TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT

## NO. 914

For the Week Ending August 8, 1891.

the government collection of economic plants The collection of economic plants in the grounds of the United States Department of Agriculture at Washington embraces many rare and curious varieties, and it is well worthy of a visit and of careful study. A portion of these plants are intended for distribution in sections of the country adapted to their growth; but the principal object in maintaining the collection is to provide an educational museum of select economic plants, the products of most of which are familiar to wany people, while few may have seen the plants themseives.
The plants have been procured, wost of them, from botanic gardens throughout the world, while others have been raised from seeds procured from their native countries. The collection is kept in glass structures in atmospheres suited to their respective requirements, and the localities in this country where they will thrive the best is thus ascertained.
Almost every plant in the collection has interesting characteristics, and all have a special value for the srudent of botany, because they are very rarely met with in this country. A few specimens are here described, which will be a fair indication of the character of this most valuable collection.
Abrus precatorius.-Wild licorice. This twining, leguminous plant is a native of the East, but is now found in the West Indies and other tropical regions. It is chiefly remarkable for its small oval seeds, which are of a brilliant scarlet color, with a black scar at the plate where they are attached to the pods. These seeds are much used for necklaces and other ornamental purposes, and are employed in India as a standard of weight under the name rate. The weight of the famous Kohinor diamond is known to have been ascertained in this way. The roots afford licorice, which Spanish licorice plant, the Glycyrrhiza glabra. Re cently the claim was made that the weather could be foretold by certain movements of the leaves of the plant, but experimental tests have proved its fallacy. Adamsonia digitata.-This is the baobab tree, which is a native of Africa. It has been called the tree of a thousand years, and Humboldt speaks of it as "the oldest organic monument on our planet."
Adamson, whotraveled in Senegal in 1794, made calculation to show that one of these trees, 30 feet in diameter, must be 5,150 years old. The bark of the baobab furnishes a fiber which is made into ropes and also manufactured into cloth. The fiber is so strong as to give rise to a common saying in Bengal, "As secure as an elephant bound with the baobab rope." The pulp of the fruit is slightly acid, and the juice expressed from it is valued as a specific in putrid and pestilential fevers. The ashes of the fruit and bark boiled in rancid palm oil make a fine soap.
Agave americana.-'This plant is commonly known as American aloe, but it is not a member of that family, as it claims kindred with the Amaryllis tribe of plants. It grows naturally in a wide range of climate, from the plains of South America to elevations of 10,000 feet. It furnishes a variety of products. The plants form impenetrable fences, the leaves furnish fibers of vari ous qualities, from the fine thread known as pita thread, which is used for twine, to the coarse fiber used for ropes and cable. Humboldt describes a bridge of up-
ward of 130 feet span over the Cimbo in Quito, of which the main ropes, 4 inches in diameter, were made of this fiber.
It is also used for making paper. The juice, when the watery part is evaporated, forms a good soap, as detergent as castile, and will mix and form a lathe the hart les from. The sap from sour, but has sufficient sugar and mucilage for ferment ation. This vinous beverage has a filthy odor, but those who can overcome the aversion to this fetid swell indulge largely in the liquor. A very intoxicat ing brandy is made from it. Razor straps are made from the leaves, and they are also used for cleansing and scouring pewter.
Antiaris intoxia (the Upas Tree).-Most exaggerated statements have passed into history regarding this plant. Its poisonous influence is said to be so great as not only to destroy all animal life, but even plants could not live within ten wiles of it. The plant has no such virulent properties as the above, but, as it inhabits the low valleys of Java, where carbonic acid gas escapes from the crevices in volcanic rocks, which frequently proves fatal to animals, the tree was blawed wrongly. It is, however, possessed of poisonous juice, which, when dry and mixed with other ingredients, forms a venomous poison for arrows, and severe effect have been felt by those who nave climbed upon the branches for the purpose of gathering the flowers.
Brosimum galactodendron.-The cow tree of South America, which yields a milk of as good quality as that from the cow. It forms large forests in the moun tains near the town of Cariaco and elsewhere along the seacoast of Venezuela reaching to a considerable height. In South America the cow tree is called Palo de Ver or Arbal de Leche. Its milk, which is obtained by
making incisions in the trunk, so closely resembles the
milk of the cow, both in appearance and quality, that it is commonly used as an article of food by the people of the places where the tree is abundant. Unlike many other vegetable milks, it is perfectly wholesome, and very nourishing, possessing an agreeable taste, and a pleasant balsamic odor, its only unpleasant quality being a slight amount of stickiness.
Cereus gigantia.-The suwarrow of the Mexicans, a Cereus gigantia.-The suwarrow of the Mexicans, a
native of the hot, arid and almost desert regions of New Mexico, found growing in rocky places, in valleys and on mountain sides, often springing out of mere crevices in hard rocks and imparting a singular aspect to the scenery to the country, its tall stems often reaching 40 feet in height, with upright branches looking like telegraph poles for signaling from point to point of the Rocky Mountains. The fruits are about two to three inches long, of a green color and oval form; when ripe, they burst into three or four pieces, which curve back so as to resemble a flower. Inside they contain numerous little black seeds embedded in a crimson colored pulp, which the Indians make into a preserve. They also use the ripe fruit as on article of food.
Dracana draca.-The dragon's blood tree of Teneriffe. This liliaceous plant attains a great age and an enormous size. The resin obtained from it has been found in the sepulchral caves of the Cuanches, and hence it is supposed to have been used by them in embalming the dead. Trees of this species still in vigorous health are supposed to be as old as the pyramids of Egypt.

Mauritia flexuoso.-The Moriche, or Ita palm, very abundant on the banks of the Amazon, Rio Negro, and Orinoco Rivers. In the delta of the latter it occupies swampy tracts of land, which at times are completely inundated, and present the appearance of forests rising out of the water.
These swamps are frequented by a tribe of Indiars called Guaranes, who subsist almost entirely upon the product of this palm, and during the periods of the inundations suspend their dwellings from the tops of the tall stems. The outer skin of the young leaves is made into string and cord for the manufacture of ham mocks. The fermented sap yields palm wine, and still another beverage is prepared from the young fruits, while the soft inner bark of the stem yields a farinaceous substance like sago.
Papyrus antiquorum.-The paper reed of Asia, which yielded the substances used as paper by the ancient Egyptians. The underground root stocks spread horizontally under the wuddy soil, continuing to throw up stems as they creep along. The paper was made from thin slices, cut vertically from the ape to the base of the stem, between the surface and the center. The slices were placed side by side, according to the size required, and then, after being wetted and beaten with a wooden instrument until smooth, were pressed and dried in the sun.
The collection of economic plants contains specimens of the bread fruit trees from South America, campho trees from the island of Formosa, the South American trumpet tree, whose hollow branches are used for musical instruments, the tree from which the famous Peruvian barks are obtained, and many others equally interesting.

## The speed of a Horse

While the public is still marveling over Salvator' wonderful performance in running a mile in $1 \cdot 351 / 2$ there are few who have, through comparison and analysis, sought to realize what a terrific burst of peed this is. It is nearly forty miles an hour-a rate averaged by very few of our fastest railway trains. There are 5,280 feet in a mile, so that for every one of these ninety-five seconds-for every beat of a man's pulse-this wonderful horse covered fifty-five and three-tenths feet of ground. The shortest space of ime noted by the turfman's watch is a quarter of a second-an interval so brief that the eye can hardly observe, the wind can hardly appreciate it. Yet in every one of those 382 quarters of a second that magnificent creature leaped sixteen and three-tenths feet. Such are the amazing results of careful breeding as exhibited in the American race horse.

## Nitrate of Soda.

No manure that I have ever seen used, not even cow nanure, in which I have great faith, has produced such immediate effect in the growth, vigor, and full color of foliage. Mr. J. J. Willis, writing in the Gar deners' Chronicle, maintains that it is a most valuable factor in the production of vegetable crops and fruits He strongly recommends it for strawberries, celery cabbages, onions, in fact, for all kitchen garden pro duce. But he recommends it to be used in conjunction with ordinary manures. He says: "It may be stated that nitrate of soda is not regarded as a substitute for ther manures. Taking horticulture as we find it, w recommend nitrate of soda as the cheapest and best form in which to apply nitrogen to plants. To those who are using ordinary stable manure we say, continu o use it, but use nitrate of soda in addition."-W Watson, in Garden and Forest.

## habits of snakes.

We publish elsewhere an article by Mr. G. R. O'Reilly, of the Royal Zoological Society of Ireland, who has recently come to this country after extensive travels through the wilds and jungles of South Africa, South America and the West Indies. He has been traveling in search of suakes and reptiles, with the view of studying their nature, and he has formed a large and interesting collection, which be has brought with him to this country. With his kind assistance we have procured some interesting instantaneous photographs of the position assumed by some of the more characteristic varieties of snakes when coiled either in sleep or in anger. Each picture is a study from life and an exact reproduction from nature.
The coils of many snakes when in repose and when on the defensive are exactly similar, and it is very on the defensive are exactly similar, and it is very
difficult to tell whether or not a snake is asleep, from the fact that the eyes seem always open. They are the fact that the eyes seem always open. They are
closed by drawing the epidermis like a film over the closed by drawing the epidermis like a film over the
eye, but no external change is perceptible to the casual eye, but no external change is perceptible to the casual
observer. If the engraving of the fer de lance is examined, it will be observed that there are two black spots on the head that appear to be eyes, but a more careful examination will reveal the true eyeshigher up in the head and quite separated from each other. The black spots are "the pits" or hollows in the sides of the snout, and, strange to say, their function is a mystery to the naturalist.

Mr. O'Reilly handles the snakes with freedom, although the greatest care must be observed in handling such venomous serpents as the labarri, the rattler, the moccasin, or the fer de lance. In collecting snakes he simply uses a long pole with the end bent at an angle of about $45^{\circ}$.
This is laid over the back or neck of the victim, and when once he is firmly pinioned to the ground, the hunter gradually approaches and seizes him about the back of the neck. Once firmly held in his grasp, the snake is thrown over the shoulder, and the prisoner is allowed to coil about pretty much as he chooses. Care must be taken not to allow the grip on the neck to be must be taken not to allow the grip on the neck to be in this collection has been mutilated by the extraction of the fangs.
As stated elsewhere, the labarri is one of the most subtile and deadly of serpents. Fearless, he will not retire before the approach of man, and will strike with deadly aim and without warning. Our rattlesnake seems almost harmless in comparison, as many a life has been saved by the unintentionally friendly signal of warning.
The object of the rattle has always been a puzzle to the naturalist. It is hardly to be conceived that Providence, that is so kind in providing various living creatures with weapons offeusive and defensive, should have furnished the rattler with an organ for warning off the very objects of its prey. Nor is it natural to suppose that it would still cling to a habit that apparently has lost him many a dinner. This is explained partly, perhaps, by the fact that the rattling is almost always the nervous vibration of the tail, caused by fear or anger, which movement is characteristic also of the labarri, the fer de lance, and other varieties, as explained elsewhere. Of course with the latter no sound is produced.
It is doubt ful whether the rattle comes into play or dinarily, when the reptile is in search of food, unless he is suddeuly start led or disturbed. During the very wet seasons, the rattles sometimes become soaked with is particularly dangerous. Furthermore, in the tropics insects of the cicada kind are frequently found whose characteristic sound is so similar to that of the rattler that the warning of the latter is of little avail, as it is lost as a signal in the confusion of noises that fill the forest.

## Uses of Concrete in Jamaica

I was in the island of Jamaica a few months ago, where there is very little, if any, good building stone, and concrete is used to a very large extent.
The Jamaica Railway Company were then building an extension of their line, and I was invited to examine the works. Away up in the wountains they were build ing concrete pipe culverts, of 4 feet diameter and over, and they were doing it in a very successful way. I was much interested to see how easy it was to do what with us at home has generally been considered not feasible. Here, when we use pipe culverts for railroad work, we usually employ extra heavy earthen sewer pipe or cast iron pipe, either of which is costly, and often difficult of transportation, but there they were easily and swiftly building the culverts right at the site. They had a portable platform which could be brought quite near, on which were ranged a number of spacing blocks conforming to the cirumferences of the inner and outer frames of cylindrical wooden moulds. The frames were placed vertically on the platforin, secured firmly at the bottom by the spacing blocks, and clamped together at the top, the proper cange being maintained by double wedges between the two halves of the inaer frame; the concrete, com
posed of cement, sand, and gravel, was poured in and rammed. After sufficient time had been allowed, the wedges were removed, and the inner frame taken out, just as centers are struck, and then the outer frame could be lifted off. The same platform could, of course, be used for various sizes and several sections of pipe at one time, and could readily be woved along from place to place ; although the whole operation was being performed by negro laborers, there was nothing wanting either in strength or swoothness of the finished pipes. If I remember correctly, they had a rough rule of 1 inch thickness of pipe for each foot of diameter. The ease and cheapness with which the cement can be
transported, compared with manufactured pipe would transported, compared with manufactured pipe, would recoumend this form of construction, even if the actual first cost of material also was not less ; in this case the chief cost was in the cement, sand and gravel being generally found close at hand.
I was also shown a very heavy retaining wall, 20 fee or more in height, on the concave side of a sharp bend of the River Cobra, built to support the railway embankment where exposed to the full effect of formidable freshets; the wall was entirely of concrete from toe to coping, and had been in service for several seasons with absolute perfection.
Concrete is used in Kingston for architectural pur poses to an extent we do not dream of here. They use it for arches, retaining walls, colonnades, the walls of houses, stairways, of which the entire structure of supporting members and treads is a homogeneous body of fine concrete, and, generally speaking, wherever we would use stone; the quality is very strong, hard, and enduring.-J. Foster ''rowell, Trans. Am. Soc. Civil Engineers.

## The Classification of Applications and $P$ and the United States Patent office.

Under the patent law of the United States, a thing to be entitled to protection by letters patent must be new and must possess invention.
Most things which are new are the result of the exer cise of the inventive talents, and are therefore patent able.
To determine the novelty of a device for which a patent is solicited, and hence the patentability of the same, it is provided by statute that the Commissioner of Patents shall cause an examination to be made of all previous patents relating thereto, or, as it is commonly termed, of the "state of the art."
This examination, when completed, is supposed to remove all doubts as to the novelty of the thing in question and to determine its patentability.
This examination, to be thorough, depends upon two things-the skill and honesty of the members of the examining corps and a proper classification of inventions.
A proper classification should be of such a character that the officer whose duty it is to assign applications for examination may be able to determine, by a careful inspection thereof, its proper place in the arts and to what class and division it should be assigned.
While the classification now in vogue is conceded by all to be the best which has yet been devised, to any one who has carefully considered the matter it must be apparent that it has many defects and is open to improvement in many particulars.
Under this classification, applications and inventions are assigned for examination with relation to the par ticular specific art to which they are more closely allied.
Those inventions relating to the manipulation of metal are sent to the class of metal working; those relating to the mechanical treatment of paper to the class of paper manufactures; those relating to the treatment of leather to the class of leather working, and so on throughout the office.
An application for a patent ior a machine for rolling heet metal is assigned to the division of metal work ing; one for ironing cloth is sent to textiles, while one for ironing or rolling leather is sent to leather working, notwithstanding that in wost cases these wachines are analogous in construct
As the courts have decided that an inventor is entitled to all the uses to which his invention can be put a machine which has once been patented for one.pur pose cannot be again patented for another purpose. A machine for rolling metal or cloth can generally be used for rolling leather.
Under the present classification, these three classe of machines are in three different divisions of the office, so that to be certain that a machine of one of the classes is new, a search therefor must be carried on in each of the respective classes or divisions wherein the others are classified.
These classes are in different rooms in the Patent Office and are widely separated, on different sides and diffe rent floors of the building, so that an examiner who may be prosecuting a search for a machine of the kinds mentioned must tramp around the office from room to room and floor to floor of this great building in order to make a thorough search, consuming much
unfamiliar generally with classes other than his own, his search is rendered difficult and uncertain.
This classification undoubtedly lends an air of uncertainty to the search and to the novelty of many things, for if the examiner be a recent employe, and be therefore ignorant of the existence of analogous classes, or if he be careless, and thus through ignorance or carelessness fails to make an examination therein, duplicate patents are liable to be, and as a matter of fact are, granted
Fortunately, the wembers of the examining corps are generally capable and painstaking men, who are alert and careful in the performance of their duties, protecting equally the interests of the inventor and the public, and to this fact is due the very few duplicate patents in the many thousands issued yearly.
Another defect in the present classification, and one which cannot be too strongly condemned, is the facility with which an applicant or his attorney can practically determine in what class his invention shall be examined and to locate the same therein.
The assignment of the application is, in most cases, determined by the title which is given the alleged invention or the statement of invention contained in the specification.
Let us assume, for an example, that a man has invented a machine for cutting fabric, either cloth, leather, or paper, and for some reason he desires this machine to be examined in the class of paper manufactures.
There are many reasons why he may desire this; be may be in a hurry to get an action on his case and this division may be farther advanced in date than another or the examiner in this class may be known to have more liberal views than another; in this case, he simply styles his machine a machine for cutting paper, when his object is obtained, the case is assigned where he wants it to go. The same is true throughout the office. A machine fur riveting sheet metal is assigned to wetal working, but the same machine, if called simply a riveting machine, and the statement of invention should set forth that it was adapted to insert rivets in leather and other sheet material, would be assigned to the class of leather working.
Under the present classification, one division patents knives; another patents hay knives; another shoe knives; another woodworking knives, and still another knife erasers-five separate divisions granting patents for knives.
There are at least three divisions patenting tacking and nailing machines, differing only in the material into which they drive the tacks or nails.
There are at least three divisions patenting chains, inks, etc.
Is there any wonder that duplicate patents are some times granted?
The remedy for this state of affairs lies in the adoption of a classification which shall classify according to mechanical constructions and the generic functions of machines and devices.
Thus machines for cutting fabric, whether cloth leather, or paper, would, under this classification, all be assembled in one division or class. All riveting machines, no matter upon what material they operate all knives ; all pegging and nailing machines ; all rolling wachines ; and all chains, would be classified under their respective generic classes, such as cutting machines, riveting machines, nailing machines, knives, chains, etc.
This classification would result in the grouping of ventions of analogous constructions and generic func tions in a single division of the office and would reduce to a minimum the possibility of issuing duplicate patents. This would arise from the fact that, these eneric devices all being in one division, the examiner would become more familiar with them, resulting in wore certain and thorough examinations being wade.
The time now spent by the examiners running around to many different divisions would be saved and utilized in the work of examining, thus materially alding the advancement of the work of the office.
Of course it is realized that it would be almost impossible to devise a classification which would entirely do away with the overlapping of the classes, but the one suggested, it is thought, would reduce such overlap ping to a very small per cent.
A change must at some time be made, for it is becoming more difficult every year, with the enormous in crease in the issue of patents, to make thorough examinations.
It is realized that any change must necessarily be made gradually, in order not to greatly interfere with the work of examination ; but with a competent force it could be done in a comparatively short time withou retarding the work of the office.
T. Н. А.

THE magnetic needle points in the same direction as the magnetic poles in all parts of the earth. The nagnetic poles do not correspond with the axis of the earth, which makes a variation of the needle at places not on a meridian which coincides with both poles. The needle is never inverted, but dips as it approaches the magnetic poles.

A ROLLING PIN, ETC., FOR BAKERS' USE. A rolling pin with which is separably combined a cake cutter, pie crimper and edge dresser, and a dredge box or sifter for flour, forms the subject of a patent which has been issued to Mrs. Jane L. Landrith, of Marshfield, Oregon. The device is shown in perspective in Fig. 1 and in longitudinal section in Fig. 2. One end of the rolling pin has a handle formed integral with the body in the usual style, and the main portion is hollow, forming a capacious flour receptacle. The opposite end has a reduced screw-threaded hollow extension, designed to receive and removably retain a threaded handle piece, preferably of tin, having an outer perforated cap plate, through which flour may be sifted from the central chamber. A radial thin flange is formed at the inner edge of the threaded portion of the handle piece, to which is affixed a fluted

MRS. LANDRITH'S ROLLING PIN, ETC., FOR BAKERS. short band or ring. The cylindrical portion and one handle of the utensil are preferably made of glass, as a cool and non-absorbent material which does not retain the dough, to trim the excess of which from the edge of a pie plate the handle piece is removed and its thin flange used to cut off the surplus, the fluted ring at the same time impressing or crimping the edge of the pie. This fluted ring is also adapted to cut cake dough that has been rolled to the proper thickness, forming a serrated edge.

## A SIMPLE AND COMPACT TYPE WRITER.

The machine shown in the illustration can be readily operated by one not familiar with type writing, and is specially adapted for the individual or private use of those not employing professional type writers. It can be made at a low cost and is very compact, its base being only about five by nine inches in size, and the dial plate about four inches in diameter. Fig. 1 is a view of the machine in perspective and Fig. 2 is a central vertical cross section. The paper carriage at the back has a flat lower portion which moves in keepers on the base, and has a rack on its inner side which is engaged and moved by a spring pawl, the notches on the rack each corresponding to a letter space.
In the carriage is mounted a rubber roll which serves as a feed roll and a printing platen, the roll having a thumb piece at one end by which it is revolved, and a ratchet preventing backward movement, while the front upper portion of the roll is loosely clasped by flat springs secured to the car riage, to hold the paper in position and riage, to hold the pape
Fixed centrally on the base to overlap the paper carriage and roll is an inclined drum, surmounting which is a dial with a notched flange bearing the various characters to be printed, the notched flange serving as a guide to the printing lever, and causing it to descend accurately for each character. Within the drum near the top is a three-armed spider, and below is a central cross arm, both centrally perforated to receive a vertically movable shaft. A central vertical tube has a slot near the top, beneath which extends an arm having lugs at its end, between which is pivoted the printing lever, the inner end of which is connected with a vertical shaft extending downward through the tube. Fixed to the lower end of the tube, and necessarily revolving with it, is a wide flanged hub, carrying an annular plate, the outer portion of which is slit radially to form flexible type fingers, carrying type or characters on their under sides near their outer ends, the upper and lower case type of each letter being produced on alternate fingers, a portion of this plate being shown in Fig. 3.

A sleeve moves vertically on the tube and is held to the shaft by a pin, moving vertically with the latter and revolving with the shaft and tube. Pivoted between lugs on the under side of the spider, as shown
in Fig. 2, is a curved lever, whose inner end is slotted to clasp a flange on the sleeve, while its outer end extends to the outer ends of the flexible type fingers, so that when the sleeve is raised by the depression of the printing lever the outer end of the curved lever is depressed, causing a character to be printed upon the paper by the flexible type finger immediately beneath. The central shaft and the printing lever are returned to normal position by a spring, one end of which is fixed to the base, while its opposite end engages flanges on the bottom of the shaft. An elbow lever pivoted on the base and a similar lever pivoted on the cross arm of the drum are so arranged, in connection with a spring, that each depression of the printing lever causes the paper carriage to move the distance of one notch, or the space of a letter. When the printing lever is held down the carriage may be freely moved backward to position for commencing new line. Although the dial shown in the illustration bears only upper case type, it is to be remembered that there are alternate upper and lower case type fingers, the latter being those normally employed, but on depressing a thumb piece shown at the left in the picture, upper case characters will be printed. Ink rollers are pivoted on the inner sides of the drum, in the path of the type on the fingers. This machine has comparatively few pieces, so that it will not readily get out of tively few pieces, so that it will not readily get out of
order, and for its operation it is only necessary to place the paper in position, bring the printing lever above the characters to be printed, and press down on the lever.
This type writer has been patented by Mr. Joe L. Edland, of No. 73 Fourth Avenue, Brooklyn, N. Y.

## Silkified Cotton

The invention of C. Brodbeck, Paris, consists in applying a solution of fibroine of silk to fabrics, threads, or fibers which have been scoured, lixiviated, and bleached, and the tissues calendered by friction and beetled. They are then hydrated and physically modified by passing them through a solution of caustic potash or soda of $1 \cdot 35-1 \cdot 40 \mathrm{sp}$. gr., or of sulphuric acid of $1.53-1.56 \mathrm{sp}$. gr. In both cases a low temperature of $4^{\circ}-8^{\circ} \mathrm{C}$. is required. If animal fibers are present, no caustic alkalies can be used. Cellulose is by this treatment freed from most of the impurities which it contains when imperfectly bleached, which renders the fixing of the silk easier and more perfect. After careful washing and drying the fabrics or fibers are treated with concentrated solutions of silk, the fibroine being dissolved either in hydrochloric, phosphoric, or sulphuric acid, or in pure cuprammonium, etc. If the solution of silk is effected in more or less hydrated sulphuric acid, the temperature must be about $0^{\circ} \mathrm{C}$., to avoid decomposition. Silk in any form way be dissolved; hence scraps, cocoon silk, waste silk, and other material which was hitherto practically useless may thus be utilized. Previous to silkif ying cellulose fabrics they should be subjected to the action of a metallic


## EDLAND'S TYPE WRITING MACHINE.

or tannic mordant, the selection of which depend on the color which the fabric is to receive. This is of advantage in combining the silk more intimately with the cellulose. The impregnation with the silk solution is effected by passing the material through a tightly closed impregnating apparatus with only two openings, one for the inlet and the other for the outlet of the material. It then passes through a hot air drying apparatus, and subsequently through a second vessel containing liquids with which the solvents employed combine, the silk being thereby precipitated upon and fixed in the pores of the fibers. The material is then
washed and dried. Should it be desired to increase the amount of silk, the silkifying process may be repeated
as often as desirable. Materials rendered silky in this way may be bleached by the same means as those em ployed for real silk. Allfabrics which have been treated by this process wust be subjected to a mechanical finishing, beetling, calendering, rubbing, brushing, polishing, and pressing according to the purpose for which they are destined, in order to impart to them a glossy appearance and silky feel.

## AN IMPROVED FIRE ESCAPE

A device, capable of being expeditiously manipulated, to lower persons in safety from the upper floors of high buildings to the ground, is shown in the accompanying


## VIEREGG'S FIRE ESCAPE

illustration, and has been patented by Mr. Henry Vieregg, of Grand Island, Neb. A public test was recently made of this device on a high building at Grand Island, with results so entirely satisfactory that its merits were made the subject of a special testimonial, which was signed by the mayor and chief officials, engineers and members of the fire department, and many prominent citizens.
The body of the device consists of a drum mounted to turn in a frame, an upwardly extending member of which has a hook or loop extension carrying a grooved pulley, as shown in Fig. 2, the pulley being adapted to ravel on a track held in brackets beneath the cornice of the building, and being prevented from leaving the track by a pin projecting horizontally beneath the track from the upper member of the frame. A guide rame is horizontally secured to the frame, the lowe ends of the sides of which are united by a bar, and the drum is journaled at the intersection of the guide frame with the side pieces of the main frame. The drum has warginal flanges and two spaced central flanges, forming a central annular channel of reduced diameter, in which is passed an endless chain, as shown in Fig. 3, cleats or studs projecting into this channel from the side flanges to engage some of the links of the chain and prevent its slipping upon the drum. The chain is designed to reach nearly to the ground, where it passes around a pulley journaled in a heavy block, having a handle, whereby parties on the ground may draw the chain outward to facilitate the safe descent of parties from a building, such descent being made by simply gripping the chain, or any approved form of har ness may be employed to be hooked to the chain links. To control the descent, strap brakes are employed, engaging the larger sections of the drum between the marginal flanges at each side, the lower ends of the straps being connected with the inner ends of levers pivoted on the lower cross bar o the frame, the outer ends of the levers being connected by an adjustable bail with a ring and swivel, from which a brake chain depends. By this means the brakes may be applied by the party descending, or by one upon the ground below, to regulate as desired the speed of descent.

The enormous mass of extra dead weight due to the carrying of the boiler, fuei and water in the old loco motive will be entirely unnecessary in the railways of the future, which will be propelled electrically. Unquestionably the future electro-locomotion will show a motor on every axle, or, at any rate, upon two axles of each car, and every car running as a unit, in which case they can run coupled together in a train or not, as may be convenient.-Philadelphia Press.

Pure Phosphoric Acid.
A known quantity of pure calcium phosphate is gradually added to a slight excess of pure dilute hydrofluoric acid, contained in a leaden or platinum vessel, the mixture being well stirred after each addition. According to the Compt. Rend., an energetic action takes place and considerable heat is evolved. When all the calcium phosphate has been added, the high temperature of the mixture must be maintained for some time in order to complete the reaction. After the removal by filtration of the calcium fluoride which is formed, the solution of phosphoric acid is evaporate.l. At the point when the solution coummences to become viscid, the excess of hydrofluoric acid used is volatilized. The evaporation is continued until a thick sirup, containıng 60 to 70 per cent of phosphoric anhydride, is obtained. Meta and pyrophosphoric acids may be prepared by further continuing the evaporation and heating.
The various calcium salts of phosphoric acid described by Erlenmeyer may be readily prepared by adding hydrofluoric acid to a large excess of calcium phosphate, and after mixing well, dissolving out with warm water the acid salts produced. Impure phos. phates, such as bone ash, may be used for the preparation of phosphoric acid, provided that the resultant acid, after being evaporated to carbonize the organic matters present, is diluted with water, filtered and again evaporated.

RAILWAY COLLISION, ILLINOIS CENTRAL RAILWAY.
Our engraving is from a photograph of a pair of locomotives on the Illinois Central Railway as they appeared after a collision. Four persons were killed and six injured. The New Orleans Picayume says: "At 9:45 on the night of June 19, 1891, the north bound mixed freight train on the Illinois Central Railway sidetracked at Savage station, about five wiles from the city, in order to give the sonth bound cannon ball passenger train a clear
track. By some unaccountable means the switch was left open and the passenger train, going at full speed, dashed into $t$ he freight train, derailing all train, derailing all of the cars exce
"The cars telescoped, the wail car being thrown on top of the two
engines, which were total wrecks. Engineer Mitchell, tionality during the entire period from 1820 to 1890 of the passenger train, was fatally injured, and both Germany, 4.551,719; Ireland, 3,501,683; England firemen, Munn and Lawson, one white and one colored, were instantly killed, being jammed between two boilers."

The two locomotives came together with such force that they appeared to be welded together.

## Rapid Marine Engine Fitting.

A smart feat of engineering has been performed at the Central Marine Engine Works, West Hartlepool, England, in the rapidity with which the screw steamer Silvia has been fitted with her machinery. The vessel was launched about 4:30 P. M., on Tuesday, June 23, from Messrs. Irvine's shipyard, and proceeded under the sheerlegs at the Central Engine Works. The engines, which are of 500 indicated horse power, together with the large boiler and funnel and all the connections and fittings, were fitted on board in twenty-four hours; the making-up lengths of steam pipe, the ladders, gratings, and platforms were fitted and steam got up in the boilers, and the engines satisfactorily steamed in presence of the surveyors at 10 A . M. on Friday, June 26, the vessel steaming back to her berth in two and one-half days from the time she left the stocks. This is an illustration of the advantages of modern machinery and organization in facilitating the output of marine machinery, and it is believed that so large a set of machinery has never previously been put on board in this short space of time.

Germany, 4.551,719; Ireland, 3,501,683; England ,460,054 ; British North American possessions, 1,029,083 Norway and Sweden, 943,330 ; Austria-Hungary 464,435; Italy, 414,513; France, 370,162; Russia and Poland, 356,353; Scotland, 329,192; China, 292,578 Switzerland, 176,333; Denmark, 146,237; all othe countries, 606,006 .
The only leading countries from which arrivals hav fallen off in the last ten years are France and China, the total immigration from France from 1871 to 1880 having been 73,301, and from 1881 to $1890,51,440$. The immigration from China amounted to 122,436 from 1871 to 1880 , and 51,469 during the years 1881 and 1882 , a which the Chinese exclusion bill went into effect.
The year of the largest immigration yet reported wa that which ended on June 3n, 1882, when the arrivals were 788,992. The immigration from Italy to the United States was 15,401 for the fiscal year 1881, and steadily increased until 1890 , when it was 52,003 , and the present year, ending June 30, 1891, when the total for ten months has reached 51,153 , as against 34,310 for the corresponding months of 1890 . The immigra tion from Hungary amounted in 1881 to 6,826 , and in 1890 to 22,062 . The figures for ten months of the pres ent year are 22,496 . The immigration from Russia and Poland also shows a rapid increase, from 10,655 in 1881 to 46,671 in 1890 , and 53,350 for ten months of the pres ent year.
The classification of immigrants during the past decade as to occupation shows that only 26,257 males were of the professional classes, 514,552 were skilled


RAILWAY COLLISION, ILLINOIS CENTRAL RAILWAY.
laborers, $1,833,325$ were of miscellaneous occupations, 73,3:7 made no statement in regard to occupation, and 759,450 were without occupation.

## The American Society of Microscopists.

This society will hold its thirteenth annual meeting in Washington, D. C., August 10, and will continue in session for five days. Its roll of active members com prises about three hundred and fifty names, including the majority of microscopists in the United States. Every person interested in microscopy should belong to this society, whether able to attend its annual meet ings or not, as the reports are well worth the small sum paid for annual dues. The qualifications for member ship are simply that the applicant must be respectable socially and interested in the use of the microscope.
We have no doubt a rich treat is in store for micro scopists who can attend the Washington meeting.
The present officers of the society are as follows
Frank L. James, editor St. Louis Medical and Surgical Journal, President.
W. H. Seaman, No. 1424 Eleventh Street, Washing ton, D. C., Secretary.
C. C. Mellor, No. 77 Fifth Avenue, Pittsburg, Pa., Treasurer.

The Cable Speed of Electricity.
The experiments now in progress at McGill College, Montreal, under the auspices of the British and Canadian governments, to ascertain the longitude of Montreal by direct observations from Greenwich, have led to the accomplishment of a remarkable telegraphic feat. The English papers report i thus: "The first thing to deter mine was the length of time it took a telegraphic signal to cross the Atlantic. An au tomatic contriv ance, whereby the land line could work into the ca ble, was provided and a duplex cir cuitwasarranged so that the signal sent from Montreal would goover the land lines to Canso (Nova Sco Canso (Nova Sco the cable to Waterville, Ireland, and return to Montreal again Attached to the sending and re ceiving appara tus was a chrono graph, which measured th time. Out of two hundred signal sent, it was found that the average time taken to cross the Atlantic and back again-
a distance of 8,000 miles-occupied a trifle over one second, the exact time being one second and five-hun dredths. Professor McLeod is carrying on the experi nents with Mr. Hosmer, the manager of the Canadian Pacific telegraphs.

Young Woman Obtains an Engineer's License in Chicago.
Chicago is a great city, enterprising to an astonish ing degree, and in wore than one respect is unlike any other city on this continent. She gained the world air site over all her competitors, and she now has a woman engineer, who has successfully passed the ordeal of a rigid examination.
A contemporary says she was not tet off easily either because she was a woman; in fact, the writer says her examination was, if anything, a little more severe than usual.
The young woman walked into the Board of Examners' room in the City Hall, presented her application in a manly way, deposited the official fee (two dollars), and then made her way into the line of the applicants o await her turn.
Among other questions she was asked was as to the size of the blow-off required for a seven horse power engine, and what she would do if the valve stuck fast When the examination was finished, the examiner wrote at the end of her paper "accepted," and Mis Da Barr is now a full-fledged licensed steam engineer.

THE cost of a palace sleeping car is $\$ 15,000$; or if " vestibuled," $\$ 17,000$.

## THE NEWARE WATER WORES.

The water supply of the city of Newark, N.\} J., has for some time been unsatisfactory It is derived from the Passaic River, below the cities of Paterson and Passaic, so that the water is far from pure. Hitherto her consumption has amounted to an average of $15,000,000$ gallons a day, but recently on one day it rose to $24,000,000$ gallons.
The East Jersey Water Company is now rapidly constructing a new water plant designed to supply the city of Newark with water from a distant portion of the Passaic water shed. The water works consist of two storage reservoirs, communicating by natural water courses with an intake reservoir. The latter connects with a steel pipe four feet in diameter, which runs as nearly in a straight line as the inequalities of the country will permit to the present Belleville reser voir, and also to a high service reservoir situated on South Orange Avenue, in the city of Newark.
The bird's eye view illustrates the general scope of the work. The right hand reservoir, termeci Oak Ridge reservoir, is situated on the main stream of the Pequannock River. It is formed by an earth work dam with concrete core. The structure is over 40 ft . high and about 800 ft . long. To the left is seen Clinton reservoir, situated on a branch of the Pequannock River, and formed by a dam of the same general height and construction as above, but about $1,200 \mathrm{ft}$. long. The dams are fitted with gate houses and connect by natural water courses with the lower reservoir, termed the Macopin intake.
The intake is formed by a masonry dam, 25 ft . high, with a main portion about 250 ft . long, from which a spur 32 ft . high and about 150 ft . long runs into the side hill. These dams are all established upon the solid rock, granite underlying the entire region. The earth dams have spill ways at their sides; the masonry dam permits the waste to go directly over its crest. These three reservoirs and the natural outflow of other portions of the total drainage area of the Pequannock River constitute the water supply. One of the interesting features of this water supply is the fact that the two main reservoirs are about five miles back from the intake, Clinton reservoir being 300 ft . and Oak Ridge reservoir 200 ft . above it. The water, therefore, in passing over this five miles and down several cataracts, becomes thoroughly aerated before it reaches the Macopin intake.
The ground underneath the reservoirs having been thoroughly cleared from soil, stumps and trees, the construction of the dams was proceeded with. The earthwork of the upper two was deposited in six inch layers, thoroughly wet and rolled. The operation of construction of one of the earthwork dams is shown in the cut. The Macopin intake, built of masonry entirely, is 585 ft . above tide water; its gate house is provided with four main valves. One set can be used in an emergency to empty; it the other set connects with the conduit.
The conduit consists of a 4 foot pipe about 25 miles long. It is made of riveted steel, with the longitudinal joints double riveted and the circular joints single riveted only. Its thickness varies from one-quarter to five-sixteenths and three-eighths inch, according to the head of water which it has to sustain. It is made at a special shop at Paterson, N. J., by the contractors, McKee \& Millson. The extreme range of temperature to which it is possible to be subjected is $45^{\circ}$ Fah., while the probable variation is not over half this amount. The pipe is so designed that changes of length caused by variations of temperature can be safely borne by the elasticity of the whole structure. Starting from the intake, the pipe runs along the Pequannock River valley, thence to Pompton Notch, in Pompton Mountains, thence in an almost straight line to what is known as the Great Notch, in the Orange Mountains, thence it turns a little to the right, as shown in the picture, and runs direct to Newark. In its course it runs up and down hill, forming many true and inverted siphons, but never rising above a hydraulic gradient of $2: 1000$. It crosses the Pompton and Passaic Rivers on steel truss bridges with stone piers. It is carried under the Pequannock and Second Rivers Three times it goes under the Morris Canal.

The general terms of the contract entered into be tween the East Jersey Water Company and the city of Newark are as follows

The works are to have a capacity of $50,000,000$ gal lons daily. Upon completion the city of Newark is to pay $\$ 4,000,000$. For this it is to have the privilege of drawing $27 \%$ million gallons daily up to the year 1900 . Until this period the company can draw all the water not used by the city of Newark. In 1900, Newark is to get possession of the entire water supply and is to pay the company an additional sum of $\$ 2,000,000$, the East Jersey Water Company operating and maintaining the works until 1900 . Before that time the company will
have to build other works to supply its customers, meantime supplied from the Newark conduit.
The work is in charge of Clemens Herschel, M. Am. Soc. C. E., also M. Inst. C. E., who is engiaeer and superintendent for the company.

As illustrating some of the nodern uses of the long
distance telephone, it is interesting to observe how the office in New York, as well as the residence of the superintendent, is in constant telephonic communication with different parts of the works. Telephones being necessary for the operation of the works after completion, they have been established for use during construction at the reservoirs, and a special instrument called the " Perambulator" is kept moving in advance of the pipe laying.
One of the cuts, showing the work upon the conduit at Stone House Brook, near Butler, illustrates the general character of the pipe laying. This part of the operation is done by the contractors, T. A. \& R. G. Gillespie, of Pittsburg, Pa. The reservoirs and dams are constructed by the company under Mr. Herschel's direct superintendence. The thoroughness in the work is exemplified in the case of Clinton dam, where 28 feet of drift was cleared away to reach the rock upon which to found the dam. At this depth several large pot holes were found in the ledge, showing that at some remote period the rock had been exposed to the action of some heavy cataract.
The work is progressing with great rapidity, nearly mile of the conduit is laid every week, and mor than one-half is now under ground.

## A SPRING EQUALIZER FOR VEHICLES.

The illustration represents an improvement designed to prevent the tilting of a vehicle, by distributing the weight to bear evenly upon the springs, thereby also contributing to their endurance and preventing the wisting of the king bolt. It has been patented by Mr. Marshal T. Foster, of Piedmont, Kansas. Fig. 1 is a broken-away front view showing the application of the equalizer, Fig. 2 being a vertical longitudinal section. The springs are supported on the axle in the usual way, and to the axle clips, which are vertically slotted,


## foster's spring equalizer.

a back plate is attached by means of bolts extending through each clip, a sleeve or washer being inserted between the clip and plate to hold the latter and the equalizer armsit support
The slots in the clips allow for the vertical adjust The slots in the clips allow for the vertical adjust-
ment of the bolts, and the plate is also slotted to allow ment of the bolts, and the plate is also slotted to allow
for further adjustment in adapting the equalizer arms to the vehicle. The plate is also corrugated on one side, and the bolt carries a washer with similar corrugations, so that when the bolt is tightened in place, the plate cannot be moved. The equalizer arms are laterally bent, and are pivoted at their lower widened ends between the plateand a smaller rear plate, the two plates being connected by bolts which serve as pivots for the arms. The inner extremities of the arms are semi circular in shape, and have interlocking cogs, so that when one is moved the other also will be moved, the uter ends of the arms, as shown in Fig. 1, extending between rollers, preferably of rubber, pivoted in brackets attached to the bottom of the wagon body. Mounted on a lug on the center of the plate to which the arms are pivoted is a spring adapted to press agains the arms to take up any lost motion. This device may be employed with any kind of vehicle, the depressing of one of the equalizer arms by placing extra weight on one side of the vehicle causing the opposite arm to be also depressed, by means of the interlocking cogs, and thus keeping the vehicle body level and even a all times.

## 'Staff" for World's Fair Buildings

Thirty thousand tons, or two thousand carloads, o buildings of the Columbian Exposition. It has been decided that all of the buildings will be faced with this aterial. Staff was invented in France about 1876 and first used in the buildings of the Paris Exposition in 1878. It is composed chiefly of powdered gyp sum, the other constituents being alumina, glycerine and dextrine. These are mixed with water without
heat, and cast in moulds in any desired shape and al owed to harden.
The natural color is a murkv white. but othercolors are able.
produced by external washes, rather than by additional ingredients. To prevent brittleness the material is cast around a coarse cloth, bagging or oakum. The casts are shallow, and about half an inch thick. They may be in any form-in imitation of cut stone, rock-faced stone, mouldings, or the most delicate designs. For the lower portious of the walls the material is mixed with cement, which makes it hard. The material is impervious to water.

Alleged Deceptions in German Steel Works. A correspondent writes as follows to the London Iron and Steel Trades Journal: The great lawsuit now proceeding at Essen, Germany, in the matter of income tax defraudations, said to have been practiced for years by the directors and the principal employes of this, the greatest German steel-making establishment, has suddenly taken a most startling turn
Mr. Wm. Baare, the director-general of the Bochum Union, and one of the greatest industrial princes of Germany, holding the highest official and honorary position, has, in conjunction with others connected with these steel works, been accused of having for many years systematically and purposely defrauded the national, as well as the municipal, revenues by manipulating their income tax estimates in such a way as to avoid paying taxes on almost nine-tenths of their incomes.
The Bochum Steel Works supply most German and a vast number of foreign and colonial railway administrations and companies with steel rails, sleepers, axles, etc., steel requisites for railways and railway carriages, etc., and have always been looked upon as A1 in every espect.
But now the director-general and the board of directors of these great works are accused of having sys tematically and purposely practiced, at all events connived at the practice of, the most audacious frauds possible for manufacturers and contractors.
The accuser further says that "the Bochum Steel Works, in order to be able to get rid of their inferior steel manufactures, practiced another fraud, namely, substituted for the rails, axles, etc., which had been chosen by the official examiner for being tested for their tensile strength, similar rails, axles, etc., which they had specially madefrom the very finest 'testing' steel that could be manufactured. The officially stamped rails, axles, etc., were surreptitiously removed, viz., replaced by rails, axles, etc., of much superior material, which had meanwhile been stamped with the fraudulent stamps of the Bochum Works." The tests were made, and invariably proved highly satisfactory.
The accuser produced at once in substantiation of his accusation a quantity of stamps, of which in all some 57 were in use during the last 16 years; moreover, he produced orders to and receipts from the maker of such stamps; he also gave a number of railway accidents, etc., which he alleges have been caused by breakdowns in consequence of the fraudulent practices of the Bochum Union. The public prosecutor at once stepped in and entered a separate action for wholesale commercial forgeries and defraudations alleged agains Mr. Baare, his co-directors, and the Bochum Union.

## Pile Driving by Jets.

Mr. Edward Hurst Brown gave a description before the Engineering Club, if Philadelphia, of the applica tion of a water jet to the driving of piles for the board walk at Atlantic City, N. J.
The water was brought from the city water supply in a 2 inch pipe, extending along the line of the work. To the end of this pipe (which was extended as the work progressed) was attached a 30 foot length of rub ber fire hose terminating in an ordinary brass nozzle about 4 feet long, with an opening of $11 / 4$ inches.
The piles were swung into position by a rough but light tripod, provided with block and fall, and steadied in place by the foreman, while one of the men held the nozzle of the hose vertically and close to the foot of the pile. Under the action of the jet, the pile was lowered into position almost as fast as the men could pay out the rope, the nozzle following it down.
To drive a pile from 6 to 10 feet into the compact beach sand required only from 30 seconds to 1 minute from the time the water was turned on the foot of the pile until the pile was finally fixed in position, the hose withdrawn, and the tripod removed.
The instant the hose was withdrawn, the sand pack ed at once around the pile, holding it, apparently a least, as firmly as if driven by a ram in the usual way Should a pile be driven too far, it is easily raised while he jet is on.
The jet process has been successfully used in other parts of New Jersey, in some places through coarse gravel with stones 8 to 10 inches in diameter, but in such cases, of course, the sinking is less rapid than in he beach sand.
When a city water supply is not at hand, a steam force pump is used.
In sinking pipe wells the pipe itself may be used for he jet, but the separate nozzle appears to be prefer able.

## Correspondence.

## Garnets and Peridots. of the Scientific American:

## To the Editor of the Scientific American:

Being interested in an article by G. F. Kunz, in you ssue of July 11, 1891, entitled "Gems of the United States," I will say that I spent three years in the vicinity of the "garnets and peridots" mentioned in that rticle, and au very familiar with the particular place where they are found abundantly.
I think that the author is misinformed in regard to the finding of them. He says," they are collected from ant hills and scorpion nests by Indians," etc. Only the very smallest are so gathered, from the size of a pin head to about the size of a rape seed, which are so thick and plentiful that they can be scooped up with the hands as a person would scoop up water using both hands.
The larger ones are gathered after the rains, when they seem to come to the surface.
I have an opal in my possession found at the same place which $I$ consider a stone of much value.

Edward F. Eastman.
Park City, Summit Co., Utah
P. S.-I once sent a large bottle (through a Prof Bibikov) to New York City, for which my share (one half) of the receipts was $\$ 8$.

## Jet Propulsion.

To the Editor of the Scientific American:
The suggestion of Mr. W. H. Wetherill, in your issue of the 11 th inst., that possibly the thrusts from a jet pipe intermittently worked might produce greater propulsion results than the constant jet, is, I think, a step backward instead of forward. It has been the aim of the friends of hydraulic propulsion to produce a powerful, medium, and constant jet; powerful, in that it would strike the water of flotation with such force as to impart to it the resistance of a stone wall; medium (nozzles 12 inches in diameter for a Cunarder 500 feet in length), so that an excessively large quantity of water will not be carried in the vessel, also presenting orifices of a size that will not impair the strength of the hull ; constant, on the principle of the screw propeller, which has a continuous thrust; no starting and stopying, which create great waste of power.
There is no danger of boring a hole in the water with a constant jet and a practical size nozzle, as the propelling jet is constantly encountering a new quantity of the resisting element with a greater directness and power than that of the screw. In short, it is no more practical to have intermittent jets than to have intermittent screw propellers.
Newton, Mass., July 14, 1891.

## Friction of Belts on Pulleys, Etc.

To the Editor of the Scientific American:
Will some one please give us the reason for the difference between the friction of a plane surface and that of a belt on its pulley?
According to the established laws of friction, conditions of surface being equal, it is increase of weight rather than surface contact that increases friction. This applies to plane surface, but not belt friction. We know frow practical experience with belt machinery that increased arc of contact without increased tension increases friction
The reason for this difference between plane surface and belt friction does not appear to be well understood, if known at all. I have been pumping the scientific world some time for the reason, and without su
have been told there has never been any given.
have been told there has never been any given.
Chetopa, Kansas.
J. A. Lou
[The laws of friction apply to belts as well as to plane surfaces, only that we do not interpret thew plane surfaces, only that we do not interpret them
according to the facts as they are, and not as we careaccording to the
A flat surface contact may be increased without adding to the gross weight on the whole surface, and the friction may not vary. With a belt, every inch that it is wrapped on the circumference of a pulley adds an increment to the frictional weight. The law of the composition of forces fairly demonstrates the belt lap one-quarter around a pulley with one hundred pounds tension each way will have a total pressure on the pulley by the formula for the resolution of forces of 141 pounds. If the belt laps on one-third of the pulley, by the same formula it will have a total pressure of 174 pounds ; and if it laps on one-half of the pulley, it will have the total pressure of 200 pounds. In this way, if continued for more than one-half of the circumference of the pulley, the pressure will be proportionally increased.
Therefore we may safely infer from the facts that the law of friction is correct ; but its application cannot be applied to elastic bodies drawn over cylindrical surfaces by its broadest terms.-EDITOR.]

F'OR a good solution for removing the blue from stee so as to leave as clean as before coloring, try acetic
acid, or solution of chloride of tin (stannous chloride).

## Gums, Resins, and Balsams.

In the following few notes on several of the better known gums and resins, I have adopted no systematic arrangement. Neither have I said all I should have liked to have said concerning them. But as it was not consistent with the room at my disposal to mention all their various uses, I have suppressed the minor pro perties and given in as few words as possible the more nteresting features.
I have endeavored to give the name of the plant producing each variety, together with its uses, native country and other interesting itews.
The distinctions between gums, resins, and balsams way be briefly tabulated as follows :
Resins are the inspissated or thickened juices of plants. They are generally mixed with an essential oil, are insoluble in water, but are soluble enough in either alcohol or the essential oils. Their general characters are inflawwability and fusibility. Their ulti mate components are carbon, oxygen, and hydrogen. Gums are soluble in water, but are insoluble in alcohol.
Balsams or gum resins contain a quantity of gum, are.partly soluble in water, partly so in alcohol, or in other words, they take both alcohol and water to perfectly dissolve them.
Gum arabic is produced by several species of acacia. It is quite soluble in water, but in alcohol, ether, and oils it is insoluble. It forms an acid solution, as perma. late of lime is present. Several of the metallic oxides combine with it. It is very nutritious, so much so that the Arabs who gather it nearly live upon it during harvest time. We import it from the Levant, Barbary, Senegal, Cape of Good Hope, India, Cairo, etc. Gum senegal, the product of Acacia senegal. This is the best kind of Arabian guin. It is much more clear than gum arabic, sometimes entirely white, in drops as arge as a pigeon's egg. Its principal use is in the manufacture of silks, muslins, crapes, etc., to give them the requisite amount of stiffness and glaze. It is also mixed with the colors in calico printing to give them solidity.
Gum tragacanth or gum dragon. This is obtained from Astralagus tragacantha. In appearance it resembles twisted ribbons, of a brownish white color, opaque and rather ductile. When pulverized in a mortar it is of a white color. The operation of pulverizing is a difficult one, and should be performed in a hot mortar, the gum having been previously heated to $212^{\circ}$ Fahr. This gum has a remarkable power of consistence, a small piece swelling up to many times its own size. It has not, however, such a strong power of adhesiveness as gum arabic, but if equal parts of the two be mixed together it forms a nice white gum, very suitable for fastening plants to paper, and other natural history work. The tree is itself a native of Crete.
Gum sandarach. The product of Callitris quadrivalvis is a native of Barbary. This gum is chiefly used in the manufacture of varnishes, for which it is peculiarly adapted. The Turks employ the wood in the construction of their mosques, it being very tough and possessing great lasting qualities. Importation about fifteen tons per annum.

Barbary gum, a very dark looking kind produced by the Acacia gummifera. In the manufacture of loz enges and confectionery it has valuable qualities. It
calls for no special comment. We import it from the calls for no spec
Morocco coast.
Gum gedda, an inferior quality of the foregoing. Reddish color.
Canada balsam. This is supplied by the Abies balsamifera. It is contained in blisters in the bark. The blisters are punctured, and the balsam is collected as it exudes. This is a most useful substance, being in great demand in a number of manufactures, etc. It is used in cementing lenses together. In microscopy comment is needless, but besides being an excellent preservative, it gives great transparency to the object. We import nearly all of it from America.
Guaiacum. This resin exudes from the Guaiacum officinale, a native of Jamaica and the surrounding islands. A piece of paper treated with tincture of guaiacum takes on a green tint under the violet rays, when exposed to the priswatic spectrum, through oxidation. Red rays destroy the color. Solubility, 90 per cent in absolute alcohol. Lignum vitæ, the hard est and heaviest wood known, and which sinks on being placed in water, is the timber of this tree
Copal. This is the product of several leguminous plants in Africa, East Indies, South America, and Australia. It is generally seen in large angular lumps, often as large as a hen's egg, of a bright yellow color, and very transparent. The African variety is of a darker color, and not so transparent, its surface appears dusty. The Australian is the largest. That from the East Indies is the product oî Hymencaa cour baril. In lumps sometimes nearly square and gener ally covered all over with slight indentations. It is known as gum anime. Chiefly used for fine varnishes.
Gum mastic, the product of Pistacia lentiscus. In
Gum mastic, the product of Pistacia lentiscus. In small ovoid and round tears about the size of a pea and
rather flattened. The tree is a native of Chio and

Northern Africa. To obtain the resin the bark is cut transversely, after which the mastic exudes in small drops and either hardens on the bark or falls to the ground ; that which falls to the ground is the inferior quality. It has a fragrant smell, and is much used by the Turkish ladies in their toilet. A fine varnish is made from it. Dentists also use it for stopping hollow teeth. About ten or twelve tons are imported annually, mostly from the Levant.
Gum dammar; this is a light colored substance which is obtained from the Pinus dammara, native in India, from whence it is exported. It is very useful irrmaking varnishes, especially photographic. It is soluble in benzole, only partly so in alcohol, and is used sometimes as a substitute for Canada balsam.
Gum gamboge, a product of Hedradendron gambogioides, native on the Malabar coast and in Ceylon. It is a gum resin, and is obtained by puncturing the bark of the tree when the flowers begin to appear. We know it best by its appearance in amorphous masses, but it also takes the form of hollow rolls and solid cylinders. The best hollow rolls come from Siam. From this gum the beautiful yellow color of gamboge is manufactured.
Gutta percha, the inspissated juice of Isonandra gutta. When freshly gathered it is rough, dry, slightly soluble and very inflammable. To render it fit for use it is immersed in boiling water: this softens it and makes it capable of being moulded into any shape, which it retains when cold.
The juice is found between the bark and the wood. Its uses are too numerous to specify, many being too well known.
Caoutchouc, India rubber, is the product of many euphorbiaceous plants. We get most of it from the Brazils and Central America. In Brazil it is obtained from the Siphonia elastica, which grows to a height of between fifty to sixty feet, and in Central America it is obtained from Castilloa elastica. imost of that we now use comes from Central America, where the juice is simply collected into cups, from incisions made in the bark. To coagulate the milky juice and convert it into rubber fit for exportation, the juice of a vine called "achuca" is mixed with it, and so powerful is its action that five or six minutes is sufficient to produce coagulation. The Brazilian method slightly differs. The juice is first collected in clay bowls, it is then smeared over various shaped moulds, made also in clay and taking the form of bottles, balls, spindles, etc. Successive coats are laid on, each one having previously been allowed to thoroughly dry, either in the sun or in the smoke of a fire, which blackens it. When a sufficient thickness is obtained, the clay is washed out,leaving the India rubber ready for exportation. The trees yield twenty or thirty gallons of juice, and when we consider that each gallon will produce two pounds of market India rubber, the harvest is not so bad. Other trees producing caoutchouc are Siphonia brasiliensis, S. lutea, and S. brevifolia.

Dextrine, British čum, torrified starch. To produce this !;um, starch is leated until vapor rises; by this procedure the starch becowes soluble both in cold and hot water, and all its gelatinous character disappears. It can also be made by moistening 1,000 parts of dry starch with very dilute nitric acid. It is formed in swall blocks and dried in the open air, afterward being placed in an oven heated to $152^{\circ}$. After this they are pulverized and again dried by heat. In color dextrine is pale yellow, insoluble in alcohol, more flexible and not so brittle when dry as gum. Dextrine and starch have the same chemical composition, $\mathrm{C}_{6} \mathrm{H}_{10}$ Os. The gum on the back of postage stamps is dex-

Turpentine. This valuable fluid is the product everal trees, principally Pinus palustris and P. twda Most of it comes from the United States, generally in large barrels, of the consistence of treacle or honey The oil is obtained by distillation and the remainder is the common resin, sometimes called rosin, which is applied to a variety of uses. There are several kinds of turpentine, viz., Venice turpentine, procured from the Abies larix, Strasburg, from Abies pectinata Bordeaux turpentine, from the Pinus pinaster, and Chio turps, from the Pistacia terebinthis.
Gum thus or frankincense, an odoriferous product of the Boswellia serrata. It is of slight use except for its odor, which the Roman Catholics turn to account in their churches. Employed also by the ancient priests of Egypt, its odor destroying the foul emanations from the sacrifices. It is iwported from India and some times the Levant.
Asafoetida (Narthex asafotida). This flows from in cisions made in the root of the tree. In color it is milky white, but after it has been dried it takes on a pinkish tint and is curiously mottled. It has a most unpleasant odor. Afghanistan and Persia is the home of the tree. It is used medicinally as an anti-spas modic in cases of asthma.-H. Durrant, Hardwicke's Science-Gossip.

Zinc expands up to the melting point. A bar of hammered zinc 6 in . long will expand one one-hundredth of an inch in raising the temperature $100^{\circ}$ Fah.
the great dam at beetaloo, australia. We give illustrations of what we understand is the largest reservoir dam in the southern hemisphere, and which has been recently completed by Mr. A. B. Moncrieff, M.I.C.E., at Beetaloo, South Australia, for the government of the colony. The principal picture gives a general view of the work as complete, while the profile, plan, and arrangement of by-washes are clearly shown in Figs. 3, 4, and 5. The structure is of concrete, 110 ft . high from the bed of the creek to the top of the dam, and 580 ft . long, being curved in plan to a radius of $1,414 \mathrm{ft}$., as shown in Fig. 5. The width at the top is 14 ft ., and the profile of the section has been designed in accordance with Rankine's rules. The width of the section at the foundation is 110 ft . The crest of abeyance. We allude to the proposed Quaker Bridge
at one time strongly urged, but is at present held in
took the work in hand, and has now brought it successfully to completion, as already stated. The quantity of concrete used was 60,000 cubic yards, the net time were obtained in the vicinity, but the cement was imported. Special machinery was used for mixing the concrete and depositing it in place. The net cost of the dam has been $\$ 585,000$, or rather less than $\$ 10$ per cubic yard of concrete in place.
The foregoing particulars and illustrations are from a recent number of Engineering. It is interesting to compare the described structure with a proposed work for a similar purpose, the construction of which was

Electrical Observations on the Hoher Sonnblick.
From the results of a series of experiments and of observations on the Hoher Sonnblick at a height of $10,168 \mathrm{ft}$. above the sea level, Profs. Elster and Geitel draw the following conclusions in the Wiener Berichte 1. The intensity of the most refrangible rays of the sun's spectrum, as measured by its discharging action on negatively electrified surfaces of amalgamated zinc, increases with the height above level ground, in such a manner that at a height of $10,168 \mathrm{ft}$. it is twice as great as on ordinary level ground. 2. Notwithstanding this increase, no new actinometrically active substances were discovered. 3. Waterfalls can produce negative falls of potential in a valley, and even to considerable heights, $1,600 \mathrm{ft}$. 4. Before the outburst of storm


## the great concrete dam at beetaloo, australia.

the by-wash, which is 200 ft . wide, is 5 ft . below the $\mid$ dam, on the line of the Croton water works of Ne crest of the dam. The reservoir behind the dan, when York City.
full, will be $11 / 4$ miles long, with an average width of The Quaker Bridge dam, as planned, was to have a 8 chains, forming quite a fine lake. The capacity, under these conditions, will be $800,000,000$ gallons, a large quantity, but not too much for the district to be sup plied, which has an area of 1,715 square miles. Eight separate townships are to be supplied from this source, in addition to pastoralists and farmers. Already 255 miles of pipe have been laid, the largest size being 18 inches in diameter and the smallest 2 inches. All these pipes have been manufactured in the colony, and the engineer has expressed himself well satisfied with the quality.

The work of building the dam was commenced in 1885, under the superintendence of Mr. Mestayer, M.I.C.E. In May of the same year, Mr. Moncrieff

The Quaker Bridge dam, as planned, was to have a this the dam proper was to rise $1921 / 2 \mathrm{ft}$. Width at the base, 200 ft ., at the top 22 ft . wide, with roadway there an. Length of the dam at coping 1350 ft Lay there n. Length of the dam at coping $1,050 \mathrm{ft}$. Length a dation concrete. Main dam rubble masonry. faced with stonework. Estimated to cost $\$ 5,000,000$. The estimated impoundage of water to be held by this dam was thirty-two billions of gallons, or sufficient for 160 days' supply for the city of New York, using two hundred millions of gallons daily

Belts that slip froru overwork arn benefited by lagging the pulleys.
observed on the 16th, 18th, and 20th July, 1890, the positive fall of potential, within the cloud which sent only a small quantity of rain, sank slowly down to the value zero. at which it then remained for a long time, perhaps two to three hours, until the electrical process in the cloud definitely came to an end 5. In storm clouds the atmospheric electricity usually changes its sign after a discharge of lightning, as with storms in sign after a discharge of lightning, as with storms in
the plain. 6. St. Elmo's fire was found to constantly accompany storms; it was not found that negative St. Elmo's fire was more infrequent than positive. 7. The observation that negative St. Elmo's fire follows bluish lightning, and positive, reddish lightning, was frequently confirmed. The direction, then, of the electrical current which traverses the atmosphere in the form of lightning app $\exists$ ars to have an influence on the color of lightning.

Another Subway under the Thames.
An iron subway or tunnel under the river Thames just below Kingston Bridge has recently been completed for the Southwark and Vauxhall Water Company, under the direction of their engineer, Mr. J. W. Restler. The work has been carried out by Messrs. John Aird \& Sons, who are the contractors for laying the main pipes of this company from Hawptou to Nunhead, of which the subway forms a part. The necessity for the work has arisen from the circumstance that the population of the large district served by this company has greatly increased. The new scheme in its entirety consists of a cast iron wain pipe, 42 inches in diameter, running from Hampton to Nunhead. In the tunnel the main is divided into two pipes of 31 inches diameter; but elsewhere throughout the length it is a 42 inch pipe. The main commences at the company's works at Hampton, and after passing under the river at Kingston it continues along main roads and across fields by Norbiton station over Coombe Hill via Raynes Park and Merton Abbey to Tooting, thence via Streatham, crossing the Croydon Read and Streatham Common, to Tulse Hill, past Dulwich College across Dulwich Park, and by Honor Oai to the Nunhead reservoirs of the South wark and Vauxhall Water Company.
On the route between Kingston and Nunhead, the main passes five times through subways constructed under the London, Brighton \& South Coast Railway and its branches. The total length of the main is about $151 / 2$ miles. The tunnel is of a circular section, 9 feet in diameter, and is constructed of cast iron plates 1 inch thick, bolted together in segments, and in lengths of 18 inches. The method employed in driving the tunnel and fixing the plates is similar to that adopted in the construction of the City and South London Electric Railway from Stockwell to London Bridge. An iron shield of slightly larger diameter than the tunuel itself is forced forward into the clay by means of powerful hydraulic jacks, for a distance of about 18 inches, sufficient to insert one ring of the cast iron plates. The plates are then fixed and bolted together in position, and the shield impelled forward as before. [This is the Beach hydraulic shield, an American invention, first used in constructing the short section of railway tunnel under Broadway, New York, 1869-1870.-Ed. S. A.] By these means the earth in the tunnel is taken out as nearly as possible to the precise dimensions of the iron ring to be inserted; but in order to make the work perfectly solid and secure, a grouting of liquid cement was forced in behind and around the ring when :finally fixed, thus filling up every possible space, fissure, and crevice be-
tween the iron and the sur-
rounding clay. The progress made in this way was (Spilotes corais), and other snakes without rattles vivery rapid, as many as eight 18 inch rings or 12 feet of brate theirs horizontally. Many African species seem tunneling being sometimes completed in 24 hours, the whole work of tunneling under the river, a distance of about 190 yards, having been actually completed in 9 weeks. It way be the boa constrictors hold the head well above the able circumstance, that the depth between the top of the tunnel and the bed of the river was in one place not greater than 2 feet 6 inches. The whole length of the tunnel is in the London clay.

To $\underset{\text { from Teave }}{\text { Remin }}$ The tannin present is absorbed by means of suitable animal subst ances, such as horn shavings, dried albumen, hide clippings, and the like. It is pre ferable to add the ma terial to the tea in the terial to the tea in the dry condition before the infusion is made. But it may also be added to the infusion, or the infusion may be passed or filtered through a layer of the substance The quantity of animal substance to be added to the tannin-containing material must be determined by the amount of tannin a bold biter, who considers excitement in a warrior in
contained in it. In the case of tea the proportion ma: vary from one to two parts of animai substance to ted parts of tea.-H. Grimshaw.

CHARACTERISTIC POISES OF SNAKES. ry g. r. orbelley.
Snakes assume many attitudes when on the defen-


## the rattlesnake in the act of rattling.

sive, and show their excitement in many different ways. For instance, the rattlesnake does not hiss, but vibrates the extremity of his tail, placing it in a somewhat vertical position, while the cribo, of Trinidad


A TREE SNAKE (XIPHOSOMA HORTULANA) COILED FOR STRIKING.
lapped round a branch, and saves his breath rather than waste it in hissing. The body of the boa is usually flattened at the points of contact with the limb, and this serves to give him greater purchase and a better hold in striking at his prey. The boa's head is always advanced.
The vipers, on the contrary, hold the head rather drawn back, and most of them keep it somewhat down. The terrible fer de lance, of the West Indies, and the labarri, of Demerara, as shown in the cuts given, remain carefully coiled. The traveler who has wandered on South American river banks will never forget the coiled death dealer labarri (Bothrops atrox), which, ready alike for enemy or prey, refuses to move from his path. In color he is like the dead leaves of the forest among which he lives. This renders him very difficult to see, and so adds considerably both to the apprehension and to the danger of hunters and others whose business or pleasure leads them to journey on foot through these tangled tropical wilds. When he strikes, his head, with perhaps two-thirds of his body, is shot out like lightning. This snake will strike again and again, unlike the rattlesnake, the bushmaster, and others that are usually satisfied with one injection of poison.
The fer de lance makes his home in the cane fields of Martinique. His coil is exactly like that of the labarri. And so with the bushmaster of Demerara (Lachesis mutus). The three last mentioned species all vibrate the tail. The coil of the rattlesnake is not so compact. Another snake that has a peculiar characteristic is the lora (Ahcetulla liocerca), of Venezuela. He is a whip-like diurnal tree snake, of four or five feet in length and half an inch in diaweter at his thickest part. His coloring is of the richest imaginable hues. The head and back are of the most beautiful green. Along each side is a beneath golden yellow of pearl white. His home is of pearl whe flowers home is among the flowers of the vine-laced forest. There he
lies in wait for his favorite prey, the humming bird, or chases the agile tree lizard from branch to branch. In Trinidad he is often seen in the gardens of he town of Port of Spain.
If you approach him too closely, he gets ready for defense in a strange way; for while other snakes as a rule keep their mouths closed, the lora, like a scolding wife or a noisy politician, keeps it open all the time, but all this fuss means nothing ; as he is not poisonous and can kill nothing larger than a humwing bird or a small lizard. His head is raised, flattened and drawn backward, and his apparently toothless mouth is ever constantly open to its widest extent. He bites fiercely, nevertheless, at whatever approaches him. The liquer (Dryiophis acuminata) acts similarly, but does not bite at all.
Among the Elapidæ we find two of the most opposite manifestations, for, while the cobras flatten the neck and stand up perpendicularly, facing their assailant, the coral snakes neither flatten themselves out nor stand up, but lie as close to the ground as possible, with the head placed sideways to the object of danger.
Most snakes inflate themselves somewhat when excited,', but some, like the small :water snake of Trinidad, flat ten themselves out as if they had been pressed. They neither hiss, at least audibly, nor vi brate their tails. This water snake is the ouly one I know that can actually jump. I have known one ten inches long to jump fifteen inches from the ground.

IT has been concluded that whatever preservative is to be applied, the timber for piles,
the labarri (venomous) keady to strike. the timber for piles,
seaworms, should first be Xiphosoma hortulana, a tree hoa of South America, charred, so as to kill any germs near the surface, open judicious. Consequently he keeps his tail quietly the nutritive matter upon which the worms live.

## The New German Patent Law.*

On October 1, the patent law of 1877, under which patents are now granted in Germany, will cease to have effect, and after that date protection will be af forded to inventors by two laws much more liberal than the law now in force.
The first and more important of these laws is the patent law of April 7, 1891. The provision of this law that is most important to Awerican inventors is the second clause of paragraph two, which provides that copies of patents officially published in the United States and other foreign countries shall not act as a bar to the grant of a patent in Germany for the same invention until three months after such publication. Under the law of 1877, now in force, the Aimerican inventor must file his application for a German patent ou or before the date of issue of his American patent. It frequently happens that an inventor, desirous of protecting his rights in Germany, does not know this and allows his United States patent to issue before he decides to apply for a German patent, and when he does apply he is invariably refused. After October 1 , however, inventors will have three months after the issue of their patents here in which to wake application in Germany. As not more than three or four weeks are required for the preparation of an applica tion and its transwission to Germany, two wontss in
more remain after the issue of the American patent in which to decide whether it is necessary or expedient to secure protection in Germany.
Three other provisions of the new law are of such importance as to be worthy of special attention. The first of these provides that no patent which has been in force for five years from the date of allowance
thereof can be annulled for lack of novclty at the time of application. No other country furuishes such a guarantee of the validity of a patent. The second provision is that publications over 100 years old cannot be cited against applications allowable in othe respects. The third provision is that a patent for an
improvement on an invention patented in Germany improvement on an invention patented in Germany
becomes a principal patent if the principal patent is becomes a principal patent if the principal patent is
declared void. Under the present law a patent for an declared void. Under the present law a patent
improvement expires with the principal patent.
In order to enable the inventors to receive protection on inventions of minor importance, a law for the pro-
tection of usefnl models, supplemental in its workings to the patent ' $v$, has been formulated, and will also take effect $r$ October 1. Under this law the benefit of an invent on of such nature that it would not pay to protect it by letters patenr, on account of the heavy annual taxes, can be enjoyed for sil years at a cow-
paratively small cost. This law will undoubtedly be paratively small cost. This law will undoubtedly be
made use of quite extensively by inventors and manumade use of quite extensively by inventors and manu
facturers who are satisfied to be protected for a short term of years, as the rights obtained are the same as granted to holders of letters patont. In fact, the law is even more liberal than the patent law, as no exam-
ination is made regarding the novelty of the invention ination is made regarding the novelty of the invention embodied in the model.
Although it is to be noted that under the new patent law the time within which an appeal can be taken after the rejection of an application remains the same -namely, four weeks-still it is hardly probable that appeals will be necessary as often as under the present
law, as the prime cause of rejection, lack of novelty, is law, as the prime cause of rejection, lack of novelty, is
almost entirely removed by the three months clause. The disastrous effects produced under the present law by allowing to a foreign inventor but four weeks in which to receive and reply to a notice from Germany will therefore probably entirely disappear under the working of the law soon to come into force.
The passage of these two laws marks a long step forward, and shows that Germany recognizes the importance of being liberal, not only to her own inventors, but also to those of foreign powers. American invent ors will undoubtedly appreciate the importance of the changes that will be effected, as the new laws will
do away with most of the drawbacks connected with do away with most of the drawback
the present German patent system.

## Four Decades of the British Patent system.

As our readers know, the two great English-speaking countries, the United States and Great Britain, lead the world both as regards the number of applications for patents and as regards the number of patents granted. The United States, of course, stands first in the list and Great Britain second. The history of the patent system in the United States has been recently meeting of the congress of inventors and manufacturers, held at Washingrtsa, to celebrate the centenary of the American patent system. A report has just been made public in England which gives a less comprehen-
sive but still most interesting account of the history of sive but still most interesting account of the history of
the British patent system in times comparatively recent. This is the report of the Comptroller-General of Patents, Designs, and Trade Marks for the year 1890, which, in addition to the statistics for that year, gives figures showing the progress of the patent system in Great Britain since the year 1852, or, roughly speaking.
for the last four decades. The progress shown by these figures in noteworthy.
Glancing, in the first place, at the figures for 1890, it appears that the number of applications for patents has shown a steady increase, amounting to 21,307 , as against 17,110 in 1884 . There has been a falling off as compared with the four preceding years in the number
of desigus and trade marks applied for, though there has been an increase as compared with 1884. The applications for designs, which amounted to 19,515 in
1884 , increased to 25,923 in 1888 frou which 1884, increased to 25,923 in 1888 . froun which amount
they declined to 22,235 in 1890 . The applications for trade marks, which amounted to 7,104 in 1884, increased to 13,315 in 1888, from which point they declined to 10,258 in 1890 . A more distinct idea of the growth of invention in Great Britain. however, will be gathered from a comparison of the figures of 1852 with those of recent years. In the former year 1,211 applications were received, upon which 914 patents were granted In 1839, the last year for which complete statistics are
at hand, there were 21,008 applications for patents, upon which 10,624 patents were grauted. The increase in the number of applications and of patents granted has been most marked sirce the year 1884, the first year under the patent act oi 1883. The growth under the act of 1852 was constant but gradual. The appli to 3,490 in 1862 , to 3,970 in 1872 , and to 5,993 in 1883, the last year under the old act. The patents granted increased in number from 914 in 1852 to 2.191 in 1862, to 2,771 in 1872, and to 3,962 in 1883. In 1884, under the new act, the applications juruped at once to 17,110, or nearly three times the number for the preceding year,
while the patents granted amounted to 9,984 , or about while the patents granted amounted to 9,984 , or about
two and a half times the number for the year preceding. This remarkable advance is attributed to modi fications in the new patent law in the direction of simplification of procedure and diminution of the initia cost of protection. It will be noticed, however, that the proportion of patents granted to the total number of applications is considerably smaller under the act of 1883 than under the act of 1852 . Patents were granted upon about three-quarters of the applications in 1852,
but only upon about one-half in 1889 . Some figures are given in relation to the countries in
which the applicants for patents in Great Britain re which the applicants for patents in Great Britain re-
ide, and they disclose some interesting facts. Natu ally the greatest number of applicants reside in Eng and and Wales, which furnish about two-thirds of the number. Among foreign countries the United States furnishes the largest number of applicants, and shows he greatest increase in the number of applications uner the act of 1883. American applications numbered 181 in 1884; in 1890 they numbered 2.597, or more than twice as many. This is not surprising, in view of the position held by the United States as an invent ing country. Germany ranks next to the United States in the list of foreign countries furnishing applicant or British patents, but it has not shown the same rate of increase as the United States during recent years, he increase being from 890 applications in 1884 to 1,338 fluctuations, and Austria, where, though the number of applications is small, it shows a more marked inrease than in the case of France. The British colonies end a fair number of applications, Canada taking the ead, with Victoria second, and New South Wales third. Comparatively few applications come from the South American countries. Applications, though few in number, have been received from Persia, China, even from Fiji, though but one application from the ast mentioned place has been received during the last six years. Taken altogether the statistics embodied in he report show that Great Britain is not lagging be ind in the march of inventive progress.-Brad street's.

## Volatilization of Iron.

Quite recently Messrs. Mond and Quincke discovered that nickel combines with carbon wonoxide to form nickel-carbon oxide, which prowises to be usefulin connection with the development of nickel plating. At that time the experimentalists failed to obtain any similar compound of carbon monoxide with anothe netal. Considering it strange that nickel should be he only metal capable of entering into combination with this particular gas, they persisted in their investi gation, more especially with iron, under very varied conditions; and they have at last succeeded in demonstrating the fact that iron is volatilizable, although apparently in very small quantities, in a current of car bonic oxide. This result was communicated to the Chemical Society, and the particulars of Messrs. Mond and Quincke's experiments are reported in the Journal of the society. Suffice it to note here that they vola ilized some finely divided iron in a current of carbonic xide at ordinary temperatures; the deposits from this process giving all the known reactions of iron in re warkably brilliant colors. The practical importance
of this discovery may or may not be considerable, as of this discovery may or may not be considerable, a ditions under which the action can take place.

## Patent rights and wrong.

The London Journal of Gas Lighting, in a recent sue, gives a review of the present patent systems, from which we abstract the following:
The British trick of grumbling at everything, and ncessantly tinkering a way at every estahlished system with a view to keeping it up to popular requirements, is apparently as foreign to the American as it certainly is to the French spirit. The condition of the reat American patent system is an example in point Those who praise it in the extravagant way sometime heard know nothing about its practical operation As a matter of fact, it is extravagantly costly to the country, if not to the patentees, and but that any ex cusable outlet for revenue is desired by the Federal government, the working of the Patent Office would be speedily overhauled. The system of prior examina tion, of which apologists make so much, is utterly useless, since no guarantee is attached to it, and it only causes vexatious delay in obtaining protection, besides being very expensive. Then the absence o any wachinery for removing merely obstructive pat ents has been already rewarked.
The British patent system is anything but perfect but then nobody pretends that it is. The American ystem is full of defects, and it is considered treasona ble to hint at the existence of a single blot upon it.
We in England have not yet been persuaded by Sir Frederick Bramwell, and by those who think with him in this matter, that patented inventions are absolutely nnmixed blessings, and that to invent something pat ntable is the first duty of man. Indeed, the day of cheap patents in which we now live has brought into prominence certain aspects of patented inventions which are not altogether pleasing to individuals or wholly subservient to the best interests of the community.
The facility with which patents can now be obtained is fostering a novel description of public nuisancethe patentee of "unconsidered trifles," several illustra ions of whose vagaries have been recently brought to ur notice.
A business firm will patent a variety of construction which other people would regard as a trifle or as common property.
There is yet a hazy impression upon the public mind-the remainder from an earlier state of thingsthat a patent article must somehow be better than is fast dying cannot be so described. This superstion nate traders who have worked it to death by dubbing everything they sell "pateat," merely by way of ex cuse for their dearness. Until it is quite gone, however, it is clear that a trader has a perfect right to take what advantage of it he can, by patenting all sorts of things merely for the sake of being able to advertise them as such. Thus, for example, if a stove manufacturer discovers, in the ordinary course of busi ness, that a "patent" stove is looked upon with more favor by purchasers simply on account of this designation, he can hardly be blamed for patenting anything and everything of this class which can be made to pass muster at the office. This is a very different thing, however, from a patent for a method of contructing an engineering work, intended to restrict the liberty of designers, and make them ask permision of the patentee to be enabled to do their work in their own way. This is what we havestyled a patent outrage.
When a man has invented a new and improved way of doing anything, it is but right and reasonable that he should have at least the credit for the suggestion, and as much profit as the idea can bring him. But for a man to appropriate, by the complaisance of the Patent Office, a notion which is neither better nor worse than many others of the same class or a device which is rather an alternative to ordinary methods han an improvement upon them, and to make this appropriation a means of tying the hands of designers who do not seek to captivate the market, but
only to do their work after theirown fashion, is a piece only to do their work after their own fashion, is a piece of impertinence that requires checking before it grows to be drawn in this. 1tard be what is a distinct improvement and what is merely an alternative. But the distinction, if not easily defined, is easy to understand. If, for example, a gas engineer wishful to erect a gas holder is informed of a method whereby the work may be done at considerable saving of expense or of time, he may be willing to pay a reasonable proportion of the estimated saving for the privilege of using the new method, and will not object to it as being temporarily private property. Should he, on the other hand, propose, for his convenience, to make a change in the design which is of no particular ad vantage in itself, he will naturally be wroth whe idea, and will either grant him a license to use it, for a consideration, or will graciously waive the claim upon securing the contract for the erection of the holder. This is the contract for the erection of the holase. Thether, after all, a patent system is not of more harm than good to the public.

## The Law of Natural Gas

The following charge was given to the jury by Judge Gunnison in the case of a consumer at Erie, Pa., who guilty guilty.
LLarceny is the felonious taking and carrying away of the personal property of another. You have heard the ruling of the court upon the question raised by counsel for the defendant, in which it was decided, in accordance with the decisions of several other courts of this State, that gas in the distributing pipes of the gas company is personal property, and the subject of
larceny. Gas in the ground before the well is drilled larceny. Gas in the ground before the well is drilled when the well is drilled and the gas flows from the well into the pipe, what is called in law a 'severance' takes place. The gas is severed from the real estate, and thereupon becomes personal property. In the same wanner, to take apples from a tree in an orchard is not larceny, because they are a part of the real estate when attached to the tree; but when the apples are severed from the tree and fall to the ground, to pick them up with the purpose of appropriating them to one's own use might be larceny, because the apples being then severed from the tree become personal property. As ong as gas is stored in the when it becones severed it is the earth by being taken into the distributing pipes of the company and brought (as in this case) 80 miles from where it was stored in the earth, it becomes personal property and is the subject of larceny. So that if the defendant is guilty of feloniously taking and carrying a way the gas of the Pennsylvania Gas Company, in the city of Erie, where it has been brought by pipes, he is guilty of larceny.
"The testimony introduced on the part of the commonwealth is to the effect that upon October 1 this defendant appeared at the office of the company, he having been before that a customer of the company and one to whom they had supplied their gas, and notified them to disconnect his stove from the pipes. That thereupon they sent a man to his premises who took away the mixer (which you probably all know is the globe or bulb attached to the pipe just before the point at which the gas enters the stove). That they detached the mixer and disconnected the pipe from the stove to prevent the gas from escaping. That, on February 12, when one of their employes visited the premises of the defendant, they found the pipe conholes drilled in it, to mix the air with the gas, attached holes drilled in it, to mix the air with the gas, attached
to it, and a fire burning in which the fuel used was to it, and a fire burning in which the fuel used was
gas. He says that he turned the gas off and turned it gas. He says that he turned the gas off and turned it
on again and lighted it, and found that it was gas. on again and lighted it, and found that it was gas.
Now it is a principle of criminal law that a person found in possession of stolen goods must give a satisfactory account of his possession, or that possession will be taken as evidence of guilt. The defendant has introduced no testimony and called no witness to make a satisfactory explanation of the presence of the gas which was burning in the stove during this time. Of course, there is the evidence of Mr. Walker, who tells you that at the office of the company the defendant
told them to disconnect the gas on these premises, but told them to disconnect the gas on these premises, but
that is the only evidence that shows it was in his possession or that he occupied these premises, because all that the other witnesses know about it is hearsay alone. They got word at the office to go and turn off the gas at Mr. Nicholson's place, but that would be all hearsay. But the testimony of Mr. Walker is to the effect that the defendant himself came to the office and told them to turn off the gas, and that he gave the building and the rooms which he occupied, and that his declaration that he occupied the rooms would be evidence against him. It might be possible that the gas was not burned there with his knowledge and consent. There is no direct evidence that he ever saw the gas burning there, or that he knew of it. The circumstance that the gas was found burning on the premises and connected with the stove would be a circumstance from which you might legitimately infer that it was he who did it or it was with his consent it was done. The indictment charges him with having taken $120,000 \mathrm{ft}$. of gas. It is not requisite that the commonwealth prove that he used all that amount; if they prove he used any gas at all, it will be sufficient. Frequently an indictment is found against a man for stealing a large amount of property, and when the proof is presented there may be only evidence to show that he stole one or more of the articles alleged to have been taken; but it is not necessary to prove that he stole all the articles named in the indictment. So if you find this gas was being burned in these premises by his knowledge and consent, in the absence of any testimony to contradict it or to explain the situation and the transaction, you will be justified in finding that he is guilty. It would be sufficient proof to justify such a verdict.
" But, as in all other criminal cases, before returning a verdict of guilty you must be satisfied beyond a reasonable doubt that it was burned with his knowledge and consent ; because if it was done without his knowledge and consent, he would not be guilty of the
crime, although he might bo liable civilly for the gas that was taken, but he would not be guilty of any crime, because it is necessary, in order to convict a man of crime, to show that he had a guilty intent, and if it was done in his absence, when he knew nothing about it, he would not be guilty of any crime. But intent is something that may be inferred from the cirintent is something that may be inferred from the cirbeyond a reasonable doubt that he had knowledge of the fact that this gas was being burned there, then you might properly infer that there was a guilty intent. Intention is a subject of proof by means of circuinstances, and that one circumstance would be sufficient from which to infer that intent, if you find that it was with his knowledge and consent. You cannot find, however, from mere suspicion; you must find it upon evidence, and if there is a reasonable doubt in your minds arising from the evidence, such a doubt as a man of ordinarily good judgment would act upon in matters of importance to himself, that reasonable doubt should be given to the defendant, and he should be acquitted.

Counsel for the defendant asks the court to instruct you that in order to convict the defendant of this charge the jury must be satisfied beyond a reasonable doubt that natural gas in pipes, such as is shown by the evidence of the prosecution, is such personal property as comes under the common law definition of personal property, and as such personal property is the subject of larceny at common law.

That point is affirmed; but you are instructed by the court that in our opinion natural gas, in the situation in which this was, is personal property and property of value. The fact that an amount of small value is proved to have been taken does not change the nature of the transaction at all. Larceny can be committed as well of one cent as of $\$ 1,000$; the cring to say about the costs.'

## Chlorine.

Chlorine, one of the most abundant of the elements, the most important member of the halogen group The other members of the group are bromine, iodine, and fluorine. Their characteristic features are their indifference to one another and their affiuity for the metals with which they unite to form a class of salts.
Chlorine $\left(\mathrm{Cl}_{2}, 35.5\right)$ was discovered by Scheele in 1774, but it was first recognized as an element by Davy in 1810. It never occurs free in nature, but exists in large quantities in combination with sodium, potassium, calcium, magnesium, and other elements. So dium chloride ( NaCl ) is the principal source. It is
also made by the following reaction : $4 \mathrm{H} \mathrm{Cl}+\mathrm{MnO}_{2}=$ $\mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$. The chlorine thus produced is a green or greenish yellow gas, with a powerful, suffocating odor. If breathed in small quantities it produces irritation of the air passages and coughing. Chlorine is soluble in about one-half of its bulk of cold water, and the solution which is readily formed by shaking the water and the gas together has the odor, color, and taste of the gas. In consequence of this solubility it cannot be conveniently collected over water. The common method is to collect it in dry bottles by downward displacement. Chlorine is not combustible, although it sometimes supports combus-
tion. Many bodies burn readily in it, as is shown in the case of copper leaf, finely divided antimony, and arsenic. Chlorine is valuable as a disinfectant, a bleaching agent, and an oxidizing agent. Its strong attraction for hydrogen causes it to decompose water and set free oxygen which may unite with something and

Chlorine combines with all non-metallic elements, forming an important class of compounds, called chlorides, all of which-with the exception of argentic chloride, cuprous and mercurous chlorides-are more or less soluble in water. To test a solution for a
chloride, add argentic nitrate. If a chloride is present a white precipitate will be formed. This is argentic chloride, which is insoluble. The commonest chloride we meet with is chloride of sodium ( NaCl ), or common salt, the properties of which are well known. The blowpipe test for a chloride is as follows: Make a bowpipe test for a chloride is as follows: Make a
borad and add oxide of copper, then add the substance to be tested. If it is a chloride, a beautiful bluish green flame will be given.
The most important combination of chlorine with the non-metallic elements is its combination with hydrogen to form hydrochloric acid ( $\mathrm{H} \quad \mathrm{Cl}$ ). Equal volumes of hydrogen and chlorine may be mixed together in a vessel, and no action will take place while the vessel is kept in the dark. But as soon as it is exposed to direct sunlight, a loud explosion takes place. The gases unite, forming a colorless but strongly acid gas-hydrochloric acid gas. It fumes strongly when ex posed to the air. A colution of this gas in water makes hydrochloric acid. The gas is very soluble, water dissolving about 450 times its own volume of it. It is $\begin{aligned} & \text { usually made from common salt: } 2 \mathrm{Na} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{Na} \\ & \mathrm{H} \mathrm{SO}\end{aligned}+\mathrm{HCl}+\mathrm{Na} \mathrm{Cl}=\mathrm{Na}, \mathrm{SO}_{4}+2 \mathrm{H} \mathrm{Cl}$, The acid is
powerful and gives a strong acid reaction. It dissolves many metals, setting free hydrogen, and forms chlorides. The commercial hydrochloric acid, commonly called muriatic acid or spirit of salt, is generally yellow, owing to impurities. The pure acid is colorless. A little concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ added to about three grawmes of salt in a test tube will generate enough of the gas to show its solubility and acid reaction.
Chlorine gas is a great bleaching agent. This power depends upon the fact that chlorine has a greater affinity for hydrogen than for oxygen. If a dry piece of calico is suspended in a jar of chlorine gas, nothing will happen, but if the calico is taken out, moistened, and put back, it will be quickly bleached. The chlorine in the jar combines with the hydrogen of the water on the cloth, and decomposes the water. The oxygen freed from its former combination unites with the coloring matter on the calico and removes it, leaving a white cloth. Bleaching powder, $\mathrm{Ca} \mathrm{OCl}_{2}$, is commonly used. It is frequently, but improperly, called chloride of lime. When acted upon by an acid it gives chlorine. The cloth to be bleached is first immersed in a solution of bleaching powder, and then dipped into dilute sul phuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$. Chlorine is generated, and the cloth is bleached. This method is much better than the use of chlorine gas, because it gives only the amount of chlorine needed, and only at the place where it is needed-in the fibers of the cloth.-Popular Science News.

Growth of the Face.
During the past year investigations upon the physical growth of children have been conducted in the Worcester schools. The preliminary tables on the growth of the female face bring out some facts of con siderable interest. There seem to be three distinct periods, the first ending about the seventh year, and the third beginning about the fifteenth year. A striking peculiarity is the seemingly abrupt transition from the types of one period to those of the succeed ing. The sudden disappearance of the lower widths of face, and the equally sudden appearance of the types of the succeeding period, e. g., the sudden shooting up of the widths to almost adult dimensions at about the age of 8 or 9 , offset by the equally sudden disappear ance of the distinctively childish characteristics at the age of 11. These peculiarities also appear at the ages of twelve and fourteen respectively in the suc ceeding period. This would seem to indicate the very slow growth of some children until the ages of about eight and fourteen respectively are reached, and then a very rapid development of each individual to her proper position in the series. This Axel Key found also to be true with respect to the total height of the Swedish children observed by him.
In the second period very many of the forms are already adult, and if not at their fullest development, have very nearly approached it. From the fifth to the tenth year inclusive the growth is somewhat slow, about 6.5 millimeters in all, but for the next four years, the period of adolescence, the growth is 6.2 millimeters. From the fourteenth year on there is very little advance, the maximum seeming to be reached at about 128 millimeters in the twentieth year On comparing this growth with that of the male face some differences are noticeable. The male face is, with perhaps a single exception, larger for the same period of life, and for the same years it appears to grow more rapidly and coutinues to grow later in life. Massing the cases after twenty, the advance is seen to be far beyond the breadth attained at nineteen, rising to about 138 millimeters. At about nine years the two types approach very near, and it is not at all unlikely that, as found in the case of height by Bowditch in Boston and Peckham in Milwaukee, the female face Boston and Peckham in Milwaukee, the female face
may for a short period become the broader. Further may for a short period become the broader. Further
investigations will be required to determine this point, the present investigation having been made on no more than twenty-five hundred persons, including both sexes.-Prof. Gerald M. West, in Science.

## Two Cylinders in one.

A new departure in compounding locomotives, which is almost as radical as the idea of compounding itself was, has been put into practical and successful operation by F. W. Johnstone, superintendent of motive power of the Mexican Central Railway. Coal costs about $\$ 11$ per ton on the Mexican Central, and Mr Johnstone undertook to reduce fuel consumption by the introduction of a compound system of his own, in which the high-pressure cylinder is encircled by the ow-pressure cylinder.
The high-pressure cylinder is 14 inches in diameter, and the low-pressure cylinder has a diameter of $303 / 4$ inches, which is equal to a cylinder $241 / 4$ inches in diaweter. The stroke is 24 inches, and the two rods of the low-pressure piston are coupled with the single high-pressure rod to one crosshead. In a competitive test of 12 trips with a single engine, the compound locomotive showed economy in fuel of about 25 per cent, which means a great deal on a road where the fuel account is the largest item of operating expenses, being 22 per cent of the total.

RECENTLY PATENTED INVENTIONS.

## Railway Appliance.

Car Coupling.-Moralis Hall, Greenfield, Tenn. A yieidingly mounted drawbar has a hook at each end, the hooks extending in opposite directions
and the bar being reversible, while in oue end of the and the bar being reversible, while in one end of the
drawbar is mounted a spring-actuated shaft to which is drawbar is mounted a spring-actuated shaft to which is
secured a $U$-shaped link, there being an auxiliary link on the opposite end of the draw bar, and a bar secure the the dradapted for connection with a simila The device is intended to facilitate the ready coupling and uncoupling of cars of different heights, as well as for use with cars having the ordinary link and pin coupling, ard to d
betweenthe cars.
Cattle Car. - Ferdinand E. Canda New York City. This car is constructed with mai verlapping ways or runs and auxiliary ways or runs, with flexibie partitions movable in the ways, the main
ways forming guides for the main portion of the parways forming guides for the main portion of the par he lower ends of the partitions, whereby the car divided into stalls or compartments when used transport cattle. The gate is to be moved to a positio just beneath the ceilings when the car is to be used for general frelght purposes. This improvement is only
one of a series of inventions in this line for which paone of a series of inventions in thls lip
tents bave been issued to this inventor.

## Mechanical Appliances.

Wire Staple Machine. - John Howenstine, Fort Wayne, Ind. In a suitable frame is d die plate on which the die block slides, with a mai lever and a movable anvil, while there is a staple mov ing pusher bar to set a formed staple, and a wire-feed
ing device. The machine is designed to rapidly form ing device. The machine is designed to rapidly form
staples from a coil of wire and insert them into the maerial that is to receive them, the staples being set suc eessively as they are formed, and caused to embrace stay rod of wire to fasten it in place. The machine is especially adapted to insert staples in wooden packing
boxes which are stayed by the use of strengthening rods

Bed for Printing Plates. - Wil liam MacKay, New York City. This invention pro-
vides an improved bed for conveniently supporting metallic plates during the process of printing, $t$ securely hold the plate and permit of adjusting it to
present an absolutely true surface and insure accurat printing. The bed is provided with a clamp consistin of a jaw having a shoulder on its upper face, rounded projection on its inner face, and slots in its
lower end, while a second jaw is secured on the upper lower end, while a second jaw is secured on the upper
end of the first jaw and has its front edge beveled and end of the first jaw and has its front edge beveled and
provided with a recess in its under face engaging the provided with a recess in
shoulder of the other jaw.
Leather Dressing Machine. Marius and Victor Martin, Paris, France. An upper and lower cylinder are moanted, one in fixed and the
other in vertically movable bearings, a main lever having connection with the upper cylinder, while a screw secured to the main lever is mounted in the frame of the machine and another screw above the main leve
limits its movement. The upper cylinder has oughened face, and has projecting helicoidal plate etween which are layers of brushes, the skins bein ed flesh side up between the cylinders. The ma or dry, and to perform the different processes of ski ing, bleaching, scraping, smoothing, glazing, etc.

## Agricultural

Potato Digger. - A. C. Prentice Winston, N. C., and C. M. Fuller, South Byron, N. Y Combined with the frame and driving mechanism is
transverse shovel and an endless belt having a series rearward projecting fingers, the shovel discharging upon he fingers of the lower half of the belt. The machine after actual trial, is claimed to save one horse power,
and the wear of the parts 18 reduced to a minimum, and the wear of the parts 1 s reduced to a minimum,
while the construction 18 simple and inexpensive. The tatoes are all carried to one side and left in a narro oow, where they may be quickly picked up. By mean instead of each alternate row, and the potatoes an vines all carried away from the standıng vines.
Cultivator. - John N. Stanley zark, Ark. This invention relates partion being provide a machine with a number of interchangeable parts, to be used at different stages of the growth of the plant, also furnishing improved means of securing he scrapers to the standard. A threaded bolt connect he main and second beams, in combination with in and covers. The colters are used when the cotton 18 young, and to cut away weeds, etc., and may be used is place of coverers in connection with the scrapers
This cultivator can also be used to cultivate corn.

## Miscellaneous.

SURVEyor's Instrument. - Solomon Davis, New York City. This is an improvement in
instruments employed for measuring distances and magnitude or height of distant objects of triangulation, which is effected without laying off a base line, an more easily and expeditiously than by the ordinary
method. Two instruments are employed and a portahle method. Two instruments are employed and a portahle
base line of known length, which connects them and orms the base of the triangle the length of one side of ripods, and one, having the features of the ordinar surveyor's level, is used to determine the angles of the riangle, whlle the other is a distance instrument, similar in many respects to an ordinary azimuth

Thermometer. - Joseph Kent, 98 Hation Garden, London. England. The glass ther-
is, by this invention, provided with a second open protection of a scale-marked strip, preferably made of enamel, to be secured in position by sealing it to the glass. The improvement is more especially designed for clinical or chemical thermometers, where the external markings of the scale are liable to be defaced o destron
Adding Machine. - William F. Lawrenz, Duluth, Minn. This is an improvement for use on cash registers and indicators, and is mounted in
a casing formed integrally with the register and indi cator, or separately, and attached to the frame of the egister. It is adapted to register the exact total ferently set to register the amount of money registered by the cash register each day, week, or month, giving
thus the exact amount of sales for the period for which thus the exact amount of sales for the period for which the machine is set. The machine is simple and durable register and indicator simultaneously th
Cash Carrier.-Sawuel J. Besthoff, New York City. This is a self-propelling cash car ling mechanism is cound upand put in operative pol tion by manipulating the cash receptacle of the car its cover. The car has a swinging door over ts cash compartment and a spring-actuated mechanism combined with a pawl and ratchet winding mechanism, operated by the hinged end of the door. If the mechanism should be overwound by the frequent opening and closing of the cover before the car is placed on the
track, means are provided for relieving the superfluou $r$ as desired.
Duplicating Machine. - Robert This is a mat Jasmin $P$. Bergeron, Winona, Min tion, in unlimited number and at all most elaborate and delicate carvings and sculptures, as well as natural casts or patterns therefrom, the machine being so made that patterns or models of any proper naterial will not be damaged by it. A trippin guide fingers of a reciprocating standard, drills or bits guide fingers of a reciprocating standard, drills or bit
with means for revolving them being arranged in connection with the fingers, while there are is to be effected, and means for imparting a correponding movement to the pattern and the
Photographic Negative Marker -Benjamin A. Blakemore, Staunton, Va. This is a device to enable photographers to number or otherwise hus avoiding uncertainty in afterward identifying the egative, which is frequently confusing wher a co siderable interval elapses between the time of sitting
and the development of a plate. The invention conists of a stencil plate bearing a number, name or othe marking to be applied to the sensitized plate and photo raphed on the plate simultaneously with the exposure or the sitting.
Incubator. - Frank Frey and Abra am M. Wayne, Quincy, Ill. This invention provides
novel construction designed to facilitate the automatic regulation of the temperature of the incubator by mears of a balance thermometer and other peculia
features, and whereby a constantand perfect circulcion of water in the heating chamber is obtained. The and cold, and the trays are 90 made that the bet will reach almost the whole surface of the eggs, the positlo of the latter being changed expeditiously and conven ently, without liability to breakage. The pans for the interior of the hatching chamber are designed to absor any surplus of moisture, while also serving to direct
the heat in currents to the trays.
Air Cooling Apparatus. - George W. Smith, Mount Vernon, N. Y. In a storage chamber an ice box having a central chamber and an oute necting the central chamber and the space, while blower is provided to effect the circulation of air. Th nvention is designed to provide a cold air producin pparatus which will be economical in the consumptio refrigerating material, and reliable in operation hereby the interior air of a sealed chamber used for cold storage may be maintained at a low tempe
Artificial Ofster Bed.-Achille M. Willis, Rediviva, Va. The bed proper preferably con etwork of wires to support a spawn-supporting mat which may be of pine brush, shavings, etc., to whic he spawn will adhere, or loam or mud may be use with the bed and leading upward therefrom to a float chain or other suitable connection, left sufficiently lack to allow for the tides and to prevent acciden hese beds are designed to be arranged in sets to cover placed on them before lowering while the floats are numbered or otherwise designated to enable the owne to keep account of the condition of the several frames These beds may be used at depths too great for ordinary
oyster dredging, a windlass being employed on the oyster dredging,
BIcycle. - Walter Stillman, Jr., afety bicycles This is an improvement in that class of instead of a chain and sprocket gear. The drivin nechaniem is simple and durable, and may be readil is made any form of bicycle or tricycle. Trent effectually covers the mechanism. The frame of the machine has not so many sections as is now customary because the adjustment of the driving mechanism is ontained in itself and does not need the co-operation of the fame, which may be made more solid and Shovel. - William Wright and John
oving ashes and cinders from stoves and grates, and of the latter. It is a simple and inexpensive utensil having an elongated blade, with parallel side flanges and open ends, a sifter being formed in one end por-
tion, while a pivoted spring-limbed handle is adapted to lock longitudinally of the olade and removably lock
Breast Collar Fastener. - James J. Turner, Casey, Ill. This fastener is adapted to work forward ends of a transversely divided breast collar. oblique-face heir outer ends, one inner end having hook-shape recesses and the meeting end of the other section having jacent section.
Umbrella or Parasol.-Charles H Ely, Atlantic Highand, James W. Danser, na Frank B. Rue, Atlantic Highlands, N. J. This in enion provies a novel form of nockdown umbrella which may be conveniently carronally constructed ribs are fitted to slide on the inner sections, a runner carrying bracesbeing pivoted at their nner and outer ends, while longitudinally adjustable ods are applied to the braces, and cams controlled by the rods are adapted to lock or release the sliding sec-
tions of the ribs relative to the stationary or inner ections.
Trousers. - Isaac L. Morris, Ne w York City. This garment has slits or openings at the having a fly and fastening straps and the back sectio being adjustably made to fit a narrow or wide back, and provided at its edges with straps and adjustable fastenings, whereby the trousers may be fitted to a person
having a wide back and a small stomach or to one having a wide back and a small stomach
Note.-Copies of any of the above patents will be urnished by Munn \& Co., for 25 cents each. Please of this paper.

## SLIENTIFIC AMERICAN

BUILDING EDITION AUGUST NUMBER.-(No. 70.)

## TABLE OF CONTENTS.

1. Handsome plate in colors of a row of woode houses designed by Munn \& Co., architects, and
erected for Mr. J. H. Shafer at Newark, N. J. Perspective and floor plans. Cost of four houses from $\$ 16,000$ to $\$ 18,000$.
Colored plate of the beautiful and substantial stone residence of S. Clark, Esq., on Riverside Park,
New York. Mr. Henry Kilburn, architect. Two perspective elevations and floor plans.
cottage recently erected at Upsal Station, Pa., a spectiv• elevation.
picturesque cottage erectedf at Newark, N.IJ.
t a cost of $\$ 4,963.72$ complete. Perspective an floor plans.
round end house after the style o: od English
homes, erected at Wayne, Pa. Cost $\$ 0,463$ cos. homes, erected at Wayne, Pa. Cos
plete. Plans and perspective view.
2. Designs for circular stables.

Philippine Islands.
attractive residence erected at Brookline, Mas ost $\$ 10,518$ complete. Plans and perspectic Design for the thirteen story Pabst Building a Miwaukee, whis is $\$ 500,000$.
ing probable cot of the bund ing is $\$ 500$, co0

## treal.

11. Illustration of an easily
12. 1 . A $\$ 1,500$ cottage erected at New Dorp, Staten Island. St. John's M. E. Church, recently erected at New and perspective. cottage erected at Roseville, N. J. Cost $\$ 2,800$
complete. Floor plans and perspective view. very convenient and attractive cottage recently
erected at New Dorp, Staten Island. Cost $\$ 4,950$ erected at New Dorp, Staten Island.
complete. Perspective and floor plans.
13. A very attractive block of five new dwellings on Seventy-seventh Street,
and perapective elevation.
and perspective elevation. -An improved hot air furnace, illustrated.--Iron and steel roofing.-Improved woodworking machinery, illustrated-Architect of the Woman Building at the Columbian Exhibition, Chicago -The plain design is the best.-lnside sliding trated. - The Cudell trap. -- Lightning rode Properly anchoring beams in walls.-A propose universal buildug law. - Windmills to supply water for houses, etc.-Graphite grease
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies,
25 cents. Forty large quarto pages, equal to about
and two hundred ordinary book pages ; forming, practically, a large and splendid Magazine of architec-
ture, richly adorned with elegant plates in colors and with Gine engravings, illnstrating the most interesting
allied subjects
The Fullne8
The Fullness, Richness, Cheapness, and Convenience of any Architectural publication in the world. Sold by all newsdealers.

MUNN \& CO.. PUBLIBHERB,

〇Business and 2ersomal.
charge for Insertion under this head is One Dollar a line for each insertion; about eight words to a line. Adver-
tisements must be received at publication office as early as

I wish to buy second band lathes, planers, drills, shapers, engines, boilers, and machinery. Must be in good
order. Will pay cash. W. P. Davis, Rochester, N. Y. Acme engine, 1 to $5 \mathrm{H} . \mathrm{P}$. See adv. next issue
Pros \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Best Ice and Refrigerating Machines made by David
Boyle, Chicago, Ill. 170 machines in.
factory use. Steam Hammers, Improved Hydraulic Jacks, and Tube Screw machines, milling machines, and drill presses. The Garvin Mach. Co., Laight and Canal Sts., New York. Beach's Improved Pat. Thread Cutting and Diamond
Point Lathe Tool. Billings \& Spencer Co., Hartford, Ct. Tight and Slack Barrel Machinery a specialty. John
Greenwood \& Co., Rockester, N. Y. See illus.adv., p. 300. Wanted-Maenine to tunn wooden balls, 3 to 10 incbes diameter. Also machne to turn dumbbells and Indian
clubs. Address P. O. box 128, Pawtucket, R. I. Shect Rubber Packing, 1-16, 3-32, 3/1, 3-16, and \%/4 inch low prices. John W. Buckley, 156 South St., New York. For the original Bogardus Universal Eccentric Mill, S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y. The best book for electricians and beginners in elecBy mail, 84 ; Munn \& Co., publishers, 361 Broadway, N. Y. Force feed seeder. 8 points of superiorty over all
others. Patented July 22, 8890, and June 16, 1891. Entire right for sale.
Paxton, Ill.
Wanted-A practical man, thoroughly acquainted with enfines, having lots of push, with pood address, to cessary). Vone who cannot earn twenty-fve hundred dollars per year need apply. Send full details to Sub-
stantial, sar of SCIENTIFIC AMERICAN. "In Bri~uest Summer Lan
In Brim ai est Summer Land "is the title of a profusely inast ated book of over one hundred pages, set-
ting forth in readable form the attractions, historic associations, and all matters of interest in connection with
the shore and inland summer resorts, of southeastern ucket, and in fact the entire territory covered by the Old Colony Railroad and Fall Rivertine. This, together
with "Manual of Old Colony Resorts," contanigg list of with "Manual of Old Colony Resorts," containing list of
hundreds of summer hotels and boarding houses within he Old Colony territory, will be mailed to any address on receipt of 5 cents to pay postage. Communications
hould be addressed to the Passenger Department, Boston.
QF Send for new and complete catalogue of Scientific New York. Free on application.

## 

HINTS TO CORRESPONDENTS.
 information and not for publication.
References to former articles or answers should References to former articles or answers should
give date of paper and pageor number of question.
In uries not answered in reasonable time should
be repeeated; correspondents will bear in mind that be repeated; correspondents will bear ime mind that
some ansers require not a liltele research, and,
though we endeavo to reply to all either by letter
or int his deprartment, ench must take his turn. or in this department, each must take his turn.
Speciai Write In Information on maters of
personil rather than general interest cannot be expected without remuneration.
Scientitic Amenerican Supplements referred
to may he had at the oftice. Price 10 cents each.
Books referred to promptly suplied on receipt of Mincer
marked or labeled.
(3211) E. B. asks: 1. What is the E. M. F. .anche battery (porous cup Leclanche)? A. $1 \cdot 47$ volts. 2. How many amperes or what fractional
part of an ampere wi.' ne cell produce? A. About
$1 / 2$ ampere. 3. What is the sniernal resistance of one cell ? A. 5 ohm
(3212) W
(3212) W. J. A. B. asks: 1. When, Where, and by whom was the first dynamo made? A.
In 1866, William Varley filed in the British Patent Office a provisional specification for a dynamo electric machine, but this was not published unti. July, 1867 .
In February, 1867. Dr. C. W. Siemens read a paper be In February, 1867. Dr. C. W. Siemens read a paper be-
fore the Royal Society on the dynamo. Sir Charles Wheatstone read another paper on the same subject at the same meeting, so that it is difficult to state who was the first inventor of the dynamo. 2. When, where, and by whom was the first arc (electric) light made? A. Sir Humphry Davy showed the arc light for the first time in 1810, at the Royal Institution. 3. When, where, A. The first incandescent lamp was patented by King England, in 1845. 4. Which is cheaper, and how nuch, horse power, cable, storage battery, or trolley power, for street cars? A. As the conditions vary so
nuch in different places, it will be impossibie to give a very satisfactory answer to this query. It is probable. owever, that under favorable conditions the cable
ystem is less expensive than either of the others. ystem 18 less expensive than either of the others. 5 .
What is the greatest speed ever attained by an Amerian locomotive with a train? And an English ditto? miles in 97 minutes, are two of the best examples of fast running. The average rate of high speed has made under the best conditious. It is stated on good authority that there is very little difference in the speed
of the fastest trains here and in Europe. 6. What is he greatest diameter of a driving wheel of a locomotive ever built? A. On one of the early engines used on the Camden \& Amboy Railroad the driving wheels were 8 feet in diameter. In Europe, large wheels are
still in use to some extent, but here large wheels have
a dynamo be changed into a motor: A. As a rule,
any yood dynamo for generating a direct current can any good dynamo for generating a direct current can
be used without change as a motor. 8. How long will be used without change as a motor. 8 . How long will
100 gravity (telegraph) cells run a 18 candle power inis impracticable to cells. 9. How long will 200 cells do it $\%$ A. It is im practicable to run incandescent lamps with any numbe of gravity cells. 10. How many gravity cells would be necessary to charge a storage cent of dimensions $12 \times$ $12 \times 12$, and how long to do it? A. For charying storage battery cell, four cells of gravity battery ar
(3213) C. E. N. and H. W. McC. ask recipe for fastening paper to the face of an iron pulley and how to make a good belt glue. A. Scratch the face of the pulley with a rough file thoroughly, so tha there are no bright or smooth places. Then swab the surface with a solution of nitric acid 1 part, water parts, for 15 minutes, then wash with boiling hot water
Have prepared a pot of the best tough glue that you can get; stir into the glue a half ounce of a strong solution tannic acid, oak bark, or gall nuts, as convenient to ob tais, to a quart of thick glue: stir quickly while ho and apply to the paper or pulley as convenient, and draw the paper as tightly as possible to the pulley, over lapping as many folds as may be required. By a little management and moistening of the paper it will bind very hard on the pulley when dry, and will not come off
or get loose until it is worn out. Use strong hardware wrapping paper.
(3214) W. R. asks : 1 . How many sulphate of copper batteries would be needed to charge a storage battery for rumning an 8 candle power electric
lamp? A. You will require 4 cells of gravity battery to each cell of storage battery. 2. Shonld the storage cells be arranged in multiple arc during charging process ? A It is probably best to make the storage and gravity cells
up separately, as above suggested. 3. How long will they run above lamp before running out, if used 6 hours daily? A. Storage batteries will not run large lamps for much more than six hours daily. 4. In what time can they be charged after the first thorough charge? A. It requi es from seven to eight hours to charge a storage battery. 5. What is the best arrange ment for the sulphate of copper cells? Is the Edison
Lalande battery a suitable cell for running an electric lamp? How many of these cells would it take to runan 8 candle power Edison lamp? Where can I find a full and extensive treatise on this last type of electric bat tery? A. Write the Edıson Manufacturing Company, Orange,
battery.
(3215) E. L. asks if there is a school, preferably in the eastern part of the country, where a young man can take a short special course in electrical
engineering without being required to pass the examnation in the languages and higher mathematics which the regular colleges require? A. A special course in electrical eng:neering such as you specify would be best obtuined in an electric manufactory or works of some kind. A college could not give a good course to
the exclusion of mathematics. Yon might address Columbia College, of this city, Cornell University, Ith Hoboken, N.J., for informatiun as to any special elective courses they may have in electrictity.
( 3216 ) C. W. writes: 1. Have you a paper or book on watch finishing? A. We can suppl tion. The "Watch Maker's Hand Book," by Saunier price $\$ 3.50$. "A Treatise on Watch Work,"' by Nel thropp, $\$ 2.50$. "The Watch and How to Repair It," \$1. See page 53 of catalogue, which we send by mail
2. Would it hurt a person to take brucine internally? 2. Would it hurt a person to take brucine internally
A. It is a deadly poison, one of the worst known to A. It is a deadly poison, one of the worst known to
man. 3. Is there any difference between brucine and brucin? A. No; it is only a question of spelling.
( $3: 17$ ) E. B. asks for a cement o composition. Kindly favor with a cement and
how to apply it to join a closegraned, hard, white marbleslab, 8 inches deep by 2 inches thick, 4 feet long, rough-broken into two pieces about the middle of its length, forming a side piece forcradle of a grave and being always exposed to the inclemency of the weather. A. You might try a cement formed of oxide of zinc mixed with a strong solution of chloride of zinc.
It will have to be applied quickly to each half of the It will have to be applied quickly to each half of the
stone, and the pieces joined before the cement sets stone, and the pieces joined before the cement sets
It will probably be well to experiment on a small piece of stone before applying the cement to the marble.
(3218) J. S. M. asks, What size of wire is ocribed in Supplement, No. 161, made size of cuts? A It depeuds entirely upon what you intend to do with the machine. For general purposes, however, we think
No. 20 on the armature and No. 18 on the field magnet would do for a series machine. 2. What can be put in whitewash for outdoor to increase its adhesive
qualities? A. Try skimmed milk. 3. Has there been genuine history of Stanley's travels in Africa published, and by whom? A. Scribner \& Co. of this cit publish Stanley's books
( $3 \approx 19$ ) N. J. asks : 1. Could you give me he recipe for a glue that wiil withstand water as wella pure India rubber (unvulcanized) in benzole or naphtha To one part of rubber originally used add ten to twent parts of pulverized shellac, mixing it with the benzole nd warm upon a water bath (or use a glue pot for his); apply by melting with a warm iron or wire on the surfaces to be united. Do not use a flame. Common glue may be melted with water ar.d one-tenth its weigh nsoluble. 2. Could you tell me whether such a glue in the market? A. Marine glue is sold by dealers in
microscopic supplies.
(3220) F. C. writes: There is a prepara shows animalcules, bacterla, etc. I think it is som highly fermentive eubstance like yeast, but have som highly fermentive eubstance like yeart. but have ex-
perimented without any succese. If yon can give me
any information about it I will be exceedingly grateful.
A. Try old flour paste allowed to stand for several days.
Infusorians are quickly developed in an infusion of hay Infusorian
and water
(3221) T. W. J. asks (1) for directions fo softening stone, so that it can be moulded into any de cannot be softened as you describe. 2. What liquid or chemicals) will produce the most intense heat ? A. ulphuric acid and water produce heat far above the oiling point. The acid should be added slowly to the (3222) J. H. R. asks: How can I detect adulteration in bone meal, or whether it is pure or adul-
terated ? A. The only reliable way is by analysis. I hould dissolve without effe
(3223) T. L. P. writes: In my daughter's octural bureau, the floors, which fiehed by your archibecome disfigured by black stains, probably wher damp iron in some way has been in contact with them suppose it is tannate of iron. Can you suggest som
means of removing this discoloration? A. Try hydro eans of removing this discoloration! A. Try hydro-
hloric acid diluted with ten volumes of water. If thi not strong enough, try weak solution of oxalic acid.
(3224) O. C. K. asks: What advantages nd disadvantages are connected with the use of ordinary slide valve actuated by an eccentric attached to crank shaft : A. The advantages are comparative
freedom from wear and ease of movement. There being but little friction on the steam chest face, the per fect fit of both faces is maintained, saving leakage,
which is a source of economy in runnng and repair. The gain in power is very small. The diradvantages e only found in their complicated construction and nent, the balancing moving jonts. Both kinds being moved by eccentri
(3225) M. E.-New York, Brooklyn, Berlin are we believe the orly cities that have general here are spurs of elevated tracks, or viaducts, on which trains pass to depots, etc.
(3226) D. W. S asks : 1 Will you pleas ell me how the lights should be connected in circuit of eight light dynamo (Supplement, No. 600) so I can
ise one or more at a time? A. The lamps should be onnected up in multiple arc; the field magnet of the ynamo should have about four more layers of wire ynamo. 2 If I should bnild a machine after the sam pattern for 16 lights, and connect lights in multiple ould I burn one singly, the machine running normally A. Yes; if connected asa shunt machine, with the field
magnet winding properly proportioned. 3. Also, can ell this maching properly proportioned. 3. Also, can of any patent rights? A. This machine when buil with a wire armature core does not infringe any pat
(3227) A. F. F. asks : 1. What sized wires re used in the induction coil of the Blake transmitter is it made? Are both coils copper? Is the primary coil insulated? Is there anything placed between the two coils? A. Use No. 36 wire for the secondary and No 0 for the primary. Use two layers in the primary and 10 or 12 in the secondary. Make the core of the coil o er and 3 inches long. The primary and secondary wires are insulated, and the two coils are separated by hree or four thicknesses of writing paper wound around the primary. 2. What is an auxiliary magneto bell? Will it work on a line $11 / 2$ miles long without using the regular magneto? A. An auxiliary nagneto ell is an additional bell put isto a telphone circuit.
(3228) F. W. S. writes:
(3228) F. W. S. writes : A recent fire devery nicely. Being enabled to unlock it readily by the combination, we now wish to know from a source of ood authority if this safe would still preserve our books rough a like fire, and if not, why? A. The preservafive qualities of a sufe depend chiefly upon the amonn of water contained in the filling. Hence for this pur
 high percentage of water are used. If a safe is exposed be driven out of the filling, and consequently

## NEW BOOKS AND PUBLICATIONS.

Massage, Theoretical and Practi-
CAL. ${ }^{\text {Py }}$ By Douglas Graham, New York: J. H. Vail \&
Co. 1890.
This is the second edition of a book first published 1884. It has been revised and enlarged, and the present volume is designed to cover a full description logical effects as a remedial agent for a far greater num ber of ailments than it has commonly been supposed to be available for. The effects of massage upon the in ternal organs, upon complaints peculiar to women. and especial particularity, while rheumatism and joint af ections and many other complaints are shown to be beneficially suhjected to this treatment, the general method of cure, wherever it can be employed, a reall enjoyable one.

## TO INVENTORS.



# United States were Granted 

July 28, 1891.

## nd EACH BEARING THAT DATE

[See note at end of list about copies of these patents.]

##  Air for the production of mechanicai powe maens for utilizink compressed, v. Popp..... lan lock Jive. 

 Ax setc.ile fate.............. Didero.

## 

 ar. Straightellow bar.man
man



## 

## Billiard table ree ister, P. Artmann.....

 Boile
Boile
Boile
Bor
Bot.
Book,
Bo.
R Bolt.
Book,
Book,
Boot,
Bottle
Bouq
Box
To
Bre
Bre








|  |
| :---: |
|  |
|  |
|  |
|  |
|  |
|  |
|  |
|  |
|  |
|  |
|  |
|  |
| ded |
| \% |
|  |
|  |
|  |
|  |
|  |
|  |
|  |
|  |






Langbein's New and Splendid Book on the Electro-Deposition of Metals.

## JUST READY.

A COMPLETE TREATISE
Electro-Depocsition of Metals.

 Thermopilies, ard of the Materials and Processes used
in every Department of the Art Translated from the
Terman of Dr George Lankbein, Tithadditions by Wil
liam Tim
 I. GENERAL HISTORICAL PART. CHAPTER



 NIII. DEPOSITION OF COPER, BRASE AND BRONE



 ELECTRO-PLATING ART. XIX. USEFUL TABLES
INDEXThe above or anyof our Books sent by mail, free or
postage, at the publication prices, to anyadaress inthe world


 HENRY CAREY BAIRD \& CO.

## FTELECOFES <br> C ACHROMATIC EYEPIECES \& LENSES IVS EQUATORIAL STANDS, TRANSITS, CLLOCKKS CHROGRAPHS \&, )

INVENTIONS WOIRKED OUT, Drawings and

Perfect Newspaper File The Koch Patent File; for preserving Newspapers, Mag-
azines, and
price reamuceam shets. has been reentyw



## 5ixisw

 $\mathrm{C}^{\text {ushman }}$.anuous INVENTIONS PRACTICGLLI DEVELOPED

## BACGACE TRUCK.

## 


mentions Meveloped, Experiments wade, investigations furhored, etc. We have a machine shop whented to all such work, with first-class mell and facilities. Primer to send.


PNEUMATIC BELL OUTFIT ${ }^{\text {British a asociation mebting }}$
 STEEL TYPE FOR TYPEWRITERS


THE CYCLOPEDIA OF TEE MANUFACTURES
 jegisters the
jontly conside
United States.


## 

 Manufactured by HARRISBURG FOUNDRY AND MACHINE WORKS, Harrisburg, Pa., U. S. A. THE AMERICAN BATTLE SHIPS. Two elegant albums of views of the new warships of
the U. S. Navy, including the "Cushing,"," "Chicago,", and others, will be sent to any address in the Unite

曰. O. MIOOORMIIOE, C. H. \& D. R.R., CINCINNATI, O.

TO BUSINESS MEN
tising medium cannot be overestimated. Its circulation
is many times greater than that of any similar journal
now published. It goes into all the States and Territo
 other paper for the ScIentiric American, when selecting a list of publications in which you decide it is for
your interest to advertise. This is frequently done for
the reason that the agent gets a larger commission from the reason that the agent gets a larger commission from
the papers having a small circulation than is allowed on the Scientipic Americin.
For rates see top of frst dress MUNN \& CO., Publishers.
$\qquad$


W A NTED.- Estimates on an automatic machine
for manufacturing atime wire novelty. Address N. Y. LITTLE WONDERS


CIAREIS FA N S.
 lso Rubaer catalogue free.
and Yarn Wess Reols for Wool
anshing and GEO. P. CLARK, Manuf.
. Windsor
THE PENNA. DIAMOND DRILL \& MFG. CO. BIRDSBORDO, PA, Builders of High. Class
Steam Engines, Diamond Drills, Power and Hand
Cranes, and General Machinery.

stine prices of the difierent puntications in in the United
 The geanntific Amercan Supplement (weekly), one 5.0 The Scientific American, Spanish Edition (month-
1y) one year,
The Scientific American Architects and Builders The Scientific Ammerican Architects and Builders
Edition (monthly), one year, -
COMBINED RATES. The Scientiffc American and Supplement, - $\quad$ - 87.00
 The Scientific American, Supplement, and Archi-
tects and Builders Edition, This includes postage, which we pay. Remit by posta
or express money order, or draft to order of MUNN \& CO., 361 Broadway, New York


## HMllefrs lill Couplills

Double Brace, Self-Oiling, Adjusta ble Ball and Socket Hangers, Pillow Blocks, Post Hangers, Etc.
 EDISON GENERAL ELEOTRIO OO., SCHENECTADY, N. Y.

RADII OF CURVATURE GEOMETRI-



GASEOUS ILLUMINANTS.-A VAAL-



COLORING MATTERS: THE QUAAN-



THE HANDY








 MUNN \& CO., Solicitiors of Patents,



## RUBBTR BTGTING

Manufacturers of the Celebrated MONARECH
MALTESE CROSS RED STHIP and MOHAWK THE GUTTA PERCHA AND RUBBER
. Para Building,
Jan Francisco.

## HW.JOHIS' Assestas Steam Packing

Boiler Coverings, Miliboard, Roofing,
Building Felt, Liquid Paints, Et. DESCRIPTive price list and samples sent frer,
H. W. JOHNS MFG. CO., 87 Maiden Lane, N. $\mathrm{Y}_{0}$

## RLECTRICAL LABORATORY FOR




## MALLEABLEED FANE GRAY IRONALSO STEEL


 addition, subtraction, MULTIPLICATION, DIVISION,
INTEREST, EXCHANGE, PERINTEREST,
CENTAGE, \&C. CENTAGE, \&C.
The COMPTOMETER
Solves rapidy and accurately an

 FELT \& TARRANT MFG.CO., 52-56 Illinois St.. Chicago. THE MARINE LOCOMOTIVE.-BY



JAMES WATT, AND THE APPLICA


THE PHOSPHATE DISTRICTS

 a Larce bonus.
Full details of which will be given on applicationto
the ofice of the Avendia Gulf Co sta and Lake-
land Railroad, 88 Lincoln Stret ALUMINUM.-DESCRIPTION OF THE method of manufacturing this metal from cryolite as
practiced at the $A$ lliance Aluminum Works at Wallsend.


> SIEMENS
> :CABLES.

SUBMARINE,
UNDERGROUND, INTERIOR,

* $+*$ TELEGRAPH, * + TELEPHONE, ELECTRIC LICHT.

SIEMENS \& falske by the edison general electric co. at their SCHENECTADY WORKS.

Wire Department, Edison General Electric Company,
EDISON BUILDING, Broad St., NEW YORK.
 THE HORSE'S HOOF.--BY DR. WIL
 No. 756 . Price 10 cent
from all newsealers.

TEMPERING STEEL FOR CANNON


3 to 50 H. P. THE Motor of $19^{\text {th }}$ Century


Economij, Rella $\begin{gathered}\text { Biltys } \\ \text { Blmplicty, } \\ \text { Safety. }\end{gathered}, ~$
CHAT Cirr Guars eto adidress
TRANSMISSION OF POWER BY COM-



NEW KODAKS
 ou press the button,
we do the Seven New Styles and Sill loaded with Transparent Films.

> For sale by all Photo. stock Dealers. THE EASTMAN COMPANY,







## 

Join H. Chebver, J. D. Cherver F. Cezenove jones, Mamagers. 15 Park Row, New York.


## Vulcanized Rubber Fabrics

 Rubber Beling and Hose. solid vulcanite emery wheels.RUBBER CUSHION BICYCLE TIRES approved mosigns.

## 

 mamanamamem.95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent ranted to Alexander Graham Bell, March th, 1876, No. 174,465, and January 30th, 1877. No. 186,787.

The transmission of Speech by all known orms of Electric Speaking Telephones inringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnish unlawful use. and all the consequences thereof, and liable to suit therefor.
THE PELTON WATER WHEEL Jo ( The Pelton Wa ater Wheel Co.
121A Main St., San Franciece, Col

GEAR CUTTIING

## Leland, Faulconer

## SCIENIIIC MEREAN

## ESTABLISHED 1846. <br> The Most Popular Scientific Paper in the World

Only $\$ \mathbf{W e} \mathbf{~ 3 . 0 0}$ a Year, Including Postage
This widely circulated and splencidyly illustrated teen pages of useful information and a largentains sis original engravings of new inventions and discoveries representing Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures,
Chemistry, Electricity, Telegraphy, Photography, Arcki tecture, Agriculture, Horticulture, Natural History
Terms of Subscription. - One copy of the Scien HFIC AMERICAN will be sent for one year-52 numbersCanada, or Mexico, on receipt of three dollars by the Canaua, or Mexico, on recelpt of thee dols, $\begin{aligned} & \text { publishers; six months, } 1.50 \text {; three months } \\ & \text { Clubs.-Special rates for several names, and to Post }\end{aligned}$ Clubs.- Special rates for several names, and to Post
Masters. Write for particulars. Masters. Write for particulars.
The safest way to remit is by Postal Order, Draft, or
Express Money Order. Money carefuly Express Money Order. Money carefully placed inside
of envelopes, securely sealed, and seldom goes astray, but is at the sender's risk. Addres, all letters and make all orders, drafts, etc risk. Addres MUNN \& CO., 361 Broadway, New York.

Sicnutitic axmerical \$upplement
This is a separate and distinct publication from THE SCIENTIFIC AMERICAN, but is suniform therewith in size, every number containing sixteen large pages full of en-
gravings, many of which are taken from forelgn papers, gravings, many of which are taken from forelgn papers, y, and includes a very wide range of contents. It pre sents the most recent papers by eminent writers in al the principal departments of Science and the Useful History, Geography, Archæology, Astronomy Chemisrry, Electricity, Light, Heat, Mechanical Engineering, tream and Rail way Engineering, Mining, Ship Building, Marine Engineernng, Photography, Technology, Manu-
facturing Industries, Sanitary Engineering, Agriculture Horticulture, Domestic Economy, Biography, Medicine etc. A vast amount of fresh and valuable information The most im no other publication. The most important Engineering Works, Mechanisms,
and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT. Price for the SUPPLEment for the United States and
Canada, 85.00 a year; or one copy of the ScIENTIIC Canada, 85.00 a year; or one copy of the SCIENTIFIC AM-
ERICAN and one copy of the SUPPLEMENT, both mailed for one year for 87.00 . Single coples, 10 cents. Address and MUNN $\&$ CO., $\mathbf{3 6 1}$ Broadway, New York,
Mit by postal order, 361 Broadway, New York,
Publishers ScIENTIFIC AMERICAN.
finuilding EXdition.
THe SCiENTIFIC American Architects' and
BUILDERS' EDTIT ingle coples, 25 cents. Forty large quarto pages, equa large and splendid Magazine of Architecture, richly adorned with elegant plates in coors, and with other fine engravings; illustrating the most interesting exampies A special feature is the presentation in each number a variety of the latest and best plans for private resierate cost as well erspective and in color are given, together with fuil The elegance and cheapness or this magnificent wor Arehitectural publication in the world. Sold by all news MUNN $\mathcal{\&}$ CO., Publishers,

$$
361 \text { Broadway, New York. }
$$

PRINTING INKS


