

\bar{A} WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

NEW YORK, JULY 4, 1891.
$\left[\begin{array}{c}\text { S3.00 } \\ \text { WEEKLY. } \\ \text { A YEAR. }\end{array}\right.$

THE MCDOUGALL WHALEBACK STEEL VESSEL. The old ballad commencing "In the North Sea Lived a Whale" has its use now in a facetious adaptation of this line to the needs of a souvenir issued by the people of Superior, Wis., in commemoration of the launching of the first two vessels of the two vessels of the
McDougall whaleback pattern, built at the shipyard in that city, an event that took place on the afternoon of the 15th of November last. The two boats went into the water sideways, and floated in their slips as if in their slips as if
they were in their they were in th natural element. prising information to an Atlantic coast seaman is contained in the recent report of the Commissioner of Navigation, in which it is stated which it is stated that the registered tonnage of the ves sels inspected on the Great Lakes for the year ending October 1 was in excess of the tonnage of those inspected on the Atlan-

launching of the joseph l. colby, at superior, wis. within the past three years has certainly been marvel- the Great Lakes, and its carrying capacity was gener-

| tic coast, and also in excess of the tonnage of those in- | $\begin{array}{l}\text { ous, and is a vast testimonial to the importance of that } \\ \text { spected on the Pacific and Gulf coasts and all the rivers } \\ \text { inter-state commerce which is largely the product of }\end{array}$ |
| :--- | :--- | spected on the Pacific and Gulf coasts and all the rivers inter-state commerce which is largely the product of of the United States combined. The development of the past thirty years. Less than ten years ago a steam the shipping interests upon this arm of the Atlantic propeller of 1,200 tons registry was a large carrier upon ally limited to about an even tonnage with its registry by the cumbersome power used and the amount of internal "works" deemed necessary to give it strength and solidi ty. But since 1885 the size of the lake steamer has gone up as high as 1,900 tons registry, and with a common though varying carrying capa city of from 2,00a to 3,000 tons, with some vessels of 4,000 tons capacity.

The sailing vessel is rapidly passing into the limbo of forgetfulness, and the deep and fast steamer is gathering to itself the business of the lake carrying trade. The lumber traffic still adheres to the sailing vessels, but

WHALEBACK BARGE No. 104.
THE COLBY IN DRY DOCK.

two whaleback barges.
WHALEBACK STEEL MERCHANT BARGES.
iron ore, coal, wheat, flour, and merchandise go to the steamers for low rates and quick transit. And the present tonnage of the lakes is kept in an absorbing chase of distances by the enormous traffic turned over to the vessels by the railroads at deep water terminals like Chicago, Buffalo, and Superior.

In the mad rush of invention upon the land, marine architecture was allowed for a quarter of a century in this country to suffer somewhat. Land transportation absorbed all the powers of men's invention. But it was only a slumber for a season. Cheap transportation between the East and West became so important a factor that human nature could not resist the pres sure, and so it happens that from the deep water's end in the middle of this continent, where land and water have their final junction, so to speak, from the head of Lake Superior, within dinner call of the farmers of Minnesota and Nebraska comes the latest and most wonderful innovation on marine architecture that has met the waters since Fulton'ssteamboat was put afloat. Alex. McDougall, of Superior, Wis., an old lake vessel master and agent, is the inventor, and is now at the head of the practical operations of a ship yard at that place which has keel blocks for the simultaneous construction of ten steel vessels, and from which th American Steel Barge Company, the owner of the plant and patents, expects soon to turn out 52 vessels per year, or one each week.
These vessels are built both as tow barges and as steam propellers. The first boat of the fleet (there are now eleven afloat), the tow barge " 101 ," a small craft of 437 tons registry and 1,400 tons carrying capacity, excited unlimited ridicule and amazement among lake vessel builders, but her cost was only $\$ 45,000$, and in t.wo seasons she has netted her owners over $\$ 70,000$ in the face of active competition, so that the laugh is now differently located. This boat was built in the summer of 1888 , and was immediately denominated "the pig" by vessel men-a name that clings to all of her kind
The first steam propeller, the Colgate Hoyt (named after the president of the American Steel Barge Company), was built in the winter of 1889-90, and has been in successful commission during the season of 1890 in the ore, grain and coal carrying trade between Superior and Lake Erie ports. She carries 2,800 tons of iron ore on a 15 foot draught, and readily makes 12 miles an ho
2,400 tons.
The Joseph L. Colby, launched November 15, is a somewhat smaller vessel than the Colgate Hoyt, being designed for passage through the Welland Canal and St. Lawrence River to Montreal. Her dimensions ar as follows: Length over all 265 feet, width of beam 36 feet, depth of hold 22 feet. All subsequent steamers of this pattern will be built 38 feet beam and 24 feet depth of hold.
The tow barges 102 and 103 are of 1,132 tons registry and 3,000 tons carrying capacity ; the tow barges 104 , 105,107 , and 109 are each of 1,216 tons registry and 3,300 tons carrying capacity.

The Colgate Hoyt is registered at 1,008 tons, and 3,000 tons carrying capacity, with a speed of 15 knots per hour on 800 horse power. This statement will be understood when it is said that the fine steamers on the lakes of 1,800 tons registry, 15 knots speed and 3,000 tons carrying capacity, require 1,600 horse power for their work.
The "whalebacks" are all built upon the same pattern. They are round decked, flat bottomed, and ended up like the pointed end of a cigar. The wheel house on the tow barges is in a mere turret, and the men's quarters (it takes five to man one of them) are under the wheel house. On the steamers, the cabin and wheel house are set up on three turrets. These are the peculiarities that make of these boats a com plete revolution in ship building. There is no ponderous bulk above the water to catch and fight the sea in a storm. The water washes over them, not against them. The round deck may make of them the most ormidable naval vessel ever built. The flat bottom may make of them famous river boats.
The ship yard at Superior has six "slips" and ten piers or ways for keel blocks, so that ten of these boats can be under construction at one and the same time And Manager McDougall speculates with some enthu siasm upon the fleet of "steam pigs" which he will send to the St. Lawrence in the fall of 1891 to engage in the Atlantic coasting trade for the winter season.
There is at present a whaleback tow barge lying on a dry dock in New York City, that was constructed at the Erie Basin for the coast and river trade, while two McDougall propellers are expected here in a short time, one of which is to be sent across to Liverpool and one to Puget Sound, on the Pacific coast.

Contract has been let for the construction of a ailroad from San Diego to San Quentin, Lower Calicornia, a distance of 162 miles. The road is to b built as soon as the Mexican government approves the survey. A cargo of supplies for the road is now on the way from England. The company is to receive
$\$ 8,000$ per mile subsidy from the Mexican government

Fscientific schmerican.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.

 published weekly at
No. 361 BROADWAY, NEW YORK.

O. D. MUNN.

A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN

 ne copy, six months, for the U.S., Canada or Mexico ne copy,one year,to any foreign country belonging to Postal........ 150 Remit by postal or express money order, or by bank draft or check. The Scientific American Supplement.

 Building Edition.
THE ARchirect AnD BuILERS EDITION OF THE SCIENTIFICAMERIbeat
tect
lig
tura Sin
or Me
Comb
an yea and

NEW YORK, SATURDAY, JULY 4, 1 צ91.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT No. 809.

For the Week Ending July 4, 1891.

 Price 10 cents. For sale by all newsdealers.ART.-How Statues are Made.-The technique of the sculptors
art.-How the model is made for a statue. The reproduction in
plaster and in marble-The casting of tron sto

Wavavana
 rane. The two gunboats in question lately torpedoed and sank the rebel ironclad Blanco Encalada, which was the strongest and proudest ship they had. This was a dreadful blow to the rebels.
An eminently successful trial of a torpedo boat just completed by Messrs. Thornycroft \& Co., for the government of the United States of Brazil, took place in the estuary of the Thames on the 2d of June. The new vessel is 150 feet long by 14 feet 6 inches beam, there being four torpedo guns suited for the 14 inch Whitehead torpedo. Two of these torpedo tubes are mounted on racers on deck and two under deck in the bows, arranged not in the ordinary way, but with gear enabling them to be protruded through doors in the enabling them to be protruded through doors in the
skin of the boat. The machinery consists of two sets of triple compound engines, supplied with steam by two Thornycroft water tube boilers. The trial con sisted of two parts-first, a series of six runs on the measured mile, with a load of nineteen tons on board, during which a speed of twenty-five knote was guar anteed by the builders; and, secondly, a continuous run of two hours' duration, during which a speed of twenty-four knots was guaranteed. The results of the six runs were as follows:

	Knots.	Mean revolations per knot.
First run, with tide.	.27629	1,165:5
Second run, against tide.	.23529	1,289
Third ron, with tide.	.288346	1,034
Fourth run, against tide.	.23:377	1,200•5
Fifth run, with tide.	.28•34	1,0i2.3
Sixth run, against tide.	238	1,282:5

The mean of these speeds computed by the Admiralty method being 25.858 knots, Messrs. Thornycroft's guarantee was more than fulfilled. The mean number of revolutions required to do a knot was found to be $1,165^{\circ} 4$. At $1: 18$ P. M. the vessel was put upon her two hours' run, and at $3: 18$ it was found that the mean number of revolutions of the serews amounted to 59,174 , which, being divided by $1,165 \cdot 4$, the number required to complete a knot in still water, gives a distance of 50.775 nautical milss, or 58.4 statute miles, covered in the two hours. This
showed an average speed of 25.387 knots, which, it is claimed, is the greatest distance ever run and highest speed maintained by any vessel in the time. During the run steam was blowing off from both boilers and the pressure of 210 pounds per square inch was maintained with ease, there being an air pressure in the stokehold of only one and one-half inches of water.
It is encouraging to think that our own navy is likely to have one little fast torpedo boat in the course of a year, although it will not be equal to the Brazilian vessel.
Secretary Tracy has issued an advertisement inviting proposals or the construction of a steel twin-screw torpedo boat. The proposals are to be opened on Aug. 18. The boat will be about 120 tons displacement, and must be completed within twelve months after signature of the contract. The proposals may be under the department's designs or in accordance with the bidder's designs. The minimum speed is twenty-four knots per hour, and provision is made for a bonus ranging from $\$ 2,500$ to $\$ 3,500$ for every quarter knot speed above twenty-four knote and for deductions of $\$ 2,500$ for every quarter knot deficiency. The vessel may be accepted if she makes twenty-two knots per hour.
The six torpedo boats lately built by Yarrow for the Argentine government had a speed of $241 / 2$ knots, on a displacement of 76 tons. They are 130 ft . long, $131 / 2 \mathrm{ft}$. beam.

American Saltpeter Caves

y. с. нover.

The uses of saltpeter, or the nitrate of potash, ar well known, in the curing of meats, glass making, metallurgy, pharmacy, pyrotechnics, and especially in manufacturing gunpowder. It contains 54 parts of nitric acid to 46 parts of potash ; and one volume of it is said to hold as much oxygen as 3,000 volumes of ordinary atmospheric air. Hence it has been called " a magazine of oxygen in a solidified form." The result of suddenly liberating such an amount of imprisoned gas, by ignition with charcoal and sulphur, is the familiar explosion that gives gunpowder its terrific force. The chief source of native saltpeter, from the remotest antiquity down to modern times, has been the great valley of the Ganges, in India, where it uccurs as an efflorescence of the soil, having only to be purified by crystallization to fit it for the market. The business was formerly a monopoly of the East India Company, but it gradually passed in the hands of various private firms that annually export from Calcutta about 500,000 cwt., fully one-half of which goes to Great Britain. "Nitraries" are artificially made in Sweden and other parts of Europe. Quantities of the nitrate of soda are also imported from Chili, Bolivia, and Peru, from which saltpeter is obtained by double decomposition. The manufacture of saltpeter in the United States has curiously ebbed and flowed with our military exigences. In times of peace we have had better ways of investing capital and labor than in producing what can be more cheaply imported from India or Chili. But in times of war, while the supply has been cut off, the demand has inevitably increased. When an embargo was laid on our commerce duing the war of the revolution, our fathers were thrown on their own resources in all respects; and thus, at the
very time when gunpowder was most needed, it was most difficult to be had. Thomas Jefferson, who first drew public attention to the natural wealth of the Old Dominion, is our authority for the statement that at the crisis named more than 10,000 pounds of the nitrate of potash were extracted from the soil found in the caverns of the Kanawha, Greenbrier, and Cumberland valleys. The Madison Cave, in the Shenandoah Valley, enjoyed the unique distinction, according to its present owners, of having been worked for nitrate during three wars, namely, those of the revolution, o 1812, and of the secession. It is probable that the Confederate powder mills were altogether dependent on local supplies, from this and other caves in Virginia and Tennessee, especially the extensive works still visi ble in the famous Nicojack Cave, that begins in Tennessee and runs down into Georgia, and which I had an opportunity to examine last March.
My inquiries have been more especially directed however, to the saltpeter works of the Ohio Valley, where at one time the speculative excitement ran very high, being, on a small scale, analogous to the subsequent gold fever of California. The pioneers who followed in the wake of Daniel Boone were in daily peril from wild beasts and more savage Indians; and yet they found the importation of ammunition almost impracticable on account of its expense and difficulty They applied to the executive council of Virginia for 500 pounds of powder, and were curtiy told in reply that the State " could only lend it to them, as to friends in distress, but could not give it to them, as to fellow citi zens." This sort of aid was promptly rejected, and a project was immediately set on foot to create the independent State of Kentucky. Thisthreat led to concessions whereby the region was made a county, instead
outright, instead of being merely lent; and on that fact hung the connection between Virginia and her plendid western domain. This was in 1776, and serve The lesson was not lost The Kentuckians at onc sent forth such strolling chemists as happened to be among them, to hunt for niter beds. These were found in the "rock houses" at the heads of ravines, in crev ices amid the cliffs, and the sandstone itself was some times found to be rich in niter, whence may have come the term saltpeter, or literally "stone salt." But the main deposits were found in the great limestone caverns of the region. Solid masses of the coveted mineral were occasionally met with, weighing from 100 to 1,600 pounds each ; and the workmen hunted for such lumps as others might have sought nuggets of gold. Yet, as is usually the case, the more systematic work paid the best in the long run. As many as twenty-धight salt peter caves were worked in Kentucky before the year 1800 , from which, up to that time, more than 100,000 pounds of niter had been extracted, with more than $2,000,000$ pounds in sight and awaiting the hand of the miner.
In 1806 Dr. Samuel Brown, of Lexington, Ky., made a journey of a thousand miles on horseback in order to lay the facts as to this novel form of industry before the American Philosophical Society, of Philadelphia His lengthy report is at hand as I write. He described what was being done in various localities, in both lime stone and sandstone caves; but dwelt particularly on the works in the Great Cave on Crooked Creek, in Madison County. This latter cave had two mouths, 646 yards apart, on opposite sides of a mountain, with a level floor running completely through, like a public high way, beside which flowed a living stream. Some seventy men were employed, with ox carts. The oxen perfect darkness and without a driver. Brown ad vanced the curious theory that "potash, soda, lime, and magnesia are nothing more than varied forms and proportions of the same constituent ingredients." But however crude the notions, imperfect the tools, and rough the hands that wielded them, the historic fact remains to the credit of the pioneers, too often forgot-
ten by the historian, that our national life was saved, during the war of 1812 , by the salt that was found in the caverns of Kentucky, Indiana, and Virginia. And this was to a considerable degree likewise due to the prompt response made by men of learning and enter prise on hearing Dr. Brown's appeal to them to prove their "concern for the glory and defense of our country" by investigating as to "this salt, so valuable in time of peace, and so indispensable in time of war." Among influential men whose attention was thus direc ted to the subject were Mr. Gratz, of Philadelphia, and Mr. Wilkins, of Lexington, who formed a partnership for developing the novel industry.
These gentlemen shortly became joint owners of the Mammoth Cave, in Edmondson County, Kentucky employing Mr. Archibald Miller as their agent. The latter, after due examination, reported with enthusiasm that there was in this one cavern "a sufficient quantity of saltpeter to supply the whole population of the globe." He set a large number of negro miners to work who collected the nitrous earth from the various room where it had been deposited by nature, in many cases
digging down from ten to thirty feet and finding the earth still impregnated with the salts. On an average every bushel of earth yielded at least two pounds of niter. The " peter dirt," as the miners called it, was carried by means of ox carts along underground roads, themselves monuments of industry, to hoppers of simple construction, each with a capacity of from 50 to 100 bushels. Cold water, conveyed by wooden pipes from the cascade at the cave's mouth, was poured on each charge. In a day or two a solution of the salts would run into the great vats below the hoppers whence it was pumped into a second set of pipes so tilted as to let the liquor flow out of the cave. After boiling a while in the open air it was run through hoppers containing wood ashes; the result being, if skill had been used in mixing materials, a clear solution of the nitrate of potash, which was left in the troughs for cooling. In about 24 hours the crystals were ready for transportation. To make 100 pounds of saltpeter, 18 bushels of oak ashes were necessary, or 10 of elm ashes, or 2 of the ashes made by hurning the dry wood in hol low trees. 'The superiority of this latter kind of ashe explains why the interiors of so many hollow forest trees have been burned out and the trees themselves left standing. The process as described above was the
same that was adopted at the Wyandot Cave, in Indiana, and elsewhere through the limestone regions o the Ohio Valley. As a curious relic of those days, there is a law in some of the Western States requiring the owners of saltpeter caves to fence them in, to prevent the cattle from killing themselves by licking the casks and troughs, even a small portion of the salts being atal to them. As an indication of the immense indus try in the line of manufacture under consideration it is stated that the contract for the supply of the fixed
alkali for Mammoth Cave alone, for the year 1814, was to the amount of $\$ 20,000$.

All this was long before the days of railroads. Wagon oads, even, were few and ill constructed. Communi cation between the settleïnents was mainly by bridle paths "blazed" by cuts in the trees to guide the traveler. The primitive pack saddle was in use here for a century after it had been superseded in the old world, and it was by this means that hardy mules carried the dry saltpeter from the Western caverns over the mountains to the Eastern powder mills. It is stated that at a somewhat later day gunpowder was largely manufactured within the limits of Kentucky itself But however that may be, the demand for native salt peter fell off to such a degree, shortly after the treaty of Ghent, that the works were abandoned, and the caverns where they had been located were deserted, or else valued only as places of exhibition on account of their natural curiosities.
No thoughtful visitor can fail to be impressed by the relics yet remaining at the Mammoth Cave, and else where, of these primitive saltpeter works. In Dixon's Gave, which is really a part of the Mammoth Cave, th rocky fragments piled transversely across the floor, like successive stony billows, 25 feet high and 40 feet in dia meter, in a vast hall 75 feet wide and 125 feet high and 1,500 feet long, are what was left after the " peter dirt" had been carted out to the hoppers. The subterranean cart roads in Mammoth Cave are well marked, even to the ruts and hoof prints. Cribs are to be seen where the oxen were fed. The huge vats, long pipes, and tal pump frames are, for the most part, in excellent preervation. The mountains of lixiviated earth heaped along the road for hundreds of yards tell the magnitude of the business that long ago expired. The rocky chapel also remains, far below the surface, where the rude pioneers held their Sunday services by lamplight Now and then rusty lamps are found in crevices wher they were lost to the sorrow of their owners, who could not replace them short of a trip to Lexington. The legends told by the guides as to the strange adventures of the swarthy miners as they strolled through haunted halls unearthing now and then a gigantic skeleton, or finding some regally clad mummy, have a delightful flavor of antiquity, and also, in general, a certain sub stratum of truth. And yet, with all its interest and vital importance in connection with our great Ameri can struggles from first to last, what is here recorded is a chapter of history almost forgotten by the genera public, and rarely hinted at except in local annals and gnide books.

Population of British Cities.

The populations of some of the principal English towns, 1881 and 1891, are given below. The rates of ncrease between the two periods in the several towns號 only is there a decrease since 1881

	1881.	1891.	
L	3,815,544	4,211,056	10
Liverpool.	552,00	518,000	
Manchester	462,303	505,300	
Birmingham.	400,774	428,200	
Leeds.	309,119	367,500	18
Sh effield	284,508	324,200	
Bristol.	206,874	221,700	
Bradford.	194,495	216,300	11
Nottingham..	186,575	212,000	13
Sal ford	176,235	198,800	12
wcastle	145,359	186,300	
Hull .. .	165,690	183,800	10
Portsmouth	127,989	159,200	24
Leicester	122,376	242,100	16
Oldham	111,343	13P,500	18
Sunderland	116,542	130,000	12
Cardiff	82,761	128,900	
Blackburn	104,014	120,100	15
Brighton.	107,546	115,400	
Bolton.	105,414	115,000	
sto	96,537	107,600	11
Norwich	87,842	100,900	14
Birkenhead	84,006	99,200	18
Huddersfield	88,502	95,400	10
Derby	81,168	94,100	16
Plymouth	73,794	84,200	14
Halifa	73,630	82,900	
Wolverhamp	75,7	82	

Flight of Eagles.

A Russian lettter says: A curious and unusual sight has just been witnessed by the inhabitants of Bjelgorod in the south of Russia. A few days ago an enorinous flight of eagles were seen to fly past the town and set le in an adjacent forest. The woodmen who were in the forest at the time fled in dismay from the place It is well they did, for when these unwelcome visitor had taken their departure, it was found that they had evoured ten horses, several sheep, and a vast numbe of smaller animals. The ground where they alighted was strewn with feathers, and all the birds of the neighborhood have been so terrified that they have flown away. Only one of the eagles was caught-a bird of immense size and belonging to a Siberian species. The eagles, which were several hundreds in number, flew away in a southwesterly direction. The peasants who saw this remarkable sight state that there were so many of them that for the space of sev eral seconds their wings hid the sun from their sight.

Compressed Tea.
Tablet tea is manufactured at Hankow in factories belonging to Russian firms there. It is made of the finest tea dust procurable. The selection of the dust is the work of skilled experts; the cost of the dust varies from 10d. a pound upward. This dust is manufactured into tablets by steam machinery. About two ounces and a half of dust are poured into a steel mould on a steel cylinder. The dust is poured in dry without steaming, and the pressure brought to bear is two tons per tablet. Great care is required in the manufacture and packing of tablet tea, and the cost is comparatively high. The tablets are wrapped first in tinfoil, then in expensive and attractive paper wrappers, and finally packed in tin-lined cases for export to Russia. The tea, it is stated, loses none of its flavor by being pressed into tablets, and, as tablet tea is only one-sixth of the bulk of leaf tea, it is most convenient for travelers, and also for importing into the remoter regions of Russia. The increase in the export of tea dust from Hankow to $726,729 \mathrm{lb}$. in 1890 , from $140,933 \mathrm{lb}$. in 1889 , is due to the fact that while Indian and Ceylon teas are ousting China tea from the British market, many consumers, being accustomed to the flavor of China tea, wish for it. To meet this demand grocers use China tea dust to flavor the Indian tea. All the tea dust exported goes to Great Britain. Lately a new commodity has come on the Hankow market, to which the customs give the name of log tea. It is an inferior tea with stalks packed in the shape of logs, which weigh from 8 lb . to 80 lb . eachlog. The tea is wrapped in the leaves of the Bambusa latifolia, and then reduced in bulk by binding round the log with lengths of split bamboo.

Heat from the Moon

Mr. C. Vernon Boys has been making measurements of the heat of the moon by means of his very delicate radiomicrometer. His method was to focus the rays of the moon on the face of the radiomicrometer by a reflecting telescope of 16 inches aperture. In the case of a new moon, he found that the heat coming from its disk diminished as you passed from the convex to the concave edge, and that from the dark surface was so slight as not to affect the apparatus. The maximum radiation of heat came from points of the disk itself, not from its limbs. At full moon the maximum point was at the center of the disk. The side of the moon which had been exposed to the sun for fourteen days was not warmer than that which had been exposed for seven days. No sensible heat was observed to come from the stars.

Electricity in the Printing office

No discovery has yet been made and no contrivance has been introduced that will absolutely dissipate or nullify the disturbing effects of electricity in paper, either latent or generated by the revolutions of the press. Many employers have paid out considerable money to electrical experts and others who claimed to have discovered or to be in possession of infallible remedies for this trouble; but not one of them has scuarely fulfilled the terms of his contract. We have studied the effect of wires connected with batteries and of wires connected with gas or other pipes leading to the ground; the latter on the principle of the lightning rod. While these do to a certain extent help to modify the action of electricity or the generation of it, they fall far short of doing it effectively and completely, and for that reason do not justify the outlay of much money upon them. Again, many printeries throughout the country are beyond the reach of those who could help them with the appliances described; are at an expense which, as we have just said, the modicum of benefit that would be derived would not justify. It is for this reason that we recommend to all who have trouble with electricity in paper the adoption of the simple and inexpensive but surprisingly effective remedy we now present.
In nearly every printery a bottle of glycerine is kept for one purpose or another. Take this bottle and a clean rag or other cloth, wet the cloth with water and wring it out well until it is only damp, then pour a little glycerine upon the damp cloth, and wipe the surface of the tympan sheet with it, only on that part of the sheet where the impression is, as it is there that reaction is effected-at the point of pressure. Do not put on too much glycerine, as it will wrinkle the sheet too much. Simply go over it as you would in oiling the sheet to prevent off-set, but do not saturate it. If you find that one application or wiping will not stop the trouble, go over the impression parts again in the same manner. Some kinds of stock are more susceptible than others, and call for an ad ditional application.
This is the simplest and cheapest of all the remedies Printer.

GUILEY'S ELECTRICAL block system for railways
An invention which will tend to prevent railway collisions, by giving a timely alarm to an engineer on a moving locomotive when approaching a standing or moving locomotive on the same track, and which will give notice of an occupied grade crossing, an open switch, an open drawbridge, or a car projecting from a

diagram of guiley block system.

side track over the main track, and which will afford a signal effective in daylight or darkness, on a straight or curved track, or in a tunnel, is one which would cover most of the causes of disaster on railways, and would prove a boon to travelers, and a paying invest ment for railways if generally adopted.
Such an invention has been made by Dr. A. H. R. Guiley, and has been patented in this and most othe countries in the world.
According to this invention, which is illustrated in the annexed engraving, one of the rails is made a con tinuous conductor by connecting the rails electrically at the joints, and the other rail is divided into sections or blocks, and provided with electrical connections which overlap from one block to the other. Between the rails at suitable intervals, preferably at opposite ends of the blocks, are placed electric contact pieces, each formed of two plates insulated from each other and provided with vertical ribs arranged diagonally. These ribs lie in the path of an arm or "feeler" carried by the locomotive, and upon the locomotive is placed a battery and alarm mechanism.
new electrical block system for railways.
The arrangement of the circuits is such that when a rain is passing in one direction, the feeler strikes a set of contacts controlling the circuit arranged for trains passing in that direction. When the train passes in he opposite direction, the feeler strikes the opposit contact plate, securing opposite results. The feeler, which extends downwardly from the pilot of the locomotive, is capable of swinging laterally, and is protected so that it is not injured by the shock due to striking the contact plates, or other objects lying on the track

In the cab of the locomotive is arranged an electrical larm which is set off by the contact of the feeler with one of the plates, and continues to ring until the engineer readjusts it for another alarm. The inventor has devised an attachment to the feeler by means of which steam is taken through pipes and through the contact end of the feeler for thawing snow and ice that may accumulate upon the feeler or upon the contact plates.
This improved system applied to a railway furnishes a complete grade crossing protection, and a very effcient block signal, while at the same time, under certain conditions, it may be used as a train signal by which one train may signal to another.
In the annexed diagram, the contacts, B, B^{\prime}, etc., and the electrical connections, as arranged upon the main track, A^{\prime}, and branch track, and on opposite sides of the crossing, as shown in the diagram, protect the grade crossing, G^{4}, and the switch, I.
The switch, H, is provided for the use of the track master and others for signaling a train in case of necessity. The detached view shows the application of the invention to a drawbridge, J, the contact springs, K , in this case serving to ${ }^{\circ}$ make or break the connections as the bridge is closed or opened.

Mr. E. B. Cornell, 922 N. 19th Street, Philadelphia, Pa ., has the business management of this invention.

```
Determination of Resin oil in Mineral
```

Ten to 15 grms. of the lubricant containing resin oil but no fatty oils, is gently heated on the water bath in a small flask with 5 vols. alcohol at 96 p. c., shaken up, and let cool down to the temperature of the room The alcohol is then placed in a small Erlenmeyer flask about 7 cm . in height; the mineral oil which remained in the first flask is rinsed round (not shaken) with a few c. c. of 90 per cent alcohol, the solution poured into the second flask and heated upon a water bath which is slightly simmering, inclosing it within a beaker with the bottom cut off, to avoid too rapid condensation on the sides of the vessel. The heat is continued until the residue in the flask is free from bubbles. It is weighed when cold, and the residue is covered with ten parts by weight of alcohol at 96 per cent. If the residue consists entirely of resin oil, this quantity of alcohol will suffice for its solution. The alcoholic solution is treated as above, and the residue contains small quantities of mineral oils. $-L$. Storch, Chemiker Zeitung.

How Tin Plates are Made.

Following is a summary of the Morewood process of tinning plates now in use at the works of the United States Iron and Tin Plate Company, Limited, at Demmler Station, Pa.
The plates are rolled in the ordinary manner into black sheets, eight of these sheets being rolled at one time, and after being sheared to size are placed in the "black pickle" bath of sulphuric acid, where all oxidation is removed. They are placed in an annealing furnace for 36 hours and are next passed through the cold rolls, receiving a smoothly polished surface, after which they are annealed again and put into the "white pickle," where they are thoroughly cleansed from any oxidation and are ready for the tinning process. The mode of putting on the coating of tin is a very simple one, and is begun by submerging the plates in a bath of palm oil until all the water disappears, the oil forming a flux for the tin, the first coat of which is received in the tin pot, the plates next being dipped into the "wash pot," and when taken out the tin is spread over the surface with a brush by hand. The final act in the tin coating process is in passing the plates through rolls running in palm oil, whereby the tin is evenly distributed and a smooth surface is ob tained. There are 5 of these rolls used, 3 run ning on top of 2 , and the plates make two passes through them, first being let down through the first and second of the upper set, and by a cradle arrangement are returned through the second and third. This completes the tinning operation proper, and the polish is obtained by rapid movements of the plates through bran and middlings, respectively, and then polishing with sheepskin. The result obtained at the Demmler works is a very excel lent article of bright tin plate.-Iron Indus. Gazette.

At the great factory of the Singer Manufacturing Company, at Elizabethport, N. J., a half hour is allowed for the noon-day meal, and it is invariably taken in the shops, or in the immediate vicinity. The whistle sounds, and instantly 500 or more boys or young men appear on a run armed with tin pails, some carrying a dozen. They immediately repair to some adjoining saloons, where the pails are filled with beer, which shortly before has been drawn into tubs so as to allow of expeditious dipping. The beer is then carried to waiting comrades in the factories.

LATHAM'S GRASS COLLECTOR FOR LAWN MOWERS. Every one who has used a lawn mower knows that the most disagreeable and most unsatisfactory part of cutting a lawn is raking the grass. The lawn usually looks well after the mower has passed over it, but the rake is likely to tear and pull up the roots of the grass more or less and make the lawn look rough. If the grass is gathered in a collector, the lawn is left smooth and velvety, and the grass thickens until the

Fig. 4.

LATHAM'S GRASS COLLECTOR FOR LAWN MOWERS.S.
ground is completely covered with a thick green mat. The grass collector shown in accompanying illustra tions does away with the disagreeable work of rak ing a lawn and does away with the rake entirely. The collector is made of canvas, with a galvanized iron frame, and is readily attached to the mower, and weighing but $21 / 2$ to $31 / 2$ pounds, according to size, it does not add materially to the weight, and is so arranged as to be entirely out of the way. The cut grass can be instantly emptied by pulling the cord shown in Fig. 2, and as the collector is behind the cut ter, the cut grass can be left in heaps or a windrow simi lar to that made by a horse rake, and is easily collected. In Fig. 3 we show the action of cutter, which throws the grass entirely over the cutters back into the can vas collector, so that it does not clog the machine. The plates shown in Fig. 4 are extensible, so as to fit almost any machine, and are all galvanized. This collector i the result of much experiment, and has been used with the most satisfactory results. It is very useful around borders, edges of walks and drives. It is quite inexpensive and thoroughly well made. It is manufac tured by C. H. Latham, of Lancaster, Mass.

SOME SUGGESTIONS IN MICROSCOPY
by geo. m. hopkins.
An object which always interests the microscopist, and excites the wonder and admiration of those who

Fig. 1.-FISH trovgh with grids and contindous ${ }^{\text {Ts }}$ WATER SUPPLY.
regard things microscopic from the point of popular interest, is the circulating blood in living creatures Nothing in this line has proved more satisfactory than the microscopic view of the circulation of blood in the tail of a gold fish. Thanks to Mr. Kent's invention of the fish trough, the arrangement of the fish for this purpose has been rendered comparatively simple and easy.
The trough consists of a metallic vessel provided with a thin extension at one end near the bottom fur nished with glass-covered apertures above and below The body of the fish between the gills and tail is wrapped with a strip of soft cloth, and the trough being filled with water, the fish is placed therein, with its tail projecting into the extension between the glass

Fig. 2.-DARK GROUND ILLUMENATOR.
covers. The tank is arranged on the microscopic stage with the tail of the fish in position for examination. So long as the fish remains quiescent, all goes well, and the beautiful phenomenon may be witnessed with great satisfaction, but the subject soon becomes impatient, and at the most inopportune moment either withdraws its tail from the field or jumps out of the tank, thus causing a delay which is sometimes embar rassing.
The uneasiness of the fish is caused partly by its unnatural position, and partly by the vitiation of the water. The latter trouble has been remedied by the writer, by inserting a discharge spout in one end of the trough, and providing a tube for continually supplying fresh water. The other difficulty has been surmounted by providing two wire grids (Fig. 1), each having spring clips at their ends for clamping the walls of the tank. These grids are pushed downward near the body and head of the fish, so as to closely confine the little prisoner without doing it the least injury. With these two improvements the examination may be carried on comfortably for an hour or more.
In Fig. 2 is shown a simple device for dark ground illumination. Although it does not take the place of the parabolic illuminator, or the spot lens, for objec tives of low angle, it answers an excellent purpose. To a metallic side, A, having a central aperture surrounded by a collar is fitted a funnel, \mathbf{B}, of bright tin or nicke plated metal, which is provided with a downwardly projecting, axially arranged wire upon which is placed a wooden button capable of sliding up or down on the wire, the button being of sufficient size to prevent the passage of direct light to the objective. The light by which the illumination is effected passes the button, and striking the walls of the conical reflector, is thrown on the object.

Uranium in the Black Hills.
by herman reinbold.
Among the ores recently found in the Black Hills has eenthat rare and valuable mineral uranium. Although it has only appeared in one place, situated in the Bald Mountain district, it is found there in such large quantities as to warrant the prospect of early production of uranium salts, as well as the metal uranium, in the United States.
At present uranium mining is carried on only in two places in the world, namely at Annaberg, Saxony, and Redruth, Cornwall, and the scarcity of the mineral has been the cause of its not being used for a very im portant purpose, the manufacture of steel.
In Europe uranium has only been found in pockets in form of pitchblende, which is uranous and uranic ox ide (40 per cent of uranous and 54 per cent of urani oxide) combined with silica, lead, iron, and manganese the other uranium ores appearing in such small quantities as not to be commercially valuable. The writer who has made an examination of the different uranium ores on the Bald Mountain, has found the following minerals in a depth of only a few feet, the rock being of the archæan formation :

1. Uranit (uraniumglimmer) embedded in the rock and the seams, in greenish yellow scales, the vein runing vertically and being forty feet wide on the surface An analysis showed it to be $\left(\mathrm{U}_{2} \mathrm{O}_{2}\right) 2 \mathrm{PO}_{4}, \mathrm{Cu}$. As a source for uranium this mineral cannot be used, the costs of concentrating being too high.
2. Pitchblende. This mineral appears in seams, to gether with the above mentioned scales. From all ap pearances the rock contains large quantities in greate depths, the conditions being analogous with those at Cornwall. Its composition is $\mathrm{U}_{3} \mathrm{O}_{4}$, with iron, lead, nagnesia, and manganese, also silica.
3. Uraniumochre $\left(\mathrm{U}_{2} \mathrm{O}_{3}\right) 3 \mathrm{SO}_{3}$ and uranochalcit $\mathrm{U}_{3} \mathrm{O}_{4}$ $\mathrm{Fe}, \mathrm{Ca}) \mathrm{O} \mathrm{SO}_{3}, \mathrm{H}_{2} \mathrm{O}$, in large bodies of kidney-shaped orm ; and
4. Trogerit, $3 \mathrm{UO}_{3}, \cdot \mathrm{As}_{2} \mathrm{O}$

All these ores, with the exception of the first one mentioned, may be converted into uranium salts which are commercially valuable. The chloride, ni rate, and sulphate of uranium are used in the manu acture of stained glass, producing a greenish yellow tint, peculiar to them. They are also used in coloring porcelain (black porcelain), and to some extent in pho tography. Germany and France are the principal con sumers, and lately the output in Europe has decreased and the price of uranium advanced materially, its cost being now $\$ 10$ a pound.
But the uranium find in the Black Hills may be of still greater importance in another direction, as th use of the salt in the manufacture of glass and porce ain is naturally limited.
Experiments and tests which have been made by the great steel and gun manufacturers in England and Germany have shown that the addition of a small percentage of uranium to steel increases its elasticity, and at the same time its hardness, to an extent that makes its use in the manufacture of guns, armor plates, etc. most desirable, but the scaricity of the material and es pecially the great difficulty in reducing the ore to meta makes the price of uranium steel too high. But since then great improvements have been made in the manufacture of sodium and electricity has been called to the
aid of metallurgy ; so if large deposits of uranium are found, the metal can be produced for the same price as aluminum. That there are large bodies of uranium in the Black Hills there can be no doubt, and it may be that in no distant time manganese and nickel steel will be superseded by uranium steel.

A ONE DOLLAR PHOTOGRAPHIC OUTFIT

One would have supposed that the photographic craze had reached its climax when cameras costing from ten to fifty dollars were produced, together with conveniences which would enable almost any one to take photographs, butit appears that a large field has been left unoccupied. A camera has been needed which could produce a good picture with a small outlay.
Such a camera is shown in the annexed engravings. The instrument, together with the entire photogra phic outfit, including chemicals, is sold for one dollar and this is the chief novelty of the outfit. This in strument is known as the "Glen Camera," made and sold by Ives, Blakeslee \& Williams Company, of 294 Broadway, New York. Inasmuch as all the light used in this camera enters through a pinhole instead of a lens, a rather longer exposure is required than with n ordinary camera, but the results obtained are very good and pictures $21 / 2$ inches square are produced.

LONGITUDINAL SECTION OF GLEN CAMERA.
The construction of the camera will be understood by referring to the longitudinal section, Fig. 1. The light coming from the object passes through the pin hole, producing the image on the plate held by a groove in the rear portion of the camera box. As there are no plate holders, the camera must be taken to a dark room for an exchange of plates.
With the camera is furnished the materials and ap pliances shown in Fig. 2, consisting of six dry plates, a package of blue process paper, one ounce of hyposulphite of soda, a package of developing powder, card

Fig. 2.-Materials and accessories.

mounts, a printing frame, two japanned trays, together with a sheet of ruby paper for making a red gether with a sheet of ruby paper for making a red
light for the dark room. With these the amateur photographer may make, develop, print, and mount his pictures.
The camera is put up for mailing, and the package contains full instructions for making the exposure and all the operations for the completion of the picture.

Wealthy Electricians.

Lucre has smiled on the explorers in the field of electrical science, says the St. Louis Globe-Democrat. No scientific body in the country has so many millionaires as the American Institute of Electrical Engineers. At the top of the list is Alexander Graham Bell, whose profits on the telephone are represented by eight figures. Next comes Edison with a seven figure fortune. Brush, of electric light fame, and Elihu Thomson, whose financial future is perhaps brighter than any of the others now, are more than millionaires. Frank J. Sprague was a junior officer in the United States navy six years ago. He is now living in the mansion which was built for the Grants. His company sold out to the Edison Co., for $\$ 1,000,000$, and half of it went to the inventor. Franklin L. Pope, of New York, and a score of others have independent fortunes. Most of these men were telegraph operators, and most of them began their experimenting and study without a dollar.

The Actual Number of Tubercle Bacilli which may be Present in Tuberculous Sputum. Dr. George H. F. Nuttall describes in the last number of the Johns Hopkins Hospital Bulletin a method by which he has been able to make accurate estimates of the actual numbers of tubercle bacilli present in tuberculous sputum. His communication is accom panied by cuts of the apparatus used. The methods heretofore employed for estimating simply the relative number of tubercle bacilli in sputum are condemned as unscientific. Nuttall's observations for the first time give us an idea of the enormous number of tubercle baciili which a patient may expectorate in the course of twenty-four hours. In three cases undergoing the Koch treatment observations on the numbers of bacilli in the sputum were made every few days. In the first case the patient expectorated $2,000,000,000$ bacilli during the twenty-four hours. After the patient was inoculated with tuberculin the number rose to between $3,000,000,000$ and $4,000,000,000$. After the inoculations ceased the number fell to what it had been originally In the second case the number of bacilli varied between $20,000,000$ and $165,000,000$ on the days preceding the Koch inoculations, rose irregularly to $283,000,000$ after the first inoculation, and fell to only 265,000 by the time the sixteenth inoculation had been reached. The third case showed a decrease from $70,000,000$ before the inoculations to $12,000,000$ and $19,000,000$ after the treatment had been begun. A great rise in the number of tubercle bacilli in sputum was observed in the case of one patient (not undergoing the Koch treatment) to occur simultaneously with the appearance of elastic tissue. The number of bacilli in this case rose from between $300,000,000$ and $400,000,000$ to over $4,000,000,000$. The accuracy of the method is shown by a number of test and culture experiments. Nuttall believes his method will prove valuable in any experiments where it is desirable to introduce a definite number of organisms into culture media, disinfectants, etc. In point of accuracy, it far surpasses the loop method generally employed. With such organisms as the tubercle bacillus this method will enable the experimenter to determine the number he is inoculating into an animal in a way that has not been possible hitherto. Inoculations made under such conditions will clearly show the difference in degree of virulence possessed by various organisms, as also the relation between the number of bacteria introduced and the progress of the disease. This method, finally, brings us a step nearer to solving the problem of the significance of involution and degeneration forms of bacteria.-N. Y. Med. Jour.

RACK ATTACHMENT FOR THEATER CHAIRS

A novei rack for attachment to the backs of chairs or seats in theaters, public halls, and places is shown in the annexed engraving, Fig. 1 being a perspective view of a chair with the attachment applied, Fig. 2 a plan view of the attachment, and Fig. 3 a side elevation of the hat support.
This device affords a convenient support for a coa or other outer garment, a place for an umbrella or cane, and a standard for retaining a hat.
The principal part of the rack consists of a bar hinged at one end to one of the chair posts, curved outwardly for receiving the umbrella handle, and con-

:HERMANN'S ATTACHMENT FOR THEATER CHAIRS.
nected by a standard with the longer curved portion designed to receive a coat. The rack is pivoted to swing in an inclined plane, so that it will close auto matically, and thus be prevented from offering any ob struction to a free passage through the row of seats.
Although the rack is designed to close automatically a hook is pivoted to the side of the chair for engagit; the end of the rack arm and preventing it from swing ing out accidentally
To the free end of the rack arm is attached a stand ard, as shown in Fig. 3, having its upper end curved over to form a hook for receiving the turned-over por tion of the hat brim, as shown in Fig. 3. To the leg of
the chair below the curved portion of the rack designed for receiving the umbrella handle is secured a drip cup, in which the tip of the umbrella is placed This invention has been patented by Mr. George Hermann, 34 E. 10th St., New York.

A WARSHIP RAMS A WHALE

While cruising with the Channel squadron, write an officer of H. M. S. Immortalite, at nine o'clock on the morning of the 26 th of May, in lat. 38 deg .7 min N , long. 9 deg. $19 \mathrm{~min} . \mathrm{W}$, steering $\mathrm{S} 1 / 4 \mathrm{~W}$ (abou

midway between Sardinia and the African coast), and going at a speed of thirteen knots, we struck a whale, about forty-five or fifty feet long, with our ram. It was unable to clear itself, which necessitated our go ing full speed astern, when the whale sank. It must have been asleep. At the same time we noticed an other quite close on our starboard bow.

Fracture of the Clavicle from the "Kick" of a

In the Edinburgh Medical Journal, Mr. James B. Simpson records the case of a member of a rifle club, a strongly built slate quarrier, thirty years old, who after having fired several shots at 200 yards, feeling a "kick" not severe enough to cause actual pain, fired several more at 500 yards, lying down and resting on his elbows, and finally a shot at 600 yards, likewise in the prone posture. This shot broke the clavicle nea its middle. The fracture was treated according to Sayre's method, and healed well. "When he reconer ed," says Mr. Simpson, "I asked the man to show me how he held his rifle while firing at 500 and 600 yards On his raising the 'sight' and lying down and taking aim, the explanation of the fracture was clear. In stead of holding the butt of the rifle well on to his shoulder, he rested the upper end of the butt directly on the most prominent part of the clavicle. One could easily pass one's hand between the lower two-thirds of the butt and the man's chest, and it was therefore clea that when he fired all the force of the recoil came upo the clavicle. The farther he retired from the target the more he necessarily elevated the muzzle of the rifle, and consequently the more did the upper end of the butt rest upon the clavicle, until at 600 yards so entirely was this the case that the bone gave way under the concentrated force."

Integrity of Quality

Probably it is of as much importance to know how to retain a market as to now how to get it. Integrity of quality in goods is indispensable.
Not many years ago English inanufacturers of cot ton goods came near ruining valuable markets for such goods in the East, by sending to these markets miserable, sleazy, light weight goods loaded with size to give them artificial weight and the appearance of better cloth. These markets have never been the same to them since. Lost confidence is not easily restored. If, as a celebrated English statesman once remarked "confidence is a plant of slow growth," it is certainly also a hard plant to nurse back into yigorous life when its roots have been cut by commercial deceit. A case in point occurs to us.
The late B. T. Babbitt, the famous and wealthy manufacturer of soap, established his business on the basis of strict commercial integrity, and his name was always honored among New York merchants. Some wenty years before his death, he made the European tour, leaving at the head of his business a young man of great energy and executive ability, but, as the se quel will show, of rather elastic principles. It was ar ranged with this deputy that in addition to his regular salary he might have during Mr. Babbitt's absence a ertain share of all the profits of the business, where-
e pat into practice a scheme of adulteration of the soap without a corresponding reduction of price. The puap selling freely upon the strength of its former re profits (?) divimmediate returns were this selling out of his chief's business were, before Mr his selling out of his chier's busi Babbitts with sufficient capital to 1 t to retire with sufficient capital to start and conduct a large manufacturing business of his own. In narrat ing to the writer this disagreeable episode not many years after its occurrence, Mr. Babbitt said it cost him nearly a quarter of a million of dollars to remedy the injury to his business thus effected by a fow month of sharp practice. He sent to his customers, all ove the United States, letters requesting a return of the inferior goods, which he replaced with those of stand ard quality, and by a judicious but enormous expendi ture in advertising gradually recovered the lost trade.

Cotton Oll in Lard.

The authors use Bechi-Hehner's silver nitrate test and Labiche's lcad acetate reaction. For the forme test 10 grms . of the filtered anhydrous lard are heated with 5 c. c. of silver nitrate solution (1 part silver nitrate, 200 alcohol, 40 ether, and 0.1 part nitric acid in the water bath for fifteen minutes, shaking continually. The mixture, according to its proportion of cotton seed oil, turns more or less deeply reddish brown to black. Pure lard, poppy, olive, and sesame oils are not affected. For the Labiche test, 25 grms . of the clear melted sample are mixed with 25 c . c. of a solution of lead acetate, heated to 35°, and well mixed after the addition of $5 \mathrm{c} . \mathrm{c}$. ammonia. The emulsion thus obtained, if cotton oil is present, soon shows a yellowish red color, which becomes more intense after standing for a day. Poppy-rape, sesame oils, and pure lard are not affected - A. Bujard and J Waldbauer Zeit. Ange. Chemie.

GUNNER'S ARM REST

An arm rest for the use of sportsmen and others in shooting offhand is shown in the annexed engraving The rest is made portable, and when desired for use it is attached toan ordinary cartridge belt and supported by a strap extending over the shoulders.
The rest consists of three principal parts, a sleeve having a clip for engaging a loop on the belt, a ratchet bar sliding in the sleeve, and a U-shaped bar attached to the ratchet bar for receiving the arm of the gunner The sleeve is provided with a spring bolt which strike the clip and holds it on the loop of the belt, and it is also provided with a spring key which engages the atchet bar so as to hold the arm loop at any desired height. In addition to the key, the sleeve is provided with a thumb screw which enters a groove in the back of the ratchet bar and prevents the ratchet bar from urning. It may also be used for clamping the bar, hus affording additional security
The device may be extended by simply pulling the arm loop upward, but to reduce its length the spring key which engages the ratchet bar must be presse before the bar can be moved downward. At the upper and lower ends of the ratchet bar there are square notches for receiving the spring key. When

SPROUL'S ARM REST FOR GUNNERS.
he key is in engagement with these notches, the bar is prevented from moving in either direction.
By the use of this device the arm is held steadily in n extended position, so that shooting may be done ffhand as accurately as when firing over a stationary gun rest. For further particulars about this useful invention, address the patentee, Mr. Robert B. Sproul, or Mr. David S. Dickson, of Quartz, Montana.

Erratum.-In Mr. Wyatt's interesting article on phosphates in last issue, the analysis of South Carolina phosphates contained an error. "Phosphates of iron and alumina" should read oxides of iron and alumina

The Phosphate Eeds of Our Southern States.

by francis wyatt, ph.d.

(Continued from page 407.)
the florida phosphate deposits.
While, however, it is a very good thing to find abundant phosphate mines, such mines are of little value without the necessary capital for their exploitation. This capital not being forthcoming in the South, it has followed that our great Northern capitalists and bankers have been lately much attracted by tempting ffers to share in the benefits of the discovery. Expert chemists and mining engineers have, therefore, had plenty of work in the "Land of Flowers," and ny own examinations as one of these have extended during the last two years over every county on the Gulf of Mexico, from Tallahassee to Punta Gorda.
One of the first difficulties I encountered was the fact that up to date we have no record of a systematic or correct geological or topographical survey of the State. It will, consequently, be of interest to remark that, in its topographical aspect, Florida is lowlying and gently undulating, the highest point being not more than 250 feet, and the average about 80 feet above sea level.
The elevated points or ridges are composed entirely of sand, and are covered with a very luxuriant growth of tall pines. The depressions or valleys, especially when situated along the coast, are composed of a mixture of calcareous marls and sand, from which outcrop. at irregular and frequent intervals, large and small bowlders of limestones, sandstones, and phosphate rock. These valleys are principally known in the country as "hammock land," and are said to be very fertile. When uncultivated, however, they are covered with a dense, wild growth of vegetation, characteristic of the swamp. With the climatic conditions i shall make no attempt to deal, for they are too widely known, but of the geological aspect I may say that the entire State appears to be underlaid, at greatly varying depths, with upper Eocene limestone rock, and I am therefore of the opinion that the first emergence of Florida must be dated from that period.
During the succeeding Miocene submergence there wa deposited upon these limestones, more especially in the cracks or fissures resulting from their drying up, a soft, finely disintegrated calcareous sediment or mud.
The gradual evaporation of these Miocene waters brought about the formation, principally in the neighborhood of the rock cavities and fissures, of large and small estuaries. These estuaries were replete, swarming with life and vegetable matter-fish, mollusks, reptiles, and marine plants. They were, besides, heavily charged with gases and acids, and their continuous concentration ultimately induced a multiplicity of readily conceivable processes of decomposition and final metamorphism.
In the estuaries and banks thus formed by the deposition and evaporation, or subsidence, of the M10cene seas we shall find the origin of our phosphate of lime, and, disregarding all other hypotheses, I consider that we are practically contemplating: 1. A foundacracked up and fissured, the cracks having a genera trend N. E. and S. W. 2. Irregular beds, pockets, or banks of Miocene deposits, dried and hardened by exposure, and alternately calcareous, sandy or marly ; generally phosphatic, and sometimes entirely made up of decomposed organic debris, the phosphoric acid being combined with various bases (lime, magnesia, iron, alumina, etc.)
After the disappearance of the Miocenesea, there came some gigantic disturbances of the strata. There were upheavals and depressions. The underlying limestones were probably again split up, and the Miocene deposit was broken and hurled from the surface into yawning gaps, and from one fissure to another.
Now came the Pliocene periods or end of the Tertiary, and then the seas of Quaternary age, with their deposits and drifts of shells, sands, clays, marls. bowl ders, and other transported materials, and the accom panying alternate or concurrent influences of cold, heat and pressure.
Taking the whole of these phenomena broadly into consideration, it must be concluded that those portions of the phosphatic Miocene crust which did not fall into permanent limestone fissures or caverns at the time o the disturbance of the strata became at length very thoroughly broken up and disintegrated. They were rolled about and intermired with sand, clay, and marls, and were deposited with them in various mounds or depressions, in conformity with the violence of the
waters, or with the uneven structure of the surface to waters, or with the uneven str
which they were transported.
Occasionally this drifting mass found its way into very low-lying portions of the country, say into those regions where considerable depression was brought about by the sinking and settling of the recently dis turbed mass. At other times it was rolled to and de posited on slightly higher points. In the first of these cases we find a vast and complete agglomeration, com parable to an immense pocket, of broken-up phosphate
rock, finely divided phosphate debris, sands, clays, and marls, all heterogeneously mixed in together. In the
second case, we find the phosphate in large bowlders, sometimes weighing several tons and intermixed with bu^{2}-elatively small proportions of any foreign sub

Considering these facts, I form the opinion that the feature in the Florida deposits of phosphate to be most particularly brought out is that the formation consists essentially of : 1. Original pockets or cavities in the limestone filled with hard and soft rock phosphate and debris. 2. Mounds or beaches, rolled up on the elevated points, and chiefly consisting of huge bowl ders of phosphate rock. 3. Drift or disintegrated rock, covering immense areas, chiefly in Polk and De Soto Counties, and underlying Peace River and its tributaries.
At the present time the work of exploration or pro specting may be said to have extended all over the State in each of these varieties of the formation. Actual exploitation on the large scale by regular mining and hydraulic methods has been commenced at various points, and a very careful study of these workings has onfirmed me in the theories I have just formulated.
In one of the mines, in Marion County, for example, there is an immense deposit of phosphatic material proved, by actual experimental work, to extend over an area of several acres. It has shown itself to be a combination of the "original pocket" and the "mound" formation, and the superincumbent mate rial, principally sand and marls, has an average depth of about 10 feet. The phosphate immediately under lies it, sometimes in the form of enormous bowlders of hard rock, cemented together with clay, sometimes in hat of a white, plastic, or friable substance resemb ing kaolin, and probably produced by the natural dis integration of the hard rock by rolling, attrition, o concussion. The actual thickness of the entire bed is still somewhat uncertain, but the depth of the quarries is not more than 50 feet, and yet a little over two acre of the land have already yielded more than 20,000 tons of good ore, without signs of exhaustion.
Directly outside the limits of these quarries the "pockety" and "mound" formations seem to abruptly erminate, and the deposit assumes, over a wide area he form of an unimportant drift, which sometime crops out at the surface, and which has been followed
in all directions over the immediate vicinity without leading to another pocket of similar value.
Identical geological phenomena being prevalent in nearly every section of the country, I consider mysel warranted in declaring that the Florida land phos phates of high grade occur in beds of an essentially pockety
Sometimes the pockets will develop into enormous quarries, and will probably yield fabulous quantities of various merchantable qualities. At other time they will be entirely superficial, or will contain the itable exploitation impossible
This capriciousness or uncertainty will be somewhat less in the case of the "pebble" or drift deposits, since they have been proved to exist at various depths and in varying thicknesses, with comparative regularity rer a very extensive area
The actual chief working center for this variety is Peace River, which rises in the high lake lands of Polk County and flows rapidly southward into the Gulf of Mexico. Its course is extremely irregular, and its bottom is a constant succession of shallows and deep basins.
Lakes Tsala, Opopka and Chillocohatchee, and Paines and Whidden creeks are its chief tributarie and the main sources of its phosphate deposits; the pebbles being washed out from their banks and born along their beds by the torrential summer rains.
The exploitation of the pebbles is performed by means of a 10 inch centrifugal steam suction pump placed upon a barge. The pipe of the pump, havin been adjusted by ropes and pulleys, is plunged ahead rom the deck into the water. The mixture of sand and phosphate sucked up by it is brought into revolving screens of varying degrees of fineness, whence the sand is washed back into the river. The cleaned pebbles are discharged from the screens into scows aud floated down to the "works," where, after being dried hot air, they are once more screened and are then ready for market. The total cost of raising, washing, lar and seventy-five cents.
Four or five companies are actively working on this plan, and several more are preparing to enter the field.
The pebbles, when freed from impurities and dried, are of a dark blue color, and are hard and smooth, varying in size from a grain of rice to about one inch in diameter. Their origin is proved by the micro cope to be entirely organic, and they are intimately mixed up with the bones and teeth
These river animals, birds and fish
These river deposits all proceed from the banks of sand and debris to which I have alluded as "drift,"
and which are situated on the higher lands in and which are situated on the higher lands in Polk
County. Lakeland and Bartow may be taken as the
entral points of the dried-out deposits, the petbles being of the same size, but of a lighter color. They ar embedded in a matrix of sand and clay, in which they form the proportion of about 20 per cent in weight o the mass. The thickness of the deposit is exceeding y uneven; in some places it reaches 20 feet, while in others it dwindles down to a few inches.
As would be expected in this species of formation the chemical composition of Florida phosphate is far from regular. In some regions perfectly white, in thers blue, yellow or brown, it is in many instance practically free from iron and alumina, while at other it is heavily loaded with these commercially objection able constituents. A large proportion of the land rock is very soft when damp, but becomes so hard when dried that it has long been used by the natives, ignorant of its other values, as a foundation or build ng stone.
The following averages are selected with care from the results of several hundreds of complete analyses made either by myself or by my assistants in Florida and New York. The samples in every case were taken from the exploratory pits in all the different countie and marked before leaving the ground with full de tails of their origin.
They have been classed as bowlders of hard rock phosphate, or cleaned, high grade waterial ; bowlders and debris, or unselected material, merely freed from dirt; soft white phosphate, in which no bowlders are ound ; pebble phosphate from Peace River, as sent to market; pebble phosphate from Polk County drift beds, washed and screened
$\left.\begin{array}{l|c|c|c|c}\hline \hline & \begin{array}{c}\text { Phosphate } \\ \text { of lime. }\end{array} & \begin{array}{c}\text { Oxides of } \\ \text { rion and } \\ \text { ralumina. }\end{array} & \begin{array}{c}\text { Silicica and } \\ \text { silicates. }\end{array} & \begin{array}{c}\text { Carbonic } \\ \text { acid. }\end{array} \\ \hline & & & & \\ \text { Bowlders (carefully see }\end{array}\right)$

I have now written enough to show that the point of most importance in the working of Florida phosphates especially of the land deposits, will be the careful selec ion, by conscientious and capable superintendents, of the different qualities at the quarries. There being no present market for the highest grade in this country, it will all have to be shipped to Europe. The rock will, therefore, require to be crushed to a uniform size, to acilitate sampling, and then well washed and thorough y dried, in order that all the iron and alumina so in discriminately and unequally mixed up with it in the form of clay may be practically eliminated before ship ment
The maximum limit accepted by European buyers is per cent, and nothing but experience in actual work daily guided and controlled by the results of chemica nalysis, can be relied upon to keep the material within hese bounds. Even the most accomplished exper who examines the beds for the first time, and without a full knowledge of the variability of their composition in regard to this iron and alumina, would be sure to $g o$ wrong and commit the most fatal blunders. There can be no doubt that Florida is the theater of a big "boom," and that it is passing through a critical period f its history. Fertilizer manufacturers from all ove the world are hurrying toward its sandy plains, in th hope of acquiring its phosphatic treasures. They find hese scattered in all directions, as well in the rivers a in the lands, and so embarassingly variable in grade that they are brought to a halt by the questions Where are the "bonanzas"? How are they to be found?
My own opinion of her phosphate mining, as will have been gathered from my remarks, is that it will rove extremely profitahle to those who purchase and work its fields with judgment; but that it will certainly urn out in the highest degree disastrous to such as a low themselves to be led away by excited first im pressions. The interior is still practically unsettled and traveling is attended by the greatest difficulties and inconveniences. The negro labor is far from plen tiful; there are few wagon roads suitable for transpor tation purposes; and the railroad facilities are alte gether inadequate, the companies being poorly pro ided with freight cars. Under these circumstances he natural difficulties or impediments to Florida phos hates are at present rather discouraging, and it i only when these have been cleared away, by the grad al development of the State, that the ores of all grade will begin to come forward in large quantities.
Their average richness in phospboric acid is, on the whole, very satisfactory, though somewhat less than we were led to expect by the first reports, and a large proportion of the output will compare favorably with many other phosphates extremely popular with fertilzer manufacturers. Although more than a hundred companies have been already formed, with an ag gregate capital of some $\$ 30,000,000$ only 20,000
tons have yet been shipped to European ports. The tons have yet been shipped to European ports. The
bulk of this has, however, found a ready market at good prices, and it is quite certain that when speculation gives way to legitimate work, the constanly increasing demand will make of Florida the largest contributor to the world's supply.
drawing of financial bills by the casanova APPARATUS.
The system of paying loans by obligations redeemable in a certain number of days through drawing lots has been greatly developed in our day, and is tending to increase to a still further degree. Some of these loans, those of the city of Paris, for example, are redeemable in a period of ninety-nine years; while others, such as the bonds issued on the occasion of the Universal Exposition of 1889, have fixed for such redemption a period of only seventy-five years. In certain cases, the obligation, issued generally at 500 francs, or at a slightly smaller figure, will be redeemable at 1,000 francs, and, in other cases, at its face value. Again, these annual drawings often include the distribution of prizes of more distribution of prizes of more or less value, and which sometimes reach the respectable figure of $50,000,100,000$, and even 500,000 francs.
The simple expose that we have just given authorizes us now to claim that the operations that are to concur in the preparation and definitive establishment of the system of drawing such values. to which fate (sometimes ungrateful) may reserve a fortune under the form of a large prize, should be surrounded with the minutest \mid nothing to do but receive the best wishes of our con and most mathematical precautions. Let a single one freres. As the press lottery was but a tombola, the of the innumerable numbers (sometimes more than a 14,413 numbers remaining in the wheel were destroyed. million, as in the drawing of the prizes of the exposition bonds, which were $1,200,000$ in number) be forgotten, and let the public by any means be apprised of the error, and we shall see our drawing exposed to just and very disquieting demands. Who knows whether or not the blind wheel of fortune stopped before the unfortunate forgotten number?
Were it a question of a simple lottery, there would be less trouble. A hidden sin is half pardoned; in this case it would be entirely so. In fact, the lottery differs from the drawing of redeemable bills in that, for the latter, the entire series of numbers, representing the corresponding subscribed obligations, must have made their exit from the wheel that contains them in a given period. If, for example, five hundred obligations are redeemed annually, the wheel will still have to contain, from the time of the last drawing, five hundred numbers, and not four hundred and ninety-nine, or even less. If the five hundred numbers are not presented to be called off, with entire accuracy, the putting of the numbers in the wheel has been imperfectly done in the beginning, or else former drawings have been incorrectly executed. In a word, there have been numbers forgotten or mislaid-forgotten at the moment of filling the wheel, or lost at the time of the annual drawings. There is no way out of this dilemma. On both hands, the operation will have been faulty, to the highest degree, and every bearer of a thrown-out obligation wil have the right to render legally responsible for it the society, city or state that

Parisian press gave at the Continental Hotel for the benefit of a relief fund for widows and orphans. Asid rom the fete itself, concert, ball, and exhibition ferent prizes. The drawing of these 587 prizes was done on March 15, in the presence of three delegates, Messrs. Victor and Henry Simond and Mr. Ranc. The putting of the numbers in the wheel had been effected the previous evening by means of the Casanova paratus, which we represent herewith. Everything proceeded wonderfully well, and Mr. Casanova had
 Fig. 1.- PUTTING THE NUMBERS OF A DRAWING INTO THE WHEEL, BY MEANS OF THE
 rolled up at 1, as it is in the wheel. after its extraction from the wheel. ust alluded to. It may be seen to the left of Fig. 1 It is about twenty-four inches in diameter. The two ends of it are of plate glass, that allow the number that it contains to be seen. The periphery of the wheel is of copper. Four handles permit of maneu vering it and of making it revolve in order to mix up the numbers, the dispersion of which is still furthe hastened by metal fans arranged within for this pur pose. The aperture that serves for the introduction of the numbers, and that will permit later on of taking them
out at the epoch of the annual drawings, is, of course, carefully sealed after the numbers have been inserted and every time the effective numbers have been removed. The wheel is provided with two, or even three, locks, several keys to which are placed in the custody of those appointed to preside at the drawing.
Before everything else, then, it will be this whee hat it will be necessary to look after with the strictest attention. In the first place, not a number more,
not a number less, between its glass ends. One more, that is difficult ; one less, that has been seen. However this may be, absolute exactitude in the method of filling the wheel is necessary before all else. That is not all yet. Other misfortunes may happen. Fo example, at the time of a drawing, a delicate hand has been seen to enter the wheel, and draw two num bers therefrom. Two, be it understood, instead of one. The two unfortunate numbers, one of which might have been the winner, had got stuck togethe through their roughness, and were taken out as Which is to be put back into the wheel? Which shall be sacrificed when it has been so near the fortune? Solo mon himself would have been perplexed-especially had he been the owner of several obligations, or even of but a ingle one! Along with exactitude in filling the wheel t will be necessary to see als hat the number itself be intelligent and irreproachable make, and so established that it shall be irremissibly isolated from its neighbor, rolled artistically, with the figure per fectly legible and firmly glued In a word, in the primitive operation, as well as in the nnual operations it is nece ary to avoid every chance o irregularity and complaint.
We can now examine Mr Casanova's system at our ease. In the first place, as to the number itself: This is admirably gotten up, and in such a way as not to be ex posed to various inconveni ences, and particularly to the inconvenience of bunching that we mentioned above. It is formed of a very light shee of brass one and a half inches in length and a little over one-tenth of an inch in width, to which adheres a very light piece of linen carrying the figures, and which terminates in a smal brass rod, which later on will be rolled around the sheet. The figures 1, 2, 3 in the corner of Fig. 1 show the number ; unrolled completely at 2 , and wholly

At 3 the operator is unrolling the brass c.vlinder
Now as to fitting the wheel. Let us refer for this to Fig. 1. Let us follow attentively the operations that are to carry the mechanically rolled numbers from the boxes in which they are primarily placed up to the wheel, in passing through the glass cylinder which we see in the foreground. The numbers, wholly open, are classified in advance by fifties, in boxes. As the apparatu consists of absolutely identical machines, each serving to put one hundred numbers in the wheel, we shall examine but one of them.
The operator, who has within reach the box of num bers to be put into the wheel stands in front of a rectangu lar box, divided into ten equal parts by ten steel rods split lengthwise, and equi distant from each other.
In the longitudinal slit in the rods, the operator fixe the metallic numbers, ten to a rod-say a hundred num bers to ten rods. Fig. 1 re presents the phase of the operation in which these hundred numbers are thus stuck in the slit in the rods the brass tail of the numbe being upward.
So much for the placing of the tickets. At this moment an examiner sees to it that these hundred tickets are complete in their place, that not a single one of them is missing, and that they belong holders
We frankly admit that we were never aware of the many inconveniences that we have just detailed until we had an opportunity of being present at a drawing -say at the putting of the tickets in the wheel, and at their extraction from their happy domicile. An opportunity of observing these curious operations was offered to us last year at the time of the fete that the
o the same hundred series. He can read them, or ask the operator to point out to him or even to deliver to him any number of the hundred. Briefly, the minutest verification is at his disposal, and no chance exists of seeing a number doubled or absent or blank.
Second operation : the rolling of the numbers. As each of the ten rods that carry the numbers is movable around its axis, it is capable, through a winch within reach of the operator, of making as many re-
volutions as may be desired. One revolution of the winch, then, or rather several revolutions (the operator is here represented as about beginning the rolling), and the numbers, but just now flat and vertical, are rapidly wound around rods. Of course, a single winch causes the simultaneous revolution of the ten rods. At this instant again the examiner can come to find whether each rod carries its ten rolled numbers properly, whether the hundred is therefore complete, and to see that none of the numbers of this series (it will be the same with all the others) is missing from the wheel.
Third operation: The guidance of the rolled numbers into the wheel. A few revolutions of a second winch actuate a flat rod placed in the rectangular box, and the forward motion of which pushes the hundred numbers, which thus fall through apertures in front of each of the rods that support them, into the glass tube that runs along the various machines. The bottom of this glass tube is provided with a belt upon which rest the numbers thrust forward by the rods. This belt is endless, and passes and repasses, through a pulley shown to the left of the figure, in the interior of the cylinder, and thus carries the rolled numbers to the oblique glass tube, which empties them into the wheel.
The description of the filling of the wheel just given is sufficiently detailed to allow the reader to get an

The Right to Use Ground Wires.

The Supreme Court of Ohio has rendered a decision eversing the decision of the lower court in the case of the Cincinnati Inclined Plane Railroad Co. against the City and Suburban Telegraph Co. Action was brought by the telegraph and telephone companies to enjoin the Inclined R.R. from operating its line by the Sprague system (single trolley method), on the ground that by its use the telephone system was rendered practically useless. The telephone people claimed a prior right to the use of the earth as a means of securing a return circuit. The court upholds the theory that the street is primarily intended for the use of the public for traveling and transparting goods, and practically that if the motive power employed for this primary use interferes with a secondory use, the law cannot help it. It has been said that tisis decision makes free property of the earth as a conductor-that is, that the company using the most powerful current may crowd out smaller concerns by sheer superior power ; but it is more accu rately described as above indicated-as holding a rail road more important than a telegraph or telephone.

GREAT SPOOLS OF WIRE.

The extensive use of street cable railways has neces itated the manufacture of wire ropes of great continu ous length, and the problem of transporting such ropes,
which raw material may be turned into a finished article, going through numerous processes. If the Record averaged 50 cords of poplar daily, it would amount to 18,250 cords annually. It must then be con idered that this is only one paper in one city, and that about every newspaper is printed from material conisting largely, and often almost wholly, of wood pulp which is also used in the production of nearly all com mon and medium grades of paper for almost all uses It is thus seen that the consumption of wood in pulp making is of great magnitude.
With the enormous consumption of wood for railway ties and building and the added requirements of the printing press, it is not strange that our forests are rapicly disappearing. Every State should pass laws or the encouragement of tree planting. If steps are not soon taken to restore our woods, there will erelong a tree famine

Twelve-Inch Gun No. 1.

'The first 12 -inch steel gun made in the United States has been completed at the Watervliet Arsenal, West Troy, N. Y., and shipped to the Sandy Hook proving ground for testing. This is the largest steel gun ever built in this country, and is the first of 16 of its type ordered by the government. It has been building since 1888, and great things are expected of it. It is designed

SHIPMENT OF STREET RAILWAY CABLES
idea of the exactitude and of the minuteness of the operations which secure indisputable regularity in a future drawing. The drawing of the press lottery mentioned above was, however, but an elementary operation alongside of the putting in the wheel of the $1,200,000$ numbers of the exposition bonds that Mr Casanova executed in 1889 for the account of the Credit Foncier. For this colossal operation it was necessary to use a wheel $41 / 4$ feet in diameter, in which in ten days, were placed the million and more brass cylinders, by means of the twelve machines represented in Fig. 2.-La Nuture.

Electric Light Fishing.

The sloop Lou left San Diego, June 4, on a novel fishing expedition, to last from one to three months, so says the Pacific Lumberman. An electric plant has been put on board, and the fishing is to be done by the aid of incandescent lights and a net. Experiment in the bay proved that everything alive under the water is attracted by the glare of the light, and thousands of fish of every description can be taken in a short time and with very little trouble.
Four men were on board, and the boat has steered for the banks near San Clemente Island. The practical result of the first voyage will be watched with much interest, and if it is as successful in deep water as the experiments in the bay have been, the projectors of the enterprise are confident they will have solved the problem of supplying all Southern California with cheap fish. W. G. Riffenberg, a citizen of San Diego, is the inventor of the apparatus.
without injury, from the manufactory to the place of use, was a serious one.
This was successfully solved by Messrs. John A. Roebling \& Co., of Trenton, N. J., whose cable railway ropes have become everywhere famous for excel ence.
A single Roebling cable sometimeslis required to have a length of $61 / 2$ miles. Such a rope $11 / 4 \mathrm{in}$. in diamete will weigh 42 tons. It is reeled upon a single spool, over 10 ft . high, as shown in our engraving, which is rom a photograph. A special car of superior strength receives the great package. The particular rope her shown was made for the Western Company's cable railway, St. Louis.
wood for the Printing Press.
The wool pulp business is generally regarded as in its infancy in this country, and yet the product is normous. The Philadelphia, Pa., Record, which makes its own paper, has furnished a piece of specia nformation, which gives an inkling of the magnitude of the general consumption of wood pulp. It state that a single edition of the Record-150,000 copies of a 2 page paper-required 17 tons of blank paper, to pro duce which 67 cords of poplar was used. In 22 hour from the time of felling the tree it had been turned into printed papers. The process is thus divided with re spect to a test case: Chopping $11 / 2$ cords of wood, hours ; in manufacturing into pulp, 12 hours; transport ing to the Record office, 1 hour and 20 minutes; wetting paper preparatory to printing, 30 minutes; printing 10,000 copies, 10 minutes. This shows therapidity with
or seacoast defense, with the 12 -inch steel mortars that are also now being built. The gun weighs 52 tons. It is 36.66 feet long and the length of the bore is 34 feet Its charge is 440 pounds of powder, and its projectile weighs 1,000 pounds. The powder pressure that will be exerted on its interior when the gun is fired is 16.5 tons to the square inch. The initial velocity of the projectile will be 1,940 feet per second, the muzzle nergy 26,000 foot tons. At the muzzle this projectile will penetrate 32 inches of iron, and at a distance 0 two miles 20 inches.
The tube and jacket forgings for this gun were pur chased at Le Creusot, France, and the remaining forg ngs were obtained from the Midvale (Penn.) Steel Works. Although it was necessary to go abroad to purchase the largest forgings, owing to the fact that substantial progress in the manufacture of steel forgings in this country had not then been made, it will not be necessary to do so in the future, American man ufacturers having in the meantime acquired an experi ence that enables them to produce the largest forgings. The completion of this gun marks a creditable step in the progress that the government is making in its army gun factory at the Watervliet arsenal.

In the early days of steamships on the Atlantic the steam pressure carried was five pounds only above the atmosphere, and the engines made from 10 to 12 revolutions per minute; the vessels made 8 knots per hour on an average. Now we carry exactly 36 times the pressure, make 7 times the revolntions, but go only $21 / 2$ times faster.

Correspondence.

Lead Pierced by Insects.

To the Editor of the Scientific American:
Referring to the article in your issue of this date, under head "Lead Pipe Pierced by an Insect," I have in my possession a lead bullet, that I cut out of the tree under which Grant and Pemberton arranged for the surrender of Vicksburg, Miss. The bullet was lodged just under the bark in the sappy portion of the tree, and has three holes pierced through it by some kind of an insect. One of the holes contained one of these insects at the time I secured the bullet.
These facts can be substantiated by two witnesses now living.
Chicago, June 13, 1891.
WM. E. SELLECK.

The Law of Friction.

To the Editor of the Scientific American:
I notice in a recent issue of your valued journal an article headed "Phenomenal Friction," and after a careful reading I fail to see anything "phenowenal" about it. It only demonstrates the common law of friction in relation to motion, i.e., if it takes a certain number of foot pounds to cause the axle to revolve against the surface of its box a certain number of inches per second, and you wish to increase that motion one inch per second, you will discover that it requires just the same expenditure of power to increase the motion :n relation to its circumference one inch per second as it does to move it endways one inch in the same length of time.
If the axle were at rest, it would require much more power to move it, because there is a closer contact of surfaces.
When motion begins, the axle begins to "ride" on the oil, or whatever substance there is to prevent contact.
If I wish to insert a close-fitting plug, I do so with a twisting motion if possible, because I have a lever advantage, and I also lessen the contact, by the additional circular motion.
Bellefontaine, O., June 9, 1891.

The Cosmical Telephone.

To the Editor of the Scientific American:
As to the possibilities of the cosmical telephone referred to in the Scientific American of June 20, by means of which the inventor hopes to hear sounds resulting from solar causes, it may be said that it is pretty well established that sound cannot travel without a medium, either solid, liquid or gaseous. So far as is known there is no medium between the earth and the sun beyond the limits of the terrestrial shallow atmosphere capable of transmitting sound waves, and until it is shown that such medium exists, the theory of inter-solar transmission of sound will not find ready acceptance among physicists. The strange sounds heard by Mr. Edison, as he states, while experimenting with the long distance telephone, if cosmical at all, were, it would seem, much more likely to have been of seismic origin.
Furthermore, judging by present knowledge as to the rate of sound transmission, there was no connection between the sounds heard and the observed sun spots, for if Mr. Edison, as he suspects, really heard sounds from the sun, the cause that produced them must have taken place more than thirteen years before they reached the earth, unless it be proved that sound may be transmitted by radiant electricity or some other equally rapid agent. That Mr. Edison's experiments may result in important diseovery is much to be hoped but at present it seems hardly probable that he will be able to hear the roar and crash of solar tempests, as in viting as the thought may be. E. B. Whitmore.
Rochester, N. Y., June 22, 1891.

Jet Propulsion.

To the Editor of the Scientific American:
Thinking that an original idea had come to me, recently made some investigations relative to the use of air to act as a sort of lubricant between the water and hull of a steamship, and thus increase the speed of a vessel, or lessen the power necessary to propel it. As usual, I found this thing had been gone over years ago, at least so far as patenting the scheme was concerned. It was a mere chance, however, that this old patent was unearthed by the examiner, for it had been indexed under the head of jet propulsion.
It is quite disappointing to have a pet scheme blasted in this way, and besides be told by the best of authority that air is the very thing they are trying to get rid of. Former experiences made disappointment bear able.

As jet propulsion is receiving some attention of late, I would like to add a word on this subject. Of course, the popular verdict of engineers is against the jet method, for patents have been granted both in England and America, and various methods tried. Yet this does-not prove that the principle is wrong, or may not yet be made a success.

Although a backwoodsman and poorly qualified to judge of such things, still I would venture to suggest that in order to make the jet effective a large volume of water must be handled and thrust with a relatively low pressure and velocity against that which is to resist its motion. It requires but little calculation to show that the pressure, per square inch, on the pad dles of a steamboat wheel is slight, in most cases no more than frow two to four pounds. The buckets are
moved at a velocity of 30 to 50 feet per second, or only a little more than double the speed of the boat. With these figures as foot-pounds, it is plainly seen that a large volume of water must be moved under like pres sure and speed in order that the power may be absorbed which is used for steamship propulsion.
Again, the idea suggests ${ }^{: \perp \sim} n^{\prime} f$, may not the jet water enter at the bow and dischume both at the sides and stern, thus producing a suction at the bow where it may be useful, and preventing it at the stern where hurtful?
I predict that some persistent inventor will hit on the right thing some of these days, great as may seem the innovation on present methods. To have sug gested the abolishment of the methods of flour making as practiced frow time immemorial, a few years ago, would have been equally absurd.
Let the jet principle be right or wrong, we are in sympathy with it, and believe that eventually single and t
to go. 5une 5, 1891

American Inventions and Discoveries in Medicine, Surgery, and Practical Sanitation.*

In connection with this celebration of a century's
work of the American patent system, I have been re work of the American patent system, I have been re
quested by the Advisory Committee to prepare a brief paper upon inventions and discoveries in medicine, surgery, and practical sanitation, with special reference to the progress that has been made in this country in these branches of science and art. It would be impossible to present on this occasion such a summary as would be of any special interest or use of the progress which has been made in medicine and sanitation dur ing the century, either by the world at large or by American physicians and sanitarians in particular; and I shall therefore confine my remarks mainly to the pro gress which has been made in these branches in connec tion with mechanical inventions and new chemica combinations, devised by American inventors, which will require much less time.
The application of the patent system to medicine in this country has had its advantages for certain people has given employment to a considerable amount o capital in production (and to a much larger amount in advertising), has contributed materially to the revenues of the government, and has made a great deal of work for the medical profession.
So far as I know, but one complete system of medicine has been patented in this country, and that was the steam, Cayenne pepper, and lobelia system-com monly known as Thomsonianism-to which a patent was granted in 1836. The right to practice this system, with a book describing the methods, was sold by the patentee for twenty dollars, and perhaps some of you may have some reminiscences of it connected with your boyish days. I am certain I shall never forget the ef fects of "Composition Powder," or of "Number Six," which was essentially a concentrated tincture of Cayenne pepper, and one dose of which was enough wake a boy willing to go to school for a month
From a report made by the Commissioner of Patents in 1849, it appears that eighty-six patents for medicines had been granted to that date; for the specifications of most of those issued before 1836 had been lost by fire. The greater number of patents for medicines were issued between 1850 and 1860. The total number of patents granted for medicines during the last decade (1880-1890) is 540 . This, however, applies only to "pattent medicines," properly so called, the claims for which are, for the most part, presented by simple-minded men who know very little of the ways of the world. A patent
requires a full and unreserved disclosure of the recipe, and the mode of compounding the same, for the public benefit when the term of the patent shall have expired and the Commissioner of Patents may, if he chooses, equire the applicant to furnish specimens of the composition and of its ingredients, sufficient in quantity fo the purpose of experiment. The law, however, does
not require the applicant to furnish patients to be experimented on, and this may be the reason why the Commissioner has never demanded samples of the ingredients. By far the greater number of the owners of panaceas and nostrums are too shrewd to thus publish their secrets, for they can attain their purpose much better under the law for registering trade marks and labels, designs for bottles and packages, and copyright of printed matter, which are less costly, and do not re veal the arcanum. These proprietary medicines constitute the great bulk of what the public call "patent medicines."
*By Dr. John S. Billings, U. S. A. A Arridged from Boston Medical and

The trade in patent and secret remedies has been, and till is, an important one. We are a bitters and pilltaking people; in the fried pork and saleratus biscuit regions the demand for such medicinesis unfailing, but everywhere they are found. I suppose the chief consumption of them is by women and children-with a fair allowance of clergymen, if we may judge from the printed testimonials. I sampled a good many of them myself when I was a boy. Of course these remarks do not apply to bitters. One of the latest patents is for a device to wash pills rapidly down the throat.
I am sorry to say that I have been unable to obtain definite information as to the direct benefits which in ventions of this kind have conferred on the public in the way of cure of disease or preventing death. Among the questions which were not put in the schedules of the last census were the following, namely : Did you ever take any patent or proprietary medicine? If so, what and how much, and what was the result? Some very remarkable statistics would no doubt have been obtained had this inquiry been made. I can only say that I know of but four secret remedies which have been really valuable additions to the resources of prac tical medicine, and the composition of all these is now known. These four are all powerful and dangerous, and should only be used on the advice of a skilled physician.
I said in the beginning that I cannot, on this occasion, give any sufficient account of the progress of in sion, give any sumcient account of the progress of in-
vention and discovery in medicine and sanitation durvention and discovery in medicine and sanitation dur-
ing the century just goue. The great step forward ing the century just goue. The great step forward
which has been made has been the establishment of a true scientific foundation for the art upon the discove ries made in physics, chemistry and biology. One hundred years ago the practice of medicine, and meas ures to preserve health, so far as these were really effi cacious, were in the main empirical-that is, certain effects were known to usually follow the giving of cer tain drugs, or the application of certain measures, but why or how these effects were produced was unknown. They sailed then by dead reckoning, in several senses They sailed th
of this phrase.
Since then, not only have great advances been made by a continuance of these empirical measures in treat ment, but we have learned much as to the mechanism and functions of different parts of the body, and as to the nature of the cause of some of the most prevalent and fatal forms of disease; and, as a consequence, can apply means of prevention or treatment in a much more direct and definite way than was formerly the case. For example, a hundred years ago nothing was known of the difference between typhus and typhoid fevers. We have now discovered that the first is a disease propagated largely by aerial contagion and in duced or aggravated by overcrowding, the preventive means being isolation, light, and fresh air; while the second is due to a minute vegetable organism, a bacillus, and is propagated mainly by contaminated water milk, food, and clothing; and that the treatment of the two diseases should be very different.
The most important improvements in practical medicine made in the United States have been chiefly in surgery in its various branches. We have led the way in the ligation of some of the larger arteries, in the re noval of abdominal tumors, in the treatment of disases and injuries peculiar to women, in the treatmen of spinal affections, and of the deformities of variou kinds. Above all, we were the first to show the use o anæsthetics-the most important advance in medicine made during the century. In our late war we taught Europe how to build, organize, and manage military hospitals; and we formed the best museum in existence illustrating modern military medicine and surgery.
As regards preventive public medicine and sanitation, we have not made so many valuable contributions o the world's stock of knowledge, chiefly because, until quite recently, we have not had the stimulus to per sistent effort which comes from density of population and its complicated relations to sewage disposal and water supplies; nor have we had information relative to localized canses of diseases and death which is the essential foundation of public hygiene, and which can only be obtained by a proper system of vital statistics. We can, however, show enough and to spare of inventions in the way of sanitary appliances, fixtures, and systems for house drainage, sewerage, etc.; for the ingenuity of inventors has kept pace with the increasing demands for protection from the effects of the decom position of waste matters, as increase of knowledge ha made these known to us. The total number of pat nts granted for sanitary appliances during the las decade ($1880-1890$) is about 1,175 .
No doubt the greatest progress in medical science during the next few years will be in the direction of prevention, and to this end mechanical and chemical invention and discovery must go hand in hand with in rease in biological and medical knowledge. Neither can afford to neglect or despise the other, and both are working for the common good. If the American patent system has not given rise to any specially valuable in ventions in practical medicine or in theology, it must be due to the nature of the subjects, and not to fault of the system.

July 4, I89I.]
Scientific Americau.

RECENTLY PATENTED INVENTIONS. Engineering.
Steam Boiler Furnace. - Michael E. Herbert, St. Joseph, Mo. This invention provides a water legs also forming the sides of the fire box, a feed-
ing graie being adapted to carry the fuel from one ing grate being adapted to carry the fuel from one
compartment to another, and passages surrounding the fire box for conducting the smoke and gases to be consumed. The furnace is designed to afford great heat
capacity and economy in the consumption of fuel, while capacity and economy in the consumption of fuel, while
being adapted for use with an ordinary tubular or other type of boiler, being also easy of operation and substan tial in construction.
Valve Gear. - Albert M. Sykes, Philadelphia, Pa. This is new and simple form of in locomotives and stationary engines for the purpos of reversing the stroke. It consists of la cross head carrying an actuating plate, a pair of reversely arranged cam arms pivoted at one end and maintained alternately in position to be acted upon hy the plate; with means for
Safe Steamboats. -- Joseph B. Brolaski, St. Louis, Mo. Several patents havebeen granted
this inventor covering the construction in steamboats of light weight compartment doors and bulkheads in the hull and light weight corrugated metal cabins and deck houses. Also a simple steam steering apparatus
without auxiliary engines and one for short chin vey with long natural draught. This inventor has also se cured from other patentees four several valuable im provements for water craft. The compartment bulk-
heads are designed as a most efficient protection against heads are designed as a most efficient protection against
sinking. The combination of these devices is to secure a boat that will not sink, will not burn up, will steer quickly and hold steadily, use less fuel, and give more speed with less strain and lighter draught, and will be a good boat. She should also insure for a very low rate
and be a safe, serviceable and economical steamboat for an average lifetime. The special safeguards stated are plicable to the present style of boats to make them safer and enhance their value.

Railway Appliances.

Car Coupling. - Hamlin G. Russell Lincoin, Il. This invention provides a means whereby connection, and also provides springs in connectio with the drawbars capable of performing the double is simple and durable, while the coupler is capable of automatic coupling action, and of being conveniently and expeditiously uncoupled from the top or the side of the car.

Electrical.

Apparatus for Treating Deaf-Ass.-George F. Webb, Jefferson, Ohio. This ap paratus comprises a battery, a belt, an electrode sup-
ported on the belt and shaped to rest upon the ear, and having an opening in one side to receive the ear, and connections between the electrodes and the battery The invention provides a simple and efficient device which may be easily applied, and is designed, while serving as a remedy, to enable the patient to hear dis tinctly.

Mechanical Appliances.

Roofing Seamer.-Orren P. Talley Richmond, N. C. This is a device for forming the quickly and positively join the ends of the sheets and orm a complete crimp at each operation of the ma chine. Its construction is such as to avoid the dange of breaking or cracking the ends of the tin as it rimped, while it is also adapted for turning a doub seam, being at the same time a practical and easily manipulated device which can be manufactur
small cost and is not liable to get out of order.
Brush for Lithographers.-Gusta Arnold, Brooklyn, N. Y. This is a brush for stipple
work, in which the body is swiveled to the handle, the ody boing of a vielding or elastic materiul, os of rub er or its equivalent, and tapered in the direction one end, while having its exterior surface or technic provided with a series of teats. It is so designed tha with this brash an artist may readily produce a stipple urface of a strong, light, or intermediate tint, quickl nd in ar antio painting

Agricultural.

Planter.-John A. Handeland, Jack son County, Minn. (Lake Park P. O., Dickinson pecially for garden use, and so constructed that it ma be urifized for planting seed or for cultivating youn plants, and when the plantiug mechanism is removed the implement may be employed as a wheelbarrow.
The implement is light and of durable construction, The implement is light and of durable construction,
and capable of convenient manipulation, the invention and capable of convenient manipulation, the invention embod.
Cattle Rack. - James H. Howard Baldwin. Kansas. Combined with a series of posts arposts, are separate independent panels containing feed openings and adjustably attached to the rails, with ther novel features, forming a means whereby cattle may be fed from stacks of hay or other food in the he without wasting the food,

Fruit Gatherer.- Andrew B. Anderson, Savannah, Ga. Combined with a receptacle and
frait cutting off device having operating arms, pivoted
to a pole, is a chute by which the fruit may be conduct ed down in a convenient and expeditious manner, its
fall being so checked or broken by means of draw may be so formed that any one of a cluster of fruit as apples, oranges, etc., may be removed from a branc without injury to or detaching the remaining fruit.

Miscellaneous.

Door Check. - David Rankin, Rosa ond, cal. A pivoted arm provided with a beveled atch is furnished with a chamber in its free end for eceiving an elastic buffer, and a socket is fitted to the cing a plate for closing the ocket when it is desired to use the device merely as a buffer. The device afford simple means for arresting the motion of a door whe hrown open, and for holding the door open.
School Furniture.-Wilberforce A Ramsey, Johnson City, Tenn. This invention pro vides an improved form of school seats, by means of
which each chair can be adjusted to suit an adult or the hich each chair can be adjusted to suit an adult or the
mallest scholar. The back of the seat is held firmly in position, but the seat portion can be readily turned u out of the way, for sweeping, dusting, etc., there
being a spring-actuated device for securing the seat in y desired position.
Dress Chart.-John W. Stevenson, Ravenna, Oho. This invention provides an improved raughted directly upon the cloth or other material nstead of consisting of a number of parts, to be ad justed according to the measurements of the garment as heretofore, this chart consists of a single piece, dis persing with adjustments requiring time and labo With this chart, and following the rules provide herewith, it is designed that any pattern may raughted after measure
Clock Mechanism. - Grant W. Shu man, Lake Station, Ind. Combined with the cloc mounted to travel and actuated from the clock work come successively in the path of the striker. The ar rangement is such that the striker strikes another be at each stroke, so that the sound continues its ful length without being interrupted and deadened by a
second striking of the striker, as is the case usually, second striking of the strik
when only one bell is used
Note.-Copies of any of the above patents will be urnished by Munn \& Co., for 25 cents each. Please
send name of the patentee, title of invention, and date of this paper.

SCIENTIFIC AMERICAN

BUILDING EDITION

JUNE NUMBER.-(No. 68.)

 table of contents.. Pate in colors of a handsome residence on Rive side Park. New York City. Floor pla
vations. Architect Mr. Frank Freeman.
2. Colored plate illustrating a row of brick dwellings Newark, N. J., costing about $\$ 3,000$ each. Per spective elevation, floor plans,
man, Newark, N. J., architect.
Engravings and floor pla Washington Heights, New York City. Cos 01
4. A dwelling at New Haven, Conn. Cost $\$ 8,00$
plete. Perspective view, floor plans, etc. plete. Per
5. A colonial cottage erected for Mr. C. W. Macfarlane at Elm Station, Pa. Cost
Floor plans and perspective view.
6. Design of a modern interior. A comfortable hall and staircase.
7. A picturesque cottage erected for George W. Childs, Esq., in his Villa Park at Wayne, Pa. Cost
$\$ 7,200$ complete. F. H. \& W. L. Price, Philed phia, architects. Plans and perspective.
8. A tower honse recently erected at Elm Station, Pa.
Cost $\$ 4,600$ complete. Floor plans, perspective elevation, etc.
9. A row of low cost colonial houses erected at Rose ville, N. J. Cost complete $\$ 2,000$ a house. Plans nd perspective vie
10. An English cottage erected at Elm Station, Pa. Cost about $\$ 4,000$. Perspective and floor plans. 11. Sketch of a farm house recently built in Steuben County, New York, at a cost of $\$ 695$.
12. Miscellaneous contents: Simplcity in furnishing and decoration.-Weight as a test of strength in timber.-Architect of the Woman's Building of for interiors.-The Richmond heater, illustrated. -Some new designs in radiators, illustrated Improved plumbing appliances, illustrated.-Bent glass.-Improved woodworking machinery, illus-trated.-A strong and light lawn fence, illustrated.

- The "Heatencook " range, illustrated.-The -The "Heatencook" range, illustrated.-The H. W. John
illustrated.

The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies,
25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages; forming, practically, a large and splendid Magazine of Arcitrrcwith fine engravings, illnstrating the most interesting examples of Modern Architectural Construction and
allied subjects. The Follness, Richness, Cheapness, and Convenience of any Architectural pablication in the world. Sold bj of any Architectu
all newadealers.

2Business and Personal
The chargefor Insertion under this head is One Dollar a line
for each insertion; about eioht words to a line. Adverfor each insertion; about eight words to a line. Adver
tisements must te received at publication office as early a For Sale-New and second hand lathes, planers, drill hapers, engines, and boilers, belting, pulleys, and shaft Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Barrel, Keg and Hogshead Machinery. See adv., p. 410 For best hoisting engine. J. S. Mundy, Newark, N. J. Wanted-Tin cans and steel shafting. Box 146, Maquo ta, lowa
Best driers for grain, sand, clay, fertilizers,
reen coffee, etc. S. E. Worrell, Hannibal, Mo Best Ice and Refrigerating Machines made by David
oyle, Chicago, IIl. 170 machines in satisfactory use. The Improved Hydraulic Jacks, Punches, and Tu xpanders. R. Dudgeon, 24 Columbia St., New York. "How to Keep Boilers Clean." Send your address for
ree 96 p. book. Jas. C. Hotchkiss, 112 Liberty St.. N. Y. Screw machines, milling machines, and drill presse Pe Garvin Ma Pneumatic bell outfit. Better than electricity. Sen
or circular. W. B. Beach, 132 Fulton St., N. Y. City. For Sale-Compensating watch regulator patent, No
255,182, granted December 25,1888 . Address Wm. H Fhear, Delmar, N. Y.
For Sale Outright-Patent No. 450,489,improved trolle gide for retaining trolley on wire. n, 0 box 635 , Auguta, G
Guild \& Garrison, Brooklyn, N. Y., manufacture stean acid blowers, fliter press pumps, etc.
Split Pulleys at Low prices, and of same strength an ppearance as Whole Pulleys. Yocom \& Son's Shaftin The, Dinker
The best book for electricians and beginners in ele
tricity is " Experimental Science," by Geo By mail, \$4; Munn \& Co., publishers, 361 Broadway, N. Wanted-An intelligent foundryman as foreman of a
good sized foundry. Must thoroughly understand oulding, and handling of men, be strictly temperat nd honest. Only those who can give the best of refer-
nces will be considered. This proposition is from a re sponsible firm. Address " L.," 21 Park Place, New York
City.
STR for new and complete catalogue of Scientific nd other Boans for

HINTS TO CORRESPONDENTS
Names and A ddress must accompany all letters,
or no attention will be paid thereto. This is for our or no attention will be paid thereto. This is for our
information and not for publication.
References to former articles or answers should
 some answers require not a little research, and
though we endeavor to reply to all either by lette
or inthis department each must take his turne
Speciat wi ritten Information
personal rather than general in on on matterest cannot be
expected without remuneration.
cientifent American Snpplements referre
tomay he had at the offce. Price 10 centseach
Books referred to promptly supplied on receipt o
to may he had at the office. Price 10 centseach.
Books referred to promptly supplied on receipt
Mrice.
marks sent for examination should be distinctly
marked or labeled.
(3119) N. W. N.-Brown's recipe for making transparent soap is as follows: 100 pourds dry
bar soap to be heated and melted. Then pour in 25 low heat. Then add 100 to 125 pounds of glycerine gitate, keeping up a moderate heat. Let settle. Draw off into moulds or soap frames. When cold cut into
(3120) H. B. asks: What can I use to clear shellac stiffening from fabrics of a fur or shoddy
nature without injury to the goods ? A. Alcohol or nature without injury to the goods? A. Alcohol or
(3121) T. M. P., England, asks: Will you kindly tell throngh the medium of your columns : The best mixtures of iron, and also the proportions
of each kind, for making plow shares ? The kest method of chilling the same. A reviver for kid boots which will not crack or make the leather hard. A. Yo 3 qual parts, or No. 2 and scrap to make a moderately hard casting that will polish by use. Chilling is only ased for the point, which is cast in an iron mould, or more usually, an iron chill plate for the bottom of the
toe. When kid boots need reviving we buy new. For asiug use French fluid polish
(3122) R. W. R. asks (1) what is the eaning of the term "ohms resistance"? A. The ohm is the standard of resistance. A copper wire No. 16, B and S gauge, 24314 feet long, has a resistance of one an open writing. A paper by which power is aiven to a person to do some act or enjoy some right. 3. I have a room 20 by 80 feet, in which I burn 15 natural gas jets day and night, and I have often noticed that when the temperature outside is apparently the same at day and night that the room is much warmer at night than
during the day. Why is it? A. Possibly the doors of the room are opened with less frequency at night than during the day. Have you applied actual measuremen
(3123) W. H. S.-Electric motors are are reversed by changing the direction of the current (3124) A. H. F. writes : I should like to suggest to the readers of the Scientific American
who have constructed the simple electro-motor therein who have constructed the simple electro-motor therein
described, that the efficiency of the motor may be greatly increased by filling up the interstices between coils of
width of core, and bound in position by a thin wire o (3125) F. H. F. writes : Please give me the weight of the heaviest locomotive engine now being
used on any railroad in the world. A. About 70 tons or han till oad in the 100 A. About and tender loaded.
(3126) W. R. J.-The way to recove iver froma solution is to precipitate with yutil all precipitate of silver chloride is reduced to the metallic rate. This will tuke some hours. Filter and wash with boiling water. The lead plates in Faure's storage bat tery are about one-sixteenth of an inch thick.
(3127) F. A. R. writes : I have a twenty five horse power boiler with a working pressure of 70
pounds of steam from which I have been trying to get ream enough to boil linseed oil in a kettle containin coil of 1 inch pipe, using an open exhaust. I have been able to get 250° of heat but no more. Wil you be pretend to know say that a pressure of 300 pounds more with a return exhaust will be necessary. The ket le is three feet high by four feet wide, and is about orty feet from the boiler. A. Linseed oil boils at 597 ah. To boil it by means of a steam coil as you pro pose would require a pressure of more than one thou
and pounds pressure in the boiler per square inch Direct fire under the kettle is the usual way. Steam a 300 pounds gauge pressure has a temperat vaporating the volatile properties of linseed oil, but ill not boil it.
(3128) H. S. R. asks : Is color made by ght or shown by light? Please explain in full as pos white ink, is it a color or is it colorless? Also, if yo put colors in a row and take away the light, won't the olors rema. Does light simply show colors, or doe manufacture or make colors? A. Color is caused b ight. Different surfaces possess different absorbin ransmisson or reflection. White is the reflection all colors of the visible spectrum. There is no color in a dark room. White ink is theoretically of all colors nixed. Black is theoretically the absence of all colors.
(3129) A. T. asks : Please inform me the way to oxidize sheet brass. A. For oxidizing brase, dip in a soluti
pint of water.

NEW BOOKS AND PUBLICATIONS.

a Short Course of Experiments in Physical Measurement. By Har-
old Whiting. In four parts. Part III. Principles and methoos. Cambridge: John Wilson \& Son. 1891.
The restricted scope of the present volume of this valuable series makes it less amenable to review than its predecessors. It derives special value from its
tables, which include much data that is ordinarily very hard to be fonnd. Such are the tables of the properties of solds and liquids. For these alone the book is
worthy of recommendation, independent of its relation worthy of recommendation, independent of its relation Popular Lectures and Addresses. volumes. Vol. III. Navigational affairs. London and New York:
Macmillan \& Co. 1891. Pp. x, 511. Price $\$ 2$.
Navigation, the tides, terrestrial magnetism, and the mariner's compass, deep sea sounding, lighthouse characteristics, the laying and ithing of deep sea cables It is needless to say that the subjects are admirably treated. Sir William Thompson has the art of giving a most graphic turn to his lectures, and engages the attention perfectly without resorting to the colloquialisms and extemporized words, whose use disfigures the text of the writings of so many of his contemporary scientists. Thomson rises above all these too prevalent traits, and in this volume of lectures, with addenda and
supplements, presents a work of the greatest interest supplements, presents a work of
La Plume des Oiseaux: Histoire NaTURELLE ET INDUSTRIE. Lacroix-

This little work treats of birds useful or celebrated for their plumage. Numerous illustrations accompany the text. In addition to the natural history of the
birds, the methods of using their feathers for fans, decoration, etc., is given in considerable detail.
Examen Quimico y Bacteriologico de las AgUas Potabiles. Par A. E. Blanchard. London : Burns \& Oates. 1891. Pp. xix, 513

This work, in quality of printing, paper, and numerous engravings, leaves nothing to be desired. The titular subject is fully treated and the bacteriology of water
receives particular attention. A number of reproductions of microscopic slides are given to specially eluci date this part of the work
Metal Trades Directory for New England and New York State. Haven, Conn. Price $\$ 4$.
This is a classified list of hardware manufacturers and dealers, machinists, engine builders, boiler makers,
iron and brass founders, plumbers, stove manufacturers, gas fitters, etc. This directory is divided by States,and each trade is put under a separate head. There is also a complete index with references to the various manu-
factures in the different States. The classification is factures in the different States. The classification is satisfactorily carried out and the lists seem to be com-
plete and up to date. The volume contains about 1,200 pages. Each State contains an alphabetical list of names and also a classifiod directory of the trades.

INDEX OF INVENTIONS For which Letters Patent of the United States were Granted June 23, 1891, AND EACH BEARING THAT DATE. [See note at end of list about copies of these patents.]	an Game \square \square 		
	$\begin{aligned} & \text { Gas } \\ & \text { Gasf } \\ & \text { Gate } \\ & \hline \text { Con } \end{aligned}$	Seat riat til	
		Telegraph lines, switch board for, Viles \& Young	
	Ironing \qquad W. Bullock... L. Watson Jack. See Floor jack. metal framework, Westa 454,456 454,786		
			THE SMITH PREMIER TYPEWRITER
	Kinder		
			,oma
			, min
		(eater	
	Hot		Important Improvements
			VOLNEY W. MASON \& CO., FRICTION PULLEES CLUTCEES and ELEVATORSprovidence. r. i.
			THE PREMIER CAMERA
		TRADE MARKS.	
			cra
			is the best in market.
			Simple of Manipulation. Plates or Films are used. The Shutter is always set.
			PRICE \$18.00.
		Sheetings and shirtings, cotton, Jackson Com- pany..760 to 19,762 Soap, laundry and toilet, Butier \& Hannum 	We make all kinds of Cameras.
		Brothers Tonics, F. M. Ciement Toothpaste, W.H. Ha Toothpaste, W. H. Hall............ Toy games in boxes, J. H. Singer	ROCEESTER OPTICAL COMPANY, 14 S. Water St, Rochester, N. x.
		A printed cony of the speciteation and draming of 	Edco System. Complete Electric Light and Power Plants. Electric Street Cars, Accumulators, Dynamos. Oldest and most experienced Motor Co. in the world. THE ELECTRO DYNAIIC COMPA 24 Carter St., Phila., Pa. 44 Broadway, New Yor

 GEO. P. F. Wint Machines.

TeSLACK BARPREL MACHNERY JOHA APECIALTY Y M MERY
GATES ROCK \& ORE BREAKER Capatity yp to 20 toos per torr.

OUSHMAN CHUCKS Perfect Newspaper File The Koon paten Filiefor freaer rand Newgapers, Mas

DEAF NES \& HEA NOISES CURED RAILWAY \& ST Rue's Little Giant Injector. SCREW JACKS, STURTEVANT BLOWERS, \&c. "IRロP FDPGINGE" JaMES Leffel Water WHEES
 FARLO St., SPRI
110n Liberty Street

OTTO GAS ENGINES

Engines and Pumps Combined.

For COAL GAS SCHLEICHER, SCHUMM \& CO. PHICAGO DELPHIA,
保

Daimler Gas and Petroleum Motor FHicient-500nomical-saro. Sizes 1, 2, and 4 Horse Power, actual, for driving small machinery of all kinds, such
Sewing Machines, Lathes, Pumps Ventiating Fans, Watchmakers Machinery,
Light Woodworking Machinery, Ice Cream Machines, etc., etc. Larger sizes of the Industrial Motor area adapted for driving Dynamos, Printing Presses,
Grinding Mills, etc. Motors in operation may be seen at the warks and carriages.
THE DAIMLER MOTOR CO. $\left\{\begin{array}{l}\text { Offere, } 111 \text { Enst 14th St., New York. } \\ \text { Worteinwa, L. I. City, N. Y: }\end{array}\right.$

EPastyayy

BLUE PRINT Paper, Superiof panitr:

 Me a
 \circ BIT ${ }^{2}$ vatw
ICE and REFRIGERATING MACHINES
The Pictet Artificial Ice Company (Limited), Room 6, Coal \& Iron Exchange, New York.

After being on the Market Five Years The "ACME" still Leads!
 ROCEESTER MACHINE TOOL WORIS, Brown's Race, ROCHESTER, N. I.

PNEUMATIC BELL OUTFIT

TCE-HOUSF AND COID ROOM G. Hatteld. With directions for construction. Fon
 UNION MANUFACTURING \& PLATING CO. METAL SPECIALTIES FOR INVENTORS.
Estimates furnished. \quad Correspondence invited SCIENTIFIC AMERICAN SUPPLEMENT. Any desired back number of the SciENTIFIC
AMERicAN SUPIEMENT can be hat at this ofice for
0 cents. Also to be had of newsdealers in all parts of
FIRE FELT.
THE NEW NON-CONDUCTING MATERIAL

Experimental Science

Geo. M. HY Hopkins.

 ource of Rat ion a
Amusement. A superb
work for Young and Old Illustrated Circular and Table of Contents sent free
740 PAGES 680 ILLUSTRATIONS. PRICE, by mail, postpaid, . - - $\$ 4.00$ MUNN \& CO., Publishers,
Office of THE SCIENTIFIC AMERICAN,
$\mathbf{3 6 1}$ Broadway, New York ELECTRO MOTOR. SIMPLEE. HOW TO

(9)Oill Small Electric Motor

 "STANDARD" EMERYEL DRESSER

THE EACLE the Easiest runNing bicycle IN THE WORLD. AGENTS WANTED. Large Illustrated Catalogue sent Free to any Address.

 THE EAGLE BICYCLE MFG. CO.,The Scientific $A \underline{\underline{\underline{m}}}$ PUBLICATIONS FOR I89I.
The prices of the difierent pubications tin the Unted
 The Scientitic American supplement (weekly), one 5.00 The focientitic emerican, spanish Eadtion (month.
 COMBINED RATES.
The Scientific American and Supplement The Scientific American and Supplement, -- $\quad \$ 7.00$
 The Scientiflc American, Supplement, and Architects and Builders Edition, for
Proportionate Rates for
-
Months. This includes postage, which we pay. Remit by postal
or express money order, or draft to order of or express mone order, or draft oorder of
MUNN \& CO., $\mathbf{3 6 1}$ Broadway, New York.
 OIL WELL SUPPLY CO.
 ARTESIAN

$\overline{\text { Inside Page, each insertion --75 cents a line }}$ Back Page, each insertion

ICTORS

 OVERMAM Wheel co., chicopee falls, mass.
oston. washington.
denver. san francisco.

95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March
7 th, 1876 , No. 174,465 , and January 30th, 1877. No. 186,787

The transmission of Speech by all known fringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or itslicensees responsible for such thereof, and liable to suit therefor.

Clough's Patent Duplex Gear Cutter One pair of these cutters cuts a pitch of
interchangeable gear wheels from 15 teeth
to a rack inclusive. For address R. M. Glough, Tolland, Conn,

 EARMSTRONG MAN'F'G.CO.

THE BRIDCEPORT WOOD FINISHINC CO GRANVILLE M. BREINIG PRINCIPAL OFFICE NENERAL AGEN YORKK. NEWENT, NGHICAGO OFFICE \& WAREHOUSE
 Whelldris Patent Wood PILLER Breinicts Lithogen silcate Paint. PAMPHLET GIVING DIRECTIONS FOR FINISHING HARD WOOD FREE TO ANY ADDRESS. SIEMEN'S * CABLES.

 SUBMARINE, TELEGRAPH UNDERGROUND, * * * TELEPHONE, INTERIOR, * ELECTRIC LIGHT. SIEMENS \& HALSKE by THE EDISON GENERAL ELECTRIC CO. at their SCHENECTADY WORKS.Natroes Wire Department, Edison General Electric Company,

\$85 Lovell Diamond Safety $\$ 85$

Send to The Eastman Company, Rochester, N. $V_{\bullet,}$ Sor a cotyy of "Through Europeo wuith à
Kodak." (zilustrated), free by macid

A Kodak

. buy, for however it may be in regard to other goods, it is
indisputably true of machinery and tools that the "best indisputably true of machinery and tools that the "best
is none too good." We can give you the best foot-power
lathe ever made lathe ever made, either in this country or in
Europe. This is a strong statement, and we are Europe. This is a strong statement,
fully prepared to substantiate it. fully prepared to substantiate it.
Our lathes are superior to all o gance of design, workmanship, and finish. More than this, they are COMPLETE tools. We
lathe having back gear, reverse feed for right or furnish you a lathe having back gear, reverse feed for right or which you will not find in cheaper grade tools. Added to all this, our velocipede foot-power is incomparably the best ever applied to a foot lathe.
9 to 13 inches
We make these lathes in different sizes, frem high quality taken into consideration, are th from 25 to 69 inches the market. We shall be pleased to mail to any address our complete catalogue and price list, which fully
W. F. \& JOHN BARNES CO., 99 Ruby St., Rockford, III.

To LITTLE GIANT
PRICE, \$35.00.
Only Boy's Safety Only Boy's Safety with a
Spring Fork, preventing in-
jury to soung riders from
WM. READ \& SONS, $\begin{gathered}107 \text { Washington st. } \\ \text { BosTon, MAs. }\end{gathered}$

ESTABLISHED 1846.
The Most Popular Scientific Paper in the World
Only $\underset{\text { Weekly }}{\$ 3.00}$ a Year, Including Pumbers a Yeartage.
This widely circulated and splendidly illustrated paper is published weekly. Every number contains sixteen pages of useful information and a large number of original engravings of new inventions and discoveries,
representing Encineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity, Telegraphy, Photography, Architecture, Agriculture, Horticulture, Natural History, etc. Complete list of patents each week. tific American will be sent for one year- 52 numberspostage prepaid, to any subscriber in the United States, Canada, or Mexico, on receipt of three dollars by the
publishers; six months, 81.50 ; three months 81.00 . Clubs.-Special rates for several names, and to Post Masters. Write for particulars.
The safest way to remit is by Postal Order, Draft, or
Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Address
all letters and make all orders, drafts, etc., payable to MUNN \& CO., 361 Broadway, New York. THE
Sriextific : ㅕㅕㅆerican \$upplement
Scientific Aparate anc distinct publication from The every number containing sixteen large pages full of enand accompanied with translated descriptions. THE SCIENTIFIC AMERICAN SUPPLEMENT is published weekly, and includes a very wide range of contents. It pre-
sents the most recent papers by eminent writers in all the principal departments of Science and the Useful
Arts, embracing Biology, Geology, Mineralogy, Natural History, Geography, Archæology, Astronomy Chemistry, Electricity, Light, Heat, Mechanical Engineering,
Steam and Railway Engineering, Mining, Ship Building Marine Engineering, Photography, Technology, Manufacturing Industries, Sanitary Engineering, Agriculture, Horticulture, Domestic Economy, Biography, Medicine, obtainable in no other publication. and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT.
Price for the SUPPLEmENT for the United States and
Canada, $\$ 5.00$ a year; or one copy of the ScIrNTIFIC AM ERICAN and one copy of the SUPPLEMENT, both mailed for one year for 87.00 . Single copies, 10 cents. Address and remit by postal order, express money order, or check,
MUNN \& CO., $\mathbf{3 6 1}$ Broadway, New York $\underset{\text { Publishers Scientific American. }}{\mathbf{3 6 1} \text { Broadway, New York, }}$

ghuilding erdition.

THE SCIENTIFIC AMERICAN ARCHITECTS' AND
BUILDERS' EDITION is issued monthly. $\$ 2.50$ a year Single copies, 25 cents. Forty large quarto pages, equal large and splendid Magazine of Architecture, richly adorned with elegant plates in colors, and with other fine gravings; illustrating the most interesting examples A special feature is the presentation in alied subjects. of a variety of the latest and best plans for private residences, city and country, including those of very modperspective and in color are given, together with ful Plans, Specifications, Sheets of Details, Estimates, etc. have won for it the Largest Circulation of any Architectural publication in the world. Sold by all news dealers. $\left.\begin{array}{l}\text { \$2.50 a year. Remit to } \\ \text { MUNN } \& \mathbf{C O}\end{array}\right)$. $\underset{361 \text { Broadway, New York. }}{ }$

PRINTING INKS

