
a WEEKLY JOÜRNL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

CASTING THE HENRY WARD BEECHER STATUE FOR THE CITY OF BROOKLYN.
The Henry-Bonnard Bronze Company, of this city, have recently completed the casting of a statue of the late Henry Ward Beecher, to be erected in front of the Brooklyn City Hall. The statue is remarkable as being cast practically in a single piece, the head being of one piece with the body. Originally metallic statues were made in small pieces and were united by tues were made in soldering. Some were cast solid. The presrivets or soldering. Some were cast solid. The pres-
ent practice is to cast them hollow, and as thin as posent practice is to cast them hollow, and as thin as pos-
sible. This secures rapid cooling and tends to prevent sible. This secures rapid cooling and tends to prevent
any separation of the constituents of the alloy. It also economizes in metal.
The first step in making a statue is the production of the plaster model. This is supplied by the artist, and it comes from his studio of the exact size required for the final statue. The original studies in the case of colossal stataes such as the present may be very small,

MAKING THE MOULD.
but before the artist is done with his work, the full sized model is produced.
In the present case the statue was to be about nine feet high. The area of the flask in which the mould was to be made was seven feet four inches wide by thirteen feet six inches long. The model was established upon the lower section of the flask and the work of building up the mould began. The sand used is mined in France. It possesses to a high degree the property of consolidating, yet is very porous. A famous bed of the material is at Fontenay-anx-Roses, about 16 miles from Paris. This is compacted by wooden mallets and hand rammers of different shapes. As the artist produces his statue without any reference
to its capacity for "drawing" from the mould, the bronze founder has to adapt his work to the most ex acting conditions of undercutting and complicated out lines. The mould is therefore built up in very nu merous sections, some of them extremely small. An xact count was not kept, but in the present statue between one thousand and fifteen hundred pieces were used in the mould. In one of the cuts, where the peration of moulding the head is shown, the idea of peration of moulding the head is shown, the idea of hat its sections represent irregularly shaped bricks, all fitting together with the utmost nicety and accu acy. The statue is eventually completely embedded in clay. The mould has now to be opened up, the edifice

taking the mould to pieces.

casting the statue.
of over a thousand sections is carefully taken down and the model is lifted from its resting place upon the lowest flask section. The mould is next rebuilt, the inner surface receiving a coating of foundry facing. and the interior is rammed full of clay to form the core. This core need not be solid. Some spaces may beleft in it for the gases to collect in. Thus the mould is a second time complete and intact, but is filled with a clay figure instead of a plaster one.
The mould is a second time dismantled and the core is taken in hand. From its entire surface a layer of clay is removed, to average, as nearly as possible, one quarter of an inch in depth. This delicate operation provides the space for the metal to occupy in the castng process. This core thus reduced in size is replaced upon the flask and is properly supported. The mould is a second time built up, surrounding in this case the reduced core. A number of channels or gates are worked in the mould to allow the metal to run through to different parts of the figure. These resemble somewhat the truni and branches of a tree. They start of comparatively large section near the pouring reservoir, and fork and diminish repeatedly, reaching the space between core and mould in many places. When all is perfectly dry, and the flask filled with sand so as to hold all the pieces in place, the operation of casting is proceeded with. In the present cas seveuteen weeks were required for the moulding.
The process of casting a bronze statue is executed either by surface or bottom casting. In the latter wethod a reservoir is arranged over the gates, which reser voir is large enough to hold all or a large portion of the metal. It has holes in its bottom corresponding exactly to the gates in the mould. These holes are plugged. The metal is poured into the reservoir, and by withdrawing the plugs the metal runs down into the space in the mould. The Beecher statue was sast by surface pouring. The metal held in crucibles was poured directly into the gates. This enabled a constant watch to be kept upon its fluidity and general nature as far as shown in its fusion. A man, as the metal was poured, kept scraping back all scoria, slag, and oxide from its surface. The adoption of one or the other system of pouring the metal rests, as a matter of preference, with the individual founder.
For the Beecher statue 7,400 pounds of metal were nelted repeatedly. The fourth fusion was the one used. Eleven minutes were occupied in the casting, and the finished statue weighed 3,600 pounds. The rest of the metal represented the contents of the gates, waste, etc. The alloy was composed of copper 90 parts, tin 10 parts, zinc 3 parts.
The Beecher statue will be unveiled about the time this paper reaches our readers. The artist is J. Q. A. Ward, and the statue will, in the artistic and mechanical sense, be a credit to its eminent artist and to its founders.

Angina Pectoris-Its Nature.

Dr. R. Douglas Powell, in The Practitioner, argues that angina pectoris is a disturbed innervation of the heart or vessels, associated with more or less intense cardiac distress and pain, and a general prostration of the forces, always producing anxiety, and often amounting to a sense of impending death, and concludes that:

1. In its purer forms we observe disturbed innervation of the systemic or pulmonary vessels, causing their spasmodic contraction, and consequently a sudden extra demand upon the propelling power of the heart violent palpitation or more or less cramp and paraly sis ensuing, according to the reserve power and in tegrity of that organ-ungina pectoris vasomotoria.
2. In other cases we have essentially the same mechanisin but with the extra demand made upon a diseased heart-angina pectoris gravior.
3. The trouble may cowmence at the heart through irritation or excitation of the cardiac nerves, or from sudden accession of anæmia of cardiac muscle from coronary disease-primary cardiac angina.
4. In certain conditions of blood or under certain re flex excitations of the inhibitory nerves, always, how ever, with a degenerate feeble heart in the background we may observe intermittence in its action prolonged to syncope-syncopal angina.

Artificial Gold.

There are a great many metallic substances known for producing metal closely resembling gold. The Western Jeweller gives the following formula for producing one of the artificial gold substances

Take 100 parts (by weight) of pure copper, 14 parts zinc or tin, 6 parts magnesia, 56 parts sal amınoniac, 18 parts quicklime, 9 parts cream of tartar. Melt the copper, and add gradually the magnesia, sal ammoniac quicklime and cream of tartar, each by itself, in the form of powder. Stir the whole for half an hour, add the zinc or tin in small pieces, and stir again till the whole is melted. Cover the crucible, and keep the mixture in a molten condition for thirty-five minutes. Remove the dross, and pour the metal into moulds. It has a

grientifir gmmerican.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. UBLISHED WEEKLY AT
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN One copy, one year, for the U. S., Canada or Mexico.
One copy, six months, for the U.S., Canada or Mexic

Remit by postal or express money order, or by bank draft or check.

The Scientific American Supplement.

table of contents of
 SCIENTIFIC AMERICAN SUPPLEMENT INO. 8O8.

For the Week Ending June 27, 1891

 Price 10 cente. For eale by all newedealere trations...
DRAWING.-The Spirorap.-Descrition of an instument for
draming sirals. with samples of its work in pencil and ink.-2il.
lustrations.

 the party and of their equipments. - Notes upona second Arcticexpedition for investigations upon the east coast of Greenland
under Lieut. Ryder. V. GEOLOGY AND MINERALOGY.-Artifcial Hornblende--
 . MECHANICAL ENGINEERING.-A tkinson's Cycle Gas Engine.

Riche
tion.

 I. TECHNOLOG Y.-Floating Soaps.- Details of the process of mak-

 I. TOPOGRA PHY.-Simple Method of Measuring Heights in
Hasty Toporraphical Survey. The use of e simple pieee of sec
tion paper tor determining the height of distant objects.-An ex-

12905

hig But velocity of 55 miles per second. will doubtless continue to approach us for tens of thousands of years to come, till he arrives within 140 light years or so, he will then, after a computable period gradually and then rapidly recede from us and frow our part of the sidereal universe, and pursuing an unswerving course, with unabated velocity, he will, in a few million years, pass entirely out of the ken of the most powerful earthly telescope. For, while Arcturus is now approaching us at the rate of 55 miles per sec ond, he is moving ath wart our line of vision 381 miles in the same moment of time.
But part of that apparent motion of approach on the part of Arcturus is caused by the movement of our own sun, which, with its train of attendant worlds, swing. ing along through space at the estimated rate of 15 miles per second. Its course is directed toward the constellation Hercules, between Acturus and the Milky Way.
And now, having obtained some idea, however crude, of the great distance and rapid motions of this remarkable star, we are curious to learn something of his mag nitude and physical structure. If he had a visible companion circling around him, as is the case with Sirius, Alpha Centauri, and some other stars which exhibit a measurable parallax, we could weigh his mass or rather the combined wass of the two bodies, and thence infer his probable magnitude. But Arcturus is a solitary star. No telescope has revealed any attend ant cumpanion.
Our only resource, then, is to compare his light-giv ng power with that of other luminous bodies, and accept sueh conclusion as may be fairly drawn.

There are three well defined classes of stars, judged by the quality of light they yield. In the first class are the clear white and bluish white stars like sirius and Vega. These are supposed to be the hottest stars and the most luminous in proportion to the extent of their surface. Then there are the golden yellow or pale orange stars, of which Arcturus and Capella are fine examples. These have begun to cool. Finally, we have the deep orange and red stars like Aldebaran and Antares. These have advanced still further in the cooling processs.
Now the spectroscope informs us that our sun belongs to the orange or Arcturus type, and if we could view it from distant space, we should see a lovely star of a pale golden yellow. The question arises, then, how far would our sun have to be removed in order to shine with a brightness no greater than that of Arcturus? According to Mr. Maunder, it would have to be removed to 140,000 times its present distance, or about half the distance between us and Alpha Centauri.
But Arcturus is $111 / 2$ million times as far away as the sun, and if our sun were placed at that enormous distance. its diameter would have to be 82 times as great in order to give a light equal to that received from Arcturus. I hesitate to present such figures, implying magnitudes far beyond any to which we have been accustomed, yet they are but the logical deductions of observed facts. In other words, upon Mr. Maunder's reasonable assumption, Arcturus must be a gigantic sphere, 550,000 times larger than our sun, with a diameter of seventy million miles, or more than large enough to fill the entire orbit of Mercury.
'To make this contrast clearer, let us institute a simple comparison. Jupiter is larger than all the other planets and satellites of the solar system. The sun is a little more than 1,000 times larger than Jupiter. But Arcturus, if our inference is correct, is 550,000 times larger than the sun. By the side of such a majestic orb, our sun, grand and overwhelming as he is in our own system, would dwindle to an insignificant star.
Contemplating a world so vast, endowed with such mighty energies, and rushing with such resistless force through the great deeps of space, we cannot resist the questions: Whence came this blazing world ? Whither is it bound? What is its mission and destiny? Is it simply a visitor to our sidereal galaxy, rushing furiously through it like a comet? Is it being constantly fed and enlarged by the worlds it encounters and the meteoric matter it gathers up in its wonderful journey? What would be the effect if it chanced to pass through a nebula or a star cluster? Was the new star which suddenly blazed forth in the nebula of Andromeda in 1876 due to a similar cause?
As this mighty aggregation of attractive energies sweeps along his celestial path, thickly bordered with stellar worlds, how many of those worlds will yield forever to his disturbing forces? How many will be swerved from their appointed courses by his irresistible power? How many will plunge into his fiery bosom and be swallowed up as a pebble is swallowed by the ocean?
Are there many great suns like Arcturus, flying on their special missions through space? The late Dr. Croll, in his work on "Stellar Evolution," published two years ago, conjectures that the original constituent bodies of the universe were endowed abinitio with high velocities, and that in their swift journeys through space each eventually comes into collision with one of his fellows.

The terrific impact of two bodies moving with a ve locity of tens and even hundreds of miles per second transforms the energy of motion into heat, and both worlds are shattered into fragments, melted as in a fur nace, and dissipated into luminous gas. And thus a nebula is formed which fills vast regions of space and is ultimately, in the lapse of untold ages, evolved into new systems of worlds.
Sublime as is our theme-a universe of mighty worlds, wonderful as is the complexity of their motions and influences, mysterious as is that power which pervades and rules the whole, more sublime, more wonderful, more mysterious is the human mind, which, from the stand point of this little world, a mere speck in the great domain of creation, reaches out to the utmost bounds of the universe, formulates its laws, re constructs its past, forecasts its future, and dauntlessly grapples with the varied problems of atoms and stars, matter and force, time and space, eternity and in finity.

The New Smithsonian Astro-Physical observatory

We learn from Dr. S. P. Langley, secretary, that there has been established as a departinent of the Smithsonian Institution a Physical Observatory which has been furnished with specially designed ap paratus for the prosecution of investigations in radiant energy and other departinents of telluric and astro physics. The communication of new memoirs bearing in any way on such researches is requested, and for them it is

POSITION OF THE PLANETS IN JULY.

MARS
都 He comes to the front on the July annals, for an important epoch in his course occurs during the month. He is in conjunction with the sun on the 30 th , at 2 h . 41 m. A. M., being so near the sun as to be hidden in his rays, and also at his greatest distance from the earth. He passes at that time from the eastern to the western side of the sun and commences his course as morning star, slowly increasing in size and slowly approaching the earth, until his career as morning star culminates in the long anticipated opposition of August 4,1892 . Our ruddy neighbor is then nearer than he has been for fifteen years, or than he will be again for seventeen years. Months must pass before Mars becomes visible, but his movement though slow is sure, and the time is none too long to make a study of this interest ing planet, the only member of the solar family whose real surface is revealed by the telescope.
The right ascension of Mars on the 1st is 7 h .20 m . his declination is $23^{\circ} 15^{\prime}$ north, his diameter is $3^{\prime \prime} .8$ and he is in the constellation Gemini
Mars sets on the 1 st at $8 \mathrm{~h} .5 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31 st he sets at 7 h .13 m .

MERCURY

is morning star until the 7th, and then evening star. He is in superior conjunction with the sun on the 7 th , at $1 \mathrm{~h} .18 \mathrm{~m} . A$. ., when the smallest member of the solar brotherhood passes from the western to the eastern side of the sun and commences to oscillate eastward from the sun, in obedience to the law that regulates the movements of the inferior or inner planets. He meets Mars on the way, and the planets are in conjunc tion on the 11 th, at 7 h . P. M., Mercury being 41^{\prime} north.
The right ascension of Mercury on the 1st is 6 h .22 m ., his declination is $24^{\circ} 10^{\prime}$ north, his diameter is $5^{\prime \prime} .2$ and he is in the constellation Gemini.
Mercury rises on the 1st at 4 h .5 m . A. M. On the 31st he sets at $8 \mathrm{~h} .13 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.

JUPITER

is morning star. He is by far the most distinguished member of the brotherhood on the July list. He passes no important epochs in his course, and he has no meet ings or partings with other planets on the celestial road. He is simply a superb star, increasing in size, and rising earlier every evening, at 10 o'clock on the middle of the month and at 9 o'clock when the month closes. Observers who command a view of the southeast horizon should watch for the appearance of this regal planet, as he looms suddenly above the horizon, like a young moon, and shines the brightest of the radiant throng that cluster in the nightly sky.
The moon is in conjunction with Jupiter thre days after the full on the 24 th , at 2 h . P. M., being 3° 56' south.

The right ascension of Jupiter on the 1st is 23 h .18 m ., his declination is $5^{\circ} 53^{\prime}$ south, his diameter is $41^{\prime \prime} .6$, and he is in the constellation Aquarius.
Jupiter rises on the 1 st at $10 \mathrm{~h} .54 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31st he rises at $8 \mathrm{~h} .55 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.

venus

is morning star. The movements and position o Venus are in striking contrast with those of Jupiter. She is approaching and he is receding from the sun. She is nearly at her greatest, and he is nearly at his least distance from the earth. She is nearly at the minimum of her size and brilliancy, while he is ap proaching the culmination of his radiant career Venus will be greatly missed in the summer evening sky.
The moon makes a close conjunction with Venu on the 4 th , the day before her change, at 6 h .2 m . A M., being $2^{\circ} 7^{\prime}$ north.

The right ascension of Venus on the 1st is 5 h .14 m ., her declination is $22^{\circ} 20^{\prime}$ north, her diameter is $11^{\prime \prime} .0$, and she is in the constellation Taurus.

Venus rises on the 1st at $3 \mathrm{~h} .4 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 31 st she rises at $3 \mathrm{~h} .49 \mathrm{~m} . \mathrm{A} . \mathrm{M}$.

SATURN

is evening star. He is on the meridian on the 1st at 4 h. 20 m. P. M., so that he is well advanced on his west ern way when it is dark enough for him to be visible. He retains his position in regard to Jupiter, being nearly opposite to him, one planet setting as the other rises. The difference is seven minutes on the first of the month, and there is no difference on the last day of the month.
The moon is in conjunction with Saturn when five days old, on the 10 th , at 4 h .31 m. P. M., being $3^{\circ} 25^{\prime}$ north.
The right ascension of Saturn on the 1st is 10 h .58 m., his declination is $8^{\circ} 44^{\prime}$ north, his diameter is $15^{\prime \prime} .8$, nd he is in the constellation Leo.
Saturn sets on the 1st at 10 h .47 m. P. M. On the 31st he sets at $8 \mathrm{~h} .55 \mathrm{~m} . \mathrm{P}$. M

uranus

the 20 th , at $5 \mathrm{~h} . \mathrm{A}$. M., being 90° east
The right ascension of Uranus on the 1 st is 13 h .

42 m ., his declination is $10^{\circ} 1^{\prime}$ south, his diameter is $3^{\prime \prime} .6$, and he is in the constellation Virgo.
Uranus sets on the 1 st at 0 h .25 m. A. M. On the 31st he sets at $10 \mathrm{~h} .28 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.

NEPTUNE

is morning star. His right ascension on the 1st is 4 h . 25 m ., his declination is $20^{\circ} 4^{\prime}$ north, his dianeter is $2^{\prime \prime} .6$, and he is in the constellation Taurus.

Neptune rises on the 1st at 2 h .26 m. A. M. On the 31st, he rises at 0 h .31 m. A. M.
Mars, Mercury, Saturn, and Uranus are evening stars at the close of the month. Venus, Jupiter and Neptune are morning stars.

the poisonous snake of florida.

A workman at Oakland, Orange Co., Florida, recent ly died from the effects of a bite received from a sup posed harmless snake. The man had captured a small snake and handled it for ten or fifteen minutes, during which time he received a bite on one hand, giving him no pain at the time. Finally killing the snake, the man returned to his work.
About half an hour later pains came on in his hand and arm, followed by drowsiness and a dull pain in the head. The man quit work, saying he would lie down and probably be at work again in a short time. He continued to feel drowsy, and a fullness of the eyelids, with a partial loss of control of muscular action of the ame, was noticed.
At this point a doctor was called, who did all he could to counteract the effects of the poison, but his every effort proved unsuccessful, and the unfortunate man finally died eighteen hours after receiving the bite.

The snake was called a harmless garter or king snake It was small and its body was circled with bright-col ored bands. But an examination of its mouth dis closed two small fangs in the upper jaw. Our in formant says: "Thus it seems this bright-colored, sluggish, meek little snake that we have regarded as harm less as a tadpole is one of the most dangerous of our reptile foes."
From the description received, and a residence of over twelve years in Florida, during which time I de voted much attention to herpetology, I can state positively that the snake in question was the coral snake Elaps distans, also called the "Florida harlequin snake."
Its habitat is the Gulf States and Mexico. It is different from all other North American poisonous snakes in that it has not a well-defined neck, and that its tail tapers to a fine point. All other poisonous snakes in this country have large angular heads and blunt tails. The coral snake also lacks the "poison pit" of the rattlesnake, moccasin, and copperhead-a small orifice about midway between the eye and nostril on either side. This "pit" is connected with the poison sac, but its use has never been satisfactorily explained. As in the case of the coral snake, all poisonous snakes do not have the "pit," but every snake possessing it is armed with deadly fangs.
The color of the coral snake is varied with bright bands of black, white or yellowish white, and coppery red. It is rarely over eighteen inches in length (usu ally much less), and one-half or three-fourths of an inch in diameter. It is not common in Florida or the Gulf States.
There is another quite common snake in Florida which very closely resembles the coral snake, both in color and size. It is marked with brilliant bands of red, yellow, and black. It is called a garter snake, band snake, etc., by the natives, and by some it is thought to be poisonous. It is entirely harmless, how ever, and without fangs, as repeated examinations by myself and others clearly proved.
S. Weir Mitchell, in an article on "The Poison of Serpents," appearing in the Century Magazine of August, 1889, incidentally refers to the coral snake as " the beautiful coral snake, the little Elaps of Florida too small with us to be dangerous to man."
That it is dangerous, under certain circumstances, the above instance-one of two or three cases known in which the coral snake of the United States has destroyed human life- proves beyond dispute. Owing to its scarcity, however, it is seldom met with, and its small size prevents it from inflicting a wound after the usual manner, but if one exposes bare feet and ankles r hands within striking distance, especially after irri tating it, a hypodermatic injection of its venom is quite apt to be received, and is as much to be dreaded as a bite from the rattlesnake. Charles H. Coe.

Banana Flour.

Referring to an article in the Scientific American of June 6, a correspondent says: The flour is made from green bananas-not ripe ones. They are peeled, sliced, and sundried, afterward pounded in a mortar and passed through a coarse sieve.
To preserve the ripe bananas they are dipped in lye and dried in the sun, shriveling up under this operation, and tasting somewhat like figs. The color of the

a metallic tie and rail fastening.

The illustration represents the use of a hollow metal tie, designed to be self-ballasted, or form a gutter for the escape of water when desired, and also a rail fastening for employment therewith, the construction being simple and cheap, and the tie possessing a necessary amount of elasticity. The tie and fastening form the subject of two patents issued to Mr. Bridges Smith, of Macon, Ga. The tie is formed from a sheet metal blank, bent down at right angles on its parallel sides, and cut inward diagonally at its lower edges to form points for anchoring the tie in place, a portion also being bent inward horizon tally between the points, thus forming a mainly rectangular body. When the hollow tie thus formed is put in place, it may be filled with earth, clay, or other suitable bal last, or, if laid where water is liable to seek a passage across the railroad bed, the filling is omitted and a plate is inserted adapted to cover the bottom of the hollow space of the tie, which is thus made to serve as a pas sageway for the water. To fasten the rail to the tie, a flat plate of malleable metal is em ployed, bent at one end to form two flanges as shown in Fig. 1. These flanges are passed upward through slots formed for the par pose in the upper surface of the tie, onerof the flanges being adapted to rest upon the top of the rail base at one side, while the other flange is bent backward to clasp the rail base on its other side. The outer end of the fastening plate is also doubled over to lie flat upon the top of the tie, to which it is firmly secured by a bolt passed through the tie and two sections of the plate the bolt hole in the tie having a slightly etongated form to allow for the expansion and contraction of the fastening plate.

Mines and Mining-Bituminous Coal in

Mr. Robert P. Porter, Superintendent of Census, states in Census Bulletin No. 67, relating to bitumenonus coal in the State of Pennsylvania, which was arepared by Mr. John H. Jones, special agent, under the supervision of Dr. David T. Day, special agent in charge of the Division of Mines and Mining of the Census Office, that the output of the bituminous regoons in the State was $36,174,089$ short tons in 1889. The total value of the output is given as $\$ 27,953,215$, or an average of 77.2 cents per short ton at the mines. The average number of persons employed in 1889 was 53,780 , the amount paid for wages being $\$ 21,142,051$. The output of small local banks and farmers' diggings is reported at 820,197 short tons. No report of this product has heretofore been attempted. The collection of this data was intrusted to resident special agents familiar with the territory under their charge, and the product of this important element of the coal industry in Pennsylvania is authentically given. The quantity sold to the local trade and to employer by regular establishments, together with this neighborhood mining, amounts to $1,590,651$ short tons, or 4.40 per cent of the entire production. The amount of coal manufactured into coke during the year 1889 was $10,190,588$ short tons, or $28 \cdot 17$ per cent of the total production. Altogether, the report shows a remarkable increase in the bituminous operations throughout the State.

The bituminous coal deposits of Pennsylvania form the northern extremity of the great Appalachian coal fields, and to a greater or less extent underlie all the territory of the State lying west of the crest of the Allegheny Mountains. The counties of Bradford Tioga, Potter, Warren, Crawford, Venango, Forest, Elk, Cameron, Clinton, and Lycoming, in the northern portion of the State, exhibit only detached basins of the lower measures, which, however, are extensively mined, and the product finds ready markets for mana factoring purposes and for steams. The remaining counties, bounded by the western and southern State lines and a line drawn northward along the easten boundaries of Fulton, Urn boundaries of Fulton,
Huntingdon, and Center counties, thence westwardby along the northern boundaries of Clearfield, Jefferson, Clarion, and Mercer, embrace an almost unbroken area of one or more of the important beds b -longing to the carboniferous measures.

The counties of Allegheny, Westmoreland, Washington, Greene, and Fayette, situated in the southwestern corner of the State, contain the upper productive measures, at the bottom of which lies the notable Pittsburg bed, yielding in the vicinity of Pittsburg a gas coal of the highest quality ; to the eastward the coking coals from which the celebrated Connellsville coke is inade, and to the southward the Cumberland steam coals of Maryland. Small areas of this bed
also occur in Indiana, Somerset, and Beaver counties The remaining counties referred to contain only the areas of the Pittsburg bed to the Brookville bed, the lowest in the lower productive series, and the Mercer Quakertown, and Sharon beds in the conglomerate series. The product from this territory, as well as that

SMITHS RAILROAD TIE AND RAIL FASTENING.
mons of sufficient area for all distance shooting. The fie is, however, such a formidable weapon, and the regular as well as the volunteer service supply so many of the raw recruit class that the unwary traveler jeopardizes his life and limb should he find it necessary to pass within a radius of some hundreds of yards of the shooter on practice day. The direction of the butt of the rifle could, doubtless, be excepted, and considered a safe course in which to steer during even the novitiate of the future veteran of the musket.
The accompanying diagram illustrates a method of adapting a limited space to a ser viceable and safe shooting range.
As the range need not in any respect be different from those at present in use, the bullet guards only require explanation. The guards should be of sheet iron, or other bullet proof substance, and so arranged as to present a broad surface all around the tar get, when looking toward the latter from the firing point, as represented in the small figure. The width of the surface of the guards would depend on the distance they are placed apart. Standing at the shooting box the full outline of the target is seen, but no open space, the surrounding iron of the target overlapping all open space not coveerred by the guards in front, so that, after passing through all the guards in its course to the target, the bullet, no matter how badly directed, could not get over nor on either side of the target to the open country beyond. In like manner, should the bullet take an eccentric direction, after passing al guards but the last, that one would save it from traveling into space, and similarly back to the first guard, which would stay the bul from the southwestern counties wherever the lower let of the most erratic marksman on the ground measures are being mined, is classed in the trade as semi-bituminous, containing, as it does, less than 18 per cent of volatile combustible matter. While an excellent quality of coke is produced from coals mined in some localities from these lower measures, the distinctive advantages consist in their superiority as steam and rolling mill fuels, being much sought after for locomotive and steamship uses. In the Freeport and Kittanning beds of the lower productive series, canned coal of good quality has been found to overlie the seam for considerable areas in certain localities, but on account of the veins being thin and trouble some to separate in mining it is not deemed of much commercial value.

RIFLE RANGE.

Target practice is a sine qua non where a regiment of soldiers, volunteer or regular, is to be efficiently maintained or worked into serviceable condition; and the possibility of keeping up, or starting, a good shoot

ing range is at present, in many places, a source of much consideration and thought, the dilemma that some localities find themselves in being aggravated in an enlarged proportion as the population multiplies and the land increases in value in that locality
Rifle practice is a source of much pleasure and healthful recreation, also creating a spirit of rivalry and emulation among the various members of a corp

A NOVEL FORM OF GUARDS FOR RIFLE RANGES.
to such an extent that degrees of perfection are reach ed that would not otherwise be obtained. It also stimulates the young men, especially, to take an inter est in the other duties devolving on a volunteer that under other circumstances, would become tedious and irksome, but which are necessary to the successful and proper development of a well drilled and disciplined soldier.
There are many places that have sufficient space within their garrison inclosure for short ranges, and others that have in their immediate locality large com

The widths and heights of the guards would have to be made to suit the range. Their distance apart would allow of wider or narrower surface, and the length of range would affect the height to allow of altitude of bullet in its proper course. A flange on the outer edge of each guard is desirable.
Toronto, May 19, 1891.
A. C. Maul.

The Phosphorescence of Diamonds.

In the New York Sun, Mr. G. F. Kunz, the well known expert in gems, has recently called attention to a property of the diamond which may serve as a means of distinguishing it from other substances. Re faring to the paper of Robert Boyle "On a Remark be Diamond that Shines in the Dark," published in the Transactions of the Royal Society in $1663, \mathrm{Mr}$ Kunz remarks that this paper has been indirectly allud ed to by a number of authors, but never read. Among a quantity of facts Boyle mentions one diamond that phosphoresce simply by the heat of the hand, absorbed light by being held near a candle, and emitted light on being rubbed. He stated that many diamonds emitted light by being rubbed in the dark. The experiment made by Mr. Kunz show conclusively not only that Boyle's statement that some diamonds phosphoresce in the dark after exposure to the sunlight or an arc of elec tric light is true, but also that all diamonds emit light by rubbing them on wood, cloth, or metal, a property which will probably prove of great value in distinguish ing between the diamond and other hard stones, a well as paste, none of which exhibit this phenomenon and will be welcomed by the general public who do not possess the experience of the dealer in diamonds. The property is evidently not electric, or it would no be visible on being rubbed on metal.

Yet Room for Inventions.
Of all the sack.tying devices, none has proved of practical utility to the extent, at least, of supplanting the old fashioned way of tying with a string. A good sack tie would take wonderfully.
The man who invents a slow-moving feeding device or roller wills that will feed any sort of material, coarse or fine, heavy or light, will have a fortune. Of course it is claimed that there are several on the market, but there are not Saying nothing disparag ing of the many excellent machines for the purpose they either do not do the work on soft stuff or els they run so fast that they are defective as to long life in good condition. The inventor can get up a slow-moving, perfect feed-regu bating machine will have a fortune
In building a mill it is the case too often that not enough attention is given to the height according to the breadth. This is sure to result in too many leva tions and too many choking spouts. All of which means a hard mill to run, a mill that reduces stock improperly, by elevator and conveyor friction, and a fuel consumer to no advantageous purpose. -The $\mathbb{S} t$ Louis Miller.

AN IMPROVED CAR BRAKE.

The illustration represents a brake attachment designed to apply the brakes when the cars of a train are brought together and made to engage one with the other, releasing them when the train moves forward

MAROLD'S CAR BRAKE.
or the cars are moved apart. It has been patented by Mr. John Marold, of New Decatur, Ala. At one side of the drawhead, and extending further outward, is a rack bar adapted to slide in the frout sill and on a rear guide beam, the outer end of the bar consisting of a hinged section which may be lifted out of horizontal position when desired. The outer end of the hinged section has a flat head adapted to engage a wear plate of an opposed car, and the bar near its inner end has a series of teeth eugaged by a dog pivoted at one end to one of the beams of the car bed, the dog being also connected with a lever fulcrumed on one of the beams, and connected to a rod which extends through an aperture in the front beam of the car, where it is attached to a length of chain connecting it by a hook with the sill of an opposing car. The rack bar is connected with a lever fulcrumed upon a beam of the truck, the lever being connected with the brake beams, and both the rack bar and the lever have a series of holes through which their connection is effected by a registering bolt, for the purpose of regulating the degree of tension to be exerted upon the brakes through the movement of the rack bar. When it is desired to apply the brakes, the coming together of the ends of the cars, pushing the rack bar inward, causes the lever connected with the latter to put on the brakes, which are held thus applied by the engagement of the dog with the rack bar until the cars are moved apart, when the dog is moved out of engagement by means of the rod and chain connecting it with the opposing car, and the release of the brakes is thus effected.
When the cars are to be shunted or backed, the hinged outer end of the rack bar is drawn up and held out of horizontal position by means of a short chain. As a provision against the breakingof the coupling pin, bolts are arranged to slide in the sills at each side of the drawhead, and each having a bearing against a spring cushion, the bolts of one car being connected by chains with corresponding bolts on another car. The chains are of sufficient lengt'h to slightly sag when the cars are coupled in the usual way.

A DIFFERENTIAL GEAR FOR BICYCLES.
A construction by means of which a bicycle gear may be quickly changed, so that the vehicle may be driven rapidly where the road is easy,or less speed with more power way be had where the road is loose or hilly, is shown in the accompanying illustration, and

bIGELOW's BICYCLE.
forms the subject of a patent issued to Mr. Frank R Bigelow, of Gloucester City, N. J. Fig. 1 shows the de vice in section applied to the treadle shaft of a bicycle, the bearing of the shaft being supported by an arm in the usual manner. Mounted loosely on opposite ends
of the shaft are different-sized sprocket wheels, each having on its inner side a series of sockets adapted to receive the teeth of a sleeve sliding on the shaft, the sleeve being of the length of the hub. Near the center of the sleeve, as shown in dotted lines, is a slot, through which extends a pin secured to the shaft, causing the sleeve to turn with the shaft. The sleeve has a series of recesses at each end, forming projecting teeth, as shown in Fig. 2, the teeth being adapted to fit the sockets on the inner side of each sprocket fit the sockets on the inner side of each sprocket
wheel, so that by sliding the sleeve one way or the other, either one of the sprocket wheels may be en gaged and driven by the shaft. A hollow thumb-screw is mounted loosely on the shaft and extends through one of the sprocket wheels into the end of the sleeve, which is counterbored to receive it. The inner end of the screw is threaded to engage a threaded portion of the sleeve, and the outer end of the screw has a handle disk, by turning which the sleeve is moved to engage disk, by turning which the sleeve is moved to engage
one of the sprocket wheels. In connecting this gear one of the sprocket wheels. In connecting this gear
with a bicycle wheel, the latter is provided with two sprocket wheels, one on each side, and preferably of dif ferent sizes, the larger one connecting with the smalle sprocket wheel on the treadle shaft and the swalle one on the main wheel connecting with the larger o the treadle sprockets. By then shifting the sleeve which serves as a clutch, either the larger or smaller of the treadle sprockets is engaged, according as the road is easy or difficult.

A MINIATURE ELECTRIC MOTOR.

An interesting little electric motor is the subject of our cut. It is of multipolar 1 ype, and by its construc
 tion secures a very even speed of rotation and good effic ency. It is a complete min ature of the practical every day motor, and will, with single cell of bichromate bat tery, run a $41 / 2 \mathrm{in}$. fan and do other light work. It is of interest as marking the tendency of electric toy maker to carry out the correct prin ciples of electric engineering in their models. Other motors of larger size are made by the manufacturers, Messrs. Goodnow \& Wightman rful enough to run a sewing machine.

A VISIT TO A FAMILY IN ANNAM

A sojourn of two days gives the passengers on the Natal ample time to visit the city of Saignon. This European city is very attractive on account of the beautiful and well kept trees that border its streets ike the lanes in a park, and the pretty little hotels which line its roads. Large and handsome gardens are within easy reach and add to the pleasure of a visit there.
Thanks to the kindness of some friends who acted as ruides, I was able to visit the most curious section of he district, namely, Cholon, the Chinese section, where over 60,000 Chinese and Annawites reside. They live in little picturesque houses, and adorn their shops with various exotic plants full of interest to a stranger. Guided by my friends, we visited a very rich Annawite amily, who lived in one of the prettiest streets in Cholon. Unfortunately the father was away and so were the sons, who were studying in Paris. We were, however, most hospitably re ceived by the two eldest daughters. They were attractive-looking women with beau tiful eyes, but their black teeth, which were lacquered, detracted somewhat from their beauty. They were clothed in long black trousers, and with a tunic of whit Chinese crepe which entirely enveloped their figures. They wore gold collars and diamond bracelets, while their hair was held in position by a golden pin that clasps their locks in a knot. After the ormal presentation, we were conducted through the principal apartments of the house. They were very simple in appear nce, with bare white walls, but they were filled with beautiful furniture inlaid with wother-of-pearl, and we noticed some ex quisite bric-a-brac, such as chiseled silver vases, jade ornaments, arms, and em broidered silks, worthy of the finest col lections. The garden was charming, and the young ladies showed us with pride ome ornamental plants that their father had procured for them from Canton.
One of these represented a peaco seated on its perch, another a tiger with enameled eyes. Perhaps the most curious of all were little dolls representing Chinese ladies and mandarins. The head, the hands, and the feet were of enameled porcelain, while the body was made of wire and covered with trailing vines. The vines are planted in such a way that they
grow through the feet of the image. The vine grows
rapidly, and finally conceals the entire figure except the hands, feet, and head. When the figure is entirely clothed with the foliage, the effect is very fine.
In the widdle of the garden and surrounded by pools of limpid water is a pagoda of carved wood. The pave ment is laid in precious marble, and its columns are of carved wood, while the roof is richly ornamented. At the rear of the pavilion there are three altars, on which are three bronze vases and braziers, in front of arge gilt statues of Buddha. Our hostesses invited us to rest in this pavilion. Their mother had erected it in honor of their father during his visit to the exposi tion at Paris, as a surprise for him upon his return.
After refreshments were served, at our request their ervants brought their jewelry, and we had a chance to admire the fine gold work that they showed us, gold bracelets, carved ivory boxes, etc.-By Albert Tissan dier, in La Nature.

AN IMPROVED ENGINE

The engine shown in the illustration has a valve ar ranged at each end of the cyiinder, opening previous to

CLARK'S ENGINE.
the opening of the ordinary exhaust and connected with a reservoir for the storage of exhaust stean, whereby it is designed to save a large amount of exhaust steam without causing back pressure on the piston in the cylinder. The valves at the ends of the cylinder are dapted to open inwardly, and in the valve bodies are check valves to prevent a return flow of the exhaus steam from the reservoir to the cylinder. The stems of these valves carry springs to hold the valves nor mally to their seats, as shown in Fig. 2, their opening being effected by the stews being alternately pressed on by the ends of a lever fulcrumed to the top plate of he steam chest. A depending arm from this lever, as hown in Fig. 1, is pivotally connected by a link with a plate sliding on the frame near the main shaft, the plate having an aperture in which travels a heart shaped cam secured on the shaft, and adapted to strike on lugs secured on the plate and projecting into the pening. By this construction a quick motion is given to the lever which opens alternately the valves at the cylinder ends, at the time the piston is at or near the

chinese figures from annam, formed by trailing vines.
permit a large quantity of steam to escape to the storage reservoir, an outlet pipe from the latter carrying off the saved exhaust steam to utilize for other purposes. If desired, also, these valves, instead of opening into the exhaust ports, may be arranged in the heads of the cylinder.

This improvement has been patented by Mr. An drew J. Clark, of Dayton, Tenn.

THE ASSAYING OF GOLD AND SILVER ORES,

The process of assaying silver ores is based upon the following considerations: Any compound of silver exposed to high heat in the presence of metallic lead or of oxide of lead and of a reducing agent gives up its silver in a metallic state, and in practice an alloy of lead and silver containing all the precious metal of the sample of ore used is obtained.
The ore before being assayed is carefully sampled, so as to represent an exact average, as nearly as possible, of the mine, vein, or heap from which it is taken. It
the scorifier melts and the ore floats on top of it, along with the melted borax glass. Gradually the ore dis appears, its metallic constituents entering the lead and its earthy constituents forming with the borax glass a fusible slag. As a constant current of air is drawn through the muffle, the lead rapidly oxidizes and its oxide joins the slag, so that after a little while only a small circle of metallic lead appears in the center of the slag. This circle is gradually encroached upon, and eventually the slag covers over the button of metal, which at once sinks to the bottom and the scorifying is ended. After a little more heating the scorifier is withdrawn from the muffle and its melted charge is poured out into a hemispherical depression in an iron pan, in which it rapidly cools. When cold, a few blows of the hammer, the charge resting on an anvil, knocks the slag off. The spheroidal lead but ton is then pounded into a roughly rectangular shape nd is ready for cupellation
The cupels are shallow cups of bone ash, about $11 / 2$
its weight of pure silver. It is then rolled out into a thin sheet, and is treated with nitric acid. This dis olves the silver and leaves behind the gold and any platinum or similar metal which the ore may contain. This residue is weighed and is reported as gold.
The weights used, from the gramme upward, are sually made of brass, of the shape shown. From 500 milligrammes down to 10 milligrammes they are often ade of platinum the smaller weights are made of platinum the wire bent so that the number of sides in each bent wires indicates the number of tenths of a milligramme which it represents.
There are, of course, many refinements and modifi cations in the process which it is not necessary to summarize here. The assayer acquires by practice so cood a knowledge of ores that he can properly propor tion his charge from the appearance of the ore alone A large number of assays can be kept going at once,

THE ASSAYING OF GOLD AND SILVER ORES
is nest pounded in an iron mortar and the process con tinued until it is very finely pulverized. A sample is thus obtained which is given to the assayer
The first operation is to weigh out the powder. This must be done upon a fairly delicate balance. The quantity used for an assay depends upon the richness of the ore; it is very usual to base the weighing upon what is known as the assay ton, a weight of $29 \cdot 166$ grammes. One milligramme bears the same proportion to the assay ton that one troy ounce does to a ton of 2,000 pounds. In weighing, duplicate portions are weighed out representing from a fraction of one to several assay tons, according to the richness of the ore and the operations are carried on in duplicate through out. Each sample is mixed with from 8 to 16 parts of very pure, finely granulated lead, called "test lead," and a little borax glass. The fusion is often done directly in a scorifier. These are shallow clay cups about 2 inches and $23 / 4$ inches in width. The weighed portion of ore with the borax glass and lead being placed in one of these cups, the whole is introduced into a hot clay retort known as a muffle, which is beated in a muffle furnace. Muffles and furnaces are shown in the cuts in sections and elevations. The heat is maintained at about 1,600 degrees. The lead in
in. in height, $21 / 4 \mathrm{in}$. in width and $3 / 8 \mathrm{in}$. in depth They are made by hammering in a mould, a hamme he cavity of the mould and compact it. The cupel is irst heated in a muffle and the rectangular button is placed in it. It at once welts and begins to oxidize As fast as the oxide of lead is formed, it melts and is absorbed by the porous bone ask of the cupel, as water is absorbed by a sponge. This operation goe on until little more than the silver is left. Just at this point, as the last of the oxide of lead disappears, a sudden flash of rainbow colors passes across the surace of the button, the "brightening" indicating th expulsion of the last of the lead. The silver butto is now allowed to cool, is removed by a pair of pincer rom the cupel, and when cleaned and brushed free of bone ash is weighed on an exceedingly sensitive bal ance. Each milligramme of weight represents an ounce or definite portion of an ounce per ton of or if assay tons have been used. The balance used or this weighing is one of the most sensitive made and can indicate the twentieth of a milligramme eadily.
Should the ore contain gold, this is determined by "parting." The button is fused with one or two timas
bers designating the sample for assaying which it is used.

merican Copyright

It is a great mistake to suppose that the copyright difficulty with America has been settled. The new American act comes into operation this day month but we shall then be no better off than we are now. Before the British author can enjoy the benefits of the measure, such as they are, we are expected to give re ciprocity to the American author, who is to be placed n exactly the same footing, as regards copyright, as the English writer. That would be fair enough were the conditions equal, but Congress has taken care that they shall be very far from equal. For an English book to obtain copyright in the United States it is esential that it should be printed there. Yet in face f this Mr R B Marston appeals to Parliament to grant reciprocity to America. What Parliament ought to do is not to grant a ridiculously one-sided reciprocity, but to pass a measure of retaliation. Let us qive copyright to the American author on precisely the same terms that America offers it to the English man. Nothing can be fairer than that.-St. James's Aazetts.

THE COLUMBIAN WORLD'S FAIR, 1893.
So great was the strife for the Fair site, and so prolonged the dissensions between the Chicagoans themselves and between them and the National Commissioners after it had been decided that the Fair should be held in Chicago, that it is probable few people are prepared to fully realize the great amount of work which has been already which has been already done in practical pre-
paration for the Fair, paration for the Fair, and the bright prospect
at present ahead that at present ahead that
the Exhibition will be promptly opened in the spring of 1893 . The financial outlook, on which all else mainly depends, has already come down to a solid basis of nearly ten million dollars of appropriations for the Fair, including those frow the several States, the city of Chicago, and the General Govern-ment-although many States which are certain to make large appropriations have not as yet taken final action. In addition to this sum the managers of the Fair count upon very large prospective resources from the gate receipts, from concessions and privileges, and from salvage. The resources obtainable from the last three sources were estimated on April 1, by Mr. Lyman J. Gage, of the First National Bank of Chicago, and President of the Exposition Company during its first year, as high as eleven million dollars. This showing undoubtedly affords a large financial basis on which to proceed in the erection of buildings and preparing for a great display, and that the time which has thus far elapsed has not been unprofitably occupied by the management is proved by the published plans of buildings and arraugements. These have been so far completed that almost everything in the way of buildings is ready for the contractors' estimates, while contracts for some of the main buildings are already awarded.
The work of preparing the grounds, consisting of some 600 hundred acres of uneven park land, has been virtually completed, except the dredging of the lagoon, the canal, and the basin, which the contracts specify shall be finished early in July seventy acres of the grounds were covered by oak trees, which had to be cut down, and the black earth frow this tract collected and spread, 85,000 cubic yards being put on and around the site of the natural island, and 120,000 yards on the territory south of the buildings. The ground level or grade of the grounds is $41 / 2$ feet above datum, or about $51 / 2$ feet above the level of the lake. On the $41 / 2$ foot grade are the sites for the liberal arts, fisheries, government, agriculture, machinery, and electricity buildings. 'The horticulture, transportation, and woman's buildings are on the 6 foot level, the machinery and mines buildings on the 7 foot level, while the administration building is 14 feet above datum, or about 10 feet above the grade of the grounds. About 600 men, 225 teaus, and 6 dredges have been at work most of the time since April 1, the dredges being operated night and day, and the earth thrown up by them being used to fill in building sites and uneven areas of the grounds. The basin being excavated will be about 1,500 feet be abut 1,500 feet long by 350 feet wide, and will intersect a
sanal half a mile in length and 150 feet

Plaisance, 600 feet wide, connecting the two, in all 1,037 acres. Jackson Park has a frontage of two miles on Lake Michigan, and the two parks are connected with the center of the city and its general park and boulevard system by more than 35 miles of boulevards from 100 to 300 feet in width. The Fair grounds are all within the limits of the city of Chicago, about seven miles south of the City Hall, and it is expected that the

MODEL OF THE BATTLE SHIP ILLINOIS.
transportation facilities, by means of steam roads and mple description.
The trunk lines from every section of the country have their termini but a short distance from the grounds, while the ample lake front will afford abundant room for the accommodation of excursion steamers

VIEW OF LAGOON.
these long nave there is to be an elevated traveling nd to end of the building for the pur pose of moving ma pose of moving mahinery. These platforms will be built when the expo sition opens, so that the visitors may view from them the exhibitions beneath Steam power for this building will be sup plied from a power house adjoining the south side of the building. The two exterior sides adjoin ing the grand court are to be rich and palatial in appear ance. All of the buildings on this grand plaza are designed with a view to wak ing a grand background for displays and in order to con form to the genera richness of the court and add to the festal as in all the other buildings, the front will be formed of staff colored to an ivory tone; the ceilings will be enriched with strong color. A colonnade with a cafe at either end forms the length between Machinery and Agricultural halls, and in the center of this colonnade is an archway leading to the cattle exhibit. From this portico there will be a view nearly a mile in length down the lagoon, and an obelisk and fountain in the lagoon will form the southern point of this vista.
The Machinery Annex will stand inside the great transportation loop, west of the Administration Building, unless the plans are changed so that the Electrical Building may occupy that space, as the electricians desire. The annex will cover nearly nine acres. It will be entered by tunnels and bridges from the Machinery Hall and the Administration, Mines, and Transportation buildings. It is to be a simple building, built of wood in an economic manner. Its type is that of a mill or foundry. It is to be annular in form, the diameter being 800 feet. In the inner circle will be a park, in which visitors, fatigued by the hum of machinery, may rest. The annular form chiefly commends itself, because the circle of the electrical elevated railway can run constantly around the entire main nave, and passengers in it can thus see the exposition without leaving the cars. Electrical power will be used in the annex and steam power in the main building.
Attached to thisgreat annex will be the
power house, containing the tremendous display of boilers, while in the adjoining portion of the annex building will be established the voluminous plant of engines and dynamos. This will be the largest and most interesting display of electrical power ever made. It is possible that gas may be used beneath the boilers instead of coal for fuel.
The Administration tecturally, the gem of the Exposition. It will be located at the west end of the great court in the southern part of the site, looking eastward, at the rear of which will be the railroad loop and the great passenger depot. The first ger depot. The first object which will attract visitors on reaching the grounds will be the gilded dome of this great building. To the south of the Administration Building will be the Machinery Hall, and across the great court in the great court in front will be the Agricultural Building to the south and the Manufacturers' Building to the northeast.
The Administration Building will cost $\$ 650,000$, and is constructed of material to endure but two years. The but two years. The arHunt, of New York, President of the American Institute of Architects. It will cover an area of 250 feet square and consist of four pavilions, 84 feet square one 84 ree each of the four angles of the square of the plan and connected by a great central dome 120 feet in diameter and 220 feet in height, leaving at the center of each facade a recess
appearance, the two facades of the Machinery Hall on $\mid 82$ feet wide, within which will be one of the grand the court are rich with colonnades and other features. entrances to the building. The general design is in The design follows classical models throughout, the the style of the French renaissance, and it will be a details being followed from the renaissance of Seville dignified and beautiful specimen of architecture as beand other Spanish towns, as being appropriate to a fits its position and purpose among the various strucColumbian celebration. An arcade on the first story tures by which it will be surrounded. The first great adwits passage around the building under cover, and, story will be in the Doric order, of heroic proportions

same height, is a continuation of the central rotunda, 175 feet square, surrounded on all sides by an open colonnade of noble proportions, it being 20 feet wide and 40 feet high, with columns 4 feet in diaweter. This colonnade is reached by staircases and elevators from the four principal halls and is interrupted at the the four principal halls and is interrupted at the angles by corner pavilions, crowned with domes and groups of statuary. The third stage consists of the base of the great dome, 30 feet in height, and octagonal in form, and the dome itself, rising in graceful lines, richly ornamented with heavily moulded ribs and sculptural panels and having a large skylight of glass to light the interior. At each angle of the octagonal base are large sculptured eagles, and among the springing lines are panels with rich garlands The interior features of the building will even exceed in beauty and splendor those of the exterior.
In this building each of the corner pavilions, which are four stories in height, will be divided into offices for the various departments of the administration, and lobbies and toilet rooms. The ground floor contains, in one pavilion, the Fire and Police Departments, with cells for the detention of prisoners; in the second pavilion, the offices of the ambulance service, the physician and pharmacy, the Foreign Department and the Information Bureau; in the third pavilion, the post office and a bank; and in the fourth, the offices of public comfort and a restaurant. The second, third, and fourth stories will contain the board rooms, the committee rooms, the rooms of the director general, of the Department of Publicity and Promotion, and of the United States Colum bian Commission.

Small Propeller Screws the Best
"The small size of the screw," said a boiler maker to a representative of the surrounded by a lofty balustrade and having the great \mid N. Y. Tribune, "is not due to the perception of any tiers of the angle of each pavilion crowned with sculp- inventor of its greater effect as compared with a larger ture. The second story, with its lofty and spacious colonnade, will be of the Ionic order.
Externally the design may be divided in its height into three principal stages. The first stage consists of the four pavilions, corresponding in height with the greater the diameter, the higher the speed. A vessel various buildings crouped about it, which are about it placed on Lake Erie with a blan that sixty-five feet high. The second stage, which is of the \mid and then weld them together. During a storm all

ADMINISTRATION BUILDING. these blades of the propeller broke at the welding, reducing the diameter by more than twothirds. To the surprise of the captain the vessel shot for ward at a speed such as had never been at tained before. Engineers then experimented with small propellers and discovered that they were much more effective than large ones.

Cunliffe Lister, one of the new English peers, laid the foundation of h is great wealth by wechanical inventions. His first great hit was a wool-combing machine, and his second was a device for utilizing silk waste, which had previously been sold at a cent a pound, in making silk plush. Unlike many of this class of men, he did not begin life a poor boy, but had a father endowed with sense and means, who gave him a mill instead of a university education. Originally it was intended to make a parson o him-the usual des tiny of a fourth son of a country gentle man.

The Phosphate Beds of our Southern States.

by francis wiatt, ph.d.

The chemistry of agriculture is that branch of the science which investigates into the nature and properties of soils and plants and which determines the relation of one to the other and the veritable com position of each. If we hand over a grain of wheat to the botanist, he can discern in it nothing but a tiny, yellow opaque, and brittle seed, whereas if we pass it to the chemist, he will discover by analysis that it is composed of a woody fiber, starch, gum, sugar, fat and protein. Again, a geologist may examine the soil, and designate the different ages to which it belongs and the various rocks from which it is derived, but without the chemist, he is unable to determine its actua constituents, and hence, cannot foretell, before any cultivation has been attempted, whether it is destined to be fertile, or of what kind of vegetation it is best able to promote the growth.
The application of chemistry to agriculture is thus naturally indicated. By its aid we obtain from the soil and from plants, at the lowest possible expend ture of time and money, the highest possible quantity of those substances indispensable to our physical wellbeing.
If production is to be cheap, it must be rapid and plenteous, yet, as we all know the progress of unaided nature is slow and methodical, and so, chemistry, by investigating the laws which govern the development of all living things, and by carefully observing the facts acquired by the practical experience of centuries, has found the means by which the farmer may assist and hasten the natural processes. The work is, of course, still far from complete, hut we are at least familiar with the elements essential to plant growth. We know how these elements are distributed, what portion of them is or should be contained in our soils, and what soils are most propitious for different kinds of plants.
Sixty years ago the science of agriculture was unknown. Our grandfathers could not understand why lands once so fertile and productive should show signs of approaching exhaustion. The light only came to us after we had studied how outdoor plants live, whence they obtain their food, of what elements that food is composed, and how it is conveyed and absorbed into their organisms. In point of fact we have discovered that the manner of life in plants is very similar to the manner of life in animals and man. They require certain foods in stated proportions which pass through the process of digestion; they must breathe a certain atmosphere, and they are subject to the influences of heat and cold, light and darkness.
The tissues of their bodies, like ours, are composed of carbon, hydrogen, oxygen, nitrogen, and certain mineral acids and bases, such as phosphoric and sulphuric acids, lime, potash, magnesia, and iron. Since, therefore, it is admittedly necessary for man to constantly absorb a sufficiency of these elements in the form of food, it follows that similar food is required by plants for similar purposes.
Having determined the elementary composition of plants, investigators directed their attention to the analysis of soils, in order to establish comparisons between virgin or uncultivated lands and old varieties which had long been tributaries to every kind of culture.
It was found that in the former there is an abundance of most of the dominating mineral ingredients discovered in plant organisms, whereas in the latter they either exist only in minute proportions or are lacking altogether.
This is a most important stage in our progress ! Argument is no longer necessary to prove that if agriculture is to continue to be the basis of national wealth and prosperity, means must be found of restoring to our soils the chief mineral element yearly taken away from them by the crops. This chief mineral element is phosphoric acid; and, since it plays the most important part in the functions of vegetation, it is neces sarily the one most liable to be rapidly exhausted.

The following figures, compiled from official reports, will serve to emphasize the argument :
PHOSPHORIC ACID TAKEN FROM THE SOIL PER ACR and PER ANNUM.

An average crop of wheat

These are, of course, only a few examples, but they will suffice for present purposes, and it is perhaps hardly necessary to add that if, according to the nature of the crop desired, a sufficient proportion of phosphoric acid be not present in the soil, the plants will languish, various malignant diseases will declare themselves, and death will inevitably ensue before they reach maturity.
Now comes the practical question : How may all this loss be repaired, and whence are we to derive all the
phosphoric acid needed to repair it? The equally
practical answer is: By hastening to further develop our immense deposits of phosphate of lime !
It was somewhere near the beginning of the present century that the farmers of England began to use crushed bones as a manure. Just why and how they had been brought to do so is shown in an article pubished in a scientific journal in the year 1830, the writer saying: "As to the earthy matter or phosphate of lime contained in the bones, we may disregard it. It is insoluble and indestructible, and cannot serve as a manure, even in a dainp soil and with a combination of circumstances analytically stronger than any of our known chemical processes.

The fact is, that bones, after having undergone a certain internal process of fermentation, ultimately contain about two per cent of gelatine. As this is the only substance to which they can owe any fertilizing activity, they may be practically looked upon as valueless."
These were the opinions of sixty years ago! They were born of ignorance and were fostered by vanity and prejudice. Sixty years hence, what will our own successors think of our knowledge of the same subject? All generations produce some thinking men, and thus, thirteen years after the publication of the article just quoted, that is to say in the year 1843, the light came! The Duke of Richmond was a practical and enthusias tic farmer; he made an exhaustive series of experiments on his soils with fresh and degelatinized bones. His results proved beyond doubt that they both owed their virtue, not to gelatine, or fatty matters, but to heir large percentage of phosphoric acid! Other in-vestigators-notably Boussingault-having confirmed and elaborated the Duke's conclusions, there was soon such a run upon bones as to exhaust the rather limited supply. Attention was thus drawn to the deposits of mineral phosphates which had been already discovered in several directions, and thence may be dated the development of phosphate mining as an industry, the pursuit of which has proved so remunerative to capial and labor. The mode of occurrence of the best known deposits of phosphate of lime may well be termed eccentric. They have been found in rocks of all ages and of nearly every texture. Sometimes they are very pure, semetimes their combinations are ex tremely variable. Here they are found in veins, there in pockets, and here again in stratified layers or beds in connection with fossilized debris of all kinds deposited by the ancient seas. England, France, Germany, Belgium, Spain, Portugal, Norway, Russia, the West Indies, Canada, etc., all have workable and more or less productive phosphate mines, the commercial value of the products being estimated on the basis of their contents in tricalcium phosphate, the latter ranging from 35 to 95 per cent
The circumstance that farmers are not in a position to restore to their soils year by year in a natural form all the phosphoric acid taken from them by their crops has caused the demand for phosphatic manures to go on increasing with such steadiness and rapidity that the sources of supply, even for European necessities, have latterly become quite inadequate. Fresh deposits of the material are, therefore, being sought after with industrious care all the world over, and at tention has thus been specially directed from abroad as well as from at home to the practically inexhaust ble deposits of this country
Such being the case, a brief outline of the mode of occurrence in our chief centers of production, to gether with some outlines of the methods of mining, preparation for the market, mining cost, and facilities of transportation, will probably be interesting to a large number of readers.

With the theories which have been formulated from time to time by different authorities as to the true origin of all these deposits I shall have nothing to do but, after describing those which I have personally ex amined, I shall present my own opinions and conclu sions, based on a study of the various exploitations and on the results of my own chemical and physical exami nations of samples which I have personally selected.
The Tertiary strata, in which our workable phos phate deposits are found, may be broadly said to hu from New Jersey to Texas; the phosphate itself, how ever, according to the present state of our knowledge being wost plentiful in South Carolina and in Florida The discovery of the South Carolina phosphates dates back as far as 1860 ; but it was not until some seven or eight years later than this that a mining company could be organized to test the practicability of working them on the commercial scale. Since the eminently success ful initiative of this pioneer company, however, the in at the present time some twenty wealthy corporation are actually engaged in it, and have thus raised the status of South Carolina to that of the most productiv phosphate region in the world. The geological forma tion of what is commonly called its phosphate "belt" is made up of quaternary sands and clays. These over lie the beds of Eocene marls, upon whose surface and intermixed with which is found the phosphate deposit. The presumed total area covered by this characteristic
formation is 70 miles in length and 30 miles in width
extending from the mouth of Broad River, near Port Royal, in the southeast, to the head waters of th Wando River in the northeast. Its major axis is paral lel to the coast, and its greatest width is in the neigh borhood of Charleston.
Whether the deposit is continuous or not over the whole of this zone, it certainly varies considerably in depth and thickness. In many places I have seen it 3 feet thick and cropping out at the surface, whereas in others it has dwindled down to a few inches, or wa found at depths varying frow 3 to 20 feet. These two conditions, thickness of deposit and depth of strata taken together with the richness of material in phosphoric acid, are the chief points for consideration in the economic working of the Charleston phosphate beds on an industrial scale.
The most approved and generally adopted method of ascertaining the importance and value of the deposits is that of boring and pit sinking. A careful topographical survey is first made of the country. Then commences a systematic series of bore holes from any point that may be arranged, by means of a long steel borer or rod, specially designed for the purpose. The boring rod is worked down through the upper strata until it is arrested by the solid bed of phosphate. Directly the slightest resistance is offered to its passage it is drawn up, and the distance it has traversed is measured with a foot rule. The measurement having been noted, the rod is again let down, is forced through the resisting strata, and is then again withdrawn and weasured. The difference between the firstand second measurements is taken as representing the thickness of the phosphate bed. These bore holes are practiced at distances of 100 feet apart over the total surface to be examined. The results obtained with the rod are verified and confirmed by a series of exploratory pits-10 feet long by 5 feet wide-which are dug over the course of the bore holes at intervals of 500 feet. The bore holes are driven to a maximum depth of 15 feet, and no pits are at present sunk on those portions of the land where at that distance no phosphate has been encountered. Immediately after removing the overlying strata the phosphate is carefully removed, its depth and thickness measured, and an average sample of the rock and nodules secured and laid aside for analysis.
The practically invariable nature of the superincumbent material, throughout the entire belt, as shown by the digging of a large number of pits under my direction, is represented in the following table, the figures being averages, compiled from my field note book:

Soil very black and acid. Mixture of sand and Mixt cla Silic Poit

 mixped with blue or clayd.. Depth of overlying beds.

So far as I have been able to discover, no systemati cal investigation has been made of those lands which contain the phosphate deposit at a greater maximum depth than 15 feet, it having been hitherto considered impracticable under present conditions of abundant surface supply, and consequent low mining cost, to conduct a profitable exploitation at any greater depth. A far wider area of lands than those actually classed as mining properties may contain the very same deposit of phosphate, lying under a considerably greater accumulation of the quaternary strata. I aw quite dis posed to adopt this view as representing the facts, and do not hesitate to predict that means will soon be found of turning them to good account. The phos phate found in the bottoms of all the rivers which flow through the "belt" is of practically the same chemical description as that of the land; having, in fact, been merely washed out from its original beds It has, however, been worked the more extensively of the two sources, and has proved to be of greater com mercial value, since it is obtained by the simple and nexpensive progress of dredging, and is thus raised and washed free from all adhering impurities by one and the same operation.
Both the rock and nodules from these rivers and land deposits occur in very irregular masses or blocks of extremely hard conglomerate of variegated colors, weighing from less than half an ounce to more than a ton. The mean specific gravity of the material is $2 \cdot 40$, and the rock is bored in all directions by very small holes. These holes are the work of innumerable crustaceæ, and are now filled with sands and clays of the overlying strata. Sometimes the rock is quite smooth or even glazed, as if worn by water, at others it is rough and jagged.
Interspersed between the nodules and lumps of conglomerate are the fossilized remains of various species
of fish, and some animals, chiefly belonging to the Eocene, Pliocene, or post-Pliocene ages.
Very careful analysis of a large number of the samples of land rocks taken from the pits above described, made in my laboratory, under my own supervision, gave, after being well dried at $21 \overbrace{}^{\circ} \mathrm{F}$., the following averages:

Moistare, water of combination, and organic matter lost on ignition..	8.00
Fhosphate of lime	5763
Carbonate of lime.	$8 \cdot 68$
Phosphate of iron and alumina	$6 \cdot 60$
Carbonate of magnesia.	078
Salphuric acid and fluo	1 80
Sund, siliceous matters aud undetermined	$10 \cdot 64$

These figures suffice to show that the grade of this phosphate is not extremely high, but it is admirably adapted for the purpose of manufacturing commercial fertilizers, and will, therefore, long continue to maintain a leading posil
Before it can be made available for industrial purposes, it is made to pass through three distinct and successive operations: 1. Mining or excavating. 2. Washing it free from sand and other impurities. 3. Kilning, to free it from moisture. Taking these in their order, it is customary to establish a main trunk railroad starting at the river front, or on the bank of some convenient stream, and passing right through the center of the property to be exploited.
Alternate laterals can be run off at right angles from any portion of this main line, at distances of say 500 feet, in conformity with the nature of the ground. Between and parallel to these laterals, a ditch or Between and parallel to these laterals, a ditch or
drain is dug to a depth extending 4 or 5 feet below the phosphate strata. From this main drain the excavators start their lines at right angles to the laterals, commencing at one end of the field and digging trenches 15 feet wide and 500 feet long, the work being so arranged that the men are stationed at intervals of 6 feet. Every man is supposed to dig out, daily, "a pit" 6 feet long, 15 feet wide, and down to the phosphate rock. The overlying waterial is thrown out to the left hand side of the trench. The phosphate itself is thrown out to the right, and taken in wheelbarrows to the railruad cars which pass at either end of the trench. The water drains fron the trenches into the underlying ditch, and is then $e \mathrm{e}$ pumped out by means of a steam pump worked by a locomotive engine. The pump and the engine are
secured to connected railway platforms, and run along the railroad track, from one ditch to another, as occasion requires. The cars, loaded with the crude
phosphatic material dug out of the pits, are run down to the washing apparatus, constructed at an elevation of some 30 feet from the ground, and generally consisting of a series of sewicircular troughs 20 to 30 feet long, set in an iron frawework at an incline of some 20 inches rise in their length.
Through every trough passes an octagonal ironcased shaft, provided with blades so arranged and ciistributed as to form a screw with a twist of one foot in six, which forces the washed material upward and projects the fragments against each other. The phosphate laden cars are hauled up an incline and their contents dumped into the bottom trough, where the phosphate encounters one or more heavy streams of water, pumped up by a steam pump. This water does not near where it enters. When sufficiently washed, the phosphate is pushed out upon a one-half inch mesh screen; the small debris being received on oscillating wire tables below. It is now ready for kilning or drying, and of all the methods hitherto adopted for this important process, that of simple burning or roasting, in an ordinary kiln, such as is generally used in the manufacture of bricks, has been found at once the wost rapid, effective and economical.
The rock is built on layers of pine wood, and owing to its containing a considerable quantity of organic matter, it readily lends itself to combustion and quires but a short time to become quite red hot
The kilns are made sufficiently large and so arranged as to allow free passage to a train of cars, which, running on the main line of railroad, can be loaded in the kiln, run down to the landing place, and discharged directly into the barges or boats on the river. With a properly constructed plant, regular drainage, and efficient management, the total cost of producing one ton of South Carolina phosphate in clean, dry, market able co

The present selling price for dry phosphate, with an verage mean analysis of 57 per cent tribasic or bone phosphate of lime is $\$ 7$ per ton of $2,240 \mathrm{lb}$. on wharf at Charleston.
As I have already said, the quantity of phosphate mined and sold in South Carolina during the past few years has been continually increasing until it has now reached the figure of about 500,000 tons per annum. Assuming that the unexploited deposits sti. cover an area of some thirty miles, and that they will yield the present average of 750 tons of phosphate to the acre, we may count upon a reserve of about $14,000,000$ tons. With a constantly growing demand for "fertilizer" purposes, it would, therefore, seem as if the mining resources of the State would be exhausted in from fif W to twenty years.
With a probable appreciation of these figures and acts, the efforts of the wealthiest wining companies now in the field are naturally directed toward the appropriation of all available and readily accessible deposits, and there is no doubt that while asquired on reasonable terms and worked with economy their exploitation will continue to be attended with very proitable results.
The dividends distributed during the past year by some of the companies, whose figures have been published, amounted to a trifle less than $\$ 500,000$, and it is significant of the rapid intellectual growth and cowmercial and industrial development of the South that of the total phosphate mined in the State, more that one-fifth is actually used in Charleston for manufactur ing purposes. About one-third of the balance is ex ported to Great Britain and Germany, and the remain der is principally sent coastwise to Richmond, Baltiwore, Philadelphia and New York.
When the great benefits accruing to South Carolina and its people from this industry are appreciated, it will not appear strange that active search for phos phate beds of similar value should have been stimulat ed in the adjoining States, and that the most intense not to say mad, excitement has manifested itself since the discovery some two years ago of the Florida phosphate deposits.
Note.-The Florida phosphate beds will be fully treated in the follow (To be continued.)

THE glaze upon enameled cards is made by pressure upon a polished plate or rollers. The composition is chalk, clay, and a little starch. Good work is not possible without elaborate accessories.

RECENTLY PATENTED INVENTIONS. Engineering.
Sistem of Street Car Propul-sion.-Frederick G. Wheeler, Montclair, N. J. Com-
bined with the engine cylinders is a water chamber and a system of circulating pipes, with condensers arranged in the front lower part of the engine and connected with the exhaust ,orts of the cylinders, an auxiliar
condenser being arranged on a higher level, while condenser being arranged on a higher level, while pump connects the lower condensers and the wate water to circulate through a series of tubes back to the water chamber, while the water of condensation is led back to the water chamber, forming a complete circulating system. The invention is an improvement on a former patented invention of the same inventor in tha
class of motors in which the water is heated in a class of motors in which the water is heated in
stationary boiler and supplied to a water chamber o stationary boile
the motor car.

Railvay Appliances.

Gondola Car.-Ferdinand E. Canda, New York City. This invention provides for the use of the car body, the ends of the rods beng provided with screw threads and nuts, the anchorage of therods bein made in the ends of the side buards and through iron castings forming anchor blocks, made in such form a o be completely clamped and held in place by the side boards, thereby being rendered secure against being pulled out. This improved lateral support is wholl able space of the car is occupied by the rods or fixtures.

Electrical.

Battery. - Jacob O. Brinkerhoff, Hackensack, and Milton E. Smith, Rutherford, N. J. Combined with a copper cylinder forming one of the ous chloride and in contact with the inner and outer surfaces of the cylinder. The inventors claim for this battery long life, high voltage, and no creeping or cor-
roding. The exciting agent may be used in llquid or roding. The exciting agent may be used in liquid or solid form and applied to one or both electrodes, in the common jar battery the electrodes extending into the
antimonious chloride, while in the porous cup batteries only one electrode is immersed.

Mechanical Appliances.
Barrel Hooping Machine. - Max Rosenow, Peoria, Ill. This invention provides attach--
ments for the ordinary iron hoop driving or trussing machine, whereby the machine can be readily adapted for the driving of wooden hoops on barrels, providing
also suitable means whereby the chine or head hoops can 'oe more effectually placed on the barrel without danger of crushing or breaking them.
Wooden Hoop Locks. - The same
for cutting the locks in wooden hoops in a quick and
positive manner. Combined with a revolving cutter positive manner. Combined with a revolving cutter
head is a hoop-clamping device arranged atright angle to the rotation of the cutter head, the device being pivotally supported and vertically adjustable in relation to the cutters. 'The hoops, after having one end cut into a lock, are held by their lock cut to the forked edges of gauges, which set their uncut ends to the
proper position for cutting. OiL Cup for cutting
Oil Cup. - Thomas McEntee, Jersey City, N. J. This is a lubricating device especially dapted for oiling the crank pin of a marine or other engine, or any moving portion of machinery requiring
a constant and reliable oil feed, and where the oil is difficult to apply by the use of the ordinary cup or can I has a needle valve for adjustment to give the re quired feed, and the cup is made of sufficient size to
supply oil for twenty-four hours, or as long as may be supply oil for twenty-four hours, or as long as may be
desired, the quantity of oil in the cup being alway desired, the quantity of oil in the cup being alway
indicated by a gauge tube. indicated by a gauge tube.
Plumb and Level. - William J. Garner and Thomas Connaughton, Latourell Falls,
Oregon. This invention covers a combination device Oregon. This invention covers a combination device
having an extensible support that can be lengthened or shortened, combined with one or more spirit levels and plumb line and bob, the level being supported by the the bob and arranged transversely of and adjacent to the bob and extended upwardly, being secured at a
point above the level. At one edge of the stock is a point above the level. At one edge of the stock is a
spirit level and at the opposite edge is a swinging spirit level
gravity level.
Watch Maker's Roller Remover. -Michael L. Sheehan, New York City. This is an im proved device for removing and replacing the rollers of
watch balance wheel staffs or pivots, the invention watch balance wheel staffs or pivots, the invention providing a simple construction whereby rollers may be
disengaged from the staffs or pivots of balance wheels in an expeditious and convenient manner, without disturbing the hair spring or injuring the pivots or ruby

Mechanical Movement. - Israel F.
Good, Allentown, Pa. In a suitable frame is mounted vertical shaft having at its upper end a gear wheel, above which is secured a post supported by radial bars,
a gear wheel meshing with the lower gear wheel and connected to the post by a universal joint, with other novel features, the device beng designed to furnish a simple means for multiplying speed and transmittin power.

Agricultural.

Corn Harvester. - Thomas B. Jones, Radnor, Ohio. Combinec with a gathering
frame hinged to swing laterally, and having vielding frame hinged to swing laterally, and having yielding
means for holding it normally parallel with the rows or corn, are upper and lower endless belts carried by the frame, and a stalk-cutting mechanism below the lower belts for cutting the stalks as they pass between the
belts. The stalks are held in an upright position
the time they are cut, the machine also spreading the
butt of the shock prior to its delivery from the her butt of
vester.
Potato Digger and Harvester. Clinton Lanker, St. Joseph, Mo. This invention con-
sists of a plow having a double mould bourd and dis charging on to an incliued elevator provided with raking arms traveling over the grated bottom of the elevator to carry the potatoes upward, a discharge spout being ar-
ranged transversely below the elevator. The machine ranged transversely below the elevator. The machine
gathers the potatoer, separates them from the soil and gathers the potatoeer, separates them from the soil and ther receptacles carried on the machine.

Miscellaneous.

Bleaching. - Honore Korw in

 Pawlowski, Paris, France. This invention provides an apparatus for the bleaching of vegetable and animal matter, and the washing and scouring of wool and other substances, either woven or yarn or fiber, with theavoidance of manipulation. Combined with a series avoidance of manipulation. Combined with a series of
vats containing liquid, and connected with each other vats containing liquid, and conoected with each other
below the level of the liquid, are two vacuum receptacles, placed on a higher level than the vats and connected with them below the level of the liquid, to effect alternately an automatic displacement of the liquid in the Cane Juice Filtration. - Le on Boyer, New Orleans, La. This is an improved apparatus for treating cane juice by intration, designed lime to neutralize the acid in the juice can be so simplified as to require but little skill or knowledge to carry it out. The invention provides a primary strainer box or tilter composed of a series of strainer drawers arranged in sets one below the other, the drawers in each set being of oue mesh, but the several sets being of successively finer mesh in a downward direction.
Sprafing Device.-Williain J. Ruff, Quincy, Ill. This invention relates to a liquid cooling apparatus more especiany designed for spraying beer device by small particles of hops and other substances liable to pass with the worts to the spraying apparatus. A valve is adapted to pass into the spraying orifice, being
held on an adjustable valve stem, while a piston held on the valve stem is adapted to zutomatically actuate the latter
clogged.
Measuring and Drawing InstruMeasuring and Drawing Instru-ment.-Charles W. James, Pbiladelphia, Pa. Com-
bined with a forked arm are two arms of unequal bined with a forked arm are two arms of unequal
length pivoted between the members of the forked arm, the longer arm being of a length equal to that of the forked arm, while a block is adjustably secured to one of the arms. The instrument is simple and durable in construction, and can be readily manipulated to obtain or measure inside or outside angles and obtann the miters of them, or it may be used for caliper-
ing, or arranged as a depth and end marking ing, or arranged as a depth and end marking gause

Speaking Tube and Eariphone. Frederick Schluchtner, Brooklyn, N. Y. This inven-
tion provides a speaking tube having, in addition to tion provides a speaking tube having, in addition to
the usual mouthpiece, a branch tube with an attached earpiece, the branch tube being located betiveen the whistle and the mouthpiece. The whistle has an
operating handle exterior to the tube, and is closed operating handle exterior
by a spring on the handle.
Goods Exhibitor. - Noah E. Otto, Johustown, Pa. A strong, compact frame, easily
taken apart, carries a series of vertical rollers adapted to receive rolls of fabric, there being also combined with the frame a rack adapted to hold 'Jrooms and similar shaped articles. The invention is designed to
provide a neat, compact and efficient receptacle for provide a neat, compact and efficient receptacle for
holding and exhibiting rolls of carpets, oilcloths and other bulky and heavy fabrics, so that they may be well displayed and easily bandled.
Savings Receptacle. -- Charles 0. Burns, New York City. This invention relates to boxes used by depositors for collecting their savings
rom time to time and afterward depositing them in the bank. It provides a safety receptacle in which the box has a slot for entry of the coin, and an opening and closing lid, combined with a lock controlling the lid, a catch mechanism controlling the lock, and two
keys, one key being stationary for operating the catch keys, one key being stationary for operating the catch
controlling the lock, and the other a movable key to the lock itself, thereby affording increased security.
Scissors or Shears.-Julius Langenberg, Ohligs, Germany. Combined with the pivoted blades is a spring-pressed pin protruding through one
of the blades so as to impinge upon the other, whereby the two blades are pressed against each other automatically without using any hand pressure during cutting. The construction is also designed to insure the blades cutting the naterial during the whole cut-
ting movement, from the point where the edges meet ting movement, fro
Bee Hive Tongs. - Crawford D. Holt, Murray, Ky. This is a novel form of tongs for handling the comb frames of bee hives, the tongs
having jaws adapted to clasp the tops and sides of the having jaws adapted to clasp the tops and sides of the
frames, with means for locking the jaws in position. These tongs atiord ready means of handlıng the frames, avoiding the necessity of putting the hands or fingers
in the hives and the attendant danger of being stung by in the hives and the attendant danger of being stung by

Sash Fastener - Charles E. Angell, Salt Lake City, Utah. This is a combined window
sash lock and lift, consisting of a positive iocking bolt adapted to automatically engage with bolt holes in the window frame, an attached key for operating the bolt, a pivoted thumb piece applied to the outer end of
the key to operate the key and serve as a lifter, together with an adjustable dog or catch adapted to engage with the key to prevent the latter from turning to act upon the locking bolt.
Thill Coupling. - Augustus Beale,
coupling designcd to be simple, durable and noiseless, whereby the pole may be conveniently connected to or deacer. It also provides a means whereby the sufet traps may be readily connected with or disengaged rom the pole or shaft.
Load Binder. - Harry M. Bradley Canon City, Col. A longitudinally slotted bar wit eeth on opposite sides has an aperture in one end for the attachment of a rope, the bar being passed
through a slot in a lever, where it is held by a pin and pring-pressed pawls, and there is held by a pin and the lever, the whole forming a simple and conve ient device for binding loads upon vehicles in a quick and secure manner. The device may also be used
Wagon Brake. - John W. Herrin which will be automatically applied to the front whee when the vehicle to which it is attached starts down on nclined grade, and will be automatically released when level grade is reached or the vehicle is started up hill The invention also provides a locking device whereby the brake may be locked either when applied or re

Watering 'I'rough.-John 'r. That cher, Frankfort, Ind. This trough bas an aperture no, with a valve arranged to slide past the aperture, ombination with a float hinged to the side of the trough and a rod connected with the valve at its lower apper end. It is designed that the trough shall alway efilled to a definite level, the valve and float workin o effect this automatically.
Stove. - James W. Ca! ${ }^{\prime}$ a, Castalia, South Dakota. This is a stove of simple and durable construction for heating and cooking purposes, and rubbish as fuel. All the heat generated is passed of so arring fuel.
Oil Can and Lamp Filler.-Charle . Proctor, Lake Forest, IIl. This is a portable device, ecured on a post baving a sultable base, the can havdelivery tube through which oil is supplied to a lamp without any waste and without the use of pumps. The rom the can to the lamp.
Note.-Copies of any of the above patents will be urnished by Munn \& Co., for 25 cents each. Please send name of
of this paper.

SCIENTIFIC AMERICAN

BUILDINGEDITION
JUNE NUMBER.-(No. 68.)

TABLE OF CONTENTS.

1. Plate in colurs of a handsome residence on Riverside Park, New York City. Floor plan
vations. Architect Mr. Frank Freeman.
2. Colored plate illustrating a row of brick dwellings a Newark, N. J., costing about $\$ 3,000$ each. Perman, Newark, N. J., architect.
3. Engravings and floor plans of a double residence Washington Heights, New York City
$\$ 20,000$ each. A very picturesque design. welling at New Haven, Conn. Cost $\$ 8,000$ com plete. Perspective view, floor plans, etc.
4. A colonial cottage erected for Mr. C. W. Macfar ane at Elm Station, Pa. Cost $\$ 5,300$ complet Design of a modern interior. A comfortable hall nd staircase.
5. A picturesque cottage erected for George W. Childs, $\$ 8.200$ complete. F. H. \& W Wayne, Pa. Cost phia, architects. Plans and perspective.
6. A tower house recently erected at Elm Station, Pa. elevation, etc.
7. A row of low cost colonial houses erected at Rose ille, N. I. Cost complete $\$ 2,000$ a house. Plans and perspective view.
8. An English cottage erected at Elm Station, Pa Cost about $\$ 4,000$. Perspective and floor plans. County, New York, at a cost of $\$ 690^{2}$.
9. Miscellaneous contents: Slmplacity in furnishing and decoration.-Weight as a test of strength in timber.-Architect of the Woman's Building of the Columbian Exposition, Chicago.-Redwood for Interiors.-The Richmond heater, illustrated.

- Some new designs in radiators, illustrated. -Some new designs in raciators, shastrated.-glass.-Improved woodworking machinery, illus-trated.-A strong and light lawn fence, illustrated. -The "Heatencook" range, illustrated. -The H. W. Johns liquid paints.-A new rooing metal, illustrated.
The Sclentific American Architects and Builders Edition 18 issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages: forming, practically, a large and splendid Magazine of architectURE, richly adorned with elegant plates in colors and with fine engravings, illnstrating the most interesting examples of Modern Architectural Construction and allied subjects.
The Fullness, Richnese, Cheapness. and Convenience of his work have won for it the laraest circulation ll newsdealer

MUNN \& CO.. Publishers,
361 Broadway, New York

ƏBusiness and æersonal.

he charge for Insertion under this head is One Dollar a lin for each insertion; about eight words to a line. Adver
tisenvents must be received at pubbication office as early as I wish to bus second hand lathes, planers driws she rss, engines, boilers. and machinery. Must be in goo
rder. Will pay cash. W. P. Davis, Rochester, N. Y. Acme engine, t to 5 H. P. See adv. next issue.
Aresses \& Dies, Ferracute Mach. Co Bridgeton, Billings' Patent Brecch-loading Single Barrel Sho gun. Billings \& Spencer Co., Hartford, Conn
Best Iee and Refrigerating Machines made by David
Boyle, Chicago, IIl. 170 machines in satisfactory use. Stean 1 H Steam Hammers, Improved Hydraulic Jacks, and Tu
Expanders. R. Dudgeon, 24 Columbia St., New York Screw machines, milling machines, and drill presse
The Garvin Mach. Co., Laight and Canal Sts., New Yor Tight and Slack Barrel Machinery a specialty. John
reenwood \& Co., Rochester, N. Y. See illus. adv., p. 30 . Pneumatic bell outfit. Better than electricity. Sen or circular. W. B. Beach, 132 Fulton St., N. Y. City Money provided to manufacture patented articles of
uperior merit. "Manufacturer," P. O. box 2584, N. Y. For the orizinal Bogardus Universal Eccentric Mill,
Foot and Power Presses, Drills, Shears, etc S. \& G. F. Simpson, 26 to 36 Rodney.St., Brooklyn, N. Y. The best book for electricians and beginners in elec By mail, 84 : Munn \& Co., publishers, 361 Broad way, N. Y Wanted-An intelligent foundryman as foreman of a
good sized foundry. Must thoroughly understand moulding, and bandling of men, be strictly temperate nd honest. Only those who can give the best of refe ponsible firm. Address " L.," 21 Park Place, New Yor Send for new and complete catalogue of Scientif New York. Free on application.

HINTS TO CORRESPONDENTS.
Names and A ddress must accompany all letters,
or no attention will be paid thereto. This is for our information and not for publication.
References to former articles or answers should References to former articles or answers should
give date of paper and puge or number of question.
Inquiries not answered in reusonable time should some answers require not a little research, and sone answers require not a little research, aud,
though endeavorto reply to all either by letter
or in this denartment each to or in this department, each must take his turn.
Special Writen Information on matters of
personat rather than general interest cannot be expected without remuneration.
Scientific American ${ }^{\text {and }}$.
to may be had at the office. Price 10 cents reach. to may be had ar the office. PPpiements referred
Boks referred to promptly supplied on receipt of Minerals sent for examination should be distinctly
marked or labeled.
(3113) G. M. says: A question has come up as to whether a piece of ron dropped into water of a y y given depth would sink to the bottom or would find be the same, and consequently remain surpended. Will you kindly anewer this and give explanation, also please state the greatest depth of any well or boring in the world? A. The iron will sink to the bottom of the deepest oceans. Every solid substance that is heavier
than watersinks to the bottom. The bottoms of the chan water sinks to the bottom. The bottoms of the
deep oceans are covered with gravel, sand and mud, with deep oceans are covered with gravel, sand and mud, with
shells and vegetable growth of the deep seas. Fish and other living organisms are found at great depths. The pressure of the water is in proportion to the dep can be but very slightly compressed under great pressures. The deepest bored well is about 5,000 feet. (3114) A. C. R. asks: 1. Is lead a good electrical conductor? A. It has twelve times the resistance of copper. 2. Can you give me a recipe for
a good cheap silver polish? A. Use whiting and alco a good cheap silver polish? A. Use whiting and alco.
hol. 3. Have the effects of a kaleidoscope ever been shown on the wall like a magic lantern? If so, is the apparatus dificult to make? A. The kaleidoscope can
be thus used. It is described in Dolbear's "Art of Projection," $\$ 2$ by mail.
(3115) M. T. F. asks for the cheapest way of making hydrogen gas. I wish to use it for a balloon in A. By treatment of iron or zinc scrap with dilute sulphuric acid. This is the usual way on a small scale
On the larger scale it may be made by passing steam On the larger scale it
over red hot iron scrap.
(3116) J. S. R. asks (1) as to the obelisk (in Central Park, New York), and also the Pyramids of Egypt. Are they not generally considered (by scientific
men) a composition, and not blocks of natural stone ? A. They are natural stone, not an artificial composition. of Scientific Ayerican? Wait or magazine, in its youth? A. September, 1845. It was weekly.
(3117) W. F. B. asks how bird lime is inseed oil until thick and viscld. There is much dange of conflagration in conducting this operation. A bet ter way is to boil the middle bark of the holly for seven or eight hours in water, and put in a heap in a hole in until reduced to a mucilaginous mass. It mutt be rubbed up in a morta
into earthen pots.
(3118) P. B. says A and B have an argu ment about the motion of a clock's pendulum. A say eays it does, or it could not reverse. Who is right? A
before it can change or reverse its movement. The within our perception to measure it.

TO INVENTORS.

 An experience of forty years, and the preparation ofmore than one hundred thousand applications for pa-
tents at home and abroad, enable us to understand the laws and practice on both continents, and to possess u equaled facilities for procuring patents everywhere. fyopsis of the patent laws of the United States and all contemplating the se abroad, are invited to write to this offlce for prices, which are low, in accordance with the times and our exensive facilities for conducting the business. Addres
IUNN $\&$ CO office SCIENTIFIC AMERICAN, way, New York.

INDEX OF INVENTIONS

Hor which Letters Patent of the
United States were Granted June 16, 1891

AND EACH BEARING THAT DATE

[See note at end of list about copies of these patents.]

 Advertising device, H. G. Rich.Alarm. See Burglar alarm
Alarm. See Burglar alarm.
Ammonian rom sodiuna nitrate, manufacture
Baudouin \& Delort.

Bas. See Feed ba......
Bar Iock, Mi V Mitchell.
Barrel roling implement
Barret roniling implement, Hiitonn \& Monahan.....
Barrow and Iruck, combined hand, Martin
Bohn
Basket, fish, C. R. White.............................
Bathing suit, buovant R. Wightman, Jr........
Battery. See Galvanic battery. Secondary bat

Burlar alarm, portable, C.C. D. Davis...............
Buriar apparatus,
Bunner. See Fuel burner. Hy Harocarbon burne.

ant

ant

Coupling. see Car coupling. Hiose coupling.
Cripe coupling Thill coupling.
Crade, He Webr.
Crank

\qquad

$.454,377$
$.454,110$
4590

454,108
454,200
454,108
454,200

			PLECTRRICAT!
	(ind		
	ottle, W. B. Lillard.................................. 20,833 20, 833		
		Cheap Printing	
		THE DAIMLER MOTOR	
mam			
			Useful Books!
	วfoverfisements.		
		TOOLS	
		Selen	
		(e)	
		ne strect,	Ove 50 valitiver
			E. \& B. Holmes,
		ARFIELD"	
			皿 ATENTS!
	INN		
	gates rock \& ore breaker		

The Technical Works CHARLES T. DAVIS

 The Manu fircture of Leather.- Being a descrip-
tion of all of the Proceses for the Tanning Tawin,
Currying, Finishing, and 5 eing of every kind of Leath: Or; including the various Raw. Materials and the u net
ods for Determining their Values, the Tools. Machine

 TH Rlustrated circ ulars, showing full Tables of Content
of these books, sent free and free of postage to any one who
will apply.
 HENRYCAREY BAIRD \& CO., ndustrial Publishers, booksellers \& Impor

THE WESTERN UNIVERSITY
OF PENNSYLVANIA.

 RIKIS FANS. $4+5$ so Ruber Press sollls for w
and Yarn Wanhing and
Vyeing Machines. GEO. P. CLARK, Manuf. STEAM ENGINE. HOW TO MANAGE

The Best Mechanical Help An inventor, investigator or experimente can have is a great machine shop, whose (second) to help develop ideas. We have that shop, and have put what we have to say in a primer-will send it.

STEREOTYPING; THE PLASTER AND

Perfect Newspaper File

 DEAF

NESS \& HED NIISES CURED

15 Park Row, New York

Vulcanized Rubber Fabrics

 Rubber Belting and Hose. SOLID VULCANITE EMERY WHEELS. RUBBER CUSHION BICYCLE TIRES apprat the deas. diest The most Snceesaful Labricator
for Loose Pulleys in ure.

 \$3 PR|NTING PRESS. $\begin{gathered}\text { Do all your own } \\ \text { printing: } \\ \text { save }\end{gathered}$ STEEL TYPE FOR TYPEWRITERS
 A NEW EDITION OF
The Scienting Amenican Refarance Book

MITINTIN de Coblishers \qquad

KOCHS DISCOVERIES-A FULL AC

PEANUTS: THEIR GROWTH AND

BLUE PRINT Paper, Superior Quality: .H. McCoLLIN \& co.. 1130 Arch Street. Philadeliphia SEWING MLCHINE MOTOR FOR AMA

NATIONAL TUBE CLEANER
 RANKS THE HIGHEST HALMERS-SPENCE CO

FREE SITES TO SUBSTANTIAL MANUFACTURING ENTERPRISES

AIR BRUSH

PNEUMATIC BELL OUTFIT

ROCK BREAKERS AND ORE CRUSHERS

PROPOSALS.

 speciications, blanns forms, and all information, apply
to the undersigned.
G. L. GILLESPIE, Lieut.-Col. of Engineers.
Experimental Science

ELECTRO MOTOR. SIMPLE. HOW TO

"STANDARD" EMERYEL DRESSER

The Scientific A merican PUBICCTIONS FOR 1891.
The prices of the difierent publications in the Unted
The Scientific American (weekly), one year - $\quad \$ 3.00$ year, - 5.00 The Scientific American, Spanish Edition (month- 3.0 The Scelentific American Architects and Builders
Edition (monthly). one year. - 2.50
COMBINED RATES.
The Scientific American and Architects and Eand - \quad. M
ers Edition, -
The Scientific American, Supplement, and Archi-
tects and Builders Edition,
Proportionate Rates for Six Months.
$-\quad-$
This includes postage, which we pay. Remit by postal
or express moneto order,

DEVELOPMENT OF AMERICAN

TO BUSINESS MEN

 tising medium cannot be overestimated. Its circulationis many times greater than that of any similar journal now published. It goes into all the States and Territo-
ries, and is read in all the principal libraries and reading rooms of the world. A business man wants something
more than to see his advertisement in a printed newspaper. He wants circulation. This he has when he adthe advertising agent influence you to substitute some other paper for the SCIENTIFIC AMERICAN, when s your interest to advertise. This is frequently done for the papers having a small circulation than is allowed on For rates see top of first column of this page, or a ress MUN C., Publishers,

61 Broadway, New York
HUDSON'GARDEN
Hose Mender

WORKING LOCOMOTIVES WITH

95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent anted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th Tho. 186.787. forms of Electric Speaking Teleph known fringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use. and all the consequences thereof, and liable to suit therafor.

Take

Send to The Eastman Company, Rochester, N. Y., for a copy of "Through Europe
Kodak," (illustrated,) free by mail.

A Kodak

 мams

SIEMEN'S:CABLES.

SUBMARINE, UNDERGROUND, INTERIOR,

+ +4 TELECRAPH, TELEPHONE, ELECTRIC LICHT.

SIEMENS \& HALSKE Manufacte EDISON
their SCHENECTADY WORKS. ELECTRIC CO
heir SCHENECTADY WORK
adaress, Wire Department, Edison General Electric Company,

Steam! Steam!

Quality Higher, Price Lower. 2-Horse Eureka Boiler and Engine, - \$145

 A. WYCKOFF \& SON, 6 East Chemung Pla

Scientific Rook Batalogue RECENTLY PUBLISHED. Our new catalogue containung over 10. pages, inclua-
in works on more than tifty different subjects. Will be mailed free to any address n apppication.
MUNN \& CO., Publishers Scientitic

ICE HOUSE AND REFRIGERATOR.

 $\frac{\text { THE "HANDY" }}{\text { Th N }}$

\qquad

NEW MAIL

Only Boy's Safety with a jury to younk ride
your ribation WM. READ \& SONS, $\begin{gathered}107 \\ \text { boston, mashington st. }\end{gathered}$

ESTABLISHED 1846.
The Most Popular Scientific Paper in the Worid
Only $\underset{\text { Weekly }}{\$ 3.00 \text { a }}$ Year, Including Pumbers a Year.
This widely circulated and splendidy illustrated teen pages of useful information and a large number of original engravings of new inventions and discoveries representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures New Inventions, Novelties in Mechanics, Manufactures,
Chemistry, Electricity, Telegraphy, Photography, Architecture, Agriculture, Horticulture, Natural History, etc. Complete list of patents each week. Terms of Subscription.-One copy of the ScIEN-
TIFIC AMERICAN will be sent for one year- 52 numbersTIFIC AMERICAN will be sent for one vear- 52 numbers-
postage prepaid, to any subscriber in the United States, Canada, or Mexico, on receipt of three dollars by the publishers ; six months, 81.50 ; three months, 81.00 . Clubs.-Special rates for several names, and to Post
Masters. Write for particulars. Masters. Write for particulars.
The safest way to remit is b. Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk. Address all lemters and make all orders, drafts, etc , Addres MUNN \& CO., 361 Broadway, New York.
MUS §cientitic genterican \$upplement This is a separate and distinct publication from The every number containing sixteen large pages full of en gravings, many of which are taken from foreign papers,
and accompanied with translated descriptions. and accompanied with translated descriptions. The
SCIENTIFIC AMERICAN SUPPLEMENT is published weekly, and includes a very wide range of contents. It pre-
sents the most recent papers by eminent writers in all the principal departments of Science and the Useful
Arts, embracing Biology, Geology, Mineralogy, Natural Arts, embracing Biology, Geology, Mineralogy, Natura
History, Geography, Archæology, Astronomy, Chemis try, Electricity, Light, Heat, Mechanical Engineering, Steam and Railway Engineering, Mining, Ship Building Marine Engineering, Photography, Technology, Manu-
facturing Industries, Sanitary Engineering, Agriculture Iacturing Industries, Sanitary Engineering, Agriculture,
Horticulture, Domestic E Economy, Biography, Medicine et. A vast amount of fresh and valuable information The most important Engineering Works, Mechanisms and described in the home and abroed are Price for the Supplement for the United States'and Canada, $\$ 5.00$ a year; or one copy of the SCIENTIFIC AM-
ERICAN and one copy of the SUPPLEMENT, both mailed ERICAN and one copy of the SUPPLEMENT, Both maile
for one year for 87.00 . Single copies, 10 cents. Address and remit by postal order, express money order, or check,
MUNN \mathbb{E} CO., $\mathbf{3 6 1}$ Broadway, New York, Pubishoads Scientific AMERICA

Building Cedition.
The SCIENTIFIC American Architects' AND Single copies, 25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages; forming a large and splendid Magaziue of Architecture, richly
adorned with elegant plates in colors, and with other fine engravings; illustrating the most interesting examples of modern architectural construction and allied subjects. A special feature is the presentation in each number
of a variety of the latest and best plans for private rest dences, city and country, including those of very mod erate cost as well as the more expensive. Drawings in perspective and in color are given, together with full Plans, Specifcations, Sheets of Details, Estimates. etc.
The elegance and cheapness of this magnifcent work have won for it the Largest Circulation of any Architectural publication in the world. Sold by all news dealers. \$2.50 a year. Remit to

MUNN © CO., Publishers,

PRINTING INKES

