
a weekiy journal of practical information, art, sclevce, mechanics, chemistry, and manufactures.

[\$3.00 $\underset{\text { WEELLY. }}{\text { A YRAR }}$.

THE PROPOSED NEW CROTON LAKE DAM AND THE NEW CROTON LAKE.
The New York Croton Aqueduct Commission, consisting of the Mayor, Comptroller, and Commissioner of Public Works, of the city of New York, and of four other commissioners, at a meeting held January 22 , 1891, adopted a resolution for the preparation of plans for the construction of a dam upon the Croton River valley below the present Croton dam and at or near what is known as the Cornell site, a short distance above Quaker Bridge. The meaning of this resolution is that the construction of the famous Quaker Bridge is that the construction of the famous Quaker Bridge
daw is to be abandoned and a substitute therefor, situated some distance further up the stream, is to be built to provide additional storage capacity in the Croton River valley. The newly proposed dam is the outcome of a discussion in which different engineers took opposite views as to the future water supply of the city, and a compromise between the conflicting opinions is afforded by it.

For immediate water supply the city of New York is dependent on the old Croton

PResent crotin lake capacity
2.000.000.000.Gals.
capacity of lakes compared
the ensuing destruction of Johnstown, and the carrying away of many other dams before and since that memorable disaster, have occasioned some fears to be enter tained for the safety of the Croton dam. It has stood intact for fifty years, and in all that time the water has never passed over the earthwork crest. Yet if this should occur, the dam would quickly be destroyed.
Estimates as to the rain fall that would be required to overtop the crest of the earthwork make it probable that a rainfall of nine inches, or even much less, under certain conditions, in twenty-four hours, would place the security of the dam in doubt. If the earth work portion was washed away, it is probable that a part of the masonry would also succumb; but even if this did not happen, a gap one hundred and twenty-five feet long would be left, through which the flow of the rive til that gap could be filled How long it would take to reconstruct this portion of the dam cannot be exactly stated. It is certain that it (Continued on page 389.)

PRESENT APPEARANCE OF CROTON RIVER AND LAKE.

LAKE FORMED BY PROPOSED DAM NEAR THE CORNELL SITE.

grientifit smmerican.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors published weekly at
 No. 361 BROADWAY, NEW YORK.

O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, for the U.S., Canada or Mexico.
One copy, six months, for the U.S., Canada or Mexico
 Remit by postal or express money order, or by bank draft or check.
MUNN \& CO., 361 Broad way, corner of Franklin Street, New York

The Scientific American Supplement. is a distinct paper from the Scievtific american. THE SUPPLEMEN is issued weekly. Every number contains 16 octavo pages, uniform in size with Scientific American. Terms of subscription for Supplement
$\$ 5.00$ a year, for the U. S., Canada or Mexico. $\$ 6.00$ a year to foreign $\$ 5.00$ a year, for the U . S., Canada or Mexico. $\$ 6.00$ a year to foreign
countries belonging to the Postal Union. Single copies, 10 cents. Sol by all newsdealers throughout the country. See prospectus, last page. Combined Rates.-The Scientiric AMERICAN and SUPPLEMEN will be sent for one year, to any address in U. S., Canada or Mexico, on receipt of sever
douars a year.

Building Edition

CAN is a large and splendid illustrated CAN is a large and splendid illustrated periodical, issued monthly, con
taining floor plans, perspective views, and sheets of constructive details pertaining to modern architecture. Each number is iilustrated with pertaniful plates, showing desirable dwellings, public buildings and archi tectural work in great variety. To builders and all who contemplate build ing this work is invaluable. Has the largest circulation of any architec
Single copies 25 cents. 'By mail, to any part of the United States, Canad
or Mexico, $\$ 2.50$ a year. To foreign Postal Union countries, $\$ 3.00$ a year Combined rate for BCILDING EDITION with ScIEvTIFIC AMERICAN, 85.00 a year; combined rate for Buliling Ention, Scientific Am
and SUPPLEMENT, $\$ 9.00$ a year. To foreign countries, $\$ 11.50$ a year.

Sanish Edition of the scientific American.
La America Cientifica e industrial (Spanish trade edition of the SCIENTIFIC AMERICAN) is published monthly, uniform in size and typography with the Scientific American. Every number of La America is profesely illustrated. It is the finest scientitic, industrial trade paper printed in the Spanish language. It circulates throughout Cuba, the West
Indies, Mexico Central and South America, Spain and Spanish posses Indies, Mexico Central and South America, Spain and Spanish posses-
sions-wherever the Spanish language is spoken. $\$ 3.00$ a year, post paid to any part of the world. Single copies 25 cents. See prospectus. MUNN \& CO., Publishers,

The safest way to remit is by postal order, express money order,
draft or bank check. Make all remittances payable to order of MUNN
Readers are specially requested to notify the
NEW YORK, SATDRDAY. JUNE 20, 1891.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
No. 807
For the Week Ending June 20, 1891 Price 10 cents. For sale by all newedealere

CHEMISTRY.-Summary of Useful Tests with the Blowpipe.-A
full paper.-By A. J. Moses... full paper.-By A. J. Moses.....................................
Galvanized Iron Pipe for Artesian Wells and for the Conves ance or Drinking Water.- By R. HAINES.. New Method for the Discovery of Faint Spectral Bands.-Appl cation to the spectrum of hydrocarbons.- By H. DesLandres..
Peroxide of Hydrogen or Ozone Water as a Remedy.-CCntinue
 Cochineal Carmine.
II. electrical.-The Inventors of the Telegraph and Telephon -An interesting paper read at the Centennial Celebr
iII. ENGINEERING.-Transandine Rallway
(v. MISCELLANEOUS.-A Swiss Technnologist's Impressions America... Daper read before the Society of Arts, London Nicephore Niepce's House
V. natural history.-The Guerezas in the Berlin Zoological Garden.
VI. NAVAL.-The French er Bourgog The French War Ship Le
Royal Naval Exhibition Royal Naval Exhibition
Miniature Naval Battle.
VII. PHOTOGRAPHY.-Instan Photo

THE SAILING OF TWO POLAR EXPEDITIONS In addition to the Greenland exploring expedition of Lieut. Peary, the sailing of which from New York was noted in our last issue, another expedition left Den mark the day following for the specific exploration of the east coast of Greenland, between 66° and 77° north latitude. The latter expedition is under the auspices of the Danish government, and is commanded by Lieut. Ryder, who intends to connect the surveys of Scoresby and the Koldewey expedition on the north with the discoveries of Capt. Holm on the south, com pletely outlining the east coast from Cape Farewell, its southern extremity, to Cape Bismarck in the north Considerable difficulty is anticipated in reaching the coast where Lieut. Ryder expects to land, from the great ice fields almost constantly pressing against it. The party will consist of only five or six wen, and it is designed to devote the fall season to the study of glacial phenomena, and the investigation of neighboring fiords with their glaciers. When the sledging period begins next spring, the explorer will start with sledges and boats to ascertain the outlines of the coas and study the edge of the inland ice, awaiting the arrival of a steamer to take him home about the latter part of next summer. If the vessel does not reach Ryder and his men, the party are prepared to spend the second winter in Greenland, retreating in the spring of 1893 to Cape Farewell and the Danish settle ments of the west coast
Lieut. Peary, in a communication published since his departure, gives some additional interesting detail touching his plans for reaching the extreme north end of Greenland. After erecting a house on Whale Sound, near their landing, reconnoisances will be attempted across the great tongue of inland ice covering Prudhoe Land to the southern angle of Humboldt Glacier, where an advance depot for the wain sledge journey will be established. In the spring the advance will be undertaken from Humbold t Glacier to the head of Peterman Fiord, where a second depot of supplies will be established, and from which point an advance party of two or three will push on with sledges, the other returning to Whale Sound. From the head of Peter man Fiord the route will be to the head of Grand Os borne Fiord, thence to the head of De Long Fiord, and thence to the northern terminus, from which it is intended to return by the same route to Whale Sound and await transportation howe.
Lieut. Peary says of his expedition, "The whole theory of the project rests upon the now well estab lished fact that the interior of south and middle Graen land is covered with an uninterrupted ice cap, and the wore than probability (in my opinion) that in north Greenland the conditions are the same, and the ice cap nearly, if not quite, coextensive with the land. My personal impression is that the northern terminus of Greenland is not north of the 85° parallel of latitude and that the inner ice cap is practically coextensiv with the land, and this opinion is shared by Judge Daly and I think by most other eminent geographers.' The base, near the Humboldt Glacier, is the one advo cated by Kane. Hayes, Hall, and other eminent Arctic authorities, and it is expected that it will be possible to lay therefrom a straight course from point to point without any "tidal cracks or chaos of heaped-up ice" to compel a long detour or stop further ad vance.
Besides Mrs. Peary, who accowpanies the expedition to Whale Sound, the party will consist of Lieut. Peary and five men, as follows: John M. Verhoeff, of Louis ville, Ky., aged 25, a wineralogist, and educated in an Eastern university ; Dr. Frederick A. Cook, surgeon aged 26, graduate of the College of Physicians and Surgeons and of the Univerity of the City of New York Langdon Cook, Flushing, L. I., aged 26, member of the American Ornithologists' Union and member of the Brown-Stanton party in the Colorado Cañon survey o 1889-90; Eivind Astrüp, of Christiania, Norway, gradu ate of the Christiania Commercial College, an athlete and especially skillful in ski-running; Matthew Hensen; Virginia, 23 years of age, colored. All possess first class physique, with exceptionally high lung power, and ar men of diversified attainments, especially selected fo the task in hand.

These two expeditions, with the auxiliary party from the Philadelphia Academy of Natural Sciences, going with Peary to Whale Sound to make scientific collec tions on the west coast, are almost certain to add very
materially to our knowledge of Greenland, if they do not furnish any conclusive information as to the ex istence or non-existence of an open polar sea. The ex ploration of the Arctic Zone in its entirety, with its laws of aerial and oceanic currents, is a work to which it is hoped these expeditions, with their apparently moderate and practicable scope, will largely contri bute.

Enforced Temperance.

The Nation says: "The agency of the railroad companies in promoting temperance is not generally appreciated. They employ 689,912 persons, not count ing those who mine the coal and iron, make the rails or locomotives, or build the cars and carriages used by the road. The freight and passenger traffic of the
country is practically controlled by 600 of these cor porations, and of these 600 no fewer than 375 prohibit the use of intoxicating liquors by their employes, among the number being most of the largest com panies. The Brotherhood of Locomotive Engineer: uses its influence in the same direction. 'Whenever nember of the order is known to be dissipated,' say Mr. Arthur, long the head of the organization, 'w not only expel or suspend him, but notify his em ployers,' and during the last year 375 members were xpelled for this cause. This is only one illustration of the way in which practical business considerations are operating to promote the spread of temperance t is purely a matter of business with the railroad companies. They simply cannot afford to employ a man who is liable any day to get drunk and precipitat ome terrible disaster. The average man thus come to see that it is 'money in his pocket,' in more senses han one, if he keeps out of the saloon; and the mora is not lost upon him.'

Fastest Average Time across the Atlantic.
The White Star steamship Majestic completed a voy ge on June 10 that would have been the best on record rom Queenstown if she had gone over the same cours traversed by the City of Paris when she made he record run of 5 days 19 hours and 18 minutes. The Majestic took a long southerly course of 2,850 miles t void ice and fog. Her time was 5 days 22 hours and 0 minutes, and her average speed per hour was 20.02 nots. This is the best recorded hourly average eve nade by an ocean steauship. Over the record cours f 2,788 knots her time would have been about 5 day 9 hours and 4 minutes, or 14 minutes better than the ecord of the City of Paris. The Majestic's daily runs row noon to noon, a period of about twenty-four hour nd fifty minutes, were

Total. . $\overline{2,850}$

The Majestic brought 1,005 steerage and 395 cabin passengers.

An Explosive Mixture.

Dr. John Grant writes to the Lancet as follows : Having occasion to make a disinfectant fluid to ap ply to an offensive surface on a body awaiting post ortem examination, I chanced to select permanga nate of potash. Thinking the solution might dry too quickly and inefficiently deodorize the part, it occurred to me to add glycerine on account of its hygroscopi powers. Putting a drachm of the crystals into a thre ounce bottle, I added two ounces of water and one o glycerine, and agitated the mixture. To my great sur prise the cork and part of the contents were violently ejected, and the remaining portion developed great heat. Every one is familiar with the danger of mixing lycerine and nitric acid; I have not, however, see any mention of a combination of it and permanganate of potash. I observed the mixture became brown, losing its purple color like a deoxidized solution of the salt; and as no effervescence took place, it is probable that the glycerine combined with the oxygen liberated by decomposition of the salt, and that, further, it pos esses by sowe affinity of its own the power of produc ing rapid decomposition of the permanganate. Per haps some chemist will kindly explain.

Tempering Tools.

The following is said to be the Swiss method of hard ening cast steel for cutting tools. Mix in a suitable vessel four parts of pulverized resin and two parts o train oil. Stir well in this one part hot tallow. Into this mixture the article to be hardened is plunged at a ow red heat and held there until thoroughly cooled Without cleaning off, the piece is again put into the fire and suitably tempered in the ordinary way. An examination of steel thus hardened indicates that the hardening is deeper and more uniformly distributed than is commonly the case, and that the steel is les brittle. Articles thus hardened have excellent and durable cutting qualities.--Stone.

The Lick Observatory-A Change in the Staff. James E. Keeler, who has been associated as an as ronomer with the Lick Observatory ever since tha institution was opened, will now have charge of the astronomical work at the Allegheny Observatory where Professor Langley was stationed before his re moval to Washington. He served at Allegheny unde Professor Langley some years ago, and ascended Mount Whitney with that distinguished scientist in 1881. He has made spectroscopic work his specialty Mr. Campbell, of the University of Michigan, will fulfil part of the duties performed by Mr. Keeler at the Lick Observatory.

Condensed Information Concerning Son

KEROSENE EMULSION.

This insecticide acts by contact and is applicable to all non-masticating insects (sucking insects, such as the true bugs and especially plant lice and scale insects and also to many of the mandibulate insects when tha use of arsenites is not advisable. Kerosene emulsion may be made by means of various emulsifying agents, but the most satisfactory substances and those most vailable to the average farmer and fruit grower are wilk and soapsuds. In each of these cases the amount of ewulsifying agent should be one-half the quantity of kerosene.
One of the most satisfactory formulas is as follows

Kerosene.
 Per cent. als. $\quad 67$.
 Common soap or whale oil soap

$1 / 2 \mathrm{lb}$. $\} 33$
Heat the solution of soap and add it boiling hot to the kerosene. Churn the mixture by means of a force pump and spray nozzle for 5 or 10 minutes. The emulsion, if perfect, forms a crean which thickens upon cooling and should adhere without oiliness to the surface of glass. For use against scale insects dilute one part of the emulsion with nine parts of water. For mostother insects dilute one part of the emulsion with fifteen parts of water. For soft insect like plant lice the dilution may be carried to from 20 to 25 parts of water.
The milk emulsion is produced by the same methods as the above.
These insecticides act by contact, and also, in the case of scale insects, by forming an impervious coating which effectually smothers the insects treated. These resin washes vary in efficacy according to the insect treated. Experience has shown that the best formula for the red scale (Aonidia aurantii Maskell) and its yellow variety (A. citrinus Coquillett) is as follows:

Resin ...
Caustic s
Fish oil..
Water to make.

The necessary ingredients are placed in a kettle and a sufficient quantity of cold water added to cover thew; they are then boiled until dissolved, being occasionally stirred in the meantime, and after the materials are dissolved the boiling should be continued for about an hour, and a considerable degree of heat should be employed, so as to keep the preparation in a brisk state of ebullition, cold water being added in small quantities whenever there are indications of the preparation boiling over. Too much cold water, however, should not be added at one time, or the boiling process will be arrested and thereby delayed, but by a little practice the operator will learn how much water to add so as to keep the preparation boiling actively. Stirring the preparation is quite unnecessary during this stage of the work. When boiled sufficiently it will assimilate perfectly with water, and should then be diluted with the proper quantity of cold water, adding it slowly at first and stirring occasionally during the process. The undiluted preparation is pale yellowish in color, but by the addition of water it be the trees it should be strained through a fine wire sieve, or through a piece of Swiss muslin, and this is usually accomplished when pouring the liquid into the spraying tank, by means of a strainer placed over the opening through which the preparation is introduced into the tank.
The preparing of this compound will be greatly ac celerated if the resin and caustic soda are first pulver ized before being placed in the boiler, but this is quite a difficult task to perform. Both of these substances are put up in large cakes for the wholesale trade, the resin being in wooden barrels, each barrel containing a single cake weighing about 375 pounds, while the caustic soda is put up in iron drums containing a single cake each, weighing about 800 pounds. The soda is the most difficult to dissolve, but this could doubtless be obviated by first dissolving it in cold water and then using the solution as required. This insecticide may be applied at any time during the growing season.
A stronger wash is required for the San Jose scale (Aspidiotus perniciosus Comstock), and the following formula gives the best results :

Place all the ingredients in a kettle and cover wit water to a depth of 4 or 5 incses, boil briskly for about 2 hours or until the compound can be perfectly dis solved with water. When this stage is reached, the kettle should be filled up with water, care being taken not to chill the wash by adding large quantities of cold water at once. It may be thus diluted to about 40 gal lons, the additional water being added from time to time as it is used.

This preparation should only be applied during win ter or during the dormant period. Applied in the grow ing season, it will cause the loss of foliage and fruit.

In the application of both these washes a very fine spray is not essential, as the object is not simply to wet the tree, but to thoroughly coat it over with the compound, and this can be best accomplished by the use of a rather coarse spray, which can be thrown upon the tree with considerable force.

FOR SUBTERRANEAN INSECTS.
Recent experiments have shown the practical value of the resin compounds against the grape phylloxera, and they will also be applicable to the apple root louse and other underground insects. The cheapest and at the same time one of the most satisfactory compounds experimented with is the following:

Canstic soda (77 per cent).
 Resin......... Water to make .5 lb .40 .50 gals.

Dissolve the soda over fire with 4 gallons of water add the resin, and after it is dissolved and while boil ing add water, slowly, to make 50 gallons of compound. For use dilute to 500 gallons. Excavate basins about the vines 6 inches deep and about 2 feet in diameter, and apply to each vine 5 gallons. The re sults will be more satisfactory if the treatment is made early in the spring, so that the rain of the season will assist in disseminating the wash about the roots.
The kerosene emulsion made according to the formula given above is also applicable to certain underground insects in cases where it will not prove too expensive, as, for instance, the grape phylloxera or where white grubs are infesting a valuable lawn. It may then be used in the proportion of 1 part of the emulsion to 15 gallons of water, applied liberally to the soil, and afterward washed down at frequent interval with large quantities of water for several days. This can be done only where there is plenty of water at
hand, but will be found of great value in special hand, but will be found of great value in special

In other cases bisulph de of carbon may be used for specific and local underground forms. Nests of ants, for instance, may be destroyed by pouring an ounce of this substance into several holes, covering them with a wet blanket for ten minutes and afterward exploding the vapor at the wouth of the holes with a torch. Against onion, cabbage, and radish maggots this sub stance may also be used, by punching a hole with sharp stick at the base of the plant and pouring in a teaspoonful of the liquid, covering afterward with earth.
THE ARSENITES-LONDON PURPLE, PARIS GREEN, AND WHITE ARSENIC.
These poisons are of the greatest service agains all mandibulate insects, as larva and beetles, and they furnish the most satisfactory means of control ling most leaf feeders, and the best wholesale remedy against the codling moth. Caution must be used in applying them on account of the liability of burning or scalding the foliage.
The poisons should be thoroughly mixed with wate at the rate of from 1 pound to $100-250$ gallons water and applied with a force pump or hand spray nozzle In preparing the wash it will be best to first mix the poison with a small quantity of water, making a thick batter, and then dilute the latter and add to the re servoir or spray tank, mixing the whole thoroughly When freshly mixed, either London purple or Paris green may be applied to apple, plum, and other fruit trees, except the peach, at the rate of 1 pound to 150 -200 gallons, the latter amount being recommended for the plum, which is somewhat more susceptible to scalding than the apple. White arsenic does little if any injury at the rate of 1 pound to 50 gallons of water. As shown by Mr. Gillette, however, when allowed to remain for some time (two weeks or more) in water, the white arsenic acts with wonderful energy, scalding when used at the rate of 1 pound to 100 gallons from 10 to 90 per cent of the foliage. The action of the other arsenites remains practically the same, with, perhaps a slight increase in the case of London purple.
With the peach these poisons, when applied alone ven at the rate of 1 pound to 300 or more gallons of water, are injurious
By the addition of a little lime to the mixture, Lor don purple and Paris green may be safely applied, at the rate of 1 pound to 125 to 150 gallons of water, to the peach or the tenderest foliage, or in much greater strength to strong foliage, such as that of the apple or most shade trees.
Whenever, therefore, the application is made to tender foliage or when the treating with a strong mixture is desirable, lime water, milky, but not heavy enough gallons to 100 gallons of the poison
gall
gallons to 100 gallons of the poison.
Prive arsenic, however, should nev
Puye arsenic, however, should never be used with We, as the latter greatly increases its action
With the apple, in spraying for the codling moth, at least two applications should be made-the first on the falling of the blossoms, the apples being about the size of peas, and the second a week or ten days later but the poison should never be applied after the fruit turns down on the stem, on account of the danger of the stem cavity.

For the plum curculio on the plum, cherry, peach, tc., two or three applications should be made during the latter part of May and the first half of June; in the case of most leaf feedurs, spray on the first indication of their presence

CAUTION NECESSARY IN THE USE OF THESE

 INSECTICIDESThe relative susceptibility of apple, plum, and peach has just been indicated under the head of arsenical poisons, and these remarks apply equally well to the uss of the kerosene emulsions. In the case of othe plants thorough experiments are still necessary, and all insecticides should be first used in comparatively high dilution. In general, it may be said that tender young foliage is more susceptible and must be care fully treated. Thin-leaved pilose plants are more readily injured, while thick-leaved, glabrous specie are least affected. Annual plants, such as cabbages and other garden vegetables, are more susceptible than perennials, but in the case of root crops, such as beets, turnips, radishes and potatoes, there is not the same need of caution as to damage to foliage. Damage to foliage is not shown at once, and in case of rain fol lowing an application, another application should not be made for several days. Fruit trees should no be sprayed with arsenical poison before the blossom fall, on account of the danger of poisoning honey bees -Ciıcular U. S. Depart. Agriculture.

> A Red Polish.
> Oil of turpentine Alkanet
Beeswax 16 oz.
4 dra 4 drach
4 oz .

Digest the alkanet in the oil until sufficiently colored; then scrape the beeswax fine and form a homogeneous mixture by digestion over a water bath For a pale polish omit the alkanet.

A White Polish.

White wax..

 1 lb .Solution of potash...............
Polish for Fine Carved Wood.-Take 8 oz. of linseed il, 8 oz . of old ale, the white of an egg, 1 oz . of spirit 1 oz . of spirits of salt. To be well shaken before using A little is to be applied to the face of a soft linen pad and lightly rubbed for a minute or two over the article to be restored, which must afterward be polished off with an old silk handkerchief. This will keep any length of time, if well corked.

For Delicate Cabinet and Papier Mache Work.
Linseed oil..
Spirit....
Vinegar............
Oll of turpentine.
Shake well before using, and apply with a woolen rukber.

$$
\begin{aligned}
& \text { Tincture of alkane }
\end{aligned}
$$

Mix.

A cotton rubber is saturated with this polish, which is thus applied to the wood. The latter is then wel rubbed with soft, dry cotton rags and wiped dry.Meyer Bros.' Druggist.

How Granite Columns are Turned.

Granite for columns, balusters, round posts, and urns is now worked chiefly in lathes, which, for the heaviest work, are made large enough to handle blocks 25 fee long and 5 feet in diameter. Instead of being turned to the desired size by sharp cutting instruments, as in ordinary machines for turning wood and metal granite is turned or ground away by the wedge-like action of rather thick steel disks, rotated by the pres sure of the stone as it slowly turns in the lathe. The disks, which are six or eight inches in dianeter, ar set at quite an angle to the stone, and move with an automatic carriage along the lathe bed. Large lathes have four disks, two on each side, and a column may be educed some two inches in diameter the whole lengt of the stone by one lateral movement of the carriage along the bed. The first lathe for turning granite cut only cylindrical or conical columns, but an improved form is so made that templets or patterns may be inserted to guide the carriages, and columns having any desired swell may be as readily turned. For fine grinding and polishing the granite is transferred to a nother lathe, where the only wachinery used is to produce a simple turning or revolution of the stone against iron blocks carrying the necessary grinding or polishing materials.
Blocks are prepared for lathe work by being roughed out with a point, and by having holes chiseled in their squared ends for the reception of the lathe dog and centers. This principle of cutting granite by means of disks revolved by contact with the stone has been also applied to the dressing of plain surfaces, the stone worked upon being mounted upon a traveling carriage and made to pass under a series of disks mounted in a stationary upright frame.-Census Report.

AN IMPROVED FEED RACK, BARN, ETC.

The illustration represents an improved construction of feed racks and sheds, applicable also in connection with a barn, in which a self-regulating feed receiver operates in conjunction with a protected feed-saving manger, with a regulating slide in the rack, the shed affording an economical and efficient protection for the stock against storms. This improvement has been paented by Mr. Sawuel H. Warren, of Keosauqua, Iowa. The rack has a self-regulating eed receiver in its upper part, by which the feed is conveyed to the manger beneath, the receiver working automatically, while facilities are afforded for the self-regulating and keeping back of feed as desired.
without the feed receiver. It is designed to be set up around a stack or rick of hay, and can be readily secured in position, without much regard to the condi tion of the ground. A large sheep feed rack, intended to be combined with the model shed, is designed to hold a large supply of hay where the feed can be re served for ewergencies, the rack holding enough, if de sired, to last for several weeks. All these rackz, except the pen rack, are designed to be self-regulating, and

Warren's feed rack, cattle shed, and stock barn
their construction imple and ines pensive.

Copper Sulphat as a Fungicide. "The various compounds o copper offer effi cient protection to many cultivat ed crops agains the exceedingly destructive rav ages of fungous parasites. With out treatment these rots, rusts mildews, and blights frequently destroy a large proportion of, o even the entire products of fields and fruit planta tions. The appl
The lower girts, guards and supports of the feed cations, in the shape of watery sprays, are made so rack are fastened by bolts to vertical supports, upper girts and braces being also secured thereto, while slats nailed to the upper and lower girts constitute the feed receiver. The rack is made smaller at the top than at the bottom, permitting the feed to spread and become some what loosened, so as to be more easily drawn out. Retaining stakes are secured at their tops at the upper portion of the manger, and extend obliquely down ward toward the center of the rack below the receiver the stakes keeping the material back from the manger while permitting the animal to draw the hay out, and the hay accumulating in the bottom of the manger is thus protected from being trampled upon by the cattle Horizontal slides are kept in place by cleats nailed to the top of the manger, and by guards. In the rack and shed combined the roof of the shed is centrally supported by the vertical posts of the rack, the slats of which run up to the roof of the shed, while the walls of the shed extend sufficiently beyond the rack to protect cattle feeding thereat, afford room for cleaning and bedding, and also a convenient driveway.
With such a shed and feed rack, it is designed that sufficient feed will always be kept in place to last for several days, without wasting, preventing the necessity of having to look after the stock during the preva lence of storms. With such a construction adapted to a barn, as shown, the capacity of the barn is greatly increased, in the matter of sheltering and caring for stock as well as for the storage of feed. The cattle can also be cared for with great facility, instead of, a

DOOR LOCK.
is often the case, it being more trouble to get the hay to them than it was to get the hay into the barn in the first place. The feed rack and manger for horse is a modification of the cattle rack, intended to prevent waste of the hay, and a double portable rack of this kind is designed to be well adapted for the out door feeding of horses and colts, either combined with the model shed or independently thereof. A portable pen rack is made in sections like the barn rack, but
cations, in the shape of watery sprays, are made so readily, and with so little expense in money and
labor, that every one interested should at once under labor, that every one interested should at once under
take the work. The practical results already attained constitute the greatest advance made in recent time in the application of science to horticulture. A lit tle well directed effort may be confidently expected to return a hundred or a thousand times its cost Still there is need for much vigilance and careful attention to every detail. Mistakes may be made even then, and sometimes failures may occur, for which existing knowledge may offer no explanation. But we should persevere, gain all possible information upon he subject, and watch well the effects in every test. In his way, every one may hope to conquer, practically, these insidious and, heretofore, invincible foes." Such are the conclusions after numerous experiments made by Dr. Burrill, of the Illinois Agricultural Station.

A LOCK WITH KEY HELD PENDENT.

A lock in which the key is held so that it cannot fall out when the door is slammed, while preventing also the introduction of a skeleton key, is shown in the 2 e companying illustration. Furthermore, when the doo s opened against the wall it does not injure the plaster It has been patented by Mrs. Virginia M. Hollyday Baltimore, Md. The case, bolt, and tumbler of the lock are of the usual construction, except that the case has an external chamber around the keyhole, as shown in Fig. 1. On the inner side of this chamber, as shown in Fig. 2, is a key clamp composed of two spring jaws which press toward each other upon opposite sides of the keyhole. These jaws slide in guides on the case and are placed far enough from the plane of rotation of the key bit so as not to be in the way of the bit in revolving to throw or withdraw the bolt. The key hole is also continued through the bottom of the case, to permit the key to be swung down into a vertically pendent position, Fig. 3 showing how the shank of the key is then held by the spring jaws. After the bolt is thrown, the key is turned so that its bit is in a horizontal plane, when it is partly pulled out and swung down, the clamping jaws then closing behind ts shank, and the keyhole being obstructed so that another key cannot be introduced.

Gas Properties not Injured by Electricity.
In a circular recently issued to the shareholders of the Standard Gas Light Company, of this city, we find it stated that President Andrews, at the last annual meeting asserted, that statistics proved that the growth of gas consumption in New York City, for forty years prior to the introduction of electricity for lighting purposes, averaged about ten per cent per annum. That is, the gas output doubled every ten years, and that the city had doubled in population every seventeen years. Since the first introduction of the electric light, however, the increase in New York of the consumption of gas has been much more rapid. It almost immediately jumped up to twelve per cent per annum, and in 1887 showed a growth equal to about fourteen per cent per annum, a ratio of growth that was still further exceeded in the years 1888-89-90. In fact, he was willing to stand by the statement that the gas
period of six and one-half years, instead of ten years as before. He thought one reason for this very rapid increase was due to the fact that the electric light had educated the human eye "in the aggregate" for a de mand for more light, and that people are not at al satisfied with the volume of light that formerly satisfied them. Again, a more luxurious mode of living is constantly prevailing in the city, as in all great cities, which is shown in the great increase in the use of gas or cooking and heating purposes. In conclusion President Andrews thought it was safe to say that at no time in the history of the gas industry, from its be ginning in this country some sixty odd years ago to the present time, has the outlook been more promis ing. Indeed, at no time has it been so inviting for the investment of capital as at present, and it may be stated as a settled fact that the electric light, at least stated as a settled fact that the electric light, at least
in New York City, is not at all a competitor with gas to the injury of the latter.-Ihe American Gas Ligh Journal.

AN EXTENSIBLE BARREL TRUCR

The illustration represents an extension frame and combination platform truck, especially adapted to move heavy goods, and barrels of liquid which may be pen or covered, there being no danger of spilling the contents of open barrels. The frame of this truck is adjustable, the axle being made in sections that inter ock by means of a bolt and nut arrangement, whereby the wheel base may be widened to accommodate bar rels of different size. A swiveled caster wheel is used in front, the frame being hung just high enough to lear thresholds and similar obstructions. This truck is made with a strong oak platform that can be readily removed when desired, there being on the bottom of the platform a strong iron button which clutches into the V-shaped frame of the truck, holding the platform securely in position. To remove the platform, it is raised by the rear end and pulled backward, being thus detached from the frame, the truck then being

Clari's barrel trock.
better suited for some forms of factory and store use. These trucks are manufactured in various sizes, with ron and with rubber-tired wheels, by George P. Clark, Windsor Locks, Conn.

Steel Pipes.

The Steel Pipe Company, of Kirkaldy, have done omething toward showing the advantages possessed by steel over wrought iron pipes. It is stated by Mr. D. J. Russell Duncan, Assoc. M. Inst. C. E., that wrought iron or steel pipes can be produced at a less cost per unit of length than cast iron pipes. A pipe built of steel can be made at a less cost of labor than one of wrought iron, on account of the reduction in the number of plates and rivets, and, therefore, of calking and punching. Being less liable to corrosion than pipes of wrought or cast iron, the durability of steel is insured. It is stated by one authority that the best precaution is to have the pipes galvanized, then coated with natural asphaltum or with a composition of pitch, tar, petroleum, linseed oil, and chalk. This solution is heated in a bath to a temperature of 250°, and the pipes immersed till they acquire the sametemperature as the composition. The pipes should also be coated as they are laid in the trench. As regards strength, the steel pipe is much superior to glazed stoneware or cast iron, or about three and a half times stronger than the latter. Mr. Duncan says: "As steel is on an average $1 \cdot 3$ times stronger than wrought iron, it is clear that for pipes of equal strength of plate, and allowing that the riveted or welded seams are of equal strength on both, the thickness of mild steel need only be about 0.77 of the thickness of wrought iron." This economy of material can be effected by using open hearth mill steel of the highest possible tensile strength.

IMPROVED WIMSHURST STATIC ELECTRICAL MACHINE.
The former construction of the Wimshurst machine is shown by working drawings in Scientific Ameri Can Supplement, No. 548. The present is a simple itis described by Engineering as follows:
It is described by Engineering as follows
Among the various machines which have been constructed for the generation of statical or so-called frictional electricity, none can be compared with that of Mr. James Wimshurst, of the consultative staff of the Board of Trade, London, either for simplicity, reliability, or efficiency. These merits of the Winshurst influence machine are known to a very wide circle of electricians and physicists; consequently the news that the inventor has brought out another, having very curious and unlooked for qualities, will be received with interest and expectation in many laboratories, schools, and homes, and will secure for it an attentive reception, which its. remarkable features fully justify. The new apparatus was lately exhibited for the first time before the Physical Society.
A remarkable feature of the new machine is that while it gives an abundance of sparks, it is impossible to charge a Leyden jar, or similar contrivance, from it. After the electricity has been apparently flowing for minutes into the jar in rapid sparks, the latter is found to be free from all charge. Neither spark nor shock
able distance under the small stresses brought to bear upon them. They consequently take up a mean position between the extreme ends of the range, and show the alternate attractions and repulsions to which they are subject, by a quick fluttering or tremor. It is abundantly evident that they are subject to varying stresses, which the retarding effect of the atmosphere will not allow them to completely obey.
The appearance of the machine is clearly shown in the engraving. A central spindle carries a glass disk 16 in . in diameter. This is varnished, and has affixed to it a number of sectors of tinfoil. The sectors measure 4 in . radially, while in breadth they may vary from $1 / 4 \mathrm{in}$. to $51 / 2 \mathrm{in}$. Usually the sectors on one side of the disk are arranged to break joint with those on the other side, but this is not essential. Indeed, in nany respects the construction of the machine is very elastic, and many modifications are introduced. For instance, the number of tinfoil sectors may vary from 2 to 16 or more, on each side, and as we have said, their relative positions on the two surfaces of the disks are not important. The disk itself is mounted in the center of and in the same plane as a wooden frame 20 in. square. This frame carries four inductors of the shape shown in the detached view; they are $93 / 4$ in square, with one corner cut away to admit the spin dle and boss of the disk. Two of the inductors
drawn and be replaced by another in a few moments. The inductors lie on pegs on the square frame, and are held by light steel clips; provision is made by a number of holes in the frame for the use of inductors of different sizes. To couple one inductor to another if such an arrangement should be desired, holes are bored in the wooden disks carrying the brush holders, and into these holders the ends of wires can be inserted the wires being bent in such a way to join any pair of inductors. The parts of the machine are beautifully finished, and all the ends are attained by the simplest devices. The method of action of this instrument is not very easy to follow, and indeed no theory has yet been put forward in explanation of the results which flow from it.

Curious Electrical Phenomenon.

Some remarkable electrical phenomena accompanying the production upon a large scale of solid carbon dioxide are described, says Nature, by Dr. Haussknecht, of Berlin, in the current number of the Berichte of the German Chemical Society. In order to obtain large quantities of solid carbonic acid, it is found most con venient in practice to allow the liquid stored in the usual form of iron cylinder to escape into a stout can vas bag. The liquid issues at pressures varying from 60 to 80 atmospheres, and a compact snow-like mass of

THE WIMSHURST ALTERNATING INFLUENCE MACHINE.
can be obtained from it, and delicate tests fail to reveal the presence of electricity in it. It is as if one had been pumping water into a bucket with no bottom; the stream is plainly to be seen, but nothing accumulates. It is, however, easy to demonstrate the integrity of the jar, and its capacity to hold a charge when filled from an ordinary machine. The conclusion is therefore forced upon us that the current of sparks is really the oscillation of a small charge, which flows backward and forward with great rapidity between the machine and the jar. The electricity that is developed is alternately positive and negative, and the normal condition of the jar is not upset.
If we investigate the action of the machine more minutely by the aid of an electroscope of an exceedingly delicate construction, we find confirmation of the hypothesis that positive and negative electricity is produced alternately. Commencing to turn the disk exceedingly slowly, say at the rate of three or four revolutions per minute, the leaves of the electroscope suddenly diverge, being repelled from each other. They remain apart quite steadily until the disk has made rather more than three-quarters of a revolution when they suddenly approach and cling together, showing that the sign of their charge has changed. They remain thus for an instant, and during another three-quarters of a revolution they again separate, and so on. But if the disk be turned rapidly the leaves are no longer able to respond in this way to the changes of charge. Such light appliances, with their large surfaces exposed to the air, are incapable of rapidly approaching and receding through a consider-
mounted on each side of the frame, at opposite diagonal corners; those at the side of the machine nearest the spectator are, say, at the upper left hand and the lower right hand corners. At the opposite side the in ductors are at the upper right hand and the lower left hand corners. Upon each inductor plate is a tinfoi patch of the shape shown, measuring 4 in . radially and in. circumferentially. Other inductors are provided having upon them the smallest tinfoil patch practi cable. Cemented over each patch is a wooden disk which on its face carries a bearing in which there rides a bent brass rod, having a plume of fine wires at its end, touching the glass disks at a point 90 deg . remote rom the inductor, and opposite one of the inductors at the other side of the plate. The disk is thu touched on both sides in two places. It is driven by a cord from a small handwheel below, and revolves in the direction of the hands of a clock. To further vary the capabilities of the machine a bar of insulating ma erial is made to carry two metal wire plumes at it ends, these having metallic connection with two ter minals; this device takes the place of two of the in ductors and by its use a constant flow of electricity may be maintained.
The machine which we illustrate has been construct ed with the view of being most readily used for the purpose of demonstration and experiment. It is pro vided with several disks, having different arrange ments of sectors, and all the parts are made inter changeable. By withdrawing the rear bearing the nut on the spindle can be screwed off at, once, when half the boss comes away and the disk can be with
solid carbon dioxide is formed in the canvas receiver. When the experiment is performed in the dark, the canvas receiver is seen to be illuminated within by a pale greenish violet light, and Dr. Haussknecht, states that electric sparks 10 to 20 cm . long dart out from the pores of the cloth. Dr. Haussknecht further states that the phenomenon is very noticeable in the dark, whenever there is a leakage in any portion of the compressing apparatus or the manometers connected therewith. The reason assigned for this development of statical electricity is similar in principle to that usually accepted in explanation of the hydro-electric machine of Sir William Armstrong. As the liquid carbonic acid is issuing from the valve, it becomes partly converted into gas, which is violently forced through every pore of the canvas. Moreover, carried along with this stream of gas are great quantities of minute globules of liquid, which are brought in forcible contact with the solid particles already deposited. Dr. Haussknecht, therefore, considers that the electrical excitation is due mainly to the violent friction between these liquid globules and the solid snow. It is very essential for the successful reproduction of these electrical phenomena that the carbon dioxide should be absolutely free from admixed air ; that prepared artificially yielding much finer results than that obtained from natural waters, which latter contains considerable quantities of air. The luminosity is not generally developed in the interior of the receiver until a crust of solid carbonic acid 0.5 to 1 cm . thick has been deposited, which renders the probability of the correctness of the above theory all the greater.

© 0 rrespondence.

To Fish Broken Screw Shafts.

To the Editor of the Scientific American:
Observing an article in your issue of the 6th inst., "Mending a Big Shaft at Sea," in which mention is made of the Thompson coupler as a means of fishing broken screw shafts. I wish to say that this coupler was devised by me in April, 1881, and a sketch of it published in the Mechanical Engineer of that date. The ${ }_{i}$ article is too long to quote here, but reference thereto will show you that it is the same thing which Mr. Thompson, an English engineer, invented some years later. It is now carried on most English ships.

New York, June, 1891.

To the Editor of the Scientific American:
In your paper of the 6th instant, under the head of "Great Tower of the City Hall, Philadelphia, Total Height 547 Feet," you say, "The total height, when completed, will be 547 feet $21 / 2$ inches, and will only be surpassed in this respect by the Eiffel Tower and the Washington Monument, which surpasses it by less than three feet." The last part of this statement is not correct, as the Washington Monument is 555 feet high, and, therefore, it is 7 feet $91 / 2$ inches higher than the tower of the City Hall at Philadelphia.
I take great pleasure in reading your paper, and I am always glad when Friday comes, so that I can receive my paper. Yours respectfully,
H. H. Miller.

1625 Thirty-second St., Washington, D. C., June 5, 1891.

The Wonderful Redwood Forests of the Pacific Coast.

To the Editor of the Scientific American
About two years ago I made a visit to the Pacific coast, and being engaged in the manufacture of saws, I took a steamer for Humboldt Bay and stopped at Columbia City, this being the headquarters of the redwood kings. Major Vance, being an old customer of mine, invited me to mount his donkey engine and ride some 8 or 10 miles and see the redwood forest and their manner of cutting and getting the logs to their mills. Upon our arrival at the terminus of the road we clambered down through the roughness of the unbroken ground to the very edge of the vast mammoths of the Pacific. Said I, "How large is this forest?" "Well," said my friend, "it is about eighty miles through it to Oregon, and it is over one hundred miles in length, and will average over 200,000 feet of lumber in length, and will average over 200,000 feet of lumber
to the acre." I will not stop to figure this up, but will to the acre." I will not stop to figure this up, but will
let the reader make an estimate of the number of feet of timber it contains.
But this is not the only redwood forest on the Pacific coast by any means.
The underbrush is so thick and dense that few living things ever venture among the redwoods. No grizzly bears inhabit these forests. Near the ground about every redwood is shaken and slit, so they chisel into the tree up say 6 to 8 feet high and wedge in a piece of small joist and build a staging, then clamber up, and with narrow, long crosscut saws saw them down
in winter: then, when the sap runs in spring, go in and peel off the thick bark, some of it nearly two feet thick, and trim or cut the thick bushes, and in the dry season set fire and burn up what they can. Then it is in shape to run a railroad track in and get the timber.
At the terminus of Mr. Vance's road there were two or three donkey engines at work, one 8 ox team (four yoke of oxen), another team of six large mules, all with blocks and falls, getting a log 16 feet long and about 10 feet through on to a car for the saw mill. I was told that this one log would weigh about 18 tons Just on a sloping piece of ground were shattered red wood strips, and some teams and a gang of men get ting out the shattered pieces and roots, some with hlocks and falls, and piling them up and trying to burn them off, and this was a slow job, as redwood is very difficult to burn. I said, "Mr. Vance, what in the world are you trying to do here?"
Said he, "Well, I have been trying to experiment in raising French prunes on a small patch, and I suc ceeded very well, so I am clearing off a 100 acre plot and have ordered 200,000 dozen plants from France and am going to try that first.'
"But this experiment will cost you some money,"
aid I. said I.
" Oh, not more than $\$ 200,000, ’$ said my friend.
I afterward learned that my friend was worth over $\$ 3,000,000$, all made out of redwood timber.
J. E. Emerson.

Beaver Falls, Pa., June, 1891.
The only proper way to keep a gun barrel in good order is to wash it out with boiling hot water, dry with linen swabs and oil with vaseline or cylinder oil, every time that it is used. It should never be laid aside
unattended to for a day or two after ficing. unattended to for a day or two after ficing.

an improved car coupling.

The illustration represents a coupling device designed to hold the link in extended position, or hold the pin elevated, as desired, for coupling with an approaching car, the coupling being automatically effected as the cars come together. Fig. 1 is a perspective view showing the application of the device, Fig. 2 showing a section through the drawhead, and Fig. 3 representing the coupling pin detached. Near the flaring edge of the lower wall of the drawhead is a cup-shaped depression forming a seat for the arrest of a steel ball which rests and rolls in a longitudinal channel extending back from the seat, the ball not leaving the drawhead. Near the front end of the drawhead is a vertical oval passage adapted to loosely receive the coupling pin, sliding in a guide box, an arm or limb projecting from one side of the pin through a slot in the guide box. The coupling pin lifter has a rectangular loop adapted to engage this arm of the pin, a hub at the other end of the pin lifter being adjustably secured on a transverse shaft journaled on the end of the car, the shaft having hand levers adapted to be operated from either side of the car. When the coupling pin is fully elevated, it may be locked in such position, if desired, by a latching engagement of a dog with the hand lever, as shown in dotted lines, but if the lever is released after being raised, the coupling pin then rests on the ball. which rolls by gravity into the cup-shaped depression. By the entrance of a link, when the parts are in this position, the ball is pushed backward and the pin drops, thus effecting the coupling. Fig. 2 represents the manner in which the parts are arranged to support a link in horizontal position for automatic coupling with an approaching is pivoted a latch, which may be used independently

stewart's car coupling.
of the pin lifter if desired to hold the pin in elevated position until it is designedly released, and to prevent the lifting of the coupling pin above the surface of the guide box, a keeper plate is pivoted at the top of the slot.
Thi
This car coupling has been patented by Mr. Elmore
Stewart, of No. 601 Milton Avenue, San Diego, Cal.

How Insulators are Made.
A writerin the recent issue of the Tradesman gives the following description of the manufacture of insulators as carried on by one of the factories in the South
Steatite is the material out of which is made a long ist of goods used by almost all classes of people, and which have become almost indispensable.
Seward's patent lava electric insulators are so well known to all electricians of the world, and their supe rior excellence so universally acknowledged, that al persons, whether electricians or not, will be interested n knowing something of the process of manufacture. The crude material, as it is received from the mine, is as uninteresting as any other pile of rocks, which it seems to be, and to the uninitiated it would seem to be a hard task to produce anything from it which would be of any use to any one. The first process is that of reducing the rock to powder, which is done by passing it through an ordinary stamp mill, such as is used for reducing gold and silver ores; it is then carried by chain conveyor to the mills proper, where it is ground to an impalpable powder, then conveyed by inest sill bo bolts, where it pasited in large bin or settling chests, whence it falls to the lower floor again, and is thence taken to the mixing tubs, which revolve, and stir the mass of material with chemicals in combination until it resembles dough for bread. It is then passed to the rolls, where it is repeatedly pressed, the same as if for crackers. The next machine is a peculiar double-acting press, used for forming the
charges for the hydraulic press. The latter machine is the only one of its kind ever built, and is the subject of several patents. Its capacity is something wonder-
ful; it can make 200,000 slate pencils or 1,000 gross dustless school crayons in a single day's run. It makes the pressed blanks from which the lava insulators are made in any diameter required by simply changing the die. Tubes for insulators are also made on this machine, and are meeting with great success for interior or underground work, as they are not only absolutely fireproof, but they cannot be damaged by rats, as the insulation on the ordinary wire, and when once placed in position they are almost everlasting.

The Origin of Meteorites.

In former times it was thought that meteorites were of terrestrial origin, thrown out by volcanoes, or condensed vapors, or else that they hailed from the moon.

These suppositions do not hold good when we consider the enormous initial velocity, the great number, direction and periodical recurrences of these phenomena. For the same reasons, is it impossible that they should be fragments of a destroyed satellite-a second moon-supposed to have revolved around our planet in past ages, or yet that they are diminutive, independent planets of our solar system.
The hypothesis that they are identical with shooting stars and comets is the one accepted almost universally by scientific men.

Most important discoveries tending to prove this assumption were made by Schiaparelli, showing that shooting stars, as well as meteorites, are solid bodies, which enter the atmosphere of our earth with an immense velocity and become luminous because of the re sistance offered by the air.
It has been calculated that they usually appear at a height of about seventy miles above the earth and dis appear at a height of fifty miles. 'The cause of their disappearance or extinguishing is to be looked for either in their once more leaving our atmosphere, or that they are atomized by the fierce heat generated by their extremely rapid flight and the great resistance offered by the atmosphere. The latter assumption would acby the atmosphere. The latter assumption would ac-
count for the continuous fall of cosmic dust upon the count for the contin
surface of our globe.

The velocity with which they enter and pass through our atmosphere is enormous. It is many times faste than sound, the flight of a cannon ball, and even the planets revolving around the sun.
The earth travels through space at the rate of 19 miles per second. Mercury, the fastest planet, covers 29.87 miles per second, while a meteorite which fell at Pultusk, Russia, had a velocity of $33 \cdot 78$ miles per second Pultusk, Russia, had a velocity of $33 \% 8$ miles per second,
although it had to overcome the resistance of the air In space, consequently, it must have traveled still faster.
To clearly understand the high degree of velocity implied by these figures, it is well to add that the fastest cyclone scarcely reaches 150 feet per second, at which rate it exerts a pressure of about fifty pounds per square foot.
It now remains to explain the assumption that me teorites and shooting stars are identical, and to quote the facts upon which this assumption is based.
We know that buth are solid bodies which enter our atmosphere from without, and that they become lum inous for the same reason. Furthermore, the cosmic iron dust observed in localities where its origin could not be doubted has been found to have the same chemi cal composition as larger pieces of meteoric iron seen to fall by unimpeachable witnesses.
It cannot be denied that there is a very great contrast between the little star that silently glides through space and noisclessly disappears and the terrifying ap pearance of a ball of fire, that, approaching with deaf ening detonations, sends down on us a hail of stones.
Both spectacles, however, are but the extremes of a chain of closely connected phenomena. Considering with what extreme velocity these bodies pass through the atmosphere, it is not difficult to comprehend that particles, and those having the greatest momentum, are destroyed long before they reach the earth, and a such a height that the noise of their passage and disintegration becomes inaudible to us here below.
We find a further confirmation for the belief that both of these phenomena have the same source in the well established fact, proved in many instances, that the direction of the meteorites corresponds to that of shooting stars observed at the same time, and points to a common point of radiation.
The detonations accompanying the fall of a meteorite have three distinct causes: The whizzing is caused by its rapid passage through the air; the crackling, by the combustion of the materials composing it; and the thundering, by columns of air rushing into the vacuum which it leaves behind.-F. C. Von Petersdorf, in Areat Divide.

When the mosque of St. Sophia, in Constantinople, was built, more than one thousand years ago, the stone and brick were laid in mortar mixed with a solution of musk, and the building it is said has been infected with the odor ever since. Probably age has imparted cated.

THE PROPOSED NEW CROTON LAKE DAM AND THE NEW CROTON LAKE. (C'ontinued from first page.)

would be a work of time-rather of weeks or of months than of a few days.
If the Quaker Bridge dam were built, the pres ent Croton dam would be submerged beneath 34 feet of water, and would cease to be an element in the water supply of the city. Mr. A. Fteley, chief engineer of the Croton Aqueduct Commission, recognizing the possibility of failure of the Croton dam, and the requirement of additional storage, proposed the construction of a dam about one mile below the site of the present Croton dam. This structure, owing to the contour of the country and the nature of the subsoil, would be far less expensive than the Quaker Bridge dam. It would retain a much smaller quantity of water, and would but slightly increase the present watershed. But by making its crest correspond in level with the crest of the proposed Quaker Bridge dam, the present watershed would be far more tho roughly utilized, and Mr. Fteley calculated that such a dam would provide for the wants of the city for thirty years to come, and that the saving in cost over the Quaker Bridge dam would, with the associated saving in interest charges, represent enough money to build the larger structure if even then it should be required, thus giving the city two dams instead of one for the same cost.
After much discussion and the rendering of different reports, the compromise structure situated in the vicinity of the Cornell site was determined upon. As a matter of interest the following data may be exam. ined, showing the relations of the abandoned Quaker Bridge project and of the proposed Cornell site dam:
of the rest, giving an aggregate of thirty thousand willions of gallons available for the city.
Tracing the lines of the Croton River and its tribu caries, the two most rewote reservoirs of the old supply are the "Boyd's Corners" and "Middle Branch," respectively. These represent a watershed of $43 \cdot 76$ square wiles. The new dam on the Cornell site will represent a watershed of 332.52 square miles. In area this is $22 \cdots 28$ square miles in excess of the watershed tributary to the present Croton dam. But the advantage due to its greater height in rendering possible a fuller utilization of this great area is the point strongest in the favor o the new dain.
The selection of the Cornell site in preference to the Quaker Bridge site is due to a full examination of the country. An extensive series of drill holes, aggregating 14,005 lineal feet in length, together with test pits and trenches, have been made to determine the location of the country rock. At the Cornell site the rock is 123 feet below the surface, an advantage of nearly 40 feet over the Quaker Bridge site. The side hills from the point of view of imperviousness seem superior to those at Quaker Bridge. The dam may be made partly o earth work, and its construction is recommended on that basis. The watershed is only one and one-half square miles less than at Quaker Bridge.

Concrete Walls and Piers.

Mr. T. Martin says that some substances, such as pozzuolana-a volcanic production found chiefly in Italy-have, in consequence apparently of silicate of alumina being predominant in their composition, the property of giving hydraulic qualities to the rich or non-hydraulic limes. It is of these that the concrete is made which has long been used for marine works on

Should either dam be built, the proposed Muscoot dam must be built also, in order to preserve as far as possible a uniform level in the limits of the town of Crotona.
In this connection it should be noted that the dam proposed by Mr. Fteley, to be constructed about a mile below the present Croton dam, would havecost, if partially made of earthwork, but $\$ 1,750,000$, and would have provided for a storage of 16,000 millions of gallons.
The necessity for the new dam is not only due to the possible insecurity of the present structure. An inumense quantity of water goes to waste over the Croton dam, owing to the area of the watershed tributary to it. During the dry season of 1890 a rain storm occurred after much water had been drawn from the storage basins. Yet the single rain fall was enough to produce a heavy waste, which, at a rate of over 600 millions of gallons per day, flowed over the Croton dam. The same shower produced but little increase in the upper reservoir. In other words, we are really losing the advantage of much of the best portions of
the Croton River watershed. The area lying between the upper storage basins and the Croton dam is very insufficiently utilized.

The present Croton Lake is a long, narrow body of water, suggesting in its appearance a wide river. The Cornell dam will change all this and will create a wide and long lake of great size. The large illustration shows the condition of things at this time contrasted with the features to be established by the creation of the proposed new storage basin. In place of the present Croton Lake, with its capacity of about 2,000 millions of gallons, and of the insignificant stream :rom its overflow, an immense wide sheet of water appears extending far back into the country, submerging Croton dam and part of the line of the old aqueduct and extending a long distance back of the Muscoot dam site. The sectional drawing shows the relative heights and capacities of the elements of the proposed new system. The vertical measurements, it will be understood, are necessarily greatly exaggerated in this cut, its object being to present to the eye the whole situation at a glance. The relative capacities of the present and of the proposed Croton Lake are about as 1 to 15 , as shown on the small cut.

Referring again to the sectional drawing, it will be seen that in place of the limited storage, about two thousand millions of gallons, of the old Croton Lake, an available storage of some twenty-four thousand millions of gallons is provided below Muscoot dam. A large body of water must always remain at the lower levels below the outlets which will be unavailable. The by-pass of Muscoot dam will, in case of necessity, enableits body of impounded water to be made a part
the shores of the Mediterranean, and, indeed, the piers at some of the Italian ports have been constructed almost entirely of hydraulic concrete. The author had lately an opportunity of examining at Genoa the extension of one of the moles of the harbor, the inner side of which has a vertical wall. The latter was in process of being constructed under water entirely of pozzuolana concrete, simply thrown into the sea from baskets carried on men's heads, a boarding confining it to the shape of the wall. In a short period it set quite hard, so as to enable the upper part of the wall, which is of stone, to be built upon it. The outer side of the mole, which had been previously made, was formed by stones deposited "a pierre perdue." Though the depth of the quay wall was not great, this shows the confidence which the Italian engineers have in concrete ap plied under water in a soft state. The piers of the new basin constructed by the Austrian government at Pola in Istria, are also formed, in a similar manner, of con crete confined between rows of timber piling.
But perhaps the most striking application on a large cale of pozzuolana concrete is in the great mole which protects the port of Algiers. To form the mole, blocks of beton of immense size, so as to be immovable by the force of the sea, were employed. Some of these were formed in situ, by pouring the concrete into large timber cases without bottoms, sunk in the sea in the line of the mole. Other blocks of a smaller size, though upward of 30 tons in weight, were made on shore, being moulded in strong wooden boxes. After the beton had set, the boxes were removed, and the blocks were launched into the sea to find their own level. The beton for the blocks in situ was composed of one part of rich lime in paste, two parts of cozzuolana, and four parts of broken stone; that for the blocks made on shore was formed of one part of lime in paste, one part of pozzuolana, one part of sand, and three parts of broken stone. These blocks set sufficiently hard in twenty-four hours to resist the shocks of heavy seas, and the mole now stands firmly, in stead of being, as it was when formed of loose blocks
of stone in the time of the Moors, nearly destroyed every winter.
The French engineers have shown great boldness and skill in the application of beton. as exemplified in the Pont de l'Alma over the Seine, the arches of which, as well as the piers, are formed of rubble concrete, in the new graving dock at Toulon, before alluded to, and in the formation or protection of breakwaters by enor mous artificial blocks of beton, as carried out at Mar-
seilles, Cherbourg, La Ciotat, Cette, Vend res, Cassis and Algiers. A short time ago, when the author in spected the mole or breakwater which incloses the harbor of Marseilles, he found the huge rectangular
which its seaward side is protected on the "pierre perdue" principle, perfectly entire and sharp in thei outline, though they have been exposed for many years to the action of the sea. Any one standing upon that mole, and witnessing in a gale the heavy seas breaking with tremendous force on these concrete masses and recoiling harmlessly, could have no doubt as to the efficiency of concrete as a constructive material.
Hydraulic concrete, to be effective, requires care and attention in its manipulation, and in the regulation of the proper proportions of its materials. Any failures must have arisen from inattention to these or similar points, as there is ample experience to show that, when properly made, every confidence way be placed in its strength and durability. Even where stone is abundant, this material may be often employed with economy and advantage, but where stone cannot be obtained, the importance of being able to form an effective substitute out of materials of so lit tle value, and so widely distributed, can hardly be overrated.

Lime Sulphate.

This substance is one of the most annoying and in jurious of all those held in solution by water used for making steam. Some waters, especially those from limestone districts, contain it in such large quantities that its use in boilers becomes a real source of danger. The peculiarity about this substance is that the colder the water, the more of it will be held in solution, and this is not the case with a great number of substances which are soluble in water, for the higher the tempera ture, the more will be dissolved and held in suspension by the water. Water of ordinary temperature may hold as high as 7 per cent of lime sulphate in solution, but when the temperature of the water is raised to the boiling point, a portion of it is precipitated, leaving about 0.5 of 1 per cent still in solution Then as the temperature of the water is raised, still more of the substance is precipitated, and this continues until a gauge pressure of 41 pounds has been reached, which gives a temperature of about 290 de grees. At this point all the sulphate of lime has been precipitated. Many other scale-forming substances act in a similar manner.
This shows quite plainly that any temperature that can be produced by the use of exhaust steam would not be sufficient to cause the precipitation of all the substances which might be contained in the water. But the highest temperature that can practically be obtained from the use of exhaust steam would be about 250 degrees ; and this is far above the average practice as to obtain this temperature a back pressure of about 14 pounds would be required, so it will be seen that the water still contains a sufficient amount of sulphate of lime and other matter to cause a perceptible amount of scale to form in the boiler. Most of the substances which go to form boiler scale follow a similar law in this respect, so that nearly all of them are precipitated from solution when the temperature reaches that point due the pressure of steam commonly carried, but in some cases even that is not sufficiently high to cause the total precipitation of all such matter, but the con version of water into stean leaves these salts free, and as the water can hold no more in solution, they are precipitated in the form of granules or dust and kep in circulation in the water until they find an eddy and become deposited in some part of the boiler, or as the boiling ceases, the water still retaining its temperature the sediment settles on the top of the tubes and on the boiler plates, frow which place only a portion of it is dislodged when the boiling again takes place. Some f these substances when alone form a hard crystalline cale, while others are deposited as loose matter, and till other substances when they are deposited together combine and form a different kind of scale. As the greater proportion of these scale-forming substances are precipitated when the water is at a very high temperature, it would seem quite natural that they might be removed or prevented from entering the boiler by he use of a live steam heater. This it is asserted is he case where such devices are in use.-G. H. West, in Stationary Engineer.

A novel plan for extinguishing a church debt has been hit upon in Melbourne. The church committee -or vestry, as the case may be-divide the total debt among themselves and each man insures his life for the amount that falls to his share. The policies are trans ferred to the church, and the annual payments on hem are made out of the collections. Then, of course, as the members of committee "drop off," the sums inured on their lives drop in, and later, when the las committeeman is dead, the last installment of the church debt will be paid. The plan has the merit-i merit it be-of throwing the whole of the responsibility for the continuance of the indebtedness upon Providence.

SULPHATE or chloride of zinc dissolved in water is a good disinfectant.

THE ARTESIAN WELL AT SPRINGFIELD, SOUTH DAKOTA.
We give an engraving herewith of this well as it appears in operation. It is 592 feet deep, 8 inches diameter. The pressure of the water is 60 pounds to the square inch. By using the proper nozzles on the pipe it throws a solid stream 8 inches diameter $121 / 2$ feet high, a 6 inch stream 26 feet high, a 4 inch stream 62 feet high, a 2 inch stream 88 feet high. It furnishes power to drive a 60 barrel flour mill, with a large surplus.
Our engraving is from a photograph by Mr. B. W. Burnett, of Tyndall, South Dakota.
A correspondent of the Rural New-Yorker describes another well located near Aberdeen, South Dakota. It has a depth of over 1,000 feet. The pipe is six inches and the pressure about 150 pounds to the square inch. From it the owner expects to irrigate his farm of 800 acres.

800 acres.

The supply of water appears permanent and bounti ful, and if half the expectations of the people be realized, a new era will dawn upon Dakota. Already a number of farms, level and wel located, are watered by means of artesian wells, and give excellent results. Of course all farms can not be irrigated. A farm must be smooth and with a gentle slope, with the water at the highest point in order to give the best results. Still, there are many such tha could be made very productive with abundant water.

Storage Battery Road

The Dubuque, Iowa, Times of a recent issue has an enthusiastic de scription of the new electric rail way system of that city. Storage batteries are used to furnish the cur rent and the Dubuque paper claims that, although single cars have been propelled for a short time by this system in other cities, "the Dubuque Street Railway Company is the first to equip its entire sys tem with this latest and well nigh perfect invention for the cheap and rapid transportation of the peo ple."

Nine cars are already in opera. tion. A section of the floor of each car can be lifted up, disclosing the racks containing the accumulators Each car is supplied with three incandescent lights. The electrical equipınent was furnished by the Electro Dynamic Company, of Philadelphia.
The new system appears to give great satisfaction, and already representatives of other cities have visited Dubuque to inspect it. It has inspired the Times man to give utterance to the following eloquent, description: "There is no tangle of overhead wires to spoil the view. But down the street, swiftly and silently save for the loud ringing of the warning gong, comes a beautiful car, skimming over the rails like a thing of life, yet so perfectly under the control of the "motorneer" that it can be brought to a standstill in half a car length. There is no rocky motion, no jarring. The cars run as smoothly and with ap parently as little friction as a bird flies through th air."

Canadian Pacific Enterprise.

Speaking of the late fast trip of the Canadian Pacific flier across the continent, the Financial Times (London), says: "The Canadian Pacific Railway has been very much in evidence of late. It is at once ubiquitous and irrepressible. Its enterprise breaks out in the most unexpected places, and produces results which startle red-tape people out of their pro priety. Even the Americans have been taken aback by the Canadian Pacific. They do not know what to make of it, or how to regard it. It will not fit into their preconceived ideas of the Canucks as a sleepy short-sighted race, whose destiny is to sink gracefully into the folds of the stripes and stars when they be come ripe for that distinguished honor. Whatever else may get swallowed up in the almighty union, it is not to be the Canadian Pacific Railway. That seem to be well able to take care of itself, and it swallows more of American trade than the Americans like to see guing past them. Its latest feat has, like all the

ARTESIAN WELL AT SPRINGFIELD, SOUTH DAKOTA.
bonding through a wall or transversely, it is much better that many stones should reach two-thirds across alternately from the opposite side, than that there should be a few thorough stones, or stones extending the whole thickness of the wall. Indeed, one of the many faults of stone masons is that of making a wal consist of two scales or thin sides with thorough stones now and then laid across to bind them together, the core being made of mortar and small rubble merely This is a mode of structure that should be carefully guarded against. There is no better test of a work man's tact and judgment in rubble walling than the building of a dry wall, or a wall without mortar affords. Walls are frequently built with mortar that without it would have fallen down under their own weight in a height of six feet, in consequence of thei defective construction, thus rendering it evident that they are only held together by the tenacity of the mor tar, which is very seldom an equivalent for a proper bond of stone. Masons are very apt to set thin broad stones on their narrow edges to show a good face, by which the wall is injured in two ways. It tends to the formation of a mere case on the surface of a wall, and it for the most part exposes the bed of the stone to the atmosphere, as a stone is more likely to be broad in the direction of its bed than acros it.--Builder, Decorator, and Wood worker.

Chloralamide.

Dr. John Gordon, of Aberdeen has resumed his study of recently introduced hypnotics, taking on this occasion chloralamide. His results are communicated to the British Medical Journal. Afte referring to the chemical and phy sical properties of the substance Dr. Gordon gives the results of his experiments with it on blood pres sure and respiration, its action on motor nerves and on muscle sub stance, after which clinical observa tions are mentioned, including the effect of the drug upon the urine pulse, respiration, and digestion In regard to its hypnotic action he says that "with the smaller dose there was no evidence of any sleep inducing power, but when doses o 20 grains and upward were given and the subject placed in favorable surroundings for sleep, the hypno tic influence became evident. As rule, sleep came on in about half an hour after the dose. The sleep in duced was pleasant, tranquil, and easy, awakening was gradual, and without mental confusion, head ache, or depression." Only in on case was excitement observed, and that is to be regarded as exception al. In addition to the direct hyp notic action of the drug, it was fre quently observed that the patien being once put in the way of sleep there followed a series of sleepfu nights. Still more frequently wa it noticed that on the night suc ceeding the administration of th drug, sleep supervened spontane ously. That this did not depend upon deferred action of the drug i shown by the fact that the patient stated that they had no feeling o drowsiness or depression during th
and if the stone be the more durable material, the more of it that enters into the wall, the better. Indeed, in rough walling, if the stones be pressed together until the more prominent angles on their faces come into actual contact, the interstices being occupied by mor tar, it will be better than if a thick yielding mass were allowed to remain between them. Absolute contact, however, should not be permitted any more than in brickwork. lest the shrinking of the mortar in drying lave the stones to such unequal bearing as the promi nent parts alone would afford. Stone being generally of a less absorbent nature than brick, it is not a matter of much importance that it be wetted before setting Nevertheless, adhesion on the part of the mortar is nore certain and more complete if the stones be worked in at least a damp state. Bond is of not less importance in stone walling than in brick laying Instead of carefully making the joints recur one ove the other in alternate courses, as with bricks and gauged stones, the joints should as carefully be made to lock, so as to give the strength of two or three courses or layers between a joint in one course and one that may occur vertically over it in another. In
day. In no case was it notice that a craving for the drug was developed, although in some cases it was given for two or three weeks almos nightly. The results were most satisfactory in senil insomnia, pulmonary diseases, and hysteria.

The Nickel in Slot Library.

The invention consists of a box, fitted with a glass front, through which the titles of the books within may be clearly seen. Each box forms a library, and is divided into as many sections as may be needed, and each section holds one book. These library boxes can be fixed in railway carriages and elsewhere. Apart from the pattern for rail way carriages, where space is the first consideration, the library boxes will also be made in various shapes of artistic design to stand on the mantelpiece or the table. Any one wishing to take a volume from the library places a penny in the slot of the section containing the selected book, and, on press, ing back a small lever attached to the section holding that book, the door is freed and the book can be taken out. The door of the section out of which a book has been taken will not close until the book is replaced.

SIMPLE APPARATUS FOR GATHERING AND EXAMINING MICROSCOPIC OBJECTS.
bt geo. m. hoptins.
One of the difficulties experienced by the beginner in microscopy is the finding and gathering of objects for examination. As a rule, cumbersome apparatus has been used. The conventional apparatus consists of a

Fig. 1.-GATHERING MICROSCOPIC OBJECTS.
staff to which are fitted a knife, a spoon, a hook, and a net; but a great deal can be accomplished with far less apparatus than this
The engraving illustrates a simple device by means of which the amateur microscopist can supply himself with as much material as may be required. It consists of an ordinary tea or dessert spoon, and a wire loop of suitable size to extend around the bowl of the spoon having the ends of the wires bent at right angles and hooked in opposite directions. To the loop is fitted a

Fig. 2.-TRANSFERRING MATERIAL TO THE BOTTLE.
conical cheese cloth bag, and to the bottom of the bag, upon the outside, is attached a strong string, which extends over the top and down to the bottom of the bag, where it is again fastened. The spoon is inserted between the bent ends of the loop and turned, and the point of the bowl is slipped through the loop.
The instrument is used in the manner shown in Fig. 1, that is to say, it is scraped along the surface of objects submerged in the water, the water passing through the cloth and the objects being retained by the conical
bag. When a quantity of material has accumulated, the bag is turned inside out by pulling the string, and the pointed end of the bag is dipped a number of times in water contained in a wide-mouthed bottle. The operation is then repeated. The objects thus washed rom the bag are retained in the bottle for examination. The common method of examining small objects of this kind is to place a drop of water containing some of the objects upon a glass slide by means of a drop tube, then to apply a cover glass and remove the sur plus water by the application of a piece of blotting pa per. This answers very well for the smaller objects, bu the larger ones must be examined in a tank like tha shown in Fig. 3. This tank consists of a glass slide, A to which are attached three glass strips, B, by means of cement (bicycle tire cement answers well for this purpose), the strips forming the bottom and ends of the tank. The front, C , of the tank is formed of a piece of a glass slip attached to the strips by means of cement To vary the thickness of the body of water contained in the tank, when necessary, one or more glass slips ar inserted behind the object.

THE ST. CLAIR TUNNEL LOCOMOTIVES-THE LARGES

 LOCOMOTIVE IN THE WORLD.The engraving shows a new design of tank locomo tive built for the Grand Trunk Railway of Canada by the Baldwin Locomotive Works. It is known as the Decapod Tank Freight" type, and has a guaranteed hauling capacity of 760 tons ($2,240 \mathrm{lb}$.) up a two per cent grade. Four of these engines are built to operate the St. Clair tunnel, a description of which appeared in the Scientific American, August 9, 1890. At either end (in the cuttings and in the tunnel) there i about $5,000 \mathrm{ft}$ of the two per cent grade.
The general dimensions and description of this engine are as follows

Cylinders.................... 22 in. diameter by 28 in. stroke.
Driving wheels
Driving wheel centers cast iron).
50 in. diameter. 44 in .
Tires (standard Otis steel) in. thick.
Tires, first, second, fourth and fifth pairs, flanged, $51 / 2$ in. wide; third pair, plain, 6 in. wide.
Tires secured by Mansell retaining rings.
Tires, first and fifth pairs, 1 in. play between rails; second and fourth, $3 / 4 \mathrm{in}$. play.
Boiler of $5 / 81 \mathrm{nn}$ steel.................... 74 in . diameter.
Rivets............. 1 in. diameter, $2 \% / 4$ and $31 / 2$ in. center Rivets............... 1 in . diameter, $21 / 4$ and $31 / 2$ in. centers. Laps-all longitudinal seams have double-riveted butt joints, with double covering strips.
Steam pressure...................... 160 lb . per square in.
Tubes, 281 , iron..........
Tubes, 281 , iron.......... $21 / 4 \mathrm{in}$. diameter, $13 \mathrm{ft}$.6 in. long.
Firebos................. $1321 / 2$ in. long by $421 /$ in. wide Firebox.................. $1321 / 2$ in. long by $421 / 8$ in. wide.
Water spaces.............. 3 in. wide at sides, 4 in. at back. Firebrick arch supported by top bolts.
Side screw stays, $7 / 8$ in. diameter; crown \&
diameter, riveted over at top and bottom.
diameter, riveted over at top and bottom.
Grates........ Water tubes with drop bars.
 Crossheads of cast steel, with phosphor bronze bearings.
Steam chest valves......................... ... Balanced. Steam chest valves..

Seibert sight feed
Injectors........................... Two Seibert sight feed
Brakes-Westinghouse American, operated by air, on fronts of all wheels, with Ross-Meehan shoes.
Tank capacity, 1,800 gallons (277 cubic in.) of water and 3 tons of coal.
wheel base to
Wheel base total............................... $18 \mathrm{ft}$.5 in .
Gauge of track $\ldots \ldots .4 \mathrm{ft} .81 / 2 \mathrm{in}$.
Weight on drivers in working order $195,000 \mathrm{lb}$.
Cooke steam bell ringer.

The weight on drivers is greater than that of any other locomotive which has come to our knowledge It is believed to be the largest locomotive in the world and with a coefficient of friction on the rail of 600 lb per ton would give a hauling force on the drawbar o $58,500 \mathrm{lb}$. The resistance of 760 tons on a two per cent grade is about $39,400 \mathrm{lb}$. Add to this the resistance of

Fig. 3--TANK FOR MICROSCOPIC OBJECTS.
the engine itself-about $5,000 \mathrm{lb}$.-and the total resist ance to overcome is about $44,400 \mathrm{lb}$. This is with the liberal allowance of 7 lb . per ton of load for friction. Hence it is seen that this engine has a considerable nargin in which to work with a clean rail. The rails used will weigh 100 lb . per yard.

Builder.	Road.	ェ்̇	Type.	突	
Central Pacific.	C. P	1884	El Goberna-	21×26	121,600
aldwin........	Brazil	1885	Decapod.	22×26	128,000
yer, Peacock \&	Mersey Tunnel.	1886	10 wheel tank.		
Bald win....... ..	Phila. \& Read-	1888	Consolidation	22×28	138,000
"	B. \&. 0.	1889	"	20×26	112.900
"	North'n Pacific.	1889 1891	10 wheel tank.	$\stackrel{2}{2 \times \times 28}$	185,000 195,000

This is a particularly handsome engine and represents very forcibly the lines which American builders
 re following to reach the most economical type of heavy freight engine.
The boiler fronts are of pressed steel, and of an excellent design, easily repaired and kept tight. The guides are short and heavy, with large wearing surfaces at the crosshead, an excellent example of the Laird type. The side rods have solid ends and all of the latest improvements. The boiler is one of the largThe boiler is one of the lar est, if not the largest, has ever been constructed for a locomotive; it is 74 in . diameter and is made of $5 / 8 \mathrm{in}$. steel plates.
The table above gives the weights and other particulars of the largest engines built in the last decade We are indebted to the Railroad Gazette for the fore going particulars.

THE ST. CLAIR TUNNEL LOCOMOTIVES-THE LARGEST LOCOMOTIVE IN THE WORLD.

The Prophylaxis and Treatment of Diphtheria. At the recent meeting of the American Medical As sociation, Washington, D. C., Dr. J. Lewis Smith, of New York, read a paper on this subject. The room should be disinfected by adding to one quart of simmering water one to two fluid ounces of the following mixture :
B. Oil of euooly

Carbolic acid
3 j.
3 j.
Everything and every person not absolutely necessary for the comfort and management of the patient should be excluded from the sick room. Physicians undoubtedly conveyed the disease. They should always examine the fauces by standing behind or at the side of the patient, so that no ejected mucus may come upon them. After each visit they should wash tho roughly, in a sublimate solution, hands, face, and beard. Walking cases without fever, anorexia, or malaise diffused the disease. Daily inspection of the fauces of school children had been proposed. Convalescents should not mingle with healthy children for four weeks. He admitted the full claim of the KlebsLoeffler bacillus to be the cause of the disease. It was a surface microbe-never penetrating the interior of the body, but attacking only mucous surfaces or cutaneous abrasions. It produces a ptomaine containing carbon, hydrogen, azote, sulphur, and oxygen, which, by absorption through both blood and lywph channels, causes the nephritis-granulo fatty degeneration of heart muscle and paralysis.
The treatment should embrace hygiene, diet, and alcohol. Rectal alimentation could be followed for a time. Failure of appetite rendered the outcome doubtful. Diet could embrace milk with sarco-peptones, beef tea, or meat juice, and the various predigested compounds. Large and frequent doses of alcohol were positively necessary. It is quickly eliminated, and often will save life unless blood-poisoning has actually setin. In the proportion of one to five it has been shown to have a destructive action on the growth of the bacillus.
Locally we should remember that normal epithelium was a barrier to the germ's entrance, and hence our remedies should be such as not to destroy the epithelial covering. Denuded or diseased surfaces were favorable starting points for the disease. Corrosive sublimate, 1 to 8,000 ; carbolic acid, 1 to 50 ; salicylic acid, 1 to 80 ; had proved of service in arresting the germ growth. Potassic chlorate was useless in this direction, and he had come to discard its internal emdirection, and he had come to discard. It had undoubtedly caused neployment entirely. It had undoubtedly caused ne-
phritis in many cases. The corrosive sublimate could phritis in many cases. The corrosive sublimate could
be given by nasal injection, gargling, and internally. Where the false membrane was very thick and tenacious, equal parts of tincture of iron and glycerine should be given three or four times a day. Loeffler himself uses a mixture of carbolic acid, alcohol, and distilled water for the mouth. Our local remedies should be penetrating. Therefore, glycerine and water, never sirups and mucilages, should be our vehicles for all local applications. The officinal solution of iron chloride wight be diluted three or four times for this purpose. While it undoubtedly contracted the vessels, it was often painful. It congeals the muco-pus of the fauces. Carbolic acid, Monsel's solution, and glycerine could be advantageously used in this way. For nasal disinfection a saturated solution of boric acid was preferable.
For internal treatment, iron assisted the anæmic condition. Vegetable tonics, including quinine, were probably useless, as were also quinine insufflations in the oral cavity. The main reliance was to be placed on the bichloride. He was in the habit of giving a two-year-old child $\frac{1}{72}$ grain every two hours; four years, $\frac{1}{40}$ grain ; six years, $\frac{1}{36}$ grain ; ten years, $\frac{3}{24}$ grain. His solution was made by dissolving the sublimate in alcohol and adding elixir of bismuth and pepsin. Sublimate solution, two grains to the pint, could be used for the nose. The mercurial should be continued at least one week, unless diarrhœa supervened, but not longer. Calomel had been suggested. Many gave an initial dose, and some continued it through the entire disease. It undoubtedly increased the anæmia. Of late it had been given in the New York Foundling Asylum by sublimation, from ten to forty grains being used, under a tent made over the patient's bed. The indication for its use was the supervention of hoarse ness. The attendants had been salivated in several instances, but the patients were apparently not injured. It seemed to lessen the necessity for intubation. The process might be repeated in three or four hours. The percentage of recoveries from intubation where necessary was better in the calomel cases than in others. For the nephritis he gave iron, and for the paralysis tonics, strychnine, and electricity.

Dr. A. Seibert, of New York, remarked that we must see way down to the epiglottis in order to have our ex amination amount to anything. Children should not be allowed to kiss each other when there was any sore throut about, and very young children should not be allowed to creep around on the floor. They scraped up the dust with their fingers, which they would afterward
put in their mouths. Thus the germs which settled on he floor were conveyed to the sensitive membranes. The experiments of Gebhardt, of Bonn, had shown that false membrane could be dipped in a sublimate solution, and then, after drying and teasing, cause a bacillus development in a culture medium. It was, therefore, especially under the conditions of diphtheria, slow in germicidal action, but thorough if once brought into perfect contact with the affected areas. A five per cent solution of acetic acid had been shown to be quickly penetrating.

A BOOK FINISHER'S LETTERING MACHINE. A machine to facilitate the placing of a design or title upon a book cover is shown in the accompanying illustration, and forms the subject of a patent which has been issued to Mr. George H. Reynolds, of No. 352

REYNOLDS' BOOK FINISHER'S MACHINE.

East Eighty-sixth Street, New York City. The standard has a vertical housing frame having opposite parallel guide grooves for the reception and support of a sliding head block, in two side limbs of which the pallet is adjustably held, the handle of the pallet extending upwardly in a central opening of the block. The head block is adjustably connected to the housing frame by a coarse-threaded screw, by the manipulation of a hand wheel on the upper end of which the block is vertically reciprocated in the guide grooves. The pallet or hand tool is of ordinary forin, such as is used by bookbinders in finishing the backs of bound books to be lettered or ornamented by type impressions. After the desired name or type design is assembled and secured in the heated pallet frame, the pallet is secured in position between the limbs of the sliding block, when the required impression is given by turning the hand wheel. A guide is also provided, for regulating the placing of the book in proper position in the machine, and, to hold the book down in place, when the cover may be warped, or for convenience at any time a simply operated hand lever is provided at the rear.

THE HITCHCOCK LIFE GUARD FOR ELECTRIC CARS, The illustrations show a form of life guard or fender designed for use on electric street cars. The body o these cars is subject to violent oscillations, so that a

THE HITCHCOCK LIFE GUARD FOR ELECTRIC CARS. fender attached to the end of the car vibrates up and down to such an extent as to be of little use. In the structure we describe, the weight of the fender is car
ried by the motor guard or some other attachment of the truck. A pair of bars run longitudinally and each bar has two crank arms at each end. The straight portions of the bars are attached to the car body, being journaled thereto. The rear cranks have their outer ends attached to the wotor guard or to some part that maintains a fixed level. The front cranks carry the fender by attachment to their outer ends. Thus arranged, although the car body may vibrate through a distance of seven inches or more, the fender never changes its level. At the same time its weight is carried without exercising any destructive leverage upon the truck. The construction is shown in perspective in Fig. 1, ard in plan in Fig. 2.
Another feature of the fender is that it can be folded back so as to occupy no storage room in the car sheds. The center angle is a hinge joint. By withdrawing the hinge pin the wings fold inward, as shown in dot ted lines in Fig. 2, and the car requires no additional room.

This fender is the subject of letters patent granted to Arthur B. Hitchcock and Charles S. Gooding, of Brookline, Mass., to whom inquiries for further particulars may be addressed.

American Armor Plates for American War Ships. A new naval ordnance proving ground, which has been established at Iudian Head, on the Potomac, will soon be the scene of a test of ship armor worthy to be ranked with the great trial of last September at Annapolis. In some respects it may be considered still more important, according to particulars given in an Associated Press account, since it is intended to definitely settle what kind of plates shall be put on our new war vessls.
The magnitude of the coming trial is further shown by the number of plates that will now be put in com petition, each of the standard dimensions, 8 feet long, 6 feet wide, and $101 / 2$ inches thick. All these are under construction by Carnegie, Phipps \& Co., of Pittsburg. They will represent steel, steel with nickel alloy, steel treated by the Harvey carbonizing process, and nickelsteel treated by this process. Those that are to be hardened on the surface by the Harvey system will have it applied to them, it is said, at the Washington ordnance yard.
It will be seen that the forthcoming trial is to be of the same general character as the one which took place a few weeks ago on the Annapolis proving ground, but with the important difference that plates three and a half times as thick will now be used, and wil be fired at by 6 inch and 8 inch guns. A furthe interest will be lent to the trial by the use of some American-made projectiles, as furnished by the Car penter Steel Company, which is manufacturing thew for the Navy Bureau of Ordnance on the Firminy system. As a competition in which American-made armor, guns, and shells are employed, it will have an unprecedented importance for this country at least.

An Improvement which Faned to Improve.
Mr. Metcalf, in a discussion at the late meeting of the American Society of Civil Engineers, concerning water supply, said: "We have had at times a great deal of trouble in getting a water supply for our establishment because of the floods in the Allegheny River, and a couple of years ago I thought I would make a great improvement. I had the Philadelphia Company send their dredge up and dredge a place some 10 or 15 ft . deep in the bed, and near the mouth of the Allegheny River. I then had a heavy timber crib built in the space thus dredged, and sunk our suc tion pipes into this crib. We got a beautifully clear water, and thought "e had done a very great thing, but in a few days our whole concern was up in arms. A great many complaints were made, and they told me they sould not get the boilers clean. The man in charge of the boilers said if he had to use that water he would give up the job, because he knew the result would be an explosion. Of course, I thought they were simply pumping out a little loose sand, but I had Professor Langley take up the matter and analyze the water to see if there was any real cause for trouble The Allegheny River water is a very soft, delicious water, and we found that we had in that short dis tance of 12 or 15 feet struck a sub-river of lime water some 12 feet below the Allegheny, which contained thirteen times as much impurity as the muddiest river water we could get from a dirty flood stage in the water we could get from a dirty flood stage in the
river. So we were obliged to destroy the crib at considerable expense."-The Railway Review.

Dover, N. H., is one of the few towns in New England, or, indeed, in the country, that operates its electric street railway system without the aid of a steam engine. The Salmon Falls River, which flows near the town, turns a 500 horse power water wheel. which sup plies power for the dynamos that operate the street line, the electric lights in the place, and electricity for several neighboring towns as well. There seems to bs no difficulty in obtaining a sufficient amount of power at all seasons of the year.

EDISON'S KINETOGRAPH AND COSMICAL TELEPHONE.
Recently the daily papers have been filled with re ports of interviews with Edison, from which the reading public would obtain the idea that Edison had lately invented something of paramount importance, whereas these inventions, as curious and wonderful as they appear, are, in reality, scarcely more than the pastime of the hour with Mr. Edison
The "kinetograph" is a machine consisting of a clever combination of a photographic camera and the phonograph, by which the words and other sounds of a speech or play are recorded simultaneously with the photographic impressions of all of the movements of the speaker or actor. The photograph impressions are taken at the rate of forty-six per second, and the phonograph has its capacity increased so that it will make a continuous record for thirty minutes without any shifting of the cylinders. The celluloid film upon which the photographic impressions are taken is perforated along one edge with a series of holes arranged at regular intervals with as much precision as can be secured by means of the finest perforating mechanism. This feature is of vital importance, for the holes must move the film with such regularity as to make each separate impression when reproduced coincide exactly with the wordsor sounds recorded in the phonographic cylinder simultaneously with the position and expression of the speaker, actor, or singer at the time the sounds were uttered. Exact synchronism between the sound-recording mechanism and the shutter-operating and film-moving devices of the camera necessitates exceedingly accurate mechanism both in the recorder and in the reproducer. The phonograph and camera mechanism in both cases is driven by the same motor and controlled by the same regulating mechanism.
The greatest difficulty experienced in taking the photographic impressions and reproducing them was in the stopping and starting of the film. It was found that the stopping and starting of even so light a thing as the film forty-six times in a second required about two-thirds of the time, the remainder being utilized for the exposure of the plate. To secure enough light for the production of a good image in so short a space of time, a special camera lens of large aperture had to be constructed, at a cost of $\$ 600$. The apparatus has already been carried to such perfection that the motion of the speaker's lips coincides so exactly with the words reproduced by the phonographic cylinder that the words actually seem to proceed from the picture, and all the movements of the speaker or actor are re produced by the succession of the different images with such rapidity as to make the picture appear ab solutely continuous, instead of intermittent, as it real ly is.

The reproducing apparatus is practically a reversal of the camera and phonograph; that is to say, instead of the photographic camera, a superior form of projecting lantern is employed, which is provided with a strong light and mechanism for moving forward the strip with an intermittent motion corresponding exactly to the motion of the negative strip in the camera, and, like it, acting in perfect synchronism with the phonograph. The lantern is also furnished with a light interrupter, which eclipses the light during the brief period required for shifting the film forward to a new position to show the succeeding picture. The phonograph with its resonating horn is able to reproduce the sounds so that they may be easily heard in any part of an ordinary hall without the necessity of applying the ear to the instrument, as in the case of the commercial machines, and the successive picture necessary to produce the effect of motion upon the ecreen follow each other with such rapidity, and with so little change in the successive positions, as to give the picture all the appearance of life.

Mr. Edison is at work preparing apparatus on a larg scale, which will be finished in time for exhibition at the Chicago Exposition. This apparatus does not seem to be adapted for universal use, although a favored few
riment at his iron mine in Ogden, N. J. With this telephone he expects to hear the sounds of some of the terrific operations going on in the sun. Some years ago, when the long distance telephone with a metallic circuit was being experimented with, Mr. Edison had control of a long line, and he says that he frequently heard very strange sounds in the telephone, which could have proceeded from no earthly origin. As sun spots were frequent at that time, he at once attributed these effects to solar eruptions, and afterward, when experimenting at his iron mine with the magnetic

Fig. 2.-PLAN OF MINE. needle, he found frequent sudden, and very appreci able disturbances of th

Fig. 3.-POSITION OF COS MICAL TELEPHON WITH REFERENCE TO THE EARTH.
needle. These he attributed to the variable magnetic ction of the sun.
He then conceived the idea of surrounding the mine with a number of convolutions of wire which terminate in a telephone receiver and in suitable recording apparaus. The mine consists of an almost solid body of magneticiron a mile long, four hundred feet wide, extending into the earth to an unknown depth. This immense body of iron forms the magnet of the telephone, and if teen convolutions of wire mounted on telegraph poles surrounding the outcrop of this iron form the con ductor of the telephone, and the terminals of this great coil extend to an observatory erected at one end of the mine. Mr. Edison is looking for some important re velations when this work is finished. When ques tioned as to the feasibility of seeing by telegraph, and his experiments in that direction, he said he is doing absolutely nothing toward solving that problem. He considered it hardly worthy of attention, but he stated that photographic pictures could be sent telegraphi cally as readily as hand writing or diagrams, that he had accomplished this by means of an ordinary pho tographic negative used in the electro-chemical tele graph, and also by means of a common photograph used in the electric motorgraph.

Forging Metals by Electricity

A committee from the Franklin Institute, Philadel phia, Pa., and a number of newspaper men lately wit nessed a very interesting exhibition of forging by elec tricity at the factory of the Electrical Forging Co., 163 to 169 Oliver Street, Boston, Mass., which is thus described by the Journal of Commerce of that city. The plant of the company consists of a 60 horse power elec ric motor, fed from the Edison circuit, driving an lternating current generator, and a special converte in which the electro-motive force can be reduced to a very low voltage and increasing the current up to 12,000 amperes. To this converter is attached the heat ng apparatus, which at present consists simply of a number of bronze clamps with electrodes of peculiar design and construction, and which holds the piece to be heated. In addition there are a large number of presses, rolling machines, and like apparatus for the production of all the different articles that can be olled or pressed from a bar of heated metal.
Interest is mostly felt, however, in the machiner
its length and worked into different shapes on the anvil and straightened again at a single heat. Many other interesting tests were made, all showing the rapidity with which the iron and steel can be heated by elec tricity and heated evenly within any limits desired.
The methods used being comparatively in the earliost stage of development, were necessarily crude, so that the exhibition, it seems to us, was of value more particularly because of the possibilities it opened up Forging of every description may be done, from that ordinarily given to the blacksmith to work now done at the expenditure of considerable labor and time in specially prepared machines. Its capacity is limited only by the number of dies that can be made for the different articles it is intended to produce. The superi ority of the method lies in the evenness with which the whole mass is heated. The blacksmith now heats the outside of his metal to a white heat, while the inside is comparatively cool. Under these conditions the out side rapidly gives off its heat and the work must again be placed in the forge to be reheated for further work ing. Then the metal is unevenly heated throughout, and when rolled or pressed into various shapes is en tirely unreliable because of the unequal internal strain to which it is subjected by the unequal contraction o the article in cooling. In the electric method the pass age of slow alternating currents heats the interior of the iron first. This even temperature is particularly valuable in the tempering of fine tools, and is abso utely necessary. It then becomes a matter of certaint.y nstead of dependence upon the skill and judgment of a single man, probably, in a whole factory. The heat ng of the metal is so instantaneous that it is only in the path of the current, and the projecting ends are barely warm.
It looked little short of marvelous to see a workman hammering a bar of iron a foot long held in his bare hands, while six inches of the other end was red hot This merely indicates how readily any desired portion can be heated without affecting the rest, simply because it has not time to conduct the heat, and also howing how free the process is from all those disa reeable things that are inseparable from the present blacksmith's forge or rolling mills. The freedom of the metal from all gases is another advantage, as it can be readily understood that when a piece is heated by a urrent of electricity no gases are developed, and the metal, whether it be iron, steel, brass, or composition after having been heated by this process, is withou cale, which is not possible under any other method.
The question may suggest itself as to the difference between this and the method of heating for electric weld ing. They are essentially different. In the well known welding process the two pieces are brought end to end ike the opposite poles of an arc lamp, the imperfect contact of the two pieces concentrating the current a the point of greatest resistance, and heating that point at once to the greatest extent. As the ends are pressed together, new paths for the electricity are found until the whole or both ends are heated and forced togethe until welded. In the method for forging, however, the contact is as perfect as possible and heats the metal by the passage of the electricity through the metal to be heated. The process is the invention of George D. Burton, of Boston. The gentlemen from the Franklin nstitute to investigate the matter were Prof. Car Hering and Prof. Herman Hering, of the Manual Training School, Philadelphia; Prof. Pike, of the Uni versity of Pennsylvania; Mr. Billbury and Prof Spangler.

Another Huge Blast

According to our contemporary Stone, a journal in the interests $\cap f$ orkers, users, and producers of stone marble, and granite, published at Indianapolis, Ind., n explosion of gigantic proportions is to take place at the South Bethlehem, N. Y., stone quarry about the middle of June. The big blast of two years ago is to middle of June. The big blast of two years ago is to

Fig. 1.-PHOTO-ENGRAVING OF A PORTION OF THE STRIP NEGATIVE OF THE KINETOGRAPH (ACTUAL SIZE).
may be able to enjoy it. It will give to public speakers, actors, and opera singers the gift sighed for by the poet, who said :

Oh I wad eome pow'r the giftie gie u

We think if some of our public speakers would patronize a machine of this kind, they would soon change their style of oratory. May we not expect the early adoption of this instument in institutions where elocu tion forms a branch of education?

While talking with Mr. Edison in regard to this novel invention, tho subject of his cosmical telephone wa brought up. He states that he is really carrying the project into execution in the form of a practical expe
that heats the metal. This is capable of giving to the the operator, and all is within his control. A bar of wrought iron Inserted in the jaws of the machine wa in a few seconds at a white heat, and finally melted dropping to the floor a liquid mass. Another piece of teel was heated. one end fastened in a vise and twisted in close spirals throughout its entire length at one heat Other pieces wound about a mandrel formed a spiral pring at a single heat
A three-eighths inch rod of steel was heated in a few econds, beaten into a knife blade, ground, and insert ed in a handle within a short time. A square bar of three-fourths inch iron was heated evenly throughou
tent. At least 50,000 tons of rock will be displaced Mr. Callanan, the owner of the quarry, has been pre paring this event since last winter, drilling going on all along the mountain face. The explosion will take place in the presence of a company of distinguished en cineers, who, with a number of other invited guests will be brought from New York and Albany by special train on the day of the blast. The explosion is expect ed to be unprecedented in the history of mining and blasting in this country, and will be looked forward to with interest in many quarters.

SEA water is heavier than fresh water because of the alt dissolved in it.

RECENTLY PATENTED INVENTIONS

Engineering.

Boiler Feeder.-John E. Winder kansas City, Mo. This feeder is combined with a tank arranged above the water level of the boiler, a supply pipe entering and discharging into the tank while a
nozzle within the tank opens into the supply pipe a steam pipe connecting the nozzle with the stean compartment of the boiler. The device is designed to automatically keep the water in the boiler at a helgh fecding, and to precipitate impurities before the water coters the boiler. In the feed pipe is arranged a colum gradually through a lazy cock to the tank to lubricat the several parts, and also cause the dissolution of scal or incrustation, and preventits formation in the boile The device is entirely automatic in
eimple and durable in construction.
Air Brake Valvf.-Lewis S. Riggs, Selma, Ala. This is an automatic cut-in valve for use with compressed air pipes under cars for applying and
releasing the brakes, and the invention covers a novel construction and arrangement of automatic valves in connection with the couplings and blind couplings, whereby all failures to open the air valves after the coupings are made are avoided. After the act of coup-
ling the pipes is effected, the valves automatically open ling the pipes is effected, the valves automatically open
air communication through them, so that by no mean can the pipes be left in an obstructed or inoperativ condition.

Railway Appliances.

Car Coupling. - Thomas Dee, Con cord, N. H. This coupling is made with two draw bars provided with lateral hooks and pivoted to the car
to swing outward or away from each other only, one of the bars being longer than the other and havin an enlarged head, together with other novel features
The coupling is designed to be effected automatically hut also to uncouple antomatically should the car b derailed, thus causing the air brakes to set themselve and stop the car, and also prevent the deraile
from dragging the remainder of the train with it.

Mechanical Appliances.

Bench Plane. - Saverio Tuoti, New York City. Combined with the plane stock and cutter is a longitudinal screw in the stock, a nut on the screw engaging the cutter for adjusting it endwise, while
transversely ranging screw with a nut engages the cutterfor adjusting it laterally. The construction is such that the plane iron sets at quite a sharp angle with the working face of the plane, so that it will cut very easily, while the means for adjusting the plane iron end wise and laterally are simple and efficient, while a face ection is ad justable to regulate the size of the shavin throat, insuring the true and smooth working of the
Bark Mill.-Albert F. Jones, Salem Mass. In this mill an annular base with a hub in the center is rigidly secured to the hopper, radial wings in
oblique planes connecting the hub and base a bearin leeve in which is journaled a shaft being arranged in he hub, while a horizontal revolving knife-carryin isk is mounted on the lower end of the shaft and adapted to revolve beneath the oblique radial wings. The construction of the machine is such that its variou parts can be readily adjusted, removed and replaced more rapidly and much finer than the machines bow more
use.

Agricultural

hay Loader. - Adolph and Albert Lasack, Oxford Junction, Iowa. This invention cove improvement on a ddolph Lasack, there beling but one crank shaft pro vided for the improved implement, while the feed arms of the bed over which correspond in shape to the shapel, thus increasing their orking area, the arms beiug in spring-controlled se tions, one of the sections of each arm serving as a rake
head. The implement is so lightened and simplified by he improved construction that it may be readily work by an inexperienced operator.

Miscellaneous.

Suspenders. - Andrew J. Boblbs, Marion, Ind. A narrow back piece is, according to this and along the spine, the back piece benng stiffened by tay of steel or whalebone, while supporting and brac ng straps connected with the back piece cross each other diagonally thereou, and a cross strap is arranged at right angles to the back piece, the fastening and supporting devices being secured to the ends of the cross
and supporting straps.
Adding Machine.-James Richardson, North Tarrytown, N. Y., and Frank E. Heath, New
York City. Combined with keys representing the figures from 0 to 9 are registering and verifying wheels, ing to the number corried by each novel positive carrying mechanism for causing any wheel of the series to cairy one to the nest wheel in order. There are also positive stops for preventing the wheels from passing beyond the prescribed limit, and let-off device for releasing the feeding ratchets, with spring for returning the summation whee! turnin
Voting Booth. - Peter Zuckriegel, Tell City, Ind. This is a knockdown booth, adapted to form one of a series of booths or to be used singly, and known as the "Australian system," affording secrecy known as the "Australian system," affording secrecy
for the voter, while the whole construction may be
knocked down and folded up in small compass for
o which is hinged a series of partition boards capable for rod supprting curns ond backbors, a lamp ng the partitions. A triple booth of this kind, with half partitions or panels between each compartmen weighs only 106 pounds, affords complete privacy fo the voter, and may be set up and adjusted by the mos

Typewriting Machine. - Michae Hearn, Hampstead, England. Combined with a carriage having a rack and a pivoted and spring-pressed lever
with a pawl engaging the rack, are pivoted and counteralth a pawl engaging the rack, are pivoted and counter
bale levers arranged in a circle, with operat ing key levers pivoted in the rear of the type lever ith semictrcular levers pivoted near their ends a dapted to be engaged by the key levers when they a epressed, there being connections between the semi ircular levers and the pawl-carrying lever. The ma
hine is designed to be very simple and effective. A further patent has also been granted the same invento or an improvement in typewriting machines in whic weighted or balanced type levers are operated by finge and a bevel-headed screw fitted to them.
Oil Well Bailer Valve. - Andrew W. Knittel, EvansCity, Pa. Combined with an out abe provided with a valve supported by a forke
hank secured to the inner wall of the tube and projecting below it, is a sliding sleeve fitted to the tube and having a valve seat furnished with a forked barbed rod or spear, to limit the movement of the sleeve and
loosen the sand in the tube. The bailers are used for he removal of salt water and oil, and the valve is esigned to be unaffected by the presence of sand.
Mast Hoop.-Charles S. Mott, Pa hogue, N. Y. This hoop is made with two abutting nds, one having a dovetail tongue and the other a dove ail recess to receive the tongue, a sliding sleeve being
adapted to cover the connected ends of the hoop, with means for locking the sleeve over the joint, the devic hus forming a sectional hoop capable of being readily prung ar
Buckle. - Charles G. Blue, Pleasant Hill, Mo. This is a buckle for harness and other strap which have a sliding tongue, the buckle being so mad hat the tongue can be easily introduced within the rame and have a free movement thereon, while th strap end can be readily introduced and will be securel between the tongue and frame in this buckle, and owing o the open connection of the parts there is but litt
hance for fouling by dirt or other foreign
Shoe for Deformed Feet.-Legrand D. Harding Coltax W Whe Legrand usual outer and insoles, and a strengthening plate with straps and supports secured to the sole an dapted to fasten over the foot, a support being secure to the strengthening plate on one side of the shoe and
shaped to stand off from the foot. The shoe is designed to adapt itself to the movements of the foot, while maintaining pressure as required on special portions.
Spring Hinge.-Herman A. J. Rie ert, New York City. This is an improvement on which the hinge is made more simple and durable construction, being provided with a tube or casing
fitted into a suitable recess in the door, and held in place by side and bottom plates screwed or otherwis astened to the door. A spring held in the tube presse n a double-faced cam, having lugs fitting in suitabe ion, and friction is reduced to a minimum.
Knockdown Furniqure.-Herman A J. Rieckert, New York City. Combined with a fram connecting the two parts of each post together lengthwise, are horizontal bars connecting the adjacent part ween the posts and resting on the bars, and a cover or shelf fitted on dowels of the posts. The con truction 18 especially designed to facilitate the form ing of show cases, wardrobes, tables, counters, etc.,
which may be quickly knocked down and folded for rtation, and easily set up.
Folding Box. - John Howenstine Ft Wayne, Ind. This box is preferably made of thin eing used for the sides, lid and bottom, the materia being re-enforced by wire rods and staples, the end walls being secured to the sides and bottom by end
battens, while turn-buckle latches are located on debattens, while turn-buckle latches are located on de-
pending battens of the lid and adapted to interlock pending battens of the lid and adapted to interlock
with cross p:ns in the end walls. The box is designed with cross p:ns in the end walls. The box is designed
to be a strong, light, and cheap receptacle, adapted to serve for egg cases, fruit crates, etc., and to be readily and knocked down
Subsoil Pipe.-Martin Rehm, Long Island City, N. Y. This invention provides mean whereby the spigot end of a pipe section may be po
tively and securely locked when inserted in the hub an opposed pipe section, by turning one section a slight distance either to the right or the left. The section are also so made that when coupled a packing will no be needed at the joints, and their inner cylindrica aces are flush at the abutting surfaces when the sea

Lining for Butter Tubs. - Joseph Mersman, Ottawa, Onıo. This is a linıng of paper ther thin flexible material, folded outwardly over the top edge of the tub and inwardly at its lower end, cular false bottom of paper is placed, making a thin cular false bottom of paper is placed, making a thin and adapted to remmin in upright position in the tub. Vehicle Running Gear.-George L mecharism betweer the body and springe provide prevent the latter from receiving a sudden strain thereby adding to their durability. The improved run
ning gear is especially adapted for use with bugkies
he construction being such that the springs need no attached to the body, the spring having an ind the body level sidewise.
Carriage Top Adjuster. - William W. Swan, Andover, South Dakota. Two arms are eac rigidly, adjustably, and detachably secured to a lowe to form a simple, inexpensive, and convenient device or the manipulation of the jointed frame supports of the vehicle cover, whereby the frame may be easily
raised or lowered by one seated in the vehicle, these raised or lowered by one seated in the vehicle, these
arms also preventing the flapping of the curtains when arms also prevent
Gate.-Hiram Barker, St. Joseph, Mo This invention relates to an improvement in lifting farm gates, providing a short, darable and light gate, in
lifting or opening which the pivoted end is made to counterbalance and at one point overbalance the free end, thus rendering the operation
Wire Fence. - John W. Buchanan Smithville, Ohio. This is a fence in which the wire are secured at one end to a post, chains being at passed through holes in another post at any require distance off, whereby the wires composing the differen panels of the fence may be tightened separately, by
inserting keys through the links of the chains on the nserting keys through the
uter side of the distant post.
Sprinkling Can.-Alexander P. and Francis M. Baker, Empire, Wis. This is a specially devised can for spraying poisoned solutions on plant nal bushes, and nomically controlled, to be applied only where it is needed. The device can
ordinary water sprinkler
Coffin Handle. - Lyman E. Woodard, Owosso, Mich. This handle is preferably made of wood, strong and light, and adapted to be conveniently covered by fabric of the sume kind as that used to face the exterior of the casket, and with the handle are
furnished hinge joints adapted for adjustment to suit different diameters of handle bars, and connect them trongly to the side of the coffin.
Note.-Copies of any of the above patents will be send name of the patente, title of invention. Please of this paper.

SCIENTIFIC AMERICAN

BUILDING EDITION
JUNE NUMBER.-(No. 68.)
TABLE OF CONTENTS
Plate in colors of a handsome residence on River side Park, New York City. Floor plans
vations. Architect Mr. Frank Freeman.
2. Colored plateillustrating a row of brick dwellings at Newark, N. J., costing about $\$ 3,000$ each. Per
spective elevation, floor plans, etc. E. S. Amerspective elevation, floor plans,
man, Newark, N. J., architect.
Engravings and floor plans of a double residence on Washington Heights, New York City
$\$ 20,000$ each. A very picturesque design.
A dwelling at New Haven, Conn. Cost $\$ 8,000$ complete. Perspective view, floor plans, etc.
colonial cottage erected for Mr. C. W. Macfar lane at Elm Station, Pa. Cost $\$ 5,300$ complete Design of a modern interior. A comfortable hall nd staircase.
picturesque cottage erectod for George W. Childs, 7,200 complete. F. H. \&:W. L. Price, Philadel phia, architects. Plans and perspective
. A tower house recently erected at Elm Station, Pa Cost $\$ 4,600$ complete. Floor plans, perspective
elevation, etc. row of low cost colonial houses erected at Rose-
ville, N. I. Cost complete $\$ 2,000$ a house. Plans ville, N. I. Cost complete $\$ 2,000$ a house. Plan 10. An English cottage erected at Elm Station, Pa.
Costabout $\$ 4,000$. Perspective and floor plans. etch of a farm house recently built in Steuben County, New York, at a cost of $\$ 695$.
Miscellaneous contents: Simplicity in furnishing and decoration.-Weight as a test of strength in timber.-Architect of the Woman's Building of
the Columbian Exposition, Chicago.-Redwood for interiors.-The Richmond heater, illustrated. -Some new designs in radiators, illustrated.Improved plumbing appliances, illustrated.-Bent glass.-Improved woodworking machinery, illus-
trated.- A strong and light lawn fence, illustrated. -The "Heatencook" range, illustrated.-The illustrated.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies cents. Forty large quarto pages, equal to about
wo hundred ordinary book pages ; forming, cally, a large and splendid Magazine of architecTVRE, richly adorned with elegant plates in colors and with ine engravings, illustrating the most interesting examples of subjects.
The Fullness, Richness, Cheapness, and Convenience any Archive won for it the Largest Circulatio all newsdealers.

MUNN \& CO.. PUBliseres,
.. Publisgers,
361 Broadway, New York

Business and Personal.

ne charpef or Insertion under this head is one Dollar a line

 It each insertion; about eight words to a line. Advertisements must be received at publication office as early as

For Sale-New and second hand lathes, planers, arille hapers, engines, and boiliers, belting, pulleys, and shaft-
nne. List sent free. W. D. Davis, Rochester, N. Y. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N.. Barrel, Keg and Hogshead Machinery. See adv., p. 18 . For best hoisting engine. J. s. Mundy, Newark, N. Best driers for grain, sand, clay, fertilizers, wet feed Best Iee and Refrigerating Machines made by David The I Mmproved Hydraulic Jacks, Punches, and
"How to Keep Boilers Clean." Send your address for
ree 56 p. book. Jas. C . Hotchkkss, 12 Liberty St., N. Y Screw machines, milling machines, and drill presses, Pneumatic bell outat. Better than electricity. Send . Billy es. Bronze Forgings. Billings $\&$ Spencer Co

Guila \& Garrison, Brooklyn, N. X., manufacture stea pumps, vacuum pumpe, vacuum apparatue, air pumps, Split Pulleys at Low prices, and of same strength and , pearka Works, Drinker St., Philadelphia, Pa.
For love prices on Iron Pipe, Valves, Gates, Fittings,
ron and Brass Castings, and Plumbers Suplies, write Iron and Brass Castings, and Plumbers' Supplies, writ
A. $\&$ W. S. Carr Co. 13 and 140 Center St., New York.
The best book for electricians and beginners in elecricity is "Experimental Science," by Geo. M. Hopkins.
By mail, $\$ 4$; Nunn \& Co., publishers, 361 Broadway, N. \mathbf{y}. Will invest money and join with inventor in manufacaring and selling good patented specialty. Send coppy
of patent, with full particulars, to Lambert, box $\pi 3, \mathrm{~N} . \mathrm{Y}$.

Fan outft, with battery complete, \& $_{2} .00$. Including oter motor, brass fan, attractive, efficient, one Taylor
and battery (powerful, economical). Or two cells and small
incandescent lamp same price. Taylor \& Son, 39 Dey St., incandescen
New York.
Air Guns-H. M. Quackenbush, Herkimer, N. Y., manufactures different styles of air guns, suitable for
squirrels, sparrows, or other small game. For target squirres, sparrows, or other small game. For target
practice the air gun is specially recommended. Send for
illustrated circular. For Sale-Second hand machinery as follows: One A.
m. Freeland planer, $24^{\prime \prime} \times 24^{\prime \prime} \times 48^{\prime \prime}$ bed. One $W \mathrm{~m}$. Sel1. Freeland planer, $24^{\prime \prime} \times 24^{\prime \prime} \times 44^{\prime \prime}$ bed. One Wm. Selscrew machine. One B. D. Whitney iron top saw table, $33^{\prime \prime} \times 48^{\prime \prime}$, wood and iron stand. For further particulars apply to R. Hoe
Wanted-An intelligent foundryman as foreman of a
good sized foundry. Must thoroughly understand good sized foundry. Must thoroughly understand
moulding, and handling of men, be strictly temperaie, noulding, and handling of men, be strictly temperate,
and honest. Only those who can give the best of referand honest. ondy thered. This proposition is from a re-
ences will be consideres "L." 21 Park Place, New York
sponsible frm. Address sponsib
City.
LF Send for new and complete catalogue of Scientific atalogue of Scientiffc
$\&$ Co., 361 Broadway,

HINTS TO CORRESPONDENTS
Names and A ddress must accompany all letters,
or no attention will be paid thereto. This is for our information and not for publication. give date of paper and page or number of question.
Inquiries not answered in reasonable time should
be reveated; correspondents will bear in mind that some answers require note will bear in mind that
though we endeavor to reply to all research, and,
and ber by letter or in this department, each must take his turn.
Special W ritten Information on matters of
personal rather

(3078) S. J. B. asks for a good patent leather polish for shoes. A. A waterproof blacking
which will give a fine polish without rubbing, and will not injure the leather: 18 parts beeswax, 6 parts spermaceti, 66 parts oil of turpentine, 5 parts asphalt varnish, 1 part powdered borax, 5 parts Frankfort black, 2 parts Prussian blue, 1 part nitro-benzol. Melt the wax, add been formed. In and stir until a kind of the asphalt varnish, previously mixed with the oil of turpentine, stir well, and add to the wax. Lastly add mass. The nitro-benzol gives fragrance.
(3079) J. P. T.-The ruby jewels can be ground out larger with a hard copper taper wire twirled
by the fingers or in a lathe, using diamond dust and oil. The diamond jewels require a steel taper wire with t and oil
(3080) G. G. asks (1) if in liquid measure c. is an abbreviation for cubic centimeter? A. Yes.
How many c. c.'s in one fluid ounce? A. 29.5720 And how many ounces in one liter? A. $33 \cdot 8160$.
(3081) L. S. A. asks: 1. What will clean polish a marble slab of a soda water fountain which
has become rough and dirty by the action of the sods has become rough and dirty by the action of the soda
water? A. Use ground pumice stone and water, followed by whiting cr putty powder, both applied with a wet
woolen cloth, or try following: Mix $1 / 4$ pound soft soap
with eame of whiting in powder, 1 ounce washing soda
and a piece of copper sulphate as big as a walnut, boil
together a few minutes and spread hot over the together a few minutes and spread hot over the marble, leave for 24 hours. the
nel or a piece of felt.
nel or a piece of felt.
(3082) J. S. asks for a recipe for taking indellble ink out of linen. A. A solution of bichlorid of mercury (corrosive
terial for the purpose.
(3083) C. L. F. asks (1) how to make a a good cheap brass solution. A. Cyanide of potassiun 1 pounc, cyande of coppolan. Add finally 2 ounces. Use at $160^{\circ} \mathrm{F}$. The color is affected by rela tive sizes of anode and cathode. Usie brass anode. 2. How is fre gilding done? A. Make an amalgam of gold 1 part, mercury 3 parts. Rub it over the perfectly clean surface of the object until coated, expose to a very low
red heat, cool, clean with a brush and cream of tartar. A little muriatic acid may brushand cream of tartar A little muriatic acid may be needed
the first application of the amalgam.
(3084) A. H. asks whether melting aluminum in a common cast iron ladle has a bad effect
on the aluminum, and what it is A. Plumbago cruci on the aluminum, and Sie the Scievtiric Anerican vol. 62 , No. 26, for details on manipulation of alumi num.
(3085) H. F. D. asks: 1. The upturned upper cloth. Please give the proper cement or proces for repairing it. A. For treatment of rubber in genera see "Rubber Hand Stamps and the Manipulation of
Rubber," $\$ 1$ by mail. A good job cannot be made afte Rubber," $\$ 1$ by mail. A good job cannot be made afte manufacture. The soles should he vulcanized in place 2. Who was the first discoverer of America-Columbus
or Leif Erikson? A. The discoverles of Leif Erikson or Leif Erikson? A. The discoverles of Leif Erikso
(3086) W. H. writes : I want to make a wooden box and divide it into compartments, by mean the box, adhering to it and to the edges of the partitions, so as to make each compartment independently
acid proof (for a 20 per cent solution of sulphuric acid). Itmust be an insulator. Should be melted and use hot or as a paste which will harden. Please give me recipe which does not require special apparatus. A There are several recipes. One reads thus: Burgund pumice stone 75 parts. Apply hot and melt in with hot iron. Another reads: Resin 4 parts, gutta perch 1 part, and a little boiled oil. Before applying eithe composition the cells should be absolutely dry.
(3087) J. J. McL. asks for (1) a receipt for making extract of lemon. A. Expose 4 ounces
lemon rind to the air until partially dry, rub up in a por lemon rind to the air until partially dry, rub up in a por
celain or glass mortar, agitate with 2 quarts deodorized celain or glass mortar, agitate with 2 quarts deodorized
alcohol until the color is extracted, add 6 ounces freshly made oil of lemons. Let it stand for two days and filte the rinds; the oil distillsover with thesteam. 2. One on extract of vanilla. A. Cut 1 ounce vanilla into small pieces, rub up with 2 ounces sugar in a mortar, perco-
late with 1 pint alcohol, add 1 pint simple sirup. Artificial vanillin is now largely used instead of vanilla
(3088) F. 'Г. asks how to make phosphate, such as is used for drinking purposes, in sod A. Use 2 drachms phosphoric acid to 1 gallon of simple A. Use
(3089) M. S. S. asks how to make a furniture polish that will make a fine gloss and dry in the inortest possibele time. A. Dissolve 4 ounces beeswax
in 1 pint turpentine, color with alkanet root if desired. There are many other formulx; the above is given for its simplicity.
(3090) W. L. C.-Calcined gypsum or). (3091) J. A. B. asks what preparation to ase for removing finger spots and other soiled marks from the banjo while applying. A. Try bread crumbs, India rubber,
(3092) A. G. asks : 1. What is infusorial earth? A. Siliceous skeletons of diatoms. These represented a low form of animal life, and infusorial
earth is made up of remains of their microscopic skeletons. \%. What are its uses? A. Principally as a polishing agent, as an absorbent for explosives, and in
brick and tile and stoneware making. 3. What is its commercial value? A. About $\$ 5$ per ton. 4. Can sulphate of aluminum be easily and cheaply reduced to merchantable metal ? A. No; but it should be of value
for the manufacture of alum. 5. Is the Cowles method or the manufacture of alum. 5. Is the Cow
applicable in reduction of same? A. No.
(3093) W. H. says : Here is my receipt for ingrowing toe nails: Soak the foot in warm water (a new one, so it is very sharp) and tile off the top of nail down as thin as yon please; once a week is often enough. I have tried every other known remedy, but this, used for a year, beats them all.
(3094) P. J. L. asks (1) how to deodorize kerosene. A. It cannot be completely deodorized. chromate of potash, mixed, may do something, but complete deodorization is not likely to be attained. 2 . How to make camphorated oil ? A. Dissolve 20 parts
camphor in 80 parts cotton seed oil. In China an oil is camphor in 80 parts cotton seed oil. In China an oil 18
drained off from the crude camphor, which is camphor oil. 3. How to make vaseline. A. By decamphor oin. ${ }^{\text {colorization of petroleum residue with sulphuric acid }}$ and bichromate of potash and digestion with bone charcoal.
(3095) H. B. asks : Is there any differ ence in the two saccharometers (used in this country for
beer worts), Kaieer and Balling, as to degrees? A. They are identical except as regards range. The Kaiser goes up to 40 per cent, the Balling stops at about 10 per cent Fah.), and the readings correspond to percentages of cane sugar.
(3096) W. P. B.-The mottling of small steel work, gun work, etc., is described in Notes and
Queries, No. 6, Scientific American, September 24 Querie
1887.
(3097) C. O. S. asks for a good and cheap way for refining lard, so as to get it quite white and de to stand hot climates. A. Cleanliness is the grea point in treating lard. The fat is freed from all adher
ing fleshy or discolored matter by cutting. It is then cut up into small pieces and washed until the wate runs off clear. It is next melted by direct fire or steam coil until it becomes perfectly clear. It is run through close linen filters into the barrels, in which it is stirred ntil white and opaque, but only thickly fuid. The great point is when to cease stirring. It is then coole and tightly covered. Air makes it rancid. In Brannt's
"Animal and Vegetable Fats and Oils," $\$ 7.50$, and in Animal and Vegetable Fats and Oils," $\$ 7.50$, and
the same author's "Manufacture of Soap and Candles," $\$ 7.50$, there is some information on this and allied sub\$7.50,
jects.
(3098) R. D.-For the indicated horse ower of a proposed engine: Multiply the proposed horse power by 33,000 ; divide this product by the mean engine pressure multiplied by the speed of the piston
assigned) in feet per minute; this gives the area of the (assigned) in feet per minute; this gives the area of the
cylinder in square inches. The mean engine pressure cylinder in square inches. The mean engioe pass may
must be assumed from the value of the cut-off, and ma e obtaincd from the steam tables in engineering books, 300 and 400 feet per minute. The bitrary, from $11 / 2$ to twice the diameter of cylinder. The knot is $1 \cdot 15 i$ miles. Fastest trains about 60 miles pe hour. Driving wheels 6 feet 6 inches diameter. Special comotives may have driving wheels larger. A rate of 0 to 90 miles an hour is probably the maximum velocit
(3099) B. C. writes : I have a guitar that as got some grease or oil spots of a dark color on the ace of the instrument. Can you tell me what and ho oremove them without injuring the sound or tone benzine and placed in a thick layer over the spots, and allowed to dry, may draw out some of the grease. But there will be danger of injuring your instrument by the benzine acting on the varnish.
(3100) S. D. asks: 1. How can we purify natural gas so as to use it for lighting? It burns with blue blaze with great heat, but does not give much light A. Carbureting with gasoline will effect your purpose no purifying is needed. Posibly passing throug slaked lime would help it. 2. Wir natural gas run in your case certainly not. 3 . Our gas well has asteady flow, but the gas will not burn at all times. What is the cause? A. Your gas evidently varies in composition. When it will not burn, it is because it contains probably too much nitrogen.
(3101) H. V. asks: 1. Can the smoke rom zinc ore roasting furnaces proftably be worked p for sulphuric acid? A. There is no reason why it
should not, except that the percentage of sulphur is low, and if the roasting is effected with fuel there will be too much organic matter in the fumes to make it profitable. city of 10,000 inhabitants in the course of time have health? You know that it kills all vegetation for quite a distance. A. We should not anticipate much if any, injury to health.
(3102) E. asks : What chemicals or acids nited to phosphorus will produce a constant glow in ou ask is Balmain's luminous paint, described in our
y. . The ner SUPPLEMENI in several places. A solution of phos-
(3103) W. McC.-Gun barrels and other parts are properly blued by finishing of aneven or polish grain, and heating until the proper color is obtained. For amateur work a brown stain may be made on the protochloride of antimony 1 part, nitric acid 1 part, drochloric acid 2 parts. Add the hydrochloric acid very slowly to prevent ebullition. Apply to the surface of the metal with a woolen rag and rub the surface with green young oak wood until the desired brown color is oiled linseed oil
(3104) S. E. B. asks : Can you give me receipt for treating oak and giving it a 16th century inish? Also a recelpt for treating iron, such as grates, fenders, etc., giving the same an old iron finish ? A. with sulphuric acid and water equal parts or what preferable staining with umber in thin shellac vaınish. Iron work may be treated witk a wash of sulphate of soda and heating over a fire, or by brushing a solution of flour sulphur in 10 parts of turpentine, dissolved by heating, over the irons, then holding them over an alcohol (3105) F. D. S.
(3105) F. D. S. says: I wish to use the power of a fall of 30 feet of water delivered through an iron pipe 2 feet in diameter and 70 feet long. a. Wha size turbine should I use ? b. How much useful power would I obtain? e. What would be the rate of fio of your pipe,it will deliver over 8,000 cubic feet of water at the mouth per minute. If you are sure that you have his quantity of water supply, you may realize 225 horse power with a 48 inch turbine of good make, or equal to
(B10) W.
(3106) W. H. S.-To polish rubber, the hard rubber should be turned as smooth as possible paper. Then polish with a paste of oxide of tin (putty owder) and water on a cloth.
(3107) W. McL. asks if it is practicable to exhaust steam from engine and heaters into
moke stack. A. If there is a necessity for astrotge draught than the natural draught of the stack, a well arranged jet exhanst is practical and advantageous. The diameters of the stack below the top and in the center for best effect. If not needed for draught, and
the stack is large enough and draught strong enough to
overcome the choking by the volume of steam vercome the choking by the volume of steam, it is
practicable, if convenient, for iron chimneys. Brick chimneys sh
cumstances.
(3108) A. K. F.-The frying sound in the elephone is caused by induction from other lines, rolume of sound in a magneto telephone, use a carbon transmitter.
(3109) J. C. P. asks for latest method of determining by simple process, suitable for high school By smple turning the of arsenic in wall papers,etc. A. detected if arsenic is present in large quantities. It chemically pure zinc and sulphuric act are obtainable, Marsh's test is best. It is given in all analytical che mistries,
$\$ 1.50$.
(3110) H. H. asks: Where is the Hennepin Canal A. In Illinois. It extends from the IlliRiver near Rock Island. It forms part of the water way intended to connect Lake Michigan with the Father
(3111) E. G. W. asks: What do you conider the highest surface speed (with reference to friction) infeet per minute at which iron forged shafting may safely run in babbitt boxes without danger of melting the babbitt, provided the best known lubricating oil is used? A. We have no information as to the xtreme limit of friction or speed necessary to melt being of uncertain tional value is on a fast railroad train, where a journal speed of 800 feet a minute has been attained ou short runs. In ordinary machinery 400 to 500 feet per minute can be obtained with safety from overheating. As a general rule the percentage of friction due to load ecreases with an increase of velocity. See chapters on friction in Trautwine's "Engineer's Pocket Book,
$\$ 5$ mailed. (3112) W. S. S. asks : Kindly give the weighs, for cord of granite, lime, and sandstone. A. No definte weight can be given. Each kind of stone
varies in different localities. If you mean broken stone, varies in difierent localities. Y you meay oronter 2, pounds, limestone 2,600 pounds, sandstone 2,400 pounds per cord. These figures will vary from
pounds, according to locality and condition.

TO INVENTORS.

An experience of forty years, and the preparation of more than one hundred thousand applications for pa-
tents at home and abroad, enable us to understand the laws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. A
synopsis of the patent laws of the United States and all foreign countries may be had on application, and persons contemplating the securing of patents, either at homeor abroad, are invited to write to this office for prices, tensive facilities for conducting the business Address mUNN \& CO., office Scientific Ambrican, 361 Broadway, New York.

INDEX OF INVENTIONS
Which Letters Patent of
June 9, 1891,

AND EACH BEARING THAT DATE.

[See note at end of list about copies of these patents]

塑龍

A

IMPORTANT BOOKS
 Sheet Metal Workers．
 HENRY CAREY BAIRD \＆CO．
 HARPER＇S PERIODICALS

HARPER＇S MAGAZINE，One Year harper＇s weekly，One Year HARPER＇S BAZAR，One Year HARPER＇S YOUNG PEOPLE On

Postage free to all subscribers in the United States，Canada，and Mexico．

The volumes of the Weekly and Ba zar begin with the first numbers fo January，the volumes of the Young People with the first number for No vine with the numbers for June and December of each year．

Booksellers and Postmasters usually receive Subscriptions．Subscriptions sen direct to the publishers should be accom－ panied by Post Office Money Order or Draft．When no time is specified，sub scriptions will begin with the current Number．

HARPER \＆BROTHERS， NEW YORK
 OInARERE FANS．

so Rubber Press Roills for Wo
and Yarn Washing and
Yyeing Mashines．
$\underset{\text { GEO．P．CLAARK，Manuf．}}{\text { Windsor Locks，C }}$
STEREOTYPING；THE PLASTER AND

的ATENTS

 A pamphet sent free of charge，on application，con
aining full information abour intentsand how horo
cure them；directions concerning Labels，Copyrights

 MUNN \＆CO．，Solicitors of Patents，

After being on the Market Five Years The＂ACME＂sill Leads！
 ROCHESTER MACHINE TOOL WORKS，BTOWn＇s Race，ROCEESTER，N．Y

THE NEW NON－CONDCTING MATERIAL

＂STANDARD＂EMERY DRESSER

THE LEAD PENCILS

 JOSEPHDIXON CRUCIBLE COMPAN
or simples worth double the money
GYMNASTICS FOR GIRLS－AN IN

CHANDLER \＆TAYLOR CO．INOIANAPDOLIS，INO．

Scienticic Book Caaloguie

品 are a universally acknowledged to be the DIE

SEWING MACHINE MOTOR FOR AMA

FTPEPARABLE PANTS BUTTON

HARRISON CONVEYOR！
$\underset{\text { Harining }}{\text { Frain，Coal，Sand，Clay，Tar Bark，Cinders，Ores，Seeds，\＆C }}$

Large Illustrated Catalogue sent Free to any Address．
THE EAGLE BICYCLE MFG．CO．，
VOLNEY W．MASON \＆CO．
FRICTION POLLETS CLDTCHES and ELEVATORS
FAMILY ICE MACHINE INe，ete．in a feem
Perfect Newspaper File

DEAFNESS \＆HEAD NOISES CURED Maw onawnaver
THE DAIMLER MOTOR THE DAIMLER MOTOR CO．
is prepared to furnish 1，\＆2，and 4 Horse Pow
GAS or PETROLEUM MOTORS
for all Industrial Purposes．Fully illustrated catal for all Industrial Purposes．Fully illustrated catal gue
and price list on application．Motors in operation at Works，Stein way application．
 One pair of these cutters cuts Cutter to a rack inclusive．For circular and prices adaress R．M．Clough，Tolland，Conn． HE PENNA．DIAMOND DRILL \＆MFG．CO．
BIRDSBORO，PA．，Builders of High Clasa BIRDSBORO，PA．，Builders of High Clas，
Steam Enkines．Diamond Drilling and General
Machinery．Flour Mill Rolls Ground and Grooved
$\$ 10.00$ to $\$ 50.00$
 BLUE PRINT Paper，Superior Qualitr

 ROSE POLYTECHNIC INSTITUT Terre Haute，
Well and endowed，
A School

ICE and REFRIGERATING MACHINES

PROPOSALS．

PROPOSALS FOR IMPROVEMENTS IN MAIL－BAGS MALL－CATCHERS
MAIL BAG LABEL HOLDERS．

 Experimental Science

THE PREMIER CAMERA

Simple of Manipulation．
Plates or Films are used． The Shutter is always set PRICE $\$ 18.00$ ．

ROCHESTER OPTICAL COMPANY，

STEEL TYPE FOR TYPEWRITERS

 DRY AIR REFRIGERATING MACHINE．

The Scientific American PUBLICATIONS FOR 1891.
The prices of the different publications in the United The Sclentifc American（weekly），one year－$\quad \$ 3.00$ The Scientific American Supplement（weekily），one $\quad 5.00$

The Scientific American Architects and Bullders
Edition（monthyl），one year，
-2.50
combined rates．
This Scientific
American and Supplement，－－ 88.00 ers Edition，
tects and Builders Edition，－
 or express mones order，or drafter to order of of by postal
MUNN \mathbb{A} Co．， $\mathbf{3 6 1}$ Broadway，New York．

OVERMAN WHEEL CO., MAKERS,

DoYou Renta Telephone?

 , iver and Transmiter oomineis.

NEW KODAKS

You press the button,
we do we do the rest." Seven New
Styles and Sizes
ATLI Lodded with Transparent Films.

THE EASTMAN COMPANY

95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 77, No. 186,787
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use. and all the consequences thereof, and liable to suit therefor.

SIEMEN'S * CABLES.
 TELECRAPH, UNDERGROUND, $+\quad$ * + TELEPHONE, interior, ELECTRIC LICHT.

SIEMENS \& HALSKE by THE EDIAON GENERAL ELECTRIC CO. t their SCHENECTADY WORK:
Wire Department, Edison General Ilectric Company,

sex bulloive,

ELECTRIC

ELECTROMOTOR, SIMPLE, HOWTO

THE COPYING PAD-HOW TO MAKE WORKING MODELS And RERprimental

GRAVESELEVATORS.

SCIENTIFIC AMERICAN SUPPLE-

BALL AUTOMATIC MADE ONLY CUT OFF ENGINE THE BALL ENGINE CO.

THE PHONOGRAPH.-A DETAILED

 Only Boy's Safety with a
Spring Fork, Spring Fork, preventing in-
jury to young riders from WM. READ \& SONS,

SCIENIIIE A MERICAN

ESTABLISHED 1846.
The Most Popular Scientific Paper in the World
Only $\$ 3.00$ a Year, Including Posta
This widely circulated and splendidly illustrated paper is published weekly. Every number contains six-
teen pages of useful information and a large number of original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures, New Inventions, Novelties in Mechanics, Manufactures,
Chemistry, Electricity, Telegraphy. Photnor anhro am-

Canada, or Mexico, on receipt of three dollars by the publishers; six months, $\$ 1.50$; three months, $\$ 1.00$. Chbs.-Special rates for several
Masters. Write for particulars. The safest way to remit is by Express Money Order. Money carefully pliced inside of envelopes, securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk. Address seldom goes astray, but
all letters and make all orders, drafts, etc., payable to
MUN $\&$ CO., $\mathbf{3 6 1}$ Broadway, New York. THE §rientific Gurcricat §upplement This is a separate and distinct publication from THE every number containing sixteen largepages full of engravings, many of which are taken from foreign papers,
and accompanied with translated descriptions. THE Scientific American Supplement is published weeksents the most recent papers by eminent writers in all the principal departments of Science and the Useful
Arts, embracing Biology, Geology, Mineralogy, Natural Arts, embracing Biology, Geology, Mineralogy, Natural
History, Geegraphy, Archæology, Astronomy, Chemistry, Electricity, Light, Heat, Mechanical Engineering,
Steam and Railway Engineering, Mining, Ship Building, Marine Engineering, Photography, Technology, Manu-
facturing Industries, Sanitary Engineering, Agriculture, Horticulture, Domestic Economy, Biography, Medicine, etc. A vast amount of fresh and valuable information obtainable in no other publication.
The most importunt Engineering Wrorks, Mechanisms,
and Manufactures at home and abroad are illustrated and described in the Supplement.
Price for the SUPPLEMENT for the United States and Canada, 85.00 a year; or one copy of the SCIENTIFIC AM-
ERICAN and one copy of the SUPPLEMENT, both mailed for one year for 87.00 . Single copies. 10 cents. Addressaad remit by postal order, express money order, or check,
MUNN \& CO., 361 Broadway, New York,

Publishers Scievtific America
Building EXdition.
The Scientific amelican Architects' and Bullders' Edition is issued monthly. \$2.50 a year.
Single copies, 25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages; forming a large and splendid Magazine of Architecture, richly
adorned with elegant plates in collors, and with other fine adgravings; illustrating the most interesting examples of modern architectura construction and allied subjects. A special feature is the presentation in each number
of a variety of the latest and best plans for private residences, city and country, including those of very moderate cost as well as the more expensive. Drawings in perspective and in color are given, together with fall
Plans, Specifications, Sheets of Details, Estimates, eto The elegance and cheapness of this magnificent work have won for it the Largest Circulation of any
Architectural publication in the world. Sold by all newsdealers. 22.50 a year. Remit to

MUNN © CO., Publisher
PRINTINE INKS The SCIENTIFIC AMERICAN is printed with CHAS
ENEU HJOHNSON \& CO.S INE, Tenth and Lombar
Sts., Philadelphia, and 4Z Rose St.,

