

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, NECHANICS, CHEMISTRY, AND MANUFACTURES.

THE PROPOSED HUDSON RIVER SUSPENSION BRIDGE.
Nearly a year has elapsed since we illustrated the proposed bridge across the Hudson River, to be constructed from designs by Mr. Gustav Lindenthal, of Pittsburg, Pa. At that period the bill authorizing the construction of the bridge had passed the House of Representatives, and was awaiting action by the Senate. The bill has now passed both Houses, has been signed by the President, and is law. Under it the question of the height is left to the discretion of the Secretary of War, provided a minimum height equal to that of the East River bridge be obtained. This question was delegated by the Secretary of War to the Board of Army Engineers, sitting in New York City, and plans have been just approved by the Secretary of War and the height fixed at 150 feet above high water.
The plan of the bridge has been modified in several respects, and we give a perspective view of the proposed structure. It will comprise five divisions: a central span, two land spans, and two approaches. The bridge proper will start from the New Jersey anchorage, abutting on the northwest corner of Bloomfield and Twelfth Streets, Hoboken, and on the New York side will terminate at its anchorage on the northeast corner of Twenty-third Street and Tenth Avenue. The distance between these points, as far as scertained is 6,650 feet The central span will be ascertained, is 6,650 feet. The central span will be ,100 feet from center to center of piers, and the shore spans will be 1,750 feet each, measured as above. The clear span of the central bay is to be 2,920 feet.
At the point selected for the bridge there is a space of 2,740 feet between the pier head lines as established by law. Both piers come inside of this line, so that the legal channel of the river is not to be interfered with. The structure is to be of steel for the roadway and
towers, while stone and concrete (beton) will be used in the anchorage and foundations. These foundations is proposed to establish upon the solid rock.
Double steel towers 525 feet high, on foundations 180 by 350 feet, will carry the cables, which will pass over balancing saddles. The cables, four in number, are to be arranged in pairs, one nearly vertically over the other, and of 48 to 50 inches diameter each. The cables are 55 feet apart vertically. To prevent deformation and to cause the cables to act to a certain extent as truss chords, diagonal braces are inserted between the members of each pair of cables. The whole thus constitutes two arched trusses, which will resist deformation from strains to considerable extent.
The cables are to be made of steel wire, laid parallel,

DOUBLE CABLE ANCHORAGE AND ANCHORAGE PLATES.
and bound together at intervals; but they are not to be bound with wire, as in the East River bridge, but are to be surrounded by a cylindrical sheet steel casing bolted on. This casing is to be water tight, and of such size as to provide two inches of space all around the cable for the circulation of air and for the equalizing of temperature. It has been found that in this gigantic structure uneven heating of the wire cable would produce undesirable strain, and the covering of the cables will to some extent counteract this. The planes of the cable are inclined about eight per cent from the vertical, in order to give stiffness to the structure.
With extreme ranges of temperature, it is calculated that the center of the cables will rise and fall through a range of nine feet. Thus in cold weather the height of the bridge at its center may exceed by $41 / 2$ feet its normal height.
Two anchor columns are placed at intermediate points between the anchorage pedestals and the main towers. These are entirely below the roadway and carry no dead weight, but come into action in cases of unequal loading.
The maximuin load to be allowed is only equal to one-quarter the ultimate strength. As live loads in the calculations, for each of the main tracks a 1,000 foot 1,200 ton train was assumed, and for the rapid transit tracks a 300 foot 200 ton train each, while for the promenade 13,000 men were assumed. All this weight was supposed to be placed upon a single span, with the result of indicating the large factor of safety expressed above. With 1,330 locomotives loading the bridge from end to end, only one-third its ultimate strength will be called upon. The dead weight of the structure will be nearly three and one-hali times this amount. The suspended framework is to be made as rigid as possible.
(Continued on page 323.)

THE PROPOSED HUDSON RIVER SUSPENSION BRIDGE, CONNECTING NEW YORK AND HOBOKEN.

Surutifit gmeritan.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.
terms for the scientific american.
 Remit by postal or express money order, or by bank draft or check.
MUNN \& CO, 361 Broadway, corner of Franklin Street, New York. The Scientific American Supplement.

Building Editio

Ih Edition of the Scienta

NEW YORK, SATORDAY, MAY $23,1891$.

TABLE OF CONTENTS OF

SCIENTIFIC AMERICAN SUPPLEMENT

No. 8O3.
For the Week Ending May 23, 1891.
Price 10 cente. For sale by all newedealers.

U. CHEMISTRY.-An Apparatus for Heating Substances in Glass
Tubes under Pressure. By HiP PEMBERTON, Jr.-A simple appa-
ratus for effecting this purpose, avoiding risk of personal injury. rabes for effecting this purpose, avoiding risk of personal in ijury.-
2illustrations.

 grovit

ORIGINAL WORK IN AMERICA

COLUMBIA COLLEGE, NEW YORK CIT
Resuming the narrative of our inquiries : Seth Low LL.D., President of Columbia College, said: "We at present are in an unsettled condition. Radical change are taking place and entire reorganization is in pro gress; and so, with regard to what the professors in the college are doing in the way of original work, I am notjust now able to speak. It is my opinion, how ever, that this is indeed an important function of th ideal university. The college, is concerned with peda gogics, with the work of teaching what is already known. The university is concerned with higher things than that. Its duty is to add to the sum of human knowledge. The college, of course, is the seed whence springs the university, but it is for the sake of the tree that the college exists. I do not mean by this to deprecate the work of undergraduate instruc tion. This is as essential, as honorable, a vocation a it has ever been. But for those members of Columbia' faculty who have given promise of good work in thi field, it is our aim to secure the time and means where by they can do original work in their respectiv branches. One of the great distinctions between college and a university is the fact that the college concerns itself with teaching what is already known, while the university seeks to widen the domain of what is known and taught. In order to carry on this work in scientific investigation, a new system of fellowships has been established. After July 1, 1891, there will be twelv fellowships, after July, 1892, eighteen, and after July 1893, twenty-four fellowships, each of the value of fiv hundred dollars a year. They are to be awarded by the president, with the advice of the University Council, to those applicants who give evidence of fitness to pursue courses of higher study and investigation, and the com petition for these prizes is to be open to graduates of any college or scientific school. The fellows so ap pointed are to hold office for one year. No fellow moreover, shall be permitted to accept remunerativ employment except by permission of the president." El wyn Waller, A.M., E. M., Ph.D., Professor of Analy tical Chemistry in the Columbia College School of Mines said : "The work of original investigation in science a Columbia is not as extensive as we would wish for owing to the fact that the time which ought to be devoted by the professors to research is taken up by the routine duties of instruction. This is true of all the departments in this school. There is a desire on the part of the officers to engage in this work, but we are all handicapped by lack of time. In spite of this, however, fairly good work is being done in several of the branches of natural science. In this department I have been engaged for some time with the study of the presence of lithia in liquids bearing that name As a result of my investigations, I have found that many of the liquids known and advertised as lithia
waters really contain a very small quantity of this inwaters really contain a very small quantity of this in laboratory of the determination of manganese and zinc as pyrophosphates. The plan for the determination of these metals after precipitation as carbonates, al though very tedious and troublesome, has alwaysbeen the favorite one with chemists. But a method involv less trouble has been called for, and to meet this demand, the precipitate of manganese as pyrophosphates has met with much favor. A question of great uncertainty hasbeen the solubility of the precipi tate in ammonium salts and the volatility of the precipi tate in ignition. In order to reach some conclusion in this matter, three small quantities of pure zine wer hydrochloric and nitric acid. The solutions were then diluted to known bulk, thoroughly mixed and aliquot portions taken for experiment. Precipitates of the solutions were then filtered and washed by decantation. Finally, when no reaction was given by the washings for phosphates, the precipitate by the aid of some nitric acid was dissolved and the solution filtered and poured into a weighed platinum dish ; the zinc being rinsed into the dish with distilled water. The dish and its contents were then weighed, after evaporation and careful ignition. The object of this was to re duce the action of burning filter paper upon the pre cipitate, thus avoiding the consequent loss of zinc The conclusion is that the disregard of this precaution and the consequent loss of zinc was the cause of th former opinion that the precipitate was partially volatilized on ignition. We have also been engaged in experiments on asphalt, for paving and other purposes. An apparatus has been devised to test the hardness of this substance; and many interesting experiments ar being made in this comparatively new field."

Nathaniel L. Britton, E.M., Ph.D., Professor of Botany in the Columbia School of Mines, said: "I am engaged at present with the investigation of the flora of Bolivia, based on the extensive collections made in that country by Dr. H. H. Rusby, in 1885-1886, and the col lections now being made there by Mr. Miguel Bang. I am also making a studyof miscellaneous northern plants including the genera Lechea, Lespedeza, and Ryn chospora. Mrs. N. L. Britton, voluntary assistant in
the Botanical Laboratory, is now investigating the mosses of North America, based on the collection recently made by Mr. J. B. Leiberg, in Idaho. Dr Morong, Curator of the Laboratory, is at work on the flora of Paraguay, based on collections made in that country by himself during the past three years. He is also making a study of the various North American plants with especial reference to aquatics, and a study f the order Halorageæ, a work now nearing comple ion. Among other studies, an important one is that now being carried on at the laboratory by Miss A. M Vail, an interesting work on the North American pecies of the genus Desmodium. Besides this, study is being made of the North American species of the enus Polygala and the genus Xyris.
Ogden N. Rood, A.M., Professor of Physics in Col umbia, said: "I have almost completed an optical investigation with the object of determining quanti tatively the relative intensities of colored lights which are not complementary, also a study of the contrast of color, quantitatively. Besides this, my assistant re engaged on a number of subjects. Among these are : a study of the conducting powers of liquids for electricity, by means of the Kohlrausch method; an investigation of the methods of measuring the velociy of sound, and a study of the electrical resistance of contacts. No member of this department is engaged n any commercial or outside work whatever. There is one feature of work in which some college professor are accustomed to indulge, and which cannot be too trongly condemned. That is when a man under salary rom a great university, trading on the name and fam of the institution, holds himself in readiness to testify as expert witness for a pecuniary consideration. This practice, I take it, is one which ought to be discour aged by the authorities of the colleges where it exists The time of a college professor should be devoted to teaching and to original research, to the interests of the students, and the advancement of science. The office should not be prostituted in such a manner by self-seekers and mercenary men. There is, so far as know, only one institution where this practice is not known, that is at Johns Hopkins. The only reason that makes such expert testimony valuable in the eyes f the jury is the fact that the witness is an officer in a prominent institution of learning; and this looks, to me, like trading in the reputation of the college, and a great breach of, to say the least, good taste."

PROGRESS OF STEAM ENGINEERING

We have received from the Babcock \& Wilcox Com pany a list of some of the high pressure boilers put out by them, which well illustrates the advances made within the last few years in the economies of steam en gineering. The list gives the location of some seventy five boilers, all of which are in constant use, carrying pressures of 200 pounds per square inch to 250 pounds and over. In one instance 300 pounds is regularly car ied. These are mostly used for compound triple ex pansion and quadruple expansion engines. It show that it is not only practicable but economical to carry uch high pressures, if the engine plant is properly de signed.

Theatrical Face Paints.

Torjesen gives the following formulæ :
White.-Oxide of zinc, subnitrate of bismuth, and plumbate of alumina-of each, 1 oz . Mix, and mak nto a paste with almond oil (5 to 6 drachms required) and perfume with 12 minims of peppermint oil, 12 grain of camphor, and a drachm of ess. bouquet.
Bright Red.-Oxide of zinc, subnitrate of bismuth and plumbate of alumina-of each, 10 drachms; eosin, $21 / 4$ grains, dissolved in a drachm of ess. bouquet; oil o peppermint, 12 minims; camphor, 12 grains; almond il, a sufficiency to make a paste. Mix as above
Deep Bordeaux Red.-Oxide of zinc, subnitrate of bismuth, plumbate of alumina-of each, 15 drachms il of peppermint, 12 minims ; camphor, 12 grains; car mine, 30 grains (dissolved in 80 minims of solution of mmonia); almond oil, a sufficiency ; ess. bouquet, $11 / 2$ drachms. Mix.
Skin Color:-Vermilion, 3 drachms; tincture of saf ron, 2 drachms; powdered orris, 5 drachms; precipi tated chalk and oxide of zinc, of each, 20 drachms camphor, 20 grains; oil of peppermint, 20 minims ; ess bouquet, $11 / 2$ drachms; almond oil, a sufficiency. Mix. Black.-Drop black (made by burning camphor and washing the soot with spirit), 2 drachms; almond oil 2 drachms; cocoanut oil, 6 drachms. Mix, perfume and cast into sticks.

It Pays to Advertise in the Scientific American. In a recent letter to the publishers of this paper the Felt \& Tarrant Manufacturing Company, of Chicago writes

We hardly think it advisable to change our adver isement in the Scientific American, as the present wording brings us a constant stream of inquiries and numerous sales. It has brought us orders direct from South America, Brazil, Mexico, Peru, India, and al principal countries of Europe, and is by great odds the best advertising medium we have yet found.'

The Influence of Different Foods and Medicines

 by dr. wolff.The author in making a series of experiments upon the influence of various articles of diet and medicine upon the gastric juice first ascertained the ordinary amount of acid present in the stomach of the person experimented upon and the time of its disappearance after Ewald's test meal, consisting of a roll weighing about an ounce and a quarter and ten ounces of water, and used the results as a standard for comparison
When certain quantities of alcohol were added in the shape of 50 per cent cognac or Munich beer, the conclusion arrived at was that small quantities of alcohol, about 20 per cent, have a slight power of raising the HCl secreted, but in larger doses, 30 per cent or over, they hinder the secretion and peptonization. Besides, the experiments seem to show that, when regularly used, the stomach, after a time, fails to respond to its usual stimulus, the food; the required amount of stimulant becomes greater, the use of alcohol more frequent, the glandular function of the stomach becomes more and more affected, and the way is opened to the whole train of dyspeptic symptoms, ending at last in atrophy.
Concerning the influence of coffee in infusion, he can give no information, because the color of the beverage interferes with the reaction of color tests. He substituted, therefore, caffeine, which he administered in the form of powders along with rad. altheæ. The result is that in doses of 20 cg ., and still more in larger quanti ties, it has the property of lessening the total acidity at the height of indigestion; it also lessens the secretions of HCl , and delays peptonization. Since that amount of caffeine exists in the quantity of coffee taken usually by men, and more especially by women, w may assume that it has a similar action upon them.
Nicotine was next experimented with, a certain quan tity-one mg.-being introduced by the sound after a test meal. Only three patients were tested, and of these, in two cases, there was a very slight rise in the acidity; in the third, a slight rise also at first, but after several days' use a material lessening of the secretion and delay in peptonization. The experiments are admitted to be too few to draw safe conclusions from

Turning to the action of bitters on the secretion, Dr Wolff refers to the experiments of Tschelzoff on ani mals, and Jaworski on men, which show that these drugs lessen the secretion of acid to such a degree that Jaworski attributes the commonly supposed beneficial employment of them in dyspepsia to their influence in lessening the acidity where hypersecretion exists. Wolff tested first the action of nitrate of strychnia in doses of $0.5-1.5 \mathrm{cg}$. The effect was found to be that where the acidity was below the normal, strychnia considerably raised it, but where HCl was habitually absent, the drug failed to call it forth. Infusion o cundurango seemed to have no, or very little, influence on the acidity, but a slight increase of the secretion of pepsin may be produced. Reichmann's experiments, a review of which was published in the Chronicle, gave nearly the same result. Bitter infusions poured into the fasting stomach produced less secretion than plain water, but when administered along with food, th bitter quickly disappears, and the secretion is after ward considerably increased; where, however, alkalin or neutral juice is ordinarily present, bitters are un able to provoke the secretion of HCl .
Three persons were experimented on with 15 to 20 c. cm. of ox gall, administered along with a test meal It was found that the acidity was thereby lessened but there was no considerable diminution of the HC or hindrance to peptonization.

Administering 5 g . of common salt with the test meal to patients either with lessened or increased se cretion of HCl invariably lessens the amount of HC present, in cases of hyperacidity to one-half, with a corresponding improvement in the symptoms. The beneficial action of such waters as Wiesbaden and Kissingen must therefore be chiefly attributed to the lessening of the secretion of HCl , but their influ ence on absorption and the motor function of the stomach may be beneficial, and that on metabolism generally must not be neglected

The author cites, before making experiments of his own on the action of Carlsbad salts, the results of the own on the action of Carisbacs salts, the results of the latest experiments of Jaworski, that "small quantities
of Carlsbad water or salt stimulate the secretion of acid of Carlsbad water or saltstimulate the secretion of acid
and the digestive activity, but when used in large and the digestive activity, but when used in large
quantity they stop the secretion and digestive power for several hours; that under this medication from day to day the activity of secretion and digestion constantly diminish, and at last the sensibility of the stomach to irritants is lessened to such an extent that no kind of food suffices to produce acid and frequently not even pepsin secretion." Ewald found, however, that in ten persons subjected to a course of thermal water, and terted at frequent intervals during the time, half had slightly lessened acidity, the other half increased, and the lessening occurred in those who before the treatment had a high acidity. Jaworski has also found
cal Chromiche for August.
borax to act primarily as an irritant in small doses, but in large doses it causes a lessening or total drying up of the secretion.
Wolff, on the ground of the experience obtained o the action of common salt, Carlsbad salt, and borax, has administered a powder of the following composi tion in cases of hyperacidity, with or without hyper secretion, with great success : Sulphate of soda, 30 g . sulphate of potass., 5 g .; chloride of soda, 30 g .; car bonate of soda, $25 \mathrm{~g} . ;$ sodæ bibor., 10 g .; half a tea spoonful three times a day, in half a glass of lukewarm water, fasting, and two hours before dinner and sup per. In a typical case of hypersecretion the quantity of fluid in the fasting stomach was reduced, by four weeks' treatment, from $50 \mathrm{c} . \mathrm{cm}$. to a few cubic centimeters, and the acidity, at the height of digestion, by one-third.
Referring to the influence of acids on the secretion Wolff found that when hydrochloric acid was admin istered to three patients in whom it was habitually absent, for periods of eight days, there was not in a single case any distinct action on the HCl secretion. A dis tinction ought to be made, perhaps, according to the results of Jaworski's experiments, between ordinary acids and carbonic acid, since the latter exercises a purely mechanical influence, and in some raises the acidity considerably, and increases the peptic power of the gastric juice.

Dangers of Pharmacy.

Mr. George Weddell contributed lately a paper on this subject to the Newcastle-on-Tyne Chemists' Assistants' Association. The full title of Mr. Weddell's paper was, "Some Dangers of Pharmacy in Storing, Handling, Manufacturing, Dispensing, and Selling Danger ous Drugs and Chemicals." In this paper he said he was only opening a rather extensive subject. He had been favored with assistance from Mr. Atkins, of Salisbury ; Dr. W. Inglis Clark and Mr. Dott (Duncan, Flockhart \& Co.), Messrs. Smiles and D. Mackenzie (T \& H. Smith \& Co.), and Mr. Peter Boa, of Edinburgh; Mr. Lane (Woolley, Sons \& Co.), Manchester; Mr Martindale, Mr. C. Umney, and the editor of the Chemist and Druggist, London; also from his local confreres, Messrs. Bambridge, Clague, Park, and B. S. Proctor ; and from Mr. Linford (Lofthouse \& Saltiver) Hull. Mr. Weddell said it was impossible in a single evening to go thoroughly into all the dangers of pharmacy, but promised that if members of the calling would assist him by sending him their experiences of danger, whether physical, chemical, physiological (poisons), or legal, he would, when leisure permitted bring the matter in a more or less compactform before the general body of chemists and druggists. He also asked them to consider nothing too commonplace, or, on the other hand, too uncommon, to be communicated, and promised due acknowledgment to contributors. The points on which he invites information are danger incurred in:

> Storing,
Handling,
> Manufacturing,
> Dispensing,
and
> $\stackrel{\text { and }}{\text { Retailing }}$

The following are among compounds mentioned by Mr. Weddell :

INFLAMMABLES.
Mistures of \mathbf{H} and \mathbf{O}.
Cotton wool (near gas).
Sugars (in sirup making)
Ethers.
Sugars (in sirup making) near light).

Ac. carbolic (in liquefying). Fats and oils.
Carbons? Hydrocarbons.
EXPLOSIVES.
Siphons of aerated water Argent. oxid.
otass. chlor. (powdered in iron
mortar, or trampled under
mortar, or
Mercuric oxalate (in powdering).
Argentic oxalate (in powdering). Picric acid and picrates. Picric acid and
Nitroglycerine.
Nitroglycerine. stopper).
Argentic oxalate (in powdering).
Fulminates of silver and mercury stopper).
Hypophosphite MIXTURES.

poisons
of various kinds were mentioned by the author, with precautions to be observed ; and also a number of dangers of various kinds to be guarded against at the re-
labels on liniment and mixture bottles; labeling strong drugs "Poison," or "With caution," even (when for internal use) in giving customers what they ask for protest or caution, if necessary ; badly dried bottles for kali; when temperature rises, see to stoppered bottles, in case they burst ; volatile liquids not to be kept on a high shelf ; carbon bisulph., etc. ; powdering chrysarobin, corrosive substances, plumbi acet., potass. cyanide etc. ; a mixture of calomel and gum forms a cement in pills, danger of not having active ingredients (strychnine, ext. physostigmatis, etc.) thoroughly mixed ; putting nitric or other strong acid in dirty bottle (turpentine, etc.); using distinctive bottles for external applications.
In closing, Mr. Weddell briefly touched on the legal dangers which beset the unwary pharmacist, such as drugs not up to requirements (Sale of Food and Drugs act) ; drugs under common names (citrate of magnesia milk of sulphur, sweet spirit of niter, etc.); sale of S.V.M. on Sundays; sale of same for drinking or with out license; use of same in preparations capable of be ing used internally; use in patent medicines (although unknown to seller); use of still without license, or fo methylated spirit preparations; sale of medicated wines without license (if capable of being used as a beverage) ; acting as an apothecary (do not take pay) ; ships' medicine chests (not to requirements); stamp duty ; poisons not labeled, or insufficiently so; sale of medicines capable of being used forimproper purposes buying goods dishonestly acquired, etc.

Chicago Exhibition, 1893.
The Exhibition is to be opened on the 1st of May, 1893, and closed on the 30th of October. All govern ments have been invited to appoint commissions for organizing the foreign sections. The duties of thes commissions will be the same as in previous interna tional exhibitions, applications for space having to be addressed to the commission of the country where the article is produced. The general reception of artiles at the Exhibition is to commence on the 1st of November, 1892, and no articles are to be admitted after the 10th of April, 1893 ; but special installations will be permitted to be commenced as soon as the con dition of the buildings allow. Products intended for competition must be so described; if not, they will be excluded from examination by the juries. The officia catalogue is to be in English, French, German, and Spanish. The following are the twelve divisions of the classification :
A.-Agriculture, forest products, forestry, machihery and appliances.
B.-Viticulture, horticulture, floriculture.
C.-Live stock-Domestic and wild animals.
D.-Fish, fisheries, fish products, and apparatus for fishing.
E.-Mines, mining, and metallurgy.
F.-Machinery.
G.-Transportation-Railways, vessels, vehicles.
H.-Manufactures.
J.-Electricity.
J.-Electricity.
K.-Fine arts-Pictorial, plastic, and decorative.
K.-Fine arts-Pictorial, plastic, and decorative.
L.-Liberal arts-Education, engineering, public works, architecture, music, and the drama.
M.-Ethnology, archæology, progress of labor and
invention, isolated and collective exhibits.
A limited amount of steam and water power will be supplied gratuitously. Power in excess of that allowed gratuitously will be furnished at a fixed price.

Value and Importance of Trade Marks.

In these days of bitter trade competition and price cutting, the value of patents and trade marks is much more appreciated and sought after than heretofore. In many cases a trade mark is the foundation of great enterprise and the principal.grounds for success. A trade mark is any arbitrary word, sign or symbol applied to goods placed for sale on the market. The adoption of a trade mark and the application of the same to the goods immediately creates a common law right therein, which the proprietor may and does hold exclusive to all others. The principal requirement to constitute a right in a trade mark is that the word, sign, or symbol right in a trade mark is that the word, sign, or symbol
shall be applied to goods placed on the market. One shall be applied to goods placed on the market. One
cannot appropriate a trade mark by simply publishing the fact that he or they contemplate the use thereof.
They should place the mark on the goods, or other wise no right arises. Trade marks are allowed to be registered in the United States Patent Office upon the payment of the government fee of $\$ 25$ and filing certain fac-similes and an application. They are registered for thirty years, with the privilege of a renewal for like periods upon the payment of the fee required. It will be seen that a trade mark protection is practically unlimited as to time. There have been some thirty-odd thousand trade marks registered in the Patent Office and the number of yearly registra:ions is continually increasing, which illustrates the fact that the community is becoming more convinced that trade mark protection is of great importance and very beneficial to the proprietors.-Hardware and Metal Review.

A DRILL TO FACILITATE BLASTING

The illustration represents a drill specially designed for boring into coal banks, and adapted to form at the end of the bore a pocket for the reception of a large amount of powder, thus increasing the effectiveness of he blast and lessening the liability of blowing out the tamp. A bar or base piece has on its under face near one end a spur adapted to be driven in a proper supporting position, and near the outer end of the bar is pivoted a yoke having sockets in which is held a horizontal guide box. The latter is made in hinged sections, which, when locked, form channels for the reception of a drive shaft having a longitudinal face

WATTS' POCKET-FORMING DRILL.

groove, and a polygonal socket at its forward extremity. Connected with the drive shaft at the rear of the guide box is a spur wheel meshing with a pinion, through which, by means of a crank, the shaft is revolvcd. The extremities of an elongated U shaped frame are pivoted on the trunnions of the guide box, and upon this frame is a hinged sliding clamp, with a clamping screw to draw its mombers together. The clamp has central channels adapted to receive the circumferential recessed surface of an externally threaded bit rod casing, which also has a spiral external groove extending nearly from end to end. The bit, hold in the outer end of the casing, consists of two members having approximately circula heads with outer cutting edges, and integral shanks pivoted to the outer end of a bit rod, as shown in the small figure, the rod being capable of longitudinal movement in the casing, and its other end being connected with the forward end of the drive shaft. When the hole is being drilled the members of the bit over lap one another, and extend but a slight distance beyond the casing, but when the hole has reached the desired depth, the thumb screw of the clamp is tight ened to prevent the further forward movement of the casing, while the bit rod is forced outward by the further operation of the drive shaft, causing the bit members to expand to form a pocket at the end of the bore, as shown in dotted lines in the small view. The chips produced in the operation escape through the spiral groove of the casing.

Further information relative to this invention may be obtained by addressing the patentee, Mr. Julius R Watts, in care of McCullough Bros., No. 124 North Fifth Street, Springfield, Ill.

A LOCOMOTIVE SPARK ARRESTER.

The illustration represents a construction designed to prevent the sparks and cinders of a locomotive from falling upon a train or surrounding lands and buildings, while also facilitating the more complete combustion of the fuel. It has been patented by Mr. Edson J. Hadlock, of Big Spring, Texas. The swoke stack is curved rearwardly, and a spark arrester of the same height as the smoke stack fits upon a box at its rear. The spark arrester is divided by a curved partition into two chambers, the opening of the for ward chamber being in horizontal alignment with the
nozzle of the smoke stack, while the rear chamber opens into the air, and both chambers communicate with the box below. This box has a double deflector, raised in its central portion, and opening from each side of the box are pipes which extend along each side of the boiler to a point of discharge in a cinder box beneath the cab. Each of these pipes also has a branch opening communicating with the fire box, but these openings are not used at the same time with the openings in the ends of the pipe. Pivoted in the bottom of the cinder box is a danper, a rod from which extends upward into the cab. In the bottom of the ash pan are transverse slots, while there are corre sponding slots in a slide adapted to be operated by a lever extending up into the cab, whereby the cinders and ashes may be dumped at convenient points. At the rear end of the ash box is a damper adapted to be operated, through a bell crank, from the cab. It is designed that, with this invention, the ordinary damp ers may be dispensed with, sufficient air being admit ted through the dampers in the cinder box and at the rear of the ash box. Figs. 1 and 2 represent a modified form of the arrester, attached by flanges to the supporting box on the top of the boiler, the smoke in this form of arrester all passing through the branch pipes into the fire box. In the form shown in Fig. 3, the heavier portions of the smoke are designed to pas downward, while the lighter parts may pass upward from the rear chamber of the arrester.

Cement which Resists Acids

The following substance, it is said, will protect cement from the influence of acids: Melt together care fully one part of caoutchouc (India rubber) with two parts of linseed oil, and gradually incorporate with it three parts of white bole, so as to form a plastic mass This cement is not at all attacked by hydrochloric and but very little by nitric acid. When heated it softens but very little. It does not easily dry upon the surface New Remedies says, if this cement is mixed with one fifth of its weight of litharge or minium, it dries up in the course of time and becomes hard. This is known as Benicke's cement.

AN IMPROVED GATE VALVE.
The valve shown in the illustration is especially de signed for low pressure steam, water, gas, oils, etc. It is a double disk straight-way valve, operated by a lever instead of a wheel, the position of the lever indicating the opening of the valve. The disks are secured to the operating stem and adapted to close against tapering seats in the valve shell, and, having ball and socke

LUNKENHEIMER'S "HANDY" GATE VALVE.
bearings at their back, are evenly wedged agains their seats when the valve is closed by the lever. Th tem has a tapering flange upon which bears a non-ro tating friction washer. This valve is manufactured by he Lunkenheimer Brass Manufacturing Company, of Cincinnati, Ohio, and this company, in addition to its former facilities, has recently purchased the entire plant of the Porteus Manufacturing Company, of the same city

It is estimated that in the year 2000 no less than $1,700,000,000$ people will be speaking the English lan guage, while only $500,000,000$ will be speaking othe European tongues. English is thus indisputably the language of the future

Hadlock's spark arrester

AN IMPROVED FREIGHT CAR COUPLER
The illustration represents the application of novel attachments to facilitate the coupling of freight cars without it being necessary for the trainmen to go between the cars, while the construction is such as to be readily applicable to the drawheads now everywhere in use. In the rear of the drawhead opening, as shown in Fig. 2, a coiled spring surrounds a rod having a downwardly extending lug, adapted to move forward and backward in a slot in the bottom of the drawhead. The projecting end of this lug is connected to a mov able shoe plate, shown in Fig. 3, and the forward end of this plate is adapted to cover vertical openings in

MARSHALL'S CAR COUPLER

the drawhead in addition to the regular pin openings. The coupling pin is raised by a lever, whose outer end extends to the side of the car, where it has a handle, the lever being connected to the coupling pin by a short chain. On the coupling pin are forwardly ex ending vertical arms, adapted to fit within and work hrough the additional vertical openings, and to rest pon the shoe plate. Normally these arms hold the coupling pin in elevated position, as shown in Fig. 2 but when the shoe plate is moved backward by the entrance of an opposing coupling link, and its pressure gainst the spring, the pin-supporting arms are re leased and the coupling pin drops, thus effecting the coupling. The sliding shoe cannot then be moved forward until the coupling pin has been raised to its full height by means of the lever at the side of the car In order to hold the link in line with the drawhead opening of an opposite car, as shown in the general view, Fig. 1, an operating lever is secured in proper position in suitable hangers, the outer end of this lever having a handle, so that it may be operated from the side of the car. Upon this lever is secured a rod, in the forked lower or outer end of which a weight is pivotally held, the upper end of the weight being of a shape to enter the opening of the loop. Upon the lever, between collars attached thereto and the inner hangers, are spiral springs, permitting the lever to be moved a little to one side or the other when the link hangs at either side of the center line, the link being thus conveniently held in position by the operator at the side of the car. The slack deemed essential in starting and hauling heavy trains is not sacrificed in the use of these attachments, the connections between the cars remaining as at present.
For further information relative to this invention, address the patentee, Mr. J. E. Marshall, Martinez, Cal

A Gas and smoke Helmet.
An apparatus likely to be useful in gas works in cases of emergency when valves have to be closed or repairs effected in an atmosphere charged with either coal or carbonic acid gas, or thick smoke, is Kleeman's respirator. The appliance consists of a leather helmet, a bellows, and a hose for connecting the helmet with the bellows. The helmet fits tightly over the head, having a visor with glazed sights very much like an ordinary diver's helmet, only of course much lighter and differently fitted. The fresh air enters the mouthpiece, by means of a suitable connection with the hose; flows round the face and head of the wearer; and finally escapes through a valve on the top of the helmet. The necessary adjustments are very simple; so that any one can learn how to use the appliance after a short trial. The weight of the helmet is only $2 \frac{1}{5} \mathrm{lb}$., and it is stated that it does nut interfere in any way with the movements of the wearer. Since the head is wholly protected by the helmet, the eyes are not incommoded by smoke or acid gases. The bellows are, of course, to be worked in pure air at a distance by an assistant; but the whole arangement is naturally lighter and handier than diving apparatus.

IRON rusts readily in all locations when alternately cold and hot, but particularly with a porous material which prevents the moisture from evaporating freely.

THE PROPOSED HUDSON RIVER SUSPENSION BRIDGE. (Continued from first page.)
 It comprises trusses, also of 55 feet height, to accommo date the decks.
 A wind pressure of 50 pounds to the square foot has been assumed as a basis for the calculations, and to resist it two horizontal trusses, 115 feet deep, extending continuously from anchorage to anchorage, are provid ed. This represents the space afforded for the decks, which are of this total width, being a few feet less in the clear.
 Of these decks there are to be three, although it is designed to construct only one of them at present. The lower one is to carry for the present six and ultimately eight tracks for regular railroad service. On the second deck there are to be four rapid transit tracks and there is room for two additional heavy service tracks. The third deck is to afford a promenade twenty feet wide. It seems a pity not to arrange a roadway for carriages, as it would afford a most impressive drive, but the approaches for such roadway from the low ground on either shore are considered impracticable, and the ferries are relied upon as more convenient for wagon traffic. As regards the question of height, this is limited by the necessity of preserving a pro per grade. At the height of 135 feet, as originally proposed, at $60^{\circ} \mathrm{F}$. the grade upon the New York side is 1.9 per cent, or 95 feet to the mile, and on the New Jersey side 1.4 per cent The heavier grade is more than is desirable. The middle span, in order to keep the grade
 Something about Gas Pipes.
 The following is from a recent discussion by the N
 E. gas engineers
 "What is the smallest size cast iron pipe that it is policy to lay?" The answer was : Nothing smaller ton said: Much wrought iron pipe is being used fo mains through the West, up to 6 inch pipe, particularly in the smaller towns and cities. While they admit tha the cost of the pipe is somewhat more, yet they think there is an economy in using it (although it has not been employed long enough to determine the fact), in two ways : First, by the leakage, because the pipe can be made absolutely tight; second, in the cost of laying, for the lengths can be screwed together very much faster, and at a very much less cost, than cast iron pipes can be put together in the ordinary way. Mr
 PPRROACHES

 low, is restricted to a rise or camber of not more than 19 feet. Shipping will be to some extent inconvenienced by the lower height, but it is stated that last year only seventeen ships lowered their upper masts to pass under the Brooklyn Bridge.The New York station is to be in the neighborhood of Sixth Avenue, above Twenty-third Street. It is to be 1,300 feet long, and is to include a 400 foot loop for drilling trains. The approaches to the anchorage will be largely of stone and brick. On the New Jersey side the approach will extend across Bergen Hill through an open cutting. At the two anchorages passenger elevators will be provided, giving access to the foot promenade.
The future work of the bridge is based upon the pre sent traffic from the New Jersey shore. Daily, over 150 express and 680 local trains arrive at and depart from this locality. The Hudson River ferries carry now fifty two million passengers annually, and it is believed that thirty millions of these would use the bridge during the first year of its existence. It must be remembered that it may take ten years to complete it, and that the traffic will be increasing meanwhile
Again, as regards its capacity, it is found that the New York elevated railroads carry one hundred and eighty millions of passengers annually on eight tracks, and the Brooklyn Bridge carries thirty millions on two tracks. There is to be no restriction on speed on the Hudson River Bridge, so that its capacity pro rata will be still greater.
The government and direction of the company is vested, by the act of Congress authorizing the build ing of this bridge, in a board of seven directors. The president of the company is Mr. Jordan L. Mott, of New York, and the other directors are Edward F. C Young, of Jersey City; Thos. F. Ryan, Charles J. Canda, and Wm. Brookfield, of New York; James Andrews, of Allegheny, Pa.; and J. K. McLanahan, of Hollidaysburg, Pa.

The Deepest American Well.
An 8 inch well which is being sunk near Wheeling by the Wheeling Improvement Company, in a search fo oil or gas, has reached, after several months of boring, a depth of 4,100 feet. Both oil and gas have been struck throughout in paying quantities. It has gone through several thick veins of coal, and has traversed layers of gold quartz, iron and numerous other min erals.

Professor J. C. White, State Geologist, who has watched the drilling closely, has succeeded in getting the government interested in it. The result is that after the well has been sunk to the depth of one mile the government will take up the work, and, under the direction of expert officers of the Geological Survey drill into the earth as far as human skill can penetrate.
The temperature and magnetic conditions will be ob served as far as possible, and, by means of an instru ment constructed for the purpose, a complete record of the drilling and all discoveries made will be kept. This record will be placed in the Geological Survey's ex hibit at the World's Fair and afterward preserved at Washington. Professor White and the government officers state that this will be one of the most novel and important exhibits at the Fair and will attrac the attention of the scientists of the world.

Iron corrodes with great rapidity at or about the temperature of boiling water.

Lamson thinks they will have trouble in the end. In small towns it will not be so bad as in cities, but in cities if you lay wrought iron pipes where you are liable to have the ground saturated after a time with urine from horses, the deterioration of wrought iron pipe will be found to be something very considerable. Cast iron pipe will stand it, wrought iron pipe wil not; trouble will surely follow.
As to putting wrought iron pipes in the ground, Mr. Shelton said: If I were going to lay such pipes, I would coat them. I think the trouble with wrought iron pipes, by reason of their too rapidly giving out, can be overcome in this way. The company I am connect ed with adopted some years ago the standard coating used by General Hickenlooper, of Cincinnati. I think some 10 or 12 years ago he looked into that question and formulated a recipe for coating service pipes, which he adopted as a standard, and has used ever since. He claims that the services last indefinitely Hence the coating is very satisfactory. It was satis factory enough to cause us to adopt it as our standard and our rule is that no service pipes shall be laid under any circumstance without being coated. It is a solu tion of rubber, tar, lime and turpentine. It is easily wade at the works, and the men can dip enough pipe n a single afternoon to last them for a year. When they lay the pipe they have only to carry the pitch along with a brush, so that whenever the tongs make any nicks in the coating, just before filling in th

MAP OF NEW YORK CITY, SHOWING LOCATION OF HUDSON RIVER BRIDGE.
earth, they can coat it by hand. I do not see why that should not apply to wrought iron pipes of large size. It certainly pays to prepare them in small sizes in tha way. I am myself a believer in wrought iron pipe. I think we are coming to it. We would be surprised at the amount of wrought iron pipe used in the West, as Mr. Nettleton says; but they have to be coated in ome way. You can save leakage and can mak them absolutely tight. You can lay them quicker wrought iron pipes will be the thing.
Leaded Pipes. - A firm in Philadelphia says Wrought iron service pipes may be lead-coated and rendered proof against rust or decay from dampness, or from passing through soil having an affinity for iron, which in many cases eats out a service pipe in a few months, swelling the leakage account considerably before the fault is discovered. Sheetiron for roofs and sides of buildings may be lead-coated and protected
against the action of the smoke and gases in the generator and purifying houses, and being equally proof against rust from the action of the weather outside, affords a valuable addition to the buildings of a gas plant. We have coated materials for service pipes for gas companies, roofs, smoke stacks and car roof for railroad companies, and for roofs for buildings for ron furnaces, and in these most trying positions our lead coating has been entirely satisfactory."
Galvanized Pipes.-Mr. Allyn said: "Any one who has had experience in using galvanized pipe must know here is a serious objection to it, while at the same time it certainly has its advantages. We have used nothing for our services for the last twelve years but galvanized pipe, but we of ten find a lot of pipe in which the fiber of the iron is entirely destroyed by the action of the zinc in galvanizing the pipe. A year or two ago we had a lot of pipe, mostly $11 / 2$ inch, which was rendered so brittle that as soon as the cutter wheel commenced cutting it the pipe flew apart like a piece of glass. We often find pipe in which the galvanizing has been improperly done, or put on at too low a temperature, and we occasionally find pipe which is filled nearly one-half with the zinc oxide of the pipe."

Liquid Fuel.

At a recent meeting of the Shipmasters' Society, London, a paper was read on "Liquid Fuel in Ocean Steamers," by Cap tain W. V. Carmichael. Premising that the question of liquid fuel in steamers was not a new one, the lecturer stated that, partly owing to the cheapness of coal, and partly to the tim idity of owners to adopt it, the use of oil fuel had not been much taken up by steamship owners.
Now however the aspect of affairs was changing. By the use of petroleum he stated that the fires were com pletely under the control of the engineer on watch who would regulate them so as to have any pressure of steam he required, without being dependent on his fremen. The great advantage of oil fuel to the ship wner was that he could carry his fuel in a space that was now wasted, namely, a cellular bottom of the ship or in ballast tanks. As the consumption of oil, com pared with coal, was, weight for weight, one half-ten ons of coal, in other words, being only equal to five of oil-the storage of fuel could be made much more compact and easier of access; there was increased speed in fueling the ship; and port charges were avoided, as more fuel could be carried in proportion than formerly Petroleum was known to exist in all parts of the habit able globe, and it was hardly probable that competi tion would not bring the fuel within easy reach of the ommercial world.
For many reasons oil fuel was of more value to tor pedo boats and ships of war than it probably was to merchant steamers. As to the question of fueling our men-of-war at sea during a blockade, he thought that the large tank steamers of the present day could always fuel the fleet even in heavy weather. He maintained that the oil was perfectly safe while on board ship that it could be stored on shore easily, and in the even of a fueling port being bombarded, shells could no set fire to the tanks; and it could bchandled withou risk of fire or explosion from the shore to the ships, o ice oersa
His object in reading the paper had been to allow the mercantile world in general, and the members o the Shipmasters' Society in particular, to know the progress oil fuel was making; the comfort it was to engineers and all concerned; its pecuniary advantage to the merchant who could avail himself of it ; it peculiar adaptability to ships of war ; and its specia value to large, first class passenger steamers, where cleanliness and the comfort of the passengers were de sired. It could be adapted to any boiler, either afloat or ashore

Water Power Lighting.

The village of Faido, on the line of the St. Gothard Railway, has an electric light plant, erected within the past year, in which water power is used to drive the machinery. The water is stored in a reservoir above the falls of the stream near the village, and thence is led to the power station through a 6 in . cast iron pipe. The power station is equipped with a turbine, which with the available head of 145 meters-about 475 feetdevelops about 45 horse power. Two constant current dynamos are used, furnishing a current of 160 ampere and 140 volts. One of them only is used in the ordinary work, the other being held as a reserve. The vil lage is lighted by 360 incandescent lamps, working at 120 volts. The street lamps have about 25 candle power each; those in private houses range from 16 to 25 can dle power, and those at the railway station from 16 to 32 candle power.

ONE dollar a minute is the charge for using the new elephone line between London and Paris. Distance about 280 miles. Forty cents a minute is the price be tween New York and Washington, about 240 miles.

Historic Spoons, the Latest Fad.

This is an age of spoons-historic spoons. The Board of Trade Journal, Providence, R. I., gives a list of the historic designs which many bear. In Salem, a former dwelling place of witches, the first historic spoon appeared. This spoon, or perhaps the idea, was received with such favor that other spoons came forth.
In this country there are many "collectors." They collect anything, from post stamps to middle-aged armor. Some collect one thing and some give their at tention to several things. When historic spoons began to appear, collectors sprang up. They were delighted. Ah, here was something new-spoons, historic spoons of sterling silver and worth. How interesting a collection of spoons all different, and every one a memorial or a reminder of some event of great historic worth.
Manufacturers of spoons saw their opportunity and improved it, and the result to-day is that many spoons are bidding for money in towns and cities from Maine to California. The spoon in Plymouth, of course, is a "Mayflower spoon." In Hartford the Charter Oak is recalled by a spoon with the oak engraved on the handle. Portland, Oregon, has a spoon, design unknown. New Orleans has a spoon with canestalks, a crane, and a cotton bale as embellishments. Portland, Me., engraves the historic observatory on a spoon. The Spring field spoon bears the likeness of Miles Morgan, a pioneer. Chelsea's spoon honors Winnisemmet, a friendly Indian who owned Powder Horn Hill, and sold it for a horn of powder. A powder horn is shown on the spoon. It is a leading spoon.
New York has a spoon to revive and perpetuate Knickerbocker history, and one to honor Rip Van Winkle. Washington has two spoons, one showing the executive mansion and one on which the Washington monument is engraved. Of course the Mount Vernon spoon shows the home of Washington. Pittsburg's spoon has an oil derrick and a gas well for ornament. St. Paul combines the falls of Minnehaha and old Fort Snelling on the handle. Milwaukee honorsits founder, Solomon Janeau. In Boston there are several designs The first showed Paul Revere's ride. New London, Conn., places on her spoon a sketch of an old mill, and pays no attention to Pequot history. Lynn's spoon is ornamented by Moll Pitcher and her black cat. The Portsmouth spoon commemorates Went worth mansion. An "Old Man of the Mountain" spoon is another New Hampshire design. The spoon from Manchester bears the portrait of John Stark, the hero of Bennington Worcester places Bancroft's face on its spoon handle Four spoons show how the poet Whittier is esteemed. Haverhill gives his birthplace, and Amesbury his resi dence, the "Captain's Well," and a " Whittier Head."
Portland, Me., the birthplace of Longfellow, place a medallion portrait of the poet on a spoon, and has also a Priscilla spoon, a Miles Standish spoon, and a Hiawatha spoon. Providence has its Roger Williams spoon.

New Armor Trial.

An interesting test of armor has recently taken place on the Naval Ordnance Proving Grounds at Annapolis, being the trial of a plate made in this country on a new system, that of Mr. H. A. Harvey of Newark, founded on the homogeneous steel of Schneider and adopting the admitted improvements of a nickel alloy, but using a new process of manufacture.
This process is that of decarbonizing the surface of the steel plate so as to give it a very high temper and extreme hardness, with a view to breaking up even the best projectiles. Taking a homogeneous plate of mild steel throughout, or of steel with nickel alloy, the front surface is treated by this process, with a gradual diminution of it in the interior, while the back of the plate remains untouched. The object in not continuing the hardening process throughout is to retain the toughness and tenacity of the mild steel at the back, so that if the projectile should break up the front, the tendency to crack all the way through will be avoided.

The Harvey plate in the present trials was manufactured by Carnegie, Phipps \& Co., of Pittsburg. In a preliminary test of the Harvey process, made last February, a plate $101 / 2$ inches thick was fired at by a 6 inch gun. Six rounds were fired, half with Holtzer and half with Carpenter or Firminy projectiles. The Har vey plate was very severely cracked by the end of the trial, but the naval authorities had grounds to believe that for a single shot a plate made under this process might resist better than any other ever manufactured. In fact, this armor had shattered two of the Carpenter shells, which had penetrated less than half way and one of the Holtzer, which did not get quite through. It was accordingly determined to try several other Harvey plates, to be made for experimental pur poses by the Pittsburg firm.
In order to test thoroughly, not only the intrinsic strength of the Harvey plate, but its relative efficiency, it was further determined to try no fewer than five plates, two of which should be of homogeneous steel, one of steel with a nickel alloy, and two of the nickel steel manufactured by the decarbonizing Harvey process, all made at the Pittsburg works and each eight
feet long by six feet wide, but with a thickness of only three inches. This latter represents the protective decks and shields of some of our war vessels, and is
sufficient for illustrating the comparative merits of the systems of manufacture Of course they could not be attacked by heavy guns, and a six-pounder Hotchkiss rapid-fire gun was substituted. The plates were ar ranged at a distance of about twelve yards from the gun, and twenty rounds were fired against each plate. The result was the complete destruction of the two steel plates and the penetration of the nickel steel a far as the oak backing, which was entered and injured. But the Harvey plates kept out the projectiles from the oak backing, and though they showed some crack they completely broke up the projectiles and gained a great triumph.
Taken together with the February test of a thicke Harvey plate, this trial makes it clearthat still another advance has been made by our naval ordnance bureau in the method of manufacturing armor. It has also practically confirmed the conclusions reached last September and in subsequent tests that an alloy of nicke yields better results than steel without the alloy.

Granite.

According to Census Bulletin No. 45, giving the total for the United States, it appears that something over $62,000,000$ cubic feet of granite, having a total value in round numbers of $\$ 14,500,000$, were produced by 22,313 workmen from 874 quarries in 1889. To this number of men over $\$ 9,600,000$ in wages were paid. The total expense of producing the entire granite output amounts to over $\$ 11,500,000$, thus indicating a profit to the pro ducers of about $\$ 3,000,000$. The total capital invested is over $\$ 19,000,000$, of which something more than one half is the value of land. The great bulk of granite comes from the New England States. Its principa uses are as follows

Solid fronts.
Foundations. Foundations. Cellar walls.
Underpinning. Steps.
Buttresses.
Window sills
Paving blocks.
Belgian blocks.
Curbing.
Flagging.
CE
Monuments (eutire)
Monument bases.
Monument dies.
Monument dies.
BRIDGE,
Culverts.
Aqueducts.
Dams.
Dharf.
Breakwe
Bre
Jetties.
Piers.
Millstones.
Millstones.
Levelers-rollers. Grout.
Walls (f
Walls (fences).
Watering troug
BLASTING.
The Knox system of blasting rock is used with geneal satisfaction in many of the larger quarries. A round hole is first drilled to the required depth, and into this is driven a reamer, which produces V-shaped rooves at opposite sides to the entire depth of the hole. The charge is then inserted, and the tamping is done in the usual manner, except that instead of driv ing the tamping down upon the top of the charge, an air space or cushion is reserved between the charge of powder and the tamping, and as far above the charge as possible. The explosive has, therefore, the greatest possible chance for expansion before actually breaking the rock, the tamping being put down only to a suf ficient depth to insure firmness of position. The result of this method is that the force of the explosive is directed in the line of the grooves, and no shattering of the rock occurs if it be solid, such as is common in ordinary blasting operations, and, as a consequence, quarrymen are enabled to get out stone of rectangular shape without waste or loss of valuable rock.
Very large blasts or mines are sometimes fired in quarrying granite. A shaft is sunk to the required depth, and from it drifts are run in various directions. These chambers, or drifts, are then charged with ex plosives and fired. In 1887, at Granite Bend, Missouri, stone enough was broken with one blast tc supply the demands of a firm for fifty years. The shaft, which was 85 feet deep, had chambers running in several directions from the bottom, and was charged with 32,700 pounds of black powder.
black blasting pow for

Drills driven either by steam or compressed air are in use for making blast holes in all the principal quarries The drill is connected with the piston, which is supported by a portable iron tripod, carrying the neces sary appliances for regulating its movements. A flexible pipe conveys the motive power in the form of compressed air or steam.
Steam channeling machines, common in large marble and sandstone quarries, are used on granite by a few quarriers chiefly for making end cuts in stone of exceptional structure, but only to a limited extent, since the great hardness of granite renders the process very slow and expensive.
cutting, polishing, and ornamenting granite. Owing to the great obduracy of this stone, and the fact that the different minerals composing it vary greatly in hardness, the chief work of shaping it is still performed by hand, probably by wuch the same process that was used by Egyptian stonecutters more than three thousand years ago. Improvements and inventions have, however, been made from time to time in hand tools, and extensive machinery is now in use for producing certain forms and kinds of finish.
The most important improvements include the more extended adoption of lathes for turning and polishing columns, urns, etc., and new devices in power ma chinery for plain polishing. Greater econowy and peed are now obtained by the general use of chilled iron globules and crushed steel as abrasive materials and of the pneumatic tool for the ornamentation of surfaces. Granite for columns, balusters, round posts, and urns is now worked chiefly in lathes, which, for the heaviest work, are made large enough to handle blocks 25 feet long and 5 feet in diameter. Instead of being turned to the desired size by sharp cutting instruments, as in ordinary machines for turning wood and metal, granite is turned or ground away by the wedge-like action of rather thick steel disks, rotated by the pressure of the stone as it slowly turns in the lathe. The disks, which are six or eight inches in diameter, are set at quite an angle to the stone, and move with an automatic car riage along the lathe bed. Large lathes have four disks two on each side, and a column may be reduced some two inches in diameter the whole length of the stone by one lateral movement of the carriages along the bed The first lathes for turning granite cut only cylindrical or conical columns; but an improved form is so made that templets or patterns may be inserted to guide the carriages, and columns having any desired swell may be as readily turned. For fine grinding and polishing the granite is transferred to another lathe, where the only wachinery used is to produce a simple turning o revolution of the stone against iron blocks carrying the necessary grinding or polishing materials.
Blocks are prepared for lathe work by being roughed out with a point, and by having holes chiseled in their squared ends for the reception of the lathe dog and centers. This principle of cutting granite by means of disks revolved by contact with the stone has been also applied to the dressing of plain surfaces, the stone applied to the dressing of plain surfaces, the stone
worked upon being mounted upon a traveling carriage worked upon being mounted upon a traveling carriage
and made to pass under a series of disks mounted in a and made to pass under a
stationary upright frame.

Tracery and lettering for polished granite are usually first drawn upon paper, which is firmly pasted to the surface and the design chiseled through it to the requisite depth in the rock.
Statues, capitals, keystones, and, in general, all highly ornamental designs, are worked out with chisels from detail drawings or plaster casts. It is necessarily a slow process, owing to the hardness of the rock, and the cost of such work is consequently great. The MacCoy pneumatic tool, however, which has been recently patented and successfully applied to this purpose, gives promise of superseding much of the tedious-
ness of the hand process. This instrument is connected to a flexible pipe, supplying the compressed air or steam by which it is driven, and works at a remarkably high rate of speed. It may be moved to any part of a surface, and works with a celerity unapproached by other means.

Large Steam Pipes Composed of Small Ones.
The immense steam pipes which are necessary for the large sized engines in use at the Ferranti stations are composed of numerous smaller pipes bunched together to give the required carrying capacities. This arrangement of the pipes was thought necessary on account of the numerous accidents which have lately occurred from the bursting of large steam pipes in various parts of the world. Just how this arrangement will be accepted by engineers remains to be seen. While there are several good points about this kind of steam pipe, there appear to be also several poor ones. The increased cost necessary for its construction and the larger amount of surface exposed for condensation would appear to be somewhat against its being commonly employed. Of the increased safety assured by its use, The Stationary Engineer thinks, there can be no doubt, but whether or not it can be called a commercial success is not so plainly evident. Those who have had experience with it appear to think it answers every requirement.

Sorrespondence.

Bergmann's Blackboard Covering.

To the Editor of the Scientific American:
Being a teacher, I give you my experience in making a blackboard with velvety surface. It is as near perfection as can be. I have used it for years. Take equal parts by weight of Prussian blue powdered and of chrowe green powdered ; mix well. For liquid, use pilder's sizing (solution of shellac in alcohol), thinned with one-half of alcohol ; mix with part of combined dry powder to the thickness of cream. Use large and stiff brush ; cover quickly. In an hour's time give second coat. In a day or two smooth the surface with hair cloth.
P. S.-This covering will never look gray, as that with lamp black will.
C. H. Bergmann.

Principal of the German School, Charleston, S. C.

Hlicit opening of Letters.

To the Editor of the Scientific American:
Not a hundred miles from New York there is a little country village where the wife of the postmaster is generally credited with opening private letters temporarily abstracted from the mails. It is said that she steams the flap over a tea kettle, opens and reads the letter and seals it again with a lick. Her illicit knowledge of the contents of certain epistles gives color to the supposition. I would like to have some of your numerous inventors suggest some means by which when a letter has been opened in this way it will reveal the fact. Ink powder, when dusted on the lid, would leave, perhaps, when licked, a smear of black, and thus betray the process; or the flap of the letter might be wet with some salt of silver, which would stain the paper and the tongue that licked it.
[Your proper course is to address the Post Office Department at W ashington, D. C. It will at once investigate the matter, and your connection with it need never be known. Various inventions have been made for the purpose you suggest, such as insoluble glues, etc.Ed.]

A Needed Invention.

To the Editor of the Scientific American :
Something simple and easier of application than the ordinary indicator for determining the mean pressure against a piston would, we think, find ready sale. This is suggested by the fact that many persons using steam engines would be glad to know how many horse powers they are getting from a given amount of fuel, or what it requires to drive one or a number of machines. The cost of an indicator, the trouble and expense of attaching it, or the inability to use it, puts it beyond the reach of those not expert in its use. You are often asked, "How is the horse power of an engine estimated ?" The answer is simple, but the query comes back, How am I to get the mean effective pressure?'
For the purpose that we propose the operator does not care to know the point of cut-off, or the initial and terminal pressures; all he wants is the average of these, and we think a simple instrument might be devised that would give this data alone. It should be easily attached, perhaps at one or the other of the cylinder cocks, and so constructed as to give the desired reading of pressure without a calculation being neces sary.

Quirk.

Tree Culture as a Profitable Investment.

 To the Editor of the Scientific American:I have just read the article headed "Metal as a Substitute for Wood in Railroad Ties," in Scientific American of April 25. The destruction of timber in America long ago arrested my attention. Timber suitable for posts and railroad ties is rapidly disappearing from our forests. Forty years ago I was an officer on the leading railroad in Georgia. The common price of best ties then, delivered on line of road, was tifteen cents. I do not know what the price is now on the same road, but some time ago it was about double.
Mr. Walter Katte, engineer on the Hudson River road, in the article referred to, says: "In am led to believe that upon the basis of 55 cents for a wooden tie and $\$ 3$ for a steel tie, and under the conditions of traffic and maintenance expenses existing on this line, the relative economy is from 8 to 12 per cent in favor of the metal system." How any railroad can be made to pay with such an enormous expense as these prices imply I cannot understand.
I have frequently advised young men who farm to plant a few acres of their best land in such trees as would make the most lasting posts. If I was a young man, I would plant a few acres in cedars and keep them closely trimmed, leaving only the top buds to grow, thus making the whole force of the roots go into the straight body. No timber makes a better post or cross tie than cedar. Then there are other trees which are nearly as good. Among these I would mention mulberry, yellow locust, and chestnut. If these trees were planted in good ground, alluvial soil for instance, and the land cultivated in field peas and vines left on the
ground to rot, the trees would grow rapidly, and the peas gathered or allowed to be consumed by hogs, the cost of cultivation would be found in the value of the pea crop, to say nothing of the growth of trees. There are oak trees now growing in this town on what was considered poor land, which are now 18 inches in diameter, pla

the civil war.

Every farmer who is living within five miles of a railroad would find it a profitable investment for himself, or his children, to plant out a reasonable amount of land in such trees as would make good ties, payingsuch attention to the trees as would throw the sap into the body instead of limbs. Hoping that these suggestions may do some good, I have ventured to communicate the thought to your paper. Having passed three score and ten years, I shall not live to see the result of my suggestion, if adopted, yet [believe great good will accrue to future generations.

Athens, Ga.
Williams Rutherford.

Copying Book Illustrations and Other Sim Subjects by Means of Artificial Light.

Although, undoubtedly, the most important part in the operation of photographing such subjects as china, silver plate, glass vessels, coins, etc., is the employment of a proper method of lighting the objects-for owing to the great dissimilarity in the shapes of such articles, hardly any two objects being alike, or fail to be treated in precisely the same manner-still of almost equal importance is the preparation or preliminary treatment of many such articles preparatory to their being copied; and here we have a very wide field for the operator to exercise his ingenuity in.
In the case of such articles as glass jugs, tumblers, or decanters, where the main object is not only to show off the keauty of shape, but likewise to depict in many nstances the exquisite designs cut upon their surfaces, it stands to reason that were any one to proceed and merely photograph the same straight away, without having recourse to some method of preventing the designs on the further planes of the glassarticles from interfering with that on the immediate side next the lens, nothing but a confusion of the various designs would ensue by the one overlapping or interfering with the other. Hence one of the first steps to be taken is to so arrange the vessel as to prevent this. And in cases where the shape of the article is such as to permit of its being filled with a liquid, perhaps there is no better plan than that of filling it up with some semiopaque liquid, which acts virtually as a backing or background to sides of the vessel. In the selection of such liquids a proper discrimination should be shown in the choice only of such liquids as are in keeping with the nature and shape of the variousarticles being photographed. It will require but little thought for an intelligent worker to understand that what would be quite suitable in the case of such an article as a cream jug would be quite out of place in the case of a wine decanter. Hence the necessity of selecting only such liquids as are in keeping with the articles being copied. There are, however, numerous fluids to choose from. Skim milk, in some cases, comes in very handy, so also does claret, port, and sherry wine in others, and an intelligent worker will, doubtless, be able to think of many more quite as suitable, such as beer and stout. When following out this plan, it will be found that more natural results are secured when the vessels are not filled right up to the top.
So much for glass vessels. Now let me refer to the copying of silver cups and plate. In this class of work copying of silver cups and plate. In this class of work
the main thing to overcome is the bright reflections of the main thing to overcome is the bright reffections of
the burnished portions of the objects. Some writers advocate the use of ice when such is practicable, others recommend that the burnished parts receive an application of putty to deaden the surface and prevent the objectionable flare spots. I have used both these expedients with success, but latterly have discarded the use of them for a much simpler method. Simpler because it does not necessitate any tampering with the objects being copied, and, in cases where such are of a very delicate order, this becomes an important item, for with putty there is always a fear of damaging the surfaces.
The plan I adopt is merely to keep breathing on the object. This requires to be renewed after every few seconds during or at intervals in the exposure, but the cap of the lens can be easily put on and off to permit of the breathing being applied.
With some commercial firms, when any important object is being manufactured, and it is desired to have the same photographed, it is generally arranged for such being accomplished previously to the burnishing of the parts. This is a great advantage, but, of course, s not feasible in the great majority of cases.
When developing silver objects, the amount of pyro used should be very small, and the exposure given a very full one, and I have always got the best results on dark background.
Medals and coins require some consideration in the selection of suitable backgrounds also, and the mode
of their being held in situ. My best results with bronze
medals and coins are got by using as a background a sheet of opal glass, and by placing the medals right on the surface with the aid of a very thick solution of powderedgum, almost to a jelly. Silvermedals are best fixed up in the same way against a sheet of ordinary plain glass, while at some distance behind is placed a black velvet background. Gold medals and coins are best on opal, because they get more relief. China plates, and such like, are best relieved by black velvet placed at a distance.
So much for the necessary arrangements as to suitable backgrounds. When the best results are to be obtained, attention must be given to this point.
In lighting, there are numerous points to be considered, and here, at the outset, the first thing to be thought of is the shape of the object being photographed. When using artificial light, I know of no better place for an amateur, or professional either for that matter, to use than his long dining room table placed under his gasalier. From such he may with convenience lead the gas to his Argand burners on their pedestals on the table by means of the rubber tubing, and when it is deemed expedient to throw in as much top light as possible, the gasalier, when fully lit, will render good help in this respect. Some objects are best lit by reflected light alone. In my practice I use my own invention, which is a plaster of Paris chamber when copying some classes of subjects, but a very good and simple makeshift can be rigged up by any one without any great cost. Say it is desired to copy a china plate so as to show off the design. Now here we have just a case in point that is best done by reflected light. This I would put into my chamber and so ar range matters that the lights are not in front of the object, but that the strong, bottled-up light brilliantly surrounded it.
A similar mode of lighting can be arranged for by merely cutting out a center in a large mounting board. This aperture should only be large enough to permit of the lens viewing the plate through. The china plate is then placed in position, and the two Argand lamps, one at each side, but not in front, so as to throw only reflected light upon the white cardboard on it. In very many cases, when photographing by artificial light, it will be found that this intervening screen, placed so as to reflect light only on the object, will give much better results than by throwing the light directly from the gas lamps in front. One great advantage is that reflections are not nearly so liable to arise, and if the brass fittings of the camera and lens are covered up with a black cloth, there should be no reflections at all to contend with.-T. N. Armstrong, British Journal of Photography.

Recent Discoveries of Egyptian Remains.
Writing to the New York Nation from Keneh, Upper Egypt, on March 17, Mr. W. H. Goodyear describes an important and most interesting discovery made by Mr. Petrie at Maydoom. Mr. Petrie has there unearthed " the oldest known Egyptian temple and the only Pyramid temple ever found." Apart from the "Temple of the Sphinx" at Ghizeh, this building is also "the only temple of the Old Empire so far known." It was buried under about forty feet of rubbish. It lies directly at the center of the eastern base of the Pyramid, on the side facing which it has two round topped obelisks. "Obelisks and temple chambers so far entered," says Mr. Goodyear, "have the plain undecorated style of the Old Empire, as shown by the Temple of the Sphinx, but hieratic inscriptions in black paint found within fix the name of Seneferoo as builder, and confirm the supposition to this effect hitherto based on the fact that tombs near the Pyramid contain his cartouche. Seneferoo is the king connecting the third and fourth dynasties, and variously placed in either. According to computations of Mari ette and Brugsch, the antiquity will be about 4000 B. C., or earlier." On Tuesday, March 10, Mr. Petrie's workmen reached a platform which appeared to be a causeway terminating with two obelisks at the base of the Pyramid. "In the forenoon of Wednesday," continues Mr. Goodyear, "a workman came to say that an opening had been found under the platform on the side next the Pyramid. This proved to be the top of a doorway choked by detritus, through which Mr. Petrie crawled into an interior of three chambers and discov ered the inscriptions mentioned. I had the pleasure o following him. Mr. Petrie thought the apartments had not been previously entered for about three thou sand years--that is to say, that the rubbish fallen from the Pyramid had choked the entrance about three thousand years after construction. A friend who wa with me noticed on the floor some dried wisps of papy rus, a plant now extinct in Egypt. The chambers thu far found are so filled that one cannot stand erect in them, and a door at the end of the third chamber is blocked by large stones. Over all lies an enormous
mass of detritus, whose removal by Arab diggers is mass of detritus, whose removal by Arab diggers is
now in progress. I had the pleasure next day of carrying the news of Mr. Petrie's find to the gentlemen of the Egypt Exploration Fund, at Beni-Hassan, and of witnessing their unaffected delight over it."

AN IMPROVED ORE WASHER

A machine designed to facilitate the cleansing and separation of ores is shown in the accompanying illustration, and has been patented by Mr. Frederick C. Miller, of No. 136 East Tenth Street, Leadville, Col. A box-like washing table is suspended in a suitable frame by two pairs of perpendicular rods, one pair at each end of the frame. The table is normally held very nearly level, its upper end, where the water box is loated, being only about two inches above the other end, while the height of the lower or tail end, at which are the handles for working the machine by hand, as shown in Fig. 1, may be adjusted as desired. This is effected by attaching the suspension rods at this end to the outwardly extending arms of a crank on a rock shaft journaled in the top of the frame, a rack being provided to hold the lever in adjusted position. The suspension rods at the head end of the table have coiled springs around their upper extremities, to impart to the table as it is operated a quivering motion. The base of the frame, at this end, has a buffer block, in a reces in which is a coiled spring. The water box, connected with a water supply tube, has a perforated bottom, as shown in Fig. 2, and beneath the water box, at the upper end of the table, is a series of valved openings, to be closed by plugs or otherwise. When the ore has been sufficiently washed, it is permitted to pass through these openings beneath a spray of water. Upon a cov er plate of the table, over the water box, is a rectangular recess or coping, one side of which is adapted to be engaged by a curved arm, or cam shaft, integral with a drive shaft, when the machine is operated by power. The other side of this recess is engaged by the lower end of a spring arm, engaged by levers, actuated by crank arms integral with a shaft journaled in the base of the frame. An upwardly extending arm from one end of the shaft engages a rack at one side of the frame, whereby the tension of the spring arm may be increased or diminished. As the table is oscillated, either by hand or power, the motion and the reaction of the spring at the upper end tend to throw the heavy particles of ore in that direction, while the light or waste particles are carried out by the water at the lower end.

BREAST WHEEL FOR LIFTING WATER INTO THE MORRIS CANAL.

The accompanying illustrations show the machinery used for supplying one of the summit levels of Morris Canal with water. The canal, coming from the coal region of Pennsylvania, passes through the city of or breast, an inch or two of space only interven-
used for towing on the canal, walk across the regula bridge, drawing the boat after them across the river When there is an incoming tide the boats would be swept up against the bridge. To prevent this an iron cable is carried across the river, and to this, when necessary, the boats are attached by a traveling pulley, so that the cable keeps them away from the bridge. When the tide is running out, the cable is not used.
After crossing the river, there intervenes between

MILLER'S ORE WASHER

the eastern shore of Newark Bay and Jersey City the Bayonne and Bergen Point peninsula, which is two or three miles wide at this point. By pursuing a somewhat devious route, the canal crosses this peninsula with one level, of eight miles in length, the water of which is about four feet above high water in the New York or Newark Bays. At the east and west ends of this level there are two locks, a single one at each extremity, which lock the boats up from, or down to, tide water, as the case may require. The machinery we show is designed to supply this level with water
The water-raising mechanism consists essentially
its inner end; a spur wheel gears into this, the ratio of the diameters being such that the breast wheel makes one revolution for four revolutions of the spur wheel. It is obvious that if the wheel is rotated, it will raise water and deliver it into the canal, provided the rotation is in the proper direction, which is, of course, the reverse of that it would receive were it a notor wheel.
Directly in front of it is a gate pivoted at the bottom, which acts as a valve. As long as the wheel is in action throwing water into the canal, this gate lies flat upon the floor of the flume. When the wheel is stopped $\mathrm{t}^{2} \mathrm{e}$ gate rises as the water tends to flow hackward, and closes the flume, thereby impounding the water in the canal. The wheel is so situated as regards level that it can work from the time when the tide is half flood until it is full flood, and until it falls to half ebb; thus in practice it is worked seven hours each day, when the tide is rising and falling, catching the last of the flood and the first of the ebb. It is situated on the banks of Newark Bay, and takes water directly therefrom. It is driven by a low pressure beam engine, with a 36 inch cylinder and 6 foot stroke.
The engine shaft, to which the spur wheel already referred to is attached, carries also a 15 foot fly wheel. The coal consumed amounts to $11 / 2$ tons per day.
In seven hours' pumping it raises the water in the eight mile level sufficient to compensate for the loss during the rest of the day. It can raise the level one inch an hour. As the canal is from 35 to 40 feet wide, this gives an approximate basis on which to estimate the delivery of water.
The apparatus was erected in 1859, and is to a certain extent an interesting example of old engineering practice. An effort was made to substitute for this wheel a rotary pump with 12 inch connections, but it did not prove successful. The pump and connections are still there to act as a reserve in case the wheel should break down. The drum of the wheel is quite essential to its strength; on one occasion when this broke down it was found that the wheel could not be used, as the floats were twisted out of place by the strain. By allowing the steam pressure to run down, the wheel can be made to operate like a breast wheel, so as to drive the engine backward. The only communication between the summit level and the tide water as $\mathrm{f}^{*}{ }^{-\prime}$ as regards the intake of water is by means of this wheel, yet it is found that it not only supplies the canal with water, but the crabs and fish are introduced with the water. During the crabbing season, the crustaceans

BREAST WHEEL FOR LIFTING WATER INTO THE MORRIS CANAL

Newark, N. J., across the salt meadows known as the ing between the floats and stonework. The wheel is are found in considerable quantities in the canal, being Jersey flats, and into the Hackensack River at the 12 feet long, and carries a 10 foot sheet iron drum. The point where the Passaic River joins it and opens out whole works upon a 10 inch iron shaft. From the peinto Newark Bay. One portion of the canal terminates riphery of the drum the buckets project. These are at this point. The boats going on to Jersey City are 3 feet 6 inches in width and 12 feet long, corresponding hauled directly across the river. The mules, generally $/$ with the drum. The shaft carries a large cog wheel on
thrown into it by the water wheel
The class of buildings struck most frequently by lightning are, first, dwellings; second, barns and granaries. Oil-tanks and oil-works come next.

SOME APPARATUS USED BY THE VIENNA FIRE DEPARTMENT.
and the firemen see that the escape of those in the a strong fabric which greatly lessens the force of th ganized upper stories is cut off, they rescue them by means of fall. Sometimes there is even greater danger (fortu every large city, and Vienna is no exception to this to reach to the highest windows. But sometimes it is been discovered after the smoke has already stupefied rule. We publish herewith engravings of some of the too late to use the ladder, and the frightened people the sleepers in their rooms; their rescue would be imapparatus employed by the Fire Department of that stand at the windows, imprisoned in their own dwell- possible were it not for the devices which have lately city. (For which we are indebted to Ueber Land und ing by the fire. The flames have crept close behind been adopted for emergencies of this kind and which are Meer.) According to the laws of the Fire Department them and their only means of escape is by jumping to different from anything in use by our fire departments. of Vienna, not more than one minute must elapse between the sounding of the alarm and the start from the engine house. This promptness in responding to a call constitutes the great value of such a depart ment, for it is all important that the men and apparatus should be on the ground before the flames have gained much headway. In Vienna, as in other large cities there is a central station, and, besides this, branch stations in all the different districts of the city. In many of the streets there are public alarm boxes which can be made to operate by pressing a button, and large public buildings have their private fire alarms. The telephone has been much used for this purpose of late, and watch is kept over a large part of the city from the towers of St. Stephen's Cathedral.
The Fire Department of each city has its characteristic features. In Vienna the approach of the engine is announced from afar by longdrawn blasts on a horn, and almost involuntarily the step of the passer is arrested, while all vehicles get out of the way as soon as possible. A few seconds later the engine rattles past, drawn by strong horses, which are driven at a rate of speed forbidden to all other vehicles on the streets. A slight investigation is usually sufficient to make the situation clear to the inspector, and a few seconds later powerful streams of water are thrown on the raging element.
The men fight bravely, and if a human life is in danger they unhesitatingly risk their own in their efforts to save it. With the modern buildings which are constantly climbing higher, the dan-

Fig. 1.-THE EXTENSION LADDER.

Fio. 3.-CELLAR FIRE-FIRE MASK AND ZINC FLAMBEAU.

Fig. 2.-THE CANVAS.

These consist of the so-called diver's suit and the fire mask, with which the fireman is able to make his way into a burning building in spite of steam and smoke, and sometimes to save those who have been given up as lost. The danger of suffocation is greatest where the fire occurs in the cellar, and in such cases even the firemen have to use the utmost caution. The smoke often collects in masses which would extinguish any ordinary light, but the zinc flambeau invented some time ago by Chief Inspector Stritzel works very well under these conditions.

THE TYPE-WRITER A FRENCH INVENTION.

Heretofore the earliest invention of type-writers has

 been attributed to the English, and the first working machine showing the pot of letter levers striking at a common center was supposed to be of American origin. But the French appear to stand first in this respect. In 1833 a French patent was granted to Mons. Progrin (Xavier), of Marseilles, for a type-writer, which he called a Typographic machine or Pen. It is enraved and described in Brevets d'Invention, vol. 37, First Series, plate 36. We give an engraving of the drawings. All of the figures in the original patent drawings are probably not given, but we present all that are published. The description refers to a number of parts not represented in the published drawings, and hence the account of the machine is somewhat obscure. Still enough is given to show that the machine was an operative one, by which type-writing could be well executed.Instead of having the paper rendered movable and the machine stationary, as in the modern style of machines, our French inventor held the paper fast and flat, and moved his machine over the surface of the paper. With this device he not only executed typewriting, but also wrote music and made printing plates. The following is an abstract from the in-
ventor's specification
This typographic machine or pen serves : 1. To print almost as rapidly as one can write with an ordinary pen. 2. To form stereotype plates for the use of ordinary presses. 3. To copy music or to form stereotype plates of music.
s are metallic levers which rise obliquely around the plate, n, and terminate in a fork at their lower end, which takes the shank of the hammer to raise or lower it at will. If one of these levers is pressed, it pushes the shank of the hammer over which its fork passes, causing it to be inclined like the radius of a circle. When this shank is thus extended on the plate, the hammer remains in a vertical position on the paper, where in fall ing it has imprinted its figure; the num ber of levers is equal to that of the double alphabet and the rest of the characters of printing. Each lever corresponds to one of the signs drawn on the plate, n, so that, if it is desired to form any letter in the center of the opening, k, it is only necessary to find the letter on the plate, n, and press lightly on the lever near it, and inmediately it will be seen formed on the paper in the center of the opening, k, then the plate, q, is moved the distance of one notch, a finger is placed on another lever, which is caused to descend and strike its hammer beside the other letter, where it imprints the letter which it carries; thus the same operations are repeated and words and lines of printing are formed. We have explained how it is necessary to push the plate, q, one notch for the space of the letter to be printed, and two notches af ter the letter has been formed to obtain the space for a capital letter or for the distance between two words; as the center of the opening, k, must neces sarily follow, in. a straight line, the movement of the plate, q, it should al ways trace a straight line of printing by means of all the characters which their hammers print successively thereon.
OPERATION OF THE TYPOGRAPHIC MACHINE OR PEN FOR PRINTING
After having placed the body of the machine at the entrance of the frame, b, so that the center of the plate, q, is beyond the upright of this frame, the letter which is to commence the word of the first line is sought on the plate, n, and then the lever which corresponds to this letter is pressed lightly with the right hand; this lever, in moving downward, imparts all it movements to its hammer, so that if it moves down, the hammer falls with force in the center of the opening, k, and there impresses, on the paper, the letter or sign which it bears; the lever is then promptly raised, and the hammer follows it, to give place to another, which, by the same operation, will impress its letter beside the first one, after care has been taken to push the body of the machine lightly with the left hand, provided that the-springs, f, pass from one tooth to another of th notched plate, d. This movement, as we have said marks the distance of the small letters, a double move ment marks the distance of the capital letters or the space between two words
When the firstline of printing is finished, the strings, y, are pulled with the left hand, which removes th

corresponding lever; and then the letter is immediately formed in relief on the metal. A stereotype plate can thus be formed very promptly, ready for use on ordinary presses; after it has been used for making the desired number of copies, it is again melted in its mould to be used in forming a new stereotype plate. In order that the ktypographic machine or pen may be used for forming the signs or figures of music, the hammers with half of their shanks are removed. This half of the shank is replaced by another, longer or horter. It is then given a hammer bearing, in intag io or relief, one of the signs of music corresponding o a like sign which is drawn on the plate, n, op posite to the lever which holds and causes the move nent of the said hammer. This difference in the lengths of the shanks of the hammers perwits of forming the rising and descending gamuts, with the difference o notes and signs, without being obliged to push the body, v, of the machine up or down, to right or left for only the same movement is made which is used in printing. When the notes formed on the end of ach hammer are in relief, the machine is used fo printing or copying music. When the same notes are
intaglio, the machine is used for forming stereotyp plates of music, by the method indicated for forming tereotype plates for printing.
With a little practice one can write as rapidly with the ktypographic pen as with the ordinary pen. I have called it ktypographic machine or pen becaus it prints by striking. It will give birth to a new art hat of ktypography. I invented this machine about a year ago.

Luxurious Trains.

The following description of the cars composing the Pullman new trans-continental train is taken from the New York Sun: The trains consist of vestibule draw ing room and sleeping cars, an observation car, a din ing car and a composite smoking car. The vestibule composite car is a magnificent affair, and is exclusively for men. A forward end is set apart for baggage. A compartment between the baggage room and the main aloon is fitted up as a barber shop and a bath room. Adjoining the bath room is a cafe. The rear section o the car is a swoking room. The vestibule sleeping
cars, of which there are four on this train, are said by electrical apparatus.
the managers of the Pullman company to be the best examples of their work ever turned out. They each contain twelve sections of two double berths and two drawing rooms. Movable incandescent lights are at tached to each section, in order to allow one to lie in a berth and read. In one of these sleeping cars is a oath room for ladies. The dining car, besides containing ten tables, at which forty persons can dine at once, also contains a kitchen large enough to allow four cooks to work at once. An observation car will bring up the rear. The body is an open sitting room, finish ed in hard wood and furnished with upholstered rat tan arm chairs and lounges. Among its conveniences are a writing desk, a large case of selected books, mov able tables and an upright piano. But the main feature of the car, and the one which gives it its name is the deep recess at the end of the car. The platform will accommodate about twenty persons. In the for ward portion of this car will be a small office, which will be occupied by a stenographer and type-writer whose duty it will be to write and mail the letters of any or all of the tourists gratis.

Inventors of Perpetual Motion Machines

Some of the most ingenious and persistent men ar laboring on the hopeless task of devising perpetua motion appliances. Our educational system is in many respects responsible for so much mental energy being wasted upon fallacies. If natural philosophy and elementary mechanics received the attention in com mon schools that their importance demands, there would be fewer persons pestoring their friends to sup would be fewer persons pestoring their friends to sup-
ply funds for the development of apparatus intended ply funds for the development of apparatus intended
to cheat nature's laws. Ignorance of the laws of na to cheat nature's laws. Ignorance of the laws of na
ture is, no doubt, responsible for the majority of per petual motion devotees, yet some men who are wel educated become pursuers of the chimera. It is fre quently difficult to understand the me chanical fallacies that creep over what are otherwise bright intellects. Electricity seems to be deceiving many men and leading them into the belief that by means of this mysterious force more pow er can be received than what is given Since the electric lighting and electri transmission of power era began, there has been a great increase in the applica tions to the Patent Office for protection of what are electrical perpetual motion machines. For years the Patent Office income was considerably augmented an nually by the receipt of fees from invent ors of perpetual motion machines, but no fees are now accepted from men workin on that kind of apparatus. A printed cir cular is sent to applicants saying that nothing short of a working model would be received, and as the inventor never gets a model o this kind to work, he can do no more with the Patent Office. A correspondent of the St. Louis Globe-Demo rat gives particulars of some curious recent perpetua motion cases. Mr. Keely has a good many imitator n a small way. A few months ago a New York lawye went to Washington with parts of a machine, and had quite a controversy with the office because the had quite in operation that it was running day after day, and operation, that it was running day after day, and keeping a cider press going to boot. There was no de viating from the rule. The lawyer went back to New York, saying that he would produce the machine. He was not seen again until the centennial celebration ately, when he reminded the examiner of the cas and told him how he had been fooled. At the time of making application the lawyer really believed that his client had discovered the long-sought principle But when he got back to New York and told that the patent had been refused, the client confessed. The perpetual motion was no motion at all. Power wa concealed in the cider press. It ran the press, and the press made the perpetual motion machine go too. Th inventor had been charging 10 cents admission to se perpetual motion. He had fooled the public and hi lawyer, and he hoped to slip through a claim. $-N a$ tional Car and Locomotive Builder.

The Care of Dynamos.

Place the oil catchers under the drip of the dynamo earings, and never allow them to overflow on the floor Keep the floor of the dynamo room swept clean, so hat no nails or other small pieces of metal can be rawn into the armature
Never use or leave iron or steel tools near the ma chine, while at work, as these also are likely to be drawn into the armature if left too near it
Oil cans made of copper or zinc are best for use about
Never allow oil to accumulate on the armature or shafts of the dynamo
When the wires coming out of the shaft to the com mutator become bare from cleaning, they should be re covered with kerite or okonite tape, or gum cloth, an shellacked, and allowed to dry for about eight or ten hours before being used.-Practical Electricity.

Progress of our Colored Population.

 According to a recent census Bulletin, the race count has been made for the South Atlantic and South Central States, and for Missouri and Kansas, in advance of the main work of tabulation. The total population mbraced in this count is $23,875,259$, of which $16,868,205$ were white, $6,996,166$ colored, and 10,888 Chinese, Japanese, and Indians. In these States were found in 1890 fifteen-sixteenths of the entire colored population of the United States, so that for the purpose of immediately ascertaining the percentage of increase, the returns of these States are adequate and not likely to be materially affected by the returns of the other States and Territories, where the colored population is small. The popular belief that the negroes were increasing at a much greater rate than the white population is erroneous.During the past decade the colored race has not held its own against the white in a region where the climate and conditions are, of all those which the country affords, the best suited to its development. We give a table which shows the relative increase

States.	$\begin{gathered} \text { Total } \\ \text { population. } \end{gathered}$	White.	Colored.	Per cent. 1890.	
	23,875,259	16,868,205	6,996,166	White.	Colored.
Alabama..	1,513,017	830,796	681,431	54.91	45.04
Arkansas...........	1,128,179	816,517	${ }_{3} 311.227$	72.37	${ }_{17}^{27.59}$
District of Columbia	1230392	154,352	75,927	66.99	$3{ }^{12} \cdot 96$
Florida.	391.422	224,461	166.678	57.35	42.58
Georgia.	1,837,353	973,462	863,716	52.98	${ }^{47} 0.01$
Kansas....	$1,427,096$ $1,858,635$	- $11.374,882$	-51,251	$96 \cdot 34$ 85 10	$3 \cdot 59$ 14.69
Louisiana........	1,118,587	554,712	562,893	$49 \cdot 59$	50.32
Maryland..	$1,042,390$ 1,289	824,149 539703	218.004 747 T20	79.06 41.85	20.92 57.98
Missouri...	2,679,184	2,524,468	154,131	94:23	5.75
North Carolina	1617,947	1,049,191	567,170 69,503	64.85 39.82	35.05 60.16
Texas	2,230,523	1,741,190	492,837	77.89	${ }_{22}^{24} 04$
Virginia.	1,655.980	1,014,680	640,867	${ }^{61.27}$	$38 \cdot 70$ 4.39
West Virgina........	762,794	729,26:	33.508		4.39

Modification of the German Patent Law
An amendment of the patent law of 1877 has been
recently passed by the Reichstag, after having been recently passed by the Reichstag, after having been read three times, and will come into force on the 1st of October next. The chief point to be noticed in the new law is that the examination of patents with regard to novelty is not to be abolished. The new law does not decide what amount of invention is patentable, so that this question must be settled in each case by the Patent Office as heretofore. Publication, if made more than a hundred years ago, is not to act in anticipation of a patent. Patents taken out in foreign countries are to act in anticipation against the inventor, and those claiming rights under him, only after a lapse of three months, and thus an extended period of time is allowed by the act for an application for a patent in Germany. If an invention is stolen from another person, and an application for a patent has been made, the inventor is able not only to oppose the granting of a patent to the applicant, but to obtain a patent for his own application. The patent fees may be paid for the whole duration of a patent in advance, so that the lapse of a patent through delay in the payment of fiees may be rendered impossible. If a patent on which the full fees have been paid should be afterward annuled, the fees will be returned to the patentee. An application for the annuling of a patent shall not be made when the patent has keen in existence more than five years. For the deterwination of this point, however, a period of three years is provided. The very high fees now payable for a German patent have not been diminished by the new act, but it is provided that such a lowering of the fees may be made by order of Federal Council. The important provision that a patent may be revoked after the expiration of three years if the patentee fails to carry out his invention in Germany to a suitable extent, or at least to do everything that he can to carry it out, remains in force, and should be particularly noticed by foreigners. The organization of the Patent Office is to be so regulated
by the new act that there may be greater security for a proper and efficient examination of patents. Before a proper and efficient examination of patents. Before
an application is refused, the applicant is to have an an application is refused, the applicant is to have an
opportunity of answering objections to the granting of a patent. If he should fail to obtain a patent, he may then support his claim by oral evidence. At the preliminary examination expert witnesses may be called, and a statement of the various attempts which the inventor had made may be presented. If the decision of a judge puts a new aspect on the case, the applicant is to have an opportunity of answering any objection raised. A proviso which is of great importance to chemical industries is that where proceedings are taken to patent a new material, every material of similar manufacture is regarded as included in the claim until proof to the contrary is shown. The damages payable for the infringement of a patent have been increased The Patent Office, Berlin, was established at its new building in April last. This new office is in every respect suitable for its purpose, whereas the old on was too small. The public obtain a great advantage
from the new arrangement, since the important technical library is now open to all persons from 9 A . M. to 9 P. M.

IRIDESCENT GLASS

A visitor at the Metropolitan Museum of Art in this city cannot fail to notice in his tour of the galleries the exquisite ancient Cyprian glass ware, with its gorgeous iridescence surpassing in brilliancy of color anything ever produced by artificial means. So far as is at present known, this effect can be produced only by the corrosive action of the air and moisture of the soil in which these objects have been buried for centuries.
Glass having a similar appearance, but without the same brilliancy of color, has been found elsewhere, and a certain degree of iridescence has been imparted to glass of modern manufacture by flashing it during the annealing process with stannous chloride, thus deposit ing on the glass an exceedingly thin film, which de-

Fig. 1.-IRIDESCENT FILM-MAGNIFIED.
composes the light and thus yields a pleasing color effect. Glassware of this kind is beautiful, and was at one time much in demand, but at present it can hardly be found on sale.
Through the courtesy of General L. P. Di Cesnola, director of the Metropolitan Museum of Art, the writer has been enabled to examine specimens of ancien Cyprian glass secured by him in his archæological ex plorations in Cyprus.
A microscopical examination of this glass shows tha the surface is covered with exceedingly thin transparent films formed by matter dissolved from the glass. The body of the glass is pitted over its entire surface with minute cavities, which are circular or elliptical or ob long in outline, and either spherical, ellipsoidal, or cyl indrical in respect to their concavity, and the films conform to the pitted surface of the glass. These films, of which there are many superposed, are so thin as to float in air like down when detached. They decom pose the light by interference due to reflections from the front and rear surfaces of the film, and give rise to the gorgeous play of color for which these ancien pecimens of glass are noted
The appearance of the film from this glass when highly magnified is illustrated in Fig. 1. The colo effect is, of course, wanting. By transmitted light the color is complementary to that shown by reflected

Fig. 2.-IRIDESCENT FILM-BY POLARIZED LIGHT.
light. Examined by polarized light, the color is height ened still more with all the changes that may be brought about by rotating the polarizer, analyzer, or the object itself. The figure under polarized light without the color is shown in Fig. 2.
If the effects secured by long ages of treatment in Nature's laboratory could be produced artificially on modern glass at a reasonable cost, it would seem to be an object well worth striving for.

Lumbering in California

The Madera Flume and Trading Company started up its mountain saw mills recently. The roads are now being cleared and timber got out. It is expected that
This company hàs a V-shaped flume sixty-two mile long, extending from the mountains to the plain. The umber is not shipped down this flume piece by piece but several planks are clamped together at the end and then a train is formed from several piles and con-
nected by small ropes. Section stations, where from two to four wen are found, are located about every six miles. It is their duty to see that there are no stop pages or breakages, jams and so on. The lumber is shipped from the mountain mills during the day, and reaches the yards at Madera at night, being twelve hours in transit. The expense of this mode of trans portation is much cheaper than any other that has been devised for that purpose. As high as 20,000 feet have been shipped in one day. The two saw mills are known as the California and Soquel mills, and com bined have a sawing capacity of 150,000 feet per day This work has been facilitated greatly by the construc tion of a narrow gauge railroad from the mill to the vicinity of the logging camps, and the logs are now hauled by a large engine, on cars made expressly for that purpose, thus doing away with many teams. At the yard located in Madera the lumber is taken from the flume and piled up to dry for the market. This yard covers a large area of ground, and millions of feet of lumber are stored there annually. A large planing mill is also operated there.
The expenses of the mill at Madera and at the moun tain mills aggregate $\$ 15,000$ per month during the log ging season. Jack Dysdale is general superintendent of the mountain mills.--Pacific Lumberman.

Genesis of the Elements.
Professor William Crookes closes a most interesting address before the Institution of Electrical Engineers on the subject "Electricity in Transita; from Plenuin to Vacuum," with the following remarks on the genesi of the elements :

It is now generally acknowledged that there are several ranks in the elemental hierarchy, and that be sides the well defined groups of chemical elements there are underlying sub-groups. To these sub-groups has been given the name of "meta-elements." The original genesis of atoms assumes the action of two forms of energy working in time and space-one operat ing uniformly in accordance with a continuous fall of temperature, and the other having periodic cycles of ebb and swell, and intimately connected with the energy of electricity. The center of this creative force in its journey through space scattered seeds, or sub atoms, that ultimately coalesced into the groupings known as chemical elements. At this genetic stage the new-born particles vibrating in all directions and with all velocities, the faster-moving ones would still vertake the laggards, the slower would obstruct the quicker, and we should have groups formed in dif ferent parts of space. The constituents of each group whose form of energy governing atomic weight wa not in accord with the mean rate of the bulk of the components of that group, would work to the outside and be thrown off to find other groups with which they were more in harmony. In time a condition of stability would be established, and we should have our present series of chemical elements, each with a defi nite atomic weight-definite on account of its being the average weight of an enormous number of subtoms, or meta-elements, each very near to the mean. The atomic weight of mercury, for instance, is called 200 , but the atom of mercury as we know it is as sumed to be made up of an enormous number of sub atoms, each of which may vary slightly round the mean umber 200 as a center.
We are sometines asked why, if the elements have been evolved, we never see one of them transformed or in process of transformation into another. The ques tion is as futile as the cavil that in the organic world we never see a horse metamorphosed into a cow. Be fore copper, e, g., can be transmuted into gold it would fore copper, $e . g .$, can be transmuted into gold it would
have to be carried back to a simpler and more primihave to be carried back to a simpler and more primi
tive state of matter, and then, so to speak, shunted on to the track which leads to gold
This atomic scheme postulates a to and fro motion of a form of energy governing the electrical state o the atom. It is found that those elements generated as they approach the central position are electro positive, and those on the retreat from this position re electro-negative. Moreover, the degree of positive ness or negativeness depends on the distance of th element from the central line; hence, calling the atom in the mean position electrically neutral, those subatoms which are on one side of the meanwill be charged with positive electricity, and those on the other sid of the mean position will be charged with negative lectricity, the whole atom being neutral.
This is not a mere hypothesis, but may take the rank of a theory. It has been experimentally verified as far as possible with so baffling an enigma. Long-con tinued research in the laboratory has shown that in natter which has responded to every test of an ele ment there are minute shades of differense which have admitted of selection and resolution into meta elements, having exactly the properties required by theory. The earth yttria, which has been of such value in these electrical researches as a test of nega tively excited atoms, is of no less interest in chemistry, having been the first body in which the existence of this sub-group of meta-elements was demonstrated.

RECENTLY PATENTED INVENTIONS. Spring Seat.-George E. McCormick and William B. McLean, Jamestown, North Dakota This seat is designed for locomotive cabs, but is capable of other uses. It consists of two uprights connected by ide pieces pivoted to the uprights and engaging the side pieces pivoted to the uprights and engaging the
tops, a flexible back and bottom secured to the uprights and side pieces, and springs projecting from the rear of the uprights and carrying a bar bearing on support
Auger Handle. - Harry Naylor, Oil City, Pa. This handle is formed in two longitudinally djustable sections provided with a grooved abutmen na a loose rocking ring which clamps the bit shank against the abutment when the sections are forced
oward each other, thus adapting the handle to clamp manks of different sizes
Can Ventilator.-Albert W. Adams, Pittsburg, Pa. This device is designed for use on milk ans, to allow the animal matter in the milk to escap and prevent the milk from souring. For this purpose he apertures with a shield having beveled ends an penings in said ends, the shield being of less daameter than the top.
Stove.-John Werner, Brooklyn, N. Y. This stove contains a series of vertical pipes of dif erent lengths, alternately arranged close togethe
round its interior, thus forming the fire box. The pipes extend throigh the base at their lower ends and hrough the stove body at their upper ends, and sup ort a grate above their lower ends. Substantially a
Folding Poultry Crate. - William Paschal, Rutherford, Tenn. This device is so con ructed that it may be folded hat and compactly whe not in use or in trarsportation, and when erected has no or carrying poultry and other live stock. It afford ree access of air and is light, strong and durable.
Desks. - Mr. John M. Sauder, of pringfield, lil., has patented an improved device for chool desks upon the supporting standards of the sea and desk. By means of this device the wooden desk top, the back, and the seat boards are interlocked with the metal standards or frames, securing an elastic con ection between the wooden and metal parts of the metal or the swelling and shrinking of the wood will e cor for, so that cramping strains which would split the
will be avoided.
Fabric Stretcher. - Mr. Charles F. los, of Brooklyn, N. Y., has patented a frame fo abric in proper position without injury to the materia and without the assistance of cement or nails. The rame is also arranged to give to the fabric a suitable ension, so as to free it from wrinkles and crease heing longitudinally extending gutters or shoulders to having longitudinally extending gutters or shoulders to nd adapted to press the fabric into encagement wit the gutter or shoulder. Levers pivoted to the beam re employed for securing the required pressure
Harness.-Mr. Lawson W. Hampton, f Elizabethton, Tenn., has recently patented an im provement in that class of harness in which traces an
breeching are dispensed with and the attachment of the arness to the shafts of the vehicle is made by means of tugs connected with the girth and breast collar. Th tags are attached to a rod whose motion 18 opposed by fthe free ue of the hind tese of the h por diminishes the cost of a harness.
Cutting and Preparing Wood.novel method of catting and preparing wood for by Mr. Lewis W. Murch of Medora, North Dakota his method consists in cutting or sawing a log or limb having the bark thereon obliquely into blocks or boards The blocks or boards thus cut form panel pieces whic present a highly ornamental appearance, with the hea of the wood at the center, surrounded by the ring
Wagon Box. - An improvement in ming wagon boxes has heen patented by Mr. Jam M. Kimball, of Woodstock, Ill. This box may b carried on any ordinary running gear and may be used
as a common wagon box. It is provided with means or dropping the load through the bottom, mean closing and locking the bottom lesves or boards afte the load has been discharged. In the bottom of the boz here is a cross beam and a center beam. Leave hinged to the rear of the box and to the center bean form the bottom of the box. The box is provide with a series of catch levers and with releasin mechanism for withdraw the leaves to fall.
Wash Board. - John T. Lenoi provided with. series of removable provided with a series of removable rectangula part of their length; the bars consisting of two strip separated by spacing pieces at their ends, the spacing pieces havirg reduced, threaded extremities to pass hrough the side bars of the frame and receive lock upon another.
Fly Brush.-Harvey Miller, Waterloo owa. A circular casing is mounted to revolve on on a curved bar carrying a brush or brushes at its free outer end. By drawing on and releasing a cord wrapped
around the casing, the latter and the brush are caused revolve and drive away flies on and about the door.
Paint.-George Walker, Jersey City, N. J. The ingredients of this paint are derived from
wood, preferably hard wood. The first product of
distillation is a light oil and acid water, a portion of which is removed. The remainder is further distilled, leaving a residuum resembling asphaltum and solid when cold: this latter is dissolved in the light oil cld water, producing an intensely black paint.
Cigar.-Samuel Heilbroner, New York City. This cigar has a lateral bend produced in its he , such bent portion being reduced in size, giving portion of the nicotine will be concentrated at the bend of the cigar and will drop with the ashes. A further advantage is that the cigar may be lighted
without flame coming too close to the smoker's mouth mustache.
Truck.-Joseph M. Sill, Towanda, Pa his is a two-wheeled hand truck, especially adapte or use in warehouses for handling seed, grain, and runners which may slide on the floor when the loaded ruck is suddenly stopped, and the racks, legs, and le braces are all flush with the side bars, so that the truck nay be brought close to a platform, the construction anck will be errong and will occupy but little weace

Animal Trap.--John Picard, St. Paul regon. This is a trap for catching moles, gopher pring into the mole passage to impale the animal. The spear is held up by a trigger arm hinged or pivoted its upper end, the arm extending down to a position elease the spear and allow it to descen. A trip plate connects the trigger to the spear rod, and the trigger is djustable.
Typewriting Machine. - David H. aylor, Cincinnati, Ohio. This invention covers riter in which and combination of parts in a typeby a single set of keys, avoiding the use of a capitaliz ing key. A double or two-part finger piece or key, the parts of which interlock for separate or simultaneou ovemert only will be depressed, but when it dessre to write capitals both finger pieces will be depressed he finger pieces being connected with different sets of ey levers.
Note.-Copies of any of the above patents will be
urnished by Munn \& Co., for 25 cents each. Ple end name of the patentee, fitle of cents each. Please of this paper.

SCIENTIFIC AMERICAN

BUILDING EDITION

MAY NUMBER.-(No. 6\%.)

TABLE OF CONTENTS.

1. Elegant plate in colors showing the residence henry Ivison, in the vicinity of New York. Also photo-
graphic perspective view, floor plans, etc. graphic perspective view, floor plans, etc.
2. Plate in colors showing the residence of Mr. George Comstock, of Bridgeport, Conn. One of the
handsomest in Bridgeport. Photer handsomest in Bridgeport. Photographic per
spective view, floor plans, etc. Cost $\$ 10,000$. 3. Design for a staircase of pleasing and novel a
3. Photographic views and floor plans of a colonia cottage in Armour Villa Park, Bronxville, N. Y.
Cost $\$ 2,800$. W. W. Kent, architect, New York 5. Engravings showing a perspective and floor plan of the residence of Mr. George Burnham, a
Powelton Ave. ?hiladelphia ketch of a drawing room.
4. Sketcoling at New Have
$\$ 6,345$. Perspective view, Conn. Cost comple 8. Illustrations showing perspectives and ground plan of the First Presbyterian church, recently erected at Rutherford, N. J. Total cost complete $\$ 70,0 \mathrm{OC}$. Messrs. Fowler \& Hough, New York, architects - very attractive and piccuresque cottage erected
Wayne, Pa. Cost $\$ 3,800$ complete. Floor plan perspective elevation, etc.
cottage at Fanwood, N. J. Cost $\$ 4,200$ complete Photographic view, floor plans, etc. Philadelphia, Pa., designed to be one of the most commodious play houses in America. Architect Augus S. Wade.
5. Miscellaneous contents: Statuary marble.-John required for heating.--Painting ironwork--Archiectural foliage.-A luxurious bath.-Hardwood inish.-Decorations of the Hotel Metropole, Lon-
don, England. - Oldest dwelling in the United States.-An improved gas engine, illustrated.-A sanitary laundry tub, illustrated.-Real estate in-vestments.-American tin and terne plates.-An
easily coupled door hanger, illustrated.-Architectural wood work, illustrated.-An improved croil saw, illustrated.-Improved system of fire proofing, illustrated.-The new Bolton heater, and ventilating school houses.-Finishing natural Scientific American Architects and Builders dition is issued monthly. $\$ 2.50$ a year. Single copies 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages; forming, practiwo ha nared ordinary book pages, forming, practiTURE, richly adorned with elegant plates in colors and with fine engravinge, illnstrating the most interesting examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Lareest Circulation ail newsdealers.
muNN \& CO.. Ptblibhera
\mathfrak{D} Business and Persomal.
The charge for Insertion under this head is One Dollar a line
for each insertion; about eight words to a line. Advertisements must be received at publication office as early Thursday morning to appear in next issu

For Sale-New and second hand lathes, planers, drills,
shapers, engines, and boilers, belting, pulleys, and shaftshapers, engines, and boilers, beltin
ng. W. P. Davis, Rochester, N. Y.
Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. Barrel, Keg and Hogshead Machinery. See adv., p. 18 For best hoisting engine. J. S. Mundy, Newark, N. J. Best Ice and Refrigerating Machines made by Davi
Boyle, Chicago, IIl. 170 machines in satisfactory use. The Improved Hydraulic Jacks, Punches, and Tube Screw machines, milling machines, and drill presers The Garvin Mach. Co., Laight and Canal Sts., New York. "How to Keep Boilers Clean." Send your address for
free 96 p. book. Jas. C. Hotchkiss, 112 Liberty St., N. Y. Billings' Double-acting Ratchet Drills, Drop Forgings,
Bronze Forgings. Billings \& Spencer Co., Hartford,
Want

Wanted-A second-hand 9x14 or 10x12 automatic cut burg, Pa.
Split Pulleys at Low prices, and of same strength and ppearance as Whole Pulleys. Yocom \& Son's Shafting orks, Drinker St., Philadelphia, Pa.
Guild \& Garrison, Brooklyn, N. Y., manufacture stean cimps, vacuum pumps, vacuum Patent for sale, or will sell territorial rights. The McCandless truss, patented Sept. 16, 1890. For further
nformation address W. D. Davis, Monticello, S. C. For low prices on Iron Pipe, Valves, Gates, Fitting and Brass Castings, and Plumbers' Supplies, wr The best book for electricians and beginners in elec By mail, \$4; Munn \& Co., publishers, 361 Broadway, N. Y. A rare opportunity for a young man with a few tho and dollars capitai to secure a permanent position a manager of a Western water works
Engineers, manufacturers, and makers are invited to end gratuitously catalogues, pricelists, and trade term to George T. Poole, Assoc. R. I. B. A., Assoc. M. I. C. E. Department of Public Works and Buildings, Perth

展 Send for new and complete catalogue of Scientif nd other Books for sale by Munn \& Co., 361 Broadway,
New York. Free on application.

hints to correspondents.
Names and A ddress must accompany. all letters,
or no attention will be paid thereto. This is for our or no attention will be paid thereto. This is for our
information and not for publication.
eferences to former articles or answers should References to former articles or answers should
give date of paper and page or number of quaetion
Inquiries not answered in reasonable time should
be repeated: correspand be repeated; correspondents will bear in mind that that
some answers require not a little research, and,
though we endeavor to reply to to all either hy letter
or in this department each must take his turn.
Special Writen Information on mater or in this department, each must take his turn.
Special of riten In formation on maters of
personal rather than general interest cannot be
expected without remuneration. expected without remuneration.
scientific American An An ents referred
tomay be had athe oftice. Price 10 cents each.
Books referred to promptly supplied on receipt of Minerals sent for examination should be distinctly
marked or labeled.
(3031) I. E. writes : I have a valuable utograph written with lead pencil. Is there any way
prevent it from fading, and preserve it? A. It will never fade. To preserve it from erasure pour skimmed nilk over it, or apply the regular fixative
tores. An artist could apply it for you.
(3032) B. H. asks : 1. Please inform me whether, and if so how, I can remove lithographing from tin lard pails. We have some lard pails which
are lithographed, and this portion of the pail is varnished over the lithographing. Do you know of any way by which I can remove this lithographing by using cals ever used, and how, for bleaching lard ? A. To limited extent. Treatment with hot borax or soda soution may be adopted. The chemical treatment of ard is often in the line of adulteration.
(3033) W. S. N. asks : What two chemi cals or acids will ignite and cause a flame when brought together? A. Phosphorus and iodine after a few seconds
contact ; also pure chlorine gas and Dutch foil or pow dered antimony, water and potassium; and several
(3034) F. H. McI. asks: How is aqua mmonia or concentrated ammonia made? Could I make it in small quantities for ice making, ammonia to be 24° to 25° strength ? What kind of appara cus is needed to manufacture it in 500 pound lots? A It, is made by passing ammoniacal gas through water. tank, the whole inclosed, is all that is necessary. The anabsorbed gas can be used to partially charge other (3055) W I G.
(3035) W. L. G. writes : "Matter," says
 meaning more fully. A. Matter is considered indestructible according to most authorities. Professor homson seems to be formulating the old doctrin ather an intangible theory, although forces. This is
(3036) C. S. H. asks: 1. What advantage, if any, is there in green prints over blue? A. It is
principally a matter of taste. 2. Will any cheap wine

808? A. No; use a mixture of alcohol and water in equal (3037) C. F. H. asks : What will take sulphuric acid out of a vegetable matter dissolved in and water, or carbonate of sodium
(3038) C. F. V. D. writes: To drill a large hole through glass, use a piece of maple wood turned in the lathe to the desired size. Take a common
bit and bore into the end of the wood to the depth of bit and bore into the end of the wood to the depth of
one quarter of an inch; insert the wood into a common bit brace and fasten a piece of board with a hole in it to turn the piece of wood. Place the hole over the spot to be drilled and apply coarse emery powder. A three. quarter or one inch hole can be bored in this manner in very short time. I have foond the wood superior to either iron or brass tubing for puncturing glass. The plate should be bored halr way through upon one side,
(3039) C. F. V. D. asks: 1. What kind of glass plates must Iuse in constructing a Wimshurst lectrical induction machine, and how shall I test them or insulation? A. Use common window glass. Se-
ect sheets that are flat and free from wrinkles oribubbles. When the plates are completed, coat them with shellac varnish, and after they are apparently dry bake them in a warm oven, or allow them to remain near a stove
or furnace for several hours. 2. What kind of glass jars to use in making Leyden jars, and how to test them for insulation? A. Use soda glass; if they retain the charge for a considerable time in dry weather in the winter, the insulation is perfect. If the charge escapes quickly, the insulation is defective. 3. What is the best flame to use (where gas is not economical) in doing
such work as the so-called Bohemian glass blowers? such work as the so-called Bohemian glass blowers? lene blowpipe flame.
(3040) New Yorker in North China asks ope with 2 blocks of 4 sheaves each, etc. A. The breakrope with 2 blocks of 4 sheaves each, etc. A. The break-
ing weight for a 9 inch manila rope is 21 tons. No more than 5 tons should be allowed under any cir. cumstance as a working load, 3 tons being the proper
working load. Your pair of 4 pulley blocks, with the ope fast at the top block, will be equal to a safe load of 24 tons. The last or hauling rope sustains a load 24 tons weight the pull is 3 tons plus the friction. are correct in regard to the division of the total strain by the number of sheaves, as also on the 6 sheave lift; 10 per cent is rather large for the large iron blocks with iron sheaves. The friction on each sheave is the same,
and as there are 6 sheaves, each bearing the same weight and as there are 6 sheaves, each bearing the same weight
and under the same conditions, should have, with a 10 per cent assigned friction, an amount due to the pull on any one rope multuplied by the six sheaves. As the
final pull for the $11 / 2$ tons was 560 pounds 10 per of which is $56 \times 6=336$ pounds friction, which added to 560 is 896 pounds for the total pull while the load is (3041) H. H. G.-For an air blast you will require an air compressor, which will give you any ir compressor. Steam or belt from any other power may be used. The amount of power depends upon the pressure and quantity of air wanted.
(3042) W. C. F.-If you desire to make Siemens armature for your motor, you should follow
he general directions given in SUPPLEMENT 600 for the
(3043) W. W. H. asks : Can double-cov-
(3043) W. W. H. asks : Can double-cov-
ered paraffined wire be used to wind field magnets? Is ercd paramined wire be used to wind field magnets? Is cups? A. Douhle-covered paraffined wire is too heavily
insulated for use in the field or armature. Double-covered magnet wire is used for that purpose. Plaster of (304) J. \mathbf{F}.
(3044) J. J. F.-The most powerful guns miles.
(3045) J. R. M.-Use thin shellac varnish for brass work. Use French polish for taking out
(3046) W. L. C. writes: In the Scienfific American Supplement of March 7, 1891, you
give a formula for the paste used in Gassner dry battery. You say plaster 3 parts. Please inform me what is meant. Also give E. M. F. of such a battery. A. In the formula for Gassner battery the term "parts" means parts by
about $11 / 2$ volts.
(3047) W. H. N. asks for the recipe for roller moulding machines. A. To $1 \not 1 /$ gallons of water rder $21 / 2$ pounds of Peter Cooper's glue, allow to stand overnight, after which place it on the fire and cook
slowly for two hours. Take $1 / 2$ pound best English slowly for two hours. Take $1 / 2$ pound best English
Paris white, and one pint of flour, packed tight in the measure, place them together in a basin and add suffi. cermilk, add this to the glue when cooked as above and allow the whole to cook for one hour, when it will be ready for use.
ment, No. 773.

Enquiries to be Answered

The following enquiries have been sent in by some of our subscribers, and doubtless others of our readers
will take pleasure in answering them. The number of he enquiry should head the reply.
(3048) Urushic Acid.-Will any one kindly tell me the constituents of this acid, which is the essential principle of japan lacquer (Urushi-yama)? I

N. K. D., London.

query.-ED.]

(3049) F. W. H. asks : Can any kind of sail boat, on the water, be made to go faster than or discussion by readers.

NEW BOOKS AND PUBLICATIONS
An Introduction to the Study of ten, C.B. F. R.S. London: Charle Griffin \& Company. Philadelphia J. B. Lippincott Company, 1891 Pp. xii, 292. Price $\$ 2.50$.
The eminence of the author, his great ability as a writer, and the most interesting researches already de-
veloped by him in lectures remove this work from the necessity of a review. It is sufficient to say that it siandard is as high as the rest of Dr. Austen's works and that the subjects are reated from the same scien author's lectures and publications. It contains numer ous illustrations and tables when required to illustrate the subject. As was to be anticipated, the subject of Chinese and Japanese compound
Surveiting and Leveling Instru-
Ments. By William Ford Stanley
London : E.
author.
1890.
P. M. ©
.
This work, written by a manufacturer of the instru ments he describes, possesses considerable value from preciation of features of instruments that can be ex pected from no one that is not equaliy conversant wit heir use and manufacture. It contains over three huneyors and civil engneers for their reading
The Corliss Engine. By John T liss Engine By Charles D The Cor liss Engine. By Charles D. Thurber New York. 1891. Pp. 92. Price $\$ 1$ These two papers, which are republished from the Engineer, of New York, are entirely practical in the
character. It is stated that they are intended as a guide o the most economical management of the Corliss en gine, and there is no doubt that they will be of use to the progressive engineer. The work is illustrated and con ins a table of data, indicator diagrams, etc.

ARCHITECTURAL IRON AND STEEL. By William H. Birkmire. New York:
John Wiley \& Sons. 1891. Pp. xiv, John Wiley \& Sons. 1891. Pp. xiv,

The title of this work describes its contents. It is deoted to the application of iron and steel in the con struction of buildings, including the subject of specifications, ornamental work, and numerous tables of the quares, cubes, etc. such as required continually by the designer. It presents at the end the proposed New York building law, given as a useful example of legal mitations. It contains numerous illustrations, as reuired to illustrate its subject.
Odontics, or the Theory and PracTlice of the Teeth of Gears. By Gearge Bor. Grant. The Lexington Pp. 103. Price $\$ 1.50$

This very practical work is made up of a series of contributions to the American Machinist for 1890. The merous illustrations for skew, bevel, and the most com licated gears, as well as for simple, straight work.
Practical Blacksmithing. Compiled
and edited by M. T. Richardson Volume IV. New York: M. T. Rich We are glad to see the fourth volume of this series, the olumns. It is made up of a collection of articles by
cole different skilled workmen. The present volume is deoted to "Jobs of Work," including tires, axle setting springs, tool tempering, etc. A set of table
sizes of iron and steel terminate the work.
Hints to Power Users. By Robert Grimshaw, M.E., etc.
Cassell Publishing Cow
Nork
No 160. Price $\$ 1$.

The author considers that this hook is for the practical man. It is, he states, free from high science, and is traphic and even humorous way in which the possesses the art of presenting his views makes the ittle work interesting reading for every one.
Looking Forward for Young Men.
George Sumner Weaver D. By Rev ler \& Wells Co. 1891. Pp. 218. Price $\$ 1$.
The young man in this work is considered in the as pect;'f his patrimony, friends, politics, money and othe practical factors in existence. The subject is popularly nd well presented and should be a help to many in their struggles with the problems of life.
The Biography of Dio Lewis, A.m.,
M.D. By Mary F. Eastman. New

York: F
Pp. 398.
This biography will undoubtedly be of interest to many readers of Dr. Lewis' popular medical works. It
seems to be well put and graphically written, a nd will doubtless be warmly received by many readers.
SEASICKNESS: Cause, prevention, and Thomas Dutton m.D. London. Bailliere, Tindall \& Cox. (No date.) Pp. 79.
A work treating on seasickness as a serious trouble,
and purporting to give what may at least be termed re-
medial measures therefore, should certainly command ubjectable attertion. This work is devoted to this dertaken by invalids, and being written vy had considerable experience at sea as a ship's surgeon, and who is himself a victim to
ness, possesses peculiar value.

Traite Pratique de Photographie, a Debutantes. Par Charles Mendel. Famille. 1890. Pp. 90. Illustrated.
La Vie au Sein des Mers. Par L Dolls. Paris.
The subject of deep sea life is here presented in ery popular manner with illustrations. The whole i eristic of French publishers, and is a welcome addition o popular natural history.
Interior World. A romance, with an appendix, setting forth an origina on L. Tower. Oakland, Oregon Milton H. Tower, publisher. 1885.
In this work the author develops several origina heories and ideas of the writer, among others that of negative gravity, thus acting as a
on's story based on the same idea
Ursula. Honore de Balzac. Translated by Katharine Prescott Worme Pp. 358. Price $\$ 1.50$.
This very elegant edition of Balzac is rapidly develo ing, Ursula being about the eighteenth volume of the series by the same translator. The translation ranslator with the author must be by this time well nigh complete.

Zoological Articles. Contributed to the "Encyclopædia Britannica." By R.S. To which are added Kindred LL.D.,F.R.S., Ludwig v. Graff Dh A. A. W. Hubrecht, Ph.D., LL.D., A. G. Bourne, D. Sc., W. A. Herd-
man, D. Sc. Edinburgh : Adam \& man, D. Sc. Edinburgh: Adam \& Scribner's Sons. 1891. Pp. viii, 195. Price $\$ 5$.

These reprints from the ninth eation of the Encyclo pædia Britannica, profusely illustrated and on very heavy paper, make an exceedingly ottractive series for
the naturalist. Ten articles devoted to the lower forms of fe constitute the work, thus bringing together matter cattered through many of the large volumes of the original work and forming a treatise of great value.
Any of the above books may be purchased through his office. Send for new book catalogue just pub-

TO INVENTORS

An experience of forty years, and the preparation of
nore than one hundred thousand applications for tents at home and abroad, enable us to understand the laws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. A ynopsis of the patent laws of the United States and all
foreign countries may be had on application, and persons contemplating the securing of patents, either at homeor abroad, are invited to write to this office for prices, which are low, in accordance with the times and our exMUNN \& CO., office SCIENTIFIC AMERICAN, 361 Broadway, New York.

INDEX OF INVENTIONS

 For which Letters Patent of the United States were GrantedMay 12, 1891,
AND EACH BEARING THAT DATE.
[See note at end of list about copies of these patents.]

Car coupling, IRoney'\& Lloyd
Car coupling,
Car coupling:
Ruppert...
 Cars, maccinery for propeiling eiectric, s. . .
Cars, power transmitting mechanism for .

Case. See Ceii co............................
Case. See Ceii case.................................
Cash indicating and recording apparatus, E Cash register and indicator, w.

 Chopper. See Cotton chopper.
 Cigar thlers, method of and machine for mak̈ing,

```
            l
```


 Crarows. .t.......̈̈hine for making, Quinn, Jr., \& Cue tip shaper and chalk hoider, J. J. W. Kilap-
perich..............................$~$
 cut-out, thermal, P. Heil. Whiitiongham...............
Cuter. See Band cutter. Moulding cutter.
neer.

 F

 Gate. See bridge gate. End gate.
Geailway gate
wring driving for frictional, F. H. Under-

ELECTRICITY

 Book., 1830...................................... 81.00
Dynumo Teenders Hand Book. A practical
guide forthe operation of Electrictight Installations,

ands of all very comp hole do wirk and shouid be in th
atus of any kind whatever.

Electrical Instument Making for Amateurs. By

 connection with the word, term, or phrase defned.
Erectrical Engineering. By W. Slingo and A
Brooker. APratical Book for Eliectric Liint Artisan
and Students. This is a Comprehensive Treatise on th

 Pratical Electric Eell Fitting. A Treatise on
the Fitting-Up and Maintenance of Eiectric Bells and
all the necessary apparatus. By F. C. Allsop. With

 Practical Electrics.-A Universal Hand-book on
every-dical electrical
alarms, batteries, bells, cartors, ins, induclucting in inneneotions,

 on receipt of the price, by
IMTUTly sent ishers of the "Scientific American,"
$\mathbf{3 6 1}$ Broadway, New York
ITT Sen for orr Nee

ELECTRICAL!

THE SMITH PREMIER TYPEWRITER

Important Improvements.
 OIL WELL SUPPLY CO.

ARTESIAN
 W= Wu=
GEAR CUTTIING CIAARIES:S FANS.
 and Yarn Washing an
Dyeing Machines. GEO. P. CLARK, Manuf.
OX L.
Windsor Locks, Ct.

STEREOTYPING.-A VALUABLE recent methores in thisomas bralas. discussing the most typorapy. with 23
Hustrations. Contained in SCIENTIFTC AMERICAN SUPLEMENT Nos. 733 and 774 . Price 10 cents
To be had at this office and from all newsdealers. U1ON MANUFACTURING \& PLAATING C METAL SPECIALTIES FOR INVENTORS.

GATES ROCK \& ORE BREAKER
 Capacity up to 200 tons per hour.
Has produced more ballast. road
metal, and broken more ore than meta, and broken more ore than
autherers orers combined
Machinery High Grade Mining GATES IRON WORKS, 50 C So. Clinton St.t Chicago
215 Franklin St.. Boston, Mass. HOW TO MAKE DYNAMO-ELECTRIC and full dir rections for constructing dynamosos dirferent
sizes. The smanl machine in intended tor experimental
purposes. Will heat from 4 to 6 inches of purposes. Will heat from 4 to 6 inches of platinum wir
produe. the eletric light, deompoee water rapid
manetize steel, ring alarge goong, pive powerful shock
 two or four men. Requires one horse power for con-
tinued running. Best engravings of dynamo ever pro-
duced. Details of every part shown. Winding of armaire and fifld magnet plaingly illustrated. Any intel-
irent person with the aid of thes dra wings and instruc-
ions
stell trpe for typewitirns

GOLD- SILVER - NICKEL PLATING outdits and give work in part payment. Circulars free.
Address F. LOWE Y, Box 139, Brooklyn, N. Y: G. Hatfleld. With directions for Ronstruction. FY Rour

Stored Energy ACBUMULATORS $\begin{gathered}\text { for Electric Lightin } \\ \text { Street Car Propulisi }\end{gathered}$

HENRY CAREYBAIRD \& CO.

 810 Walnut St.. Philadelphia, Pa., U. S. A. enne applied to the Arts, sent freeand free of postag
to any one in any part of the world who will furnish his
address

HARPER'S PERIODICALS

harper's magazine, One Year HARPER'S WEEKLY, One Year harper's bazar, One Year harper's young people, one Year

喓 Postage free to all subscribers in th United States, Canada, and Mexico.

The volumes of the Weekli and BA AR begin with the first numbers for January, the volumes of the Young People with the first number for No vember, and the volumes of the MAGA December of each year.

Booksellers and Postmasters usuall receive Subscriptions. Subscriptions sent direct to the publishers should be accom panied by Post Office Money Order or Draft. When no time is specified, subscriptions will begin with the current Number.

The MAGAZINE is an overforing store of good ditera-
ture and exaisite art-a delightrol production desery
ing ail the fame and all the material such

 well as to plenty or persons olderery Aremarkablean an
valuable, an instuctive and delightul line of publica
tions, indeed.- $-N$. Y. Sun. Address

HARPER \& BROTHERS, NEW YORK FOREIGN PATENTS THEIR COST REDUCED.

THE NEW NON-CONDUCTING MATERIAL
 it to be superior to Hair Felt in Non-Conducting qualitites. Made into sect
for pipes and into sheets sand rolls for rare surfaces. Send for fanplest
Asbentos Boiler Coverings, Steam Packings, A sbestos Cloth, 표표
 MONTAUK camera.

HARRISON CONVEYOR ! Handing Grain, Coal, Sand, Clay, Tan B.rk, Cinders, Ores, Seeds, \&C

RATING MACHINES
Mass. Institute of Technology,
Courses in Civil Mectanical, Minning Electrica - Entrance examinations in Boston, New York, Phila-
delpha, Washington, Pittsbur, Cinclinatit Chicao
St. Paal, Stitouis
Toronto. Catalogue free. Francisco, Montreal, and J. B. HENCK, Jr., secretary

 ROSE POLYTECHNIC INSTITUTE
 THE STEAM ENGINE: ITS PRINCL

 FRICTION PULLEETS CLUTCHES and ELEEATORS E. R.
$\$ 10.00$ to $\$ 50.00$ R
 ARTIFICIAL INCUBATION-A DE

TYPEWRITERS.

Largest like estahlishment in the world. First- class Second-hand Instruments at half new prices

 Unprejudice a advice given on all makes. Ma-chines sold on monthly payments. Any Instruchines sold on monthly payments. Any Instru-
ment manfacturedshipped privilegetoexamine.
EXCHANGING A SPECIALTY. Wholesale prices to dealers. Illustrated Catalogues Free.
TYPEWRTMER
HEADQUARTERS, $\}$ Broadway, New York
144 La Salle St., Chicago

Experimental Science

740 Pages. Over 680 lllustrations. PRICE, by mail, postpaiid, $\$ 4.00$ SEND for fULL LLLUSTRATRD CIRCULAR This is a book fuil oi interest and value for teachobtaints, and others who desirire to impart MUNN \& CO., Publishers, Office of The Scientific American 361 BROADWAY, NEW YORK. $\cdots \mathrm{Mr}$. Hoptinins has

PROPOSALS.

 AIU BAG LABEL HOLDERS

The S Sienificic $\mathrm{Am}^{\text {merician }}$

PUBILCATIONS FOR 1891.

stane prices of the diferent pabitiations in the United

 The Scientific American Architects and Builders
Edition (monthly), one year, COMBINED RATES.
The Scientific American and Supplement, The Scientific A merican and Architects and Build- 5.00
ers Edition, The Scientifc America, Supplement, and Archltects and Builders Edition, - - - 9.00 Proportionate Rates for six Months.
This includes postage, which we pay. Remit by postal

ELECTRIC POWER TRANSMISSIO

Scientific Book Catalogue
 MUNN \& CO., Publishers Scientific

DEVELOPMENT OF AMERICAN

${ }^{5}$ Motor of ${ }^{\text {the }}$ Century

WANTED. second-hand single color
rinting Machine capable
of doing forty-inch goods doing forty-inch yoodd,
also a grounding hand pad-
same goods. Please state ang machine for the same goods. Piease state
price full particular, and where it can be sen.
$\mathbf{1 2 4} 4$ Ciutou Place, New York City
NEW KODAKS
 The all Photo. stock Dent lers.
THE EASTMAN COMPANY,
$\underset{\text { ateurs.-By C.D. Park hurst. }}{\text { MOsescription }}$ FOR detailo of a

 A. WYCKOFF \& SON,

JAMES LEFFEL WATER WHEELS
 FARLO ST., SPRINGFIELD, OHIO.
110a Liberty Street
New York City.

$\$ 85$ Lovell Diamond Safety \$85
 Strictly high grade in every particular. No better machine made at any price.
Bicycle Catalogue Free. Send sir cents in stanpsporo for our 100-page illustrated catalogue
of Guns. JOHN P. LOVELL ARMS CO., 147 Washington Street, BOSTON, MASS.

DRY AIR REFRIGERATING MACHINE. Description of Hall's improved horizontal dry air refrig.
erator, designed, to deliver about 10.0 coo cubbic feet of
cold air per bour, when running at apeed of 100 revolu-

CHEMIST Tams f manaze Analyses of all kinds. Ores, Toilet and Food Prepara-
tions, etc. Advice to Mfrs. Correspondence solicited.

After being on the Market Five Years The "ACME" still Leads!
 ROCEESTER MACHINE TOOL WORKS, Brown's Race, ROCHESTER, N. Y.

H.W.JOHIS asbestas STEAM PACKING
 Boilior Coverings, Millboard, Roofing,

 WORKING MODELS $\underset{\substack{\text { and Experimenta } \\ \text { machiner, } \\ \text { meta }}}{ }$

95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877, No. 186,787.

- The transmission of Speech by all known forms of Electric Speaking.Telephones inringes the rightsecured to this Company by the above patents, and renders each individual user of telephones not furnish ed by it or its licensees responsible for such
unlawful use. and all the consequencet thereof, and liable to suit therefor.

STEAM ENGINE, HOW TO MANAGE

CUSHMAAN CHUCKS

ALUMINUM. AN INTERESTING DE scription of the various methods of manufacturing thi
metal. ehemical and electroltatic: with specal reference
to the
Heroult

GRAVESELEVATORS. thecopying pad_howtomake

 GATE VALVE
 GATE VALVE
 The Lunkenheimer Brass Mfg. C 0 .
 3 nositile giant WM. READ \& SONS, ฐcirntific gesmericam The Most Popular Scientific Paper in the World

This widely circulated and splendidy illustrated paper is published weekl. Every number contains six-
ceen pages of useful information and a large number of original engravings of new inventions and discoveries,
oren representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manuffactures,
 ete. Complete ist of patents each week.
Terms of Subscription.-One copy of the scien-
TIFIC AMERICAN will be sent for one year- 52 numbers-
 pubishers; six monthes, 81.50; three months, 81.00. Clubs--Special rates for seve
Masters. Write for particulars.
The seafest way to remit is by Postal Order, Draft, or
Express Mones Express Mones Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., payable to
MUNN \boldsymbol{E} CO., $\mathbf{3 6 1}$ Broadway, New York.

THE

§rientific :
This is a separate and distinct publication from THE
SCIENTIFIC AMERICAN, but isuniform therewith in size, every number containing sixteen large pages full of engravings, many of which are taken from foreign papers, and accompanied with translated descriptions. THE
SCIENTIFIC AMERICAN SUPPIEMENT is published weekly , and includes a very wide range of contents. It presents the most recent papers by eminent writers in all the principal departments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural
History, Geography, Archæology, Astronomy, Chemistry, Electricity, Light, Heat, Mechanical Engineering, Steam and Railway Engineering, Mining, Ship Building, Marine Engineering, Photography, Technology, Manu-
facturing Industries, Sanitary Engineering Horticulture, Domestic Economy, Biography, Medicine obtainabst amount of fresh and valuable information The most inportant Engineatering Works, Mechanisms.
and Manufactures at home and abroad are illustrated and Manufactures at home and abroad are illustrated
and described in the SUPPLEMENT.
Price for the SUPPLEMENT for the United States and Price for the SUPPlement for the United States and
Canada, 85.00 a year; or one copy of the Scientific AmERICAN and one copy of the SUPPLEMENT. both mailed
for one year for 87.00 Single copies, 10 cents. Address and remit by postal order, express money order. or check,
MUNN \& CO., $\mathbf{3 6 1}$ Broadway, New York,

361 Broadway, New York,
Publishers ScIENTIFIC AMERICAN
Bunilding EXdition.
The SCIENTIFIC American Architects, And
BUuLDERS' EDITION is issued monthly. $\$ 2.50$ a year Bingle copies, 25 cents. Forty large quarto pages, equal Single copies, 25 cents. Forty large quarto pages, equal
to about two hundred ordinary book pages: forming a large and splendid Magazine of Architecture. richly
adorned with elegant plates in colors, and with adorned with elegant plates in colors, and with other fin
engravings illustrating the most interesting examples of modern architectural construction and allied subjects. A special feature is the presentation in each numbe dences, city and country; including those of very mod erate cost as well as the more expensive. Drawings in Plans, Specifications, Sheets of Details, Estimates, etc. The elegance and cheapness of this magnificent wor Architectural publication in the world. Sold by all news-

PRINTING INKS

