
a WeEkly joural 0f practical information, art, science, mechanics, chemistry, and mantfactures.

	NEW YORK, MAY 16, 1891.	
	NEW YORK, MAY 16, 1891.	Weekly.

THE BROADWAY AND SEVENTH AVENUE CABLE

 ROAD.The operations for converting the Broadway and Seventh A venue street railroad of this city into a cable traction road are now under way. As this is the representative of a number of roads under the same administration, and as the work marks the first application of the cable system to railroads in the down town business districts of the city, the operations have a definite meaning. It marks the first step in making this a city of cable roads. The Third Avenue railroad company is committed to a cable system which may be in operation as soon as the Broadway and Seventh be inopera Avenue company complete their change. It is said hat the Sixth Avenue railroad also propose making the same change. Then, by bringing associated lines under the system, the street car horse may, within a few years, be almost banished from our streets.

As yet the operations of installing the cable system As in very early stage Our illustrations show work in progress and the difficulties that have to be contended with. Up to the present time the work has not reached the stage of actual construction. The contractors are only clearing the way for the introduction of the cable duct.
The first step in the work was executed by the rail road company, and was in the nature of reconnaissance or exploration. The road starts at the southern extremity of the city, and runs up Whitehall Street to Broadway. Thence following the line of Broadway, which is not a perfectly straight one, it goes obliquely through the city to Seventh Avenue, near 44th Street. Near this point Broadway and Seventh Avenue cross each other at an acute angle. Diverging slightly to the right, the road follows Seventh Avenue and continues to 59th Street, terminating at one of the en-
trances to Central Park. The entire length of the road is about five miles. To ascertain what work was necessary to clear the ground of obstructions, this entire line was examined. At every intersection of a cross street, one or two cross sections, showing the pipes, electrical conduits, etc., underlying the street, were prepared. Some of the data for these cross sections were obtained from any records that were found available. Such records were far from complete. The work done on the electric subway vaults or manholes furnished another source of information, but much of the data were determined only by actual digging.
In this way a great number of cross sections were determined. To illustrate the nature of the work, we reproduce one of such sections and show in the other cut what appearance the ground in the vicinity of the same cross section presented when excavated. The (Continued on page 310.)

THE BROADWAY AND SEVENTH AVENUE RAILROAD-CLEARING OBSTRUCTIONS FROM THE LINES OF THE CONDUITS.

Frientific : Americam.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIEIC AMEIRICAN

 One copp, one year. for the U. S., Canada or Mexico. One copy, one year, to any foreign country belongink to Postal Union. 1010 Remit by postai or express money order, or by bank draft or check.MUNN $\&$ CO., 361 Broadway, corner of 4 ranklin Street. New York. The Sclenific American Supplement Is a distinct paper from the SCIENTIFIC AMERICAN. THE SUPPLKM MNNI
is is ind
sith eek

 Buildingr Edition

Spanimh Edition of the Scientific American.

 MUNN \& CO., Publishers, Qrift The safest way to remit is by postal order, express money order
prat or bank check. Make all remittances payable to order of MUNN any failure, delay, or irregularity in receipt of papers.

Contente. (Illustrated articles are marked with an asteriak.)	
LE OF CONTENTS O	
SCIENTIFIC AMERICAN SUPPLEMENT No. 802.	
or the Week Ending May 16, 189	
1. ELECTRICITY.-An Incandescent Lamp Factory in the North- BeLt - Numeroun instances of wativer Pon or water power by means of electric transmisslon, showing the world's work in this tected against the entrance of water-An ingenious system for keeping the conductor dry. -1 illustration	
Doit by Prof. C. H. FERNALD. of the Massachusetts AgriculturalCoilege, Amherst, Mass.and from ot her soures upon injurious insects, and methods of destroying and holding them in check.- 8instrations	
. GEOLOGY-GOia in Columbia.-An interesting communication Concerning Uolagin the two Coiumbas, british and accounts of	
MEDICLINEE, -The Treatment of Tuberculoisis.-French investiga-tions on the cure of tuberculosis by transfusion of blood.-Re-	
 launched at Portsmouth.-Deseripiotion of her armament and pene	
Enlargement-A A rational examination of the photoraphic repro-duction of land scapes.Some of the peculiar appearances investi-	

DEFENSELESS CONDITION OF OUR SEAPORTS.

The need of fast war vessels was well illustrated by the recent incident in the harbor of San Diego, when a Chilian cruiser belonging to the insurgents entered the bay, anchored, took on board recruits, supplies of provisions, ammunition, and then sailed away. This ship, under the laws of nations, was in fact a piratical vessel, and as such was seized by the government authorities at San Diego, and a United States marshal placed on board in possession. But the Chilian rebels paid no attention to the laws of the United States they may be said to have captured the place. When they had obtained all the supplies they wanted to as sist them in carrying on war against a friendly nation, they upheaved anchor and steamed away, carrying off as a prisoner the official representative of the grea republic. This was a small ship called the Itata, car rying four guns.
Report has it that the government is mildly indig nant at this occurrence, and has ordered the United States war ship Charleston, at San Francisco, to sail in pursuit of the Itata and recapture her if possible. Allowing this could be done, and the Itata could be destroyed, it might be dangerous to attempt it. The Chilian rebels would be maddened and might retaliate There is nothing to prevent them from sending in other boats to capture or bombard San Diego or other towns along the coast. Indeed, while the Itata was taking on supplies at San Diego, other vessels of the rebels were hovering outside the harbor
We have no navy worthy of the name, and nearly all our seaports are without proper defenses. Like San Diego, they are at the mercy of any single piratical boat that chooses to enter. This is a very humiliating position for a country like ours to be placed in. The indifference of Congressmen to the naval defense of the country is astounding. They waste their time over party squabbles, vote billions of money for schemes in tended to help bring votes to their respective sides on election day; but as to the immediate creation of an enterprising, prompt and effective navy, which is of vast importance to the country, but little is done, and that little very slowly. All told, we have a pair of small torpedo boats, half a dozen or so of small cruisers and an equal number of larger vessels.
There should be fifty ships where now there is one Every harbor in the country should be guarded by efficient sentinels consisting of vessels of high speed ready for instant action, to maintain and enforce the authority of the republic.

CHARLES PRATT.

On the evening of May 4, Charles Pratt, eminent as a philanthropist of the best type, died from a sudden attack of heart disease. While much that he did in the endowment and support of institutions is known and has made him famous as one of the world's benefactors, a great deal of the good he performed was known to few besides himself. Thus it is said that his last busi ness transaction before he died was the signing of check
ties.
He was born in Wilbraham, Mass., October 2, 1830. At the age of 19 he engaged in the paint and oil busi ness, beginning at the foot of the ladder. As one o ten children he was obliged to work for his own sup port, and succeeded so well that in 1857 he was able to come to this city and start as a member of the firm of Devoe, Reynolds \& Pratt. This firm dealt in paints and oils. Soon afterward Mr. Pratt started on his own ac count in the refining of petroleum. His brand of kerohis firm know as astral oil, is known everywhere. Late Of the was absorbed by the Standard Oil Company Of the latter corporation Mr. Pratt was a leadin nember up to the day of his death
His great wealth was devoted largely to the cause of education. The Adelphi Academy, of Brooklyn, \mathbf{N} Y., practically owns him as its father. He found it a private school, and by his donations, and advice and direction, brought it up to the standard of a high grade incorporated literary and scientific college. His donations to this cause exceed a quarter of a million of dollars. A few years ago the Pratt Institute, o Brooklyn, for manual training and scientific instruc tion generally, was opened to the public. This wa entirely his creation. It is familiar to our readers having been illustrated in this paper. Upon the Pratt Institute over one million of dollars was spent by it founder. Large additions to the Institute were contem plated, which it is to be hoped may yet be carried out
Upon the principle of the Peabody buildings in London, Mr. Pratt established a large flat house in the Green point district of Brooklyn. It is 200 by 135 feet in size and contains 120 suites of rooms upon its six floors. The building affords homes at moderate cost. It contains a reading room and library for the use of the occupants. The income derived from it wa devoted to the maintenance of the Pratt Institute
What other plans Mr. Pratt had in view for the future is uncertain. The work of his life is of double importance. It has brought about abiding and perma nent good and has set a noble example for others to follow.

DR. EDWARD MAYNARD.

Dr. Edward Maynard died on May 3, aged 78 years. A dental surgeon by profession, he won a high standing among his co-practitioners. Some of his work is to-day a standard, and he introduced several new operations in dentistry. Originally a candidate for the West Point United States Military Academy, his deli eate health prevented his completing the course. This episode presumably turned his mind to arms, and his eputation as an inventor of fire-arms became widely pead. In 1845 he patented the tape system of primer to take the place of the ever-troublesome percussion cap, an immense ad vance over the old system. In 185 he invented the breech-loading rifle that bears his name, subsequently improved and patented at various dates, and forming one of the basic improvements in the development of the metallic cartridge breech-loader of to-day.
One interesting invention was for application to double-barreled guns, allowing each barrel to expand or contract independently of the other, thus prevent ing the expansion of one barrel when fired or when ex posed to the sun frow warping the other. As late a 886 he patented an indicator for magazine rifles, to how at a glance the number of cartridges they con tain.
Many other inventions in ammunition and fire-arms were made by him. He presented the interesting exmple of a man winning high eminence in two widel different fields of work. Various honors were offered im by foreign potentates. The Emperor of Russia Nicolas I., appointed him court dentist. In the other field of work he was honored by the Kings of Belgium, Sweden and Prussia. He occupied the chair of theory and practice in the Baltimore College of Dental Sur gery, and also in the dental department of the Na tional University, Washington, D. C.

The Fur Seals in Bohring Sea

Every spring the seals appear in droves from thei nknown winter quarters, and settle down on the Pri bylov Islands, some 200 miles a way from the mainland of Alaska. The males come first, accompanied by the young seal pups born during the previous summer, and choose their respective homes on the rocks. Th emales follow three weeks later-meek little creatures, in steel gray garb, very different from the big brown male seals, with their fighting propensities. Often one seal possesses twenty wives, and he has hard task to defend his home and family from his neighbors. In deed, the old seals fight like furies, becoming covered with scars and terrible wounds, and sometimes losing n eye or part of a flipper in the fray. Most of the fighting is done with the mouth. The combatants ap proach each other with averted heads and sly looks, till suddenly they utter a shrill piping whistle, and en age with their sharp canine teeth, the hair flies and the blood flows amid much furious bellowing. The young bachelors-from one to five years old-herd to gether in their own quarters at a respectful distance, till they are strong enough to fight for wife and home.

A Deep Well

Some time ago the Wheeling Development Company began drilling a well near Wheeling, W. Va., in search of petroleum or natural gas. The hole has now reached a depth of 4,100 feet. In this distance severa veins of coal have been passed, and both oil and gas have been struck, but not in paying quantities. The hole is 8 inches in diameter. It is reported that Pro fessor White, State geologist of West Virginia, has suc ceeded in interesting the officers of the United State Geological Survey in the exploration, and that the hole is to be continued to a depth of 1,000 feet more or as far as is practicable, with the idea of inaking in vestigations of tewperature and magnetic conditions.

Trade Mark-Generic Name
The Supreme Court of Illinois held, in the cass of Bolander vs. Peterson, that a generic name, or one werely descriptive of the article made or sold, or its qualities, ingredients or characteristics, and which may be employed truthfully by other makers or dealers is not entitled to protection as a trade mark, and that words desiguating a trade indicating that a particular class of coods is dealt in cannot be exclusively appropriated by one as a trade mark or trade name. In this case it was held that the words "Swedish snuff store," or magazine," could not be protected.

Spectacle Lenses in Photography

Mr. Lyonel Clark says fair results can be obtained by fixing two meniscus spectacle lenses in a tube, with their concave sides facing each other, and with a suit able diaphragm between them. His general conclu ion was that they would not work well enough to cause photographic opticians to put up their shutters but would do a certain amount of useful work, espe cially in the hands of those photographers who, on æsthetic grounds, do not like prints sharp all over.

Early History of the Discovery and Use of Tin. A very interesting work is that of Philip William Flower, written and published in England, and entitled "A History of the Trade in Tin; a Short Description of Tin Mining and Metallurgy ; a History of the Origin and Progress of the Tin Plate Trade, and a Description of the Ancient and Modern Processes of Manufacturing Tin Plates." It is a somewhat rare work in this country, says the Boston Herald.
In the search for information through the archives In the search for information through the archives
of the world as to the origin and first employment of of the world as to the origin and first employment of
tin, Mr. Flower tells us that shortly after the description of the flood will be found a reference to Tubal Cain, " an instructor of every artiflcer in brass." The notice in Genesis thus fixes the discovery and use of tin and copper, according to the Bible, at between 4004 and 1635 years before the Christian era. And not only were the existence and use of these metals known, but the art of converting them was soon far advanced, for we find in the Book of Kings, written 1015 B. C., for we find in the Book of Kings, written 1015 B. C.,
" King Solomon sent and fetched Hiram out of Tyre. "King Solomon sent and fetched Hiram out of Tyre. He was a widow's son of the tribe of Naphtali, and his
father was a man of Tyre, a worker in brass, and he was filled with wisdom and understanding and cunning to work all works in brass."
Any one doubting the nature of this metal can be reassured by reference to the chapter which follows, giving in detail a most elaborate schedule of the pillars, the chapiters, the baths, the lavers, the pots, the shovels, and the basins, some of cast and some of wrought bright brass, which Hiram the artificer prepared for bright brass, which Hiram the artificer prepared for
the temple of King Solomon. Further ample evidence the temple of King Solomon. Further ample evidence
as to the early use of tin and brass is to be found in as to the early use of tin and brass is to be found in
the Iliad of Hower, written, as it is believed, between the years 962 and 915 B . C.
We find, then, that brass-and consequently tin-existed in Tyre, the great seaport town of the Phœnicians, on the coast of Syria, about 1000 B. C. They are fre quently referred to in all works relating to tin or to Cornwall. The Phœnicians were merchants, and carried on an important trade from the ports of Tyre and Sidon. These cities rivaled each other in magnitude, fame, and antiquity. The Tyrians excelled all other nations in the manufacture of a purple dye, said to have been extracted from a shellfish found on their coast. It is now well known that tin dissolved in muriatic acid produces a brilliant purple dye, and that tin dissolved in nitric acid will produce a scarlet dye. It is not unreasonable, therefore, to suppose that the use of tin in dyeing had much to do in the production of the Tyrian purple of the Phœenicians.
It is impossible to fix the date at which the export trade in tin was commenced from the British Islands, but it is certain that it existed and was controlled by
the Phœnicians when Herodotus wrote his history, 450 the Phœnicians when Herodotus wrote his history, 450
B. C. Herodotus refers to the Cassiterides (the Scilly Islands) as the places whence they were then obtaining their supplies; but neither he nor any other historian has left us any information as to when that trade commenced. The Phœnicians called this land of tin "Baratanac," and Bochart and other historians attribute the very origin of the name of Britain to this work.
work. After the Phœnicians the trade in tin with the
Cassiterides was taken up by the Greeks sailing out of Marseilles, the city of Massila, which was built by a colony of Greeks 600 B. C. The Phœnicians probably sailed straight across from their colony of Gades or Cadiz, and returned direct to that port with their valuable cargoes. The Greeks, how ever, appear to have been accustomed to coast up the English Channel, and crossing over from Kent to France, the tin was conveyed overland on horseba in thirty days to the mouth of the River Rhone.
The Romans, who had always been large purchaser of tin, were the next to follow the Phœnicians and Greeks. The following anecdote is derived from Strabo, who also tells of the conquest of Britain by Cæsar : "Furmerly," he says, "the Phœnicians alone carried on this traffic (in tin) from Gades, concealing the passage from every one, and when the Romans followed a certain shipmaster, tbat they also might find the market, the shipmaster of jealousy purposely ran his vessel upon a shoal, leading on those who followed him into the same destructive disaster. He himself escaped by means of a fragment of the ship, and received from the state the value of the cargo he had lost. The Romans, nevertheless, by frequent efforts, discovered the passage."
As soon as the Romans made a conquest of Britain they formed in the tin province camps and roads (still visible) and left behind them vases, urns, sepulchers, and money that exhibit daily proofs of their having been a stationary people in these parts, and that Damnonium extended even to the Polerian promontory or the Land's End, liwited by the western parts of Somersetshire. The Romans, as is well known, occupied Britain from B. C. 55 to A. D. 409, or 464 years, during which period the Cornish tin mines were largely worked by the ancient Britains, possibly for their own advantage, but more probably as serfs, and in A. D 409 the Romans had to give way to the Saxons.
During the Saxon dominion (from 410 to 1066) the
mines were almost entirely neglected, frequent intestine commotions, and the subsequent wars with the Danes,
allowing no time for such innocent and peaceful purallowing no time for such innocent and peaceful pur-
suits. In the year 1066 the Saxons in their turn were suits. In the year 1066 the Saxons in their turn were
pushed aside by the Normans, and subsequently the tin mines in Cy the Normans, and subseq developed The Norman sovereigns derived immense revenues from the export of this metal, and, in the year 1198, when the country was almost ruined by the Crusades, Richard Cœur de Leon, then abroad, placed the manageard Cœur de Leon, then abroad, placed the manage-
ment of the mines in the hands of the Archbishop of Canterbury, who, from this and other sources, was enabled to collect and remit to his employer a sum of money exceeding $£ 1,000,000$ sterling.
In the reign of King John (1199-1216) the produce was so inconsiderable that the rent of the tin farm amount ed to no more than 100 marks. At this time the Jews were sole managers, if not proprietors, of the mines The right of working the mines was then wholly pos. sessed by the king, who, being sensible of the languishing state of the manufacture, bestowed some valuable privileges on the country by relieving it from the operation of the arbitrary forest laws, and granting a charter to the tinners.
Tin mines were known to exist in Spain, but the con stant invasions of the Moors caused the mines to be abandoned or neglected.
In the year 1240 tin was discovered in the mountains of Bohemia by a Cornish tin man who had been ban ished from his native country, either on account of his religion or because he had committed murder. Further discoveries followed at Altenburg, in Saxony, 1458, and in Barbary, 1640
Richard, Duke of Cornwall, brother of Henry III., 1216-1272, derived immense profits from the mines, the produce of which was subject at this period to a royalty of 40 shillings for every $£ 1,000$ in value, payable to the duke, and twice a year all the tin produced had to be brought to appointed places, where it was officially stamped and weighed.
The Jews being banished the kingdom in the eighteenth year of Edward I., 1290, the mines were again neglected till the gentlewen of Blackmoor (lords of the seven best tithings stored with tin) obtained a charter from Edward, Earl of Cornwall, with more explicit grants, privileges, etc., among them that of receiving as their own due and property the toll tin, that is $1-15$ th of all the tin raised. The kings and dukes of these times would appear to have treated this industry very lightly, for it is recorded that Ed ward I., in 1305, in the thirty-second year of his reign and the 36 th of his age, mortgaged or assigned his due for one year to ettle a wine bill for $£ 750$
In 1376 the tinners were able to obtain protection by act of Parliament, but the civil wars following (viz. the Wars of the Roses) the mines were again very much neglected. When, in 1485, these wars ceased, England became more settled and tin mining became more profitable and prosperous. Prudent Queen Elizabeth (1558-1603) appears to have taken more interest in the mines than her predecessors, for she sent to Germany and brought over German miners, by whom many of the Cornish processes were very much improved.
Very little has been written, and next to nothing can be ascertained, of the progress of this trade from 1600 to 1700. In the reign of Queen Anne (1702-1714) it is recorded that the queen had in stock 5,000 tons of tin, equal to five years' consumption, demonstrating the existence of hard times for the producers, or proving that the queen was a "hard bargain's to deal with.
It was after the death of Queen Anne, but there appears to be no record of the exact date, when Eastern or foreign tin first arrived in Europe to compete with the Cornish product ; but as early as 1760 small quantities of Banca tin were received in Holland. In 1787 the importation of Banca tin to Holland was so much be yond their own requirements that the Dutch shipped a quantity to England, but that same year the increase from the Cornish mines was about 500 tons. The market was, however, relieved by the East India Company been opened for it. The trade with China, however was brought to a close in 1817 by the return of Cornish tin from China to London, and the underselling of the mine product in the home market. The history of tin from that date to the present day is only a question of figures and statistics, which are beyond the scope of this article.
The discoveries of tin in Germany 500 years ago, which never became important, were practically aban all competition from Europe and the East, but the cloud which threatens her has risen in the south, in her own colonies. In the year 1872 large discoveries of surface tin ore were made in Queensland and New South Wales, and all at once a new supply appeared to find a sale in Europe.
The German Navy.-Eleven line-of-battle ships, with an aggregate displacement of 70,000 tons, are now being built for the German government, viz., three a Bremen, two at Gaarden, near Kiel, one at Wilhelms
hafen, three at Dantzic, two at Bredow, near Stettin.

How to Preserve Health.
One of the best ways to keep in good health, says the Monthly Bulletin, is not to think or worry too much about it. If you feel strong and well, don't imagine that some insidious disease may be secretly at tacking your constitution. Many people are like the inexperienced traveler, who anxiously inquired about the symptoms of seasickness, and how he should know when he had it. One generally knows when he is sick, and frequently many supposably alarming symptoms prove, upon investigation, to be either perfectly natural occurrences or of very slight importance.
Eat and drink what you desire, as long as it agrees with you. Your stomach knows pretty well what it can digest. Plain, simple food is desirable, as a general thing, but the luxuries of the table, in moderation, will do no harm.
Alcoholic beverages are not fit for habitual use They are true medicines, and should only be used like any other medicines-under the advice of a physician. As a regular beverage they can do no good, but will almost certainly do harm.
Take all the sleep you can get, but remember that the necessary amount varies greatly for differen persons. Some must sleep at least nine hours, while others thrive under six. Only don't rob yourself of what you really need. The " midnight oil" is a terribly expensive illuminant to burn either for purposes of labor or study.
Always treat a common cold with great respect. Ninety-nine times out of a hundred it will get well any way, but the hundredth cold, if neglected, inay lead to bronchitis, pneumonia, or consumption. It is best to take no such chances.
If you are sick enough to need any medicine at all beyond the simple remedies fawiliar to all, you are sick enough to need the attendance of a physician.
By all means take as much exercise as you can, and be in the open air as wuch as possible. Outdoor life is the natural condition of mankind, and the more one can have of it, the better. The practice must not be carried to extremes, however. There are many day when one is much better off in a warm, comfortable well-ventilated house than trying to take outdoo exercise in a midwinter storm, or under a July sun and no one ever strengthened his constitution by sleeping with his bed-room window open with the out side temperature at zero, or allowing the snow to drift in upon his pillow.
Fresh air, sunlight, good and sufficient food, pure water, outdoor exercise, temperance in all things, and a cheerful disposition, are the chief remedies in nature's dispensatory, and are worth more than all the drugs and medicines of the shops. Dr. Holmes has truly said that if nine-tenths of all the medicines, pa tent, proprietary and otherwise, in the world were poured into the ocean, it would be all the better for mankind and all the worse for the fishes; and the best physician can do little without good nursing, and thus aid nature in throwing off disease.

A Remarkable Run of Iron.

The Mancelona (Mich.) Herald says: Stack No. 2 blast No. 1, of the Antrim Iron Furnace, completed the third year of its present blast April 15. Number of days in blast, 1,050 , and the total product during that time amounted to 66,347 tons of pig iron-a daily average of $631 / 2$ tons. A trifle over a year and a half of this run, or, to be exact, 582 days of it, the stack was blown with a small Weimer engine, with a product of 32,326 ons-a daily average of $55 \% / 3$ tons. The balance of the run (468 days) was made with a large engine of the same make, during which time the product amounted to 34,021 tons-a daily avèrage of $72 \frac{2}{3}$ tons.
To make this amount of iron, 115,410 tons of ore was used and 146.000 cords of wood consumed. Had the stack been blown during the entire period with the large engine, the total product would, of course, have been much greater, but the record is a remarkable one, nevertheless, and it is believed that no charcoal stack in the United States has ever made so long a run or so large an amount of iron with a single lining.

Cutting Glass Tubes, Bottles, etc

Another method, by Prof. Wm. Thomson, consists in having some strips of thick blotting paper at hand from a quarter to half an inch in width, and of differ ent lengths. Two pieces of such paper are wetted and wrapped round the bottle, tube, or other vessel to be cut, once or oftener (once is sufficient). These pieces of paper, cut true, are wrapped round the vessel like two hands. They must not be placed too closely togethersay from a quarter to three-eighths of an inch apart for large vessels, and rather less than a quarter of an inch part for tubes of an inch or so in diameter. When this is arranged a fine flame about two or three inches long is allowed to play on the glass between the two pieces of wet paper, the vessel being slowly revolved and the point of the flame kept between the two papers. Within a minute usually the vessel separate played.

NEW METHOD OF CHAMFERING STONE.

The usual method of chamfering stone is to chip off the corners by means of a mallet and chisel, and afterward to grind and polish the surfaces separately, thus involving a great amount of labor and much expense Mr. John L. Dalot, of Addison, Me., has recently patented a novel method for producing chamfers upon the edges of stone blocks and slabs without liability of chipping the corners. According to this method, the slabs are mounted in a frame which holds them at the

dalots apparatus for producing chamfers.
required angle, and the edges of the blocks or slabs to be chamfered are covered with a suitable cement, which fills in the angles between the blocks, and sustains the surface of the stone so that it does not chip in the process of grinding. Any suitable cement is used for this purpose ; plaster of Paris has been found effectual and convenient. The arrangement of the slabs in the frame is shown in Fig. 1, and in Fig. 2 the slabs thus prepared are shown in position on the lap which carries the abrasive and polishing material.
It is obvious that this improvement is equally appli cable in hand polishing, where an ordinary hand rubber is used. The chamfers produced according to this method are uniform, the angles are sharp, and the sur faces plane.

IMPROVEMENT IN JACK-SCREWS.

We give an engraving of a jack-screw which is de signed to operate in much the same manner as the well known hydraulic jack. The screw turns in a nut in the standard, and carries at its upper end a flange and ratchet wheel. The screw-operating lever is pivoted to a movable ring inclosing the flange, and the mov able ring carries a pawl for engaging the ratchet. The upper end of the screw is prolonged, and furnished upper end of the screw is prolonged, and furnished
with a shoe for receiving the load when it is desired to apply pressure from the upper end of the screw. Upon the lower end of the screw is swiveled an arm which extends through a slot in the standard, for engagement with objects to be lifted from the ground. By oscillat ing the lever, the ratchet is engaged by the pawl and

kalbach's jack-screw.
carried around, thus turning the screw and ralsing or lowering the object supported by it. The pawl may be reversed so as to turn the screw in either direction. This invention has been patented by Mr. M. D. Kal bach, of Harrisburg, Pa.

In relation to his scheme for a tubular railway acros the Straits of Dover, Sir E. J. Reed points out that unlike the tunnel, the tube can be destroyed if required by torpedoes or mines by the fleet, and hence could never be used by an enemy to maintain the communi cations of an army of invasion.

Whether water can be obtained by artesian borings in any district, or not, depends upon the geologica structure. All rocks contain wore or less water. Sandy formations absorb water mechanically, and fine sand can take in about one-third of its bulk of water, and if a well be sunk into it, and regularly pumped from, nearly all of this moisture can be drawn out. Chalk, and similar rocks, which are made up of very tine particles, closely compacted together, contain a very large proportion of water, but from the capillary attraction of this rock, very little of this water will drain into a well sunk into it. But as there are often wide crevices in chalk rocks, through which water flows in much greater quantity than the rock can retain in its pores, wells sunk into chalk formations of ten secure water. There is another formation, that of the clays, through which water does not per colate, and a well sunk in this rock cannot secure water. In the geological strata of the earth, the veins which are impervious to wate and those through which the water readily penetrates may occur in alternating layers, and when in this manner a pervious bed of earth lies between two impervious ones, it is plain that we have a formation altogether favorable to the objects of the artesian well. For, if a perforation be made through the retentive rock, into the water-logged strata below, the moisture there contained will rise through th bore to a height depending upon the pressure of water which has accumulated in the con fined space between the two impervious veins When, as so often happens, especially when the surface of the country is uneven, the vein of water-yielding sand may run beneath the surface of the earth, to a level far above the point wher the boring has been made, the water will ris rapidly in the well, to the surface of the earth, and often higher, and will then flow continuously by hy drostatic pressure. As veins of sand or pervious rock un through the earth everywhere, there seem to be ew places where the process of boring cannot secur water at less or greater depth. Many artesian well have been made in the deserts; in the Sahara a num ber of wells made in this way are transforming a per fectly arid land into a fertile, beautiful country. And as surface waters are continually percolating into the strata from which the artesian well draws, such wells seldom fail, even after many years of usage. There ar such wells in the Old World that have been in use for centuries.-Chicago Inter-Ocean.

OPEN COLUMN MANOMETER ON THE EIFFEL TOWER
M. L. Cailletet, the eminent French physicist whu has become famous for his researches on the liquefac tion of gases, has put the Eiffel tower to a new use As a verifier of high pressure instruments the open column mercury manometer has been found unsur passed. Already M. Cailletet has used one over three hundred feet high. In the Eiffel tower he has recently stablished one three hundred meters in height, giving unrivaled opportunities for standardizing high limit pressure gauges.
As a glass tube could not be constructed that would be practical under so great a pressure, a soft steel tub was adopted. This was carried up the tower and se cured thereto as shown. It is about 4 millimeter (0.16 inch) in internal diameter. It is attached to one o the rails of the inclined elevator until the lower plat form is reached. A stairway was constructed along the line it follows. A portion of this section is shown in the cut. Then, by a series of vertical and almost horizontal elements, the tube makes its way to the sec ond platform, whence its rises vertically, except for one break, to the top of the tower.
The lower end of the tube enters a vessel of mercur and is immersed in the same. By pumping water int this vessel, the mercury is forced up into the tube
As it would be manifestly impossible to read the level of the mercury in the opaque tube, a series o auxiliary open glass reading tubes is connected to i at intervals. These communicate through a latera connection with a stop cock with the main tube. If the cock of one of the connections is open as the mer cury reaches the level of the auxiliary tube, it rises in it to the same level.
Telephonic communication is maintained between the observer at the tube and the manowetric station by which the movements of the pump and escape valve are directed. If too much water is pumped in a little is allowed to escape. As the point is nearly reached, the pump is worked very slowly, so that by practice, the exact point can be reached nearly every time. An overflow tube is provided in case any of the mercury escapes. After a reading the cock is closed if higher pressure readings are to be taken, and the mercury is pumped up to the next desired auxiliary reading tube.
The manometric station, whose interior in shown in our illustration, is situated at the base of the western pillar of the tower. The observation or auxiliary
tubes are known by number, and besides carry each an independent graduation. In practice the pump i caused to force the column up to a tube of a certain number and to a definite graduation on the scale of the same tube
In this way high pressure gauges can be graduated up to 400 atmospheres. Of course the reliability of the method depends on the accuracy of the levels of the reading tubes. Special care has been taken to de termine these levels. - Ilustration

Healthy and Vigorous at 104.
Mrs. Mehitable Dayton, the oldest person in Connec ticut, celebrated her 104th birthday on May 1. Mrs Dayton received her guests sitting in a chair which is 150 years old. She is a remarkably well preserved woman, and does not look over 70 years. She is per ectly healthy and vigorous. Mrs. Dayton was born May 1, 1787, the eldest of nine daughters of Samuel and Mary Stratton, who lived but a few rods north of the house in which she now resides. Each of her sister married, and each lived in a different State. There are two other sisters now living-Mrs. Dolly Morgan of Holly, N. J., aged 91, and Mrs. Electa Haskell, of Otis, Mass., aged 89. On December 14, 1806, she mar ried Ezra Dayton, of Marlboro, who was also one of ten children. They had ten children, two of whom ar now living.

AN IMPROVED WRENCH.

We give an engraving of a new wrench recently pat ented by Mr. Frank S. Chaney, of Honolulu, Hawaiian Islands. This wrench is designed for applving and re noving nuts of various kinds, and to solding and turning round objects such as rods and pipe. The con turning round objects such as rods and pipe. The con-
struction of the wrench, as will be seen by reference struction of the wrench, as will be seen by reference
to the engraving, is simple and comparatively inexpensive. The shank and thread are formed integrally f a single piece of steel, and a sliding jaw, which i itted to the shank, is made of steel by the usua method of drop forging.
In the face of the jaw is an oblique mortise in which is placed a pawl of hardened steel, which is adjusted in the mortise by a screw, as shown. When the wrench

CHANEY'S WRENCH.

is to be used upon nuts or square objects, the pawl is withdrawn into the mortise, but when it is to be used upon round objects, the pawl is projected beyond the face of the movable jaw. The lower end of the shank is curved and bent at a right angle to receive the pivotal screw of the handle. The handle contains a nut which receives a rod connected with the movable jaw and the rod is guided by a clip attached to the straight portion of the shank. By turning the handle in one direction or the other the required adjustment of the movable jaw is secured.

The Breathing of a Locomotive
The "breathing" of a locomotive-that is to say, the number of puffs given by a railway engine during its journey-depends upon the circumference of its driving wheels and their speed. No matter what the rate of speed may be, for every one round of the driving wheels a locomotive will give four puffs-two out of each cylinder, the cylinders being double. The sizes of driving wheels vary, some being 18, 19, 20, and even 22 feet in circumference, although they are generally uade of about 20 feet. The express speed varies from 54 to 58 miles an hour. Taking the average circumfer ence of the driving wheel to be 20 feet, and the speed per hour 50 miles, a locomotive will give, going at express speed, 880 puffs per minute, or 52,800 puffs per hour, the wheel revolving 13,200 times in 60 minutes, giving 1,056 puffs per mile.

The Electric omnibus.
A curious incident was lately witnessed in Palace Yard, Westminster, London. About four o'clock an electric omnibus started from the St. Stephen's Club, and carried some dozen members of Parliament round to the members' entrance in Palace Yard. Admiral Mayne was in charge of the omnibus, and among the passengers were Sir \cdot William Marriott, Sir Walter Foster, Major Waring, Mr. Majoribanks, and Sir William Walrond. The arrival of the car attracted a large crowd of members, and subsequently a series of trips was made round the neighboring streets, some hundred members in all avaling themselves of the opportunity of testing the practical utility of the omnibus.

READING THE DEGREES OF PRESSURE.

SITUATION OF THE MANOMETRIC TUBE ON THE EIFFEL TOWER.

air pump for forcing the mercury into the tube.

The odor of the Soil after a Shower.
by DR. t. L. PHipson, f.c.s.
This subject, with which I was occupied more than twenty-five years ago, appears from a paragraph in a late number of the Chemical News to have recently at-
tracted the attention of Professor Berthelot and M. tracted the attention of Professor Berthelot and M. Andre. I find, on referring to my old notes, which are dated 1865, that it is doubtfui whether I ever published the results of these observations; and as the distinguished chemists I have just named have not quite solved the problem, I hasten to give the results I obtained so long ago.

After a considerable number of observations, I ar rived at the conclusion that the odor emitted by soils and sedimentary strata after a heavy shower of rain in summer was due to the presence of organic substance closely related to the essential oils of plants, and it appeared evident to me that, during the hot dry weather these porous surfaces absorb the fragrance emitted by thousands of flowers, and give it up again when the rain penetrates into these pores and displaces the various volatile substances imprisoned therein, which are only very slightly soluble in water. I believe that many kinds of soil possess this property, but those on which my observations were first made were the chalk soils of Picardy, in France. I found that not only chalk, but also marls, compact limestones, phosphatic rocks, and some kinds of schists and amphibolites are porous enough to possess it to such a degree as to emit a decided odor when they are strongly breathed upon

Finding the property of which I speak very remark able in certain chalk rocks of Picardy, I endeavored to ascertain the nature of the substance, or substances, to which it was owed. I dissolved a very large quan-
tity of the chalk in dilute hydrochloric acid, and passed the carbonic acid through various media, water alcohol, weak potash solution, and dilute acid; but none of these liquids appeared to arrest the passage of the odoriferous substance. The only liquid which I found would retain it was an aqueous solution of bromine. This arrested it, and when the bromine solution was afterward carefully evaporated at a low temperature, a yellowish product, soluble in alcohol, and having a strong odor of cedar wood, was obtained, which, from its chemical and physical properties, ap peared to be very similar to, if not identical with brómo-cedren, derived from essence of cedar.

Magnetic Rocks.

In a letter to Nature the following instance of extra ordinary local magnetic disturbance, due to the pres ence of magnetic rocks, is cited by Commander Creak

In September, 1885, when her Majesty's surveying vessel Meda was passing Bezout Island, near
Cossack, Northwest Australia, a steady deflection of her compass of 30 degrees was observed. This remark able result has, however, since been exceeded by ob servations made in the Penguin on November 6, 1890 The Penguin being two miles north, 79 degrees east from Bezout Island, a deflection of 22 degrees was observed. The ship was immediately anchored, and some hours of the next day were spent investigating the matter. On Bezout Island itself the absolute values of the variation and dip were normal, the dip being 50 degrees $1^{\prime} \cdot 7$ south. But at a position north $791 / 2$ degrees east, distant $2 \cdot 14$ miles from that on Bezout Island, the cbserved dip on board was 83 degrees south, with a very small deflection of the compass. At 900 feet to the westward of this the dip was normal, and it decreased rapidly as the center was quitted in any direction. At about 100 feet south of the center of dis turbance, the compass was deflected 55 degrees. This was the largest deflection observed, but the compas was disturbed over an area of about a square mile The general depth of water in this area was nine fathoms, and the quality of the bottom quartz sand.
The observations of the magnetic elements at Cossack The observations of the magnetic elements at Cossack
and the neighborhood showed little or no disturbance from local magnetic effects. It is therefore evident that the disturbances were due to magnetic mineral at the bottom of the sea.

An Ancient Lock.
The European I'rade Mail says that "an Egyptian lock has been found which was in use more than 4,000 years ago. The old Egyptian lock was not made of metal, like those we use nowadays, but of wood, and the key that opened it was wooden, too. On one side of the door to which it was fastened there was a staple, and into this staple fitted a wooden bolt that was fixed to the door itself. When this bolt was pushed into the staple as far as it would go, three pins in the upper part of the staple dropped into holes in the bolt and held it in its place, so that it could not be moved back again until the pins were lifted. The key was a straight piece of wood, at the end of which were three pegs the same distance apart as the pins which held the bolt firm. When the key was pushed into the bolt through a hole made to receive it, the pegs came into such a position that they were able to lift the pins that fixed the bolt, and when these were lifted, the bolt could be lifted out of the staple." The most modern locks work on a similar principle.

One of the most noteworthy features in many por ions of the gold region is the elaborate system o water supply for the use of the hydraulic mines and the tremendous changes which were the result of the few years during which hydraulicking was at its height. So great have been these changes-hills washed away, valleys filled up, others created-that in many locali ties the entire landscape has been altered. The old proverb ascribing the power to remove wountains to such as had faith only to the amount of a grain of mustard seed has never been exemplified, but the hydraulic miners have afforded the most ample demonstration of their ability to move mountains in the search of wealth. Lofty mountains have in fact been brought low through no other agency than the pipe line, the monitor, and the sluice, and the tremendous power of water never received such an exemplification as in th history of the hydraulic mines of California.
There are, indeed, so many remarkable facts con nected therewith that, were they not abundantly subnected therewith that, were they not abundantly subheir relation with incredulity. One might not believe that a stream of water issuing from a nozzle or pipe six
inches in diameter, and with no other force but gravity behind it, would have much effect at any considerable distance from the aperture, yet such an apparently insignificant stream, with a fall behind it of 375 feet, will carry away a solid bowlder weighing a ton or more at distance of 50 to 100 feet, while at a less distance it will toss such a bowlder about as a boy would throw pebble.
The velocity and force of such a stream as it issues rom the nozzle of the monitor is something terrific. The column of water is solid-so solid that if one were o undertake to thrust any object into it, it would make no more impression than if it were iron instead of iquid. If a crowbar or other heavy object be thrust against the stream, it would be snatched from the hand and thrown to a great distance as if it were a featherweight, while the man who should firmly grasp an ax and attempt to cut through the stream would undergo an experience that he would remember for many day.
If a man were to receive the full force of such a stream at a distance of a couple of hundred feet, even though the impact be momentary, he would be killed as quickly as though struck by a cannon ball. He might escape being mangled, but the breath would be most effectu ally and suddenly expelled from his body.
At 400 feet from the nozzle, a six inch stream with 375 feet fall, swong momentarily against the trunk of a ree, will denude it in a second of the heaviest bark as cleanly as if an ax had been used. Whenever such a stream is turned against a gravel bank it cuts and bur rows into it in every direction, gouging out great
caves, causing thousands of tons of earth to fall, which is in turn quickly disintegrated and washed into the sluices. Bowlders so heavy that a man can scarcely ift them are tossed about like chaff, stumps and trunks of trees are thrown to one side like straws, and the work of destruction goes on at a pace that is appalling If one who has never seen a monitor in operation unde ull head could imagine the ordinary stream from a fir hose magnified about a thousand times, he would be ble to form some conception of its power.
The water is brought in open ditches or flumes, some times from a great distance, around mountain sides, and across valleys and ravines. When the vicinity of the mine is reached a box is put in, from which a pipe conducts the water to the point where it is to be of t Is the distance between this box and the leve f the monitor that gives the pressure. With from 30 o 450 feet fall the execution done is tremendous. At pipe with nozzle about one-third the size of the supply pipe, the compression giving it still greater force. The monitor is constructed something like the ordinary hose nozzle, but has a ball joint that permits it to beswung in any direction. It is balanced with weights, and by means of an ingenious device known as a deflector the ream can be turned in any direction will suffice to direct the movement.
Easily as it is managed, however, the monitor some times becomes uncontrollable, and when this happens scene of destruction and even death ensues. Th pipe sways to and fro at its own volition, and the
stream flies first in one direction and then in another. stream flies first in one direction and then in another.
If the miners are not warned in time to get out of range If the miners are not warned in time to get out of range, they may be mowed down as if by the discharge of a
volley of grape. Sometimes the runa way monitor seem volley of grape. Sometimes the runa way monitor seem appears to be deliberately turned upon the fleeing men, following them as they flee in every direction and overtaking them before they can reach a place of safety. In one case a sluice tender, hearing an unusual noise raised himself above the edge of the cut in which the
sluices ran just in time to receive the full stream square in his face and chest. He was knocked down, thrown into the sluice, and washed away. When found his body had not a stitch of clothes upon it, and apparently every bone in it was broken.

When a monitor gets away from control in this manner, there are two things that can be done. The wate may be shut off at the head gate, a process involving much delay and perhaps loss, or some brave man may rush in and get to the monitor without being struck by the stream. To do this requires agility and pluck The stream is liable to box the compass inside of a minute, and its course must be watched and the probable direction noted. Then over the rough surface the man must hasten, careful not to make a misstep, and at the same time ready to flee should the erratic stream betray a tendency to change its course so as to en danger life. There have been many hairbreadth es capes and some thrilling exhibitions of bravery unde such circumstances as these, and it has been only by the exercise of the greatest coolness and bravery that reat loss of property and life has been prevented.
A. J. Bowie, of this city, in his work on hydraulic mining, states that the stream from a six inch nozzle with a 450 feet vertical pressure, delivers a blow equal to 588,735 foot pounds per second, equivalent to 1,070 horse power. When one comprehends this fact, he will be abundantly prepared to believe alwost anything hat could be said about the power exerted by such a with.
With a force such as that exerted by the stream from a monitor, it is apparent that a tremendous amount of aterial can be washed away in a very short time. The uantity removed depends, of course, upon its nature whether loose soil, ordinary gravel, or cement gravel in some places, under favorable circumstances, as high as thirty-six cubic yards to each inch of water have been removed in twenty-four hours. With a flow of 500 inches the bulk removed each day is thus seen to be enormous. In cement gravel the amount handled daily is as little as three cubic yards per inch. The quantity handled daily is, however, almost entirely de pendent upon the grade of the sluices. In the case of he highest amount just mentioned the stream had a all or head of 350 feet, the banks were 100 feet high, and the sluices had a grade of one inch to the foot while 1,000 inches of water were used. Under such conditions and with such results it must be apparent that the removal of mountains is only a question of timeand not a very long time, either.
Some idea of the immense amount of earth and gravel noved by the hydraulic mines of this State can be gathered from some recently published statistics upon this point. During the height of the hydraulic indus try there were in use from the Feather, Yuba, Bear and American Rivers, Butte Creek, and the two Dry Creeks, a total of $10,650,505$ miner's inches of water each wenty-four hours. At an average of $31 / 2$ cubic yards f gravel to the inch there was thus washed away daily $38,600,000$ yards of material. This is a low estimate As an actual fact much more was carried away. But the amount stated represents a mass of earth 500 yards long, 386 yards wide, and 200 yards high. With such tremendous quantity washed away every twenty-four hours, it can readily be understood that no great length f time need elapse literally to remove mountains and cast them into the sea.-San Francisco Chronicle.

The Advance in Paper Making.

In an interview with Col. A. G. Payne, of the New York and Pennsylvania Company, by a representative of the Paper Trade News relative to the prices for soda fiber, Mr. Payne, who was a pioneer in the business, said: "I remember when soda fiber brought thirteen cents; that was about eighteen years ago, when it was first used for paper. It is now quoted at three and three-fourths cents. The Yaryan system revolution ized the cost of recovering soda ash by cheap evaporation. Until recently this system was used by Ameri cans only, but now they have adopted it abroad, and are using it at Glasgow. Everything is cheaper to-day in the manufacture of soda fiber than it was in the old times, except wood and labor, and it was natural fo the decrease in the cost of the production to be accom panied by a falling off in the price of the product The manufacture of chemical fiber has become a great industry, and the fiber itself is used more in the manufacture of good book paper than ever before. There were only two mills which manufactured chemical fiber at the start, and they produced twelve tons daily, whereas now the total monthly product foots up to fifteen million pounds. This increase does not seem so reat, however, when we consider that a five ton paper mill in the early days was a big thing, wherea o-day mills with an output of thirty or forty tons are common."

The telephone line between London and Paris wen nto regular operation on April 2 with much success. The charge is $\$ 2$ for a talk of three minutes. The pening of this line is considered a big thing in Europe The distance is 297 miles, of which 23 miles are by cable laid under the British Channel. Long distance tele phoning has been in vogue in this country for many years. In the Scientific American of March 24, 1883 we recorded a conversation we had by telephone be tween New York and Cleveland, O., a distance of 650 miles.

Correspondence.

Chinese Taxes on Ginseng

To the Editor of the Scientific American:
For the information of your readers I wish to correct an error in Consul Nicolas Pike's reply to L. C. Shussar re ginseng. American ginseng, clarified, pays an import duty of Hai Kwan taels 8 per picul ($1331 / 3 \mathrm{lb}$.) Crude ginseng pays a duty of taels 6 per picul. The Hai Kwan tael is equal to $\$ 1.53$ (Mexican).
J. W. Burke.

Newchwang, N. China, March 19, 1891.
Facts about the Fertilization of our Fruits. To the Editor of the Scientific American:
The devices whereby nature would insure the fertilization of our fruits are manifold. The winds are made her "common carriers." Every passing breeze is called into requisition. A banquet is spread for the insect world. There is gorgeous coloring to catch the eye, the sweetest perfumes to lure the smell, and cups brimming with nectar to gratify and intoxicate the taste. But each parting guest on leaving the banquet hall becomes a postal messenger, bearing the loves of the flowers. To the wide circle of relationship of the insect world, of fly and bee and bug and butterfly, there must also be added at least one from the family there must also be added at least one from the family
of birds-the humming bird; the extraordinary fertility of birds-the humming bird; the extraordinary fertility of the flora of the isle of Juan Fernandez being credited by the distinguished botanist attached to "her who "throng the flowering plauts and trees of the island," some varieties of these birds being indigenous.
But with all the precautions which Nature has taken and facilities provided of air, insect, and bird, it remains that some varieties of fruit are defective in their methods and means of fertilization. All of our strawberry growers are made familiar with this fact, as connected with the natural sexual division of staminate and pistillate varieties. The term bi-sexual is applied to the former, though, as is implied, the bi-sexual be ing self-fertilizing. Yet even here there is a distinction and a difference. Some of the so-called self-fertilizing varieties have their productiveness materially enhanced by the presence of another variety more potent than themselves. The fertility of the Sharpless (a bi-sexual variety) is improved by the proximity of the Jessic or Wilson. It is a fawiliar fact than many of the bi-sexual varietios are not only self-fertilizing, but are of such superior potency, having, as the fruit growers would say, so much pollen as to be available, and as such largely useful in fertilizing the pistillate varieties, which, in turn, properly fertilized, become the most productive. The law of affinities obtains in the vegctable as in the animal kingdom. In the selection of varieties, to obtain the best results this matter of af finity should be considered, plants, like animals, of ten possessing a stronger affinity for a different strain of blood, as, for instance, with us the Jessie proves the best fertilizer for the Bubach No. 5. Both being large berries and of moderate firmness, for effectivenessevery
third row set with Jessie being sufficient; and here, to add to the firmness and duration of bearing, Gandy's Prize, a late, firm, potent variety, may be made to alternate with Jessie to advantage; the order then being one row of the Gandy, two rows of the Bubach, and the fourth of Jessie. The principle involved being simply this : that where any variety is wanting in any point, as of productiveness of plant or fruit, of firmness of texture or quality of fruit, we choose for it fertilizer a variety excelling in the point lacking. This matter of family affinities we claim to be a fact o horticulture, and the success of the fruit grower de pends largely upon his recognition of this fact. The Warfield No. 2 should be crossed with Burt's Seedling or what may (of the new varieties) prove still better the Governor Hoard. For earliness, firmness, and po tency as a fertilizer, we would recommend the Michal's Early.
What may be said of the strawberry applies to our native plum-Prunus americana-now much improved by culture and careful selection from new seedlings. We find here in some instances the need of a fertilizer, and again the superior potency of certain varieties to be a marked characteristic. Many varieties, like the Winnebago and the Miner singly, are almost wortbless; but if set in close proximity with a strongly potent va-
riety, as the De Soto, their productiveness will be asriety, as the De Soto, their productiveness will be as sured. In the case (with the plum) of large, vigorou would recowmend grafting in the uppermost branches and extremities of limbs, by either cleft or whip graft ing as occasion may require, scions of some potent variety. This, to succeed, should be done as early as possible in the season. The condition of bark and bud of tree and scion should be the same. The plum starts early in the season, and is impatient of delay in the scion.
Many of our grapes are deficient in their productive powers, the flowers not being sufficiently self-fertilizing. Instances are not wanting of this among our native va
rieties and among our wild grapes; but it occurs more frequently with the hybrids, where some foreign variety (Vitis vinifera) has been crossed on some native (Vitis labrusca). While soil, situation, pruning, manuring, in brief, thorough intelligent culture, are important factors, we would suggest the use of some potent variety. We instance three varieties, one each of the black, red, and white grapes, whose quality is such as to render them worthy of a place in any amateur collection, yet each shy bearers. For the Moore's Early (black) we would suggest as a fertilizer the Telegraph, also an early black grape and an immense bearer. That noble table grape, the Brighton, a shy bearer, its blossoms apparently imperfect, we believe to be benefited by the near planting and training together on trellis of the Vergennes-a variety possessing vigor of vine with great productiveness. That lovely white grape, with great productiveness. That lovely white grape,
the Eldorado, to insure fertility should have for a near the Eldorado, to insure fertility should
neighbor the Niagara or Pocklington.
As to the apple, in the course of our experimenting with seedlings, we have had a curious illustration of this matter of fertilization.
We had drilled in together a quantity of the seeds of the Duchess of Oldenburg and of the Talman Sweet. Ot the seedlings, two of each variety were allowed to remain, and they grew up to bearing age side by side. The first to fruit was the seedling of the Duchess, bearing the fifth year from the seed, followed the next year by the Talman seedling. And now for the apparyear by the Talman seedling. And now for the apparent results of fertilization. The Duchess (as is well
known), a summer appie, coarse-grained, tart, mainly desirable for cooking; the Talman Sweet, as its nawe suggests, a sweet winter apple, of finer grain and an excellent baker. The seedling Duchess proved in the main true to the Duchess type as in size and color, shape more conical, less tart, an early fall rather than summer apple, and (unlike the Duchess) a fairly good keeper. These the individual traits of the seedling.
The Talman-in size, shape, color-perfectly true to original, even to the freckles on its skin and the raised hemispherical line (the Talman Sweet trade mark). Nothing of resemblance being lacking in externals, even to the minutest particular. But instead of being a win ter apple-a late keeper-the seedling has develop ed a summer apple, its grain becoming coarser, and from a standard sweet it has become a sub-acid. Though somewhat inclined to "water core," yet an excellent dessert fruit, an apple " to eat (as the phrase is) out of hand." Its vicinity, when ripe, the most "popular summer resort" on our premises. Here the Talman has evidently been fertilized by the Duchess, either, as we suspect, at a period prior to production of the seed sown or the result of a later cross of these two seedling t period of blossoming.
J. P. Roe.

Lake Rest Farm, Oshkosh, Wis.

Phosphatic Chalk in England

The discovery of a deposit of phosphatic chalk in a pit near Taplow has been announced. At the request of the Director-General of the Geological Survey, Mr Strahan undertook the investigation of the deposit, and laid the results before the Geological Society o London on the 25th of March. The pit from which the
original specimen had been collected is oid and disused, but has in former years yielded a large quantity of chalk for agricultural purposes. In the lower part it exposes flint-bearing chalk of the usual character, and in the upper part two bands of the brown phosphatic chalk, 8 feet and 4 feet thick respectively, which are chalk.
Under the microscope the brown chalk proves to be purely organic deposit. The fine whitemud removed by washing in water consists of some extremely minute bodies common in the chalk, known as rhabdoliths, coccoliths, and discoliths, which, though of doubtful history, are believed to be of organic origin. The brown sand is made up of the following organisms taken in order of their abundance. First, the shells of foraminifera; secondly, small, crystal-like prisms broken from the shells of the Inoceramus, a common chalk mollusk; thirdly, comminuted bones, teeth, and cales of small fish; and, lastly, small oval pellets, the xuviæ of fish, which were probably about the size of
sprats. The foraminifera include numbers of genera ommon in the chalk, such as Globigerina, Textularia Cristellaria, and Planorbulina. They are, generally speaking, filled with an opaque mass of phosphate of lime, the shell itself being sometimes carbonate of lime and sometimes phosphate in a translucent form. The small prisms from the Inoceramus shells are also artly converted into phosphate of lime, while the is this substance.
By treatment with acetic acid a portion of the car bonate of lime which cannot be removed by washing can be dissolved out, the phosphate of lime being unaffected by the process. These phosphatized portions of the organisus can thus be separated out from those dition. In some cases the phosphate has so completely filled the foraminifera that it has penetrated the innumerable little pores, or foramina, in the shell, from
which these organisms receive their name. In such the removal of the shells by acetic acid leaves an internal cast in phosphate, covered with a short crop of little hair-like processes, each of which is the cast of a foramen.
A comparison of the French phosphatic chalk with that from Taplow establishes their identity beyond doubt. In general appearance they are indistinguishable, while the same organisms, in a similar condition of phosphatization, occur in both. They occupy, how ever, about the same position in the cbalk system. The Belgian deposit is somewhat newer-later, in fact, than any chalk existing in England; but in appearance and composition it closely resembles the English phosphatic chalk. The microscope, however, discloses the differ ence that in the Belgian rock foraminifera are comparatively scarce, and are not phosphatized. The fish remains are similar in all these chalks; but from the Belgian chalk the remains of a saurian upward of fifty feet in length have been unearthed. This phosphatized chalk is at present known in one pit only in England, and, though search is being made along the outcrop o the same beds, it has not at present met with success.

Saw for Steel

General Manager Potter, of the Homestead mills, of Carnegie Brothers \& Co., has invented a cold saw for the purpose of sawing iron and steel, which has proved a great success, and is creating considerable interest. For some years an instrument has been in use, known as the hot saw, that is, it, could only cut metal that had been heated to redness, but it is not equal to the new saw brought out by Mr. Potter. The hot saw leaves a burr on one edge, but the new cold saw does clean, smooth work and is not very expensive.
A Pittsburg Dispatch reporter had a talk with a gentleman who had seen the saw at work a short time ago, and secured from him the following description of the new invention: The instrument itself is simply a circular saw of fine steel, tempered somewhat hard and about one-quarter of an inch in thickness at the periphery. It is ground slightly thinner at its center to clear itself easier in a deep cut. It is made to revolve at a slow speed, while the old hot saw was run at a high rate and did its work by means of the intense friction created rather than teeth. It cuts but one inch a minute. The machine differs from the ordinary inch a minute. The machine differs from the ordinary
circular saw in this respect, that it is not the work that circular saw in this respect, that it is not the work that
moves up to the saw, but the work is fixed stationary and the saw is made to travel along the table through it. It is driven by a worm wheel and screw of some four or five feet in length, along which it can be moved easily by hand-screw gear or by self-acting feed gear. The saw runs in a tank of solution, and the greatest care is necessary in regard to the quality of the materials in this solution. It is made up of ten pounds of whale oil soap, fifteen pounds of sal soda, two gallons of lard oil, with water added to make forty gallons of mixture. The new saw will be used.in cutting the armor plates for the government the proper size.

Russian Mercury.

Among the articles of export from Russia which are now beginning to attain a certain importance are quick ilver and phosphorus. Until quite recently Russia obtained all the quicksilver consumed by her from abroad, but since the commencement of exploitation of the mines of Bakhmut, Russian mercury is not only ousting the foreign article from the local markets, but it has become an article of export. In 1887, 7,803 poods f it were exported from St. Petersburg and Libau. In 1889, 3,150 poods of phosphorus were also exported. The mercury mines of Saigewa, near the Nikitowka Station of the Azof Railway, prove to be exceedingly ich. The deposits contain three layers of hydrargerous re, the total quantity of ore containing the metal being estimated at $12,000,000$ poods. The ore is sprung by means of dynawite, crushed by manual labor and by crushing machines, and finally roasted. In 1889 the yield of the mines was 10,202 poods of pure metallic quicksilver. In working the deposits, traces of former workings and abandoned pits are found, showing that these same mines have already been exploited in ancient times.

Milton's Homœopathy.
Irrespective of one's views as to the sever , i schools of medicine, it is interesting to note the fact that the poetical mind of John Milton anticipated the theory of Hahnemann, as is evinced by the following ey ract from his preface to "Samson Agonistes." He remarks that tragedy has power, " by raising pity or fear or terror, to purge the mind of these and such like passions; that is, to temper and reduce them to just measure with a kind of delight, stirred up by seeing those passions well imitated. Nor is nature wanting in her own effects to make good this assertion; for so in physic things of melancholic hue and quality are used against melancholy, sour against sour, salt to remove salt humors." I do not remember ever seeing $\begin{array}{ll}\text { this Miltonic statement of "Similia similibus curan } \\ \text { tur" commented on before. } & \text { H. C. Hovex. }\end{array}$

THE BROADWAY AND SEVENTH AVENUE CABLE ROAD.

(C'ontinued from first page.)
locality was at the intersection of Fulton Street with Broadway. Although this is but half a mile from the southern terminus of the road, twenty-one such cross sections were plotted at intermediate points between the line of this section and the end of Whitehall Street. This fact gives a good idea of the extent of work required to determine what had to be done in the way of clearing the ground. The illustrations also show how wany are the obstacles in the way of prosecuting the work.
The next step in the work is the clearing of the ground. This is now in progress. For this purpose, wherever necessary, the tracks are temporarily shifted to one side, and the ground is excavated on the line of the con duits. The pipes are moved and shifted as required, so as to leave everything clear. At the present time this work is being prose cuted at many points upon the line of the road, so that no delay shall be experienced in putting the conduits in place, once the operation begins.
A careful recapitulation of the obstacles in and upon the ground at the point illustrated gives no less than twenty-five classes of incumbrances or occupants of the street, either on the surface or below it. In the category are included gas and water mains, valves for gas and water, sewers, with their manholes, basins and connections, Edison electric con duits and manholes, electric subways with their vaults, service boxes, and air pipes, commercial pipes, with expansion joints, return pipes, valves, and valve stems, cellar vaults, and finally the horse railroad tracks. A perspective view of the incumbrances, pipe lines, etc., completely exposed as if by an excavation, produces the effect of a perfect labyrinth of cross connections and parallel lines at various depths. What the outcome of it all will be in the future it is hard to say.
The lesson taught is obvious. To lay pipes and conduits in the earth as has been done in this city is opposed to every principle of municipal engineering. The growing complication is bringing about a condition of things which may yet lead to serious results. There is but one way to escape from the difficulty. It is to construct an adequate subway to contain the entire mass of pipe lines and possibly the sewers also. The complication is increased in many cases by the use of two or more pipes to do the work of one. If a proper subway were provided, the operations of substituting a single large duct for two or more small ones, and in general any operations tending to simplify the underground distribution of light, heat, and power, could be readily effected. The present time is most favorable for such an operation, as Broad way will soon receive a new and expensive pavement, which it would be poor policy to lay until there is no danger of disturbing it.

Seventh Avenue Railroad Company is Mr. Geo. W. McNulty. The work is being executed by the contractors, John D. Crimmins \& Bro., of this city
The public will be benefited by this improvement, not only by the removal of so many horses from the street and by the improved service certain to be afforded, but the new rails will lie flush with the pave ment and will have so small a groove as not to interfere with carriage or truck wheels. The question of different speeds on the upper and lower portions of the road is also a matter for consideration in the near future

Electricity for Domestic Purposes

The Pall Mall Budget says one of the latest adapta-

CROSS SECTION OF THE CABLE ROADWAY AND CONDUIT.
sent, he could not have done the work. Rich Grain Distillery Company vs. Western Union Telegraph Company.

The Tallow Tree in China.
Mr. Hosie, the British consul at Wenchow, in his last report describes a curious vegetable product which is cultivated in his district. This is the tallow tree (Stillingia sebifera, Roxb.), the fruit of which produces oil as well as tallow. The berries, which resemble coffee beans in appearance and size, are first steamed and then pounded in an ordinary rice trough. By pound ing, the soft mealy mesocarp is partially separated from the kernels. The whole is then placed in a bam boo sieve, the meshes of which are just larg enough to allow the mealy matter to be scrubbed through, and small enough to keep back the kernels, which are hard, black, and about the size of peas. From the mealy matter the tallow is expressed in primitive wooden presses. To obtain oil, the kernels are dried and passed between two millstone held at such a distance apart, by means of a bamboo pivot, as to crush the hard shells of the kernels without injuring the white interiors. The whole is then passed through a winnower, which separates the broken shells from the solid matter. The latter is then placed in a deep iron pan, and roasted until it begins to assume a brownish color, the process being accompanied by continual stirring to prevent burning. The crushed shells make an excellent fuel for the purpose. It is then rround by a huge stone roller in a circular stone well, steamed, made into cir cular cakes with bamboo and straw casings, and passed through the wooden press. A good lighting oil of a brownish yellow color is thus obtained. The tallow is called " p ' i yu"-that is, skin or external oil.

Mysteries of Malaria.

Walter Coote, author of "Wanderings, South and East," who has been at the Fiji Islands, has the fol lowing notes upon the vagaries of what is called malaria, the strange ways of which, The Christian a Work adds, are of ten past finding out
"I have seen Englishmen living in Fiji, on the bor ders of almost stagnant estuaries, with the densest and most rank vegetation around them on all sides, with mosquitoes and a hundred such insects infesting the district like a plague; in dry seasons their houses will stand in the very center of great plains of reeking will stand in the very center of gradat plains of reeking
ooze, in times of flood the muddy river will rise to ooze, in times of flood the muddy river will rise to
their very verandas, and yet these people are robust their very verandas, and yet these people are robust
and healthy. I have gone from there, and a few weeks later visited islands in the Solomon group, or New Hebrides, where I have found a dry coral soil and high land, upon which the pure trade wind blows freshly month after month, steep land, too, from which the rain water is quickly borne downward to the sea, and all this but a few hundred miles from the Fiji group, and in the same latitude, and blown upon by the same trade wind, and yet in these places it is almost death trade wind, and yet in these places it is almost death
for a white man to spend more than a few months in

CROSS SECTION OF THE STREET AT BROADWAY AND FULTON STREET.

an excavation of the width of the entire roadway But it was found that this complicated operations, as the prism to be cleared was of too large section. Accordingly it has been determined to put each conduit in separately. The general construction is shown in the cuts. The slot is firmly tied, so as not to close. Improved rails are used, which will not interfere with traffic. Two power stations will probably be used, one at Houston Street and other at 51st Street. The conduit will be 24 inches deep and 15 inches wide. At intervals drainage pipes will be inserted connecting with the sewer, to carry off any water that may find its way through the slot. The engineer for the Broadway \&
hours longer than it would have done had the message been transmitted and delivered in the recular course of business. The Superior Court of Kentucky held in an action against the telegraph company that the sender of the message was entitled to recover for the additional expense incurred in feeding cattle, and the additional amount paid to hands, by reason of the delay caused by defendant's failure to transmit he message. The court said that as it was the business of the firm to which the message was sent to send men to repair boilors, it must be prosumed that they would have followed their usual course of business, and it was not reasonable to presume that had the man ber
the year on shore, and practically no one who lives ashore at all can hope to escape frequent and severe attacks of fever. In fact, it is only by being thoroughly acclimated, through a long period of time, that he can hope to live there at all."

Among the useful institutions of Chicago is the Watchmaker's Institute, Athenæum Building, Van Buren Street. Here, for $\$ 25$ a month, pupils receive both theoretical and practical instruction in all branches of the art. The most improved tools are used, and the utmost pains taken to instruct the learners thoroughly.

ANCIENT METHODS OF DRAWING WATER

 We have already descriked some of the ancient methods of raising water, but these were confined to the elevation of water from streams or natural bodies of water lying on the surface. For elevating water from wells and cisterns, different mechanism was required.One of the ancient machines for this kind of work is represented in Fig. 1. In this machine a long beam weighted at one end is pivoted in a forked post and arranged to oscillate on its pivot. To the lighter end of the beam is connected a rod which is attached at its lower end to a bucket, and the weight of the heavier end of the beam is more than sufficient to lift a bucket full of water. Upon the beam is placed a plank, and at the sides of the plank are arranged handrails. The operator walks forward and backward upon the beam, thus alternately adding his weight to the lighter end of the beam and removing it therefrom, causing the bucket to alternately dip into the water and lift it to the surface, where it is emptied by another person. In some cases these machines are provided with steps to give a better foothold. It is said that the operator upon these machines becomes so expert that the water never ceases running in the troughs leading from the well, and still his confidence is such, notwithstanding his apparently dangerous position, that he laughs, sings, smokes, and eats in this peculiar situation. This machine is peculiar to Hindostan, and is known as the picotah.
The earlier machines for raising water by power were known by such names as the tympanum, noria, chain of pots. Of these the tympanum and noria were driven by the stream from which the water was taken. The earlier form of tympanum consisted simply of a series of gutters united at their open ends to a horizontal hollow shaft placed a little higher than the discharge sluice, the gutters being arranged radially, and of sufficient length to extend from the shaft into the water. The sides were closed in by planking and the joints were made tight by calking. From the resemblance of this machine to a drum, the Romans gave it the name it bears. The tympanum shown in the engrav ing is an improvement on the older form, and consists of a series of tubular hollow arms extending from the periphery of a current wheel into the hollow shaft at the center. The blades of the wheel dip in the stream and are propelled by the current, and the mouths of the curved tubes scoop up the volume of water which advances toward the center of the wheel as the wheel revolves. The water thus raised is discharged through the hollow shaft into a sluice which conveys it a way. These wheels are especially adapted to purposes of irri gation and mining.

The New Royal Mail Steamship Empress of Japan The new twin-screw steamer the Empress of Japan, which has been constructed by the Naval Construc tion and Armaments Company, limited, Barrow-in-Furness, has just undergone her speed trials, with the most satisfactory results. She has been built for the Canadian Pacific Railway Company, to run between Vancouver and China and Japan. She is the second of three steamers built for the same route, her sister ship being the Empress of India, while the third vessel was launched at Barrow yard recently. The builders' usual progressive runs under natural draught conditions were made on the measured mile at Skelmorlie on the Clyde, on March 30. Two runs were made with full power under assisted draught, and the mean speed realized was 18.91 knots, the engines developing close on 10,000 horse power. It is stipulated that these vessels shall run at the rate of $171 / 2$ knots on the measured mile and 16 knots on their 500 mile sea trials, these being the requirements of the contract the Pacific Company have entered into with the post office au thorities. The vessel afterward proceeded on her sea trial of 500 miles, the course taken being from Wemyss Bay, on the Clyde, to Lundy Island, in the Bristol Channel, and back to Liverpool. The mean speed on this run was 16.85 knots, the mean horse power developed was 7,400 , and the consumption of coal per indicated horse power $1: 56$.

An International Hygienic Exhibition will be held in the months of January and February, 1892, in Leip zig. The exhibition will comprise, among others, sec tions devoted to hygiene, food stuffs, and ambulance.

The United States consul at Limoges, France, says, in his last report to the United States government, that the proprietors of the large porcelain factories there have been for a long time studying the question or reducing the price of fuel. At a recent congress of the manufacturers, it was said that some new and cheap way of manufacturing porcelain must be found

Fig. 1.-THE PICOTAH OF HINDOSTAN.
ous, and which employs so many of the inhabitants, would be driven from French soil on account of the cost of firing. It was there ascertained that the cost of firing china in Bohemia was not more than 10 francs a ton; in England it was only 13 francs; while, for the ame thing in France, at Limoges, the cost was between 34 and 35 francs. This difference being so great, and naking it impossible for the French manufacturers to make their china as cheaply as their foreign neighbors, various devices have been tried, but with little success. In order to compete, wages have been reduced to the lowest point, and still the manufacturers are said to have lost money. The coal that is employed is necessarily costly, as a smokeless, long flame variety is required. Many of the factories burn wood only, as that produces a purer white than the very best kinds of coal, but wood is dearer than coal. It is conse of coal, but wood is dearer than coal. It is conse
quently only used in firing the muffles, and in the fin-

Fig. 2.-THE TYMPANUM
side and bearing removed to show the contruction.
est grades of porcelain. A few years ago a new pro cess was tried, that baked the porcelain in a short
time, but the cost made the process impracticable. It time, but the cost made the process impracticable. It
was under such circumstances as these that one of the most progressive houses in Limoges was induced to employ petroleum or residuum oils as a fuel. To accomplish which, an American firm using the Wright burner was requested to come and make a trial with the fuel. There was very much doubt and fear con-
nected with the experiment, but, after a time, it was attempted, and the results were far better than antici. pated. The heat was shown to be absolutely pure No gases or smoke in any way discolored the china, which came from the kiln much whiter and in bette condition than when it is fired with the best of wood In the muffles there was a decided advantage. The delicate colors, which show at once the presence of slightest quantity of gas, were perfect. "This new discovery," says Consul Griffin, "promise to revolutionize the whole porcelain industry." It is estimated that, by employing these oils there will be a reduction of about 15 or 20 per cent in the making of china.
The only question now is the present classi fication of residuum oils in the customs tariff as the present duty on petroleum- -120 franc per ton-is prohibitive, but strong pressure is being brought to bear on the government to have fuel oils classified as fuel, which pays only franc 30 centimes a ton. New life is given to an industry that was seriousiy threatened, and it is hoped that the French porcelain will be brought to a greater state of perfection by this new American invention.

The Employers' Federation.
A federation of employers is in progress of organization in San F'rancisco, which will include the foundrymen, ship owners, lumber dealers, box makers, builders, harness and leather makers, etc. The idea is to form a ederation of employers of the Pacific coast on the same plan and to be just as extensive as the organization of trades unions in the Council of Federated Trades, with its sub-federations in all parts of the coast, so that, no matter in what trade or locality the Council of Federated Trades might exert its power, it would meet an equally compact organization to oppose its derees. It is not proposed to attempt to destroy trades unions, but to restrain them and to resist unreasonable demands; nor is it desired to re duce wages, but to so arrange matters that em ployers shall not be dictated to as to the individuality of employes. A committee is to be appointed, selected from the different industries, which will constitute a court of final appeal in disputes. The decision of the committee will have the power of the federation to sustain it.

Scientific and Practical Knowledge
Some one has truthfully said that all knowledge is comprised in two classes. The first is that effect of mind which is the result of curiosity, that species of human instinct that prompts us to inquire the reason or everything we see, every action which takes place among others, among all living beings, among the els ments and among the celestial bodies. Mankind being endowed with reason, the next impulse is to apply the nowledge so gained to some useful purpose to pro nuce soine benet to ourselves. The firt of tho prouce some beneft to oursels. The first of these tw is called "applied science." For instance, we notic for the first time a light from which smoke arises, we investigate, we per ceive heat, and that it produces a dis agreeable sensation. These are the first scientific facts. We apply the knowledge so gained by resolving never to touch fire. This is applied science. We have employed curiosity to find out the facts. We now employ caution to guard ourselves against damage, and we determine never to touch fire. All knowledge so gained is by this process. We may be told a thousand times that fire will burn but we feel that that is only theory We want facts, and we obtain them by a course of scientific investigation. We use these facts and thus gain ex perience, knowledge, at first scientific next practical; and these two condi tions make up the sum of all knowl edge. Science is the foundation, prac tice the superstructure.

Liquid Bronze.

Stroschein, of Berlin, makes this by treating dammar resin with about one-third of its weight of carbonate of potassium, stirring for about three days, and then finely powdering the resinous mass. Next it is scattered in thin layers on resinous mass. Next it is scattered in thin layers on
hurdles, exposed to a temperature of about $50^{\circ} \mathrm{C}$., and hurdles, exposed to a temperature of about $50^{\circ} \mathrm{C}$., and
left for several months. The resin is then dissolved in benzine or another distillate of naphtha under a boiling point of $150^{\circ} \mathrm{C}$., after dry ammonia gas has been led through the solvent. The bronze powder remains suspended in this varnish. Articles bronzed with it are said to retain for years together the original fresh metallic luster.

With More Zeal than Discretion.
An esteemed contemporary announces the discovery of three "weak points" in the patent laws of the
United States. It has reached the conclusion that the establishment of "oppressive monopolies" under the protection of patents ought to be effectively prohibited; the foreigu inventor labors under almost insuperable disabilities in respect to the nature of proof required to establish his priority of invention in contested cases; and that patented inventions not put in public use within a reasonable time after the protection has been given, ought to be summarily deprived of it. We fear that the real source of our contemporary's disquietude is to be found in the fact that the American patent law has not been framed to meet the requirements of in fringers. We may further remark that Congress ap pears to have no constitutional authority to change it to correspond more nearly to the views of this enter-
prising and industrious class of citizens. The Constiprising and industrious class of citizens. The Consti-
tution of the United States, in express terms, empowers tution of the United States, in express terms, empowers
Congress "to promote the progress of science and Congress "to promote the progress of science and
the useful arts, by securing for limited times to authors and inventors the exclusive right to their respective writings and discoveries." In view of the magnificent results achieved under its stimulus by the inventors of America, it is too late to question at this day the wisdom of the fathers' provision; but whether wise or unwise, there it is, a part of our organic law, and likely to continue so. The patentee's right is exclu sive, and though it may be limited in duration, it can not be limited in scope. Congress has no power to step in between the patentee and his personal property, and
undertake to dictate to him how, where and when he undertake to dictate to him how, where and when he shall use it or refrain frow using it. We esteem it the one crowning merit of the American patent system that the grant is unconditional and absolute, or with out drawback or restriction in the nature of conditions subsequent. Two of our contemporary's points are therefore disposed of by constitutional provision. A to the remaining one, it is declared that while "it is already possible for American inventors to obtain valuable patent rights in foreign lands,
well nigh impossible for a foreign inventor to secure a patent here if there can be found an American un scrupulous enough to claim the invention, naming a date prior to the foreigner's application in his own and practice of our patent law. Our rules of practice provide that he who, being an original inventor, first makes known to others within the realm (thus enabling its existence to be legally proved) the invention he has made, and perfects and seeks to patent the same with reasonable diligence, is entitled to the grant. It matters not in the least whether he be a foreigner or a
native; the rule is the same. The benefit to the public, which is the consideration, and the sole consideration, for the grant, arises from the making known of the invention to the people of the United States. a foreigner, as of a matter of right for something he has done in his own country and not elsewhere, unless he has, by publication or otherwise, constructively placed some person in this country in possession of a knowledge of it, and the very moment he has done this, he stands precisely on the same footing, in every particular, with his domestic competitor.
Suppose it is true that a certain proportion of the patents granted are never put to use. Suppose that some "successful" inventor has "found that progress along a certain line was barred by some old claim that has never been put to any service whatever, and neither benefits the public itself nor permits any one else to do so." How large is the proportion? There are now in force about 300,000 patents. How many of
these are obstructions in the way of progress because their owners will neither use nor permit them to used? Not one-tenth of one per cent. Isit then worth while in attompting to guard against a limited and largely imaginary evil, not only to inflict incalculable injury and injustice upon the vast body of deserving inventors, but, by removing what is the principal incentive and stimulus to invention, the absolute security for a fixed term of years of patented property, to dry up, as it were, the spring of invention at its very source ?-Th Electrical Engineer.

Rebuilding while Affoat.

A novel piece of work has been undertaken in San Francisco. The ship Edward O'Brien, built in Maine in 1865 , has been practically rebuilt without being
taken from the water. A crew of riggers was employed and the fore and main masts, each weighing over 100 tons, were lifted by means of shores six inches clear of the keelson. This was done without sending down the topgallant masts or any of the light yards. The lower deck stanchions were then knocked out, and the old keelson taken out the entire length of the ship, together with the sister keelsons. These were then re-
placed with new timbers 16 by 16 inches in size. Four of these form the keelson, and two on each side form the sister keelsons. These run the entirelength of the ship, and are scarfed and keyed with oak keys. The
planking being used. Thirteen of the lower deck the same thing is true of Lepidoptera. Pale greet beams have been taken out, and new ones, 16 by 16
inches, put in. The new keelson is fastened down with inches, put in. The new keelson is fastened down with
bolts $11 / 2$ inches in diameter and 7 feet long, which are bolts $1 \frac{1}{2}$ inches in diameter and 7 feet long, which are
driven 16 inches into themain keel. New chain lockers have been put into the ship, and a heavy platform carries the big water tank, holding twenty tons of water, enough to last the crew six months. New tween decks have been put into the craft, and the entire main deck will be taken out, together with the
poop deck, forward house, topgallant forecastle, and poop deck, forward house, topgallant forecastle, and
the forward part of the cabin, and all will be renewed, as will the waterways all around the ship. It is expected the work will be finished in three weeks, and the ship will then be given a seven year class and will load grain for Europe. The estimated cost of repair
ing the vessel is over $\$ 40,000$. R. S. Alexander $\& \mathrm{Co}$ have the contract.-Pacific Lumberiman.

Natural History Notes.

The Poison of Toads.-The skin of toads and salamanders has lately been submitted to a microscopical
examination by Mr. Schultz, who finds that there examination by Mr. Schultz, who finds that there
are two kinds of glands present in the skin of these animals, viz., mucous and poisonous glands. The former are present all over the body, the latter are confined to the back of the body and limbs and the ear region behind the eyes, and in the salamander are present at the angle of the jaw. The poison glands are oval and have a dark granular appearance, due to val and have a dark granular appearance, due to
strongly refractive drops of poison, a good reagent for which is copper hæmatoxylin. The poison is secreted by epithelial cells lining the glands, and, when the animal is stimulated electrically, it is exuded slowly in drops by the toad, but discharged in a fine jet, some times to the distance of a foot or more, by the sala ander. The anæsthetic action of the poison of the Chinese have already been pointed out.
Eiffect of Light on Spines.-In a note communicated to the French Acadeny of Sciences, Mr. A. Lothelier states that in Berberis vulgaris, Robinia pseudacacia Ulex europceus and other plants, the formation of
spines is dependent on the access of light. Plants spines is dependent on the access of light. Plants
grown in comparatively little light present very few spines, but those grown with free access of it have more numerous, more differentiated and more devel oped spines. W. Lothelier has observed that the los spines is usually balanced by the stronger growth of axillary leaves.
Protective Mimicry in Spiders.-In the journal of the Elisha Mitchell Society, Mr. Atkinson calls atten tion to two new cases of protective mimicry in spiders.
A Cyrtarachne takes shelter in summer and autumn under leaves, where it has absolutely the aspect of small univalve mollusk which is extremely abundant and which often fixes itself in an aualogous position. The second example is found in a small spider, Thomisus aleatorius, which is remarkable for the length of its fore legs, the hind ones being, on the contrary, very short. This spider, which lives upon grasses, ascends the culm, stops suddenly and disappears from sight. It suffices to fasten itself to the spike by its hind legs, and to bring together its fore legs, extended, and forming an angle with the culm, in such a way as to mak
The Usefulness of the Elephant.-In modern time we have only to look to India to be convinced of the great usefulness of the elephant. To the agriculturist who uses him before his wagon or his plow, he is in iispensable, and for the transportation of heavy arti cles he has no rival. We see him carrying immens ree trunks out of the Indian forest, and by his inde fatigable industry, in picking up and carrying off
large stones, aiding the construction of roads and raillarge stones, aiding the construction of roads and rail-
ways. For labor of this kind a coolie receives from four to eight annas, while five and six rupees are paid for the daily work of an elephant. From this fact we conclude that one elephant performs the work of from British to twenty-two coolies. From the record of the sinia, in 1868, we learn that 44 elephants were shipped from Bombay for use in the campaign. Each animal was in charge of two men. Of this number, five succumbed during the campaign. The remaining 39 ren dered valuable services, being intrusted with the trans portation, through a mountainous country, of cannon,
ammunition and supplies. It was frequently very diffi mmunition and supplies. It was frequently very diff often necessary to traverse great distances to reach the watering places, the death of the five animals is ascribed to these hardships. Although elephants move slowly through a mountainous country and soon become footsore, they performed their task with ad mirable faithfulness. Without them it would have
been necessary to await the building of wagon roads. Green Butterfies.-"Grant Allen shows," says Mr W. Doherty, in the journal of the Asiatic Society, of Bengal, "that, while greenish flowers are among the oped of all and among the most.conspicuous. Very much | bility.
moths, like Actias, Geometra, and Pachyarches, ar protected by their coloring, which is common to both sexes, and are quite hidden when nestling among the leaves. Such seems also to be the case with Lehera eryx, a lycaenid which is greenish on the under side, and may possibly be the case with some Catopsilias But bright metallic green is, I think, the latest develBut bright metallic green is, I think, the latest devel-
oped color among butterflies, and decidedly the most ped color among butterflies, and decidedly the most
conspicuous. No one who has not seen it can imagine conspicuous. No one who has not seen it can imagine
the brilliancy of Arhopala farquharii or Ornithoptera rookeana in the greenest jungle. The brightest of the metallic blue butterflies look dim beside them It may be confidently asserted of all such butterflies that, unless the species is protected, only the male is green. The protected Ornithopteras have sometimes assumed green colors as well as golden and orange, and the female shares in this useful ornamentation to some extent. In non-protected butterflies the green is confined to the upper side, and is quite in visible except during flight. In the Lycaenidae it is ound in many Zephyri, in some Poritias and Massagas, in a few Arhopalas, and in Lampides marakata, a rar butterfly I discovered in the Malay Peninsula, and named after its emerald tint above. Among all these, whenever the female is known, it is blue, orange, black, violet, or any other color but green. The conservative and, in butterflies, unadorned sex has not yet acquired the latest development in colors. It is also re narkable that the green colors seem to occur where the enus is most dominant. The Malay Peninsula and Borneo form the great center of development of th genera Arhopala and Lampides, and it is there tha most of the green species occur. The outlying Arho palas, those of the northwest Himalayas, and the Timorian islands, are all blue. In Zephyrus, the green pecies are found only where the genus is best repre sented and most vigorous. Zephyrus pavo, a species found in the Bhutan and Assam hill ranges, remote row the regular habitat of the genus, has, I discovered he male blue and greatly resembling allied female from the western Himalayas. The green and orange Ornithopteras also occur only in the heart of the Or nithoptera region. These remarks on green butterflie also apply in some degree to certain other unusua colors of great brilliancy, such as the shining coppery gold of Ilerda brahma and the fiery red of Thamala marciana. It ought to be borne in mind that such colors must never be ascribed to a female without care

ful examination.

The Phenomenon of Autotomy in Certain Animıals.Mr. Fredwicq, of Liege, has established the fact that the amputation of the claws in the crab is a reflex phenomenon with which the will of the animal has nothing to do, and which is always brought about by an excitation affecting one of the articulations of th limb sacrificed. He has shown, too, that lizards sus pended by the tail never succeed in breaking it, if bruising of this organ be carefully avoided. He concludes therefrom that, in these animals, autotomy is again dependent upon a reflex act, and he places in this category all the cases of mutilation, apparently voluntary, that are presented by insects, worms, echinoderms, etc. At a recent session of the French Academy of Sciences, Mr. Charles Contejean gave an account of some experiments that he has just made upon the grasshopper and lizard, and that permit him to bring new proofs forward to the support of this opinion. He has found, among other facts : (1) That autotomy cannot be induced in grasshoppers and in lizards enfeebled by long fasting ; (2) that lizards artificially chilled can no longer break off their tails: (3) that such breakage is so much the more easy and more rapid, on the contrary, in proportion as the animal is more active; (4) that in the lizard, as in the grasshopper, electric excitation is that that gives most sucsess; (5) that autotomy is more easily induced in a decapitated lizard than in an intact animal, the moderating action exerted by the encephalus being sup pressed.

Superimposed Magnetizations.
Experiments by M. Jamin have shown that two lon pitudinal magnetizations of inverse polarity may be mposed on a piece of steel without mutual neutralization. The same has been shown by M. Decharme to be true for transverse magnetization, and in a recent communication to the Academie des Sciences, M. Decharme describes the result of magnetizing the same piece of steel successively, longitudinally and transversely. The specimen of steel was 100 mm . long, 28 mm . broad, and 3 mm . thick. If the conditions were favorable and care was taken, it was found possible to obtain an iron filing sketch, showing two simultaneously existing magnetizations. In most instances, however, the two magnetizations were merely superimposed, and by making the proper passes the longitudial and the transverse magnetizations could be made to predominate in succession, and with increasing trength, until saturation point was reached. A bar agnetized first longitudinally and then transversely

In reply to one of our correspondents who asked information concerning these insects, Dr. C. V. Riley, to whom we referred the inquiry, says :
"In reference to the 17 -year locust, or periodical cicada, I may say that in more northern localities the insect appears once in 17 years in a given location, while further south it occurs once in 13 years. In other whirds, there are two distinct races, one called Sepwords, there are two distinct races, one called Sep-
tendecim and the other Tredecim, according as they tendecim and the other Tredecim, according as they
appear either in 17 or 13 years. There are, however, a appear either in 17 or 13 years. There are, however, a
number of more or less well marked broods, according to locality. Of these I have tabulated 22 , and have indicated in Bulletin No. 8 of the Division of Entowology and in the Annual Report of the Department of Agriculture for 1885, and also in other writings, the exact territory which each of these 22 broods occupies. The State of Indiana has 5 broods, viz., 1885 (XXII), 1888 (V), 1889 (VIII), 1893 (XI), and 1894 (XII). The next (V), 1889 (VIII), 1893 (XI), and 1894 (XII). The next
brood to appear in Indiana is brood XI, in 1893. The brood to appear in Indiana is brood XI, in 1893. The
last occurrence of this brood was in 1876, and in that last occurrence of this brood was in 1876, and in that
year I had no authentic accounts from Indiana. In 1842 and 1859 , however, its appearance was recorded in Sullivan and Knox Counties. In 1894 brood XII will appear. Here again I received no records frow Indiana in 1877, but in 1843 and 1860 it was recorded in Dearborn County. The largest brood which Indiana has is XXII, which appeared in 1885, and is due again in 1902. It occupies the entire southern part of the State. This It occupies the entire southern part of the State. This
brood is well recorded in Indiana as far back as 1834.

Destruction of Chinch Bugs.

br f. н. snow.
At the recent meeting of entomologists at Champaign, Ill., Dr. F. H. Snow read an interesting paper on the above subject. His experiments have been continued through the two seasons of 1889 and 1890, and have been remarkably successful. As entomologist $\therefore 0$ the Kansas State Board of Agriculture, I had prepared an article for the annual meeting of that board in January, 1889, stating what was known at that time upon the subject, and calling attention to the investigations of Professors Forbes, Burrill, and Lugger. In June, 1889, 4 letter was receivod frow Dr. J. T. Curtiss, of Dwight, Morris :County, Kansas, announcing that one of the diseases mentioned in the article (Entomophthora) was raging in various fields in that region, and stating that in many places in fields of oats and wheat the ground was fairly white with the dead bugs. Some of these dead bugs were at once obtained and experiments were begun in the entomological laboratory of the university. It was found that living, healthy bugs, when placed in the same jar with the dead bugs from Morris County, were sickened and killed within ten days. Lawrence newspaper reporter, learning of this fact, published the statement that any farmers who were troubled by chinch bugs might easily destroy them from their entire farms by sending to me for some diseased bugs. This announcement was published al over the country, and in a few days I received applications from agricultural experiment stations and farmers in nine different States, praying for a few "diseased and deceased" bugs with which to inoculate the destroying pests with a fatal disease. Some fifty packages were sent out during the season of 1889 , and the results were in the main highly favorable.
It was my belief that sick bugs would prove more serviceable in the dissemination of disease than dead bugs. I accordingly sent out a circular letter with each package, instructing the receiver to place the dead bugs in a jar for 48 hours, with from ten to twenty the disease would be commnnicated to the live bugs in the disease would be commnnicatec to the live bugs in
the jar. These sick bugs being deposited in different portions of the field of experiment would communicate the disease more thoroughly while moving about among the healthy bugs by which they would be surrounded. This belief was corroborated by the results. The disease was successfully introduced from my laboratory into the States of Missouri, Nebraska, Indiana, Ohio, and Minnesota, and into various counties in the State of Kansas. A report of my observations and ex periments in 1889 has been published in the Transac tions of the Kansas Academy of Science, vol. xii., pp $34-37$, also in the Report of the Proceedings of the Annual Meeting of the Kansas State Board of Agriculture, in January, 1890.
The next point to be attained was the preservation of the disease through the winter in order that it might be under my control and be available for use in the season of 1890 . To accomplish this result, I placed fresh, healthy bugs in the infection jar late in November, 1889, and was pleased to note that they con tracted the disease and died in the same way as in the earlier part of the season. I was not able to obtain fresh material for the purpose of testing the vitality of the disease gerins in the spring of 1890 until the month of April, ard then only a limited supply of live bugs could be secured.
The chinch bug seemed to have been very generally exterminated ic.Kansas in 1889, and only three applications for diseased bugs were received in 1890 up to the midd.c ci July.

CASTROGRAPHY.

Do not look for the word castrography in the dictionary, for it is a neologism created to designate a new art. Castrography (from the Greek, meaning to write by cutting) consists ia writing or drawing in relief in the substance of a sheet of thin cardboard, by means of the blade of a penknife. It was devised by Mr. Mills, an American, who exhibited the process at Paris in a public establishment. This artist traces the drawing or writing by means of incisions made in the substance of the card. As the knife blade makes a very sharp angle with the card, these incisions may be very deep. In measure as they are made, the operator, with the back of the blade, raises the upper part that he has just cut, so that its outline is at once converted into a sort of bass-relief. On illuminating the card, thus prepared, sideways, it exhibits, in fact, the high lights, tones and half tones and the true and projected shadows of sculpture. As for the rapidity of execution, it will suffice for us to say that the specimens prepared specially before our eves by the artist, for the readers of La Nature, were executed in less than a minute by the watch. (See accompanying figure.) Mr. Mills varies the style of his delicate compositions ad infinitum. Here we see flowers, such as eglantines and forget-me-nots, here ornamental designs, and here again birds, ornamental plants, etc., rising suddenly under the blade of the rapid knife. In the time that it would take a draughtsman to put a sketch upon paper, Mr. Mills gives us not only the contour, but also the shadows, obtained by the play of light upon also the shado
This process is scarcoly capable of furnishing any

bass-reliefs made in cards with the blade OF A PENKNIFE.
thing but fancy work, visiting cards, bills of fare, out o the ordinary line of decoration, etc. A goodly number of our readers who are fond of manual recreations might practice it in their turn. They will find that it out the knife's point passing clear through it, but we believe that with a little exercise, and provided they do not try to work too fast, they will be able to ob tain satisfactory results.-La Nature.

A Remedy for Cut Worm.

Cut worms are the caterpillars of night-flying moths Most of them are vcry injurious to young and tender plants, such as cabbagc, tomato, peppers, corn, beans
etc. They only work at night, and during the day remain hidden just under the surface of the ground in the immediate vicinity of their food plants or pastures Many of the species climb trees, and of ten become very destructive to the expanding buds and young foliage. The moths of the species that infest our gardens usually lay their eggs near the roots of perennial plants, such as rhubarb, hollyhock, etc., and in the vicinity of such plants we may confidently expect to find plenty of young cut worms in spring. One of the easiest ways to get rid of the pest, says a correspondent in Popular Gardening, is to scatter pieces of green stuff, cabbage leaves, or sods with fresh grass, etc., hat have been sprinkled with Paris green water, her worms. Hand picking is a more laborious remedy, but it can be made effective. Plow the field, a few weeks before the int aded crop is to be planted, and sow some beans over the piece. After the beans are up, the patch should be gone over early every morning, and the cc: worms hunted up near the freshly cut plants, and destroyed. If this is done for a week or so, there will be few worms left to trouble the crop to be planted afterward. The worms can also be starved out cessive crops of buckwheat on growing several suc
other plant or weed to grow for an entire season. When wature, the larva enters the ground, where it forms an oval smooth cavity, within which it changes to a chrysalis of a deep mahogany brown color, pointed at the extremity. These chrysalides are often turned up in large numbers when the ground is plowed. Birds of all kinds, and even domestic fowls, are very fond of these chrysalides (as many of them are also of the larvæ), and many are thus destroyed by their enemies, to whose view they are exposed by the plow.

A Electrical Wedding

At a wedding reported in Baltimore, a few days ago, no sooner had the company been comfortably seated than the room burst into a flood of light from numer ous varicolored incandescent electric lamps hidden among the decorations. The entrance of the bride and bridegroom was welcomed by the automatic ring ing of electric bells and the playing of electrical musi cal instruments. After the first course, the room was plunged into semi-darkness, when suddenly, from the floral decorations upon the table, there glowed tiny electric lamps. Not only the flowers, but the interio of the translucent vases in which some of them were gathered, scintillated with flashes of light. After a while a miniature electric lamp, which in some unex plained manner had attached itself to the bride's hair, was seen to glow with dazzling brightness. A toast having been given, two serpents slowly uncoiled them selves and issued from the wine bottle that stood be side the bridal couple. Cigars and coffee were served and the cigars were lighted by an electric lighter, while coffee was prepared in full view of the company by an electrical heater. The speeches that were made were liberally applauded by an electrical kettledrum placed under the table. As the company dispersed, the elec tric current set off a novel pyrotechnic display, amid the crimson glare of which the festivities ended.

Caterpillars Stop Trains.

The Carolina Central runs through the Big Swamp just east of Lumberton on trestlework, broken here and there in the solid portions of the swamp by em bankments of earth. On April 28 an army of cater pillars began moving out of the swamp, and when they reached the streams, they proceeded to cross on the trestles. The rails and ties were covered several inches deep with the moving mass, and the first train that en countered them was brought to a standstill, the driving wheels of the engine slipping around as if the rails had been oiled. The engineer exhausted the content of his sand box before he got through the swamp and reached a clear stretch of track.
It was thought that trip would be the end of the caterpillar trouble, but the next day a train encounter ed another army of caterpillars crossing the trestle, and had the same difficulty. The Charlotte-bound pas senger train recently had a similar experience. The rails and cross ties of the trestle were hidden from sight. Where the caterpillars came from is not known The farmers on this side of the swamp express no uneasiness for the safety of their crops so long as the ad vancing army persists in using the trestle in getting across the streams, for none of them have got more than half way across before being overtaken by a train.

Preserving Plants

Mr. J. Sauer has made known a process for preserv ing plants in the form and with the flexibility that they possessed in the fresh state, and also for coloring or bronzing the plants thus prepared
The plants having been perfectly freed from dust and washed, are immersed jor two or three days in a strong solution of crystals of soda. The strength of the solution usually employed is eighteen ounces o crystals to one quart of water. Sometimes it is advan tageous to add a little caustic lixivium
The plants are dried between cloths for three or four hours, and are then greased either by immersing them in melted lard or by gently rubbing them with the hand with olive oil.
To color the plants thus prepared, they are painted with a solution of dextrine containing a proportion of about five per cent of solution of aloes. To this coating are appiied the proper colored powders.-Moniteur Scientifique.

THE activity and originality shown in connection with the recent development of the American navy affords material for thought, not only to our ship builders, but also to our statesmen. Notwithstanding his activity, we sincerely hope that the two great English-speaking nations of the world will never dis race civilization by going to war with each other. We may say, frankly, that we should have preferred to see America content in developing her industrial and mer cantile resources. Since, however, she seems determined to take a position as a naval power, it is the vident duty of our statesmen to make themselves thoroughly acquainted with American naval progress, and to take steps to guard against possible contingen cies.-Industries, London.

REGENTLY PATENTED INVENTIONS.

Engineering.

Traction Engine. - Mr. John H Crumb, of Burlingame, Kansas, has patented an im proved traction engine in which all the wheels are use straction wheele, and in which the steering may be ffected in the usual way by the turning of the wheelg which are pivoted; or, if desirable, the engine may be
moved off bodily in any direction without turning his construction affords peculiar advantages for man uses, such
operations.
Valve Gear for Steam Engine. Mr. Wilber J. Cunningham, of Rapid City, Sout Dakota, has invented an improved valve gear for steam
 the ports at the proper time in the stroke, thereby
securing a more effective distribution of the steam than obtained in engines of ordinary construction. The engine is provided with a cam on the main shaft, and aged by opposite sides of the cam. The slide valve axis of the engine.
Heating Apparatus. - Mr. Cyprien eam or hot water heater designed principally f warming buildings, and capable of being used to goo anvantage for generating steam for motive power, o or heating water for various purposes. The heater povided with a double shell forming water chamber opposite sides of the fire box, which are connected ear of the fire box. The water grate is sapported by ransverse water tubes arranged alternately betwee he grate tubes. In the upper portion of the double casing is suspended a fire tube boiler which connect with the steam space in the top of the double-walled
Radiator.-Mr. Charles E. Marston, Dover, New Hampshire, has patented an improve adiator consisting of hollow superimposed sections, each formed with inclined walls, and with npwardl thd downwardly extending flanges around the central
opeung, the lower flanges of each section fitting within er bene of the next section. A detchave opennuded tube seated upon the upper section is held by against the lower section. The construction of thi radiator is such as to convey
downward without leakage.
Railroad Spikes.-An improved rail road spike has been recently patented by Moald Walter J. Hammond and John Gordon, of Rio de Janeiro, Brazil. This spike is provided with a head dapted to succeesively engage the edge of the bse the rall when the spike is driven farther after it h

Steering Apparatus.-An improved team steering appratas S. been patented by M nent is designed to be used on a class of steamboat propelled by independent side wheels worked by inde-
pendent engines, the object being to steer the vesel pendent engines, the object being to steer the vessel
independently of the rudder. In steering by a rudder, independently of the rudder. In steering by a rudder the point of pivot is at the bow, but by steering wit independent paddle wheels the point of pivot is amic
ships, allowing of turning the vessel much quicke than is possible with the ordinary steering apparatus. The invention consists, in combination with the steam supply pipes of the two engines, of valves provided
with weighted valve levers, and a beam pivoted on one of the posts of the steering gear and connected at op posite ends with the valve levers, the beam being ar anged so that it may be raised or lowered to open o close both valves simultaneously, or tilted so as to op.
one valve and close the other as required in steering.

Railway Appliances.

Railroad Tie. - Bridges Smith Macon, Ga. This tie is made of metal, rectangular in points or teeth. A plate having upwardly turned edges cs in the body of the tie and constitutes its botto liable to find outlet through the railroad, the wate passing through the tie.

Mechanical
Screw Cutting Machine. - An im provement in screw-cutting machines has been patent ed by Messrs. Henry Westbrook and Robert Burns, of Woodstock, Canada. This improvement relates to the
chuck holding the cutters. The chnck is divided into chuck holding the cutters. The chnck is divided into
wo equal parts, each carrying a pair of ad justable cuters, the parts being mounted on a face plate in such a manner as to permit of their being separated when the screw is to be discharged by the dies or cutters. The
two parts of the chnck are held in the postion of use two parts of the chuck are held in the postion of use
by levers which are operated by a cone on the mandrel by levers which are operated by a cone on the mandrel
of the machine, and the parts when released by the of the machine, and the parts when released by the
movement of the cone are separated by spiral springs.
Process of Making Brushes. Mastin C. Paukey, Scranton, Miss. This is a proceess of embedued in a pulp, saw palmetto for instance, and consists in softening the pulp by reans of moisture uosening and detaching the pulp from the fiber by combing on both facees of the block, drying the combed block, and then sawing through the solid part of the
Feeding Attachment for tan Presses.-Albert F. Jones, Salem, Mass. The press
crib has an opening iu its bottom near its rear side, in crib has an opening iu its bottom near its rear side, in
which revolves about one-balf of a feed roller, and in frout of a front opening in the crib revolve a parr of pressure rolls. Rearwaraly inclined sharts enter the
crib at itt rear, geared for rotation at their lower ends and carrying within the crib three-armed agtatore which prevent bunching of the shavings.

Insulating Swing Joint.-Henry P. rew, New York City. This device is designed for use ether and supported by the swing joint. Eectric nsulation is provided in the flexing joint so as to pre ent escape of electricity, and the joint is otherwise so constructed as to afford mears to freely conduct ga her in a straight line or at angles
Drill Bit.-Robert McKee, Meeker Col. This drill has leng sides gradually decreasing in depth from the upper en to the point of the drill, and in the grooves slide broad pointed, wedge.-shaped arnis pendent from an annul collar fitting on a threaded sleeve on the bit shank, the
arms being held in place by a circular band. The bit i dapted to be enlarged by screwing down the drill tube which expands the arms on the collar.
Lock for Vehicle Doors. - Pau cmpressor located on or near the driver's seat, and operated by an oscillatable lever, the air passing by sipes to a dilatable reeervoir. The latter as it expand depresses one end of a lever, the other end of whic ctuates a series of levers, which cause the release of es from the door, allowing the door to open.
Bevel Grindina Machine.- Eugene Homan, New York City. This macine is for cuttin mirrors and other purposes. Standards are erected on pair of elongated horizontal shears, and a platen laten carries a pair of bracket arms each loosely sup. porting a pendent fork pieee, the standards having anged nuts and screws therein having radial collar mbracing the fork pieces.

Electrical.

Requlator for Electric Lamps. Messre. C. H. Balsley, Jr., and E. M. Porter, of Connellsville, Pa., have patented a current regulator for in
andescent electric lamps, by means of which 1 he ligh may be increased or diminished at will. The invention Consists of a switch provided with a number of sections each section being provided with resistance which it
aut out or put in the circuit by turning the switch neans of this invention in the turning the switch. B. ay be turned up or down in much the same manne

Electrical Railway Pole.-An elec ic railway pole has been recently patented by M. Fo or Milliken, of New York City. The object of this in bracing the cross arms of the poles against lateral too great an extent when the wires suppoted by tis arms are drawn very tight. The invention consists in horizontal bars secured to a mast and located at right angles to the arms, and independent brace arms ar-
ranged in diamond form around the mast and secured to the side arms.

optical

Tintometer.-Mr. Joseph W. LoviTha, of Salisbury, England, has patented a " tintome er" for the examination of translucent matter for color ntensity and of opaque matter for superficial color ventor May 31, 1887, for a manocular instrument his kind. The present improvement consists in makng the instr ant binocular, anation and of the stand ard to which it is referred.

Agricultural

Cultivator and Fertilizer Dis-Riruror.-A combined cultivator and fertilizer disributor has been patented by Mr. Leeman B. Buzby, of
Kauricetown, N . J This machine is provided with shares or hoes, and is designed to act as a furrower marker, and ridger, in addition to its regular uses. It is provided with an attachment wherond thereby rean
seed for lifting the plows out of the ground, ieving the driver. The machine is compact and sim ended.
Foot for Plow Stocks.-William B. Brown, Headsville, Tex. Two forwardly-curved bars
are clamped to the beam of the plow, and a heel is rigdly secured at ite forward end between the lower end of said bare, the rear end of the heel being bent apward its forward end. The foot thus has few parts, and is trong and durable.
Cultivator, Planter, and Fertil a Distributor.-Edwin C. Worrell, Murfrees of gas pipe is mounted on supporting wheels and a vertically adjustable supplementary frame is hung thereto and supports the cultivating, distributing, and planting devices. The pulverizing diiske below the hopper are mounted on a shaft pivoted at one end in the suppre nentary frame, and said shaft may be swung de
nally to the line of draught and ster the machine.

Miscellaneous.

Scriber.-William Potter, New York City. On a base carrying an equalizing plate or tur Table is a movable post, parallel rods being pivoted to the equalizing plate and to the post, while a scriber arm is attache to the post, and a socket adjustabe upon the arm is adapted to receive a pencil or othe
marking implement. The device forms a tool of simple and durable construction, capable of use either right of

Magazine Gun. - Charles J. Wahlquist, Assiniboine, Montana. This gn has an aperward incline in which a cartridge holder is adapted to
slide in and out, with means for securing the holder in act as fring chambers, and when the cartridyes have been discharged, the holder may be quickly replaced by a filled holder. The arm may also be made for use as a
single breech loader, and when used as a magazine gat single breech loader, and when used as a magazine gui designed to faciintate very rapa iring without lowe

Сheck P rapids, Mich. This is a device to cut or punch desired numeral or ingure out of a check, draft, etc ot that the sevar nde erals or ingures stand in perfe from a common center on a die wheel turning below th rods and actuated from the atter, so as to bring the corresponding die of the die wheel in line with the actuating rod having a corresponding die. The construction is simple and durable and the device is easily and quickly manipulated.
Vehicle Fifth Wheel.-Alfred W Johnson, New Brunswick, N. J. The attached fifth
wheel section provided by this invention is minly dicel section provided by this invention is mainly sides in front, forming angular protruding shoulders, in ombination with an outer section attached to the body of the vehicle having eccentric set-off spaces and attached to the running gear loosely within it, with freedom to turn and move backward and forward herein. With this construction the draught pole hills cannot move laterally, or the truck axle be turned when being drawn ahead, without causing the load
Velocipede. - William Blakely Vernon, Bournemouth West, England. This is an in provement in foot rests for bicycles and tricycles,
diminish the shocks the rider when descerding steep hills to hich so with the feet on the rests fork or frame permitting up and down motion of the foot rest, while a spring upholds the foot rest in the feet.

Handle for Bicycles. - This is an ther invention of the same bsorb or neutralize the jarring or tremulous motion ordinarily transmitted to the hands and arms in operat ing a machine. In recesses in the ends of the hands are elastic buashings of conical form, interposed betwee by end pressure, while elastic washers are interposed by end pressure, while elastic washers are mets on the
between the ends of the handele and abutments on place.
Cast Iron Sink.-George H. Shattuck, Medina, N. Y. This sink has a top flange with thick ward from the miter line to the flange and toward the inner edge of the flange, the object being to makea aink
which will bear rough handling in storing and shipping, which wlil bear rough handing in storing and shipping,
and yet of lighter weight than is now customary, the and yet of lighter weight than is now customary, the
metal being so disposed as to withstand shocks, while metal being so disposed as to withstand sho
less metal than heretofore used is employed.
Tongue for Earth Scrapers. Samuel E. Licklider, Everett, Mo. In the construction pronced for by this invention, brace bars bolted to the
tongue extend beneath the hound bars, to the inside of which they are bolted at their rard strengthen and stiffen the hounds, and co-operate with the scraper and other working parts, preventing the working mechanism from becoming jammed or acci dentally locked. The device is also applicable to

Bier - Wiltshire Sanders and John B. Rafferty, Reno, Nevada. This is an improvement in olding or collapsible biers provided with casters to adapt them to be easily moved. The frame has side with a hinged and folding leg and brace therefor, while the rectangular ends of a transverse bar enter the grooves and are adayted to sllde or lock therein as the ar is turned or adjusted.
Fire Escape.-Henry Vieregg, Grand , Neb. Brachich deends a movable handinger sup. ing a sheave pulley, over which passes an endless chan wound upon drums in the cage of the device, the cage being preferably of metal. Attached to one of the
drum shafts in the cage are friction wheels, adapted for drum shafts in the cage are friction wheels, adapted for
nongagement by brakes pivoted in the cage. The device engagement by brakes pivoted in the cage. The device
may be readily moved to any window from which a readily controlled.
Bottle Capping. - Louis Picard, Rheims, France. This is a bottle-wiring and capsuleemoving device for champagne and similar bottles. A hee--branched frame is made to embrace the bottle ends of the branches and having one end free, while tw-thpeume-removing strands extend from the point where the adjacent branch, with which it is integral. With this fastening the cork is released by a single pull, the cork then being removed by the gaseous pressure

Indicator and Advertising Device Edward C.Smith, Oskaloosa, Iowa. This is designed rame eupporting spaces for advertising carde and having near its bottom match and broom holding receptacles, while near the top is a ppace for a clock,
and in the rear is a wheel and ratchet mechansm, operated by a pull cord, whereby successive number re displayed through suitable openings, a gong or bell But
Billiard Cue. - William S. and Thomas Thompson, Townsend, Montana. This cue has an externally threaded sliding sleeve on its forward xtremity, an outer sleeve rotating therein, in the for-
ward end of which is an adjustable tip, whereby, when elther the cue or the rotary sleeve is rotated in the
inner end of the tip and force it outward. The conthe tip, so that it need be renewed only at long Twine Holder and Cutter.-Messrs, J. Quinn \& F.C. Snebold, of Deming, New Mexico, which is designed to conveniently hold anpoled or bunched twine, and to give the twine the amount of tenion required. The device is provided with a cuter of peculfar form fastened on the spindle of the spool. The cutter is
Banjo.-An improvement in banjos, designed to increase the resonance in the instruments,
and give them a full, heavy, clear, distinct and bell-1ike
 Fritz, of Butler, New Jersey. The banjo is provided tude projecting from the edge of the rim. The resonant ring forms a bearing surface for the periphery of the head. The members of the ring are spaced and bolted or riveted together, and the head stretched tightly over or in any other suitable way.
Marine Vessel.-A fireproof vessel has been patented by Joseph Be. Brolaski, of St. Louis,
Mo., in which the walls and ceiling areformed by metal heets, and wooden parts wherever they are employed for partitions are splied alternately to opposite sides of the wooden uprights, thus forming panels. The edges of the metal sheets are bent around the uprights. The same inventor has patented a novel water-tight compartment for vessels, which is designed to provide aganst the sinking of a vessel should it spriug a leak-
The compartment when open will permit of the ready handling of the cargo and will not interfere with its safe towage.
Washing Machine.-Mr. John A. Van Winkle, of Denison, Iowa, has patented a washing maand provided with a series of rollers, uprights being ixed to the corners of the frame so as to movelvertically n ways in the sides of the tub. The uprights have
series of holes for receiving wires for holding the uptights and rollers at any desired elevation. The machine is provided with a bent lever connected at one end with oscillating arms and having at the other roller provided with a rubber adapted to move over the

SCIENTIFIC AMERICAN

BUILDING EDITION.

MAY NUMBER.-(No. 67.)

table of contents.
Elegant plate in colors showing the residence of Henry IVison, Esq., at Rutherford, N. J. One of
the most picturesque and best appointed houses in the vicinity of New York. Also photographic perspective view, floor plans, etc,
Plate in colors showing the residence of Mr. George
Comstock, of Bridgeport, Conn. One of the Comstock, of Briageport, Conn. One of the
handsomest in Bridgeort. Photograbic perhandsomest in Brideeport. Photographic
spective view, floor plans, tec. Cost $\$ 10,000$.
3. Design for a staircase of pleasing and novel ap-

Photographic views and floor plans of a colonial cottage in Armour Villa Park, Bronnville, N. Y.
Cost $\$ 2,800$. W. W. Kent, architect, New York.
5. Engravings showing a perspective and floor plans of the residence of Mr. George Burnham, at Sketch of a drawing room.
$\$ 6,345$, Complete Illustrations showing perspectives and ground plan of the First Presbyterian church, recently erected at Rutherford, N. J. Total cost complete $\$ \$ 0,000$. Messrs. Fowler \& Hough, New York, architects. Wayne, Pa. Cost $\$ 3800$ complete. Floor plans, perspective elevation, etc.
cottage at Fanwood, N. J. Cost $\$ 4,200$ complete. Photographic view, floor plans, etc.
Philadelphia, Pa, designed to commodious play houses in America. Architect Augus S. Wade.
iscellaneous contents: Statuary marble.-John W. Root.-Ornament in architecture.-Steam pipe required for heating.-Painting ironwork.-Archi-
tectural foliage.-A luxurious bath.-Hardwood finish.-Decorations of the Hotel Metropole, London, England.- -Oldest dwelling in the United sanitary laundry tub, illustrated.-Real estate ineasily coupled door tin and terne plates.-An tectural wood work, illustrated.-An improved scroll saw, illustrated.-Improved system of fireproofing, illustrated.-The new Bolton heater,
illustrated.-The Sturtevant system of heating and ventilating school houses. \rightarrow Finishing natural Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies 5 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages ; forming, practically, a large and splendid Masazine or Architec TURE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting examples of Modern Architectural Construction and allied Eubjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Laraest circulation
of any Architectural publication in the world. Sold by II newsdealers.

MUNN \& CO., Publishera,

Business and Personal.
The charge for Insertion under thes head is One Dollar a line jor each insertion: about eight words to a line. Advertisements must be received at publication offict

I wish to buy second hand lathes, planers, drills, shapers. belting, engines, and boilers. Will pay cash , Rochester, N. lynamos at half their original cost. For particulars a Iress Louisiana Electric Light Company, New Orleans,
Acme engine, 1 to 5 H. P. See adv. next issue. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. Burnham standard turbine. Burnham Bros., York, Pa. Wanted-Garbage burner. Send full particulars, cirBest Ice and Refrigerating Machines made by Davi Steam Hammers, Improved Hydraulic Jacks, and Tub
Expanders. R. Dudgeon, 24 Columbia St., New York. Screw machines, milling machines, and drill presses. Packer Ratchet Drills are drop torged from Norway Ironand bar steel. Billings \& Spencer Co., Hartford, Conn. Tight and Slack Barrel Machinery a specialty. John
Greenwood \& Co... Rochester, N.Y. See illus. adv., p. 300 . Wanted-Capital to develop several useful inventions. Stetches furnished on application. Address Griswold For the original Bogardus Universal Eccentric Mill, Foot and Power Presses, Drills, Shears, etc.. address J.
S. \& G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y. The best book for electricians and beonkiyn, N. Y. The best book for electricians and beginners in elec-
tricity is "Experimental Science," by Geo. M. Hopkins. By mail, $\$ 4$; Munn \& Co., publishers, 361 Broadway, N. Y. A rare opportunity for a young man with a few thou-
sand dollars capital to secure a permanent position as manager of a Western water works company. Addres President Water Co.. care this paper.
For Sale-Four Buckeye engines, comparatively new,
15 by 18 cylinder. Flywheel 9 ft . by 16 in. face. Disk cranks 15 by 18 cylinder. Flywheel 9 ft . by 16 in . face. Disk cranks ana Electric Light Company, New Orlears, La.
Engineers, manufacturers, and makers are invited to send gratuitously catalogues, price-lists, and trade terms
to George I. Poole, Assoc. R. I. B. A., Assoc. M. I. C. E. to George T. Poole, Assoc. R. I. B. A., A Asoc. M. I. C. E.
Colonial Architect and Superintendent of Public Works, Department of
ern Australia.
Send for new and complete catalogue of Scientific und other Books for sale by Mu
New York. Free on application

Thurdemut

HINTS TO CORRESPONDENTS.
Names and A ddress must accompany all letters,
or no attention will be paid thereto.
This is for our
or no attention will be paid thereto.
information and not for publication.
References to former articles or answers should
give date of paper and page
number of question In quirites not paper answered in in reasonaber of question time should
be repeated; correspondents will bear in mind the be repeated; correspondents will bear in mind tha
some ansers require not a little reesearch, and
though we endeavor to reply to all either by lette
 Scienpectific without remuneration. American Supplements referre to may be had at the oftice. Price 10 cents each.
Books referred to promptly supplied on receipt of $\underset{\text { mine }}{ }$
inerals sent for examination should be distinctly
marked or labeled.
(3020) R. G. W. asks: Can you give me any test to know when any gold remains in a worn-ou evaporating? A. You might test it by trying if it will deposit any gold upon a clean surface of silver. Or add solution of sulphate of iron to acidified sample. A pre
cipitate will indicate gold if the bath is clean. cipitate will indicate gold if the bath is clean
(3021) E. H. A. asks for the process of burnishing the gilt on photograph cards. A. The gilt on card mounts is put on by first using a size, then the gold leaf is applied and rubbed or brushed over with a
thin solution of albumen; when dry, this is burnished with an agate or bone tool.
(3022) A. K. C. asks how to melt or dis solve old rubber that has been used and out of shape Would the article be smooth and not sticky ? A. Yo cannot melt or dissolve old rubber. It can be worked up by mastication with fresh gum. It can be shaped to a certain extent only by pressure and heat. If once
melted, it will not again solidify. In "Rubber Hand Stamps and the Manipulation of India Rubber," $\$ 1$ by mail, you will find the whole subject treated.
(3023) L. D. N. asks how to repair a looking glass where the coating has seemed to hav parted or has been removed in spots. A. From a smal cept what will suffice to cover the spot and cap over on sides. Place a drop of mercury on the silvering thu isolated. This will soften it so that it can be pushed o and dropped upon the defective place. The result will probably be imperfect. Possibly the mirror has a true ilver surface. If so, the replating cannot be thus ef ected. An alkaline solution of silver nitrate with educing agent may be used, but success with a reall
(3024) J. C. G. asks for a composition or silver plating by the dipping process. A. Any platng solution of silver can be used. An ammoniacal so sion is available. The plating produced is very in ferior.
(3025) Subscriber asks: Can you inform
ing ink from paper? A. Javelle water or a mixture of
oxalic and tartaric acids in equal quantity dissolved in water
(3026) J. W. asks how to clean tarnished gold and silver lace. A. Brush a way all the dust then brush with rock alum which has been burned
crushed, and sifted through a lawn sieve. This will remove the tarnish.
(3027) A. M. T. asks how to pickle mushrooms. A. Wash the mushrooms with water, wipe them with flannel and put them in brine and boil. After boiling for a few minutes drain in a cullender and
spread out on a linen cloth to dry. Place in bottles, add spread out on a linen cloth to dry. Place in bottles, ada
a little mace and fill up the bottle with white vinegar Pour some melted mutton fat on the top before corking
(3028) G. F. S. asks : 1. Is water por ous ? A. No in the mechanical sense. It has physical
or molecular pores. 2. Can you reduce the bulk of ter by pressure? A. Yes.
(3029) E. S. D. asks : Will you kindly ceipt for a preparation suitable American) give a re stains from the hande of wood turners ? Would like to know of some chemical or preparation which would permanently remove such stairs. A. We would suggest javelle water. Borax would also be advantageous used in strong aqueous solution.
(3030) F. C. K. asks for some salt or other chemical which is soluble in milk, and that would have no effect on it while cool, but that would have an acid reaction when heated that would coagulate the
milk without changing its color or making it poisonous. A. Sulphate of ammonia becomes acid on boiling and might answer your requirements.

NEW BOOKS AND PUBLICATIONS

Artistic homes, in city and in coun

 try, with other exainples of domestic architecture. By Albert W. Fuller ton: Ticknor \& Co. 1891. 70 plates ton: TickPrice $\$ 6$.
This very elegant work presents a eries of photohigh schools, etc., in various parts of the country. O each building the exterior view with plans, as a rule, is given. The execution of the work leaves nothing to b
desired, and the uncommented-on illustrationstell thei desired, and
The Elements of Dynamic Elec Atkinson And MAGNETISM. By Philip Atkinson, A.M., Ph.D. New York D. Van Nostrand Company. 1891

This book, it is stated, was written for learners rathe sume of the subject of current electricity, contains numerous illustrations and seems altogether to be an ac ceptable presentation of the subject. Electricity is now settled cn a basis so far fixed that much that is written about its elements is necessarily a repetition in eac book. Dr. Atkinson seems to have brought his subjec well up to date. Numerous illustrations, with an excel lent table of conten
valne of the work.

INDEX OF INVENTIONS

United States were Granted
 For which Letters Patent of the

May 5, 1891,
AND EACH BEARING THAT DATE.

ed dust arrester and vent

Contacition, etce.. machine for moiliaing,. J.

\qquad

 Elect
Elec
Elec
Elec
Elec
Elec

	Hors
cilisisi	
	Ralli
	İRader eite
	for
	Lamestman
	Nual
	㖪
${ }^{\text {bilite }}$	
	e.
	Silatad
	eurralizmes suppha
	Peaer foider ind ait
	Pa
	Sand
	Pan
	Paseme
	Dea
	eieneed
	Soly
	Sim

Founded by Mathew Carev, 1785.	
HENRY CAREY BAIRD \& CO. Industrial Pablishers, Booksellers, and Importers, S10 Walnut St.. Philadelphia, Pa.. U. S. A. OUr newand Revised Catalogue of Practical and scientitic Books. 86 pages. 8 vo, and our other Catalogues and Circulars. the whole covering every branh of Scil ence a plied to the Arts, sent free and free of postage to any one in any part of the world who will furnish his adaress.	
Experimental Science	
P	
me Experimental	
	${ }_{\text {che }}^{\text {tic }}$
	able Information. A
	work for Young and Old.
ted Circular and Table of Contents sent fr	
740 Pages. 680 Illustrations.	
N \& CO., Publishers,	
office of The Scientific American,	

WANTED!

one liddell's NEw ELEMENTS

EDWARD MEEKS,
1012 Walnut street, Philadelphia, Pa.
P1 2 montauk camera. shouble rapid rectilinear lens. Takes snap
shots, interiors, exteriors, houses, groups,
etc. Size of pieture, 4×5 inches. Sample pictures and instruction books furnis
 The Builders' and Manufacturers Correspondence solicited. Manufacturers and dealers

PHCTOGRAPHY:
KNACK CAMERAK, CAMEIRAL, MASCOTMERAS,
Waterbury Detective Cameras,
Irving View Cameras, and
Magazine Caneras for Films. THE SCOVILL \& ADAMS CO.,

AUTOMATIC IN FUEL AND WATER SUPPLY.
man Automatic Steam Engine STATIONARY AND MARINE.

For Ele
and 22 Horse Power, Co

O

ENGINE

MOD catager frb to ant address.

SMALL ELECTRIC MOTOR FOR AM

THE DAIMLER MOTOR

 GAS or PETROLEUM MOTORS for all Industrial Purposes. Fully illustrated catalogue
and price list on application. Motors in operation at office, 111 East 14 th Street, New York City.

FREE SITES TO SUBSTANTIAL MANUFACTURING ENTERPRISES

THE "FISHKILL" CORLISS ENCINE COMBINING A MAXIMUM OF ECONOMY, EFFICIENCY, AND DURABILITY.
Fishkill Landing Machine Co, Fishkilloon-Hudson,

Undeveloped Wealth.

 The edge of an invention crops out of the mind of a thinking man who lacks He needs a shop to go tthe Jones Brothers

 1
Printine

PROPOSALS.
BERMUDA.
notice to engineers, contractors, etc.

 of the Colonial Surveyor, Hamilt ton. Bermuda.
The Government of Bermadit will not be bound to ac-
cept the lowest or any other tender.
W. CARDY HALLETT, Colonial Surveyor W. CARDY HALLETT,
HAMILTON, Bermuda, March, 1891.
U. S. Engineer Office, Custom House, Cin-

 PATENT STEAM-PIPE CASING

THE LEAD PENCILS "DIXON'S $\underset{\text { graphite }}{\text { american }} S_{\text {. M." }}$

THE EAGLE THE EASIEST RUNNING BICYCLE
IN THE WORLD. IN THE WORLD. peed, Comfort and Safety.
AGENTS WANTED. Large Illustrated Catalogue sent Free to any Address. THE EAGLE BICYCLE MFG. CO.,
STAN

A 6×7 inch Engine, weight 800 lbs ,
runs 100 feet of shafting and uns 100 feet of shafting and ma-
chinery for twenty machinists on 6 60 cents per day. Write for par-
ticulars. Mention this paper ticulars. Mention this paper
Van Duzen Gas\& Gasoline Engine Tan Duzen Gas\& Gasoline Engine C
cincintasti, онוo.

THE PREMIER CAMERA

Is the best in MARKET.

Stmple of Manipulation
Plates or Films are used ways set PRICE \$18.00

ROCHESTER OPTICAL COMPANY

FOR SALE. Yatubib wher Matior
FOR SALE, OTTO GAS ENGINE

2んDvertisements．

Inside Paze，each insertion $:::-75$ cents line

VICTORS

TO BUSINESS MEN

The value of the SCIENTIFIC A MERICAN as an adver
 rooms of the world．A business man wants something
more than to see his advertisement in a printed news－
 selecting a list of publications in whicn you decide wit
for your interest to advertise．This is frequentiy done

 New York．
 tations．SEND For CIICOLAR
CO．， $52-66$ Illinois St．，Chicago FELT \＆TARRANT AIR REFRIGERATING MACHINE
 tore per minute，and capable of reducing the tempers

NEW KODAKS

we do the rest．＂

Seven New
Styles and Sizes
Transparent
Films

THE EASTMAN COMPANY，

ELECTRIC POWER TRANSMISSION

 тиamamimane．

95 MILK ST．，BOSTON，MASS．
This Company owns the Letters Paten granted to Alexander Graham Bell，March 7th，1876，No．174，465，and January 30th 1877．No．186．787．
The transwission of Speech by all known forms of Electric Speaking Telephones in ringes the right secured to this Compan by the above patents，and renders each individual user of telephones not furnish ed by it or its licensees responsible for such unlawful use．and all the consequences

asbestos sectional pipe coverimg．

A Non－Conducting Covering for Steam and Hot Water Pipes，etc．
 Prepared to take contracts for applying Steam Pipe and Boiler Coverings in any part of the United H．W．Johms＇Asbestos Millboard，Sheathings，Building Felts，Fire－Proof Paints，

Scientific Book Cataloguie

GATE VALVE

for low pressures（below 60 lbs．）Whet her for Steam，Gas，Water，Oils．，or Thick Flui

 pact and costs much less than more any otherGate Valve．Write for Catalogue． The Lunkenheimer Brass Mfg，Co． ATMOSPHERIC DUS T．－BY WILLIAM

RANKS THE HIGHEST
Endorsed by the best Engineers． Endorsed by the best Engineers．
CHALMERS－SPENCE CO
 eurs－By C．D．Parkhurst．Description of a very sim

PATENT JACKET KETTLES

ARTIFICIAL INCUBA＇TION．－A DE
 CHANDLER \＆TAYLOR CO＇S
 Gha）iollers
CHANDLER \＆TAYLOR CO．INDIANAPOLIS，NDD．
NEW CATALOGUE valuabie papers charge to any address．
MUNN \＆CO．， $\mathbf{3 6 1}$

 THE COPYING PAD．－HOW TO MAKE and how to use；with an engraving．Practical directions
how to prepare the elatine pad，and alaso the aniine ink
by which the copies are made；how to apply the written

Also Sole New England Agents for LITLE GIAN PRICE，\＄35．00． Only Boy＇s Safety with a
Spring Fork，preventing in－
jury to soung riders from WM．READ \＆SONS， $\begin{gathered}10 \% \\ \text { boston，mass．}\end{gathered}$

エエエコ

 ฐcientific GumericauThe Most Popular Scientific Paper in the World Only \＄3．00 a Year，Including Postage．Weekly 52 Numbers a Y
This widely circulated and splendidy illustrated paper is published weekly．Eyery number contains six－
teen pages of useful information and a large number of

 MUNN \＆CO．， 361 Broadway，New York． THE
\＄ciemtific Gamericat \＄upplement
Thbs sa eparata and distinet publieation from THE

 able in no other publication．
The most important Enginering Works，Mechanisms，
and Manufacturen hat home and abroad are illustrated
and described in the SUPPLEMENT．

 emit by postal order，express money order，or cherk，
MUNN \＆CO．，361 Broadway，Now York．
Publishers ScIENTIFIC AMERICAN．

Guilding EXition．

 A special feature is the presentation in each number
of a variety ot he latest and best lans for privare resi－
dences，city and country，including those of very mod

 ers．\quad MUNN \＆CO．，Publishers，
$\mathbf{3 6 1}$ Broadway，
PRINTING INKXS

