
a WeEkly Jourval 0f PRACTICAL INformation, art, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

THE NEW STEEL FLOATING DERRICK AT THE BROOKLYN NAVY YARD.
We illustrate herewith a new steel derrick of great ifting power, recently constructed for the United States Navy Yard, Brooklyn, N. Y. It was built by the Pusey \& Jones Ship Building Company. Its calculated and allowed lifting power is 75 tons, making it rank among the most powerful of the floating derricks in this harbor.
The structure is carried upon a pontoon, rectangular in shape, 60 feet wide by 63 feet long. The pontoon is divided into compartments, access to which is had through hatches or manholes, and is ballasted with 22 tons of cement ballast; the steel weighs in itself 70 tons. The superstructure is placed upon the long axis edge, in order to give the boom agreater reach. At its rear end there are five tanks for water ballast, and since its completion two auxiliary water tanks have since its completion two auxiliary water tanks have of plates and angle irons, and is 2 feet square, weighing解

THE NEW STEEL FLOATING DERRICK AT THE BROOKLYN NAVY YARD,
ing．At the end of the boom stationary sheaves are secured，and tackle is provided fordrawing the sliding carriage in and out，according to requirements．In order to rotate the beam，a single line of steel rope is carried around the base ring bearing against a number of rollers set vertically．The ends of the rope are se－ cured to the ball carriages at the end of the back stay． These ropes enter the engine room，and are carried to a windlass drum，and being pulled one way or the other draw the ball carriages around the base ring and cause the boow to swing as desired．
All tackle is carried to one main hoisting engine placed upon the deck of the pontoon in the engine house．This engine has two cylinders 8 by 14 inches， and by a system of worm gearing and clutches actu－ ates any of the different windlass drums required．To give some idea of the size of the parts，it may be wen－ tioned that the hoisting gear alone weighs $131 / 2$ tons； that the lower main hoisting block，with its eight sheaves，each 26 inches in diameter and working on a $21 / 2$ inch steel pin，and receiving $1 / 8$ inch steel wire rope，weighs 2,000 pounds．
As regards bearings，ball bearings are used at three places．One，as just mentioned，at the foot of the back stay，another at the foot of the king post，and another upon the crown casting directly under the booms．The sheaves in all the blocks have plain brass bearings．
Two windlasses are established upon the deck of the pontoon outside the house，and are driven by a Man－ ton steam－capstan engine．These are useful in moving the pontoon and in many operations on shore or on a ship＇s deck．
The load limit is as follows：With the back stay se－ cured to the after edge of the pontoon， 75 tons can be lifted with the sliding carriage at two－thirds the length of the boom，and at full boom length 50 tons can be lifted．With the back stay brought into the ball car－ riages at the base of the tower， 30 tons can be lifted at two－thirds boom length and 30 tons at full boom length．
The derrick is in constant use putting in and taking out boilers and wachinery in general．The engraving shows it in position for working upon the United States steamer Boston．In the background，to the left of the picture，is seen the old stationary derrick，now little used．This had a capacity of 60 tons，and in its day was one of the great derricks of the country．The new system favors a less lofty superstructure，in order to se－ cure greater strength．

Miscellaneous Notes．

What part of the New World did Columbus first set foot upon？has long been a much disputed question， and added importance now attaches to the subject from the fact that Castelar and other Spanish notables are proposing to make a combined voyage of vessels from the Old World to the New in September and October，1892，as a feature of the honors to be paid to Columbus．Gov．Blake，while Governor of the Baha－ mas，a few years ago，made several cruises among the islands of which he had official charge，for the express purpose of studying this question．With the log book of Columbus to guide hiw，he followed the explorer＇s course as nearly as possible．A draughtsman sketched the outlines of the various shores，and the governor＇s wife made water color drawings of the scenery．He also studied the dangerous currents against which the early explorers had also to contend．By a process of elimination，one after another of the islands was reject－ ed，as failing to fully satisfy the description given by Columbus，while Watling＇s Island wholly agreed with t．It had the lake in the center，the fertile soil，the reef encircling it except at the capacious harbor with its narrow entrance，and the bluff hard by．Such an independent study，together with the conclusions of the geographers who had not themselves seen it，en－ titles Watling＇s Island to be definitely considered as the spot seen when the joyful cry of＂Land！＂was raised，and indeed it has been officially named San Salvador，although many authors have heretofore called Cat Island San Salvador．

A curious incident in connection with the recent launch of the Royal Arthur at Portsmouth，England， is made the subject of a sketch by a London illustrated paper．No sooner had the water become quiet after the vessel left the ways，than numerous small boats ap peared upon the scene，and their occupants，equipped with a variety of long－handled scoops，began to collect the grease floating upon the surface，and which had been used to insure the slipping of the vessel smoothly into the water．It is said that several hundredweight of grease had been employed for this purpose，and the thrifty boatmen would undoubtedly be able to dispose of their unique variety of flotsam for similar dockyard service in the future．

Mr．Renard，the distinguished French aeronaut，is building a new dirigible air ship of over 3,000 cubic yards capacity．It is said that the motor is made of aluminum and operates perfectly．The balloon will soon be finished and will be tested shortly．It will leave Meudon and maneuver between Versailles and Paris．

彩保tific ：

ESTABLISHED 1845

MUNN \＆CO．，Editors and Proprietors． pUBLISHED WEEKLY AT
 No． 361 BROADWAY，NEW YORK．

O．D．MUNN．

A．E．BEACH．
TERMS FOR THE SCIENTIPIC AMERICAN． One copy，one year，for the U．S．，Canada or Mexico．．
One cops，six months，for the U．S．，Canada or Mexico
One copy，one year，to any foreikn country belongink to Postal Union． 4 Remit by postal or express money order，or by bank draft or check．
MUNN \＆Co．， 361 Broadway，corner of 4 ranklin Street，New York．

The Sclentific american Supplement
 receipt or seren dollars．To forelgn countries within Postal Union，mine
dollars a year．

Spanish Edition of the Scientific American．

NEW YORK，SATURDAY．MARCH 21， 1891.

TABLE OF CONTENTS OF

SCIENTIFIC AMERICAN SUPPLEMENT

NO． 794.
For the week Ending March 21， 1891. Price 10 cente．For sale by all newedealers
1．Botany－Nee Race of Dwat Dalias－A A．new and daluable

\qquad ing off in speed．In fact it is not too wuch to say that all other things being equal，a vessel with a clean bot tom can make a speed of twenty－five knots in the same time it would take a vessel with a foul bottom to mako ten knots． trial trip is to see what the utwost speed is which that vessel can possibly attain．It is not in actual service． The contractors see in the horizon one little word，speed and with that before them they shape their course They are on dress parade，and the every－day regulation incidents，such as heavy guns，ammunition for the guns and for the hungry crew，appliances，etc．，are laid aside．It is now or never with the builders．But when comes to ordinary running，the circumstances are hanged．The vessels are laden with guns，with pro
 yage．All of this means weight；and with this decks nearer thonal weight she puts to sea，with he sequently augmented displacement．But this makes it more difficult to propel her through the water，and her speed must therefore suffer
Secondly．An iron bottow when exposed to sea ser vice for any length of time begins to foul，to accumu late vegetable growths，and the longer a vessel is in the water the greater will be this growth，and conse quently the greater will be the deterioration in speed from that of the trial trip，when the bottom was clean nd free from anything that would retard the speed of the vessel．This retardation in cases where a vesse has been in the water for a month is immense，and thi

THE GREAT GUNS OF THE JAPANESE NAVY．
The attention of naval and military authorities has been strongly drawn of late to the remarkable differ－ ences in the effective power of the heavy guns of English make and those of the French．
The 110 ton guns of the English navy，constructed at mwense cost，represent the latest and most formidable type of armawent which Britain has produced．If the calculations of the makers could be realized in practice，the power of these guns would be astonishing． They are 43 ft .8 in ．long， $161 / 4 \mathrm{in}$ ．bore，intended to sustain a charge of 960 lb ．of powder，carry a projectile of $1,800 \mathrm{lb}$ ．with a wuzzle velocity of $2,128 \mathrm{ft}$ ．per second， equal to penetration of almost 34 inches of wrought iron．Several trials of these guns have been made with charges much below the maximum，and in every in－ stance the guns have been so much injured as to render it dangerous to subject them to full tests．The latest trial was that of the 110 ton gun of the war ship Sans Pareil，at Shoeburyness，with a moderate charge of powder．The result was the bore of the gun was found to have drooped and also to have become later－ ally deflected．This is much to be regretted，for the gun is a magnificent specimen of mechanical construc－ In
Chance the great company known as the Forges Chantiers de la Mediterranee，at Havre，under con－ ract with the Japanese government，have produced ome large Canet guns for the war vessels of that na tion，which must be conceded to stand at the presen the in the front rank．Japan may be said to beat They have been subjected to the severest tests，no ex－ They have been subjected to the severest tests，no ex
pense having been spared in these trials to render them pense having been spared in these trials to render them
sure and effective．Each round fired cost $\$ 2,000$ ，and some $\$ 40,000$ in all were spent for the purpose．These guns weigh 66 tons， $121 / 2$ inches bore， 41 feet 8 inches length，maximum weight of projectile 1,034 pounds， powder charge 562.2 pounds，wuzzle velocity 2,262 feet per second，penetration of wrought iron $45 \cdot 16$ inches． Maxiwum range over 13 miles．Twenty rounds were fired without the least injury to gun or carriage These are wonderful results，and show that the French makers have advantages above all others．

THE FALLING OFF IN SPEED OF OUR WAR SHIPS．
Concerning this subject we recently presented the views of the Secretary of the Navy and of Mr．Charles H．Cramp．Our representative lately called upon Mr． J．Taylor Ganse，president of the Harlan \＆Hollings－ worth Company，with reference to the same subject who said ：
＇It is a fact，and to some people it seems to be a re－ warkable one，that the vessels of our new navy when in ordinary every－day service fall off in speed from the high standard set up on the occasion of their trial trips． And many critics of the new navy，when they comment on this fact，speak of it in a deprecatory tone，and in sinuate that there is something wrong with the archi tecture of the vessels or with the engines or with the ef ficiency of the crew．Well，to my mind，there is nothing easier to explain than this．And this is just as it should be．There is no defect in the architecture or engines of these vessels，for in my opinion the cruisers and bat tleships recently handed over to the United States gov ernment are fully equal in sea－going qualities and gene－ ral efficiency to any vessels of their classes ever built for any nation in the world．There are three very sim ple and，it seems to me，obvious reasons why thes vessels do not maintain their trial records ：
First．The object of putting a vessel through a

Thirdly. The two foregoing reasons are sufficient to explain why the government cruisers do not maintain their trial speeds. The third reason why they do not do this is because they certainly ought not to do it. The most industrious day laborer will not perform much nore work than his fellows, for the reason that he will gain nothing thereby and further labor would be energy wisdirected. And so it is with the government cruiser. There is positively no reason why these vessel should be constantly kept up to their maximum
speed. Nothing is gained by it. One such trial is nough to demonstrate what the vessel is capable of. Any more would be a gross extravagance of fuel, and would lead to a strong demand for retrenchwent in the government service. In short, the question may be summed up thus: With foul bottoms and heavily laden hulls and decks, the navy department could not, if it would, keep the vessels up to the trial records, and because of the enormous but necessary consumption of coal the department would not, if it could, because no useful purpose would be served thereby.
The second reason I have given for the retardation of speed, namely, the fouling of the bottoms, is one of the great difficulties with which the navy has to contend. Many experiments have been tried for the purpose of obtaining a remedy, but, as yet, no success has been reached, and the man who does succeed in discovering or inventing a preventive of this animal growth will achieve large fortune and everlasting fame. This is certainly a large field for the labors of the inventive and scientific genius of America. The only process that has been tried thus far with any success is a very expensive one, and the government has not as yet seen fit to adopt it. The process is applied when the vessel is new, and consists in planking the vessel's bottom with wood and thoroughly calking the seams. If the vessel is now sheathed with yellow metal, she is good for a two or three years' cruise without much danger of her bottom becoming foul. Naval vessels are not alone subject to this difficulty. The transatlantic passenger steamers, if they were not taken out of the water at short intervals and thoroughly scraped aud painted, would also fall off in speed and efficiency from their initial performance. The power in possession of these steamers would have a great advantage over its enemy in the event of a
naval war, and it is for this reason the British governnaval war, and it is for this reason the British govern-
ment adheres to the policy of subsidizing passenger ines, that it may on the outbreak of a war convert the ocean racers into gunboats, to be used in commerce destroying; and the United States will never have a merchant marine from which to recruit a naval estab lishment until it also assists in subsidizing fast steamships for carrying the mails.
But we are not so badly off regarding commerce destroyers as some critics of the navy pretend. If war were at hand, it would be the work of a short time to thoroughly overhaul our cruisers. One great trouble, however, is our lack of efficient sailors to man the modern ships. We have no merchant warine, and, therefore, no source of supply; and this is another reason why the United States should subsidize steamship lines. The class of vessels which our navy most needs is battle ships. Cruisers will certainly play an important part in the next naval war; but we also need a good fleet of battle ships for the heavier work. The torpedo boat will render satisfactory service in coast defense, but will play rather an indifferent part at sea. In view of the rapid deterioration of metal sheathing, it has been suggested that we return to wood for construction purposes. But the greatest obstacle to this is the fact that wood could not stand the strain of the heavy ap pliances on board modern ships, and the vessels would not probably hold together one year.
The proposition that the new cruisers be employed in carrying the mails in order to keep them up to their maximum efficiency is not a good one, for the reason that it would make against efficiency and economy. It would be highly extravagant to carry the mails in governwent vessels at an expense of $\$ 500$ when the
same service now costs the government $\$ 100$. This insame service now costs the government $\$ 100$. This incessant activity on the part of the cruise
result in the deterioration of the engines.
It has been urged that the coal bunkers of the new cruisers are not of sufficient capacity. This is not a fact. The so-called falling off in speed from the trial is not due to any lack of coal, but to the reasons I have given above.

Remarkable Storm in England.

A great storm, strongly suggestive of the memorable blizzard at New York in March, three years ago, swept over the south of England on March 9. Heavy snow fell, and the wind blew with almost hurricane violence over a section which extended from St. George's Channel to the North Sea. In London, the great Covent Garden market was almost deserted, the market wagons bringing supplies not being able to reach their stalls, and for a few hours there was a short supply of milk and vegetables. Many of the law courts had to suspend business, the judges not being able to attend. All the railroads on the south coast were more or less blockaded by snow, there being many cases of se
vere suffering from the consequent forced detention. The channel steamer Victoria plying between Dover and Calais, which usually makes the passage in about height of the blizzard to cress "silver thread" of water separating England from France, the officers losing their bearings and the vessel being obliged to anchor. Such severe weather is far more unusual in England than it is in this country, at even a wuch wore lower latitude, but previous accounts have shown that the past winter has been a remarkably severe one, not only in England, but throughout Europe, heavy snows having fallen where snow had been alwost unknown for many years.

Laying Water Pipes across Rivers.

At a weeting of the New England Water Works As sociation, Boston, Mr. Gowing read a paper on the best means of laying water pipes across a river, whether on the bed of the river or across a bridge, referring to some 8 inch pipe laid under water at Skowhegan, Me., under his direction
Mr. Holden, superintendent, Nashua, N. H., spoke of some 700 feet of pipe which he was going to lay over a bridge, and to use vrought iron or steel pipe.
Phinehas Ball, of Worcester, Mass., gave an accoun of laying certain water mains for the Springfield, Mass. water works in 1874. It was necessary to cross the Chicopee River at a point where there was a rapid fall. On either side an abutment was built, making a span of 173 feet. Two 24 inch mains were made of $3 / 8$-inch boiler iron riveted together, and placed in position so as to form the upper chords of a bridge between the abutments. These pipes had expansion joints at each end. Water was let in during the latter part of December, 1874, and although the pipes were without any covering whatever, no trouble was experienced from freezing. Another similar case, at New Haven, Conn. was referred to, where, although the pipes were sus pended under the bridge, they were entirely indepen dent of it. At Greenfield, Mass., a number of years
ago, some 8 -inch pipe was laid down a ravine or narrow gorge, partly on the rocks and partly on iron supports, and, although in use for six or seven years, and exposed to the weather without any covering, there was said to have never been any trouble from freezing. In such cases, and those under consideration, Mr. Bal recommended wrought iron or steel pipe.
In the discussion Dexter Brackett said that whether a pipe should be laid under or over a stream depended on the temperature to be met with. Referring to a 16 inch pipe supplying the whole town of Everett a few years ago he said that it was frozen so'id, although for several years it had given no trouble. This pipe was not boxed in. To prevent freezing, Mr. Brackett thought that more dependence could be placed on a tight air space than on boxes filled with sawdust or the pipes and filled in the space between the boxes with coal tar asphalt, so as to make an air-tight cover ing for the pipes themselves. In considering the ques tion of a pipe over or under a stream, it should be re membered that the pipe over the stream is more acces sible to the superintendent in deterwining leaks, etc Mr . Jones, ex-superintendent Boston water works, re-
ferred to the severity of the winter of 1875 , when the city had ten or fifteen streets opened to take care of frozen water pipes. During that winter 5.000 feet of could not be reached until the spring.

The Gramophone.
In the Scientific American of July 19, 1890, we llustrated and described this interesting form of speaking and recording apparatus, the invention of Mr. E. Berliner. Since then he has made several improvements. In a recent address before the American Institute of Electrical Engineers he said :
One of the mechanical curiosities of the gramophone is the fact that the etched record itself is the screw which propels the diaphragm from periphery to center, for the stylus resting in the groove by gravity or slight pressure not only is vibrated, but following it and being able to move freely, is led along to the center and to the end of the etched record automatically. This places the gramophone reproducer in the realm of ex-
treme simplicity, and beyond the necessity of repair under ordinary every day conditions.
The possibilities of extending the gramophonic priniple are, perhaps, more noteworthy than its presen the disks can be easily duplicated, and electrotype copy of a 12 inch disk which sounded precisely like the original. Since then, I have also suc ceeded in making talking copies by pressing a matrix into molten glass, but the matrix being of copper, the
glass used to stick to the form, and warped the glass glass used to stick to the form, and warped the glass
copy. I am assured, however, that whenever I shall furnish a steel matrix, the perfect copying in glass will be entirely feasible. That such steel matrices can be made is not doubted by those familiar with the art of transferring lines, and then etching the same.

We may then have dinner sets, the dessert plates of which have gramophone records pressed in them, and which will furnish the after-dinner entertainment when the repast is over. Grawophone plaques with the voices of eminent people will adorn our parlors and libraries.
Very successful copies have been made in celluloid from electrotype matrices, and such celluloid copies are particularly free from all frictional noise, provided the celluloid is pressed hard, and of well-seasoned material. Gramophone records have been printed, and such print have been photo-engraved, and the copy thus obtained sounded precisely like the original.

The work of gradually bringing the gramophone up to the present state has been exceedingly tedious Working out telephones or transmitters is child's play in the face of the traps and Jack-o'-lanterns which beset the experiments with talking machines. The size, form, and material of the mouthpiece, the density, length and diameter of the speaking tube, the size, thickness and material of the diaphragms, the tension temper, and thickness of the springs, shape of the nee dle points, temperature of the room in which the disk are coated, the quality of the beeswax, the strength of the acid, and the method of manipulating the sounds of voices and of various instruments-all these gave rise to errors and pitfalls, which only continuous repetitions of whole series of tests could locate, avoid, or oblierate.
The important subject of good articulation has ever been kept in the foreground, and this is now in so sat isfactory a shape that I am carrying on a vocal corre spondence with my friends in Europe, by weans of small gramophone disks, which canbe mailed in a good sized letter envelope.
Foremost among the feats which the gramophone can perform is the absolute certainty with which it en ables people to recognize the speaker's voice, and I could cite a number of instances where persons have been made happy by hearing and recognizing the voices of loved ones whom they had not seen in years, and the owners of which were thousands of miles away.
This whole art is now manipulated with great cer tainty, and can be learned much easier than the art o photography. Yet, favorably as I believe the gramo phone compares with other talking machines, it has barely entered upon the possibilities which lie dormant within its principles, only awaiting the touch of investigation to yield new and important scientific data. Whatever the art of gramophony represents at the present time does not consist of accidental results, but the principles and the errors to be avoided are wel known and established, and not a month passes but ew light is thrown on hitherto obscure sections o wanipulation, and after three years of work, in which numberless sources of error have been eliminated, the art of etching records has lost none of its attraction rather fascinating the wind by presenting the possi bility of unlimited applications in the service, and fo the pleasure of mankind.

Coal and Gas as Fuels.

The fuel gas business will not revolutionize the heat ng business, as enthusiasts would have us believe and this is so because of cost. If a person burns 10 ons of coal during a winter to heat his house, he will apply $260,000,000$ heat units to this purpose. To obtain this heat from illuminating gas of 20 candle power, at 700 heat units per foot, would require 370,000 feet; if from fuel gas, of 320 heat units per foot, it would require 812,000 feet-the waste heat going to the chim equire 812,000 feet-the waste heat going to the chin ney would be substantially the same in either case.
With coal at $\$ 6$ per ton the cost wonld be $\$ 60$; with lluminating gas at $\$ 1$ per 1,000 , the cost would be $\$ 370$ and with fuel gas at 50 cents, $\$ 406$. The extra cost is so excessive that no one seriously thinks of house heat ing or of steam boiler heating by a distributed gas.
On the other hand, if he wishes to boil two quarts of water (about 4 pounds), it would require not less than 5 pounds of coal from the beginning to the end of the operation, costing $11 / 2$ cents, while 2 feet of gas, costing wo-tenths of a cent, would do the work much quicker and with less labor expended
Between these extremes are an infinite number of operations, the smaller ones showing a profit for gas, always with decreased labor. This percentage of profit gradually decreases as larger quantities of heat are required, till no economy is shown, and their profit appearing on the other side till the extreme is reached, in co
Nothing new has been developed in fuel gas, unless it be negative results as to the commercial success of distributing it in towns and cities. Even in manufacturing plants it shows but little economy, but it ha shown that it is a much better fuel, and that by its aid a better quality of goods can be produced.
No proofs have been given that a unit of heat can be produced and distributed in the shape of any of the o-called fuel gases cheaper than by illuminating gas.
a grate for furnaces, ranges, etc. The illustration represents a grate, patented by Mr. Salvatore J. Buzzini, designed to be reciprocated horizontally to free the grate and fuel from the accumula tion of ashes, the grate being made to swing down readily at one side, to dump the contents of the fire box into the ash pan when desired. The grate preferably lies below a bed plate of the fire box, and has on its upper surface a number of teeth-like projections, which, as the grate is reciprocated, serve to break up the bed of fuel resting on it. The bed plate of the fire

buzzini's range and stove grate.

chamber also has at its ends downward projections to enter between the grate bars and prevent fuel being carried beneath the bed plate by the reciprocating grate, to jam or interfere with the free motion of the grate, which is reciprocated by means of a lever ful crumed on the front of the range and connected below with the grate. At one margin the grate is hung upon a bar journaled at its ends in the main structure, the rotating or !turning of this bar similarly moving the grate, upon the opposite side of which is arranged an other bar, on the top of which rests a toeffrom the other side of the grate. The grate is dumped by swinging this bar laterally from under the supporting toe of the grate.
For further information relative to this invention address the Cosmopolitan Range Co., No. 247 Centre Street, New York City.

AN IMPROVED CASING FOR STEAM PIPES.

The Wyckoff patent steam pipe casing shown in the accompanying illustrations is made of double thicknesses of eight thoroughly seasoned one inch white pine staves to each section. The staves of the inner course are jointed together and wound with

Fig. 1.

Fig. 2.

Fig. 3.
the wyckoff steam pipe casing.
galvanized steel wire, then wrapped with two thick nesses of heavy corrugated paper, after which anothe casing of staves is put on the outside and wound with galvanized steel wire. The outer casing is then coated with asphaltum. Fig. 1 represents a section of such casing complete, there being two staves removed from the casing as shown in Fig. 2, to disclose the lining be-
t ween the inner and outer courses. To cut the casing length wise, where this is necessary in putting it around pipes in position, the asphalt coating is first removed, when the binding wires are cut by a file or otherwise and their ends fastened down by a common blind staple. This allows the outside casing to be laid open, as shown in Fig. 3, a similar process being followed in opening the inner casing. Different sections of this casing are conveniently joined by cutting off, at the ends, a small portion of the inner and outer casings whereby a lap joint is readily formed, and in calculat ing the sizes of casing required; proper allow ance should be made for the pipe couplings.
It is said that in comparative tests of this casing with one made of solid wood, both round and square, in the same line of pipe, the sec tional casing has proved greatly superior. The solid wood casing rapidly became checked, and so heated throughout as to cause material loss of heat, while the sectional casing, owing to the interposed non-conducting layers, remained perfectly cool on the outside.
This improved steam pipe casing is made by Messrs. A. Wyckoff \& Son, Elmira, N. Y.

Progress of the Great Tunnel under the Hudson River.

In view of the efforts now being made to span the North River with an unsightly canti lever bridge, it is pleasant to record the pro gress making by the silent workers under that noble stream, where, burdened with a pressure of several atmospheres, they burrow their way surely to make what will be in no sense a disfig uring connection between New York and New Jersey. In a total distance of 5,400 feet, there is now complete from the Jersey shore 3,340 feet, with a progress of 10 feet per day, working with three shifts of men in 24 hours
The last air lock is now 1,200 feet from the heading and a new one will be placed nearer to the work. This ock will be longer, having a length sufficient to tak in three loaded cars instead of the two at present Three tracks have been substituted for two, to rewov the core. Twin hydraulic elevators have also been put up for more rapid removal of loaded cars, and negotiations are pending to substitute electric transi or the cars in lieu of the patient wule. The work now within about 800 feet of the rock formation.

What is the Temperature of Ice?
In our number for February 14 last we published the following, except that, in the last paragraph but one an error was made which we now correct.
Authorities differ widely upon this question. A care ul investigator recently made some experiments look ing to a solution of this, and has sent us the following January 23. Atmospheric temperature $+40^{\circ} \mathrm{F}$.
(1) In a block of inferior ice, full of bubbles and fis sures, an auger hole was bored 6 inches deep. In the cavity thus formed a chemical thermometer was drop ped, the borings being used to pack the orifice around he instrument. When fifteen minutes had elapsed, he temperature within the ice was found by aid of lens to be $+30.5^{\circ}$.
(2) Equal parts of ice and salt being mixed in a wooden pail, they formed a solution at the bottom, in which the thermometer read -10°. In the center of the pail a quart tin cup was placed, nearly full of fil tered water. The cup was supported above the bottom of the pail, and in it was suspended a second chemical thermometer, while the water was allowed to freeze into a solid mass around it.
In thirty winutes the water in the cup was converted into ice. At the end of an hour and a half the relative temperatures indicated by the two thermometers had not varied, and now read, respectively : That in the freezing mixture, -5°; that in the ice in cup, 0°. These readings were taken in the office, where the temperature was 74°.
Both thermometers were carefully compared with a valuable standard instrument and with each other, before and after the experiments, and their readings were corrected for variation at different points.

AN IMPROVED LOCK

The illustration represents a lock so constructed that it is impossible to unlock it from one side when it has been locked on the other side. Fig. 1 is a face view of the lock with the cover plate removed, Fig. 2 being an nside face view of a portion of the cover plate. The locking bolt is supported on its inner end by a pin, sliding in a slot in the bolt, on the under side of which are V-shaped notches, adapted to pass the bit of the key, the outside and inside key holes being arranged a short distance apart, in line with the notches. The bit of the key also operates on the under side of a lever, shown partially in dotted lines, and moving in a vertical slot in the locking bolt, the lever being normally pressed down by a spring. A vertically arranged plate in the casing, forming a rectangular key aperture, is fitted to slide in guideways in a longitudinally sliding plate having a key hole connected with
the back of the casing, the vertical plate having a lug adapted to engage notches in a bar in the lower side of the casing. A similar arrangement is provided on the inside of the cover plate, but the positions of the movable piates are such that when the bolt is thrown out, the key aperture of one of the plates registers with its proper outside key hole, and that of the other is disconnected from its key hole, and vice versa. The latch, shown in the upper part of the lock casing, has a notched shank and a spring-pressed sliding head. the head being recessed to receive the inner notched

end of the shank of the latch, which may be conve niently removed and replaced at any time to turn it ver when it is desired to reverse the latch.
This lock has been patented by Mr. G. T. Rogers, No. 107 Adams Street, Jefferson City, Mo.

A NEW RAILROAD TIE, RAIL FASTENER, AND RAIL. The accompanying illustrations represent improvements recently patented by Mr. Michael A. Glynn, of Havana, Cuba, designed to facilitate the laying of railroad rails, and locking them firmly in position, the tie being also readily placed in position and having some degree of elasticity, while it is intended to be inexpensive to manufacture. The tie is cross shaped in section, and the longitudinal rib above its broad portion has a slot, near each end to receive a chair in which the rail is seated. The chairs have inwardly extending lugs which fit closely unon the flanges of the rails, and a broad base which rests upon the broad portion of the sleepers. The slots in the ribs of the sleepers are shaped to correspond with the

GLYNN'S RAILROAD TIE AND RAIL FASTENERS.
shape of the chairs, which are slipped into the slots from the side, thus preventing any vertical or lateral movement. A sufficient number of spikes are used in the chairs to prevent creeping of the rails. A modified form of chair is also provided, made in two parts, one to be placed on each side of the rail. The improved

GLYNN'S RAILROAD RAIL.
rail, which forms the subject of one of the patents, has scalloped flange, and the sleeper has a dovetailed slot just wide enough to receive the widest portion of the rail flange. When the wide portion of the rail flange is in the slot, the rail cannot be moved laterally, and the ribs of the sleepers overlap the flange to prevent all vertical motion. An occasional spike is used to prevent creeping. With this construction the rails and sleepers are designed to be quickly adjusted in position.
Further information relative to this invention may be obtained of Messrs. Perkins \& Co., No. 228 Produce Exchange, New York City.

AN ALL-METAL SPRING VEHICLE WHEEL

The wheel shown in the illustration, patented by Mr. James Carpenter, is very light, but is designed to

CARPENTER'S VEHICLE WHEEL.

be exceptionally strong and durable, having more spring than wheels made in the ordinary way, and being, therefore, less liable to wear or breakage from use on rough pavements or hard roads. The felly is T shaped, and between it and the metal tire is a thin strip of paper or similar material, waking the tire set firmly, and deadening any sound which might be made in use, the tire felly and strip being united by rivets in the usual way. The wheel is thus designed to be practically noiseless. The spokes are strips of spring steel bent into reverse curves, varying according to the amount of spring desired, their outer ends being bent at right angles to form flanges and riveted to the felly, the flanges of the spoke entering wortises in the standard of the felly. The inner ends of the spokes have a semicircular bend fitting in a corresponding opening in a rim of the hub, as shown in Figs. 1 and 3 , where they are made fast by bolts or rivets, or
they way be additionally secured by caps or bands screwed against both sides of the rim, the outer sur

MACHIN'S HAY STACKER.
face of the hub being screw-threaded for such purpose. The hub is cast in the form of a hollow shell, with openings for the passage of the axle box, as shown in Fig. 2, and projecting ends to protect the nut and keep out dirt. The box is slightly tapering, with the taper end on the outside, where it is screw-threaded, and the outer head of the hub is screw-threaded on the inside, for engagement with the taper end of the box, the inner head of the hub being countersunk to correspond with the flaring end of the box. With this construction, each spoke is independent of the others, and any one can be readily taken out and anothers, and any one can be readily taken out and an-
other inserted in its place at any time, without interother inserted in its place at any time, without inter-
fering with the other parts of the wheel, the spokes being inserted from either side of the wheel. The wheel is adapted for all kinds of vehicles, from baby carriages and bicycles to the heaviest trucks, and for heavy trucks it is claimed that no other springs will be required than the spokes of the wheels: The construc-
tion of this wheel is inexpensive, and many sets made have already had quite extended use.
For further information relative to this invention, address or apply to the inventor, rooms 97 to 101, Potter Building, No. 38 Park Row, New York City.

AN IMPROVED HAY STACKER.

A device which can be readily set up in a field, to facilitate forming a hay stack, or attached to barracks or to a barn, to lighten the labor of removing the hay from the wagon and placing it where desired, is shown in the accompanying illustration, and has been patented by Mr. Miller Machin, of Bowen, Ill. Fig. 1 shows the device applied to a barn, the dotted lines representing the parts in their uppermost position, and Figs. 2 and 3 are views of parts in different positions. On the outer end of an arm pivoted to a ridge pole or other support is a head adapted to be engaged by a tripping lever pivoted on a short transverse rod, the ends of the latter rod being secured in the outer ends of long rods or levers pivoted at their inner or lower ends on the roof of the barn at each side. On the rod carrying the tripping lever is a support for a pulley, and a rope fastened to the rod extends downward under a pulley of the head block of a hay fork, thence through the forked end of the tripping lever, over a pulley, and inward over another pulley, and down to the barn floor, where it passes under a pulley mounted to turn in suit able bearings, and is extended to be attached to a pulling gear for a horse or other hoisting power. When the fork is inserted in the hay, and the rope is pulled, the fork rises with its load until the head block strikes the tripping lever, a further pull causing the side rods or levers to swing upward and inward, and swinging upward the central pivoted arm, as shown in dotted lines. When the operator now backs up the horse, or releases the pull on the rope, the hay may be placed where desired, the weight of the parts causing the levers to swing outward again into the normal position for raising a load. This device can also be readily applied to a number of stacking poles set in the usual manner on the ground, and fastened together near their upper ends.

A DOUBLE COMBINATION LOCK.

The lock herewith illustrated, which has been pat ented by Mr. John E. Farnsworth, has a series of levers to engage and disengage the locking bolt, cams actuating the levers, and gear wheels moving the cams at different rates of speed, making possible a great number of changes and preventing the opening of the lock without knowing the combination. As shown in Fig. 2, which represents the lock with the front plate re noved, the locking bolt, B, has rack teeth on its under side weshing with a gear wheel, C, on the knob spinde, which has an indoor and an outdoor knob. At the inner end of the bolt is a plate, B^{2}, adapted to travel on top of a series of levers, one of which is shown at F, and all fulcrumed on a pin, A^{\prime}, the under sides of the levers being curved and adapted to ride on the peripheries of the caw wheels, $\mathrm{E}^{\prime}, \mathrm{F}, \mathrm{G}^{\prime}$, Fig. 3, one of the cam wheels being shown in Fig. 6. The cam wheel, E^{\prime}, turns loosely on a shaft, \mathbf{H}, extending through the casing and carrying pointers, H^{\prime}, and indicating on dials, I, Fig. 1, on the inside and outside of the casing. On the face of the cam wheel, \mathbf{E}^{\prime}, is a pinion meshing in a gear wheel on the shaft, J^{\prime}, the gear wheel being connected by a pinion and sleeve with spindles, carrying each an inside and outside knob, while on the shaft is another gear wheel operating the pointer, L^{2}, on the dial. On the shaft, J^{\prime}, are also pinions, one of which meshes into a gear wheel of the cam wheel, F^{\prime}, and connected with the pointer, F^{4}, of the dial. As shown in Fig. 1 , the combination is $15-30-45$, the pointer, H , be-
ing shifted only in the direction of the hands of a watch. When the knobs controlling the other point ers are moved in an inverse direction, one pointer moves faster than the other, owing to their being connected to the pinion by differential gear wheels. The bolt being in the innermost position, and the operator turning these knobs backward, the outward movement of the bolt is then prevented, and the other kuubs cannot be turned. The bolt cannot be moved until all the pointers have come to their proper position. In order to change the combination the operator removes the front plate or the entire lock from the door and shifts the sets of pointers, care being taken to move the two pointers of each set, for the inside and outside dials, to the same numeral desired to form part of the combination.
Further information relative to this invention may be obtained of Messrs. Farnsworth \& Williaws, Bazine Kansas.

A SAFETY DEVICE FOR INCLINED ROADS.

The device shown in the accompanying illustration is adapted for attachment to passenger cars as well as for other purposes, to give greater security in moving cars up and down an incline, only one cable being required. It is a patented invention of William Peach, M.D., of No. 76 Monterey Street, Allegheny, Pa. On the under side of the frame of the car is a sliding draw-

PEACH'S SAFETY DEVICE FOR INCLINED ROADS. head, with a link to which the power cable is attached, and two rearwardly extending bars connected by a cross bar. Passing through this cross bar is a rod whose rear end is attached to the frame of the car, the other end of the rod being attached to a crosshead sliding on the rearward extensions of the drawhead. A spiral spring on this rod holds the drawhead back when there is no strain upon it. Hinged in bearings beneath the car is a U-shaped bar, whose side members have each a downwardly projecting hook, adapted to engage a cross tie of the track. These side members are connected by a cross bar, which rests in a hook on the under side of the sliding drawhead when the latter is drawn forward by the cable, the side hooks being then held up as shown in the illustration. A stop on the under side of the drawhead limits the distance it may be drawn out, but when the strain is removed, by the breaking of the cable or other accident, the spring causes it to be instantly drawn backward, permitting the hooks to drop between and clutch the cross ties of the track, stopping the car at any point where the accident occurs.

Newport, Kentucky, Aluminum.

In a sheet issued at Newport, Ky., styled the Aluminum Age, is a statement saying that a representative of the Scientific American witnessed some very interesting experiments showing what "the new aluminum process" is capable of producing in the shape of wrought iron steel castings, at the aluminum works, Newport.
After making this false statement-false because it is untrue that a representative of the Scientific American has visited the Newport works or witnessed experiments as stated-the writer goes on to give a detailed account of the pretended experiments, saying that the furnace was charged with coke, scrap, aluminum alloy and a secret paste, which were melted, and from which wonderful castings were made, etc. Various other details are then given, which are garbled from an article published in Industries, of London, relating to Brin Brothers' establishment in that city, which was quoted in the Scientific American of November 10, 1888, p. 296.

The Perfume Industry in the United States. During the recent development of horticulture in Florida and California many experiments have been wade in the production of perfumes from flowers, and many of these have resulted successiully. There is little wonder, therefore, that inquiries are often made as to the possibility of growing flowers at a profit for manufacturing purposes in the genial climate of these and other States. Many of these inquiries are evidently from persons who have not even a vague idea of the result to be arrived at, not to speak of the details to be pursued, so that perhaps a few hints from one familiar with the products may be useful. Despite all the triumphs of modern chemical science, which has produced synthetically many odors which are more or less useful, it still remains the fact that all high class floral extracts, by whatever name known, are composed, to a greater or less extent, of one or more of the following odors : violet, rose, jasmine, acacia, orange, tuberose and jonquil. With one or more of these in combina tion with some resins, oils and animal secretions, the skillful perfumer is able to imitate the odor of any other flower and produce pleasing bouquets. These odors are bought by the perfumer in the form of pomades, experience having taught that this is the only feasible means of securing them properly. Practically, then, our citizens have this problem before them very clearly, namely, to produce a highly charged pomade at a price which will enable them to compet with the flower farmers of Southern France, who at present supply the world's markets. This powade is warketed in eleven and twenty-two pound tins, vary ing in price according to quality. It pays fifty per cent duty, and the present wholesale price is about $\$ 2.50$ per pound for violet, and $\$ 1.50$ to $\$ 1.65$ for the others.

Like all manufactures, the making of pomade cannot be taught by books, but a few hints may help the ex perimenter. The process of extracting odors is known as enfleurage, and it is carried on either with or with out heat. Jasmine and tuberose flowers are exposed to lard spread thinly on sheets of glass in suitable frames this soon absorbs the odor, and by renewing the flowers the grease becomes saturated. The perfume of the other flowers is extracted by hot enfleurage. In this case an addition of beef fat is made to the lard (insuring a higher melting point); this mixture is heated to the melting point, when the flowers are thrown in and rapidly stirred through the grease; the semi-liquid mass is put under a strong press with suit able filtering material until the flowers are separated. The process is continued till the grease is practically saturated with odor. These processes are simple, and with a supply of flowers there is no reason why a good pomade cannot be produced in this country.
Judging from some inquiries, however, it does not seem to be generally understood that the process de pends primarily on securing perfectly pure and odor less lard, which is by no means the same as the lard of commerce. No amount of perfume will make impure grease fragrant, and the perfumer will not buy an ar ticle of the kind at any price. In his laboratory the perfumer is one of the most practical of men, and buys his materials on their merits. It is just as important to have his pomades free from false odors as that his spirits should have no trace of fusel oil.
The process of securing lard free from albumen, membrane and blood, is as follows: Cut up the fat in sinall portions, separating the membranes as far as possible hy hand, and wash till the water runs clear. Melt with a crentle heat in an iron or copper vessel over a water bath and continue till it becomes anhydrous, or free from water, which may be known by its becoming perfectly clear. Finish by filtering through a clean cloth This lard will retain an odor which may be removed by remelting and adding a small portion of alum or com mon salt, and keeping it over the fire till a scum rises, which should be skimmed off. The salt must then be washed out and the lard again rendered anhydrous. Such lard is kept in a moderate temperature in tin,
sealed from the air, and it will remain sweet as long as is usually necessary.
It will be well for one who intends to try the perfume industry to secure a sample of the French pomade from some perfumer, so that an idea may be had of the strength of odor desired in the market. The prospect of success offered by this industry can only be learned by experiment, but it is certain that no careless methods will answer. As in other things, there is room at the top, and high class products are certain of a market. J. N., in Garden and Forest.

AMPERE AND VOLT ANALOGIES

In the Scientific American of February 28, 1891, page 133, a graphic illustration of the volt and awper was furnished in an extract from some testimony given by Thomas A. Edison. He invoked the waterfall as the representative of a current of electricity, compared its height to voltage and its volume as so many gallons per second to amperage.
This illustration, while admirably suggestive to the popular mind, is not exact, because it appeals to an absolute quantity of water and to a time unit in ob taining the analogy to an ampere.
It is unquestionable that no analogy for an electrical unit can well be perfect, but it so happens that for the ampere a peculiarly close analogy is found in a very well known water measurement unit, namely, the miner's inch. It is upward of a year ago that the writer described this analogy in the columns of this paper. It is one that must have of ten impressed elec tricians.
Therminer's inch is defined as the quantity of water which will flow through an aperture an inch square in a board two inches thick, under a head of water of six inches. Here, as in the case of the ampere, we have no reference to any abstract quantity such as gallons or pounds. There is no reference to time. It is sim ply and purely a rate of flow, exactly what the amper is conceived to be in electricity.
In the illustration a representation of a tank whence

water is flowing through a hole one inch square extend ing through a two inch plank, and under a head of water of six inches, is shown. The perforated plank is shown as horizontal, simplifying the pressure question Referring to these conditions, we may consider the head of water, six inches, as the representative of elec trical pressure; in this case representing one volt. The aperture restricting the flow of water may be asumed to represent the resistance of one ohm ; the flow through a resistance of one ohm under the pressure of one volt is of course one ampere; the flow through the esistance of a one inch hole two inches long under th pressure of six inches to the upper edge of the opening is one miner's inch.
The expression "one miner's inch per second" would be just as meaningless, or at least redundant, as the ex pression "one ampere per second." On the other hand, the miner's inch-second is the correct analogue to the ampere-second; the one denotes a specific quantity of water, 0.194 gallon; the other a specific quantity of lectricity, a coulomb; 0.194 gallon per second of flow represents a miner's inch; one coulomb per second of fow represents one ampere; 1.94 gallons per second
supplied by ten miner's inches; 10 coulombs pe is supplied by ten miner's inches; 10 coulombs pe necond is supplied by 10 amperes.
If we attempt to apply Ohm's law to the miner's nch, we naturally fail, because the laws of hydraulics differ from those of electricity, but none the less it is a very excellent analogy, and one which is of importance in conveying the idea of rate of flow.
The same idea could be carried out in application to power. Into power the idea of time does not enter. We can have a horse power-second of work, but one horse power per second ineans nothing more than one horse power. Accordingly, for electric power the unit is the volt-ampere; for work, the volt-ampere-second or volt-coulomb. In the same way we might take the foot-miner's :nch as the unit of power. Then the foot winer's inch-second would be the corresponding unit of work.
Besides the miner's inch there is a similar unit, the water-inch, which is equally applicable to this line of explanation.
It curiously happens that the absolute quantity of water is sometimes spoken of in miner's inches. Whe
thus used, a miner's inch flowing for 24 hours is meant carrying out the precise idea of coulombs as a mea sure of quantity of electricity.

Proposed Irish Channel Tunnel.

In the paper on this subject which was read by Sir Roper Lethbridge, M.P., before the Society of Arts on February 11, the author stated that, if such a tunnel were ever to be constructed, it must be with the aid of the state as a public work of national importance. Two or three schemes had already been propounded, and last October the mayor of Belfast, Mr. Barton, placed before a meeting of his fellow citizens a scheme which seemed hopeful for a tunnel between Island Maich seemed hopeful for a tunnel
Mand the coast of Wigtownshire
Another proposal is for a tunnel between Whitehead and Portpatrick, while a third, by way of Cantyre adopts a shorter sea route, and a fourth has been sug gested between Donaghadee and Portpatrick. Another ingenious device proposes a submerged tubular bridge, and a channel bridge on the lines of the Forth Bridge has even been talked of. Judging by what has been done by Sir Edward Watkin at Dover, there seems little doubt that a submarine tunnel could be constructed-it was simply a question of cost and ime.
After quoting Professor Hull's report on the geological conditions of the channel bed, Sir R. Lethbridg proceeded to consider the question of cost, coming ventually to the conclusion that a sum of $£ 10,000,000$ would probably be needed. In order to make a tunne pay, it would be necessary to earn about $£ 200$ per mile per week, and therefore extraordinary sources of revenue would have to be sought. He ventured to suggest three that might be obtainable: First, the ailways connected with the tunnel would be largely benefited, and therefore might be called upon to con tribute protanto. Secondly, the whole line of coun try between the Irish end of the tunnel and the west ern coast,'in view of new transatlantic routes, would be enhanced in value, and on the principle of "betterment" might be expected to contribute. Thirdly, the work being one of national importance, Parliament wight come to its aid. In view of the proposals for opening a new route to China, Japan, and Australasia across British North America, Ireland would eventually become the last section on the side of the Old World of the great British trade routes girdling the world. Any the great British trade routes girdling the world. Any
project, therefore, for closer intercommunication between Great Britain and Ireland must be worth atten tion, to say nothing of the advantages that would be conferred upon the sister isle by making it more eas of access to travelers, whether for pleasure or profit.
In the discussion which followed, Sir Edward Wat kin said he was esperially interested in the question, because he had for many years been considering the feasibility of uniting Ireland with Scotland, and bring feasibility of uniting Ireland with west coast of Ireland within three and a half or four days' reach of America. He had contemplated a ship canal between Dublin Bay and Galway Bay which the late contractor, Mr. Walker, told him might be cut for about $£ 8,000,000$.

Sir Joseph W. Bazalgette

The death is announced from London of Sir Joseph William Bazalgette, the eminent civil engineer Though born at Enfield in 1819, he was of French origin. He was educated in the private schools of England and subsequently became a pupil of the dis tinguished engineer Sir John MacNeil. He began business on his own account as a civil engineer in London in 1842, and four years later attained wide celebrity in connection with the great railway extensions of that period.
As assistant engineer to the Metropolitan Commis ion of Sewers, which appointment he accepted in 1848 he designed and constructed over three hundred miles of sewers in London, and on the passage of the Metropolitan Management act, four years later, he was appointed by public competition engineer to the Metropolitan Board of Works, in which capacity he devised the scheme for the drainage of London which was carried out between 1858 and 1865. This achievement, together with the introduction of subways for carrying the gas and water pipes and telegraph wires under the new metropolitan thoroughfares, which he constructed, gave him a world-wide reputation.
In addition, Sir Joseph also designed the Victoria, the Albert, and the Chelsea embankments on the
Thames, executed between 1863 and 1874 , together Thames, executed between 1863 and 1874, together
with numerous street improvements. A code of regulations and instructions on the construction of bridges and alteration of streets within the metropolitan area was published by him, which is incorporated into all metropolitan railway bills. In 1871 he was created a Companion of the Bath and knighted by the Queen at Windsor Castle, May 12, 1874.

Onf of the features of the grand parade in Des Moines during the Iowa State Fair was an electrically propelled buggy, the current being furnished by stor-

Animal Photography

A lecture on "Wild Animals in Captivity" was recently given in London by Major J. Fortune Nott, president of the Richmond Amateur Photographic Society. The lecture was illustrated by the beautiful slides made by Major Nott from negatives taken by himself in the Zoological Gardens and other places, and was attentively listened to by an audience which filled the hall.
Major Nott prefaced the exhibition of the slides by some remarks on the attraction which the sight of wil? animals in captivity had exercised on all civilized nations from the earliest times. Portraits of the camel, which, although one of the earliest of dowesticated animals, still remained the same as it had been in the time of the patriarchs, and showed no signs of increasing intelligence, as had been the case with horses and dogs, were thrown on the screen. Two very interesting pictures were those of a camel and its young one, found by an English officer on one of the Egyptian batfound by an English officer on one of the Egyptian battlefields, wounded, and apparently dying. The officer
determined to try to save the lives of the animals, and determined to try to save the lives of the animals, and
had them shipped to the Zoological Society, in London. had them shipped to the Zoological Society, in London.
When they arrived they were nothing but skin and bone, their humps had entirely disappeared, and they could not walk. So bad was their case that permission to kill them was sought by telegram. The telegram, however, fortunately miscarried, and during the delay that ensued the camels began to recover, and their portraits as they appeared when landed and as they are at present provoked great applause.
Among the finest of the pictures were those of the lion, tiger, panther, giraffe (one of which showed the animal as seen directly in front, and enabled the extraordinary length and thinness of the neck to be well seen), hippopotamus, rhinoceros, kangaroo (with young one peeping out of the pouch), deer of several spectes, seal, sea lions, monkeys (including a portrait of Sally, who can count, and objects to take her tea unless offered in a cup and saucer), buffalo, wild asses, and zebras.
Major Nott gave interesting details of each of the animals as it was shown, and mentioned in the case of the sea lion, which is said in most of the school text books not to be so called because it has a mane, that this was evidently wrong because the specimen he had photographed showed the mane clearly. This was owing to the fact that the animal had been some time in the sun and the mane had dried. When wet it was hardly perceptible.
A photograph of a curious picture of a rhinoceros by Albert Durer, dated 1515, was shown. This was taken from an engraving in the British Museum, and bore on it an affidavit (as it would now be called) that the portrait was from life.
It represented an animal remotely resembling a rhinoceros, but clad in a complete suit of what looked like plate armor richly ornamented. This provoked much applause, and Major Nott stated that so much faith was placed in this affidavit that the pictures of the rhinoceros in all books since the date of Durer's engraving

The Destruction of Two Gasholders at Glasgow.
One of the most remarkable occurrences on record, in connection with gasholders, took place, says the American Gas Light Journal, at Glasgow, on the 15th ult. The gas undertaking of this important city is the property of the municipal authorities, and comprises three different stations. The one in question, known as Dawsholm, is situated in a somewhat isolated position outside the town, and includes three gas holders arranged in line, about 25 feet apart, but fortunately, as it turys out, at some little distance from the rest of the buildings and plant. The three gasholders are all similar in respect to diameter, being 160 feet across. Two of these have lately been enlarged by the addition of a third lift, which made them 90 feet in height, and equal to containing more than $1,500,000$ cubic feet of gas each. The third remained a double lift, consequently about 60 feet high and holding something over $1,000,000$ cubic feet of gas when full.
At about 4:30 in the afternon the outlet valve of No. 1 was open for the supply of the district, No. shut off, and the inlet of No. 3 was open to receive the make of gas. The valve man, McAlister, opened the inlet of No. 2 , with a view apparently of diverting the make from No. 3. At this time No. 1 was three parts or more full, No. 2 a little less, but sufficient to cup the lower lift, and No. 3 was not far from being full. Before McAlister could complete his purpose by closing No. 3 inlet a large mass of flame was observed shooting high into the air, over the roof of No. 2, the center holder. It was accompanied by a loud rumbling noise like the shock of an earthquake, together with a concussion that caused windows to rattle violently, and greatly alarmed the inhabitants of the neighboring part of the town. This appears to have been caused by the bursting of the roof of the gasholder in all parts. It
was quickly followed by the destruction, with a second was quickly followed by the destruction, with a second concussion, of No. 1 holder, and in a few minutes the
whole structure of both holders lay in a confused mass
at the bottom of the tanks. Fortunately this was unattended with loss of life or even serious injury. Work men who happened to be in the vicinity were scorched, and some haystacks 100 yards off were set on fire; but the euormous volume of some $3,000,000$ cubic feet of gas appears to have passed steadily up into the air, and burnt a way as fast as it could meet with sufficient oxygen to support combustion. The whole affair was over in four or five winutes.
The experts report they are satisfied that the holders did not contain any explosive mixture, nor did they possess structural defects. But there were "indications of an explosive material having been placed on the crown of No. 2." The explosive power, striking inward, ruptured No. 2 , and the concussion was considered
sufficient to account for the damage to No. 1. The sufficient to account for the damage to No. 1. The "indications" appear to be an irregular fracture, having the edges bent inward, and corroded as if by the action of chemicals.
The corporation have offered a reward of $£ 1,000$ for the apprehension of the author of the catastrophe.

```
Sorting Letters at Sea.
```

The establishment of ocean post offices, similar to the railroad service, has been approved by the government, and will be adopted between the United States and Germany. By this plan postal clerks on the ocean steamers plying between New York, Bremen, and Hamburg will have ample time to assort the mails, so that upon the arrival of the steamers the letters can be promptly forwarded to their destination. The expense of this ocean mail service is to be equally divided between the two countries. The new arrangement will go into effect April 1 on vessels leaving the German ports on that date and on April 15 for outbound vessels frow New York. Should the plan prove satisfactory, there is no doubt that it will be adopted in the postal intercourse between the United States and other countries.
universal file handle.
This malleable iron file handle has just been placed on the market by the Millers Falls Company, 93 Reade

universal file handle.

Street, New York City. It is five inches long, japan finish, and weighs five ounces. Thumbscrew of forged steel, strong and durable, and will hold perfectly files of all sizes and shape tangs, from a 15 inch mill file to the smallest size in use. It holds equally well twist
drills, screw drivers, auger bits, gimlets and all tools drills, screw drivers, auger bits, gimlets and all tools
having shanks less than 3 of an inch square

A Chance for the Inventor.

The wonderful ingenuity developed by our mechanics, inventors, and contrivers during the past generation or two has about spoiled the dear public. It does not make much difference as to the purpose for which any piece of mechanism is designed, it must be
more or less automatic and "self-operating", to take with the average buyer. In some respects the demand -craze we might call it-has been carried to the verge of absurdity; in others it has proved of the greatest benefit to the human race, while certain fields, in which the automatic principle should be peculiarly available, have failed of all benefit in the efforts of the inventor.
Take for instance the ordinary heating apparatus in our dwellings, whether it be steam, hot water, or warmed air that is employed. Many of the makers thereof have strong claims to advance for the "automatic" character of their appliances, and y et there is not one among them all that can be safely trusted, to use a homely phrase, to "go it alone," even for a limited period. Here is a furnace man who will fit up your residence with a wonderful arrangement of electric thermostats, or thermometers having electric limit connections, by which he will guarantee to keep your house at an even temperature all winter. A steam heating outfit is provided with a diaphragm valve that controls the damper of the furnace and keeps just so much pressure, which means an equally well determined degree of heat. The hot water man has something else; all are equally infallible, but the only difference in their operation is the effect they exercise
on the pocketbook. Either they are dismal failures, in spite of all that can be done for them, or they take so much looking after that the deluded purchaser reverts after all to the poker, shovel, and shaker, which, controlled by the human sense of comfort and its opposite are the best regulators of the modern heating apparatus.
Here is a chance for the inventor. The ingenious in dividual who will make it impossible for the ordinary heating apparatus to freeze us or "render" us out be tween bedtime and dawn ; that will insure, without a constant worrying of the fires, an even temperature
that will obviate the necessit y for flooding the ordinary residence with cold air and incidentally with dust, pre paratory to the kiln drying of its contents, will win a fortune and honestly earn it. It does not matter what the heating medium may be or how regulated, provided it is not in any way more offensive, cumbersome, dangerous, etc., than the methods now in vogue; as long as it is reliable and effective it will go, and price will be no object.
There is no doubt but what it will come to pass that the heating apparatus of the future will be as economi cal of fuel, as safe, as efficient and withal as mechanically beautiful, as the modern automatic high speed steam engine, with its cut-off and perfect self-governing devices, and inventors would find it mighty profitable to be first to the front with anything of the kind that would be really trustworthy. We have looked the field over very carefully, and found several contrivances that may ultimately fill the bill, but which labor under "just one" little defect or weakness that is fatal to their perfect reliability. With all the ingenuity they have thus far displayed in their constructions, the originators should certainly be able to complete them. -The Sanitary Plumber.

Electricity as a Measure of Thought.

Mr. J. L. Balbi says: It is well known to the medical profession that every mental effort causes a rush of blood to the brain, and that the amount of blood depends on the "intensity" of the thought; but rush of blood means a rise in temperature, and if we could measure this we would be able to determine, in a rough way, the "power" necessary for the generation of any thought or mental effort. I accomplish this object in the following manner: I have a head gear of some light. high-conducting (heat) substance. In its middle or any high-conducting (heat) substance. In its middle or any and connect this, by means of flexible wires or otherand connect this, by means of flexible wires or other-
wise, to a sensitive gal vanometer. The extreme sensiwise, to a sensitive galvanometer. The extreme sensi-
bility of the thermo-electric pile is well known, and therefore whatever rise in temperature takes place, consequent to the rush of blood, would be instantaneously indicated by the galvanometer. The utility of such an apparatus may not appear at first sight of great importance, but if we consider for an instant the facility or difficulty with which children at school learn their lessons, any doubts we may have enterlained as to its practicability will be immediately distained as to its practicability will be immediately dis-
pelled. By such a contrivance would we ascertain the "brain power" of boys and girls, nay, even men, and thus be in a position to indicate in what direction their mental efforts ought to tend.

To Relieve an overworked Brain

A Swiss doctor says that many persons whoextend their mental work well into the night, who during the evening follow attentively the programme of a theater or concert, or who engage evenings in the proceedings of societies or clubs, are awaked in the worning or in the night with headache (the Sanitary Inspector). He is particular to say that he does not refer to that headache which our Teutonic brethren designate Katzenjammen, that follows certain convivial in dulgences. This headache affects many persons who dulgences. This headache affects many persons who
are quite well otherwise, and is due in part to the pre are quite well otherwise, and is due in part to the pre
vious excessive work of the brain, whereby an abnorvious excessive work of the brain, whereby an abnor-
mal flow of blood to that organ is caused; in part to mal flow of blood to that organ is caused; in part to
other causes, for example, too great heat of rooms, conother causes, for example, too great heat of rooms, con-
tamination of the air with carbonic acid, exhalations from human bodies, and tobacco smoke.
For a long while the doctor was himself a sufferer from headache of this kind, but of late years has wholly protected himself from it by simple means. When he is obliged to continue his brain work into the evening, or to be out late nights in rooms not well ventilated, in stead of going directly to bed, he takes a brisk walk for half an hour or an hour. While taking this tramp he stops now and then and practices lung gymnastics by breathing in and out deeply a few times. When he then goes to bed, he $:$ leeps soundly. Notwithstanding the shortening of the hours of sleep, he awakes with no trace of headache. There exists a clear and wellknown physiological reason why this treatment should be effective.

Influence of the High Tension Spark
Mr. Branly has recently found that the spark of a Holtz machine or induction coil has a remarkable ef fect in temporarily decreasing the resistance of certain badly conducting mixtures, such as powdered or oxidized metals, or pastes formed by immersing filings of iron, copper, or other metals in a non-conducting fluid. The effect is generally increased by connecting one or both of the sparking terminals with the substance un der test, although the spark alone may be sufficient In one case the resistance of a junction of two pieces of oxidized copper, as measured by a Wheatstone bridge, was reduced from 80,000 ohms to 7 ohms in this way The diminution of resistance of such conductors may last for as long as 24 hours, unless the substance is dis turbed by vibrations, in which case the high resistance is restored.

THE GREAT DAM OF THE HOUSATONIC RIVER, AT SHELTON, CONN.-BEFORE THE BREAK

DESTRUCTIVE WINTER FLOODS IN CONNECTICUT. On January 11 and 12 there was a sudden rise in the Housatonic River, Connecticut, from continued rains which had swollen the tributary brooks, and the heavy ice which had formed in the river was suddenly broken up with great violence, the greater portion of the ice in the channel being carried away in a few hours. The Housatonic occupies a considerable channel and drains a wide area in western Connecticut and Massachusetts. One of our views shows the state of the river after the ice had broken up, and the great dam which crosses it between Birmingham and Shelton, just before its junction with the Naugatuck. The daw was built in 1870, and was 637 feet long, with about 75 feet of abutments, all built in the wost solid manner, and it was not considered that the structure was much injured by the ice, although the railroad bridge below was seriously damaged, as shown in one of the views. Besides the damage to the bridge, ice was piled several feet high on the railroad tracks, and travel was delayed for several days.
The river continued to rise until, on January 28, it had reached a height said to have been unprecedented within a generation. On that day the dam gave way and a great portion of the railway bridge was entirely destroyed, as shown in our views, made from photographs taken a few hours after. The break in the dam occurred just after seven o'clock in the evening, and an alarm was given by employes in the paper will, an alarm gong in which was continuously sounded for a long period, the engineer, in fact, tying down the connections to prolong the note of warning, and making a rapid flight. There was great excitement in the entire neighborhood, all hurriedly retreating from what it was feared would be a most disastrous flood; but there were no lives lost and the damage was confined to the destruction of property.
The injury to the dam proper consists in the sweeping away of about 125 feet of its easterly end to the foundations and the destruction of the massive abut-
ment gates and gate houses to the easterly canal of the they pass over the dam was badly broken and impaired Ousatonic Water Company. The abutwent walls, when the ice in the river broke up, and that continuwith the wachinery for hoisting the gates, and the ous undermining and washing out followed until the gates themselves, were toppled over in a solid mass, final break. Just before the completion of the dam, and there was also a washout of nearly two acres of in 1869, a freshet greatly damaged it, so increasing its land from the river bank below. At the time of the cost that it is said the investment of the water comcollapse there was about seven feet of water pouring pany in its construction has not been a paying one unover the face of the dam, but the water gradually sub- til within the past two or three years. Many manusided as the breach widened, until the whole volume of facturing industries, however, have grown up in the water poured through the opening.
The giving way of the dam is primarily attributed to damage caused by the ice. It is supposed that the wooden apron on which the water and ice strike as

THE BREAK, LOOKING UP STREAM.

THE BREAK, LOOKING DOWN STREAM.
ness will not be wholly interrupted, and others are putting in engines. One paper manufacturer, whose putting in engines. One paper manufacturer, whose ernment postal department, the contract itself provid ing that an engine wust be put in if the water powe should give out.
The plans for the rebuilding of the dam have not ye been completed, as, owing to the continued high water, the engineer has not been able to ascertain the exac condition of the work left standing of the old dam. A temporary coffer dam is, however, being put in, con sisting of a trestle work of piles, as shown in one of our illustrations, to be filled in with rock on one side and dirt on the other. Mr. L. S. Brinsmade, of Birminghaw, is the engineer in charge of the work, and Mr. F. A. Rivers, of Holyoke, Mass., has charge of the piiing The rock filling is obtained from a quarry near by, be ing run in by gravity power from a location so conve nient that it requires only about ten minutes for a car to go from the quarry to the trestle, unload, and return.
Perhaps the most serious inconvenience caused by the floods is the destruction of the Housatonic Railroad bridge. It is estimated that the loss of this structure alone will cost the company $\$ 50,000$, beaides the serious item from loss of traffic. The main part of the bridge consisted of iron trusses supported on solid stone piers. This was connected with the land by a long trestle.
On Monday, January 12, the sudden rise in the river broke up the ice, as explained above, and moving cakes were floated down upon the rather frail trestle work of
the bridge, where it became jammed until, finally, the pressure of ice and water became so great that the spiles were carried away, and an opening about 100 ft . long was made, leaving nothing but a string of ties and rails that hung in wid-air from the remaining supports. Later another row of spiles 100 ft . long was swept away from the eastern end of the bridge. The work of destruction went on until the railroad track was left suspended in a most fantastic manner upon the few spiles that had resisted the force of the elements. The work of reparation had progressed but slowly when, on January 28 , the second flood occurred, with the carrying away of the dam.
The destruction of the trestle work was completed, and this portion of the bridge became a cowplete wreck. The force of the water and ice in the first instance was sufficiently great, as may be seen from the engravings, to undermine and partially overturn the stone pier at the eastern end of the iron work. A few daring ones, when the raging torrent was at its worst, entertained the curious spectators on the banks by crossing over the wreck as it swung on its flimsy supports. For information received our thanks are due Mr. C. E. Meservey, of Birmingham. Our engravings were prepared from photographs taken at the time of the disaster.

The Inventor of the Siphon Pressure Gauge. The common gas pressure gauge, in which water in the lower half of a U-shaped glass tube is exposed to the pressure of the atmosphere on one side and to that of the gas on the other, is such a beautifully simple and efficient instrument that its origin is seldom if ever

CONSTRUCTION OF THE TEMPORARY DAM.
be a modern form of the instrument made by Negretti \& Zambra, and still called Lind's anemometer. There are not many philosophical instruments which perpetuate their designer's name after the lapse of wore than a century. Mr. Lewis, however, claims priority for M. Pierre Daniel Huet, Bishop of Avranches, who was born at Caen, in 1630. A description and figure of a toy-like instrument supposed to be constructed upon the principle of the siphon anemometer appeared in a volume of "Huetiana," published at Amsterdam in 1723, or more than 50 years before Dr. Lind produced his apparatus. It is stated in this book that Bishop Huet gave a sketch of his device to Hubin, an English philoso phical instrument maker of the period, who undertook to make the appara tus to the drawing, but died before the invention could be carried out. So the Huet pressure gauge was never made ; but it is quite sufficiently illustrated and described to entitle Bishop Huet to the credit of the invention.
Swamp Moss.

The Albany Cultivator concludes that one of the best and wost use ful substances in connection with vege his invention, which was intended solely for a wind table gardening is swamp moss or sphagnum. Any gauge (nothing about the pressure exerted by confined vegetables liable to become shriveled by exposure will gases being then known), runs as follows :
"This simple instrument consists of two glass tubes connected together like a siphon by a small bent glass tube. The whole instrument is easily turned round upon the spindle by the wind, so as always to present the mouth of the tube toward it. The force or momentum of the wind may be ascertained by the assistmentum of the wind may be ascertained by the assist
ance of this instrument, by filling the tubes half full of etain their freshness when packed in it. It has the advantage over damp sawdust in not being liable to heat or ferment. It is lighter and softer than sawdust, and is, therefore, well adapted for packing celery in winter. It is placed in a cool cellar in a manner like he packing for railway converance The bot in he packing for railway convesance. The box in which it is to be deposited, having a depth equal to

THE HOUSATONIC RIVER FLOOD-PARTIAL DESTRUCTION OF THE RAILWAY BRIDGE.

THE RAILWAY BRIDGE AT BIRMINGHAM, CONN., AFTER THE FALL.
thought about by those who use it most. According|water to a communication to Nature on the subject of anemometers, by Mr. W. J. Lewis, this kind of gauge is generally supposed to have been devised by Dr. James Lind, of Edinburgh, who introduced it to the notice of the Royal Society in 1775. Dr. Lind's description of inches and tenths between the legs; but this seems of
a perfect siphon pressure gauge, with a vertical scale of depressed by it in the one leg and how much it is raised in the other."
plants erect. After being thus properly packed, the only care is to see that the moss is. kept moderately damp, and when water is to be used, apply it to the bottoms of the plants.

Japanese Lacquer for our war Ships.
Japanese lacquer is being tried at the Brooklyn navy yard with a view to the protection of the steel hulls of and the fouling of the bottoms by marine growths. For the past six weeks two plates of iron and steel respectively, each four feet square, and covered with three coats of anti-corrosive and three coats of antifouling lacquers, have been suspended from the over hanging shelf of the monitor Nantucket into the salt water at the navy yard. These plates will remain undisturbed for six weeks longer, and then be taken out for expert examination. An engineer at the navy yard who has recently returned from a cruise in Asiatic waters, where he had an opportunity to study the principles and results of lacquer treatment, said
"These two plates were coated by a lacquer manufacturer at Tokio. Several of the officers of the navy have given much study to the subject, and have inspected several vessels of the Japanese navy at the Yokusuka dock yard, and there seems to be no question that lacquer on ships' bottoms is superior to any paint yet found. The Japanese navy has met with success in its use. In the case of one vessel which had not been out of the water in nine months, the bottom was in perfect condition, free from marine growth and showing no evidences of corrosion. The lacquer itself was perfectly smooth and unbroken over all the surface of the plates submerged. The lacquer itself has no chemical action or magnetic oxide; and galvanic action, which interferes with the success of so many anti-fouling paints, is prevented by the waterproof and insulating properties of the lacquer coat.

What would be the cost of putting this on? Well, with a vessel like the Buston, the cost of lacquering the entire hull would be about $\$ 5,400$, and for a vessel as large as the Maine about $\$ 8,400$. But one coat of lacquer is said to be sufficient for a three years' cruise. The whole coast of Asia is adapted to the cultivation of the lacquer tree. The tree is found in China and Corea, but is more extensive in Japan, where lacquer is in general use, and new groves are being established there. The lacquer, which is a thick or gummy grayish juice, is gathered from trees not less than five year old, and by making incisions in the bark."

Water Power into Electricity.

One of the features of the coming electrical exhihition at Frankfort-on-the-Main will be the transmission of power on a scale hitherto never attempted. When it was announced some months ago that it was proposed to transmit 100 h . p. from Lauffen-on-the-Neckar
to Frank fort, a distance of more than a hundred miles, to Frankfort, a distance of more than a hund red miles,
the statement was received with smiles of incredulity, but now it seems quite probable that not only will the experiment be tried, but that it will succeed, in spite of the engineering difficulties that have to be surmounted. The government has been asked to supply line for the purpose, and on the system used the expense will not necessarily be at all severe, for the use of very high potential alternating currents is the feature of the schemn as at present planned. The alternating gene rator will supply a step-up transformer, that in turn will transmit its secondary current at an enormously
high potential along the line, to be retransformed by a step-down transformer at Frankfort to a potential practicable for an alternating motor. A series of experiments carried out recently at Oerlikon involve the use of pressures as high as 33,000 volts on the line. At such a potential the current transmitted becomes so losses incurred, even though it be of the extreme length proposed. Nothing can better illustrate the character istic advantages of the alternating system than this istic advantages of the alternating system than this
beautiful process of generating and utilizing currents at a moderate potential, and transmitting them from station to station at a pressure so enormous that the losses in transitu become insignificant.-Elec. World.

Madame Kovalevsky.

The Swedish papers bring us the sad news of the death of the lady professor of mathematics at the Stockholm University, Mme. Sophie Kovalevsky. On the evening of February 6 she felt ill, and on the 10th she died of an attack of pleurisy. She was born in 1853 at Moscow. She early lost both her wother and
her father, and, having ardent sympathy with the movement which was spreading among Russian youth, she applied for, and at last obtained, permission to study at St. Petersburg. In 1869, when she was but sixteen years old, she was received as a student at the Heidelberg University, and began the study of highe mathematics. From 1871 to 1874 she was again in Ger many, this time at Berlin, studying mathematics under the degree of doctor of philosophy at Gottingen. In June, 1883, she was offered the shair of higher mathe matical analysis at the Stockholm Hogskola, on condi tion that she shonld lecture during the first year in German, and afterward in Swedish. This she did, and most successfully too-some of her Swedish pupils already being professors themselves. She wrote many mathematical treatises. - Nature.

Among the great fires of history, undoubtedly the burning of the Serapæum library at Alexandria, in the year 640, by the Caliph Omar I., is most widely mourned, as the destruction of 500,000 volumes cut off much of the record of human knowledge at that time. The general impression of the importance and significance of this fire is, no doubt, augmented in great measure by the alleged answer of this Saracen conqueror, who replied to the protest against the burning with: "If these books are against the Koran, they are pernicious and must be destroyed. If they agree with the Koran, they are redundant and need not be preserved;" and it is not generally remembered that at Al Cæsar burned a larger library of 700,000 volumes at Alexandria, known as the Brucian library, B.C. 48 , nearly 700 years be
ibrary by Omar I.
At times of sack and pillage, Jerusaiem has been burned time and again; the most noted instance being at the siege by the Romans under Titus, during the year 70, when a faction called the Sicarii set the city on fire in many places, and eventually $1,100,000$ of the inhabitants perished by fire and the sword.
Constantinople has, like all Oriental cities, suffered severely from fires, a large part of such losses being undoubtedly due to the fatalism of the Mohammedans, who bow to their kismet. Said a sultan: "If it be the will of Allah that my favorite city burn, it is the will of Allah."
In Dillaway's quaint account of travels in the Levant in 1797, it is stated that the sultan is summoned three times to a fire in Constantinople, and if the fire lasts an hour he is obliged to attend in person and bring mules laden with piasters for the firemen.
A great fire at Rome, 12 B. C., caused the Emperor Augustus to take measures for increasing the defense against fire, which had been hitherto in the hands of bodies of police, numbering 20 or 30 , stationed in vari ous portions of the city, and re-enforced at times of fire by companies of volunteers. He appointed new officers with the rank of magistrates, who were entitled to wear magisterial robes. Each was attended by two lictors, and provided with a fire organization of 600 slaves.
It is probable that this was not entirely satisfactory in its operation, because six years later another fire caused him to undertake further reforms on a scale fully characteristic of him who "found the city built of brick and left it with palaces of marble." He in with the fire department to a scale comm with the needs of the city. Seven thousand freemen were organized into seven battalions, and one battalion
was guartered in every alternate ward of the city. These men made careful inspections of the kitchens, o the heating apparatus, and of the water supply in the houses, and every fire was the subject of judicial ex amination. The cost of the organization was main tained by a tax of 25 per cent on the sale of slaves.

Two notable examples of contagions stopped by con flagrations are the burning of Moscow by the besieging Tartars, in July, 1570, whea the plague was stopped and secondly the fire in London, September 2, 1666 which also stopped the plague, and it has been un known there since.
This London fire is properly called the great fire of modern history, because the reforms which were started in consequence of it are living issues in the municipal affairs of to-day. The fire was caused by an overheated baker's oven ; and in the course of four days it swep over 436 acres, burning 13,200 houses, 89 churches, and $t 10.71000$, she
Under the dir $\$ 53.500,000$.
bowing up buildings, whepys the fire was stopped by blowing up buildings, which was, at the time, the only method of reducing a fire that had grown beyond the capacity of the small fire engines. These were on large tubs, and threw a stream of water directly on the fire, as hose was not invented until ten years later (1672) by Van der Heide.
The cities of America, on account of the larger amount of wood in their construction and the preva ence of irresponsible methods of building, have suffer ed severely from fires.
The first devastating fire in America was probably the one occurring at Boston, March 20, 1760, when 400 dwellings and stores were burned, causing a loss of £100,000.
In the colony of Massachusetts Bay, regulations in regard to construction of chimneys and thatched roofs nactments as early as March 16,1630 , and at the town meeting of Boston, March 14, 1645, made provision that each householder should have ladders long enough to reach to the ridge of his house, and a long enough to reach to the ridge of his house, and a
pole "about 12 feet long, with a good large swob at the end of it;" and various graded penalties were pro vided for those not conforming to the law.
Philadelphia has been remarkably free from confla grations in comparison with other large cities. It does not appear to have been visited by a great fire until
July 9, 1850, when a fire along the Delaware Rive front, at Vine Street, extending over 18 acres, caused a
loss of life estimated as high as 33 , in addition to 120 wounded, and a pecuniary loss of $\$ 1,500,000$.
New York was visited by a severe conflagration in the southern part of the city on December 16, 1835, which extended over an area of 40 acres, destroying 674 houses, and causing a loss which has been estimated as high as $\$ 30,000,000$, on which there was only $\$ 8,000,000$ insurance--an amount which ruined several insurance companies.
One of the first of the more recent conflagratious was the burning of Portland, Me., July 4, 1866. The fire was caused by a boy throwing a firecracker into a cooper's shop, for the avowed purpose of scaring the workmen. In this respect the act was an unparalleled success, the damage being about $\$ 10,000,000$.
The Chicago fire, October 9, 1871, was one of the largest in all history, devastating an area of $31 / 2$ square miles, and causing a loss of about $\$ 190,000,000$, on which insurance was paid to the amount of about $\$ 100,000,0^{\circ} 0$ Two hundred and fifty lives were reported lost in this fire.
Thi
Thirteen months later to a day, Boston was visited by a fire which extended over an area of 65 acres, burning the best mercantile buildings in the city, and caus ing a damage of $\$ 75,000,000$, on which there ras an in
surance to over $\$ 65,000,000$.
C. J. H. WoodBury.

rtificial Flower Making

The process of flower making begins with the man who stamps out leaves and petals, says the N. Y. Sun. He has perhaps 100 short, stout iron spikes, each bear ing on one end an iron stamp, fashioned so as to cut out of cloth bits shaped like the petals of one flower or another. The cloth, velvet, sateen, satin, or what not, is laid upon a leaden slab and the stamp is struck smartly with a hammer. In this way thousands of petals are struck out rapidly, the cloth being folded many times before the process begins.
From the stamper the work passes to the dyer. The latter is usually a Frenchman or German learned in the art of mixing colors. Rose petals come to him white, and he dabs each with a bit of carmine, leav ing the points untouched. From him the petals, ranged in rows on a board, pass to a boy or girl, who ap plies a bit of yellow dye to the white point. Then the petals are put over a furnace to dry.
From this point onward the work is done exclusive ly by girls. Their tools are extremely simple. The Kopher is a little iron implement for curling petals. Tweezers,
the outfit.
The flat rose petals are set before half a dozen girls, eated around a table, upon which glows a small gas furnace. Each girl is armed with a gopher, and the gopher, after being heated a moment in the flame o the furnace, is applied with a quick wrist motion to the petal as it lies upon a little cushion. Under the heat and pressure the petal is instantly curled into a hollow, cup-like imitation of the natural object. The freshly gophered petals are presently put together along with the stamens or "pips," as they are called in the trade. These are usually made by machinery at another factory.
Sometimes the stem and branch of the rose are in ported, and werely tacked on in the factory; but this part of the business is also carried on here, and there are some branchers in New York.
Although the work is thus minutely subdivided, the best llower makers learn the business in its entirety, save stamping and dyeing. Those branches seem to be left almost exclusively to men. The test of a girl's skill ies in her ability to make a rose. The best rosemaker follow nature with marvelous fidelity. The manufac urers show you branches of clustered roses with every hing complete, even to great natural-looking thorns and defective, worm-eaten blossoms
Dozens of flowers are imitated in the factories of this town, but the more familiar blossoms are most in de mand. It is a secret of the trade that blue corn flowers are to be popular this spring. and there are many hundreds of boxes of them blooming beautifully in the factories at this moment. The show rooms at the factories are a perfect delirium of color now, and the stock will go on accumulating until the retailers begin to get hold of it six or eight weeks hence. January is the height of the busy season with the flower makers and the work goes on briskly through February and March. It is duller in April, and by the first of May there is nothing more to do. Then, however, prepara tions are made for feather curling, and during the hot weeks of July thousands of deft fingers are busy makng the feathered ornaments that are to adorn fashionable hats in the following winter.
If flower making went on the year round, the flower makers would be well enough off. A clever girl ac quires in two years sufficient skill to command from $\$ 8$ to $\$ 12$ a week, and the best workers earn even as much as $\$ 18$ a week. Forewomen gat from $\$ 20$ to $\$ 30$ a week, hough the latter is a high figure. Most of the girls are very young. Many begin to learn the business at 12 to 14 years of age, when they can earn only $\$ 1$ a week, and when some even must pay for the privilege of learning.
the care of the feet.
A corn comes of an injury to the flesh, while the bunion comes of an injury to the joint. A specimen sketched from nature is shown in Fig. 1. Other than this their growth is quite similar, and quite frequently one is the outcome of the other. The corn may induce a bunion, or the bunion a corn. Bunions, I helieve, are never found except upon the joint of the great toe. A hard corn at this point may press so severely against the joint as to injure it, giving growth to the bunion, while on the other hand the joint being injured produces a bunion, which as it grows fills the shoe, causing a friction that gives birth to a corn, making a flourishing combination.
In every joint of the body there is a membrane the function of which is to secrete a fluid that acts as a lubricant. In the joint of the great toe this membrane is called the bursa mucosa, and when injured, inflames and swells. This swelling is commonly known as a bunion. Thus it is seen that bunions are located in the joint, and the swelling is only its effect and not the bunion itself.
A bunion is very,rarely found on a foot the great toe of which lies in direct line', with'the center of the heel, but the more the great toe is twisted to one side, the more susceptible is the joint to bunions. To effect a permanent cure it is imperative that the great toe be restored to its normal position. To do this first secure a pair of shoes that will permit it, but this will count as naught unless the hose is constructed upon the same principle. The ordinary stocking is shaped at the toe like Fig. 2. It will be seen at a glance that the toe is held in the same position here as in an ill-fitting. narrow-toed shoe-all bound together in a heap. We never think of binding the fingers together in such a manner, then why afflict the toes? for surely they are quite as important in their way as the more honorable members-the fingers. Not long ago Mrs. Amelie Rives Chanler startled the public in general, and newspaper reporters in particular, by donning a pair of digitated hose. While her ideas were a little beyond the times, I do thank her for breaking the way for digitated hosiery. While I am not prepared to advocate this idea in shoes, it is the correct one for hosiery, and the toes cannot assume their normal position when clothed otherwise. Not only would it be a preventive of bunions, but of soft corns.
If the reader is not prepared to make so radical a departure as digitated hose, and desires a cure, then the next best thing wust be done by cutting open the stocking and separating the great toe frow its neighbor, as in Fig. 3. Use the foot bath quite frequently to allay the inflammation, and remove whatever callous flesh there may be. At night bind the bunion with linen, well saturated with neat's foot oil. Wear a shoe that will allow the great toe to resume its normal position. The shoe must also be of some soft, pliable material. A felt shoe is the best that can be procured. If the swelling is on the under side of the joint, then use a thick, soft inner sole from which a portion has been cut away to "fit" the bunion. If, after this treatment has been followed for a few weeks, there is no relief, then the chiropodist must be visited, as the bunion is beyond ordinary treatment.
It cannot be too strongly impressed upon the mind that the feet require quite as much or more attention than the hands, yet no menber of the body is so sadly neglected. If any physical ailment assails us, we straightway call in the physician and are dosed homeopathically or allopathically, according to his school; if we fracture a limb, then the surgeon attends ; if our teeth trouble us, then we visit him who makes a specialty of their treatment-the dentist. Then when our feet, are diseased, why not visit him who makes a specialty of their cure-the chiropodist?

It is now quite fashionable to have our hands and finger nails cared for by the specialist, for beauty's sake ; why not have our feet so treated for comfort's sake? To enjoy comfort and preserve the health of the feet, we cannot be too careful in the selection of our footwear. Too often an ill-fitting shoe will be endured on the ground of econowy, the wearer saying that as the shoes are bought, his money's worth must be gotten out of them, and so persists in wearing them. The weariug out of one pair of ill-fitting shoes will damage the feet to a greater extent than can be re paired during the lifetime of several pairs of perfect fitting shoes, for unfortunately the evil that misfits do lives after them.
Of course the flrst essential is a shoe that fits the foot then come some little points which, though they seem trifling, are of vital importance. Few persons give thought beyond the fit of a shoe, and most of us overlook as seemingly small matters the material from which the shoe is made or how the feet are clothed.
That cold feet are detrimental to good health as wel as coufort, every one will admit, and they should also know that if the feet become overheated, it is quite as injurious to health; therefore, the desideratum is to wear only that which will preserve the normal temper-
ature of the feet. It is a well known fact that woolen
*By A. J. Moore, in Boots and Shoes Weekly.
garments next the body absorb perspiration better than linen or cotton, and thus protect the skin from that chill which accompanies the sudden cooling of the body. In accordance with this theory we often see writers recommending woolen stockings for the
feet. In most cases this is a great mistake, and if folfeet. In most cases this is a great mistake, and if followed, results in making the feet tenderand very sus ceptible to cold. In the case of the woolen garmen
next the skin, the porous clothing over the woolen garment acts as a sort of safety valve, carrying off
 surplus heat and moisture whereas the woolen stock-
ing is surrounded by a comparatively non-porous leather, which only tends to increase the heat and moisture of the feet. If a cloth shoe is worn, then place, for there is then an ontlet for the exudation of the feet. The rule in the selection of hosiery should be to regulate the amount of wool according to the porosity of the leather. With porpoise or patent leather, wear silk or cotton; with calf, kangaroo

Fic. T.-A skelch from Lit of Great Too.
ails is due to deposits of albumen at their roots and upon their under surface. The red lines seen at thei base are due to the presence of a great number of capillary vessels, which provide for the formation of the nail, the whole structure being a wonderful and delicate one that should be well and properly cared for. The only occasion for the use of a sharp instrumen in this case is that of the scissors in cutting them to reduce their length. An ivory presser should be used to remove the scarf skin from the free margin The edge of the cuticle should never be pared, nor the surface of the nail scraped, the nails should be cleaned only with the nail brush to have them at their best, aided, of course, by soap and water. An observance of these simple rules will prevent much useless trouble with the nails of hands and feet.
When we wear a shoe that is too short for the foot, the end of the nail is brought against the leather. This interrupts its forward growth, and as new material is added to it, it spreads out on the sides and becomes unusually thick. It then presses upon the soft parts of the toe, and is said to "grow into the flesh," and is termed an ingrowing toe nail. A top view of one is seen in Fig. 4, and a sectional view in Fig. 5. The prevention of this is obvious, but its cure no pleasant operation.
Should the case be a severe one and attended by proud flesh, then it is a case for the surgeon, and should receive immediate attention, or the proud flesh will soon attain such growth as to require the removal of the nail, which is a more painful operation than that of removing the toe or a limb. The ordinary ingrowing nail can be cured by a little time and close attention. First of all, the cause must be removed and a shoe worn that is very soft and pliable, affording plenty of room for the free movement of thetoe. Next soak the foot well in warm water, to remove inflammation and render the nail pliable. Do not cut the nail, par ticularly at the corners. Press small pellets of lint as far under the corner of the nail as possible without causing pain, and wrap the toe very lightly with linen well saturated with glycerine. Dress the toe at least twice a day, replacing the lint, and endeavor each time tu slightly increase its quantity. When the nail becomes long, cut it so that the corners will project beyond the center.
Another remedy that has been found to be quite effectual is to cut a small notch at the center of the nail, leaving the corners equare. Then begin about half way back on the nail and scrape toward the notch untll the nail is quite thin, as shown in Fig. 6. This leaves the nail a thin strip through the center and relieves the pressure from the sides.

A Bridge Built by Red Ants.

The following remarkable story, told by an eye wit ness, is entitled to a place among the instances of intel ligence awong the lower animals. A cook was wuch annoyed to find his pastry shelves attacked by ants. By careful watching it was discovered that they came out twice a day in search of food, at about 7 in the morning and 4 in the afternoon. How were the pies to be protected against the invaders?
He did not have long to wait, for at 6:50 o'clock he noticed that off in the left hand corner of the pantry was a line of ants slowly making their way in the direc tion of the pies. They seemed like a vast army coming forth to attack the enemy. In front was a leader, who forth to attack the enemy. In front was a leader, whe kept a little ahead of his troops.
They were of the sort known as the medium sized red ant, which is regarded as the most intelligent of its kind, whose scientific name is Formica rubra.
About 40 ants out of 500 stepped out and joined the leader. The general and his aids held a council and then proceeded to examine the circle of molasses. Certain portions of it seemed to be assigned to the different ants, and each selected unerringly the point in the section under his charge where the stream of molasses was narrowest. Then the leader made his tour of inspection.
The order to march was given, and the ants all made their way to a hole in the wall in which the plastering was loose.
Here they broke rank and set about carrying piece of plaster to the place in the molasses which had been agreed upon as the narrowest. To and fro they went from the nail hole to the molasses until, at $11: 30$ o'clock, they had thrown a hridge across. They then formed themselves in line and warched over, and by 11:45 every ant was eating pie.-Chicago Tribune.

The Coburn trolley track for step ladders, described in our issue of January 31, and which we have now had inspractical use for the past two months, has proved itself to be a most convenient and labor-saving device By its use all the compartments in a line of high shelvBy its use all the compartments in a line of high shels-
ing are rendered readily accessible, the ladder itself ing are rendered readily accessible, the ladder itsel
being so light and so easily moved that any special point can be reached with great facility. The manu facturers report their sales last month as larger than ever before in the same length of time.

RECENTLY PATENTED INVENTIONS.

Railvay Appliances.

Car Coupling. - Robert McMahon Seattle, Washngtoos. The drawhead of this coupling has a vertical guide tube loosely embraced by a rocking
bar supporting the coupling pin, which has a flanged head, and whose toe $1 s$ engaged by a pivoted cam block, in connection with a tripping device, forming an automatic coupling, and one which may be operated
from either side or the top to couple or uncouple cars.
Car Coupling.-Michael F. Finnerty Brooklyn, N. Y. By this invention a transverse bar i adapted to slide vertically in the drawhead, the ba
having a pin which projects at right angles, while the having a pin which projects at right angles, while the pin, the device being automatic in operation, and being as for coupling car
Station Indicator.-Williain S. Mal lard, Darien, Ga. This is a device more especially adapted for use on steam or street rail way cars, and to
be located ir convenient reach of the conductor o brakeman, consisting of a suitably constructed casin to carry indicator plates, means being employed to automatically hold each plate in a sight opening, and
move the slides successively as desired, a gong being rung at each change of the slides.

Electric Railway Trolley. - Wil liam J. Cavert, Albany, N. Y., and William P. Wiswheel has an upwardly projecting fork embracing th conductor beyond the wheel, and adapted to contact when the trolley wheel fails, with other novel features,
the trolley being adapted to follow the conductor withthe trolley being adapted to follow the conductor with out cramping, and having a guard a
adapted to clear ice from the conductor.

Mechanical.

Loom Shuttle Tevsion Device. Squire Bentley and Alfred Beutley, Paterson, N. J.
'This is a tension regulator for shutles used in weaving ribbons or other narrow goods, and consists of a apring wire spring having one end fixed to the shuttle body
and the opposite end coiled around the quill spindle and the opposite end coiled around the quill spiudle
and arranged to press against one end of the quill, and is designed to hold the latter with an even pressure without regard to the amount of silk on the quill.
Chain. - Richard Paxson, Philadel phia, Pa. This invention relates to cable chains, such as used on cranes for rasing and lowering heavy
weights, and for other machines, and provides an open link chain, the links in different planes and crossing one another, with concave bearing surfaces on opposite
faces of the links upon opposite sides of the opening faces of the links upon opposite sides of the opening
through the links, forming a new article of manufacthroug

Agricultural

Corn Harvester. - Thomas C. St. John, Willoughby, Ohio. This machine has two paralle inclined beams adapted to straddle a row of corn, with
a series of inwaruly inclined fingers pivoted to each of a series of inwaràly inclined fingers pivoted to each or
the beams, and adapted to swing upward and outward the machine heing moved over the field to cut the ear from the stalks and gather the corn in the wagon by
Shock Compressor. -James K. Miller Emporia, Kansas. The body portion of this device is prolonged and formed into a narrow neck and a te minal head, a pulley being pivoted between the arms and the head apertured to receive a rope, to compress fodder and
tied.
Dehorning Calves. - Charles T. In raham, Dwight, ill. Two knife arms are pivoted to knife arms having a handle and the other being adapted o be struck by a suitable implement to force its knif ing out the horns of caives, so as to prevent furthe growth.

Miscellaneous.

Backing Plates for Printing. Jacob C. Wolfe, New York City. This inventor has obtained two patents for backing for electrotype or
stereotype shells, there being in one case a metal boxstereotype shells, there being in one case a metal bos
like backing having vents in one face to receive sur plus cementing material, the backing having straigh ides and ends and being of the least possible weight an interior lattice work and a top plate detachably attached thereto, adapted for the reception of the shell, hereby one base or backing may be utilized for print $=$
Book Case. - Isaac C. W oolrey, Geneseo, Kansas. This case has a series of vertically
arranged partitions fitted to slide freely between the helves, with horizontally arranged springs connected to the several partitions and holding them yieldingly
apart, whereby each book is held between partitions, thus protecting the books and holding each in its assigned place.
Trammel Head.-Reinhold G. Haus dorfer, Zanesville, Ohio. Combined with a head fram while there is a clamping plate engaged by two thumb screws, a fulcrum pin uniting the frame and shoe, af-
fording means to secure the points of a beam compass pon the elongated bar or beam of the instrument and adjust them with great accuracy
Transposing Key Board.-James M Gilbert, Putney. Vt. A series of finger keys is pivoted
in a movable frame, while there is a rack and pinion
quickly and easily adjusted device for a piano or other instrument by which music may be played in a highe

Bridge Gate. - Henry E. Dewey, outh Haven, Mich. This is a gate designed to be oprated from the land side or the bridge, but shut of rom connection with the briage when operated from the land side, and shut off from the land when operated
from the bridge, while the gate when closed will be securely braced so that it cannot be broten down by ay teams.
Hose Washing Machine.-Anderson Cosby, Richmond, Va. A portable frame or carriag which the hose is passed, a supply pipe being connecte with the frame and supporting the pipe, while a dis charge pipe supports a trough through which the hos
is passed and in which it is washed while passing is passed and in which it is washed while passin

Hook. - James K. Miller, Emporia Kansas. This hook has an eye in 1ts shank, two op. ook at right angles to the others, being one by mean of which a rope may be easily and quickly fastened
nd convenient for use in fastening bundles, for hoisting purposes, and various uses.
Paving Brick.-Athelstan O. Jones Zanesville, Ohio. This breater vertic epth than width, and has ropid wheper edges, formrooves on one side, vertical grooves on the other side and horizontal grooves in the ends, to receive pitch o ement to be flowed between the bricks to bind then tightly in the roadbed
Trunk Attachment. - William R Sulley, Mitchell, South Dakota. This inventiou pro vides a handle bar with parallee limbs to loosely embrace the sides of the trunk, and slide in and out keeper loops attached thereto, there being spring stops
on the ends of the limbs to contact with the loops, the on the ends of the limbs to contact with the loops, th
device giving a leverage to facilitate the movement of ony caster may be used.
Lock. - Thomas A. Phillips and James Greenhoe, Williamstown, Pa. In this lock the cass
contains a horizontally movable frame on which formed a locking bar with horizontal ribs, a tumble fixed to the lock spindle moving in a recess of the
frame to actuate it, with other novel features, the lock ring to actuate it, with other novel fanures, he lock ment from the inside of a building or room in such anner that it is impossible to operate it from the out
Door Knob. - Henry F. Keil, New York City. A shank is adapted to pass into a recessed in the shank extending into recesses in the head to fil he openings and recesses, thus securing the shank to the head or handle in a simple and effective manner.
Key. - Paren England, Aspen, Col. his key is provided with an attachment in the orm supplemental serving to plug up the key hole the key part proper being retained in position in the loc notwithstanding any jarring or shaking of the door.
Absorbent Bottle Collar. - Ben min H. Day, Jr., West Hoboken, N. J. By this in ention a flexible band is adapted to hug the neck o evice being designed to catch and retain the drip whe pouring from a bottle or other vessel to which it is applied.
Tablet Ornament.-Louis B. Prahar, Brooklyn, N. Y. A front and back plate are pivote together to hold between them leaves of celluloid, ivory, etc., in connection with an automatic or other latch stop
and means for attaching the back plate to a pocket and means for attaching the back plate to a pocket
oook, traveling bag, etc., forming a tablet convenient oo access and of ornamental description.

Corset fastening. - Thomas J. brough, Batimore, Ma. The lock of this device has handle bar and a hook which projects through and journaled in a cap plate secured to the corset, the cap ing for its pivotal movement, making a simple and onomical fastening.
Tobacco Box. - Joseph Lewis, Win red, Conn. This is a box for holding tobacco in plug or stick form, and has an attached knife nnd feeder knife portion occupying one end of the box, which coses when not in use while a swinging handle stut within a recess in the side of the box.
Mustache Trainer. - Isaac Com mons, Piqua, Ohio. This device consists of a piece o brought in engagement with each other, two such clas,s being en
desired position.
Toy Buzzer. - George T. Fallis, St. oseph, Mo. This is a device to be whirled in the air creases according to the momentum, the device being ttached to and swung by a string or cane
Tor Puzzle. - William W. Brown, New York City. According to this invention a scre on the inside of a bottle in a position apparently im possible to place it, but which is made possible by the division of the stem and a rod passed down an inne bore, the device being designed to tax the ingenuity of an investigator. Address E. Muehsam, No. 2 Walke
Street, New York, for particulars about this puzzle.
Note-Copies of ang of the above patents will be frnished by Munn \& Co., for 25 cents each. Pleas send name of
of this paper.

NEW BOOKS AND PUBLICATIONS.
Examination of Water for Sanitar and Technical Purposes. By Second edition, revised and enlarged with illustrations. Philadelphia: P Blakiston, Son \& Co. 1891. Pp. v 130. Price $\$ 1$.

The horizon of the medical school is kept in view by
the author of this work. It gives all the standar methods for determining the constu uents of waer, brief, the biological examination with determination of colonies of bacteria. A table of factors for calculation nd conversion tables, giving the grains per United tates galion and the grains per imported gallon, with her similar tables, and a full index, are contained nd and as an absistract and compendium of a defin
Geological Survey of New Jersey
Final report of the Sta te geologist
Vol. II. Mineralogy, botany, zool
ogy. Trenton, N. J. 1890. Pp. x
ogy.
824.
the of the report of State Geologist George H. Cook, whos or such they are, which have a value to naturalists an can be truly said to be inestimable. The fullness he work adds additional regret to the feelings of the cientific world for his loss. The present volume is de

L'Acier: Historique, Fabrication
EmploI. L. Campredon. Paris :
This is a very acceptable and prettily illustrated pre and tests.
Progressive Carpentry. By D. H Meloy. Waterbury, Conn. 1890 . Pp
55 . Illustrated. Price $\$ 1$. The results of the experience of fifty years are sup posed to be condensed into the narrow compass of thi
little book. It is devoted principally to roof framing little book. It is devoted principally to roof framin
and laying out work, and there is no doubt that it will be of use to many carpenters and buulders.
Progressive Exercises in Practica
Chemistry. By Henry Leffmann,
M.D., Ph.D., and William Beam.
M.
Mlakiston, Son \& Co. 1890. Pp. 104 Price \$1.
This little work is very acceptably presented. It reats in a very detailed method of the simplest chemiwashing precipitates and the other minutix of the cheof certuin institutions the Woman's Medical Colleg and the Pemnsylvania College of Dental Surgery, it would be of use in many schools where an elementary course of chemistry only is de i ed. It extends throug the simpler tests and work of inorganic chemistry. ncludes 253 experiments,
A Move for Better Roads. Essays on
road making and maintenance and contributions and a review, by
William H. Rhawn Philadil
University of Pennsylvania Press
1891. Pp. xvi, 319.

The new movement in the direction of better roads for his coantry finds an exponent in the present work. epresents the recent essays written in competition writing the best paper on the subject It contain addition to general matter, the first, second, and thi prize papers and a number of essays to which houo able mention was awarded, and a digest of the con ents of the remaining contributions by Professo Haupt. The information contained in this book is great variety, and it may be regarded as a standard wo enlivening effect upon our legislatures in the enactent of laws promotive of good roads throughout this coun

TH
The Washington Bridge over the Harlem River, at 181st Street its construction. By William R. Hutton, Chief Engineer. Illustrated. 6. Plates 63. Price $\$ 8$

This magnificent work describes in full detail all the It includes the false work, building of the foundations thereon, systems of hoisting, and all the details of the finished structure. As a monograph of one of the gre bridges of the world, perhaps the handsomest of all iron bridges, it is simply beyond comparison. The
plates include numerous photogravures illustrating the progress of operations, which come out with extrem clearness. In every respect the work is entirely be-
yond criticism, and is produced on so luxurious a scale that one can hardly hope that it will soon be surpassed by anything in literature or engineering.
The Five Orders of Architecture, Vignola, to which are added the Greek orders. Edited and translated by Arthur Lyman Tuckerinan for the use of the art schools of the Metro-
politan Museum of Art. New York: politan Museum of Art. $\begin{gathered}\text { New York: } \\ \text { William T. Comstock. }\end{gathered}$ 1891. Pp. 12. William T. Comstock.
Plates lxxxii.
Price $\$ 5$.
Plates Ixxxii. Price
As will be seen from the summary of this work, it
consists almost entirely of plates. The five order reated are the Tuscan, Doric, Ionic, Corinthian, and Composite. All of the orders are of the Roman type,
the Doric having a base, and all of the columns being
on pedestals. It gives, in other words, classic architec ture from the standpoint of the medixval architect. The character of the plates, their selection and the utility thereof for the working architect, the shadows cast by the capitals and bases receiving especial attention. Th leter leare is ath and lowed. Throughout the Applied Mechanics. By James H R. N. London: Macmillan \& Co R. N. London: Macmillan
1891. Pp. xiv, 512 . Price $\$ 1.25$

This excellent little work includes the genera branches of mechanics, couplestions, the steam engine strength of materials, and hydraulics. It is fully illustrated, and includes a number of problems for solution by the student. Like so many of the English ele-
mentary scientific works, it is written for the curriculum choo
The Rich Man's Fool. A novel. By \& Lee. 1890. Illustrated. Pp. 431. cents
The Chess Player's Pocket Book and Mandal of The Openings. Edited
by James Mortiner. Fifth edition.
New York: Dick \& Fitzgerald. (No date.) Pp. 74. Price 50 cents.
The leading openings of chess are treated in this
work with considerable fullness. It will be of use to many devotees of the game
Bibliotheca Polytechnica. Directory
of technical literature. A classified of .technical literature. A classified
catalogue of all books, annuals, and catalogue of all books, annuals, and
journals published in America, Engjournals published in America, Engyoiene and daily life. Edited by Fritz von Scozepanski. First an-
nual issue 1889. New York: Internual issue 1889. New York: InterE. Bernard \& Cie. St. Petersburg and Leipzig: Fritz von Szezepanski.

展 Any of the above books may be purchased through
his office. Send for new book catalogue just pub.

SCIENTIFIC AMERICAN

BUILDING EDITION.
MARCH NUMBER.-(No. 65.)

TABLE OF CONTENTS

1. Plate in colors showing the residence of P. H. Hodges, at Stratford, Conn. Perspec
floor plans, etc. Cost complete $\$ 8,000$
2 Handsome colored plate of an elegant residence in Riverside Park, New York City. Floor plans, perspective elevation, etc. Cost $\$ 30,000$ floor plans, etc. Cost about $\$ 7,000$.
2. Handsome residence of Mr. F. Chamberlain, at Hartford, Conn. Francis H. Kimball, of New York
City, architect. Floor plans, perspective elevaCity, architect. Floor plans, per
tion, etc. Cost $\$ 60,000$ complete.
3. Hlustrations of two attractive semi-detached houses erected for Mr. A. L. Pennock, at Philadelphia, Pa. Floor plans and perspective. Approximate
cost $\$ 15,000$ each. F. U. Beal, New York, architect.
4. Floor plans and photographic view of a residence at Edgecombe Court, Chicago, IIl. Estimated cost $\$ 5,400$.
5. A pillar cottage erected for Mr. G. W. Chilcis, at Wayne. Pa. Cos.
and floor plavs.
Handsome residence at Hartford, Conn., W. B. Tulbey, architect, New York. Cost $\$ 19,000$ complete. Floor plans and perspective
wo floor plans and photographic view of an attractive residence at Austin, Chicago, Ill. Estimated cost $\$ 7,000$.
6. A very convenient and attractive suburban cottage of modern design, erected for Mr. E. W. Given,
at Mont Rose, Orange, N. J. Cost $\$ 5,500$ comat Mont Rose, Orange, N. J. Cost $\$ 5,500$ com-
plete. Messrs. Rossiter \& Wright, architects, New York. Floor plans and perspective. Residence at Alexander Avenue, Buena Parh, Chicago. Estimated cost $\$ \mathbf{5}, 100$ complete. Plans and photographic view
Photographic perspective view of the residence of
Mr. Frank Crowell, Minneapolis, Minn Mr. Frank Crowell,
Joralemon, architect.
7. Miscellaneous contents : Preserving smoke pipes from rust.-Door hanging, illustrated with 6 figures.-Safe construction of buildings, illustrat-
ed with 5 figures.-Improved blind slat planing machine, illustrated. - Seamless copper house boiler, illustrated. - Best quality of roofing tin plate.-Blower engines of the Galena.-An effi-
cient sandpapering machine, illustrated. - The "Hero" spring hinge, illustrated.-The Duplex joist hanger.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages; forming, practically, a large and splendid Mafazine of architecTURE, richly adorned with elegant plates in colors and
with fine engravings, illustrating the with ine engravinge, illustrating the most interesting
examples of Modern Architectural Construction and allied subjects.
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largest circulation of any Architectural publication in the world. Sold by all newsdeale

MUNN \& CO., Publishere, 361 Broadway, New York,

Pusiness and Personal.

The charge for Insertion under thes head is One Dollar a line for each insertion: about eight words to a line Advertisements must be received at publication office

For Sale-New and second hand iron-working maFor Sale-New and second hand iron-working m. Acme engine, 1 to 5 H. P. See adv, next issue. Presees \& Dies. Ferracute Mach. Co , Bridgeton, N. J Burnham standard turbine. Burnham Bros., York, Pa ombinatiou mill for crushing \& grinding. See last issu Billings' Patent Breech-loading Single Barrel Shot , Hame Impora, Conn. Expanders. R. Dudgeon, 24 Columbia St., New York. Best Ice and Refrigerating Machines made by Davia Boyle. Chicago. IIl. 155 machines in satisfactory use. Money provided for manufacturing patented articles
of superior merit. Manufacturer, P. O. box 2554, N. Y. Screw machines, milling machines, and drill presses, , Tight and Slack Barrel Machinery a specialty. John Wanted-A $50 \mathrm{in} . \times 46 \mathrm{in} . \times 10 \mathrm{ft}$. Planing machine tate make and width of table. F. X. Hooper \& C 0 There, Ma
The best book for electricians and beginners in elec tricits is ". Experimental Science," by Geo. M. Hopkins,
By mail, $\$ 4$; Munn \& Co., publishers, 361 Broadway, N. Y For the original Bogardus Universal Eccentric Mill, Foot and Power Presses, Drills, Shears, etc.. address J J.
S. $\&$ G. F. Simpson, 26 to 3 3i Rodney St., Brooklyn, N. Y. The Dwight Slate Machine Co., of Hartford, Conn. make the most extensive line of hand, foot, and aut
free. Send for new and complete catalogue of Scientifi
nd other Books for sale by Munn \& Co., 361 Broadway New York. Free on application

hints to correspondents.
Names and A ddress must accompany all letters,
or no attention will be paid thereto. This is for our or no attention will be paid thereto.
information and not for publication.
References to former articles or answers should
give date of paper and page or number of question. give date of paper and page or number of questlon.
In quiries not ansiered in reasonabbe time should
be repeated be repeated; correspondents will bear in mind that
some answers require not a litle research, and,
though we endeavor to reply to all ceither by letter or in this departmente each must take his turn.
pecial rithen Ihar mation on maters of
personal rather than yeneral interest cannot be personal rather than yeneral
cientific American Supplements referred
to may he had at the office.
Books referred to promptly supplied on receipt

price.
$\begin{array}{c}\text { pherals ent for examination should be distinctly } \\ \text { marked or labeled. }\end{array}$

(2888) T. F. D. asks for gold luster for china painting. A. Dissolve 1 drachm gold in 34 ounce
aqua rega, or simply dissolve this weight of chloride aqua regia, or simply dissolve this weight of chloride
of gold in water. Add 6 grains of metallic tin, and nough aqua regia if required to dissolve it. Pour with constant stirring into a mixture of $1 / 2$ drachm
balsam of sulphur and 20 grains oil of turpentine. As it stiffens add $1 / 2$ drachm oil of turpentine and mix More gold gives a brighter effect: tin inclines it to violet tinge. Balsam of sulphur is made by boiling together in a covered vessel 1 part flowers of sulphur and
(2889) F. T. asks for a receipt for composition, by putting which in a small piece of cot ton batting the size of a small marble, and placing in a glass of water, it will produce sparks of fire. A. Possi-
(2890) A. A. B. writes: X contends that he point of solidification of a substance is the freezing point of that substance, or in other words that any substance that solidifies when itstemperature is sufficiently
lowered may be termed frozen when in its solid state. As for example : Glass, iron, china ware, etc., in their As for example : Glass, iron, china ware, etc., in the
solds state may be correctly termed frozen. . Y contends that this is not so. It is conceded that in general conversation it would not be correct, but from a physical standpoint it would not be incorrect to apply the expression, after the molecules have once congealed. Please decide the question. A. Generally we should gelation only, and we should not advocate X's conten tion. It is a question of etymology, not of science.
(2891) C. T. asks how to remove stains, made ky handling in damp weather, from the highly work is evidently not lacquered. Clean with putz pomade, then with whiting, and finally lacquer if the surace is not one having frictional contact with another surface. In this case have the work nickeled.
(2892) C. P. writes : Your answer to the following, also the way of doing it, will interest several square at one corser, by a rope 100 feet long; how much area in square feet can the horse feed over? A. He can feed over 4 quadrants, one of 100 feet radius, one of radius. These can be calculated by the regular formula $\frac{r^{2}}{4}$ giving 14,727 square feet.
(2893) T. F. D. asks for a good receipt for a harness dressing. A. Mutton suet 2 ounces, beeswax 6 ounces, powdered sugar 6 ounces, soft soap 2
ounces, indigo (real) or lampblack 1 ounce. Dissolve ounces, indigo (real) or lampblack 1 ounce. Dissolve the soap in $1 / 4$ pint of water, add other ingredients, melt
and mix, and add 1 gill of turpentine. Apply with a sponge and polish with a brush.
(2894) E. L. asks (1) how to compound bisture with which he could coat he inside of a woode A. Use resin 4 parts, gutta percha in scraps 1 part, and little luseed oil. Thicken if desired with ground pumice. 2. Would a rubber tube placed between the its efficiency ?
(2895) M. M. L.-For artiticial cider the ollowing is given : 28 gallons soft water, 2 pounds tar taric acia, 28 pounds New Orieans sugar, 1 pint yeass tir thoroughly. Let stand in cask with bung out fo 24 hours, add 3
stand 48 hours.
(2896) L. K. writes: I have a 25×30 hard rubber tray which I use for the silver bath; it has recipe for mending the same and making a good joint . Stockholm picch 3 parts, resin 3 parts, crude rubbe parts, turpentine 12 parts; heat and mix. Roughen dges before applying.
(2897) W. A. L. writes: I have seen a ombination of the usual vulcanite and aluminum in a dental plate. Is the latter likely to develop anything
eleterious in contact with acidulous food? A. No It is simply a question of durability
(2898) C. N. C. asks : 1. What will tak quicksilver off a gold ring? A. Heat it very carefully oo a temperature of 100° Fah. It is best to intrust it jeweler, as you may melt it. 2. What to mix with hy rofluoric acia to make etchings on glass look white an long. The first effects are frosted, which disappear with deeper etching. You may apply the gaseous acid volving it from fluorspar and oil of vitriol in a leaden dish the size of the glass to be treated. The latter is held by cross pieces or otherwise well above the liquid. All glass in the room may be injured. It is best done
(2899) B. W. says : We are having a discussion in class as to what has become of the Great
Eastern, the ship that laid the Atlantic cable. Please Eastern, the ship that ladd the Atlantic cable. Please
inform me. A. The Great Eastern was sold in 1888 for inform me. A. The Great Eastern was sold in 1888 for
(2900) H. D. D. says : Will you kindly hrough the Scientific American, give a rule for find ing the velocity in feet per second of a body falling hrough space at any given time? Exampie: A body alls 16 feet the first second and 64 feet the first two seconds; what is the velocity in feet per second at any
given point? A. Velocity at end of 1 second, $32 \cdot 166$ feet per second; velocity at end of 2 seconds $64 \cdot 333$ feet per econd ; $8.02 \times \sqrt{ }$ height in feet $=$ velocity at end of fall infeet per second; $32 \cdot 166 \times$ time in seconds $=$ velocity in feet per second at the end of fall; $16.083 \times$ square of the ime in seconds=height of fall in feet.
(2901) W. H. McL. says: Can you tell the variety best adapted to the coast of the Southern States? Also, kindly tell me the name of the worm that cuts off small branches from trees; they seem to prefer the wood of the persimmon and hickory to any other. Is there any way to keep these worms from destroying a grove of small Pecan trees ? A. Prof. C. V. Riley, of
the Entomological Division, Department of Agriculture, Washington, to whom we referred the above inquiry, eplies as follows: The department has no eucalyptus seeds on hand at present for distribution. Mr. McLeod can doubtless secure them from some seed dealer in San Francisco. The insect cutting off branches of persimmon, hickory and other trees is the twig girdler Oncideres Cingulatus), a species of the coleopterous beetie girdles with her jaws the twigs in August or September, and inserts one or several eggs into the wood above the girdled place. During winter time these twigs are usually broken off by the wind, and the larva develop in them on the ground during the next spring and sammer. If the girdled and fallen wigs of suca trees as are known to be infested are carefully collected and burned in winter or spring, the insect
will be kept measurably in check. Good illustrations of the beetle, its earlier stages and its work, are given in the American Entomologist, vol. iii, p. 297.
(2902) T. W. asks : 1. What is the most conclusive proof forthe existence of atmospheric pres-
sure? A. The barometer, which varies in height at pressed by powerful machinery? A. There is known limit to its compressibility. Theoretically, limit can befapproximated to. It has been compressed to many atmospheres. 3. Can a tight-fitting piston be drawn out of a cylinder, supposing no air could get behind is A. Yes. 4. Place a drop of water on dry surface, take piece of straight paper by one end, bring other end
down flat on water, it sucks down and is hard to draw way; why is this? A. Capillary attraction. 5. Will condenser fill with water or crush, provided only heat of steam can escape? A. Yes. 6. In breaking a piece of soft iron, do the molecules change from one side to he other, or what is supposed to take place? A. The molecules are supposed to be torn apart. 7. Is not the wear on the same half of the crank pin, no matter which way an engine is running? A. No; it is on op
poste halves for the two ways of running. The fallacy of the geometrical puzzle you submit is in the fact that the pieces as cut will not fit. There is a space left unfilled, which accounts for the apparent increase.

TO INVENTORS.

An experience of forty years, and the preparation of more than one hundred thousand applications for pa-
tents at home and abroad, enable us to understand the laws and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. A synopsis of the patent laws of the United States and all
foreign countries may be had on application, and persons foreign countries may be had on application, and persons
contemplating the securing of patents, either at home or abroad, are invited to write to this office for prices, which are low, in accordance with the times and our extensive facilities for conductink the business. Adress
MUNN \& CO., office ScIENTIFIC AmERICAN, 661 Broad-
way, New York.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted March 10, 1891, AND EACH BEARING THAT DA'TE

ISee note at end of ist about copies of these patents.l

winihite.

Cuspidor, C. L. Beers.

. ${ }^{44 \pi, 901}$ ${ }^{44,981}$

	holaer. Sash hander.
	ond bur
	Men
	$\begin{aligned} & \text { er wind } \\ & \text { con } \\ & \hline \end{aligned}$
	knitiong maschine stripp ing meehanism, J. Brad-
	for making tiut
	ine main
	and caxterem ili
	Mil
	Mille
	vasar in
	发med
	Sos.

LIST OF BOOKS ON ELECTRICITY
fine Tass, Dise, Reamens, Etic.

 WILEY \& RUSSELL MFG. CO., Greenfield, Mass.

Cheap Printine DEVELOPMENT OF AMEREAGAN

 HE PENNA. DIAMOND DRILL \& MFG. CO. BIRDSBORO, PA., Builders of High Class
8team Engines. Diamond Drilling and General
Machinery. Fiour Mill holls Ground and Grooved.
SMALL ELECTRIC MOTOR FOR AM-

ROS耳＇S

Mechanical Drawing SELF－TAUCHT．

Fourth Edition，thoroughly revised and corrected．

RECENTLY PUBLISHED．

economical apparatus．－by w

OIL WELL SUPPLY CO．Ltd

ARTESIAN

AIR BRLSH

PATENTS！

PATE $2=2=$
 ままaidewawewsiz

GTARS
 with common cast gears． Leland，Fanlconer \＆Norton C ON THE ELECTRO－DEPOSITION OF

THE EACLE
THE EASIEST RUNNING BICYCLE
IN THE WORLD．
IN THE WORLD．
GENTS WANTED． GENTS WANTED．
 gue sent Free to any Addres TAME EAGL

HARMON＇S IMPROVED Leveling Instrument．

 PAINTrioors DIXON＇S SILICA GRAPHITE PAINT

 MEDICO－GYMNASTICS．－BY JAKOB Bolin，M．D．－A paper in which the a athor recommendsto
the considerat

 OUSHMAN USHMAN N

RANKS THE HIGHEST Endorsed by the best Engineers．
CHALMERS－SPENCE CO．

CATALOCUE A Primer on Inventing，
Or rather on mechanical helps to inven－ tion，experiments，investigation，etc．，sent
free，io advertise our machine shop． CHANDLER \＆TAYLOR CO＇S

．NE．W YORKU．S．A

Barrel，Keg，Hogshead
STAVE MACHINERY．
E．\＆ $\mathrm{B}_{\mathrm{tar}} \mathrm{H}$
E．\＆B．Holmes，
ELECTRIC POWER TRANSMISSION
ARTIFICIAL INCUBATION．－A DE－

Useful Books！

PULLEYS HANGERS，PROGRESS MACHINE WORKS，
FRICTION CLUTGHES． 44 Parix PRIaco，NV．

TYPFWRTMRDCALLMAKESNEWQ REEONDHAND－

Experimental Science

THE STEAM ENGINE：ITS PRINCL

 AIdgSiliniownit itp

The scientitic American．Arenitectis and Builders
Edition（w）
3.00

The scientifc Amician CED Rutes．－． 2.50
The Scientifg A merican and Architects and Build－ 5.00

1 ational Life montpelier，vermont January $1,1891$.
 Paid to poolice Holders and or or Expenses， Asteatis jainifir 1 1．ispl，

\qquad
\qquad
\qquad
 60. CHARLES DEWEY，President． NEW YORK OFFICE， 151 BROAD VICTORS OUERMAN WHEE CATALOGUE OVERMAN WHEEL CO．，MAKERS，
CHICOPEE FALLS，MASS．
Boston． ON GAS ENGINES．－A VALUABLE

 NASH Gas Engine POWER and PUMPING can er exan

National Meter co．
new york，
JENKINS BROS．VALVES！
 ELECTRO PLATING DYNAMO．

 95 MILK ST．，BOSTON，MASS．

This Company owns the Letters Patent granted to Alexander Graham Bell．March 7th．1876，No．174，465．and January 30th， 187\％．No．186．78\％．
The transwission of Speech by all known forius of Electric Speaking Telephones in－ fringes the right secured to this Company by the above patents，and renders each
individual user of telephones not furnish ed by it or its licensees responsiblefor such unlawful use and all the consequences thereof．and liable to suit therefor． EdWard Dewey，Vice－Pras．
J．C．Hocghton，Treasurer．

AUTOMATIC IN FUEL AND WATER SUPPLY．
＂GLVMBIAS＂

POPE MFG．CO．， 77 franklin Street，BOSTON．

SAWS $\mathbf{S}_{\text {and }}^{\text {wanded simub Eawyers }} \mathbf{S A W S}$

STEREOTYPING．－A VALUABLE

WHY ARE SOME PEOPIE ALWA YS LATE？－They never look ahead nor think．People
 Bubs，or anything in this fine，MAKE NO MISTAKE this year，but send ro cents for Vick＇s FLoral Guide，
deduct the ro cents from first order，it costs nothing．This pioneer catalogue contains 3 colored plates．$\$$ zoo in cash Made in different shape from evor before ：Ioop pages $8 \% / 2 x$ xot $/ 2$ inchos．JAMES VICK，SEEDSMAN，Rochester，N．I．

 assestias STEAM PACKING
Boiler Coverings，Millboard，Roofing，
Builing Felt，Liquid Paints，Etc．
DESCRIPTIVE PRICE H．W．JOHMS MFG．C0．， 87 Maiden Lane，N．Y．

$\$ 3$ PRINTING PRESS．nananay

Seven New Styles and

Transparent parent
Fllms． THE EASTMAN COMPANY，

THE COPYINGPAD．－HOW TO MAKE And how to use；with an engraving．Practical directions
how to preparethe gelatine pad and also he dniine ink
by which the copies are made；how to apphy the written

CHUCK AND MICROMETER STOP

 HABRINGTON \＆KING PERFORATING © ，CHICAGO．

SVACCISE MALIEABE IMOWWOKKS

SCIENTIFIC AMERICAN SUPLE：

ELEVATORS，

GRAVESELEVATORS．
WORKING MODELS ？ud Experimental

B
 PATENT JACKET KETTLES

 NEW MAIL
 CuSHION TIRESA SAd TANG E SPOEE． Handsomestand Best Diamo Safety．Send for Catalogue． WM．READ \＆SONS．

 エエエヨ
ฐcientific gmerican

The Most Popular Scientific Paper in the World Only $\$ 3.00$ a Year，Including Postage．Weekly

This widely circulated and splendidly illustrated aper is published weekly．Every number contains six－ orizinal engravings of new inventions and discoveries， representing Engineering Works，Steam Machinery，
New Inventions，Novelties in Mechanics，Manufactures Chemistry，Electricity，Telegraphy，Photography，Archi－ etc．Complete list of patents each week．
etaral History Terms of Subscription．－One copy of the SCIEN－
TIPIC AMERICAN will be sent for one year－ 52 numbers－ TIFIC AMERICAN will
postage prepaid，to any subscriber in the United States，
Cond Canada，or Mexico，on receipt of three doilars by
publishers；six months，$\$ 1.50$ ；three months，$\$ 1.00$ ． publishers；six months，$\$ 1.50$ ；three months，$\$ 1.00$ ．
Clubecial rates for sereral names，and to Post
Masters．Write for particular． Masters．Write for particulars．
The safest way to remit is by
Express Monest way to remit is bs Postal Order，Draft，o Express Money Order．Miney carefully placed inside
of envelopes，securery sealed．and correctly addressed，
seld seldom goes astray，but is at the sender＇s risk．Address
all letters and make all orders，drafts，etc．，pavable to letters and make all orders．drafts，etc．，pavable to
MUNN \mathbb{E} CO．， $\mathbf{3 6 1}$ Broadway，New York．
§rientific Surcricaty ฐupplement
This is a separate and distinct publication from The
SCIENTIFIC AMERICAN，but is uniform therewith in size， every number containing sixteen large pages full of en－
gravings，many of which are taken from foreign papers gravings，many of which are taken from foreign papers，
and accompanied with translated descriptions．THE
ScIENTIFIC AMPIC SCIENTIFIC American SUPPLEment is published week－
l ，and includes a very wide range of contents．It pre－ ly，and includes a very wide range of contents．It pre－
sents the most recent papers by eminent writers in all
the principal departments of Science and the Useful the principal departments of Science and the Usefu
Arts，embracing Biology，Geology，Mineralogy，Natura
History，Geography，Archæology，Astronomy，Chemitry History，Geography，Archæology，Astronomy，Chemistry
Electricity，Light，Heat．Mechanical Engineering，Steam Electricity，Light，Heat．，Mechancal Engineering，Steam
and Railmas Engineering，Mining，Ship Building，Marine
Engineering Photo Engineering，Photography，Technology，Manufacturing Industries，Sanitary Engineering，Agriculture，Horti－
culture，Domestic Economy，Biography，Medicine，etc．A vast anount of fresh and valuable information obtain－ The most important Engineering Works，Mechanisms，
and Manufactures at home and abroad are illustrated and Manufactures at home and ab
and described in the SUPPLEMENT．
Canada， 江．$_{5} 00$ a year；or one copy of the SCIENTIFIC AMER ICAN and one copy of the SUPPLEMENT，both mailed for
one year for $\$ 7.00$ ．Single copies， 10 cents：Address，and emit by postal order，express money order，or chec．
MUNN \＆CO．， $\mathbf{3 6 1}$ Brondway，New York． Publishers Scientific American
Zuilding Edition．
The Scientific americanarchitects＇and bulid． Ens＇Enition is issued monthly．$\$ 2.50$ a year．Single
copies， 25 cents．Forty large guarto copies， 25 cents．Forty large quarto pages，equal to
about two hundred ordinary book pages；forming a large and splendid Magazine of Architecture，richly adorned with elegant plates in colors，and with other fine
engravings；illustrating the most interesting example engravings：illustrating the most interesting examples A special feature is the presentation in each number
of a variety of the latest and best plans for private resi－ dences，city and country，including those of very mod－
erate cost as well as the more expensive．Drawings in perspective and in color are given，together with full
Plans，Specifcations，Sheets of Details，Estimates，etc． The elegance and cheapness of this magnifcent work
have won for it the Largest Circulation of tectural publication in the world．Sold by all newsdeal ers． $\begin{gathered}\text { 2．50 a year．Remit to } \\ \text { MUNN \＆CO．，Publishers，}\end{gathered}$.
PRINTING INKS

