

NEW FIRE BOAT FOR NEW YORK CITY-THE NEW YORKER.-[See page 148.]

\$rimutifir glmerican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. ublished weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERIS FOR THE SCIENTIPIC AMERICAN One copy, one year, for the U. S., Canada or Mexico..
One copy, six months, for the U.' S., Canada or Mexico.
One copy, one year, to any foreign country belonging to Postal Union, 450 MUNN \& CO., 361 Broadway, corner of Franklin Street, New York.

The Sclentific American Supplement

 Spanimh Edition of the Scientific American.

MUNN \& CO., Publishers, 361 Broadway, New York
The safest way to remit is by postal order, express money order,
pratt or bauk check. Alake all remittances payabie to order of MUNN any failure, delay, or irregularity in receipt of papers.

NEW YORK, SATORDAY. MARCH 7, 1891

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
NO. 792.
For the Week Ending March $7,1891$.

 in. ELECTRMCITY- - Bateries. A series of articles on recent bat

 1X. TECHNOLOGY. Band Knife for Cutting Fabrics. - A cloth

COLUMBIAN FAIR PROGRESS

The managers of the International Exposition to be held in Cbicago in 1892-93, after many disagreements as to the site and other particulars, seem now to have come to sufficiently definite conclusions to per mit of the actual commencement of work. It is de cided that all the main buildings of the fair shall be a Jackson Park on the lake front, near the south end of the city, this park being connected by the Midway Plai sance with South Park, and together forming a large, unobstructed, and already improved site. The attemp to divide the fair, and put a portion of the buildings in the swall but beautiful park at Lake Front, near the center of the city, has been definitely abandoned although the latter park is to be adorned with statuary as lounging place for tourists.
The plans for the buildings in Jackson Park hav been very carefully considered by a commission of architects, which met in Chicago, February 20, and although all details are not yet finally determined, the wain features are fully laid out. Richard M. Hunt, of New York, presented three sketches for the Adminis tration Building; George B. Post, of New York, had sketches for the Liberal Arts Building : C. F. McKim, of New York, for the Agricultural Building; R. S. Peabody, of Boston, for the Machinery Hall ; Henry Van Brunt, of Kansas City, for the Electrical Building. Adler \& Sullivan, S S. Beman, W. L. B. Jenney, Henry Ives Cobb, Burling \& Whitehouse, the loca members of the comwission, had designs for the Transportation Building, the Mines and Mining Building, Horticultural Hall, Fish and Fisheries Building, and the grand entrance and triumphal arches. Olm sted \& Co., the landscape architects, of Boston, were
present with landscape designs, and Augustus St. Gaudens, of New York, advised in reference to decora tive statuary. It is said the buildings will surpass any previously seen at former international expositions, and that they will also cost more. It is expected tha there will be in all "about two miles of frontage and an average height of sixty feet, in which domes, cupolas and minarets will arise from the groups, while canal will wind about the base of the buildings." Iron, steel brick and glass will be used, but the materials will be so treated as to give the effect of granitic solidity, a classic style of architecture prevailing, and stone and granite of different colors being imitated with mar velous exactness.
It is estimated by the directory that the expenditures will be $\$ 17,625.453$, divided as follows : For construc tion, $\$ 12,766,890$; administration and organization $\$ 3,308,563$; operation, $\$ 1,550,000$. On these estimates the work has been commenced, and is to be energeti cally pushed, now that the location of the buildings has been finally decided upon and the plans virtually approved. The resources, believed to be available as fast as needed, are, from popular subscriptions pledged $\$ 5,000,000$, from proceeds on Chicago city bonds $\$ 5,000,000$. In addition to this ten millions, it is be lieved there will be ultimately realized-from gate receipts, $\$ 7,000,000$; from concessions, $\$ 1,000,000$; frow salvage, $\$ 3,000,000-$ or a total of $\$ 21,000,000$. The members of the directory consider these estimates ex
tremely conservative, and do not believe that there will be any further hitch in the progress of the work, from financial or other considerations.

ANOTHER FARADAY WANTED.

Among the scientific problems that await solution National Electric Light Association by Prof Elihu Thomson, to wit, a direct method of obtaining electri city frow fuel. The present method necessitates the in terposition of the steam engine, in which even under favorable conditions scarce more than ten per cent of the theoretical energy of the coal is recovered in me chanical power, this suffering diminution again at the wire end of the dynamo. "It alwost seems," said Prof. Thomson, "from all that we who are actively en gaged in looking up matters in this connection can say, it almost seems to us that we must wait for some new discovery, for another Faraday to cowe forward and show us principles which are not now known, some relation between electric energy and heat energy whereby we can convert even 35 to 40 per cent-we will be satisfied with that-of the heat energy into electric energy. Look what it means, should such a thing come about. The steam engine would disappear. The steam locomotive would disappear. The steamship would be propelled no longer by the steam boiler and the burning of fuel under a steam boiler. Fuel would be burned, but burned to produce currents. The ap paratus to propel the steauship would not be a stean engine with its reciprocating motions and its racking strain, but would have that quiet rotary motion which characterizes the modern electric motor.'
Edison has been working on the problem. If only he could solve it! Davy, after years of unrewarded study and observation, put two wires together tipped with carbon, drew them apart and got the flame which now we call the electric arc. We put together a me chanism which has made the generation of such ligh
commercially practicable. Faraday discovered the
principle which underlies the generation of current by the dynamo, being the first to move armatures in mag netic fields. We have profited greatly also by that If only now we could repay these free gifts by the dis e directly obtained

INTERESTING NAVAL INFORMATION BY THE

SECRETARY OF THE NAVY

The impression prevails in the popular mind that there has been a falling off in the speed of our new wa hips, and that they are incapable of the velocities with which they were credited on their original trial trips. It is claimed they were unduly pushed and strained on those occasions, to benefit the contractors, and nei ther have nor can ever again attain an equal speed This impression has been confirmed by the slow per ormances of several of the vessels since they were ac epted by the government.
A representative of the Scientific American re ently had a special interview with the Hon. Benjamin F. Tracy, Secretary of the Navy, respecting the above matters, and at the same time requested his views upo he new fast cruiser No. 12; also upon the proposal to employ fast naval vessels as mail carriers.
Secretary Tracy said: "The statements recently made concerning the cruisers of the new navy, namely that they have fallen off in speed from the records es ablished on the measured mile, and that they have never since approached in general efficiency and sea going qualities to the standard set up on the trial trips are untrue statements and misleading in the extreme These statements are particularly untrue of the Chicago, the Boston, the Atlanta, and the Yorktown as will be seen by comparing the speeds registered by these vessels on the trial trips with the speeds the have attained on more recent cruises. It is true, how ever, that the cruiser Charleston has not maintained the speed of her initial trip, and on her return to San Francisco, where she is assigned as flagship to the Pacific station, I propose to investigate the matter an find out the cause of her apparent deterioration. The reason for the falling off in this case is, I have no doubt, the same as in all former cases where there ha been an apparent deterioration in speed-poor coal and oul bottoms. The statement, I say, is not true of the Yorktown, built by Cramp and now attached to the squadron of evolution. At the series of trials held at Newport on August 21, 1889, her performance as re gards general sea-going qualities was as good as ever while the speed she attained on that occasion was eve reater than that developed on her trial trip.

It is not true of the Boston, which has been in commission many years, and is now also one of the squadron of evolution. She can to-day make as good speed as she has ever made. Look at the recorded speeds of the vessels of this squadron under the com mand of Admiral Walker, in Narragansett Bay, during the autumn of 1889. In this series of trials the Chicago registered a speed of 15.328 knots; the Boston reached speed of 15.58 knots; the Atlanta recorded a speed of 13.45 knots ; while the Yorktown, built by Cramp n 1887, showed an increase of 0.35 knot over the speed of the trial trip. Now, on ordinary occasions there is no necessity for a quick run, and the cruiser are, accordingly, not put to their best speeds. The initial or contractor's trips show us what the vessel i capable of doing, and this is contirmed by subsequent pecial trials. If, then, the cruisers do not invariably maintain the maximum speed, it is not because of any nefficiency of the cruiser, but simply because there i no necessity of stretching every nerve, of using forced draught, of striving to reach a speed which we know he vessel has reached, and can at any time reach again when the occasion calls for $i t$. The conditions that ob ain in a ship under forced draught are not conduciv to the continued efficiency of the engines or machinery and it is my opinion that no ship can be put to thi great strain for any considerable time without detri went to the vessel as a whole. This maximum speed should be kept as a reserve power, in case of grea emergency in warfare, and it should not be constantly exercised
"It is in accordance with this theory that the vessel of the new navy are not, as a rule, run up to their best records. But I think it can be shown that wheneve reat speed is a desideratum, the vessels of the new avy are, class for class, equal to and superior to th English vessels in maintaining and retaining thei nitial speeds.

The statement that the coal bunkers are of insuff cient capacity is an unreasonable one. Every vessel it has been said, is a compromise. In the designing o a vessel there are many features to be considered, and to a certain extent each must be modified by all the others. And so the speed of a cruiser must be con sidered in connection with the enduring capacity and with the weight of battery. As we, unlike mos European powers, have no intermediate coaling sta tions, it is particularly essential that the vessels o our navy have a large coal capacity; indeed, in my opinion, speed and coal capacity rather than weight o battery are the important qualities to be sought for in
a modern cruiser. It is with this end in view that the vessel now known as "Protected Cruiser No. 12" has been designed. It is expected that this cruiser when completed will be the fastest in the world and at the same time have a great coal enduring capacity. Among the things which we expect of her is to be able to steam around the world and return to her station without the necessity of once recoaling.
"She cannot, of course, owing to the lightness of her battery, take her place in battle against such vessels as the Chicago or the Yorktown. It is hoped that she will'be able to overtake the fastest merchant ships and to destroy them, to remain one hundred days in the seas, and to outsail and sink any of the fast passenger steamers. All this is expected with the same fire-room conditions that prevail on the transatlantic vessels. Although this cruiser is not a fighting ship, she is nevertheless well protected, and has a coal capacity of 2000 tons, with 750 tons at normal draught. Together with the regulation coal bunkers there will be along the length and next to the side of the vessel a cofferdam in bunkers, to contain fuel which will serve as a wall, and will not be used as fuel except in a case of emergency. At the very ordinary speed of 10 knots per hour the coal capacity is such that the vessel will have an endurance of 107 days.
"The proposition to carry the United States mails in the cruisers in order to keep the engines and men up to the standard of efficiency is, so far as the purpose in view is concerned, not a bad one; but if carried into execution it would be an enormously expensive method. The great difficulty which the navy has to cope with at present is the great la.ck of efficient sailors. But with the improvement and development of our merchant marine it is to be hoped that we will have a more fruitful and satisfactory field for recruiting than we at present possess."

Bursting Charges for Shells.

A great many experiments have been made to determine the proper kind of powder to be used in cannon, and, as a result of these experiments, the powder used has gone through a gradual change and development, from the fine grain of early use to the large, regular grains of the present day.
Projectiles may be either solid or hollow. In the latter case they must contain a bursting charge.
While experiment has determined the best form of grain of powder to propel these projectiles, the question of the proper grain to be used as a bursting charge for shells seems to have been quite neglected.
The "Manual of Heavy Artillery, U. S. Army," by General Tidball, which is officially adopted for use in the United States army, designates musket and mortar powder as the proper powder for a bursting charge. The United States army (light) artillery tactics, speak ing of a shell, says: "It is loaded with a bursting charge of rifle or musket powder, which gives great force to the fragments."
Musket and rifle powder have about $1,000,000$ grains to the pound, and mortar powder about 32,000 .
The reasons for selecting these powders are not given, but each authority seems to have based his statements on those of the preceding authority.
A shell may be used for two purposes, viz., demolition and against animate objects.
The proper bursting charge for the first object can easily be determined, as a shell buried and exploded would produce almost the same result as if fired frow a cannon.
The proper bursting charge for use against animate objects is not as easily determined. The fragments of the shell must not be too small, or they will not disable a man, nor must they be too large, for the number of fragments being diminished, the number of possible casualties will also be diminished.
To disable a man, the fragments should not weigh less than 1 ounce, and should have a velocity of about 500 feet per second, which would be equivalent to an energy of about one-eighth of a foot ton. The velocity of the fragments is due mostly to the remaining velocity of the shell at the instant of explosion, though some of it is incidentally obtained from the bursting charge. The latter's proper function, however, is to burst the shell, since the rotation of a rifled projectile gives sufficient dispersion to the fragments.
What kind of powder, then, will burst the shell into the greatest number of fragments one ounce or but slightly greater-say between one and two ounces-in weight?
With this object in view, some experiments have been made at West Point, N. Y. The bursting pit consists of a large chamber, 5 feet in diameter and 5 feet long, made of one-half inch boiler steel. On top is a manhole and chimney, through which the projectiles, fixed with electric primers, are lowered. This manhole also gives access to the interior for the purpose of collecting any fragments of shell that may not have been removed by the tools used for that purpose, and also for repairing the pit and allowing the smoke of the explosion to escape.
At the bottom of the pit a tube, 5 feet long, gives a
second access to the interior, and through it, by means Sliding plates tools, the fragments are removed.
Sliding plates close the manholes, so that the projectiles are fired with perfect safety, and no fragments can be lost.
To strengthen the steel chamber, a heavy granite house is built over it, and the space between the stone and the chamber is tightly packed with sand, so that it can safely be used to explode any shells and any explosive. The large size of the pit renders the conditions under which the projectile is exploded about the same as those in air
The shells used in the experiments were the 3 inch shells, similar to the ones used in the civil war for field service.
As bursting charges were used : Mortar powder, having, as before stated, 32.000 . grains to the pound; the I. K. powder, with 2,200 grains to the pound ; and the E. V. powder, with 72 grains to the pound.

The results are tabulated below

FIRST SERIES.		
Weight of shell before firing.... $8 \% \mathrm{l} \mathrm{lb}$.	81/2 lb.	81/2 lb.
Kind of powder................. E. V.	I. K.	Mort
Weight of fragments............ 71 lb .14 oz.	7 lb .8 oz .	b. 6 oz .
Loss in weight.......... 10 oz.	16	18 oz .
Number of fragments greater than		
1 oz.......................... 26	22	14
Weight of fragments less than		
1 oz 2 lb .	2 lb .6 oz .	41
Number of fragments from 1-2 oz. 15	12	8
" 2-4 oz.	5	4
greater than		
4 oz........................... 5	5	2
SECOND SERIES.		
Weight of shell before firing.... $81 / 2 \mathrm{lb}$.	81/21b.	81/2 1
Kind of powder.... E. V.	I. K.	Morta
Weight of fragments 81 lb .1 oz .	7 lb .6 oz .	
Loss in weight... 7 oz .	11b. 2 oz.	1 lb .8 oz .
Number of fragments greater than $1 \mathrm{oz} .35$	23	13
Weight of fragments less than		
$1 \mathrm{oz..}. ~ 1 \mathrm{lb} .6 \mathrm{oz}$.	2 lb .6 oz .	2 lb .13 oz .
Number of fragments from 1-2 oz. 21	13	6
$"{ }^{\prime} \times 2-4$ oz.	8	2
" " greater than		
$4 \mathrm{oz}. .$.	2	5

The loss, which is principally due to a portion of the shell being reduced to dust, which could not be collect ed, was wuch less for the E. V. than for the wortar powder. As fragments less than 1 ounce are not con sidered dangerous, that amount of weight of the projectile is counted as loss as well as the dust. The loss for the $E . V$. is just one-half that of the mortar. The number of fragments between 1 and 2 ounces given by the E. V. is three times that of the mortar.
Suppose each fragment of shell greater than 1 ounce to strike and disable a man, the number of men placed hors de combat would be as follows:

	E. V.	I. K.	Mortar
First series..	26	12	14
Second series.	35	23	13

The "Ordnance Manual of 1861," and Robert's "Handbook of Artillery," 1860, which were the au thorities for the United States army at the time of the civil war, designate rifle or musket powder for burst ing charges. Had a powder of the E . V. grain been used, the probable effect would have been much greater.
While up to date the experiments have not been ex tensive enough to determine the best kind of powder for a bursting charge, still they show that the E. V powder is much superior to the mortar, which is the kind still designated for use. The explanation for this would seem to be found in comparing the actions of the powders.
The mortar powder is much finer grained, and would be completely transformed into gas much more quickly than the E. V. Its action is much more violent, and consequently it would pulverize or reduce to fine fragments a large portion of the envelope, and so reduce the number of fragments over 1 ounce in weight. The E. V., being more progressive, would give a larger number of effective fragments. Powders finer than the mortar would pulverize the envelope still more, and larger grained powders would give a greater number o large fragments.
The theoretically perfect powder would be the one that would reduce the entire shell to fraginents 1 ounce in weight. It will require many experiments to ascertain the powder that approaches nearest to the theoetical ; but from the tables given above it will be seen hat, of the three powders tried, the E. V. is the bes for a bursting charge.

Refuge and observatory on Mit. Blanc.
Mr. J. Vallot, a member of the French Alpine Cluo, succeeded last summer in erecting a permanent structure on Mt. Blanc, to be used as a refuge and observatory. Plans of a small structure best adapted for withstanding high winds were drawn, and the build ing was constructed at Chamounix. The house was
then taken apart, and each timber was marked properly, so that the parts could be put together readily on the mountain top. One hundred guides volunteered their services to carry the parts of the building to the
was tied up into 111 loads, and the work of transport ation was begun. It was a tedious undertaking carry ing the heavy packages up the ascent. Three days were consumed in conveying each load to its destina tion. The work commenced on June 15, and on July 31 the last section of the building and the last of the ninety packages of scientific instruments had reached the site of the refuge observatory.
Six days before the last date Vallot selected five of the hardiest mountaineers as masons and carpenters, and set out for the mountain top to build the foundation. Two tents were set up for the temporary shelter of the party. The temperature was rather low for summer; the mercury dropped to 9 deg. below zero at night, and did not rise much above zero at noon. The men were clothed in regulation Esquimaux costume, with huge woolen gloves and heavy mountain caps. The style of dress was not conducive to rapid work, but the men labored vigorously from seven in the worning till seven at night. In two days the foundation was completed, and on the third the framework was in completed, and on the third the framework was in
place, in spite of the persistent attempts of the wind place, in spite of the persistent attempts of the wind
to overthrow it. On the fourth day the last plank was to overthrow it. On the fourth day the last plank was
nailed on the roof, and at night the workmen were nailed on the roof, and at night the workmen were
able to sleep in a less windy chamber than their tent.
The work, however, was extremely exhausting in the rare atmosphere. At the end of the second day one of the men was disabled. He was given a few whiffs frow the oxygen bag which Mr. Vallot had taken the precaution to include in his supplies, and recovered sufficiently to start down the mountain. The following day a second mountaineer was exhausted, and a third weakened on the third day.

Although the house was not entirely finished on the fourth day, it was thought inadvisable to remain longer on the summit, especially as the weather had become unfavorable. All hands, therefore, descended and took a brief rest.
On August 31 the party reascended the mountain, accompanied this time by Mr. Vallot's wife, an enthusiastic Alpinist. The refuge was properly braced with masonry, and the finishing touches were added. Lightning rods were put in position, after which colors were flung to the breeze to celebrate the completion of the work.
The building is divided into two apartments, one designed for the use of travelers and the other for scientific observers. The latter room is a private com partment. The public room is supplied with all the conveniences needed by the tired tourist. Nine beds are placed in the room, and a supply of provisions and of oil for light and fuel is always kept on hand. The observatory, which is said to be the highest in the world, is 14,350 . feet above the sea level. It contains automatic registering devices and the most approved appliances for making scientific observations in high elevations.

Prof. Winchell.

Prof. Alexander Winchell, an eminent American geologist, died at Ann Arbor, Mich., February 19, in the 67th year of his age. He was graduated at Wesleyan College in 1847, and taught school in several places until 1854, when he was called to the chair of Physics and Civil Engineering at the University of Michigan, and a year later was transferred to that of geology, zoology and botany, which he held until 1879. In 1866-69'1 filled a similar office in connection with the Universi ; of Kentucky. Meanwhile he made a survey for a rail road from Ann Arbor to Manchester, and in 1859 was appointed director of the Geological Survey of Michi-

This last work was practically finished when the civil war broke out, although Professor Winchell made paleontological researches in the material thus accumulated and in his publications established seven new genera and 304 new species, most of which were fossil In 1869 the survey was renewed under his direction but he resigned charge of it in 1871.
He accepted the chancellorship of the University of Syracuse in 1873, but at the close of that year retired from that office to become prof essor of geology, zoology, and botany in that same school. From 1873 to 1878 he filled a simlar place in Vanderbilt University.
In 1879 he was recalled to his old place at Ann Arbor, which he filled until his death. In 1886-87 he was connected with the geological survey of Minnesota. He received the title of Doctor of Laws from Wesleyan in 1867, and last year was elected vice-president of the Geological Society of America. His name has been given to fourteen new species. By his labor he has es tablished the Marshall group in American geology.

A NOVEL cowbination was recently exhibited in Chicago. A Fairbanks, Morse \& Co. steam pump was driving an Erwin water motor which was coupled directly to a Thomson-Houston dynamo. The results showed economy of fuel. The advantages of such a system are first cost is less and the cost of operating is reduced. Pumps may be used for pumping water during the day and then used for light at night. It would seem that the system would be of especial application at railway stations.
a Heater for USE with a gas burner.
The illustration represents a simple device for use in connection with a gas burner, to heat water or other liquids or food, or to heat rooms or passages. It has been patented by Mrs. Mary L. W. Martinot. The burner of the heater is of gauze or equivalent material, with a central opening to receive the gas burner, and upwardly projecting brackets support a semicircular table with a central opening, the table having a flange in contact with which rests a drum of sheet iron or other suitable material. Near the top of the drum is a side opening surrounded by a hood, adapted to direct the ascending hot air some distance out into a compartment to be heated, as shown in Fig. 1. Both the drum and the table have shields at the rear for the protection of adjacent woodwork. When the device is to be used for heating liquids, etc., the drum is removed, and a cup or other receptacle corresponding in contour to the space within the table flange is placed upon the table, as shown in Fig. 2. The device may be further supported, if desired, by attaching the upper shield to an adjacent wall or other upright.
For further information relative to this invention

martinot's heater.
address Mrs. Mary White, No. 1541 Broadway, New York City.

a COMBINED BATH aND WASH TUB.

In the construction shown in the illustration either tub may be used independently as desired, and each has an independent overflow or waste, as shown in the lower sectional view. The improvement has been patented by Mrs. Mary L. W. Martinot, of New York City. The bath tub has a top flange extending around hoth sides and one end, with grooves adapted to serve as slideways for longitudinal ribs on the bottom edges
of the wash tub, and the latter has, at one end, legs provided with castors, for its support when drawn out from above the bath tub, as shown in the upper figure. Stop blocks limit the outward movement of the wash tub, and branches of a waste pipe are carried up within the tub in the usual manner. The waste pipe of the wash tub has a sliding connection with the main waste pipe leading to the sewer or other outlet, with which the bath tub also has a bottom connection. When the bath tub is to be used, the upper tub is drawn out, as shown in the illustration, and is afterward returned to place above the bath tub previous to employing the wash tub.

For further information relative to this invention

address Mrs. Mary White, No. 1541 Broadway, New York City.

The body of every spider contains four little masses pierced with a multitude of holes, imperceptible to the naked eye, each hole permitting the passage of a single thread; all the threads, to the number of 1,000 to each mass, join together when they come out and make the single thread with which the spider spins its web, so that what we call a spider's thread consists of more than 4,000 threads united.

AN IMPROVED INDEX.
The illustration represents a convenient form of index, by means of which the references contained upon

JUDGE'S INDEX.

any page may be readily exposed to view, the reference cards or memoranda being inserted or changed with facility as desired. It has been patented by Mr. William A. Judge, of Santa Barbara, Cal. The index pages are held in a case open at the top and one end, there being near the inner end of the case a low trans verse partition serving as a rest for the sheets in normal position in the case, and near the other open end a similar but lower support to hold up the displayed sheet. A rod held in suitable position by nuts extends $\left.\right|_{p}$ through the case near the lower corner of the open end, and upon this rod is pivoted a series of bars each having a slight curve near its pivotal point, and each having a pivotal point, and each having a
lateral ear adapted to receive an lateral ear adapted to receive an initial letter. These ears are arranged one above' another upon the bars, so that all the letters will be exposed to view when the sheets lie horizontally in the case. Extending at right angles from the bars are strips provided with a suitable backing so attached as to form edge grooves, in which may be inserted in the desired order index slips of card or paper, thus index slips of card or paper, thus
making up each index page. Projecting frow the lower or inner side of each sheet is a short strip, which extends inward between the adjacent sheets, as shown in dotted ines, when a page is turned out the sheet in place. Each index page is exposed to view by simply pressing downward upon the ear carrying the proper initial letter, the operation being reversed to return the page to place within the case.

A New Solvent for Cellulose.

by c. f. cross and e. J. bevan.
Hitherto we have had no acid solvent for cellulose but such as in dissolving it bring about marked changes n composition and properties. In dissolving, the celluose is resolved, e. g., by the action of sulphuric and phosphoric acids, into products of lower molecular weight, and cannot be recovered from the solution Concentrated hydrochloric acid, as is well known, at tacks cellulose profoundly. When digested with the acid in the cold the fibers are completely disintegrated, and the resulting modification, obtained as a white powder, manifests very different properties from the original. When warmed with aqueous solutions of the original. When warmed with aqueous solutions of the
alkalies it is colored deep yellow, and the products of hydrolysis are powerful reducing agents (aldehyds). Some of the OH groups are also so affected that they react with acetic anhydride at its boiling temperature, giving, so far as our determinations show, the diacetate of a C_{18} compound. We find, however, that on dissolving in the acid one half its weight of zinc chloride, a solution is obtained (of specific gravity $1 \cdot 44$) which dissolves cellulose instantly and without sensible modification.
This observation is of importance, as it enables us to investigate some points in the constitution of cellulose for the determination of which such an acid solution is an essential condition. The solution of cellulose obtained by heating it with concentrated solutions of zinc chloride may also be diluted with hydrochloric acid, without precipitating the dissolved products, but the solution by the new reagent has the double advantage of being instantaneous and of being prepared, therefore, with the minimum of resolution of the cellulose into bodies of lower molecular weight which usually attends the somewhat prolonged heating necessary for complete solution in the aqueous solution of zinc chloride.
The reagent we also find of great value in the investigation of structural points, i. e., as an aid to micro scopic work in the province of the vegetable fibers. All forms of pure cellulose are rapidly dissolved by the
reagent, and the various stages preceding their final disappearance may be observed under the microscope, the observation throwing much light on structural peculiarities. The raw fibers, e. g., cotton and flax, are not dissolved, at least only partially, but swell up under the action of the reagent, with the result that the structural features are brought out with great pro minence. Jute and the ligno-celluloses generally are missolved by the reagent, and many of the adipo-cellu loses also. We are investigating these actions more closely, and hope shortly to publish an account of our observations. In the meantime, we commend the re agent in question to all who are engaged in the chemical or microscopic investigation of the vegetable fibers.-Chemical News.

AN IMPROVED PACKAGE TIE.

A tie for packages of documents and other articles, which can be readily and easily adjusted to suit the package, and which will not wear or fray out, as is sometimes the case with twine or tape, is represented in the accompanying illustration, and forms the subject of a patent issued to Mr. E. C. Plumer, of Columbia, S. C. The tie, shown separately at the top of the illustration, is made of a thin strip of pliable metal, preferably sheet copper, to one end of which is attached a bent wire link, the attachment being effect d by bending the end of the band over one end of the link, where it may be sucured by a small rivet if deemed necessary. The other end of the band is made slightly

PLUMER'S METALLIC BAND PACKAGE TIE. pointed, and is adapted to be passed through the other for reference, this strip serving as a guide to hold end of the link, upon which it is closely bent down when the tie is fixed upon a package, the end being secured, after adjustment, by a confining slide on the body of the band. This tie is comparatively indestructible and presents a very neat appearance.

IMPROVED SOUNDING BRIDGE FOR PIANOS, ETC

A sounding bridge designed to greatly increase the volume of sound produced by a piano or other instrunent in which the improvement is applied is shown in the accompanying illustration. It forms the subject of a patent issued to Mr. Martin Durick, of No. 567 Spring Street, Buffalo, N. Y. The improved bridge consists of a recessed strip of metal, curved in conformity with the wrest plank of a piano, and in cross section forming a hollow convexed bridge, as shown in one of the small figures at the side, there being a slight rib or projection in the top surface of the bridge upon which the wire rests. A modified form of this sounding bridge is made with a bottom wall, as shown in the other figure, the bridge then forming a hollow strip of metal. The main view shows the wrest plank with the sounding bridge in position.

Snow Worms.

Referring to a paragraph which appeared in the Scientific American of February 21, concerning the recent remarkable appearance of worms upon the surface of the snow, in Randolph County, Va., Mr. Geo. C. Hodges writes us that a similar phenomenon has been observied in the vicinity of Utica, N. Y., and in Oneida and Herkimer Counties. Specimens were sent by our correspondent to Prof. C. V. Riley, entomologist, Department of Agriculture, at Washington, who replied to him as follows :
" You send two distinct larvæ. The small species, of which there were 8 or 10 specimens, is the common Pennsylvania soldier-beetle (Chauliognathus Pennsylvanica), a carnivorous species which in the larva state destroys plant lice, bark lice, and the eggs and young larva of a number of injurious insects. This insect hibernates in the larva state and has occasionally been observed, both in Europe and in this country, fairly swarming upon the surface of snow, having been driven from its hibernating quarters by some peculiar weather combination. It hibernates at the roots of grasses, under stones and logs and under the loose bark of stumps, logs and old trees. The other and larger larva, of which there was only one specimen in the box, seems to be a variety of the bronzy cut worm (Nephelodes violans), an insect which also hibernates in the larva state, and has also been observed occurring in large numbers on snow. It is so recorded by your State entomologist, Dr. J. A. Linter, in his Fourth Report, published in the Forty-first Report of the State Museum, at Albany, N. Y., pages 54 to 57. He records the winter occurrence of this larva on snow at Rockville, Ontario, and Sullivan County, New York."

Amber.

Genuine amber is by no means so plentiful as it was some years ago, and amber cigar holders and pipe stems will probably rise in price. The genuine amber is a fossil gum, which was produced in large quantities by trees having a resinous sap, which flowed down the trunks and collected in masses at the root. It is found in the ground of marshes and other places where forests flourished in former times, and is also obtained by dredging. The German Ocean, Baltic and Black Seas formerly produced it in great quantities, but the supply is constantly decreasing, and, unless other fields are discovered, real amber will soon be scarce and costly. There is some satisfaction in knowing that the imitation is just as good in every way, so that even if the real amber gives out there need be no diminu. tion in the number of holders for cigars or mouthpieces for pipes. In this country comparatively little is used save for this purpose, but in India and China large lumps are in great demand, for, from some cause, an amber idol is far more highly esteemed than a golden image, and so the best amber all goes to the East to be made into gods for the pagans.-Great Divide.

A CENTENARIAN.

January 22, Colonel Nathan Whitney, of Franklin Grove, Ill., celebrated his one hundredth birthday. He was born in Conway, Mass., fifteen years after the declaration of independence, and was one of the pinneer settlers of Illinois, having lived within the State for fifty-four years. Before there was a sidewalk laid in Chicago and a bridge over the river, he was appointed a commissioner to organize Lee County and established his home on its prairies. He served in the war of 1812, and was mentioned for bravery at the battle of Lake Erie. Mr. Whitney had reached the age of threescore and ten when the first gun was fired on Fort Sumter. He has Fort Sumter. He has seen the development of the greatest nation on the earth from feeble States harassed by foreign foes, menaced by savages upon its borders, to a country of magnificent cities, which no internal war can disrupt and no foreign foe rupt and no foreign foe
intimidate. He received his first degree of masonry seventy-four years ago, and is probably the oldest mason in the world. We present a portrait of Colonel Whitney, his son, grandson, and great-grandson, four generations. The one hundredth anniversary of Colonel Whitney's birth of Solonel Whitney's birth was wade the occasion of a gathering of prominent masons from all over the State. Nathan Whitney Chapter No. 129, Royal Arch Masons, named in honor of Father Whitney,

COLONEL WHITNEY, HIS SON, GRANDSON AND GREAT-GRANDSON.
has also been brought out this year to meet the demand for a medium priced safety, having cushioned tires, which give life and elasticity and obviate all jar and vibration. Messrs. Wm. Read \& Sons, 107 Wash ington Street, Boston, are the manufacturers of New Mails and will send full particulars on application.

The New Screw Ferryboat J. G. McCullough.
The new ferryboat for the Erie and Western Railroad, built at Neafie \& Levy's, is of the same design as the Hoboken ferryboat Bergen, having a screw propeller at each end, the shaft running the entire length of the boat
The new boat is 215 ft . long over all, 1881/4 ft. long between the stern posts, 45 ft . beam moulded, 62 ft . beam over guards, 16 ft . depth of hold amidships, having a gross tonnage of 744 tons. It is constructed throughout of steel.
The machinery consists of compound surface condensing engine, having cylinders 26 and 50 inches diameter by 30 inches stroke, driving a shaft with a propeller on each end 8 ft .6 in . diameter. The engines are of splendid design, with the ordinary Stephenson link working a piston valve on the high pressure cylinder and a plain slide valve on the low pressure cylinder, and which are reversible by a separate steam engine. The circulating pump is of Neafie \& Levy's make, centrifugal in design, and the independent, air pump is of the Davidson type. All the bearings are of ample size, and all parts of the engine are perfectly accessible. The boilers are of steel, two in number each being 12 ft .8 in . in diameter by 11 ft . long, and supply steam at a pressure of 100 pounds. The engines being all below, but little space is taken off the driveways, enough only to pass the smokestack up, but it is in the side cabins that the enlarged space is appreciated, owing to the entire absence of the paddle wheel houses.
The cabins are wide, well lighted, and flnely finished. The sides and ceilings are paneled and finished a pale green, with neat decorations in silver, which makes a most pleasing effect. The windows are very large, the central one in each cabin being of particularly handsome design. The seats are finished in cherry. The electroliers and metal fittings are of splendid design, finished in silver, matching the decorations. The out side is painted a light salmon color.
The boat is provided with the Williamson steam steering engines, capable also of being worked by hand. She is lighted all over by the incandescent light, and is in all respects the " most modern" ferryboat in the fullest sense of the word, and she will be the model ferryboat of New York harbor. She has been named John G. McCullough, and will be used for passenger service between New York and the terminal of the Erie Railroad, Jersey City.

Maine Shipbuilding in 1890.
During the year 1890, there were launched from the New England shipyards, according to the Bangor (Me.) Industrial Journal, 207 vessels, aggregating 99,842 tons, of which 125 vessels, with a tonnage of 74,465 , were built in Maine. Massachusetts came next, with 54 vessels, of 13,603 tons, while Connecticut had 82 ves sels, of 11,772 tons.
Of the Maine fleet, the most notable is the ship Of the Maine fleet, the most notable is the ship
Shenandoah, which registers $3,406.78$ tons gross, and Shenandoah, which registers $3,406.78$ tons gross, and
$3,258 \cdot 58$ net, and is the largest wooden ship afloat. Also of great proportions, surpassed only by the Qhenandoah, is the Rappahannock, registering 3,053 tons net. The Parthea, 2,371 tons, the St . Marys, 1,943 tons, the L. D. Carleton, 1,788 tons, were among the finest ships that ever left Maine stocks.
Schooners continue to largely predominate among the vessels built in Maine yards, and big fore-and-afters seem to be as popular as ever. The number of four-masted schooners launched is in the vicinity of 30 , about one-half of whichslid into one-half of whichslid into
the waters from Bath the waters from Bath
ways. No less than 13 of these big fore-and-afters registered upward of 1,000 tons, yet they are not as large as the five-masted schooner Governor Ames, 1,690 tons, launched in Waldoboro in 1888.

The brownish discoloration of peeilings where gas is used is caused by dust, carried against them by the heated air currents produeed by the gas.

NEW FIRE BOAT FOR NEW YORK CITY-THE NEW YORKER.

The most important of recent additions to the ap paratus of the New York Fire Department is what is termed the floating fire engine, the New Yorker. The new "fire engine" is a boat built of iron and steel, provided with powerful engines for propulsion, and with duplicate boilers and duplicate pumping plant for the extinguishment of fires. When the capacity of the puinps and general perfection of the design together with the applicability of the boat for delivering heavy streams of water many blocks in from the water front is considered, it will appear that it is a most valuable auxiliary for the protection of the city.
The boat and machinery are built of iron and steel throughout, under full specifications furnished by the department. The length over all is $125 \mathrm{ft} .5 \mathrm{in} . ;$ on load water line, 115 feet. The beam moulded is 26 ft .; on load water line, 25 ft .2 in . The depth moulded is on load water line, 25 ft .2 in . The depth moulded is
14 ft .6 in., and the extreme draught is 10 ft . The dis14 ft .6 in., and the extreme draught is 10 ft . The dis-
placement is 351 tons. At the load water line the displacement is 351 tons. At the lo
placement is 52 tons to the inch.
The hull is laid upon a keel of bar iron 6 in . wide by $21 / 4 \mathrm{in}$. thick. The frames, spaced 20 in. from center o center, are steel angle?iron 3 by $21 / 2$ by $\frac{6}{16}$ in. for threefifths of the center of the hull, and 3 by $21 / 2$ by $\frac{5}{16}$ at the ends. Each side of a frame is in one piece, scarfs being prohibited.
The plating of the sides is laid "in and out," with thick strakes out. The garboard and sheer strakes (extreme upper and lower rows of plating) are 30 in . wide and $1 / 2 \mathrm{in}$. thick. The intermediate strakes are $\frac{7}{16}$ and $\frac{6}{16}$ thick respectively. The plates are all of steel.
For the woodwork, where such is introduced, white oak and locust are generally used, except for the deck and joiner work. The deck is of 3 in . white pine, and laid with the greatest care. Wherever cleats come, a white oak bed is laid for them, and white oak partners surround the bitts.
The bilges are coated with not less than one-half inch of Portland cement. This is brought up to the level of the limber holes, through which the bilge water finds its way to the pump well. Thus no water can lie stagnant between the frames.
For the iron an elongation of 20 per cent and tensile strength of 45,000 pounds, with 41,000 across the grain, and for the steel an elongation of 22 per cent with a tensile strength between 55,000 and 65,000 pounds per square inch, were prescribed.
The deck house is much lower than on other boats of this general class, rising only three feet above the deck. It is built of iron frames and plates. The pilot house rises 8 feet 9 inches from the top of the deck house (trunk deck) and is 15 feet long and 15 feet 9 inches wide, with 7 feet height of ceiling.
The boilers, two in number, are of the "Scotch" type, cylindrical, with corrugated furnaces. They are built for a working pressure of 148 pounds. Each is 12 feet diameter and 15 feet long, with 204 tubes of $31 / 4$ inches outside diameter. The outside sheets are thir-teen-sixteenths inch thick, and other portions of reduced thickness. Artificial draught is provided, and the boilers can be worked together or independently. The propelling engine is of the triple expansion direct inverted type, 24 inches stroke, with 15,24 , and 39 inch cylinders. The high pressure cylinder has a pis ton valve, the others have slide valves. It can work up to 135 revolutions per minute with 135 to 150 pounds boiler pressure.
The propellers are two in number. The fixed or for ward screw is 7 feet 9 inches diameter by 12 feet pitch. Back of this comes the "Kunstadter" swiveling screw and gear. This is connected by a universal joint to the shaft, which joint comes in line with the axis of rotation of the rudder. Thus the screw is swung to right or left with the rudder and aids in maneuvering the boat. It has been found highly efficient.
One independent air puinp and a circulating pump for the condenser is provided. The condenser is of the tubular pattern, with about 2,000 square feet of condensing surface. Steam steering gear and engine ar
provided in addition to the regular hand steering ap paratus.

For si

liope are provided.
The puinping machinery is of great power. It comprises two duplex vertical direct-acting pumps. Fach has two steam and two water cylinders. The steam cylinders are 16 inches diameter by 11 inches stroke. The water cylinders of the same stroke are of 10 inches diameter. The working pressure allowed for the water cylinders is 200 lb . to the square inch.

The pumps draw water in through two 16 inch suction openings in the bottom of the vessel, to which suction pipes are connected. The discharge is delivered through $91 / 2$ inch conuections into a 12 inch main that runs around the trunk or deck house, and which is provided with numerous connections for hose couplings. Several 12 inch valves are placed in the circuit, so as to shut off any desired portion. The line is pro-
vided with a number of $31 / 2$ and 6 inch hose couplings. Four 7 inch hand pipes are also carried upward, two to the roof of the pilot house and two aft through the
trunk. These are surmounted by swivel nozzles adapted for throwing $51 / 2$ inch streams if desired. A fifth
swivel nozzle is mounted on the bitts forward, and conswivel nozzle is mounted on the bitts forward, and con gether thirty-two discharges are provided for.
The hand pipes are manipulated from behind travel ing screens, made of double sheet steel with one inch air space, perforated for hose pipes, and with peep holes. These can be moved fore and aft to any desired point along the rail, and protect the firemen. There are three of these on each side. They are carried on rollers, which work upon the rail and upon the plank sheer with guides. Any screen can be lifted off its bearings and carried to the other side of the deck. Movable fire screens are provided for windows, which screens are kept stored away when not in use. Those for the pilot house windows have peep holes.

As an additional protection four spray pipes are car ried up along the front of the pilot house and else where, with cap and hose connection at the top. The object of these is to distribute water in a spray or rain like form over the deck of the boat. In this way the hose is protected in situations where the heat is great
Upon the trunk deck are two swiveling hose reel on which the hose is kept. Of this there are 3.000 feet ranging in size from $21 / 2$ inches to 6 inches diameter. A great variety of nozzles or discharge pipes are pro vided, of about every size from $21 / 2$ inches up to $51 / 2$ inches diameter.
The capacity of discharge is put at 10,000 gallons per minute, with the pumps making 200 revolutions.
In connection with the boat a tender is kept on land When the boat answers an alarm the tender meets i at the dock. This tender carries 1500 feet of $31 / 4$ inch hose. Thus, a fire half a mile inland from the river
front can be supplied with water in case the supply of front can be supplied with water in case the supply of city water is deficient
As the boat lies at the dock, fifty pounds of steam is maintained in one boiler, and the fires in the other are kept ready for lighting. On an alarm from its district being received, the lines are cast off, the artificial draught is started, and the boat is at once under way.
No official trial of the boat has yet been made. On an unofficial trial the speed was found to be high, or about 15 knots. A 5 -inch stream of water was thrown about 250 feet. The full record of her capacity, engine power, etc., has yet to be made up.
The hull was built by Jonson \& Ellison, of this city the engines by Brown \& Miller, of Jersey City, N. J. the boilers by McNeil \& McLoughlin, of Brooklyn N. Y. One set of pumps was built by the La France Fire Engine Company, of Elmira, N. Y.; the other by the Clapp \& Jones Manufacturing Company, of Hud on, N. Y
The total cost is put at $\$ 100,000$. A district extend ing from Twenty-third Street, on the Hudson River,
to Grand Street, on the East River, is assigned to to Grand Street, on the East River, is assigned to its protection. There are sleeping accommodations in forecastle and aft cabin. It is proposed, ultimately, to have
Our thanks are due to Chief Hugh Bonner, of the New York Fire Department, for information concerning the boat.

Crystalline Glass

Few trade secrets have been kept so well from th knowledge of the general public as the process of pro ducing the above mentioned species of decorative glass. It is said to be the invention of a French engineer, who called it " vierre gievre," or frozen glass. In the United States, where its manufacture has been brought to a uch greater state of perfection than in any othe country, it is known under the more common names of
chipped or crystalline glass, and the operation of manuchipped or crystalline glass, and the operation of manu
facture "glass chipping." It has a remarkable ap pearance, being covered with fern-like figures, no two of which exactly resemble each other, differing in both shape and form. To those unacquainted with the me thod of producing this glass-and there are very few that have any conception of how it is made-the process of manufacturing is very puzzling.
This method of ornamenting glass is so simple that most people, when they have it first explained to them will hardly believe that such simple means can produce uch marvelous results. It is done by covering glas with glue, which adheres to the glass, and when the glue dries it shrinks and draws with it pieces of the glass or chips of glass.
The first necessity in carrying out this process is to have the glass which is to be ornamented ground either by means of the sand blast or by the more troublesome means of grinding by hand. This is done by rubbing a stone with a flat side over the glass till it has lost its polish and become translucent. A thin layer of emery ept wet with water will facilitate the grinding, which should be as coarse as possible, and for which reaso grinding done by the sand blast is preferable
After the glass has been ground it should be kept scrupulously clean. Great care should be exercised trace of grease is very apt to make the results uncer-
tain. If the glass has, however, become contaminated, it may be cleaned with very strong ammonia, although glass which it has been necessary to clean is apt to be rather unreliable.
When everything is ready the glass is placed in a room where it is intended to carry on the process, ac curately leveled, and flowed with a solution made as follows:

Good glue is placed in sufficient water to cover it and allowed to soak for twenty-four hours. If the water is absorbed during the soaking, more may be added. It is thenliquefied over a water bath and is then ready to use
In practice it makes considerable difference which kind of glue is used. By repeated experiments it has been found that Irish glue is the best for the purpose. A wide brush is dipped in the glue and applied to the glass. The coating should be a thick one, otherwise it will not be strong enough to do the work required. When the plates are coated they may be placed in racks, and the temperature of the room raised to 95 or 100 degrees F. They are permitted to remain at this temperature till they are perfectly dry, which will be in from ten to twenty hours.
It is at this stage that the uncertain character of glue shows itself. Under certain circumstances the glue will begin to crack and rise of itself without any more manipulations, but most generally it will require to have a stream of cold air suddenly strike it. If the plate is perfectly dry at this period, and of sufficient thickness, the top surface of the glass will be torn of with a noise resembling the crack of a toy pistol. Some imes the pieces of glue will leap two or three inche into the air, and may even fly into the eyes and injure them. To guard against this it is customary for the workmen to wear a pair of spectacles fitted with plain glass. The glue will come off sometimes at the leas expected times, notably if the plate with dried glue is being carried from one room to another. Plates which have shown a decided disinclination to chip have manifested a remarkable and unexpected activity and have jumped into the face of the person carrying them in such a manner as to cause him to drop them.
The strength of the glue is something very extraordi ary. If the glass has been coated on the hollow or belly side of the glass, the slight leverage thus obtained is almost sure to break it, especially if the glass be sin gle strength. Even plate glass is not unfrequently broken. It might be a rather interesting mathematical calculation to find out the force necessary to sepa rate the surface of glass in this manner on a piece say 48 by 48 inches.
The result of the operation described may be various It may be either a design resembling ferns of various shapes and sizes, or it may be a circular design, exhib ting narrow, feathery appearances; or, if unsuitabl glue has been used, it may be of a nondescript appear ance.
If, after the glue has been applied, but before it has become any more than set, a piece of stout paper is pressed over it and it is allowed to dry in this way, the glass will have less the appearance of feathers, but will be much coarser and larger pieces will be removed. The circular design mentioned occurs under the same circumstances as the other, with the exception that it generally is made during cold weather. Sometime several weeks may run along and nothing but this for mation be made.
Some very elegant designs may be produced by sub witting the glass once more to the same operation, cov ering it as before and allowing the glue to chip. This is known by the name of double chip. If the glass was covered with the small circles in the first place, the second time it will have an appearance very much resemb ing shells, and for this reason this has been called shell chip.
If, instead of using ordinary glass, colored glass is employed, pretty and original effects may be obtained The glass may be either colored clear through or it may have only a thin coating on one side. In the latter case in some places the entire layer of colored glass will be removed, and in other places only a very little, and will therefore give all the gradations between thos two extremes.
Glass which has been treated in this way may be silvered and gilded and thereby be made still more remarkable in appearance
Extremely elegant effects may be obtained by what is known as " chipping to a line." The design is ground in the glass by the ordinary sand blast process. After he glass has passed through the machine, the protec tive coating (wax is generally used) is not removed, but is left on to keep the glue off those parts which arenot intended to chip. The glue is then applied in a thick ayer to the ground portion and the process is carried on as usual.

Simple and Excellent Furniture Polisis.
One part by measure of olive oil and two parts of vinegar. Shake well together and apply with a woolen cloth, after which take a dry woolen cloth and rub vigor ously. A housewife who uses this says it is a first rate, reliable furniture polish, aiways to be depended upon for giving most satisfactory results.

©orrespondence.

To the Editor of the Scientific American:

Inclosed find clipping from the Times in regard to the storm here. Please explain in Scientific Ameri Can.
H. C. Morrill.

White Lake, South Dakota, Feb. 12, 1891
"On Saturday night last, at about eleven o'clock, the wind raised and snow commenced to fall, the two mak ing what is commonly called a blizzard, and continued until about four o'clock Monday morning. It was not so cold, but otherwise was as severe a storm as that of
January 12,1888 . We have heard of no casualties or January 12, 1888. We have heard of no casualties or suffering, as people were generally at home and stock housed. One peculiarity of the storm was the large amount of electricity notable everywhere, persons coming in contact with each other or with any metal substance, or two pieces of metal, or in fact any two objects that were not non-conductors, would throw off visible flashes with a sharp snapping sound. When this happened to persons a very perceptible shock was felt, even through thick clothing. It was a very peculiar although accountable occurrence."
[The phenomenon described in the slip is a winterelectric storm. These storms are not frequent, but well understood by meteorologists. They are also called magnetic storms, because the magnetic needle is strongly affected during such electric manifestations. Their origin is supposed to be coincident with the de velopment of auroras, and probably caused by disturbances in the sun that produce sun spots. Their coin cidence has often been the subject of astronomical observation and record.-ED.]

Honor to Whom Honor, etc

THE INVENTOR OF ARBOR DAY.
To the Editor of the Scientific American:
In the number of your paper for January 10, 1891, in an article on "American Forestry Congress," credit is given to B. G. Northrup. Esq., for the invention of Arbor Day, saying that Mr. Northrup "suggested" the idea of making such a holiday "eight years ago at St. Paul." Your article closes by the remark that the benefits derived and derivable from Arbor Day "entitle Mr. Northrup to be regarded as a national bene factor."
Truth compels me to ask a correction of your his torical facts.
"Arbor Day" was invented by Hon. J. Sterling Morton, of Nebraska City, Nebraska. "At an an nual meeting of the Nebraska State Board of Agriculture, held in the city of Lincoln, January 4, 1872, the Hon. J. Sterling Morton, of Nebraska City, introduced the following resolution, which was unanimously adopted:
"Resolved, That Wednesday, the 10th day of April, 1872, be and the same is hereby especially set apart and consecrated for tree planting in the State of Nebraska, and the State Board of Agriculture hereby names it Arbor Day," etc.; the balance of the resolution relating to prizes to the county and person plant ing properly the largest number of trees on that day.
More than one million trees were planted on the day named ; and similar and increased results obtained in 1873. March 31, 1874, Governor Robert W. Farnas proclaimed April 8 as "Arbor Day," and requested the whole people of the State to observe it as a voluntary holiday.
Similar action was taken by succeeding governors until the session of the legislature of 1884-85 passed an act making April 2% of every year a legal holiday. The State Board of Agriculture gives annual pre miums about as follows:

conser the total number of trees planted under the operation of Arbor Day, between 1872 and 1888, as nearly two thousand seven hundred and fifty millions, a number which at only two feet apart each way would cover an area of nearly eleven hundred square miles of land.

Arbor Day has been adopted by other States. It should be by all. Besides its specific object-the encouragement of forestry in all its aspects-it is, quoting from a letter written by the author (inventor, as call him), Hon. J. Sterling Morton, to the subscriber "The only anniversary facing the future. All others turn to the past. Arbor Day blesses posterity, and leaves adulation of the ancients to birthday festivals.'
I would not detract from any praise due to Mr. North rup for his suggestion to extend the observance of Arbor Day; but the real honor of a suggestion which is to benefit not only the nation, but all mankind, in all justice belongs to the distinguished gentleman whose name has been given. Aug. F. Harver.

St. Louis, Mo.
Dr. Otto.-The death is announced of Dr. N. A Otto, the inventor of the Otto gas engine. Dr. Otto died at Cologne, in his fifty-ninth year.

Notes on Quarrying.

The drill steel is, perhaps, the quarryman's closest companion during his hours of labor. Even where quarries are equipped with all modern conveniences, and whether or not the power drill is used, the drill steel always has its place. Hand drilling in rock is not as simple an operation as it appears to the uninitiated. It looks an easy thing for a man to stand up and shake a "jumper" between his toes, or to sit on a one-legged stool and drive a piece of steel with a hammer, but skill and experience are required to do effective work n either case.
I did not realize that there was much antagonism between the jumper and the hand drill, as it seemed to me that each one had its place, but I have recently talked with an intelligent quarryman whose experience has been confined largely to Europe and Australia, and he insists with much positiveness that the jumper can outdrill any hammer and steel system under any and all circumstances. It is doubtless true that the jumper is the most popular drill in the quarries of foreign countries. It is the standard hand rock drill, and its use among quarrymen extends to hard and soft stone alike and to deep and shallow holes; but with us the jumper has its place, and is only used where we find by experience that it is better to so use it as against any other device for the purpose. In several rocks, notably the oolites of Indiana and Kentucky, the jumper is the best hand rock drill. We use it in sof rock for all "down" holes, whether shallow or deep. Its simplicity is very much in its favor, and a man who has become skilled in its use can do more work at les expense in time and material than with a hand drill.
Where the rock is as hard as granite it is difficult to start holes well with the jumper. Quarrymen abroad become so skilled with it that they are able to guide it with considerable accuracy in starting holes; but at best a jumper cannot compete with the hawmer dril in putting in shallow plug and feather holes in hard rock. Where deep holes are put in, it is best to start with a hammer until the hole is several feet deep and then use the jumper, as the effect of the hammer blow in drilling rock is very much lessened by the distance between the point where the steel is struck and the bit. In the case of the jumper the reverse is true, that is, the deeper the hole, the more effective is the blow because the steel is heavier. The "drop drill," such as is used for artesian well boring, is an illustration on a large scale of the principle of the jumper. A drop drill strikes with considerable force. In deep well boring, where a heary piece of steel is used, the blow is greate than that of the largest steam drill. This is becaus the drop drill is heavier and moves through more space, that is, it has a longer stroke. The advantage which the steam drill has is that it strikes faster.
The steel consumed in drilling is seldom taken into account when figuring on the expense of quarrying When using hand drills with hammers the consump tion in steel is twice as great as when using the jumper or as when drilling by power. This is because the hammered steel wears at both ends. As a genera thing the loss of steel is equally as great on the head as on the bit. In the case of power drills the loss is en tirely at the bit. Several years ago I removed about five thousand cubic yards of rock by submarine blasting and lost three hundred and ninety-five pounds of steel by abrasion and dressing. This amount is not excessive when compared with sandstone quarrying where the bits are rapidly worn by the grit. It is greater than would be the case in ordinary limeston quarrying, because submarine work involves many dif ficulties, and the proportion of holes drilled to rock re moved is greater than in surface quarrying
Let no one be deluded by those who claim to furnish machine hand rock drills. There is no such thing at the present time as a successful hand drill other than a jumper or a piece of steel struck by a hammer. The Patent Office records testify to the misguided enthusiasm of inventors in no more conspicuous manne than in the exhibit of hand rock drill patents. Ther have been, perhaps, as many patents taken out on hand rock drills as on power drills. In every case the inventor aims at something beyond the limits of reason He seeks to do more work with a machine in the hand of a human being than that person is capable of per forming. He seems to labor under the impression tha a machine creates power, when, as a matter of fact, it only utilizes, distributes, or transmits power. Every person is gifted by nature with a certain capacity for work. He cannot exceed that capacity. He is limited by power, which is represented by strength, and by time, which is represented by endurance. In other words, he is like a lever which may lift a heavy weight slowly or a light weight rapidly, but in each case the weight and the time when multiplied together give a esult which is the same.
A man when drilling by hand is the source of power, just as the boiler is the source of power for a steam drill. In order to get the full measure of power out of a man when drilling rock, his method of work should should be easy and natural. There should be as little
machinery and as little friction as possible. Give him a piece of steel and a hammer, and he has not only the simplest equipment for the work, but in wielding the hammer he follows natural laws, and is able to stand greater endurance.

A man may chop wood with an ax for hours without stopping, but in turning the crank of a grindstone he must pause for rest. Some men have invented hand rock drills with this view, and have complicated them by levers in an effort to get the natural motion of a man, but they forget that any machine when run by a man reduces that man's capacity for work.
A sewing machine has been instanced by those who doubt the truth of these arguments. A sewing ma chine enables*a person to do more work than he other wise could do, because the kind of work is such that it does not call for his full energy, and the way it is done is such that he cannot do it fast enough. The machine enables him to utilize more of his energy. But the case of drilling rock is different. It requires force In order to make progress in hard rock we must give hard blow. The progress in depth of hole drilled is in direct!proportion to the strength of blows multiplied by the number of blows dealt per minute. If a man swings a heavy sledge he hits a harder blow, but there will be less of them. With a light sledge he strikes more rapidly, but in each case, provided the light blow is heavy enough to do work, and provided the man uses his full capacity for work, the net result will be the ame.-Stone.

PHOTOGRAPHIC NOTES

Obtaining Warm Brown Tones on Bromide Paper or Lantern Slides.-Two formulæ given by Mr. Rober Talbot in the Photographische Neuheiten, the author tates, have proved to be very successful in his hands 1. With uranium nitrate. This method is very wel suited for Eastman positive paper, as well as for trans ferrotype paper. After the prints have been fixed washed, and eventually transferred, the following two olutions are prepared :

Solution A.

Ferricyanide of potassium.	5 grammes
Water....	500 c.c.

Water

Solution B.

$500 \mathrm{c} . \mathrm{c}$
Just before use, equal parts of solutions A and B are mixed. The print is immersed in the solution until the desired tone has been obtained, then washed thorough y, and placed once more in the fixing bath : Water.
Hyposulphite of soda............................... The above gives warm red tones. Warm brown tone are obtained if the print is allowed to remain in the above bath until it begins to acquire a brown color ; it is then immersed in a weak alum solution, when it is rinsed, fixed as above, and again thoroughly washed. 2. With potassium chloride. Three solutions are prepared:

Water..
Potassiu
Solution A.

Solution B.
Potassium chloride
330 gran
330 grammes.

Potassium chloride
Solution C.
Sater............
Citric acid.
The paper should be fully exposed, and then soaked n clean water. Then mix

The more of B is taken, the browner will be the tone The print is cleared, fixed, and washed as usual. $-H$. E Gunther, in Photo. News

Life Insurance.

The prime thing desired by any one paying money or life insurance is a sense of absolute surety that the amount called for by the policy will be promptly paid when it becomes due. With vast resources, and with a successful record of now nearly half a century in the business, the New York Life Insurance Company is in a position to satisfy the appliceic for life insurance tha he conditions of any contract with the company will be aithfully carried out. The forty-sixth annual report of the company, a summary of which appears on an ther page, presents a striking picture of its grea trength and steady prosperity. It affords also the best of evidence of the careful management of resources as large as are involved in the conduct of many of the governments of the world. Over one hundred thou sand people availed themselves of the care of the com pany during the year 1890. Over thirteen million dollars were paid to policy holders during the year, and it is said that the company carries about fifteen per cent of all the insurance in force in American com panies.

the pennington air ship

The rapid strides which of late have been made in the practical applications of electricity have prepared the way, in the public wind, for the ready acceptance of almost any new and striking proposal. In the popular belief the flying machine is next to an accomplished fact, and no very great surprise probably would be occasioned if the announcement were to be made to-morrow morning that a line of air ships had commenced to run between Chicago and New York. We are sorry, however, to be obliged to dash the hopes of a confiding public by the cold, unfeeling statement that the art of flying in the air by mankind has not yet been learned nor the means thereto invented. Looking at the subject from a practical point of view, our glorious people are likely, for some time to come, to be confined in their locomotion to the actual earth's surface, and to railway cars that make only from fifty to seventy-five miles an hour. But there are various schemes for air flying, and they look fine on paper. One of these paper enterprises has been widely made known in Chicago. It is styled the Pennington air ship. Twenty millions of dollars is the modest amount of the capital. A few of the shares have been reserved for sale to a hungry public. Those who have a dangerous surplus of cash on hand can promptly reduce it by investment in this deceptive and visionary scheme.
" Underneath the chamber is hung the cabin, and underneath the cabin are placed the storage batteries. The weight of these batteries make them useful for ballast, and are used to keep the ship in the proper position. On the four corners of the cabin are the stands, or brackets; these are cushioned, and when the ship alights not the slightest jar is perceptible. To explain how the ship is started, we will suppose a trip is about to be made; enough gas is put into the buoyancy chamber to make the whole ship weigh nothing, the propellers are gradually started and the ship gently rises from the surface of the earth until a height is reached to clear the tree tops and buildings in the course to be traveled. If there were any mountains or hills to clear, a uniform height could be at tained at the start, so that a straight course to the destination could be made. When it is desired to make a landing the ship's bow is headed to the wind, and the rudder set so that the current of air will place the ship at the desired point, the same way that a landing is made by a steamboat. The whole construction being of aluminum makes it lighter and stronger than any other material; that is, it will take less gas to raise it, and the great tensile strength of this metal will allow it to be rolled thinner than silk and still retain as much strength as steel three times as thick. The gas engine andall other mechanical devices on this

While the description by Eli Perkins of the French tove and its varied uses may be somewhat exaggerated it none too forcibly illustrates the habits of the French people in their household economy.
"The stove is about the size of an ice-water tank in a Pullman car. It is loaded with two quarts of coal, the small three-inch pipe adjusted to the chimney and the coal lighted. After burning awhile the draught is shut off, and the stove is wheeled around the room. The room is warmed in sections. First it is wheeled The room is warmed in sections. First it is wheeled
up to the old man, who throws out his fingers, then across to the old lady, who embraces it, and then up to the baby. Then it is wheeled back to the chimney, the draught opened, and the fire rekindled. There are usually two chimney holes about the room. After one room has been treated to a fire, the stove is rolled into the hall or into another room, or taken by the handle and carried up stairs. The same stove is used in the bed room to dress by, rolled into the breakfast room like a baby carriage, then into the sitting room. It is multum in parvo. It is a cook stove, fireplace, and furnace. The American who burns ten tons of coal in range, twelve tons in a furnace, and two tons in grates is amazed when he sees a whole house in Pari warmed with one ton of coal. The twenty tons used by the American would warm the Boulevard des

THE PENNINGTON AIR SHIP

We give a picture of the machine as it is intended to appear by its enterprising projector, Mr. E. J. Pennington, of Mt. Carmel, III. Any one at all acquainted with aeronautics can see at a glance that an uncouth, bulky device like this must be lacking in the essential elements of a successful flying machine. The inventor says:
"The main part of the machine is the buoyancy chamber. This in shape is an oblated spheroid, being large at the center and tapering symmetrically to a point at either end, and looks like a huge cigar. On the inside of this chamber are two compartments; one is a receptacle for gas and the other is used as an engine room. The engine that occupies this room is a three-cylinder rotary and propels the large wheel in front of the ship. The fuel that supplies this engine is gas and is fed direct. The main shaft on this engine is hollow, and the large propeller is keyed directly on to it. This sinaft is made hollow to allow the air to pass through it in the erlinders to keep them cool. On the top of the buoyancy chamber is placed the sail. This extends its full length and can be manipulated so that the currents will act to propel the ship as it does a sailing vessel in water. Attached to this sail is the rudder that guides the ship either to the right or left, and underneath this rudder is the tail ; this tail is patterned after a bird's tail, and is used to raise or lower the ship independent of the propeller wheels at the sides. On the sides of the chamber are placed the wings. These wings are so made that when the ship is descending they improvise themselves into parachutes, which makes the descent gradual. On each of these wings are placed two propeller wheels, for raising and lowering the ship.
ive benefit of their use for a long time."
The use of the storage batteries is not explained ; probably, however, they are for lighting the cabin. Where the gas is to come from to work the gas engines is not set forth.
To assist in floating this stock-jobbing enterprise the promoters have made what they call a practical demonstration of the invention on a s:uall scale, which is now exhibited in the exposition building, Chicago. This little side show consists of a thirty-foot cigarshaped balloon, inflated and raised by gas, and worked by means of a fan propeller, operated by a small electric machine carried below the balloon, which electric machine is worked by means of a wire extending from a battery on the ground. This float is tied to a string and when the current is turned on, the machine moves slowly around in a 50 ft . circle in the still air of the building. It is said to be interesting to see this cigar balloon move; but as a demonstration of anything new or promising in the way of aerial navigation it is with out value.

New Batteries to Protect New York City.
The government has recently commenced the work of locating batteries at Sandy Hook, to take the place of the old fort at that point, begun in 1858. Between that date and 1867 it is said over $\$ 1,000,000$ were expend ed on this fort, which was to have been one of the most ormidable in the world, but has become obsolete by the vast development which has taken place in modern heavy ordnance. The new batteries are designed to have twelve-meh guns and sixteen-inch mortars, with a range of from nine to twelve miles.

Italiens. Such overstrained economy has, however, its disadvantage in loss of health, and occasionally of life itself."

The Illuminating Power of the Edges and Sides
Mr. Alfred M. Mayer has contributed to the Amerian Journal of Science a paper on the illuminating power of flat petroleum lamp flames in various azimuths. The experiments were conducted with two varieties of flat flames-one being the flame of a Hitchcock lamp, in which combustion is maintained by a blast of air driven against the flame by a fan moved by clockwork, and the other a flame of an ordinary flat wick lamp. The latter flame was surrounded by a chimney; the former was not so inclosed. The following results were determined photometrically for each flame at three of the azimuths for which observations were taken. The angles were measured from the plane of the flat flames, and the results are expressed in standard candle power.

Azimuth.	Hitchcock Flame.	Ordinary Flat Flame.
0°	98	6.6
50°	$15 \cdot 8$	$10 \cdot 25$
90°	$15 \cdot 6$	$10 \cdot 6$

It therefore appears from these experiments that the edges of the Hitchcock flame and of the ordinary flat lamp flames give respectively about 37 and 38 per cent less light than the flat surface. This observation favors the use of ground or clouded glass globes for all kinds of flat flames, whether of oil or gas, not orly for the sake of appearance, but also for equalizing the light radiated in all directions.

THE PROCTOR TOWER.

The building and grounds committee of the Columbian Exposition have accepted the design for a tower which we illustrate herewith. The tower is to be of steel, 1,100 feet high, surmounted by a tall flagstaff. Ten elevators will carry passengers to the top. Four of these will run to the first landing, 200 feet above the ground; two will run to the second landing, 400 feet above the ground, stopping at the first landing; while two others will run up without stop to the second landing ; and from the second and third landings two will shoot up into the dome, 1,000 feet above the ground. The capacity of these elevators is 8,000 people per hour one way, or 16,000 people an hour up and down. The tower will be one glow of electric light from base to dome, the very top being illuminated by powerful search lights, which will throw a brilliant glow over the exposition.
Electricity will be used in numerous ways. Safety
devices, telephones, signaling apparatus, ventilating

THE PROCTOR TOWER.
fans, being a few of the necessary things that will be operated by this subtile force.
Hydraulic power, in all probability, will be used for running the elevators in the tower. Motors, however, will be used to operate pressure pumps that supply the water to the hydraulic cylinders.
Messrs. Holabird \& Roche, well known architects of Chicago, and Mr. C. T. Purdy, mechanical engineer, have the work of the tower in hand-a fact which is a sufficient guarantee of its perfect construction.-Electrical Industries.

Preserve for Binding.

The publishers of the Scientific American would advise all subscribers to preserve their numbers for binding. One year's issue (52 numbers) contains over 300 pages of illustrations and reading matter. The practical receipts and information contained in the Notes and Queries columns alone make the numbers worth preserving. Persons who have subscribed since the commencement of this year can have the back numbers sent them on signifying such wish. Their subscription will then expire with the year.

The Bone Grafing Experiment.

In the New York Charity Hospital, in November last, as described in the Scientific American of November 29, Dr. A. M. Phelps grafted a bone from a dog's leg in the shin bone of a boy, under circumstances which attracted general attention. Both boy and dog were bound side by side on a cot, where they might be kept as comfortably as possible for several days, anæsthetics were administered but moderately, and a piece of the bone about an inch and a half long was taken from the dog's limb and inserted in that of the boy, where it was ingeniously secured in position, care being taken not to injure the arteries or any im portant portion of the circulatory system of either. It was designed that the vitality of the dog should contribute to the growth of the bone in place in the boy's leg, which, it was estimated, would require about thirty days, and an artery of the dog was, therefore, conducted to the grafted bone, and muscle was stitched to muscle and skin to skin, to promote, if possible, a mutual growth. After three days the boy and dog became apparently comfortable together, and at the end of six days the wound was naturally healed, but at the end of eleven days there was an apparent shrinkage of the dog in the dressings, allowing of motion, and endangering the pulling of the graft from position, and the bond of union between the boy and the dog was then, on this account, severed. The operation had not been successful, but the bone graft was covered with an irregular new growth, and circulation was shown to have been established between the boy and dog. At the end of five weeks the graft was removed from the boy's leg, but the stimulation it had caused is said to have set up a reparative process, which gives hope that the original fracture may reunite. The boy now walks with the aid of one crutch or a cane, and the dog was carefully treated after the separation. Dr. Phelps is confident that bony union would have taken place with the graft if actual contact could have been maintained for a longer period, and says that " the operation is a success in so far as it establishes the principle that it is possible to grow large masses of tissue from an animal to man, and to establish the circulation until the union takes place between opposite species without danger to either. It also demonstrates that a growth of new bone takes place when a section of bone is transplanted and its nutrition maintained by the artery of the animal. This, if continued for four or five weeks, would probably unite a fracture."

Solutions of Celluloid.
Dr. Charles Ehrmann says: "Alcoholic solution of celluloid has been said to be an exceedingly fine retouching varnish. But celluloid is in reality not more touching varnish. But celluble in alcohol than ordinary gun cotton or xyloisoluble in alcohol than ordinary gun cotton or xyloi-
dine. When small and tiny shreds of celluloid are macerated in alcohol of 95 per cent, the substance swells up like gelatine in water; the alcohol permeates its pores and dissolves the camphor contained, so that the final result is a solution of camphor, nothing else. We do not deny that a thin stratum of camphor upon the gelatine film will assist materially retouching with a graphite pencil, but the medium is by no means celluloid, which has proved to be so excellent to retouch upon. After macerating the celluloid in alcohol, and a thorough dissolution of camphor, washing it in water and drying, it will burn with detonation, exactly like gun cotton-proof enough that the alcohol had no other effect upon it than that above stated."

A STOPPING AND SIGNALING MECHANISM FOR

 LOCOMOTIVES.A mechanism designed to automatically stop the locomotive and sound the whistle at or near stations, while not interfering with the operation of the engine by the engineer in the usual way, is shown in the accompanying illustration, and has been patented by Mr. James C. Gross, of No. 617 Adams Avenue, Scranton, Pa. At any station, curve, or switch at which it is designed to operate the mechanisw is placed an auxiliary double-inclined track rail, near the main rail. On the under side of the locowotive is a vertical cylinder carrying a piston which is norwally pressed downward by a spring, and the downwardly extending piston rod is engaged by a socket on a sliding rod carrying on its lower end a roller adapted to pass over the auxiliary rail. Connected with the lower end of the cylinder is a pipe from a reservoir of compressed air or any fluid under pressure, and the lifting of the piston by the action of the auxiliary rail on the roller admits pressure to the cylinder, from which an oppositely arranged outlet pipe in which is a check valve leads to a small reservoir. From the latter lead a num ber of pipes, one to a cylinder, with piston and me chanism by which the brakes are automatically applied, another to a mechanism connected with the throttle valve, to shut off steam from the engine, and another to a mechanism for operating the whistle When the engineer desires to sound a signal, shut off the steam and apply the brakes, at places other than
those thus provided for, he shuts off the pipe from the
power reservoir to the vertical cylinder, and opens a valve connecting such pipe with the small reservoir by which the several mechanisms are then simultane ously operated directly, and independently of the vertical cylinder, with its piston operated by the auxiliary

track rail. To reset the apparatus it is only necessary to open an escape valve releasing the pressure in the small reservoir.

AN EFFICIENT PIPE CUTTING MACHINE

The illustration shows a machine, patented by Mr. W. H. Garland, of Somerville, Mass., for cutting cast iron water and gas pipes of all sizes, from four to twelve inches in diameter. It has two side plates or frames, each having a circular hole to receive one end of the hub of a large toothed wheel composed of two semicircular parts, with flanges united by bolts. In the upper ends of the side frames are bearings for a shaft on which is a pinion engaging the teeth of the large wheel, the shaft having squared ends on which are suitable crank handles. On the side frames are upper and lower clamps, each having a vertical slot for the reception of a bolt to confine the clamp in proper position upon pipes of different sizes. The upper and tion upon pipes of different sizes. The upper and
lower clamps are connected by screw bolts passed lower clamps are connected by screw bolts passed
through ears in the clamps, by which the latter may be brought into firm engagement with the pipe. Adjustably secured upon the rotating gear or large wheel is a Slate cutting-off tool, the arrangement being such that the cutting edge of the tool can bealways brought into proper central line to cut freely into the pipe, while the feed is automatic, and the tool cuts very fast as it is made to travel about the pipe by the rotation of the gear wheel. This machine can be readily handled by two men and run by from one to four men handled by two men and run it work. The parts are interchangeable, and a
when particularly important feature of the improvement is that the parts may be separated to attach the machine to running pipe in the trench, whereby a great saving in time is effected, as compared with the methods now usually followed.
For further information relative to this invention address Mr. George A. Lloyd, East Cambridge, Mass.

Garland's pipe cutting machine.

New Electrical Research

We publish this week one of the most valuable con tributions to our knowledge of the properties and pos sibilities of alternating currents that 'has appeared for several years. The experiments of Mr. Nikola Tesla on alternating currents of almost transcendental fre quency give a deep insight into one of the most extraordinary portions of electrical science. Mr. Tesla has worked with dynamos giving as high as 25,000 alternations per second, and consequently has within his grasp a class of phenomena that are only hinted at so ong as experiments are confined to the frequencies in ordinary use. Not only is the work suggestive of practical results in the way of transforming by condensers, which with such frequencies becomes comparatively easy on account of the very small capacity required, but it is rich in suggestiveness as regards the relations between so-called electrical currents and the action that goes on in the dielectric. With a dynamo giving 20,000 or 25,000 alternations per second at an electromotive force of 500 volts, static effects became enormously enhanced. An immense amount of energy is dis tributed through the medium surrounding the machine, and, in fact, the experimenter may almost be said to be working in the dielectric of a condenser, of which the machine forms one surface and the surrounding walls the other. When incandescent lamps shortcircuited by a bit of copper rod glow with intense brilliancy at some distance from the induction coil connected to the machine, Geissler tubes, unprovided with any terminals whatever, spring into brilliant radiance, and even an incandescent lamp grows hot when brought near the coil, the experimenter suddenly awakes from his dream of electrical energy as a thing carried along a wire into the almost appalling consciousness that the energy in the dielectric is really the only thing with which he has to do. We cannot, in the brief space available in these columns, give any adequate idea of the interest and beauty of the results that Mr. Tesla obtained in this novel line of work; the paper itself wust be read and carefully re-read to appreciate the importance of the work. But even the striking experiments are of slight importance as compared with the theoretical results that are suggested by them. When displacement currents heretofore sought with almost negative results rise to a magnitude that heats the solid dielectric of the condenser almost to melting, one realizes with startling distinctness the truth of Maxwell's prophetic suggestions. Whatever may be our ultimate conception as to the nature of electricity, we are forced to the conclusion that the energy distributed through the dielectric is the allimportant thing in electrical phenomena, and that the surface conditions that we know as electrification and current are comparatively subsidiary. Electrostatic induction and electromagnetic radiation seem simple, almost necessary, facts, when we can work in a medium surcharged by the tremendous electrical stresses that make themselves evident in such a machine as that with which Mr. Tesla experimented. Even if this research should lead to no results of immediate commercial importance, it at least marks an epoch in scientific investigation by casting a flood of light upon phenomena that until now have existed merely as residual effects sought in vain by the experimenter, or noticed only as the concomitants of other and apparently more important electrical actions.-Electrical World.
Mr. Tesla's paper will be found in this week's SUPplement, No. 792.

The Microbe of Rheumatism.

Dr. Bordas has given in La Medecine Moderne the results of some of his researches in acute articular rheumatism, which in his opinion tend to show that the cause of that disease is a pathogenic micro-organ ism specific in character. He reports that he has been able to isolate and cultivate a microbe which, when in jected into the carotid artery of a rabbit, engendered an inflammation of the endocardium with vegetations upon the valves. He believes that acute articular rheuruatism with its complications will be proved to be a disease produced by microbes analogous in their production, for example, to the Micrococcus pyogenes, and he is convinced that the organism investigated by him will be found by others to be the specific germ of that disease. The investigation was conducted under the supervision of M. Germain See, and will undoubtedly stimulate parallel researches in other laboratories. These, if confirmatory, will be important as an advance, not only in ætiological, but in therapeutical results.

It is only a year or two since the opprobrium was felt by nearly every thoughtful practitioner when the question arose how it was that quinine cured malarial fever; and now this reproach no longer rankles in the mind since the laboratory work of Laveran has shown that the micro-organisin of malaria is destroyed by quinine in his test experiments ; and thus the old answer of many " green rooms," that quinine is competent to check malarial fevers by reason of the profound impression it makes upon nerve centers, is done
possible that the alleged discovery of Bordas may in the future be the means of explaining away that other enigma-why it is that salicylic acid and the salicylates are able to antagonize the rheumatic enemy in so lerge a proportion of cases.-N. Y. Medical Journal.

Fish Manure.

Peruvian guano, which has so long enjoyed a well deserved reputation, is really nothing but a fish mandeserved reputation, is really nothing but a fish man-
ure. We know that the sea birds, the guanäes, whose ure. We know that the sea birds, the guanäes, whose
droppings give rise to the guano beds, live exclusively on fish. What we see produced in our pigeon cotes and poultry houses is produced on a vast scale on the western coast of South America and on the islands in the neighborhoud. The innumerable sea birds which requent these regions deposit their excreta, which are derived from a strong animal diet, and are therefore very rich in nitrogen and phosphoric acid. Agriculture in making use of Peruvian guano utilizes for the benefit of the continent a substance which originates in the sea.
The rich beds of Peruvian guano being almost ex hausted, industry has undertaken to prepare guano by submitting the innumerable riches of the ocean, the enormous shoals of fish which frequent certain seas, to chemical and physical treatment, by means of which they are directly converted into a commercial fertilizer, comparable in all respects with Peruvian guano. The origin of both is the same-the sea; the difference is that the process of preparation has been altered. For the natural digestion of the fish by the birds, a kind of artificial digestion has been [substituted, which is purely mechanical, and acts by isolating the oily parts of the fish and leaving a residue composed of flesh and offal which, after various treatments, gives the fish manure now so well known in all agricultural countries.
Fish exist in great abundance on certain coasts ; enormous quantities are captured, for example, on the banks of Newfoundland, in the Polar seas, on the coasts of Norway, and even on the ocean coast of France. A large proportion of these fish is intended for nour ishment ; the cod, the herring, and the sardine are prepared for preservation; but they all leave waste such as the head, which should be utilized. Often the whole object of the fishing is the manufacture of manure. In America the fish manure industry is in a very flourishing state; the SCIENTIFIC AMERICAN estimates that it supplies agriculturists with 17,000 tons of fish guano per annum. The fish used is the menhaden, which frequents the coasts of America from Cape Hatteras to East Point. Since the fishing only lasts from May to November, every possible mechanical assistance is employed to enable the greatest amount of work to be done in the least time
While in France only damaged fish, such as cannot be used for consumption, is employed for this purpose, on the Atlantic coast of the United States a veritable fleet, made up of large steamers (some of which are of 500 tons burden), is devoted to the fishing, to supply the works at which the manufactare is carried on.
In order to save delay in discharging the vessels, at one of the largest American works, that of Mr. T Church, of Tiverton, elevators similar to those used for grain are employed to clear out the fish from the hold.
The fish manure industry has also been very largely developed in Norway. The firm of T. Jensen \& Co., o London, which has just carried off the highest prize for fish manure, oils, etc., offered at Vienna, occupie the first rank in this branch of commerce. It has es tablished large works, which turn out 2,000 to 4,000 ton of which are made from cod.
One of the largest works in the world devoted to the utilization of fish and their products is to be found at Brettesnoes (Loffoden Islands), on the northwest coast of Norway.
Brettesnoes, the name of which was scarcely known a few years ago, is now visited by all the tourist who go north to enjoy the spectacle of the midnigh sun.
Th
The town consists almost entirely of the establish ments of Tensin \& Co., whose offices are in London (109 Fenchurch Street). Its harbor, which is more than three miles in extent, can be entered at all times, ow ing to the great depth of water.
Messrs. Jensen also possess the island of Samoen and a vast territory situated in the Finmach, whithe the cod go after leaving Brettesnoes.
The steamer Louisa (1,000 tons) is continually employed in transporting guano, oil, and dried fish from the island to London, and returns freighted with coa and provisions. Three oth
The question naturally
fish, the necessary map become exhausted? In reply we quote the opinion of Prof. Huxley, as far as concerns Norway :
"Travelers who have visited the fisheries of the Loffoden Isles relate that the arrival of the shoals of fish in January and February is a most remarkable
mountain, penetrating the sea to a depth of 36 to 53 meters; these enormous banks of fish are continually arising from the west and south throughout almost two months. Supposing that each fish is 1.25 meters long, and at a distance of say 0.75 centimeter from its neighbor, there would be about $120,000,000$ fish per square mile.

Now, the fisheries of the Loffoden Isles have never yielded more than $30,000,000$ fish; the entire number taken in the whole of Norway certainly does not exceed $70,000,000$. It appears, therefore, that a single shoal of cod is more than sufficient to supply the whole of the fisheries of Norway for an entire year.'
Mr. Huxley points out that the cod preys upon the herring, so that the $120,000,000$ cod forming the shoal one mile square, supposing that each fish devoured a herring per diem, would destroy $840,000,000$ herrings a week.
These herrings, again, devour smaller fish, so that some idea may be got of the immeasurable riches of the northern seas at the period of the migration of the cod. Huxley concludes that this class of fish, cod, herring, sardines, mackerel, etc., may be regarded as inexhaustible.
The principal object of the Loffoden fisheries is the anufacture of cod liver oil.
As soon as the fish has been hoisted into the fishing boat, its head is cut off and the liver and roe extracted, the latter being used as bait for sardine: The only means of obtaining the oil fresh and sweet is to treat the liver immediately upon its removal from the fish. To effect this, and it is in this that Messrs. Jensen have shown their originality
A special boat, which is itself a complete manufactory, follows the fishing boat in tow of a tug. As soon as the livers have been extracted, they are piled up in small casks on the Trafalgar (the ship just mentioned), and immediately placed in basins heated by steam to extract the oil.
The oil is then refined and purified before being sen into the market. It is free from all putrescible matter is absolutely pure, and has a bearable taste.
The body of the cod is dried on the rocks to make "Klipfish," which is chiefly sold to Spain and the West Indies, or is salted and packed in casks.
The only portions of the unhappy codfish which are left are the head, backbone, entrails, and variou waste portions. These residues, after undergoing several varieties of treatment, furnish the fish guano. Potassium salts are added in order to improve the character of the article. The mean composition of this product is as follows :

mam		7 max	ait
${ }^{\text {¢ }}$	\% ${ }^{4 \times 9}$		

The great maritime fisheries of Norway produce Herring.
Herring............................... .. 121,069 cubic meters.
Cod......
48,647
$7,146,000$
A good and efficacious fish guano must contain as little oil as possible, because the fatty matter prevents decomposition in the soil
The oil is removed by mechanical pressure, and the pressed cakes obtained are again freed from oil by pro longed contact with boiling water. The residues are dried on plates or in retorts, and are then lightly roasted. This makes them brittle, and they are then ground and sieved.
This industry, the aim of which is to exploit the imnense reserves of the sea for the benefit of agriculture, cannot be too much encouraged. It forms one way of restoring the mass of fertilizing material which is borne into the sea by the rivers. It is another instance of the fact that in nature nothing is created, nothing is lost, everything undergoes change.-L'Engrais.

Robert Mushet.

This well-known metallurgist, the inventor of Mushet's special steel, died on January 29, 1891, in the eightieth year of his age. He had received full re cognition from the profession. In 1875 the British Iron and Steel Institute awarded him the Bessemer gold medal "in recognition of his great improvements in the manufacture of iron and steel." It was he who coped successfully with one of the early difficultie with the Bessemer process, suggesting the employment of manganese as a dephosphorizer. He also invented the process of adding spiegel iron to the metal in the converter at the expiration of the blow. This is one of the most important inventions in connection with the Bessemer steel process.

A Good rat story comes to us from Michigan. A straw held in the mouths of three rats drew the atten tion of citizens of Nashville to a strange sight. They were traveling along the road, three abreast, when it was discovered that the two outside rats were thu leading the center one, which was old and blind.

an ancient water elevator.

In Egypt and other countries where irrigation is practiced to a greater extent than elsewhere, the inventive mind has been alert for centuries, contriving devices of various kinds for elevating water. Some of these are so simple that they must have been obvious, while others show an amount of inventive genius worthy of our own century; in fact, as is well known, the fundamental principles of hydraulics were discovered ages since, and some of the early machines have never been materially changed or improved upon.
The Egyptian shadoof is a form of water elevator that has been in use from time immemorial, not only in Egypt, but almost all over the world. A device fully as simple as this, but not so old, is a gutter, which was made both single and double. It consisted of a trough pivoted at one end above the level of the water, the free end being alternately dipped in the water and raised, so as to cause it to discharge into a sluice leading away from the machine.
The pendulum water elevator shown in the engraving is a curious modification of the swinging gutter. A number of gutters arranged in two series are secured to opposite sides of a swinging frame, each series of gutters being arranged on a zigzag line, and the two series of gutters are oppositely arranged with respect to each other, so that while one end of the lower gutter dips in the water, the lower gutter of the other series discharges into the next gutter above, and a flap valve retains the water while the device is swung in the opposite direction. In this manner the water is advanced step by step at each oscillation, until it is finally discharged into the sluice, which carries it away for use. Each of the gutters, except the first of each series, is provided with a valve, which retains the water as it moves forward and upward.

vaseline.

The lack of communications concerning vaseline and its manufacture leads us to imagine that a few remarks on this subject may be of interest to chemists and others.
In a previous number of the Chem. Tech. Cent. Anzeiger (1881,42) two methods of manufacturing vaseline are given, one of which is specially prepared for official inspection, the other being entirely devoted to the excellent article made by L. Meyer, of St. Johann. No special points in the manufacture are brought out, and there is no space devoted to the theory of the manufacture, which is specially necessary for the explanation of this industry. It should also be noticed that several expressions in the descriptions above referred to appear more suited for a technical society pear more suited for a tech
than for a scientific journal.
That "sulphuric acid produces partiThat "sulphuric acid produces parti-
cles of carbon in oil" is, to say the least, not an expression which can be recommended as a model of scientific accuracy. It is also difficult to understand why the last traces of the chemicals employed cannot be removed from the oils; we, in the mineral oil industry, remove the very last traces of reagents, and so do those vaseline manufacturers who use chemicals, and do not confine their purification to filtration through a charcoal filter.
It is now generally known that every vaseline manu facturer has his own secret process, and preserves it as closely as he can; any one not belonging to a works being thus compelled to make his own investigations.
Leaving unregarded the two methods previously mentioned, the following process has been devised, similar to that usually employed in the manufacture and purification of brown coal tar.
In commencing such an investigation, it is necessary to first of all definitely settle two points: "What is the quality of the new material ?" and "What impurities are to be removed, and how can this best be done? Knowing this, the outline of the process to be adopted is more than indicated. The nature of the raw material varies greatly. It usually consists chiefly of the residues of the so-called American petroleum, or it may be Russian oil, especially from Baku, under Galician oil and even bitumen itself, or natural asphalt, either in the solid state under this name, or of the consistency of tar, under the name of mine tar. It is, of course obvious that no fixed method of preparation of the article termed vaseline can be given, and, in fact, the processes employed are very numerous
The paraffins, as is well known, are hydrocarbons of the marsh gas series, and are classified into normal and iso paraffins, the corresponding members of which have the same percentage composition, but different structure. The American raw material-the viscid res idue left on the distillation of the petroleum-is indis-
pensable for the manufacture of yellow vaseline. The American petroleum, as obtained by boring, contains both classes of paraffins, of which the normal can only be brought to crystallization by the distillation of the petroleum, whereas the iso paraffin remains dissolved in the oil. According to the extent to which the oils are distilled off, a more or less liquid or pasty product is obtained-lubricating oil and vaseline. The distillation therefore effects the separation of crystallizing from amorphous paraffin, and only such raw materials as contain the latter, which therefore cannot pass or can only partially pass into the crystalline state, are fit for vaseline making.
Saxon brown coal tar, as is well known, deposits soft paraffin in scales in the cold, and contains no amorphous paraffin ; these oils cannot, therefore, be used for the manufacture of lubricating oil and vaseline.
The case is quite different with American petroleum. The residues from the distillation of American petroleum, which, as already mentioned, form a viscid or even soapy mass, are heated by steam and then well agitated with sulphuric acid to remove the resin which is still present.
At the close of this operation, after running off the caustic a tap, the excess of acid is neutralized with thoroughly wosh with carbonate solutil all the soda is thoroughly washed with hot water until all the soda is

PENDULUM WATER ELEVATOR

removed. The material is then decolorized by anima charcoal, the liquid vaseline being stirred up with the charcoal by the aid of steam, and is then filtered hot The only difficulty which has to be overcome in purify ing the distillation residue lies in the correct proportion of soda solution to acid, which must be closely adhered to, since an excess of the former may emulsify the whole mass. The animal charcoal which is employed to decolorize the hot vaseline contains, as is wel known, many inorganic salts, especially calcium phosphate and magnesium phosphate, as well as potassium chloride, sodium chloride, etc., so that it must be washed out with hot water, then with hydrochloric acid, then again with hot water, and finally dried; it thus acquires the property of retaining any caustic soda which has not been removed by washing.
The Russian oils are of special interest because of the " vaseline oil" which is made from them. After the light oils and normal paraffin have been removed from the oils, the heavy oils are purified by pressing, whirling, and decolorization, and then form the "paraffinum liquidum" of the pharmacopœia, which is also, probably, a solution of the iso paraffin in mineral oil. Messrs. Hill, of Troppau, in Austrian-Schlesien Messrs. Hill, of Troppau, in Austrian-Schlesien, have
for some time been producing a so-called "viscous natural vaseline." This product is of a darker color than the American quality, and is manufactured from so-called "blue oil," obtained in the distillation of Galician petroleum, directly after the light oil. It is an almost buttery mass, which deposits scales of of heavy oils and solid paraffins. If, however, the dis
tillation be stopped immediately after the lightest oils have come off, the residue in the retort, after treatment with sulphuric acid, etc., forms a homogeneous, fatty, lustrous mass-vaseline. This " viscous natural vaseline" is, therefore, the residue of the so-called "blue oil," which still contains amorphous paraffin, to which it owes its viscosity
In making some experiments on the manufacture of vaseline, an oil was selected which had been obtained vaseline, an oil was selected which had been obtained
from the natural asphalt of Bentheim. The latter was submitted to distillation over a fire, and the oil fractionated according to its specific gravity. The oil of specific gravity 0.856 appeared the most suitable for the purpose. It was mixed with 4 per cent of sulphuric acid of 66 deg . B., and the resin drawn off after allowing the oil to stand for about twelve hours. It was then washed repeatedly with hot water until the latter gave no reaction with litmus paper. The clear oil was next thoroughly shaken with caustic soda solution, to remove creosote, the lather drawn off, and the oil again washed and treated while hot with the so-called decolorizing powder, the residues of the potassium fer rocyanide manufacture. The mass was then filtered and distilled until a heavy oil remained in the retort which, after pouring out, became more viscid on standing, and was a kind of vaseline, since it deposited no crystalline matter even at 10 deg . Unfortunately the light yellow mass became dark colored again when the oil was redistilled over the flame. However, no apparatus was at hand which would permit of the treatment of the strongly concentrated oils with reagents by the aid of steam, and it was, therefore, necessary to distill the oil after treatment. The vaseline obtained was yellowish brown, and had the well known bluish fluorescence, but was still rather fluid, differing in this respect from the American article, which it otherwise resembled.

The object was to prove that any distillation residue containing iso paraffin is more or less fitted for vaseline making and this was successful. Whatever spe cial method the individual manufacturer may possess of bringing the oils to the right consistency more rapidly and more simply, or of producing a light colored and odorless vaseline, the main outline of the process adopted cannot vary much and must lead to the wished for end provided that the crude material con tains amorphous paraffin. Only such a material, which remains without crystal line deposit, even in the greatest cold can produce the requisite viscosity of vaseline, and it will be found impossible to produce viscous vaseline from an oil which contains normal paraffin. The product will simply be a solution of crystalline paraffin in oils, without possessing the proper viscosity of vaseline, and will crystallize at a low tewperature.-Chem Tech. Cent. Anzeiger, Chem. Tr. Jour.

Electrical Utilization of Insects.

An electric apparatus supplies a strong light which attracts the insects and moths; a suction fan worked by the elec tric current draws them in when they approach the light, and carries them into a small mill, also worked by the electric current, where they are ground up and mixed with flour and thus converted into poultry food of excellent quality. This is said to be a Bavarian contrivance.

Failure in a Noted Case of Skin Grafting.
Mr. John O. Dickerson, of Chicago, on whom was engrafted 144 square inches of human skin, taken from 132 different individuals, in January last, died on February 24. The occasion arose from the removal of a cancer, and it was at first cousidered the operation was likely to be a success, the new skin having begun to attach itself over the wound, but the stowach of the patient gave out, the system having been overtaxed by numerous operations, and when nourishment failed the wound ceased to heal. Full particulars of the operation will be found in Scientific American SupPlement, No. 788.

In Switzerland a Sunday law has been enacted applying to all railroad, steamboat, and tramway companies and post offices. Working time must not be more than 12 hours a day, even on occasions of increased traffic. Engine and train men must have at least 10 hours unbroken rest, and other employes 9 hours. They must also have 52 days off yearly, and 17 of these must be Sundays. No reduction in wages is to be made for such rest days. All freight traffic on Sunday is prohibited, except live stock.

RECENTLY PATENTED INVENTIONS.

Engineering.

Safety Valve.-Erastus B. Kunkle, Fort Wayne, Ind. This is an improvement on a former patented invention of the same inventor, in which the
valve body has a hood-shaped cap with a slide outlet, a cup-shaped valve being seated in the body, which con tains a helical spring, the parts being so arranged tha when the spring is once set, and the parts are put in
position to lock a regulating screw in place, the parts cannot be tampered with without attracting the atten tion of those in charge.
Rotary Snow Plow. - John W. Haughawout, Omaha, Neb. This plow has a wheel with dles, so as to form a central space on the back plate where a cone is centrally secured with its base extending into the central space, reversible cutters being held on the front end of the paddles and the wheel being re volved by suitable means as the car holding the plow in
pushed forward acainst the snow, whereby the snow is pushed forward against the snow, whereby the snow
readily cut and discharged to either side of the track.

Railway Appliances.

Rail Joint. - John B. Walker, Cor vallis, Oregon. This is an improvement in that class of
rail joints in which a joint piece or girder is applied beneath the abutting ends of the rails and secured to them by claws or flanges that embrace their bases, thus
forming a bridge and support for the rail ends and also forming a bridge and support for the rail ends and also
holding them in due alignment, the joint piece or girde holding them in due alignment, the joint piece or girde
being so constructed as to be superior for its purpose.
Dumping Car.-John Lawson, Michigamme, Mich. This is a car adapted mainly for use in
mining work, hut also adapted for other purposes, and has a rigid flaring top, with suitable means for dumping the car, and for returning it to the point at which it is loaded, easily discharging every piece of material with
which it is loaded, while it is operated in such manner which it is loaded, while it is operated in such manner
that it cannot break loose, is very strong, and inexpensive in construction.

Electrical

Magnetic Ore Separator.-Charles G. Buchanan, New York City. Combined with hollow cylinder of magnetic mateial is a series o
magnets within the cylinder connected to proauce magnets within the cylinder connected to proauce posi
tive and negative poles in alternation around the circum ference of the cylinder, while a commutator connected with the cylinder is adapted to change the direction of the current, and there is an ore-feeding hopper and
stirrer to insure a uniform flow of ore to the separating cylinder.

Mechanical.

Soldfring Tool.-Edwin L. Barber, Henrietta, Texas. This is a tool which requires no furnace to heat it, having in itself a reservoir for gaso-
line or other light hydrocarbon and a burner and a line or other light hydrocarbon and a burner and a valve for regulating the combustion of the
required for the proper heating of the tool.
Die for Making Bolts.-Thomas J. Bush, Lexington, Ky. This is an improvement on former patented invention of the same inventor, relative
to making interlocking bolts, the improvement consisting of a die or drop forging machine of peculiar con straction to shape the locking end of the bolt.
Spindle Driver for Spinning Ma-chinEs.-Samuel James and Jeremiah K. Sanders,
Lebanon, Mo. This invention covers a novel banding and tension mechanism whereby the spindles in a section of the machine will be simultaneously rotated in the eame direction by a single band, the tension being
automatically regulated, while a self-feeding oiler enautomatically regulated, while a self-feeding oiler en-
:bles the apparatus to be run longer without stoppage ibles the apparatus to be run longe
than has heretofore been possible.

Agricultural

Poison or Fertilizer Distributer. -Charles K. Foster, Iola, Wis. This is a machin oesigned to drop the poison or fertilizer upon the hills cause the material to drop upon any hill out of the cause the material to drop upon any hill out of the when the plants are high and spread from hill to hill,
the invention covering a novel construction and combination of the several parts.

Miscellaneous.

Wais'tband. - Frederick Spitz, New York City. This invention provides for the making of a waistband strip adapted to be wound in a roll, the proper lengths wanted for use being cut therefrom fo ase as desired, eyelets being formed at frequent inter
vals in the strip, and independent elastic loops near the vals in the strip, and independent elastic loops near the
Garment Supporter.--Spurgeon C Scantlebury, Eastport, Me. This inventinn provides a
slotted plate, with studs and a key, forming a device lotted plate, with studs and a key, forming a device applicable with other garments, quickly and easily ap plied, not liable to slip, and that will not tear the gar ment.
Radiator.-Arthur H. Fowler, Buffalo, . Y. This is a construction to facilitate the circulaor having or hot water to heat buildings, the radiaide passageways and air ducts, and other novel feaures, designed to give a larger heating surface propor renate to the height of the radiator than usual, while educing the cost of
Casing Tobacco. - John C. Frost, with a casing cylinder having perforated coil pipes for spraying a solution upon the leaves, rolls for pressing he leaves as they pass out of the cylinder, devices for remving roreign matter and scraps before the tobacco
is cased, with means for cooking the casing solution by
$\left\lvert\, \begin{aligned} & \text { steam heat, and always at a uniform temperature, al } \\ & \text { portions of the tobacco being treated alike. }\end{aligned}\right.$
Roofing Material.-Joseph N. Hop er, Pawnee City, Neb. This is a new roofing materia flled with a plastic mass and with a backing of fabric aturated with a similar filling material and incorporat d with the woven wire layer, whereby the whole is designed to be impervious to water, strong, flexible easily repaired, and conveniently put up in rolls, the ew article neither cracking from the winter's cold no ftening from the summer's heat.
Ironing Board. - Schooler C. Horn, Bladensburg, Ohio. This board has its sides and end rooved, while a clamp with a top cross bar has its side
nd lower cross bars fitted to the edge groove of the board, to which a spring is secured having notches fo enagement by the top cross bar of the clamp, the boa and neckband before the iron is applied.
Door Check.-John H. Minix, Eaton, hio. This device comprises an arm having a bearin oved, and a spring to actuate the arm to adjust it bearing into and out of engagement with the floor whereby the door may be held closed or partially open,
Hominy Flakes, etc. - Jeremiah H. Little, Yellow Springs, Ohio. This invention covers a nproved means of manufacturing hominy and cor ncy, there being combined with the cooking vess crushing rolls, a casing, a drying chamber, with shakin creens and a trough-like hottom, and means for forcin hot air blast upward into the chamber.
Vehicle Seat. - James M. Johnson Arneckeville, Texas. Side bars connected by a cros ar engage the top edges of the wagon body, and on the
side bars are journaled shafts, each having two short cranks, to the outer ends of which springs are connect ed, the seat being supported upon opposite upper end
of the springs, the movement of one pair of spring the springs, the movement of of of tending to so regulate that of the other pair as
preserve the seat horizontally with an uneven load.
Folding Cup. - Hobart R. Haynes asherical lunes hinged together at their ends and overlapping one another, forming a drinking cup of simple and durable construction which can be readily folded to take up but littlo room in a pocket, valise, etc.
Slate. - Emma C. Hudson, Seattle Washington. This invention provides an improved late frame adapted to hold water and sponges fo
cleaning the slate, a tube to hold water, and wit ockets for the sponge, behn held in the sale frame. Perspiration Powder. - Sarah G Hull, Oklahoma, Oklahoma Ter. This is a deodorizing omposition for application to the body, and is mad quinine and finely pulverized burnt alum,
specified proportions, the compound being generally specified proportions, the compound being generally
harmless and designed not to interfere with healthy

Mail Bag Fastening. - Stewart K avis, August F. Stockley and William I. Barnet Buena Vista, Col. According to this invention the
apper edges of the bag are formed into a roll, and slid ng flexiblesleevesencircle these rolled or doubled edge peculiar catch holding the sleeves together, making fastening that is quickly operated, and designed to hold
the sides of the bag so closely together that the smallest he sides of the bag so closel.
Paper Bag. - Charles W. Fishel and Frank E. Sweet, Carbondale, Col. Combined with side, and a string with form is an apron attached to on holes in the apros, the bag being for the use of grocer nd others, and the improvement saving wrappin Head Covering.-Simon Tuch, New York City. This a new article of wear forladies and
chldren's use, having a cap-like body covered with chldren's use, having a cap-like body covered with
pliable stays, a portion of the covering projecting outward and adapted to be flared or bent to vary the apato different article, so that it may belding or separating any of the parts.
Bracket.-George R. Nafis, Brooklyn, N. Y. This invention consists of a sleeve fitted to turn
on a pole and an arm having an inclined slot throug on a pole and an arm having an inclined slot throug which passes a pivot pin on the sleeve, the arm bein dapted to engage whits inner edge the side of pole or to use Sidewalk. - Julius F. Jaquet, Mil waukee, Wis., and William McAuslan, Brooklyn, N. ated and perforated sills, on which are located and in terlocked tread preces, in connection with sliding clamp ing blocks and keys, the whole designed to form a walk quickly put in place or taken up forrepair, and made o either pood or tera cotta and metal.
Pier Protector. - Agnew Moore Missoula, Montana. A vertical roller is journaled a the apex of the pier, and side rollers at the sides, plate being arranged angulariy between the front and being designed especially to protect bridge piers from rift wood, logs, boats, etc.
Adding Machine. - Eri F. Jewett Newtown, Ohio. Combined with a case having a slo eries of numerapes with numerals is a card having two an apertured plate and other novel features by which numbers may be rapidly and accurately added or sub-

F'ish Net.-Larence A. Johnson, San Francisco, Cal. This is a net with an interior trap, and the ends, whereby the net may be readily drawn over the bottom of a body of water, and may be conveniently
hoisted aboard a boat or vessel, while the flah may be
readily taken from the net without interfering with the
position of the trap.
Fishing Re
Fishing Reel. - Elbert B. Porter Penn Yan, N. Y. Combined with a driving crank an which the turning of the reel and the winding of the pring may be carried on simultaneously, the reel being detachable from the gearing, aud a brake being pro vided for retarding the motion of the reel, and a drag to offer a slight resistance to its rotation and give a Note.-Copies of any of the above patents will be furnished by Munn \& Co., for $2 \tilde{2}$ cents each. Pleas of this paper.

NEW BOOKS AND PUBLICATIONS.

A New Business in Wall Street.

Roderick H. Smith, 6 Wall Street N. Y. Pp. 85

The author of this work has developed a plan by which he believes some certainty can be attained in dealing in securities. By conflning operations to divi end-paying stocks, buyıng on declines and selling on risks, a method is figured out that seems to show a re sonable chance of steady realization. To elncidate the cheme tabular statements of dealings are shown whic epresent actual accounts. The author certainly suc eeds in picturing the advantages of Wall Street as eld for speculation, whether his plan will work or no may be to a conservative mind at least an object o
surmise. Mr. Smith, who is the author of "The Science f Business," "Smith Business Chart," etc., has certainly produced in "A New Business in Wall Street" most interesting and attractive little work
First Lessons in Metal Working.
By Alfred G. Compton. New York By Alred G. Compton. New York
John Wiley \& Sons. $1890 . \quad$ Pp. vi
170. Price $\$ 1.50$. 170. Price $\$ 1.50$.

In the present days of manual training in schools, manual department of the College of the City of N York is of special value, and has an authoritative standing. Ite illustrations and eminently practical diections fully carry out all anticipations.

SCIENTIFIC AMERICAN

BUILDING EDITION MARCH NUMBER.-(No. 65.)

TABLE OF CONTENTS

1. Plate in colors showing the residence of P. H. Hodges, at Stratford, Conn. Perspec
floor plans, etc. Cost complete $\$ 8,000$.
2. Handsome colored plate of an elegant residence in Riverside Park, New York City. Floor
spective elevation, etc. Cost $\$ 30,000$.
3. Residence at Bridgeport, Conn. Per
floor plans, etc. Cost about $\$ 7,000$

Handsome residence of Mr . F : Chamberlain, at Ha ford, Conn. Francis H. Kimball, of New Yor ord, Conn. Franciz H. Kimball, of New York tion, etc. Cost $\$ 60,000$ complete
5. Illustrations of two attractive semi-detached houses
erected for Mr. A. L. Pennock, at Philadelphia, Pa. Floor plansand perspective. Approximat cost $\$ 15,000$ each. F. U. Beal, New York, architect.
Edgecombe Court, Chicago, Ill. Estimated coet \$5,400.
A pillar cottage erected for Mr. G. W. Childs, at and floor plans.
8. Handsome residence at Hartford, Conn.. W. B Tuhbey, architect, New York. Cost $\$ 19,000$ com Tlete. Floor plans and perspective.
9. Two floor plans and photographic view of an attrac tive residen
cost $\$ 7,000$.
A. A very convenient and attractive suburban cottage of modern design, erected for Mr. E. W. Given,
at Mont Rose, Orange, N. J. Cost $\$ 5,500$ comat Mont Rose, Orange, N. J. Cost $\$ 5,500$ com-
plete. Messrs. Rossiter \& Wright, architects New York. Floor plans and perspective. Residence at Alexander Avenue, Buena Park,
Chicago. Estimated cost $\$ \mathbf{5}, 000$ complete. Plans Chicago. Estimated cos
and photographic view.
12. Photographic perspective view of the residence of Mr. Frank Crowell, Minneapolis, Minn. F. E. 13. Miscellaneous contents : Preserving smoke pipes from rust.-Door hanging, illustrated with ed with 5 figures.-Improved blind slat planing machine, illustrated. - Seamless copper house
boiler, illustrated. -Best quality of roofing tin plate.-Blower engines of the Galena.-An efficient sandpapering machine, illustrated. - The "Hero" spring hinge, illustrated.-The Duplex
joist hanger. Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies, 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages ; forming, practically, a large and splendid Magazine of ArchitectURE, richly adorned with elegant plates in colors and with fine engravinge, illustrating the most interesting examples of Modern Architectural Construction and inied subjects.
The Fullness, Richnese, Cheapness, and Convenience of this work have won for it the Lareest circulation
of any Architectural pablication in the world. Sold by all newsdealers.

MUNN \& CO.. Publishere
381 Broadway, New York.

Pusiness and Persomal.

The charge for Insertion under thes head is One Dolla

 a line jor each insertion: about eight words to a line. Advertisements must be received at publication officas early as Thursday morning to appear in next issue.

Burnham standard turbine. Burnham Bros., York, Pa For Sale-New and second hand iron-working ma Acme engine, 1 to 5 H. P. See adv. nest issue. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J Combinatiou mill for crushing \& grinding. See next issu Wanted-A purchaser for good water power and Send to H W. Knight \& Son, Seneco Send to H. W. Knight \& Son, Seneca Falls, N. Y., for Best Ice and Refrigerating Machines Boyle, Chicago, Ill. 155 machines in satisfacto by David Steam Hammere, Improved Hydraulic Jacke, and Tube Expanders. R. Dudgeon, 24 Columbia St., New York. Emery wheels and hones. Patent new cheap process
of making, for sale. J. F. Gesner, 15 State St., N. Y. City. Screw machines, milling mach drill presse Mach. Co., Laight and Canal Sts., New Yor Tight and Slack Barrel Machinery a specialty. John Guild \& Garrison, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vacuum ap
pumps, acid blowers, flter press pumps, etc.
Send for 50 page free catalogue of best horse powers. wood, circular and drag saws, and threshing machines
A. W. Gray's Sons, Middletown Springs, Vt., box 5 . For the original Bogardus Universal Eccentric Mill, Foot and Power Presses, Drills, Shears, etc., address J
S. \& G. F. Simpson, 26 to 36 Rodncy St., Brooklyn, N. Y. The best book for electricians and beginners in ele tricity is "Experimental Science," by Geo. M. Hopkins.
By mail, 84 ; Munn \& Co., publishers, 361 Broadway, N. Y . The Dwight Slate Machine Co., of Hartford, Conn., make the most extensive line of hand, foot, and auto-
matic feed drills for light work, $1 / 2$ in. holes and less. 8891 catalogue free.
Wanted-A competent foreman to take charge of an
architectural woodworking shop. Must be a frst-class manager, and capable of estimating safely a frst-class manager, and capable of estimating safely. A
S., care of SCIENTIFIC AMERICAN, New York.
LE OL Sor new and complete catalogue of Scientific
 HINTS TO CORRESPONDENTS Names and Address must accompany all letters,
or no attention will be paid thereto. This is for our information and not for publication.
References to former articles or answers should References to former articles or answers should
give date of paper and patier or number of question.
Inquiries not answered in reasomable time should
be repeated; correspondents will bear in mind that be repeated; correspondents will bear in mind that
some answers require not a little research, and
though we endeavor to reply to all either by lenter
or in this department, each must take his turn. or in this department, each must take his turn.
Special ${ }^{\text {aritren Information on maters of }}$ personal rather than general interest cannot be

Nincre. $\begin{array}{l}\text { pris sent for examination should be distinctlv } \\ \text { marked or labeled. }\end{array}$

(2870) C. A. W. asks : By what solvent can I obtain a clear solution of menthol up to 5 per
cent? A. Dissolve in an essential oil, such as oil of (281) W. F. ask
(2871) F. W. F. asks (1) for a good way to take the color from overalls without injuring them.
A. If well dyed, it cannot be done. Chloride of lime might destroy the dye, but would tend to rot the cloth. If applied, itishould be well washed out, and a dilute sogood cement for holding glass together. A. Dammar varnish, or Canada balsam, or caseine cements; see varnish, or
query 2740 .
(2872) M. D. asks: By what theory of alting is the extreme cold produced and explained reA. The evaporation of the fluids requires energy, which is absorbed from surrounding bodies as heat energy,
and which heat is rendered latent or caused to disappear.
(2873) R. H. asks how sulpbur dioxide gas can be cheaply made. A. By heating concentrated
sulphuric acid and sulphur or charcoal in a flask and conducting the evolved gas into water. Hyposulphite of soda can be treated with dilute sulphuric acid in an
evolution flask and the gas can be collected as above.
(2874) H. A. asks: Can you give me ingredients for a solution in which to dip a small round
lamp wick, to retard charring? A. Try phosphate lamp wick, to retard charring? A.
of soda or borax dissolved in water.
(2875) W. A. asks : I want to know whether a pieceof brass tubing one thirty-second thick,
pushed over a coil, will weaken the current, or will the current pass through the brass the same as it does throngh the paper core the wire is wound on? A. Use the brass tube.
(2876) F. I. M. asks : 1. What causes the thinning out of negatives (dry plates) in the fixing bath after development? I have Cramer's plates No. 50 , and
made up the solutions just as described, but spoiled 8 plates already. The trays are clean, the developing and fixing solutions kept separate, every care is taken, nevertheless said result. A. The thinning of the negative
plate is due to the dissolving out of the unacted upon plate is due to the dissolving out of the unacted upon
bromide of silver in the film, either by light or the developer. If plates are under-exposed, they are likely to develop thin. If over-exposed, the same result is obdevelop thin. If over-exposed, the same result is ob-
tained and the picture flashes ont quickly. If rou have
given the correct time，thinness is due to too short de－
velopment．You need to keep the plate in the developer until you see eigns of the image appearing through the
back of the film．Probably your trouble has been in making ins tantaneous exposures with too weak a ligh or a slow lens stopped down．Both will make thin re gatives．2．Which are the best plates for instantane and Carbutt plates good formula for a developing and fixing bath a The developing and fixing baths must be kept separate An energetic developer is made by dissolving in warm Water ．．．．．．．．．．．．．
Sulphite sodium c．p．

lowing solution

Water minutes，then，should the plate refuse to develop，add the of hyposulphite of soda in made by dissolving 1 ounce you know of any good book containing instructions in developin α ，fixing，printing，and what is the price Price $\$ 1$.
（2877）G．L．，alluding to an article in our SUPPLEMENT，No．226，in which＂black alder＂is given
as the popular name of Rhamnus frangula，asks if is is not an error，as＂black alder＂is the popula name of llex verticillata．A．No；it is not an error，in one sense．If the popular names of plants were sub－ cet to laws，the name＂black alder＂would，by the law Id herbalists，was called Alnus nigra，which，by the Gerard observes，its＂leaves be like nigra，because，as tree（the Alnus glutinosa of Europe），yet blacker， The name＂alder＂properly belongs to the species in cluded under the generic name of Alnus，a Latin term cognate with the Teutonic，Scandinavian，and Sclavonic ames of the common alder of Europe．The name ＂black alder＂is properly applied in this country to mopanthes Canadensis and llex verticillata．To the last mencioned plant the name was applied by the early n alder，resemble o species of alder，and is not black in any of its parts． me most conepicuous feature of the plant is its bright都保 golish mind the fruit of the commone recalled to the folium）of the old country，a plant generally related to ro－called＂black alder．＂It must be remembere that the English names of plants given in medical work re not always popular，in the strict sense of the word but are often merely translations of Latin names used the older botanists，who were merely wont to clas－ sify plants rather by their
by their botanical affinities．
（2878）T．H．asks（1）how to make a pre paration for bleaching lard．A．One process is to heat he melted fat with sulphuric acid 13 to 145 sp ．gr． one for preserving meats（made with boracic acia）．A． parts of finely pulverized boracic acid are added．Steam evolved in considerable quantities，An entire day is needed for the preparation of 6 pounds．Or 100 part ommon borax may be dried completely and mixed with 50 parts glycerine at the above temperat
about twenty times as powerful as alt．

Replies to Enquiries．

 shed in Scientipic Auprican，and to the number（2787）In reply to inquirer No． 2787 ould say if his cider is colored with any iron sub－ barrel into it，use fresh sweet milk one quart，put in barrel and stirred up，and then filtered，will make it clea if fresh made．Try it on small quantity：say tak inegar and whisky and add a few drops of tincture on；it will turnjblack；then add your milk，and filter． Geo．W．Gullick．

TO INVENTORS．

An experience of forty years，and the preparation of
more than one hundred thousand applications for pa－ ents at home and abroad，enable us to understand the qualed facilities for procuring patents everswhere ynopsis of the patent laws of the United States and all

 hich are low，in accordance with the times and our ex ensive fachities for conductín uUN \＆CO．．offce Scientific american， 361 broad－ way，New York．

INDEX OF INVENTIONS
For which Letters Patent of the

February 24，1891，
AND EACH BEARING THAT DATE．
［Seenoteatend of list about copies of these patents．］

tly pab

Bat
Bolle
Bolle

$\substack{\text { oile } \\ \text { ante } \\ \text { ant } \\ \text { ook }}$
䢒边

an
an
an

ar

ement．apparat na ficator，Webster $\mathcal{*}$ D Drew．
Erot
Ene calcination of，
P．

 C

Morkey，M．M． K Kiiiinger
Coffee making apparatu
＂

Concentratinn apparaius，i．\dddot{K} ．Hailo oiil：

Die sto to and die，J．S．Fletcher．
Doll A．Pulvermacher ．
Door operating devic．

Odine with thymol，compound of，Messinger
Vortmann

 Lock．See Revolver lock．Time lock．．Trun
Locomotives，extenslon smokestack for，H．D
Dundar． Dun bar a An cheniile fabrics．A．Sinciair．
Loom positive shuttle motion，J．W．Babcock．

 Peser sach Filter press．FFnsther F
Printing device， H F．Rockey

TRADE MARKS

 DESIGNS

Match safe, L. Z. And.rson....... Obsevatory Roofng plate, Ei. L. L. Sagendorph.

A Printed copy of the specittcation and drawing on
any patent in the forezoing list or any patent in prin cents. In ordering please state the name and number od
the patent dessred, and remit to Munn \& CO., 361 Bruad
way. New York. Canadinn Patentw may now be obtained by the
Inventors for any of the inventions named in the fore
 fuli instroctions address Munn \mathcal{E} Co.. 361
New Broadway
York. Other foreign patents may also be obtained

DゆDerfisements.

 reeeited athe pubititerition orsic
ink to appear in next issue.

USE ADAMANT W ALL PLASTER

hours. It can bo

 STEREOTYPING; THE PLASTER AND

FORTY-SIXTH ANNUAL REPORT

 -or rum NEW-YORK LIFE INSURANCE COMPANYOffice: Nos. 346 \& 348 Broadway, New York.

JANGARY 1, 1891.

12 \$100,458,797.3 [27,228,209.34 $\frac{4,929,890.74-\$ 32,158,100.08}{\mathbf{\$ 1 3 2 , 6 1 6 , 8 9 7 . 4 3}}$

2020.55:97

San on deposit. on hand and in transit
Be

* A detailed schedule of these items will accom
the Insurance Department of the state of N

```
Approved losses in course of payment.
Reported losses awaiting proof, etc...
atured ensowments
Anuitiies due and unpaid due and unpaid ciaims not presenten not presented)
```


Surplus, Comp
Consisting of
Csitinsessing or or

From the undivided surplus, as above, the Board of Trustees have declared a Reversionary dividend to partici-
pating policies in proportion to their contribution to surplus, available on settlement of next annual premium.
GROWTH OF THE COMPANY DLRING THE PAST DECADE.

 Total number of policies in force January 1, 1891, $\mathbf{1 7 3}, 469$. Amount at risk, $\mathbf{8 5 6 9}, \mathbf{3 3}, \mathbf{7 2 6}$

TRUSTEES

TNENTORS! We are proparad to buy outirgh

 AIR COMPRESSORSmining and duarrying machinery, Ingersoll-Sergeant Drill Co Nor 10 park place. new york

clliam h. appleton	robert b. Collins,	richard muser,	wm. L. stron
william h. beers,	h. c. mortimer,	c. c. baldwis	w. F. Buckl
william a. bоoth,	alex. studwell,	e. n. gibbs,	RY tu
enty bowers,	walter h. Lewis,	w. b. hornblower,	. H. welch

HENRY BOWERS,	H.	w. b. Hornblower,	H. welch,
	edward martin,	john n. stearns,	.. I. white.

THEODORE M. BANTA, Cashier,
A. HUNTINGTON, M.D., Medical Director.

WILLIAM H. BEERS, President. HENRY TUCK, Vice-President. ARCHIBALD H. WELOH, 2d Vice-President RUFUS W. WEEKS, Actuary.

1891

$\$ 3$ PRINTING PRESS.

INVENTIONS WORKEDDOUT, Drawings and

WHY ARE SOME PEOPLE ALTWA YS LATEE?-They never look ahead nor think. People months, rathor than so wait till planting season, run to the grocery for their seeds, and then repent over it for 12
think what they will want for the garden. If it is Flower or Vegetable Seeds, Plants,

THE SMITH PREMIER TYPEWRITER

Important Improvements. Alial Features greatly perfected. The Most Durable in Alignment. Mond Most Silent.
All type cleaneiest in 10 seng and
seconds without soiling the hands. The Smith Premier Typewriter Co., Syracuse, N. Y., U. S. A.

OIL WELL SUPPLY CO. Ltd.
 ICE-HOUSE AND REFRIGERATOR. Directions and Dimensions for construction, with one
inlustration of cold house for preserving fruit from
season to season. The air is kept dry and pure through.

ARTESIAN
$=\mathrm{F}=\mathrm{W}$ シw= Wiv

MILITARY SIGNALING.-THE EARLY

TO BUSINESS MEN
The value of the SCIENTIFIC AMERICAN as an adver-
tising medium cannot be overestimated. Its circuaton
is many times kreater than that of any simian journal

 GATES ROCK \& ORE BREAKER

 CATES Son fon works,

AIR BRUSH

Over 50 varieities manu-
fuctured by
E. \& B. HOLMES, BUFFALO, N.
Also a full line of wood
Working Machinery. DEVELOPMENT OF AMERICAIN

ANTHROPOLOGY.-BY JOHN EVANS
 Physical Capacity of Individuals; Anthropological sur

STEVENS PATENT
INE ADJUSTING AND TRANSFER INSIDE CALIPER, No. 105.
Price List, by maill. postpaid.
 Gauges, and F it
TTM Ill
J. STEVEN

EXPERIMENTAL AND MODEL WORK chanical drawings. etc. Engineererng and eleetrtical, wort
a specialty. Pacitic Mfg. Co... 61 Hulton St., New York.

NEW YORK TRADE SCHOOLS.-DE scription of the New York Trade Schools which were
established nie years ago for the purose of
structions in
sto young men in cert ain trades, and to enable

PATENTS!

cation of the SCIENTIFIC AMEEICACAN continue to ex
amine improvements, and to act as Solicitors of Patents for Inventors.
In this ilineof business they have had forty-one years,
experience and now have unequaled facilities for the

 hem is done with special care and promptness, on ver
reasonabieterm.
A pamphlet sent free of charge, on application, con aining full information about Patents and how to cono
une them directions concerning Labels, Copyrights,

 patents in all the principal ountries of the world.
MUNN $\boldsymbol{\&}_{36 i}$ Brosilicitors or Patents,
 1 4 HESSS \& HEAD NOISES CUR CURED

PERFORATED METALSHMINING SCREENS
 HARRINGTON \& KING PERFORATING © , CHICAGO

Steam! Steam! Quality Higher, Price Lower.
For Strictly Cash, Complete Fixtures except Stack.
2-Horse Eureka Boiler and Engine, - $\$ 145$ B. W. PAYNE \& SONS,

BIUENA. DIAMOND DRILLL \& MFG. CO team Engines, DiAm,., Builders of High Clas BLUE PRINT Papiot, sinpirion spopiles

PULLEYS HANGERS,

NEW CATALOGU valuable papers -

mUNs \& co., 361 Brondway, New York.

STEEL TYPE FOR TYPEWRITERS

woNDERFUL Luminous Efrocts, - Rumbort

Inventions Realized That is, made real ; which rarely happens aefore a model is made, and rarely then. primer with full particulars.

STEEL ALPHABETS.
 .

 ELECTRIBITY The AMATEUR ELECTRICIAN,

${ }_{\text {was }}^{\text {mas }}$ TheLibrary of American Literaturesesw?

Cheap Printing

CASOLINE and

 GAS ENGINES
 Preses and Mililins Machines, for 20
Machinits, on 6 gal Gasoline per dy, costingonly 60 cts. Writ for VanDurang Gass Easaline Pggine Co.

THE EACLE
THE EASIEST RHNNMG. Speed, Comfort and Safety. Large Illustrated Catalogue sent Free to any Addre THE EAGLE BICYCLE MFG. CO.,

PROPOSALS.

on gas engines. -a valuable

 A BOON TO THE DEAF!

HuNTER's SIFTER \& MIXER

The S cientric $A \underline{\underline{\underline{m}} \text { merican }}$ PUBLICATIONS FOR 1891.
The prices of the difierent punications in the United The scientitc American (weekly one year , $\$ 3.00$ The seien titc American supplement weekly). one 5

 combined ratrs.

 This inconofotosaze. IUN

Dfovertisements.

Victor Bicycles!

ended our line to include Machine of many more styles and prices than heretofore. Having any interest in Wheels, you will surely want to see freely mailed on application. Ready

in February

OVERMAN WHEEL CO. Boston, WALASINGTIC, DENVER, SAN FRANCIS
Office and Factory, Chicodee Fals,
 COMPTOMETER ALL ARITPMMOTICAL Solve falat and acaul ELT \& TARRANT MFG. CO., $52-56$ llinois St., Chicago SAWS Whand s.0.0.5amesers SAWS

Scientific Book Catalogue RELENTLY PUBBLISHED.
 MUNN \& CO .

STEREOTYPING.-A VALUABLE

NEW KODAKS

reve do the rest.
Seven New Styles and Sizes alil loaded with Films
THE EASTMAN COMPANY

 makamamumaneo. 95 MILK ST., BOSTON, MASS.
This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th. 1876, No. 174,465, and January 30th, 1877. No. 186,787.

The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use. and all the consequence thereof, and liable to suit therefor.
N
PATENT JACKET KETTLES

 RANES THE HIGHEST CHALMERS-SPENCE CO

POPE MFC. CO., 77 Franklin Street, BOSTON.
AVO., CHCAGO. Factory, HARTFORD, CONN.
THE STEAM ENGINE: ITS PRINCI-

 The Motor of 19th Cenithr
 Charter Gas Engine Co. Simplielly. Satety. P.O. Box 148 ,

VALVES

 for low pressure steam, gas, oils, etc.
wRIIE FOR CATALOGUE.
The Lunkenheimer Brass Mfg. Co. 15-17 E. Sth St., Cincinnati, o. ARTIFICIAL INCUBATION.-A DE-

Hety ghachINE TOOLS

ㅍ. W. JOR NB

ASBESTOS SEGTIONAL PIPE GOVERING.

A Non-Conducting Covering for Steam and Hot Water Pipes, otc.

 H. W. Johas' Asbostos millboard, Sheathings, Building Felts, Fire-Proof Paints,

CUHIINC Spur, Bevel, Mitre. Leland, Faniconer \& Norton Co Derkor, men. 2nd ECS MACHINERY F Experimental Science

coo. m. Mitopkame

Illustrated Circular and Table of Contents send free
7t0 Pages.
PRICE, by mail, postpaid, PRICE, by mail, postpaid,
MUNN \& CO. Pubishers,
Office of THE Screntific AMEHICAN,

JENKINS BROS. VALVES:

THE PHONOGRAPH.-A DETAILED description of the new and improve form of the pho
nograp jut but buth out

NO SKITMFD FNGINFHR.
 The Shipman Automatic Steam Engine STATIONARY AND MARINE.
Petroleum, Keroseno Oil, and Natural Gas Fuel.
6, and \boldsymbol{S} Horse Power, Single.
8 and 22 Horse Power, Compoun For Elevating Water, Creameries, and all Manufacturing Purposes.
SHIPMAN ENCINE CO., 210 Summer St., BOSTON目 CUTLER DESK

SCIENTIFIC AMERRICAN SUPPRLE

GRAVESELEVATORS.

 LITTLE HERCULES DRILL CHUCK

 SPOKES.
Handsomestand Be
Safety. send MANUFACTURERS,
WM. READ \& SON 107 Washington St., Boston, Mass.

ฐcientific

The Most Popular Scientific Paper in the World Only $\$ 3.00$ a Year, Including Postage. Weekly 52 Numbers a Year.

This widely circulated and splendidy illustrated paper is published weekly. Every number contains six
teen pages of useful information and a large number of teen pages of usefus information and a large number of
original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery, New Inveitions, Novelties in Mechanics, Manufactures,
Chemistry, Electricity, Telegraphy, Photography Chemistry, Electricity, Telegraphy, Photography, Archi-
tecture, Agriculture, Horticulture, Natural Historry, etc. Complete list of patents each week.
Terms of Subscription.- One copy of the Scien-
TIFIC AMERICAN will be sent for one year- 52 numbersTIFIC American will be sent for one year- 52 numbers-
postage prepaid, to any subscriber in the United States, postage prepaid, to any subscriber in the United States,
Canada, or Mexico, on receipt of three dollars by the Canada, or Mexico, on receipt of three dollars bs
publishers; six months, $\$ 1.50$; three months, $\$ 1.00$.
Clubs.-Clubs.- Special rates for several names, and to P
Masters. Write for particulars. The safest way to remit is by Postal Order, Draft, or
Express Money Order. Money carefully placed inside of envelopes, securely sealed. and correctly addressed,
seldom goes astray, but is at the sender's risk. Address all letters and make all orders. drafts, etc., payable to
MUN $\&$ CO., 361 Broadway, New York.

Scientific gutcricat §upplement
This is a separate and distinct publication from TBE
BCIENTIFIC AMERICAN, but is uniform theremith in BCIENTIFIC AMERICAN, but is uniform therewith in size,
every number containing sixteen large pages full of engravings, many of which are taken from foreign papers.
and accompanied with translated descriptions. THE Scientific american Supplement is published week is, and includes a very wide range of contents. It pre
sents the most recent papers by eminent writers in all
the print the principal departments of Science and the Useful
Arts, embracing Biology, Geologs, Mineral Arts, embracing Biology, Geologs, Mineralogy, Natural
History, Geography, A rchæoology, Astronomy, Chemistry History, Geography, A rchæology, Astronomg, Chemistry
Electricity, Light, Heat. Mechanical Ennineering, Steam
and Railwa Engineering, Mining. Ship Building, Marine Engineering, Photography, Technology, Manufacturing Industries, Sanitary Engineering, Agriculture, Horti-
curture, Domestic Economy, Biography, Medicine, etc. A
vast amount of fresh and valuable information obtainable in no other publication
The most important Engineering Works, Mechanisms,
and Manufactures at home and abroad are illustrated and described in the Supplement.
Price for the Supplement for the United States an Canadi, 85.00 a year; or one copy of the SCIENTIFIC AMER
ICAN und one copy of the SUPPIEMENT, both mailed for ne year for 87.00 . Single copies, 10 cents. Address, an
remit by postal order, express money order, or check MUNN \& CO., 361 Broadway, New York.
Publishers ScIENTIFIC AMEIC Publishers Scientific American
Zhuilding Edidion.
The Scientific American architects'and buildopies, 25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages; forming a large and splendid Magazine of Architecture, richly
adorned with elegant plates in colors, and with other tine engravings; illustrating the most interesting examples of modernarchitectural construction and allied subjects. A special feature is the presentation in each number
of a variety of the latest and best plans for private resiences, city and country, including those of very mod erspective and in color are given, together with ful Plans, Specifications, Sheets of Details, Estimates, etc.
The elegance and cheapness of this magnificent work he elegance and cheapness of this magnifcent wor have won for it the Largest Circulation of any Arch
tectural publication in the world. Sold by all newsdea ers. $\$ 2.50$ a year. Remit to

MUNN \& CO., Publishers,
y, New York
PRINTIING INKS

