

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW YORK, FEBRUARY 28, 1891.	\$3.00 WEELLY.

Fig. 1.-WORKS at bethleitem.
MANUFACTURE OF HEAVY GUNS FOR U. s. NAVY.
Although as early as 1880 the chief of Bureau of Ordnance set forth the necessity of procuring guns of the latest and most approved system, in 1882 Secretary Chandler called attention to the fact that there was not one high-powered gun in the navy. In 1884 there was but one-a 6 inch breech loading rifle. In 1885 one more was added-a 5 inch breech-loading rifle. In ' 1886 the Navy Department reported its being in possession of fourteen (14) 6 inch and two (2) 8 inch wodern breech-loading rifles, and recommended the adoption of the decisions of the Gun Foundry Board as the best means of securing the requisite supply of ordnance.
It will be seen, therefore, that while some forgings had been purchased abroad, and the Midvale and Cambria companies had undertaken and successfully delivered a few for the smaller calibers, no really serious provision was made for this supply until the inauguration of the Bethlehem Company's undertaking to furnish the United States with gun and armor steel and shafting; in fact, the foundation of the present system of supply, and without doubt the two most important events in the history of modern ordnance in the United States, were the researches and recom-
nce the report of the Secretary of the

Fig. 3.-Hydraulic gun forging.
Of these guns, the 4 inch and 5 inch are rapid-firing guns, employing fixed ammunition, that is, the car tridge case, charge, and projectile are combined in one. The length of the 6 inch gun has been increased from 30 to 35 calibers. The performance of the longer gun has been so satisfactory that 6 inch guns of 40 caliber have been designed and are under manufacture. The 35 caliber 8 inch guns have been tested with such good results that forgings for a 40 caliber gun have been ordered from Bethlehem for a gun to be mounted on Cruiser No. 12. The great advantages claimed for this as well as for other long guns, is the flat trajectory due to the high velocity, which makes it possible to use the gun successfully at ordinary battle range without giving special attention to accurate measurement of distances.
Of the 10 inch guns, the four that make up the armament of the Miantonomoh are completed, while those for the Maine are in an advanced stage of manufacture.
No 12 inch guns have yet been finished, but forgings for two guns have been received from the Bethlehem Iron Company, and the gun factory is ready to proceed with the manufacture of these guns as fast as forgings are delivered. At the time of our visit the tube, a magnificent specimen of perfect steel, 35 feet long, and weighing about 15 tons, was being turned in the longest lathe of the gun factory.

The design for the first 13 inch gun, 35 calibers in length, has been completed, and the tools for its manufacture are in course of construction. Twelve sets of forgings of this size have been ordered frow the Bethlehem Iron Company for the batteries of the three new battle ships.
Even from this hasty review, it is evident that the navy has entered upon a well defined policy which, with the aid of the manufacturing resour ces developed in the past few years, will enable this department of the United States government to keep pace in providing all necessary armament for any number of ships that our legislators may deem expedient to grant. It is to be hoped that there will be no cessation in this good work and that Congress will continue its appropriations for (Continued on page 133.)

Fig. 4.-A ROW of fodrteen six inch guns.

Pig. 5.-machine for rifling large guns.

Srientific Agmerican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. pUBLISHED WEEKLY AT
No. 361 BROADWAY, NEW YORK.
O. D. MONN. A. E. BEACH.

TEREIS FOR THE SCIENTIPIC AMERICAN. One copy, one year, for the U.S., Canada or Mexico.....
One copy, six months, for the U. S., Canada or Mexico. One copy, six months, for the U. S., Canada or Mexico.................... 150
One copy, one year, to any foreign country belonging to Postal Union, 400 Remit, by postal or express money order, or by bank draft or check,
MUNN \& Co., 361 Broadway, corner of Franklin Street, New York.

Spanish Edition of the Scientific American.

NEW YORK, SATORDAY, FEBRUARY 28, 1891.

TABLE OF CONTENTS OF

SCIENTIFIC AMERICAN SUPPLEMENT

NO. 791.

For the Week Ending February 28, 1891. Price 10 cente. For sale by all newadealers.

mbeting of the national electric hogt ASSOCIATION.
The decennial meeting of this association, in Provi dence, R.I., the $17 \mathrm{th}, 18 \mathrm{th}, 19 \mathrm{th}$ and 20 th instant called together more scientific and mercantile men and awakened a wider interest than any that have preceded; a notable feature, greater elaboration of technical detail in the papers read, and in the discussions closer adherence to mathematical accuracy. Following is given a transcript of the most notable papers and remarks :
Prof. Elihu Thom
In electrician, said :
1889 it was my privilege to visit the Royal Institution, in London, and there inspect the original manu script records made by Sir Humphry Davy and by Faraday-the two great mains, lying as it were at the foundation of the sign, at least, of electric lightingto inspect also the apparatus, and even to handle the apparatus which Faraday used in his early experiments. These two mains are coupled with the beginnings of our great industry. Sir Humphry Davy was the first man who ever saw the electric arc ; the first man who put two wires together tipped with carbon, drew them apart, and got the flame which we now call the electric arc. He called it the electric arch, I believe, or an arch of flame. I saw the record of this original inscription, and the inscription in Davy's rapid hand that this was a gorgeous experiment.
It was quite a contrast-the difference between Davy's style of recording his experiments and Faraday's; and there is that contrast even to be seen in their work. Davy was, as it were, brilliant-jumping from one thing to another, and getting there by a great leap-while Faraday's was the painstaking work of the scientific investigator who thought out carefully what he was about, and when he had concluded his experiments, wrote out just as carefully what he had obtained. The records of Faraday's are models of I recall this are models of precision in eniniscence but it carries us back to the time when Faraday was at work in the discovery of the action of currents in magnetic fields. It is to Faraday that we owe the discovery of the principle which underlies the generation of current by the dynamo. It was he who moved armatures in magnetic fields. It was he who found that the magnet was capable, under proper conditions, of yielding currents.
Prof. Thomson traced the history of the dynamo from its development down to the present, declaring there to be a demand to-day for dynamos up to 500 to 1,000 horse power where a few years ago it would have been an unusual thing for a 100 or 150 or a 200 horse power machine to be spoken of; and it looks, so he said, very much as though in the near future machines of much larger capacity would be demanded for electric installation.
As to heating houses by electricity, he did not think the project was feasible until a means can be found of converting the energy of coal directly into electricity. We must look for another Faraday to explain to us the relation between electric energy and heat energy, so we can convert 35 or 40 per cent of the heat energy into electric energy. Then the steam locomotive will disappear, the steamship no longer be driven by the energy of the steam boiler
Mr. Monks, of the West End Electric Railway, of Boston, said: At present we have 60 miles of electric track, with something over 300 cars. We are running about 18,000 miles a day electrically. From all quarters, and we cover a very large area, having some 260 miles of track through the popular towns and cities surrounding Boston, we have constant demands and repeated demands and urgent demands for theimmediate introduction of the electric system. Though we have had great difficulty hitherto to pacify the public mind respecting the matter of introduction of electric roads, with us in Boston it becomes now simply a question of not getting it too quickly-too fast. I mean in the sense of saving ourselves the investment of a large amount of money in machinery which next But after all is said and regarded but in our experimental stage. Much remains to be done to perfect the system in regard to the proper form of car, of rail, and a thousand and one details remain to be perfected. I think the electrical locomotive or motor car is going to be the Moses which will lead us into the promised land.
At the request of the association, a paper had been prepared by Mr. George Worthington, editor. of the Electrical Review, on the Organization of the Mational Electric Light Association, its successful accomplishment having been in large measure due to his efforts. He was too ill, however, to be present.
F. H. Prentiss, of New York, read a paper on Dis tribution of Steam from Central Stations. He cited a steam company of this city, which he said is supplying steam for power and heating to nearly 700 consumers,
and sells the product annually of more than 100,000 and sells the product annually of more than 100,000
tons of coal burned under boilers aggregating nearly 20,000 horse power.

In its distribution of steam through underground In its distribution of steam through underground pipes, the company has had many obstacles to contend
with, the chief trouble having been the securing of with, the chief trouble having been the securing of
absolutely tight joints. This difficulty has been completely removed by the method employed during the last four or five years, as is well attested by the network of pipes on Madison Avenue and the adjoining streets, ,between Fifty-third and Seventieth Streets, where nearly three miles of pipe are in perfect operating condition and practically without a leak.
The joining of two enterprises together, such as electric lighting and the distribution of steam from central stations, has both its advantages and its defects. In a combined plant the general expenses of management, superintendence, and so forth, need not greatly exceed the cost for the same items in a single plant alone. An obvious disadvantage is the increased back pressure put upon the engines.
In an exhaustive paper on the Electric Arc and its Use in Lighting, Professor Thomson said :
It was not till about twenty years after its discovery by Sir Humphry Davy that any proposals were made to use it in lighting, and, subsequently, for many years it was occasionally employed either in lecture demon strations or in obtaining an intense light for some special purpose.
The charcoal points of Davy were touched together horizontally after attachment of the wires to the battery and were then separated. The streain of hot flame which followed or joined the points being deflected by air currents, took the form of an arch or curve which gave the name to the phenomenon. Even with one carbon directly over the other, the curved form of the stream is the rule when the carbons are widely separated. Davy's original experiment was made with a battery of 2,000 cells, with zinc and copper plates about six inches square, the exciting fluid being very dilute sulphuric and nitric acids.
In the electric arc there is a real distillation of the conductors forming it, and this accounts for the variation of color and temperature to be found in different arcs. The copper arc evolves a peculiar green light which is exceedingly trying to the eyes, as those who have experienced its effects well know. Zinc gives a whitish blue, while the carbon arc proper is purplish in tint. The arcs from various metalsgive in the spectroscope the characteristic lines of the vapor of each metal.
As a curious incident, showing the presence of the metal vapor in the are, I may mention the fact that when baccident a person has had a portion of his clothing shart for an instant in a heavy copper arc, caused by found a considerable deposit of copper, enough, in found a considerable deposit of copper, enough, in
some cases, to give the reddish color of copper to the some cases, to give the reddish color of copper to the
surface bathed, which if moistened turns green by oxisurface bathed, which if moistened turns green by oxi-
dation. It also gives a deep blue to dilute ammonia in which it is washed, thus showing the presence of copper. In like manner these metallic arcs will give a deposit of the metal on cold surfaces which they touch. In a paper on the Ferranti system in London, C. B. Haskins gave a detailed description of the various parts of that plant, its peculiarities, and the troubles which have sprung therefrom. Mr. Law pointed out that in ordinary practice it was necessary to keep the current on the wires for twenty-four hours in the day, and for that reason all connections must be made on live wires.

A New Mode of Administering Sulphonal
Dr. D. D. Stewart, of Philadelphia, has given to the Medical News a new formula for the administration of sulphonal which has yielded very satisfactory results. His method is to give the drug at bedtime, stirred in six ounces of boiling water, or two thirds of a glassful, until the powder is thoroughly dissolved. 'To insure that the water is at the boiling point at the time of contact, it may be heated at the time over a spirit lamp. A little vigorous stirring will cause the drug to be taken up without precipitation when the potion has been cooled down to the point at which it can be drank. In order to cool the liquid, stirring will assist but it will be necessary to add cautiously a little cold water. The patient should be encouraged to take the solution while it is yet hot, and to believe that the hotter the dose is, the better are its effects. The process of gastric absorption is facilitated by the hot liquid, especially if the stomach is empty, and the period of "therapeutic incubation" is practically done a way with. Sleep results in a few minutes and is of a better quality than under the ordinary, less pains taking methods. In special cases, where the physi cian desires to obscure the disagreeable flavor of the dose, it may be well to add a tablespoonful of creme de menthe or some other cordial, which will also pro mote the speedy absorption of the remedy.

Ir has been calculated that the electromotive force of a bolt of lightning is about $3,500,000$ volts, the cur rent about $14,000,000$ amperes, and the time to be about goron part of a second. In such a bolt there is an energy of $2,450,000,000$ watts, or $3,284,182 \mathrm{~h}$. p.

POSITION OF THE PLANETS IN MARCH. SATURN

is morning star until the 4th, and then evening star. He is in opposition to the sun on the 4th, at 10 h .20 m . A. M., and is in fine position for observation, being on the meridian at midnight. The observer will find him in the east as soon as it is dark enough for the stars to come out. He is retrograding or moving westward, and seemingly making a slow approach to his former companion Regulus, the bright star on the northwest. His aspect is specially interesting to the telescopic observer, who will find his rings gradually closing around him until they disappear from view in September. Saturn took on a variety of colors during the last month, shining sometimes as a red star and sometimes as a pale yellow star with a leaden tint, but always exhibiting the serene light that marks the difference between a planet and a twinkling star.
The moon is in conjunction with Saturn on the 23d, the day before the full, at 9 h .2 m . A. M., being $3^{\circ} 5^{\prime}$ north.
The right ascension of Saturn on the 1st is 11 h .4 m . his declination is $8^{\circ} 18^{\prime}$ north, his diameter is $18^{\prime \prime} .6$, and he is in the constellation Leo.
Saturn rises on the 1 st at $5 \mathrm{~h} .53 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31st he sets at 4 h .49 m. A. M.

venus

is morning star. Early risers during the last month were impressed with her beautiful appearance in the southeast, in the morning, where she shone with surpassing brilliancy, continuing to be visible until sunrise, and even after. She will be charming to behold during the present month, though she has lost about one-third of her brightness on account of her increasing distance from the earth. She will not reign alone, for about the middie of the month a rival enters upon the scene to dispute her sway. This is Jupiter, then far enough from the sun to be visible. The two planets will be seen to approach each other until, at the end of the month, Venus rises about an hour and a half before the sun, and Jupiter follows about twenty minutes later. The observer must command a clear view of the southeast horizon in the early morning to enjoy the celestial picture under the best conditions.
The waning moon is in conjunction with Venus on the 6 th, at $11 \mathrm{~h} .26 \mathrm{~m} . \mathrm{P}$. M., being $5^{\circ} 35^{\prime}$ south.
The right ascension of Venus on the 1st is 19 h .50 m ., her declination is $19^{\circ} 3^{\prime}$ south, her diameter is $21^{\prime \prime} .2$, and she is in the constellation Sagittarius.
Venus rises on the first at $4 \mathrm{~h} .14 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. On the 31st she rises at 4 h .7 m . A. M.

JUPITER

is morning star. His presence in the morning sky in near vicinity to Venus, when the month closes, is the most interesting feature on his March record. He is in conjunction with Mercury on the 5 th at $2 \mathrm{~h} .32 \mathrm{~m} . \mathrm{A}$. M., being $1^{\circ} 26^{\prime}$ north, but both planets are then too near the sun to be visible.
The waning moon is in conjunction with Jupiter on the 8 th , at $10 \mathrm{~h} .1 \mathrm{~m} . \mathrm{P}$. M., being $4^{\circ} 24^{\prime}$ south.
The right ascension of Jupiter on the 1st is 22 h .4 m ., his declination is $12^{\circ} 46^{\prime}$ south, his diameter is $31^{\prime \prime} .4$, and he is in the constellation Aquarius.
Jupiter rises on the 1st at 6 h .6 m . A. M. On the 31st he rises at 4 h .26 m . A. M.

MERCURY

is morning star until the 23 d , and, after that time, he is evening star. He is in superior conjunction with the sun on the 23 d at 7 h .58 m . P. M., when he passes beyond the sun, and reappears on his eastern side as evening star.

The "right ascension of Mercury on the 1st is 21 h . 50 m ., his declination is $15^{\circ} 17^{\prime}$ south, his diameter is $5 " .2$, and he is in the constellation Aquarius.
Mercury rises on the 1 st at 6 h .3 m . A. M. On the 31st he sets at 6 h .56 m . P. M.

MARS

is evening star. He enjoys the distinction of being the only planet visible in the west in the early evening where he may be found till nearly 9 o'clock. He shines with a faint ruddy light as he makes his way eastward and northward among the small stars of Pisces. For this reason the time of his setting varies little during the month.
The three-days-old crescent moon is in conjunction with Mars on the 13 th, at 3 h .21 m . A. M., being $3^{\circ} 25^{\prime}$ south.

The right ascension of Mars on the 1 st is 1 h .33 m . his declination is $9^{\circ} 47^{\prime}$ north, his diameter is $5^{\prime \prime}$, and he is in the constellation Pisces.
Mars sets on the 1st at 9 h .27 m . P. M. On the 31 s he sets at 9 h .18 m . P. M.

URANUS

is morning star. He is retrograding and apparently approaching Spica, the bright star on the west. He is now visible to the naked eye as a star of the sixth magnitude.
The right ascension of Uranus is 13 h .57 m ., his declination is $11^{\circ} 20^{\prime}$ south, his diameter is $3^{\prime \prime} .8$. and he is in the constellation Virgo.

Uranus rises on the 1st at $9 \mathrm{~h} .53 \mathrm{~m} . \mathrm{P} . \mathrm{M}$. On the 31st he rises at 7 h .51 m. P. M.

NEPTUNE

is evening star. His right ascension on the 1 st is 4 h . 10 m ., his declination is $19^{\circ} 24^{\prime}$ north, his diameter is $2^{\prime \prime} .6$, and he is in the coustellation Taurus.
Neptune sets on the 1st at 0 h .40 m . A. M. On the 31 st he sets at 10 h .44 m. P. M.
Mercury, Saturn, Mars, and Neptune are evening stars at the close of the month. Venus, Jupiter, and Uranus are morning stars.

Fish Remains in the Lower Silurian
The Devonian has for many years been popularly known as the "age of fishes." During this geological period the ichthyic life of the earth attained a most wonderful development, and it was long the current belief that during this time fishes first appeared upon the earth. The fact that the fauna was most highly differentiated and varied has been a stumbling block to evolutionists, who could find no ancestors in older rocks from which the Devonian forms could have arisen. The discovery of fish remains in the Ludlow (Upper Silurian) rocks of Great Britain and later on in the island of Osel, in the Baltic Sea, carried the fauna back one stage in the geological scale as far as Europe was concerned. The occurrence of certain markings on rocks of Clinton age in New York was long ago known; but it was not until 1885 that fish remains were actually found in America below the Devonian. In that year Professor Claypole described some remains from the Onondaga Salt group of Pennsylvania, and mentioned some minute spines from the Clinton which were thought to belong possibly to fishes.
In 1888 Mr . Matthews noted the discovery of fish in New Brunswick in strata referred to the Lower Hel derberg, so that it was known then that fish remains actually occurred in Upper Silurian strata in North America as well as in Europe. This being so, the re mains of vertebrates were expected to occur in olde rocks than these.
In 1888, in a collection of fossils made near Canon City, Colorado, about eighty miles south of Denver, by Mr. T. W. Stanton, Mr. C. D. Wolcott, paleontologist of the United States Geological Survey, recognized the remains of fish. Their association with fossils of a Lower Silurian aspect was so unusual as to give rise to
the belief that the rocks had been disturbed, and that Devonian and Silurian forms had become mingled Further material being desired, Mr. Stanton was instructed to collect during the past summer in Colorado and to check up his original observations upon the section. This was done, and from a study of the mate rial, Mr. Wolcott concluded the remains were from strata of Trenton age. To verify it, however, he went
last December to Canon City, studied the section, and collected material from the fish bed and above it. As a result the announcement was made at a meeting of the Biological Society of Washington, on February 7, that fish remains had been found in strata of Trenton age.

The remains are of the same type as the placoganoid fish from the Upper Silurian of the island of Osel Two forms have so far been recognized. One is related to the Elasmobranchii, or the sharks, and consists of the outer covering of the notochord. The other is probably one of the Placoderimii, a group of extinct Paleozoic fish, and consists of numbers of fragments of the scales.
A study of the invertebrate remains found associated Trenton insh, by Mr. Wolcott, showed the fauna to be less than 21 are identical with forms occurring in the Mississippi valley. This fauna is found 180 feet above the beds with the fish remains.
The discovery here noted is of the greatest interest. It not only carries the vertebrate fauna much farther back in time than any previous record, but it is the first recorded discovery of vertebrates at so low a hori son in the world. As might have been expected, the forms are low types, and represent the possible ances
tors of the Devonian forms. It will now be confidently anticipated that other similar remains will be found in other strata of Lower Silurian age.

Joseph F. James.
Washington, D. C., February 9, 1881.

History of the Thermometer.

The invention of the thermometer marks an epoch in science, for it alone has permitted of obtaining a knowledge of the laws that govern calorific phenomena. The first idea of it is perhaps due to the celebrated Van Helmont, who devised an apparatus which, to use his words, was " to prove that the water con tained in a bulb attached to a hollow rod rises or descends accor
In the seventeenth century, the necessity of an appa ratus adapted for measuring the differences of the temperature was so greatly felt that Galileo, Bacon, Scarpi, Fludd, Borelli, and other scientists of the epoch devoted themselves in this direction to researches that
were not always crowned with success. It is not till 1621 that we find a beginning of the solution in the experiments of a Dutchman, Cornelius Van Drebbel This physicist's thermometer consisted of a tube filled with air, closed at its upper extremity and dipping at its other extremity (which was open) in a bottle containing nitric acid diluted with water. According as the external temperature rose or fell, the air in the tube increased or diminished in volume, and conse quently the liquid descended or rose.
This instrument, called the calendare vitrum (indicating glass) by its inventor, constituted what has since been called an air thermometer, but as its graduation was based upon no definite principle, it was incapable of furnishing any comparable reading.
Along about 1650 the members of the Accademia del Cimento, at Florence, introduced into the thermometer certain improvements that gave it nearly the form that it has to-day; and its principle was based upon the expansion of liquids. The tube was filled with colored alcohol. In order to graduate it, it was taken to a cellar and the place was marked where the liquid came to a rest. Then, starting from this, the portions situated above and below the mark were divided into one hundred equal parts. As may be seen, it was impossible with such a system to construct two instruments that should agree. Nevertheless, it was the only apparatus that was made use of for half a century.
Finally, in the latter part of the seventeenth century, the physicist Renaldini, of Pisa, a professor at Padua, proposed that all thermometers should take the freez ing degree of water as a tixed point, and, as a second fixed point, that to which alcohol rises in a tube dipping in melted butter, the intervening space to be divided into equal parts.
From this epoch, then, dates the present thermome解, and the first instrument due to this innovation dates back to 1701. This was constructed by Newton and was the first thermometer giving comparable readings that had been devised. The liquid that he adopted was linseed oil, which is capable of supporting a higher temperature than alcohol without boiling, and his fixed point of graduation for the upper limit was the heat of the human body, and for the lower, the point at which the oil stops at the moment of its congelation.
A search soon began to be made for a thermometric agent other than oil (which was too feebly expanded by heat and which congeals at but a slightly elevated temperature), and, in 1714, Gabriel Fahrenheit, of Dantzig, almost completely solved the problem in the construction of the thermometer that now bears his ame. This was immediately adopted in Germany and England (where it is still employed) and was introduced into France. But along about 1730, scientist gave preference to the one that Reaumur had just devised.
Finally, in 1741, Celsius, a professor at Upsal, con structed the instrument called the centigrade ther mometer.
The three last-named instruments are the ones most commonly used, and differ only in the graduation of Each.-La Science en Famille.

Numerous Uses for Aluminum.
Among the uses for aluminum suggested by Mr. Eu gene H. Cowles, president of the Lockport Company according to Modern Light and Heat, are the following At fifty cents per pound the new metal will compete with copper at seventeen cents, the latter being 3.56 times as heavy as an equal bulk of aluminum. But the electrical conductivity of aluminum that is ninetyeight per cent pure is only seventy-five per cent that of copper, so that one-third more area would be required to do the same work. A reduction of forty-five per cent in weight of motors for electric cars can be secured by using the new metal, which in itself is no small advantage, seeing that the latter promise to come into extensive use in the near future. The coating and lasting qualities of aluminum far surpass those of tin, and it will cover three times as much surface for equal weights, making it necessary to sell tin at sixteen cents per pound in competition with the other ar fifty. Nickel at seventy cents would no longer be used for plated ware or coinage, the new metal being much cheaper and cleaner. He expects to see it sell at two to three hundred dollars per ton, and at these figures it will be the cheapest metal next to iron and steel. The price must fall lower and lower as the facilities increase for making the material and the market adapts itself to the absorption of larger quantities of the new metal.
W. Barclay Parsons, chief engineer, is constructing in the Allegheny Mountains of northern Pennsylvania a system of lumber railways, using gradients frequently of 3.5 per cent and at times up to and over 4 per cent. The power used is a Shay engine, a machine with three vertical cylinders driving a horizontal shaft, which is geared to all the wheels, tender included. This shaft is jointed so that the longest rigid wheel base is 56 inches. Such an engine uses the whole weight for adhesion, and at a ratio of $1 / 4$ with a weight of 60 tons weuld develop 30,000 pounds tractive power.

A STEAM SNOW PLOW

work plow shown in the illustration is designed to work effectively through heavy drifts or deep and solidly packed snow banks, throwing the snow to either side of the track as may be desired. It has been patented by Mr. Arthur Gardiner, of Terrace,. Utah portion, front edges of the shell being nearly rectangular in front edg of flar in contour and flaring outward, to direct the incoming
snow into the smaller or cylindrical portion of the casing. At each side of the flaring portion of the casing the shell is slightly extended, forming a shield to keep the operative parts of the machine free from snow.
Within the flaring end is a series of horizontal par titions, the outer edges of which have a knife edge, to

GARDINER'S SNOW PLOW.
distance lines from the telephone building, at No. 18 Cortlandt Street, New York, and our engraving made from a photograph taken at the time, shows the urangement of the performers.
In transmitting music of this kind, it has been found desirable to have a separate transmitter for every instrument, and further, that, where a considerable number of instruments are used, it is necessary to so arrange the induction coils that their joint resistance will bear a fixed ratio to the resistance of the receiving instruments and line, all the induction coils being conaected by the same line in multiple series. For this lass of work the storage battery is admirably adapted for uperating the transmitters, and by using cells of this type, it is possible to run 20 long distance trans mitters from the same battery without drawing a cur rent sufficiently heavy to injure the storage battery.

By using separate transmitters for each instrument, due prominence may be given to each of the instrument the receiving end. If one trans mitter is arranged to transmit musi emanating frow 50 instruments, it ha been found that it must be so adjust ed that the average result will be fair Under these conditions, the lighter violin parts are heard but very indis tinctly, while the heavier parts pro duce very great noise, but the purit of the sound is affected. This, of course, gives very unsatisfactory re sults.
At the receiving station, when it is desired to fill halls of considerabl size, as many as six loud-speaking re eivers are used. These are connect ed in multiple series, so that thei joint resistance bears a definite ratio to the resistance of the transmitters These are distributed about the hall being usually attached to the chan-
readily cut the snow against which the plow is advanc- deliers. On the occasion above referred to, the music ed, and within each of the compartments formed by the partitions a double blade in screw form is horizontally piveted. The trunnions of the blades extend through the sides of the casing, where they are each connected by a crank arm with a vertical bar secured to the connecting rod of an engine suitably mounted on a truck at the rear. There are also bevel gears upon the drive shafts of the two engines to operate a shaft carrying a conveyer wheel held to revolve in the circular body portion of the casing. The wheel has a solid rear disk, and a forward skeleton disk, and be tween these disks, some distance from the center o the wheel, are hinged feathering paddles adapted to operate against the snow as the wheel is revolved in either direction. At the top of the casing in which th conveyer wheel revolves are two discharge openings, in which a gate or damper is so arranged that the snow may be directed to either side of the track. The working parts are shown as adapted for use in connec tion with an ordinary car truck, upon which they are fitted, the car being pushed forward by a locomotive in the usual way.

LONG DISTANCE TELEPHONE CONCERTS
One of the interesting developments of telephone work is that which is now steadily going on-the transmission of orchestral wusic over long distances Our readers will recall the large measure of success attained during the exhibition of the Women's Exchange at the Lenox Lyceum last winter, when, besides the transmission of music from the local theaters, Boston contributed to the enter
the shape of music and recitations.

This work has been carried on by the American Telephone and Telegraph Company, known as the "Long Distance Company," under the direct supervision of their able engineer and electrician, Mr. F. E. Pickernell, and the results obtained with but a comparatively short experience in so difficult a field are exceedingly gratifying and give promise of still greater success in the near future.
In a lecture recently delivered in the Town Hall at Newton, Mass., Mr. Pickernell described the methods employed in the transmission of music by telephone. His remarks were very forcibly illustrated by the reception in the lecture hall of music transmitted over the long

A LONG DISTANCE TELEPHONE CONCERT PERFORMERS IN NEW YORK, AUDIENCE AT NEWTON MASS

A DRIVING MECHANISM FOR HAND DRILLS.
A simple and economic mechanism is shown in the cut whereby a drill may be driven at a high speed, and at the same time be conveniently held to work on the top, bottom, or sides of objects. It has been patented by Mr. J. W. Knapp, of Cross River, N. Y. The dril is held by a suitable chuck on the lower threaded end f a shaft adapted to revolve in a small casing, the up per end of the shaft carrying a horizontal grooved pulley, near which a bracket on the casing affords support for the journals of four grooved pulleys, as shown in Figs. 2 and 3, the pulleys being journaled in pairs. In Fig. 1 a driving pulley, to be rotated by a treadle or other approved means, is shown journaled

KNAPP'S DRIVING MECHANISM FOR HAND DRILLS beneath the work table, on the outer edge of which is an idler or guide pulley, above which, and suspended rom the ceiling, is a frame carrying two pulleys. This frame is attached to the lower end of a spiral spring, a cord from the upper end of which passes over a pulley near the ceiling, the other end of the cord having a weight to counterbalance the spring. A guide rod extends from the ceiling to the table, passing down on the inside of the spiral spring, to keep the pul leys in the suspended frame in proper alignment with the driving pulley. The endless driving belt passes from the idler over one of the upper pulleys, thence to engagement with one of the pairs of pulleys on the bracket of the drill casing and the pulley on the drill shaft as shown in Fig. 3,over the other upper pulley, and han shel By means of the pairs of pulleys in the bracket of the drill casing, the driving belt is always led to engagement with the pulley on the drill shaft, without regard to the position in which the drill is held, and by means of the balanced spring supporting the frame carrying the upper pulleys, the amount of tension will be constant upon the belt, as regulated by the weight, no matter how much lower or farther away the drill is taken. This mechanism is especially adapted for use with jeweler's tools and for dental purposes, as well as with an ordinary drill for working metal or wood

The Treatment of Dandruff

Dr. Edward Clarke, in the Lancet, states that he has had good results in persistent dandruff from the following treatment: The scalp should first be thoroughly washed with soap and ho water and then thoroughly dried with a warm and soft cloth; there should then be rubbed into the scalp a glycerole of tannin, of the strength of ten to thirty grains to the ounce. Very obstinate cases will require the higher strength of tannin. This process should be repeated twice a week at first, once a week afterward. If $\operatorname{tanninfails,~as~it~}$ will in some cases, then wort is had to resorcin. After the formation of dandruff has ceased, the head should be rubbed daily with olive oil containing, to the ounce, ten grains of carbolic acid and a drachm of oil of cinnamon.

ONE volt of electromotive force is generated for every $100,000,000$ lines of force cut per second.

Opaque Engraving of Glass.

In Dingler's Polytechnic Journal, Mr. Lainer gives two formulas that permit of preparing solutions for the opaque engraving of glass at a relatively low cost.
I. Two solutions are mixed, one of 10 grammes of soda in 20 grammes of water and the other of 10 grammes of carbonate of potash in 20 of water. To this is added 20 grammes of concentrated hydrofluoric acid, and then a solution of 10 grammes of sulphate of potash in 10 of water. On adding a small quantity of hydrofluoric acid, the appearance of a fine grain is obtained upon glass.
II. The second formula consists of 4 cubic centimeter of water, $11 / 3$ grammes of carbonate of potash, 0.55 cubic centimeter of dilute hydrofluoric acid, and 0.5 cubic centimeter of sulphate of potash. The desired degree of opacity of the glass is obtained by the alternate addition of hydrofluoric acid and carbonate of potash.

There is a still simpler process, due to Mr. Kampan of Vienna.

Hydrofluoric acid is neutralized with a few crystals of soda, and the fluoride of soda thus obtained is diluted with five or six times its volume of water. A good proportion is obtained with 240 cubic centimeters of com mercial hydroftuoric acid, 600 grammes of powdered crystals of soda, and 100 cubic centimeters of water The bare surface of the glass is submitted for a few minutes to the action of the ordinary solution em ployed for engraving (one-tenth of hydrofluoric acid), and then the plate, after heing washed, is dried with a sponge. After this the preceding solution is poured upon it for opaque engraving, and allowed to remain for an hour. The liquid is then poured off and the sur face is washed with water. The water is left upon the glass until a thin' pellicle of silicate forms upon the surface. By varying the duration of the action of the solution, various degrees of opacity may be obtained. If the latter is too great, it may be diminished by a new solution of hydrofluoric acid for engraving. Reoue Industrielle.

The Steam Haulage of Canal Boats

At a meeting of the Railway Union, in Berlin, Herr Wiebe described some experiments recently made on two lengths of the Oder and Spree canal, $31 / 2$ miles long in all, with a view to ascertain the best method of towing large boats. The submerged chain system is, he states, unsatisfactory, nor has the endless rope system of traction given entirely satisfactory result when practically tested during the course of the ex periments, though a great many types of supporting post and pulleys were tried. The difficulty encountered arose from the rotation of the rope as it moved on ward, which tended to twist the boat painter about the rope, and the form of connection between the rope and the painter could not be depended on to stop this action. Further experiments were then made by at taching the rope to the center of gravity of a heavy towing car, running behind and drawn by a light lccomotive, such as is commonly used in mines. If the rope is attached directly to the locomotive, trouble may arise from the side pull of the rope tending to overturn the engine. It is for this reason that the towing car was adopted in the experiments in question. This plan is stated to have proved satisfactory, and boats have been towed by it at the rate of from 10 ft . to 12 ft . per second, though a speed of 5 ft . will in general be sufficient. The tension on the tow rope in starting three heavy coal barges was as much as $1,764 \mathrm{lb}$., but rapidly decreased as the boats gathered way.

AN IMPROVED ROTARY ENGINE.

The engine shown in the illustration, and which has been patented by Mr. Laban J. Everest, is very simple in construction, and designed to be durable and effec tive in operation, utilizing the motive power to the greatest advantage. The frame supports a cylinder sade in the shape of a ring having an annular recess, closed at one side by a ring-shaped head, while the outer edge of a piston extends centrally into this recess on the inner side of the cylinder the piston bein made in the shape of a wheel on a shaft turning in suitable bearings of the frame. The wheel-shaped piston has recesses or buckets in its periphery, against

EVEREST'S ROTARY ENGINE.

which the steam is tangentially directed through angularly arranged inlet ports in the cylinder. The outer ends of these ports are connected by short branch pipes with a pipe extending almost entirely around the cylinder, the latter pipe being connected at one end with the steam supply source and closed at its othe end. The series of inlet ports follow each other a equal distances around the cylinder, and following them is an exhaust port connecting with a pipe leading to the outside. By this arrangement all butone of the buckets in the periphery of the piston are kept constantly filled with live steam, each discharging as it reaches the exhaust port. To insure the steam-tight rotation of the piston in the annular recess of the cylin der, packing rings are provided, to be pressed against the sides of the piston by set screws placed at suitable distances apart in each outer side of the cylinder.
For further information relative to this invention address Messrs. Everest \& Betterman, No. 1437 North 24th Street, Omaha, Neb.

THE JAMAICA EXHIBITION.

This "isle of springs," as its native name signifies, has had a somewhat checkered career. Discovered by Columbus on his second voyage, in 1494, it remained in
possession of the Spaniards for upward of a century and a half, during which period the native Indian were-as was usual in the early days of colonizationalmost exterminated, and the importation of African blacks was commenced-a sowing the seeds of slavery of which the British empire had to rid itself at a fear ully large cost. The negro population in the West ndies is happily now the only memento of what has been well called "a kind of incubus upon the empire throughout the eighteenth century."
In 1655 Admiral Penn and General Venables captured the island, as an attempt to compensate for the lack of success which had attended their expedition against Hayti. Thus Jamaica became a British possession at a time when England was beginning to feel her supremacy at sea, and to supersede Spain and Portugal as a colonizing power. It became one of the foundation stones of the Greater Britain of to-day.
Six years after its conquest regular government was stablished in Jamaica under Colonel d'Oyley ; but the ater prosperity of the island is due in great measure to the wise and energetic policy of Sir Thomas Mody ford, who was sent out as governor during the reign of Charles II. During the following years it was the resort of numerous buccaneers, who there found a coign of vantage from which to conduct their marauding ex peditions. In 1782 it was saved from a threatened in vasion of the combined fleets of France and Spain by the memorable victory of Rodney over the Compte de Grasse, for which he was raised to the peerage. A marble statue by Bacon was erected to him in the then capital, Spanish Town, but it has recently been removed to Kingston, and now overlooks the bay, the 'finest of Jamaica's thirty harbors, all capable of affording shelter to large vessels. Other important features in the history of the island have been inva sions by the Picaroons of Cuba, occasional rebellions on the part of the blacks, political differences with the ome government, hurricanes, earthquakes, the larges of which almost totally destroyed Port Royal in 1692 and the Gordon rising in 1865
The climate of Jamaica, which is equable, has been compared to that of the Riviera; it is also varied, as the high lands offer a pleasing relief to the heat some times felt on the seaboard. The vegetation is in parts typical of tropical luxuriance, and in parts mountainous rocks rise bare and rugged; the river scenery, too, with its numerous waterfalls, is very picturesque. The sea teems with fish, song birds abound, and the island is a veritable happy hunting ground for the naturalist and botanist, as Gosse and Kingsley have testified. To the hospitality of its inhabitants Mr. Froude has lately borne witness.
Situated as it is on the highroad to the South Ameri can continent, its importance would have been greatly ncreased had the Panama canal become a reality
The existing railroads in the island are being extended, and Kingston will shortly be connected by a short line with Montego Bay and Port Antonio on the north coast. Road making is being rapidly pushed on, and must materially increase the chances of successful transport of fruit and other produce to European markets.
That there is plenty of scope for the further development of the natural resources of the island is evident when we read that three-fourths of the arable land is t present lying fallow.
Those who inaugurated the Jamaica exhibition had two objects in view-the demonstration to the world at large of the natural resources of their island, which

are undoubtedly most varied, and which place Jamai ca at the head of the British West Indian Islands, and the introduction into the island of the latest improve ments in machinery for the further development of these products. The glories of the sugar plantations have been dimmed by a series of circumstances over which the Jamaicans had but little control, e. g., the bounties granted by France and Germany for beet root sugar and the increase in the cost of labor (a result of the emancipation of the slaves), etc. The loss to the island on this score is not so great as has been stated, for it is said that not more than five per cent of the total population are interested in the production of the sugar cane. There are, moreover, other products in the island besides sugar, such as rum, tea, coffee cocoa, tobacco, annatto, pimento, beeswax, lime juice, and fruits of all kinds, including oranges, bananas, wangoes, pineapples. and many of which the name are almost unknown in England-"sweet sop," "cherimoyer," "star apple," and the "alligator pear," all of which are said to be of excellent flavor. In addition
to the fruits, turtle, both prepared and dried, and tortoise shell, are all capable of yielding fair profits. Al ready the fruit trade with America is progressing, and when the transport to the coast is rendered easier by the completion of the new roads under construction and the art of packing is better understood, it is hoped that large cargoes of fruit will be successfully shipped to England and the Continent, and these native pro ducts of the island become one of its most staple supports.
Time was when oranges were obtainable in England only during the winter months; now, thanks to powerful steamships, this acceptable fruit is to be had almost all the year through, and there is no reason why a large number of them should not come from Jamaica, where the orange tree grows luxuriantly without culti vation.
The exhibition is held under all the favorable auspices that official sanction and guidance can give. Th 3 president, and in fact originator, is Sir Henry Blake, the governor. Its commission was appointed by law and approved by the Secretary of State, and it was opened on the 27th of January last by his Royal High ness Prince George of Wales.
For the above and our illustration we are indebted to the Graphic.
The following is from a letter in the N. Y. Times:
The exhibition building of the Jamaica Industrial Exhibition, which was formally opened January 27, in the form of an immense cross, occupies the central point of the plain of Liguanea, and the grounds cover twenty-three acres, which are broken up by walks and drives. The grounds are about a mile and a half from the harbor and about 200 feet above the sea level. The long arms of the building point east and west, and at the intersection rises a great dome 100 feet high. The cupola is gilded and finished to the ground in decora tions of the Moorish order. The nave has a circular roof 54 feet high, supported by long lines of pillars The building is lighted throughout by electricity, and from the top of the dome at night a great electric search light throws its glare far out over the harbor.
In the main hall of the exhibition, Jamaica reserves the central spaces for herself. Canada has the largest area, having two of the central compartments and three on each side of the main hall. England, France, Germany, Austria, and the United States come next, in the order mentioned. The display in the United States court is anything but creditable to the country, and owes whatever credit it deserves to the en entral
of private individuals. It occupies one of the central of private individuals. It occupies one of the central
and one of the side compartments, with a smail space in the gallery. The firm of G. J. De Cordova, of New York, represents a number of United States firms, who have some exhibits, and Mr. De Cordova is one of the exhibition commissioners.
Among the business houses of the United States which are represented by exhibits are Sch warlzer \& Co., who make a display of desks of American manu facture elegantly finished in walnut, cherry, and oak They also show a handsome suit of bedroom furniture in oak, which is a revelation to some of the other exhibitors of goods of the same character. A toilet set
of oxidized silver, consisting of ewer, basin, and soap of oxidized silver, consisting of ewer, basin, and soap
cups, beautifully chased, is exhibited by Simpson, Hall, Miller \& Co.
The Singer Manufacturing Company exhibits a sample of its machine with a vibrating shuttle that interests the ladies as something not seen here before. It bobbin winder, with a full not of all attachments. Its new drop cabinet machine is the first of its kind seen in Jamaica. The company also exhibits a machine for manufacturing purposes which takes 2,000 stitches a
minute, and is adapted to work on heavy cloth and minute, and is
leather fabrics.
Burroughs, Wellcome \& Co., New York and London, exhibit the Stanley medicine chest, a facsimile of that used by the explorer in Africa. Lascelles, De Mercade \& Co. have erected a pavilion opposite machinery hall for the exhibition of their New York and London firms.
The building is in the shape of a T and was built by
he Harvey Lumber Company of Chicago. It was sent to Kingston in sections all ready for the carpenters,
and is a model structure. The roof is of corrugated and is a model structure. The roof is of corrugated
tiles and is surmounted by three flagstaffs, from which float the stars and stripes, the Jamaica and the English lags. The interior is finished in Georgia pine, with a very fine effect.
Among the more notable American exhibits here are these : Edwund C. Cole, of New Haven, Conn., has a splendid assortment of buggies and carriages; Aspinwall \& Co., a fine display of enamels; the Ansonia Clock Company makes a creditable exhibit of its clocks and bronzes ; Simpson, McIntyre \& Co., an exhibit of butter; the Binghamton Oil Refining Com pany shows a variety of the manufactured product of petroleum; Mackellar, Smith \& Jordan, the Phila delphia type founders, send a display of American type tastefully arranged in the large show cases, and a num ber of books, pamphlets, and newspapers that speak in the highest terms for the progress of the typographical art in the United States. The Edison Mimeograph Company exhibits its wonderful copying machines, and the National Typewriter Company has a corps of oper ators working their machines. The Domestic Sewing Machine Company's exhibit is the wonder of the wo men folk, and the Sheperd Hardware Company send or inspection a great variety of ice cream freezers, just the thing for this climate.
The Cannon Hollowware Company displays kitchen ware, and the Sidney School Manufacturing Company has a well arranged exhibit of school furniture of al kinds. The Archer Company shows an American barber chair that suggests peace and comfort, and the Amberg File and Index Company's display of lette files and cabinets is a notable collection.
Concerts are to be given in the pavilion on the Wilcox \& White organs and on the instruments of the Chicago Cottage Organ Company, both of which mak fine displays. Carr \& Co., of New York, make an ex hibit of agricultural machinery that is specially inter esting, as it is adapted for the preparation of the products of this island. Marburg Brothers, of Baltimore, have a tasteful exhibition of various brands of their tobaccos, and the stoves shown by L. Bennett \& Sons should tempt the natives to discard the use of oi stoves, which are now in general use.

Natural History Notes.

How the Muskrat Breathes under Ice.-Animals that breathe by weans of lungs can prolong their stay under water only through special anatomical arrangements, or by having recourse to some extraneou means. Mr. W. Spoon, of the Elisha Mitchell Society, who has hunted the muskrat in winter, asserts that th animal, when obliged to traverse, under ice, a pond so wide that it cannot keep up its breathing, stops from time to time and exhales the air from its lungs. This air, being confined by the ice, becomes oxygenated in contact with the water, and the animal, taking a fresh inspiration, dives in order to begin its swimming again a little further along. It appears that other observers have found that if this air is dispersed through the ic being struck, the animal is killed through asphyxia.
Absorption of Organic Matter by Plants.-In a com munication from Prof. Calderon, of the Institute of Las Palmas, Canary Isles, he contests the ordinary view that the nitrogen of the tissues of plants is derived entirely from the nitrates and ammoniacal salts absorbed through the roots. He does not, however, adopt the old theory that the source is the free nitrogen of the atmosphere, but rather the nitrogenous organic matter which is always floating in thè air. The nutrition of plants he divides into three classes: necrophagous, the absorption of dead organic matter in various stages of decomposition; plasmophagous, the assimilation of living organic matter without elimination, or distinc tion of any kind between useful and useless substances, such as the nutrition of parasites; and biophagous, the absorption of living organisms, such as that known in he case of insectivorous plants. A further illustratio the latter kind of nutrition is, according to Pro Calderon, furnished by all plants provided with viscid hairs or a glutinous excretion, the object of which is he detention and destruction of small insects. To prove the importance of the nitrogenous substances
floating in the air to the life of plants, he deprived air f all organic matter in the mode described by Profes or Tyndall, and subjected lichens to the accessonly or this filtered air and distilled water, when he found al their physiological functions to be suddenly suspended. -Nature.
Life of Lichens during Winter.-Of all plants, lichens re the ones that most easily endure the lowest temperatures. They are met with in profusion in the polar re gions and at the highest altitudes, where no other plant can subsist. The causes of this peculiar resistance be ing unknown, Mr. H. Jumelle decided to ascertain how from the standpoint of gaseous exchanges with the at winter. The study of this point was evidently capable of throwing light upon the question of the resistance of these plants. The results obtained by Mr. Jumelle,
and recently communicated to the Society of Biology, are al follows
In our country, when the temperature descends beow zero, lichens enter upon a retarded course of life due less to the lowering of the temperature than to a loss of water. In lichens that grow under shelter and on the ground, the loss of water being less, the gaseous exchanges will be merely decreased, and remain sensible. On the contrary, in lichens living upon trees and exposed to the air, desiccation occurs to a considerable extent, and life is then so retarded that, in darkness as well as in light, the gaseous exchange no longer becomes appreciable. If, by chance, the lichen contains a notable proportion of water, the freezing of the latter produces an effect analogous to that of desiccation, and the gaseous exchanges are again of the feeblest charac-ter.-Revue Scientifique.
How the World Appears to the Lower Animals.-In addition to the organs of hearing, touch, and smell, Sir John Lubbock has found upon the antennæ of insects certain organs that seem to be connected with senses that we know nothing about.
Experiments made upon certain fresh water crustaceans show that they are sensible to sounds corresponding to more than 40,000 vibrations per second (sounds that we cannot hear), and to ultra-violet rays that we cannot perceive. Now all the rays that we can perceive appear to us with definite colors, and it should be the same with these animals; so that it is probable that they see colors that are unknown to us and that are as different from those that we are familiar with as red is different from yellow or green from violet. It would result from this that natural light, which seems white to us, would appear colored to them, and that the aspect of nature would be entirely different to them from what it is to us. It is possible, therefore, that to certain animals nature is full of sounds, colors, and sensa tions that we have no idea of.
The Longevity of Animals.-What is the maximum longevity of animals? It has been found that the herbivores, especially those that are compelled to work, are generally longer-lived than the carnivores. Thus, an ass died a few years ago at Cromarty at the age of 106 years. It had belonged to the same family since 1759. We have a record of several horses that reached the age of 40,50 , or more years. A tow horse died at Washington at the age of 62 years. Another horse died at New York aged 38 years, and had worked up to nearly its last moment. At Philadelphia there was a mule that reached the respectable age of 42 years. Another mule, aged between 40 and 45 years, is still working at a place near San Francisco. A ewe, born at Kalinowitz in 1829, remained fertile for twenty years, and died in 1850. As for carnivores, a Spanish slut recently died in America at the age of 28 years, and the case is cited of a cat that died at the age of 22 years and 2 months. - La Nature.
The Color of Batrachians.-According to the re searches of Mr. Ponchet, the green and golden colora tion of the batrachians is produced by yellow chromoblasts and blue iridocysts, the mixture of which gives an impression of green upon the retina. Black chroma tophores contained in the derma and epidermis are, by extending in a network, capable of covering the other chrowoblasts, to a greater or less extent, and of giving all the shades between dark brown and yellowish green or light blue.
In a note presented by Mr. Chauveau, in the name of Mr. Abel Dutartre, the latter describes the principal conditions that govern the motions of these black chromatophores. He first studies the action of the different rays of the spectrum, and demonstrates that white light and yellow cause a contraction of the black chromatophores and render the color of the animal ighter, while blue light and violet leave the animal more or less dark. Then, examining the influence of the bottom, he finds a curious case of mimicry, viz., that the coloration of the animal remains light whenit s placed upon a light bottom, while it remains brown when it is placed upon a dark bottom. Finally, Mr. Dutartre's researches on the influence of the nervous system upon the changes of color in the batrachians have shown him that an excitation of the bulb gives rise to a lighter coloration, even though such excita tion takes place after the spinal marrow has been cleft in the center. Hence it follows that it is not the nerves of animal life that act upon the coloration of batrachians, but rather the sympathetic nerve.

Effects of Heat and Pressure on Rocks.
The author has continued his researches on the ef fects produced upon rocks in contact with gases suddenly developed by means of such explosives as gun cotton and dynamite. Temperatures of $2,500^{\circ}$, and pressures of 1,100 atmospheres, thus obtained, have been sufficient to fuse and pulverize the rocks experi wented upon in a very marked manner. The result lead M. Daubree to believe that the perforated pipes or diatremes, diamantiferous, volcanic, or otherwise, and wuch of the subaerial dust and oceanic deposits are ormed by such actions as he has obtained in the labo ratory. He also shows that rocks may acquire an ap parent plasticity under the influence of pressure.
mandfacture of heavy guns for d. s. navy. (Continued from first page.)
ships of all classes. We have before stated that in 1886 the navy department was in possession of but fourteen 6 inch rifles. The immense progress made in the past few years will be readily appreciated when it is recalled that our artist saw an equal number of these guns (Fig. 4) placed in a row ready for shipment.
The Bethlehem Company's works (Fig. 1) are situated at South Bethlehem, Northampton County Pa., on the Lehigh River, 87 miles from New York by way of the Lehigh Valley Railroad and Central Railroad of New Jersey, and 55 miles from Philadel phia via the North Pennsylvania branch of the Philadelphia and Reading Railroad.
Their property covers an extent of about $11 / 4$ miles in length by $1 / 4$ mile in width, of which about 20 acres are under cover. The works comprise offices, boiler houses, blast furnaces, puddle mill, merchant steel mill, Bessemer department, with converters, furnaces and rolls, chemical and physical laboratories; but the most interesting department is that where the ordnance and armor plate are made, by means of powerful hy draulic presses, the 125 ton hammer, and their accompanying appliances.
The steel for the manufacture of the gun forgings is manufactured in open hearth furnaces burning gaseous fuel. When necessary the contents of four furnaces of various sizes can be united to cast an ingot of 100 tons, but that size furnace is usually employed which is most suitable for the work in hand.
When the furnace has been raised to a suitable temperature, the charge, previously determined upon, is entered and subjected to a fusion of several hours. The combustion of the previously heated gases and air whose volumes are regulated by valves and dampers, develops an intense heat. Frequent tests are made while the conversion is going on, to determine the condition of the metal in the bath. When satisfactory, it is tapped into a ladle lined with refractory material and transferred to the flask, in which it is subjected to fluid compression. The flask is then moved to a position under the movable head of the casting press (Fig. 2) and hydraulic pressure applied to the metal until the requisite compression is obtained.
This press consists of massive head and base, held together by four forged steel columns or bolts secured with nuts. A movable head carries the ram to which the hydraulic pressure is applied.
An eye witness of the operation has thus described it: "I saw 30 tons of boiling steel put into a vertical cylinder, perhaps 40 in . in diameter. A piston, with a gradually increasing pressure, running up in thirtyfive minutes to six tons per square inch, was thrust upon that boiling column, and out from the sides darted fine jets of blue-burning gas. When the cylinder was so far cooled that contraction no longer went on, the pressure was removed."
When cooled and reheated, the ingot thus cast is taken to the forging press (Fig. 3) and there roughmoulded into the forms which enter into the final fabrication of the gun.
Bethlehem's hydraulic forging presses are the most powerful yet built. They were designed to produce any forgings that would probably enter into the heaviest battle ships and their engines and armaments, and have already produced many of the largest forgings thus far required in this country.
In shaping the larger pieces the requisite reheatings are made in special gas furnaces conveniently located.
Senator Hawley has given a spirited account of this impressive operation. "I saw a cylindrical ingot of steel 42 inches in diameter and 92 inches (7 feet 8 inches) long, weighing 16 tons, taken easily from the glowing furnace and carried quickly and gently to the forge, where one end was laid upon an anvil between two uprights, a frame of strong pillars and crossbeams. Close above the white and sparkling metal hung a hammer head adjustable to the bulk of the metal to be forged. The face of the ram that bears upon the steel was, perhaps, two feet long and eight inches wide. Its longer dimension coincided with the axis of the steel cylinder. Near by stood a lad to control the ordinary levers or throttle bars by which steam or hydraulic power is applied.
"The lad pulled the lever, the hammer went down gracefully and silently, with a pressure of 3,000 tons, six or eight inches into the cylinder, and the mass of 16 tons gave way, spread, and flowed from end to end as dough gives way under the fist of the baker. After each successive pressure the cylinder was revolved a few degrees to be ready for the next, as the blacksmith turns the rod wit
After their reduction to approximate dimensions the forgings are oil-hardened and annealed, numerous tes pieces being taken out during all the steps of the manufacture and very carefully analyzed and subjected to physical tests. Naval inspectors watch all these
operations carefully, securing a complete history of the metal at all its various stages. The parts are then transferred to the machine shop to be machined to the dimensions required by the very rigid specitica-
tions laid down for the guidance of the inspecting officers.
The machine shop, which is well lighted by electricity, contains lathes, planers, boring mills, slotters, drilling machines, shapers, etc. Among these are: a planer in which 13 feet by 13 feet by 50 feet 10 inches can be planed; 10 -foot face plate lathe; boring mills of the most recent design, and some of the most power ful lathes in existence. The building containing these tools is 641 feet in length by 116 feet in width and is served by pneumatic traveling cranes, 60 feet span and 45 feet hoist, with lifting capacities of from 25 to 100 ons.
This machining is followed by another rigid inspec tion for dimensions and surface defects, when forgings are shipped in sets to the gun factory for fabrication into the finished gun. On their receipt at the gun actory they are again carefully inspected before proceeding to the various stages of boring, turning, shrinking together, chambering and rifling, which operation will be fully described in a subsequent article.

Plaster Casts.

Have the following articles on your bench ready for use:
1st. Soap Varnish, made by dissolving English white Castile soap in soft water to the consistency of milk.
2d. Dredge Cup.-Take a half-pound baking powder can, and have your tinner make a cover for it, having the entire top part made of strainer wire, such as is used on milk pails. Keep this cup always filled with 3d. Btrong plaster.
3d. Bottle of Mixing Solution.-Consisting of soft water and two per cent of alum, or borax, or sulphate of potash.
4th. Pepper-box, filled with fine, powdered soap tone, and a jeweler's extra soft bench brush.
We will suppose you have a perfect impression for full mouth. Coat the impression with soap varnish, brushing it in thoroughly till a good lather forms; now inse off with cold water and it is ready to pour. Next pour in your bowl the right quantity of mixing solu ion, then add the plaster, shaking it in carefully from the dredge cup till it comes a little above the surface
of the solution; stir a little. If not thick enough, of the solution; stir a little. If not thick enough,
shake in more plaster, for to have a good, smooth hard model it should be worked as thick as possible and it can be worked very thick, as the solution used ausesit to set slow of the cup to make the plaster tapping the bottom is hard enough, separate it from the impression and let it stand to dry. Shake the soapstone over it thickly and polish with the jeweler's brush till perfectly mooth. A model made thus, and then before pack ing covered with the tin-foil, or liquid tin, gives a plate as smooth as when vulcanized on solid metal cast.-Dr Wm. Steele, in Items.

Foreign Patent Sharks.

Messrs. Wm. P. Thompson \& Company, agents for European patents, call attention in a circular letter to system of imposition upon American inventors who are captured by the " cheap" work offered by alleged attorneys, who flood the country with circulars fishing for prey. There are so many shark schemes practiced upon the inventor-and it is usually only those who can least afford the loss who are caught-that the only safe plan, as the Electrical Review truthfully remarks, is to deal with attorneys who are recommended by people you know or who have some other equally reli able indorsement. Beware of the man who wants to sell your patent at a fabulous price, if you will only pay 20 or 30 dollars for advertising expenses. Beware of the man who in a flaming circular offers to do pro-
fessional work for almost nothing. You can be asessional work for almost nothing. You can be as
sured he has some sinister motive in making the proposition, and before you get through with him you will find him dear enough.
The following is quoted from the letter.
We think it right to expose to you the full particuars, as far as we have been able to ascertain them, of an organized system by which, on an average, at least 20 American patentees per week are grossly victimized Certain individuals in this country, who have lately got themselves registered as patent agents, have circu lars sent round from places in New York or Washing-
ton, usually in the name of some high-sounding company. These circulars are sent to every patentee the moment his name appears in the Official Gazette of the United States Patent Office, offering to procure European patents for them at what they please to term cos price, or seemingly without any profit rc themselves, and afterward to negotiate the sale of such patents They also sometimes publish statements of the numbe of companies which they make appear to have floated for purchasing patents, whereas we do not believe that one solitary individual has ever received a penny from them by the sale of his patent. We have letters from patentees in America complaining that they have sent $\$ 20$ for provisional protection to some of those gentry but have never got a reply or acknowledgment of any kind whatever. The French patents, if applied for by
them at all, are, of course, in every instance, absolutely null and void, owing to the prior publication of the United States patents in America. The German patents, if applied for at all, are refused for a similar reason. The English patents are at least nine times out of ten null and void, owing to sufficient information having been set forth in the United States Gazette to enable a person to work the invention. As, too, the provisional specifications of these patents are simply copied from the Gazette already published in Great Britain, it is very doubtful whether in any case the patents can be upheld, as it is certain that everything contained in the provisional specification had fallen into the public domain before the date of application.
These bogus companies, of course, hand the patents over to the individuals who are really the company, stating that they have put the patent into the hands of a high-class firm of English patent agents. Now, if this system is to continue, in a very short time two results will follow : (1) Every patentee who has paid a reasonable fee for a patent to his American patent agent, on getting these circulars, not knowing the actual facts of the case, will at once consider that he has been imposed upon by his American patent agent. (2) As the inventors in all these bogus cases will have simply lost their money without any return whatsoever, in a short time European patents will be looked upon as nothing but sinks in which all money invested in them is lost. The success of these men shows also that American patent agents do not sufficiently explain to their clients the value of European patents, otherwise the clients would have taken out the patent through their own agents, and in proper time, instead of falling into the hands of these harpies.

Edison's Explanation of the Ampere and the volt.

During a recent examination a lawyer put the fol wing question to Thomas A. Edison:
Explain what is meant by the number of volts in an electric current?" To which he replied:
"I will have to use the analogy of a waterfall to explain. Say we have a current of water and a turbine wheel. If I have a turbine wheel and allow a thousand gallons per second to fall from a height of one foot on the turbine, I get a certain power,- we will say one horse power. Now the one foot of fall will represent one volt of pressure in electricity, and the thousand gallons will represent the ampere or the amount of current. We will call that one ampere. Thus we have a thousand gallons of water or one ampere falling one foot or one volt or under one volt of pressure, and the water working the turbine gives one horse power. If, now, we go a thousand feet high, and take one gallon of water and let it fall on the turbine wheel, we will get the same power as we had before, namely, one horse power. We have got a thousand times less current or less water, and we will have a thousandth of an ampere in place of one ampere, and we will have a thousand volts in place of one volt, and we will have a fall of water a thousand feet as against one foot. Now the fall of water or the height from which it falls is the pressure or volts in electricity, and the amount of water is the amperes. It will be seen that a thousand gallons a minute falling on a man from a height of only one foot would be no danger to the man, and that if we took one gallon and took it up a thousand feet and let it fall down it would crush him. So it is not the quantity or current of water that does the damage, but it is the velocity or the pressure that produces the effect."

Cleanly and Orderly Workshops.

There is no doubt about it, cleanliness about a shop is one of the rules which should be most rigidly enforced. There is no excuse for permitting piles of rubbish, scraps, etc., to lie around on the floor and benches, neither should the machinery be allowed to remain covered with grease and dirt. Clean machinery tends toward the keeping of everything in the best order. Dirt and grease of ten hide indications which if observed in time might prevent a breakdown, and an attendant loss of property, and possibly a loss of life or an injury to the workmen. Workmen should take pride in keeping their benches and surroundings as free from litter as possible. It is an unpleasant sight to go into a shop and observe a workman who desires some particular small tool rummaging over the numerous scraps, tools, etc., which cover the machine or bench at which he is working in order to find the tool he desires to use. Each workman should have a particular place for each tool, and return it to its proper place as soon as he is done with it. It is a very simple matter, adds the Railway Master Mechanic, to clean up a bench at least onee a day, but when it is neglected from day today, it soon presents an untidy and unsightly appearance.
N. F. Burnham, the inventor of the turbine water wheel bearing his name, died at York, Pa., on the 22d ult. His inventions and improvements, covering a his mechanical skill.

SHIPPING NITRATE AT PISAGUA, CHILI.

THE NITRATE OF SODA MINES AND WORKS IN CHILL

THE CHILIAN NITRATE OF SODA MINES AND WORKS.
The two nitrate oficinas or establishments of Jaz Pampa and Paccha count among the most important, and are undoubtedly the most picturesquely situated, of any on the pampas or plains of Tarapaca. They are built on opposite sides of a deep quebrada or gulch, through which the Nitrate Railway passes. Indeed, the word Jaz, a local term implying divided, is here used to denote the fashion in which the level surface of the pampa bas been rent apart by some bygone convulsion of nature.
Advantage has been taken of this natural formation to lay out the oficinas of the Jaz in such wise as to obtain unusual facilities for commodious and economical working. The caliche or raw material of nitrate, having been extracted from the calicheras or pockets situate on the pampas, is brought to the crushers erected at the edge of the gulch or summit of the maquina, and, being run through them, falls into the boiling tanks below. The nitrate in solution flows into the bateas or precipitating tanks, where on cooling it crystallizes, while the earthy refuse, or ripio, left in the boiling tanks, is cleared out by hand, and shot from tip cars into the valley below.
The washed and prepared nitrate is then bagged and transported to the shipping port of Pisagua, where a fleet of vessels is generally anchored to receive and convey the product to all parts of the world. At this port there are piers alongside of which launches are brought into which the nitrate bags are dumped and towed out to the ships. Quite a large part of the shipment, however, is effected by means of balsas or small floats, consisting of a pair of tubular skins, lashed together and inflated with air. These balsas are very buoyant, very light, easily propelled. The manner of loading and propelling them is clearly shown in our engraving. The native boatmen are exceedingly dexterous at the business, and are satisfied with earnings of a few cents a day.
We are indebted to the Illustrated London News for our engravings.

SIMPLE MILLING ATTACHMENT FOR FOOT LATHES.
The plan of making one machine answer the purpose of several separate machines for different purposes is not advisable, for many reasons; but when a simple and useful attachment, like that shown in the engraving, can be readily and cheaply made without altering the lathe, and arranged for use without waste of time, it is desirable, especially when the use of such an attachment, effects a great saving of time, and takes the place of files in many kinds of work.
The milling attachment here shown is applied to the small engine lathe (8 inch swing, 42 inch hed) made by W. C. Young \& Co., of Worcester, Mass., as this lathe is well fitted for the purpose, but it may of course be applied as readily to other lathes fitted with the same slide rest, and with some changes it may be adapted to almost any engine lathe.

The slide rest illustrated is inverted, and the part which is designed to hold the tool post is secured to the lathe carriage by the bolt that commonly holds the slide rest in the position of use. The bottom of the slide rest, which is thus placed uppermost, forms a bed of sufficient size for receiving work as large as would usually be done in a lathe, and the T slot furnishes a ready means of securing the work or the holders for the work. In Fig. 1 two angle plates are shown secured to the slide rest by bolts entering the T slot. The upright portions of the angle plates are slotted to per mit of adjusting the centers at the desired height. The fixed center is held in place in one of the angle plates by nuts on opposite sides of the plate. The movable center is supported in the other angled plate by a sleeve which passes through the slot in the plate.
The inner end of the center carries an H shaped bar, which clamps the end of the dog on the mandrel which holds the work. The outer end of the movable center is provided with small cylinder divided like an index plate. The outer nut on the sleeve which supports the movable center has a slotted right-angled arm, which extends ontwardly and along the face of the graduated cylinder. In the slot of the arm is clamped a sleeve, in which is inserted a screw with a conical point, which may be inserted in any of the holes in the graduated cylinder, the screw being adjustable along the slotted arm to bring it opposite any series of holes as may be required.

The division of the cylinder may be effected with sufficient accuracy for most purposes by means of dividers, but more accurate results may be secured in the manner described in SUPPLEMENTS No. 317, 732, 740.

Taps, reamers, and cutters may be fluted by the aid of this simple and easily made apparatus, the cutter being carried by the lathe either on a mandrel between the centers or projecting from a chuck on the lath mandrel.
For plain work, the simple vise, shown in Fig. 2, may
be used. If the work to be done is too large to go be tween the slide rest and cutter, it will be necessary to raise the head of the lathe. If, on the other hand, the slide rest is too low, it may be raised by inserting washers between the rest and lathe carriage. 'Fo facili tate placing these washers, they should be slit from the center outward to the periphery, to allow of putting them in place without removing the bolt from the slide rest and lathe carriage.

OLIVE OIL LAMP.
The lamp shown in the engraving was recently pur chased in the Mercato Vecchio at Florence. These

OLIVE OIL LAMP.
lamps are used not only in Tuscany, but in many of the other provinces of Italy, and form an article of commerce not only for actual use, but being so artistic large numbers are sold annually to European traveler as souvenirs. They are quite inexpensive, considering the amount of material and the work put upon them the larger ones costing only $\$ 1.35$ complete, while smal ones may be purchased for 75 cents. They show an amount of hand work which is seldom seen in American goods of the same class.
These lamps are made in several different designs and with one, two, three, or even four beaks. The lamp illustrated is 22 inches high and is made through out of cast brass, with the exception of the extra oil carrier, which is of copper. Every lamp is provided with a pair of snuffers, an extinguisher, and an instru

milling attachment for foot lathes.
ment for picking the wick. These three articles are suspended from the lamp with brass chains having brazed links. The lamp font is tinned on the inside o prevent corrosion, and is arranged to slide upo down the rod. The wicks, which are of wool, pass through small brass tubes inserted loosely in the beaks. The supply of oil contained in the font being imited, the small oil reservoir holding a charge of oi is suspended from the lamp. The olive oil, which is very cheap, costing only 8 to 10 soldi (8 to 10 cents) the liter is manufactured from small olives or those unfit for eatiug. These lamps gives soft, pleasant light.

Food before Sleep.*

Many persons, though not actually sick, keep below par in strength and general tone, and I am of the pinion that fasting during the long interval between supper and breakfast, and especially the complete emptiness of the stomach during sleep, adds greatly to the amount of emaciation, sleeplessness and general weakness we so often meet.
Physiology teaches that in the body there is a per petual disintegration of tissue, sleeping or waking; it is therefore logical to believe that the supply of nour shment should be somewhat continuous, especially in those who are below par, if we would counteract their emaciation and lowered degree of vitality; and as bodily exercise is suspended during sleep, with wear and tear correspondingly diminished, while digestion assimilation and nutritive activity continue as usual the food furnished during this period adds more than is destroyed, and increased weight and improved gen eral vigor is the result.
All beings except man are governed by natural instinct, and every being with a stomach, except man, eats before sleep, and even the human infant, guided by the same instinct, sucks frequently day and night and if its stomach is empty for any prolonged period, it cries long and loud.
Digestion requires no interval of rest, and if the amount of food during the twenty-four hours is. in quantity and quality, not beyond the physiologica limit, it makes no hurtful difference to the stomach how few or how short are the intervals between eating, but it does make a vast difference in the weak and emaciated one's welfare to have a modicum of food in the stomach during the time of sleep, that, instead of bein consumed by bodily action, it may during the interva improve the lowered system ; and I am fully satisfied that were the weakly, the emaciated, and the sleepless to rightly take a light lunch or meal of simple, nutritious food before going to bed for a prolonged period nine in ten of them would be thereby lifted into a bet ter standard of health.
In my specialty (nose and throat) I encounter case that, in addition to local and constitutional treatinent need an increase of nutritious food, and I find that by directing a bowl of bread and milk, or a mug of beer and a few biscuits, or a saucer of oatmeal and cream before going to bed, for a few months, a surprising in crease in weight, strength, and general tone results; on the contrary, persons who are too stout or plethoric should follow an opposite course.

Soldering of Glass and Porcelain with Metals.
Mr. Cailletet has recently made known to the Societe de Physique a process of soldering glass and porcelain with metals. Mechanists, physicists, and chemists will appreciate the practical importance of this process which permits of adapting any metallic object what ver (cock, tube, conducting wire, etc.) to experimenta apparatus in such a way as to prevent any leakage even under high pressures.
The process is very simple. The portion of the tube that is to be soldered is first covered with a thin layer of platinum. This deposit is obtained by covering the lightly heated glass, by means of a brush, with very neutral chloride of platinum, mixed with essen tial oil of chamomile. The oil is slowly evapo rated, and, when the white and odoriferous vapors cease to be given off, the temperature is raised to a red heat. The platinum is then reduced and covers the glass tube with a bright layer of metal. On fixing the tube thus metallized, and placed in a bath of sulphate of cop per, to the negative pole of a battery of suita ble energy, there is deposited upon the platinum a ring of copper, which should be malleable and verv adhesive if the operation has been properly performed.
In this state, the glass tube covered with copper can be treated like a genuine metallic tube and be soldered by means of tin to iron, copper bronze, platinum, and all metals that can be united with tin solder
The resistance and strength of such soldering are very great. Mr. Cailletet has found that a tube of his apparatus for liquefying gases, the upper extremity of which had been closed by means of an ajutage thus soldered, resists pressures of more than 300 atmospheres. The tube, instead of being platinized, may be silverized by raising the glass covered with nitrate of silver up to a heat bordering on red. The silver thus reduced adheres perfectly to the glass, but numerous experiments have caused platinizing to be preferred to silverizing in the majority of cases.-La Nature.

Eczema from the Virginian Creeper

The Lancet (London) relates a number of unmistakable cases of eczema produced from gathering leaves of the Virginian creeper. The effect, rash, heat, and irritation of the skin, is the same as that caused by ivy and dogwood on some persons.

Progress of Steam Navigation on the Groat Lakee.
Census Bulletin 29 says : It is probable that the history of marine architecture does not furnish another instance of so rapid and complete a revolution in the material and structure of floating equipment as has taken place on the great lakes since 1886.
The facts show not only radical changes that have taken place in the class of vessels used for transportation on the great lakes, but an increase in the tonnage and valuation during this brief period. In 1886 the net tonnage was 634,652, in 1890 it had reached 826,360, an increase of 191,708 tons. The estimated value of these vessels in 1886 was $\$ 30,597,450$, and in 1890 the aggregate valuation was $\$ 58,128,500$, an increase compared with 1886 of $\$ 27,531,050$. Sailing vessels are fastgiving place to vessels propelled by steam.
In 1886 there were but 21 propellers of over 1,500 tons burden. In 1890 there were 110 propellers of this class. But the tonnage of vessels of this class has increased more rapidly than their number. Thus the total tonnage of the 21 vessels of over 1,500 tons burden in 1886 was 34,868 , while the total tonnage of the 110 vessels in 1890 was 188,390 ; that is to say, the percentage of increase in the number of vessels is 42381 , while the percentage of increase in tonnage is $440 \cdot 29$. The total value of this class of vessels in 1886 was $\$ 2,645,000$; in 1890 it was $\$ 15,000,092$, showing an increase for the four years of 570.59 per cent. A comparison similar to this for any of the classes of vessels, when taken in connection with well known facts relative to the ownership of these large vessels, clearly shows that the traffic of the great lakes is rapidly coming under the control companies having at their command large capital.
The same conclusion may be arrived at if the changes in the material made use of in the building of new ves sels are considered. Steel is more generally used for large vessels than iron, composite, or wood. In 1886 there were but 6 steel vessels afloat on the lakes, with an aggregate tonnage of 6,459 tons and an aggregate value of $\$ 694,000$. From the corresponding data for the year 1890, it appears there are now 68 steel vessels the year 1890, it appears there are now 68 steel vessels
afloat on the lakes, with an aggregate tonnage of afloat on the lakes, with an aggregate tonnage of
99,457 tons and an aggregate value of $\$ 11,964,000$. This shows an increase in number of vessels of $1,033 \cdot 33$ per cent, in tonnage of $1,439 \cdot 82$ per cent, and in valuation of $1,623.99$ per cent. Iron and wooden vessels have barely held their own during these years. Vessels built of composite, on the other hand, show a marked increase, both in number, tonnage, and value.
These facts indicate that a new factor is being intro duced into the problem of transcontinental transporta tion.

Economic Steaming.

Certain remarkable economical results have been obtained by M. August Normand, of Havre, with the engines of a torpedo boat constructed by his firm, which were made the subject of a paper which he read before the French Institution of Civil Engineers on the 5th of December last. The following abstract, for which we are ing ing:
M. Normand has recently delivered to the French government three single screw torpedo boats, Nos. 126, 127 , and 128 , and one twin screw boat, the Avant-Garde. The consumption of fuel at slow speed-ten knots-was found to be so small in the case of Nos. 126, 127, and the Avant-Garde, that it was deemed advisable to carry out a trial with No. 128 with exceptional care, and for this purpose the boat made two runson successive days, of eight hours each.
M. Normand puts down the consumption at 0.5 kilo. per horse per hour, which means about $1 \cdot 25$ pounds of coal per English horse power per hour ; an extraordi narily low figure, when it is borne in mind that the engines are compound, not triple expansion. The trials were carried out by an official committee. The princi pal dimensions of the boat are as follows: Length ove all, including the rudder, 121 feet; beam, 13 feet 2 inches; mean draught, 3 feet $91 / 2$ inches ; displacement, about 79 tons.

The boiler is of the locomotive type, but presents many peculiarities. There are 317 tubes, 8 feet 8 inches long and $11 / 2$ inches diameter. These tubes are rolled into the plates, and fitted at the fire box end with bell-mouthed ferrules. The grate surface is a little over 30 square feet. The total heating surface is 1,425 square feet; the pressure 143 pounds per square inch. A deep hanging bridge is worked into the flat crown of the fire box, and a fire brick bridge curves back over the grate. Thus a species of combustion chamber is formed, whish, with the bell-mouthed ferrules, perfectly protects the tube ends and tube plate and prevents leakage. These boilers, we understand, give no trouble what ever. The total weight of the boiler, with water and all
fittings and accessories, is nearly 16 tons. Of this the fittings and accessories, is nearly 16 tons. Of this the
water represents about 4.5 tons, and the grate bars and bearers about 17 cwt . The external fire box crown is brought down lower than usual, and to provide steam room a steam drum about 2 feet in diameter has been added to the barrel of the boiler. In the water space at each side of the fire box thin plates are placed to permit the quiet descont of water betwoen thom and
the outer shell plate, while the steam and water together can rise unhindered at the fire box side. The tubes are of brass, with copper ends next the fire box. The engines are intended to indicate 900 horse power when making 320 revolutions per minute. They weigh complete, without water, about 12 tons. The water in the condenser and hot well adds about $1 \cdot 25$ tons to this. The water circulates automatically through the condenser when the boat is in motion. A small centrifugal pump is provided to maintain the circulation when the boat is not moving through the water. The cylinders are $1 \% \cdot 3$ inches and $27 \cdot 24$ inches by $17 \cdot 3$ inches The valve boxes are placed between the cylinders They are cast in one with the small cylinder. The cylinders are jacketed all over. The jackets are supplied direct from the valve chest of the high pressure cylinder, and the drain pipes are fixed at the lowest points, so that the jackets can be kept quite clear of water. At each end of the high pressure cylinder is fixed a small relief valve, which opens if the compression becomesexcessive, as may be the case when the engine are running linked up. If it were not for these valves the engines must when running at full speed have too little compression, but by their aid M. Normand is able to give ample compression at full speed, and yet run no risk at low speeds when working very expansively. The valves open at each stroke, permitting the surplus steam to escape into the chimney before the admis sion port opens. These valves have worked satisfac torily up to the present. The frames of the engine are o gun metal, with diagonal steel ties. The slide bars are of bronze, grooved for oil, and with water circulation through them. The piston and connecting rods are o steel. The condenser tubes are fixed by rolling into the tube plates. They are bent slightly to permit con traction and expansion. No packing of any kind is used. This method is said to answer perfectly. The feed water is cleared of grease and dirt by being passed through a sponge filter. The sponge arrests the grease, but lets the water pass freely. The feed is next passed through a heater consisting of a sheaf of tubes rolled into plates at each end. The sheaf is placed in a cop per vessel. The feed water circulates round the tubes A special valve worked by an eccentric on the after end of the crank shaft admits, during the period of expan sion, steam from the large cylinder to the heater a each stroke. This steam moves through the tubes ina direction opposite to that in which the water moves The water at slow speed is raised to a temperature o about 158° Fah. ; at full speed it is beated to 212° Fah The water resulting from the condensation of the steam passes by a steam trap to the condenser. A second and similar trap drains the jackets, and the hot water
is passed through a copper coil in the hot well, so that t gives up its heat to the feed water before entering the condenser.
The accompanying table gives the results of the rials for economy :

The extreme economy obtained during these trials is attributable to two causes. In the first place, the boiler was very economical. In the second, the engines used the steam supplied to them to the best advantage. The eport of the commission estimates the theoretical value of the fuel, which was special torpedo boat bri quettes from Anzin, at 16 pounds of steam to the pound of fuel. The boiler actually made 12 pounds per pound of coal, so that the efficiency was 75 per cent, a very excellent result. During the trial the grate area was reduced by fire tiles to a little over 17 square feet, the fans were not worked, and the stokehold hatches were open all the time. The heating surface stood in the ratio of 81.6 to 1 of the grate surface. M. Normand at taches much importance to the arrangement of the tubes in the tube plates, and he cites a very remark ble experiment made with a locomotive boiler. A cock was fitted on the shell of this boiler, and from the cock a small bore tube was led down through the water to a point in close proximity to the tube plate of the fire box. When the boiler was worked at full powe cock, nothing but steam. This is a highly suggestiv experiment, and does much to explain why tubes become leaky when forced draught is used. M. Normand classifies the causes of the exceptional economy of hi ngines under four heads : First, the great economica efficiency of the boiler ; second, the complete compres-
sion in the small cylinder, by which clearance was liminated; thirdly, the heating of the feed water fourthly, the superheating of the steam due to throt tling.
Revolutions per minute, 135%. Mean pressure, smal poiler, $18 \cdot 2$ pounds; indicated horse power, 51.72
ceiver, 8.5 pounds; vacuum, 22 inches; temperature of feed water, 178° Fah. Large cylinder, average pressure 9 pounds; indicated horse power, 62.60. Total indicated horse power, 114:32.
As the boiler produced 12 pounds of steam for each pound of fuel burned, and the consumption was $1 \cdot 25$ pounds nearly per English horse power per hour, we have $12 \times 1 \cdot 25=15$ pounds as the weight of steam used per horse per hour. This is an extremely small consumption, but not impossible. It has been exceeded with some pumping engines, for example. But it ap pears yet smaller when we consider that the pressure during the trial did not exceed 60 pounds above the atmosphere. We see no reason to doubt the substantial accuracy of the report. The diagrams were taken every half hour ; the briquettes put on board before the eight hours' run were weighed, those left unburned were weighed after the run, and the difference was the consumption. The feed water was not measured, however, and the evaporation of 12 to 1 has been deduced from that of a Scotch boiler in the steamship Chasseur, which was found by actual experiment o make 9.29 pounds of steam per pound of coal. We believe that the actual efficiency of the torpedo boat boiler has been underestimated.
The heating surface for the power was enormous the rate of combustion, very slow. The firing seems to have been conducted on the principles with which our own engine trials under the auspices of the Royal Agricultural Society have made us familiar, the briquettes being carefully broken into small pieces. The feed water was raised to a high temperature. Under the ircumstances, we think we may take the evaporation as more nearly 13 pounds than 12 pounds of water per pound of fuel, and the consumption then become $13 \times 1.25=16.25$ pounds, which is not exceptional although very good. Nothing is known with certainty as to the consumption when the boat is running at ful speed. It is, of course, considerably in excess of that reported for the low speed.
The entire experiment is very instructive, and the re sults all go to teach the same truth, namely, that maxi mum economy can only be had by using dry steam and neutralizing the effect of clearance. The performance of the machinery as a whole reflects very great credit on M. Normand.

The Dangerous Alternating Current

Humidity reached pretty nearly high water mark as midnight approached last night, and several things resulted.
One was the display of three electric lights on Broad way, opposite St. Paul's chapel, that nobody will ever pay the electric light company for. Some high ten sion wires run on poles on the west side of the street in front of the chapel, and trees in the churchyard extend their branches over the sidewalk and very close to the wires. The trees and their branches were soaked with water, and therefore goosd conductors of electricity. The saturated atmosphere between the branches and the wires completed the circuits, and the result was three brilliant electric arc lights, which blazed, sputtered, went out, and blazed again, until finally the sputtered, went out, and blazed again, unti the street.
branches were burnt off and dropped to the branches were burnt off and dropped to the street.
During the display a considerable number of people gathered at the corners and watched it curiously
The moisture-saturated atmosphere occasioned an alarm of fire at about the same time. The Pennsylva nia Railroad ferry slips at Cortlandt Street are lighted by electricity, and the wires run under the roof within a few inches of the wooden rafters. These wires were evidently badly insulated, if insulated at all, for fire broke out at nearly the same moment at three points in the roof just above them at the time when the fog from the river was thickest. An alarm was sent out, and the first engine that arrived quenched the flames within less than a minute with no appreciable damage. The new fire boat New Yorker steamed up immediately afterward, but there was no use for her.
While the Sun reporter was talking to the policemen on duty at the ferry, immediately after the fire, a newly erected telegraph pole suddenly broke into flame in front of the ferry house on the west side of West Street. The flame flickered and went out before an alarm could be sent. The same wires which fired the ferry house hung on this pole. They were strung to it on glass insulators set at least three nches from the wet wood. The current apparently umped to the pole through the medium of the water aturated air, forming an arc and firing the wood.
From Fulton Street to the Battery the wires kept sizzling here and there, sometimes sending out a spurt of flame as big as an average sized Derby hat, and ometimes dwindling down to a spark.-N. Y. sun, Feb. 17.

Cement for Microscope Slidew.

Take a tube of Winsor \& Newton's flake white, as used by artists, and mix with an ounce of Berry's oil finish varnish. It makes a most durable cell, and one with which a cell can be rapidly built. The matorials aan be obtained at any drug store.

The Bell and Drawbaugh Telephones.

H. C Andrews, of New York City, is çounsel for the Drawbaugh claims on the telephone. He was seen a few days ago by a representative of Modern Light and Heat in regard to the rumor that the Bell Telephone Company wight seek to continue its monopoly after the expiration of its patents by admitting the priority of Drawbaugh's claim for a patent on the carbon transmitter and then purchasing his rights. He said that it would not do the Drawbaugh claims a bit of good if they were admitted by the Bell Company, for the United States Patent Office, and not the Bell Company, was the contestant. He admitted, however, that if Drawbaugh's claim to a patent on the carbon transmitter were now established and his rights were bought up by the Bell Company, the monopoly on the transmitter could be continued for many years to come. That there had been any negotiations to that end he denied positively.

AN AMERICAN BANYAN TREE.

Probably nothing in the way of natural growth af fords greater interest to the young student of geography than the banyan tree, with its huge arms extending out in every direction, and dropping down shoots, which in turn change into trunks, and instead of remaining a cumbrous dependent, become a support to the parent branch and furnish it sustenance and life-a curious and interesting provision which leads to one of the most extraordinary growths that we have in nature multiplies itself and becomes a group and then a grove, $u n t i l$ it spreads over a tract of land large enough to shelter an ariny. We published some weeks ago a description and illustration of a remarkable banyan tree that has for many years attracted the attention of visitors to the island of Nassau, but in the accompanying engraving we illustrate a fine example of this tree, and this specimen is to be fouad upon this continent. In this land of many climes, there are a variety of growths which are not generally known. This is especially the case in southern Florida, where many of the tropical genera are indigenous. The banyan or rubber tree is one of this number. Our illustration is from a specimen at Palm Beach, Lake Worth, Florida, and is from a photograph by Mr. Wm. H. Jackson, of Denver There are very few of thew known, however, now in Florida, and this tree is probably the largest of its kind in North America.

The Annual Report and Annals of the Ast mical observatory of Harvard College.

The report of the director of this observatory ind cates an extensive range of work in both hemispheres and the elaborate celestial tables issued as the "An nals" are the best evidence of its work. The observa tions are now executed in three fields, Massachusetts and California in the United States and at Chosica, Peru. The latter station will probably be abandoned for Arequipa, where a drier air and better climatic conditions prevail. The accumulation of photographic plates is noted, some tiventy-seven thousand being now stored in Cambridge. By the application of photography a record is now obtained for the benefit of future generations of astronomers that goes back to 1885. Thus the observers of to-day have witnessed th establishment of an epoch, the birth of the new astronomy, where photography does the recording and the gelatine plate supplants the eye of the observer with its inevitably varying personal coefficient. Besides the volume of annals, a number of special publications on various subjects, by the members of the observatory staff, are noted, most upon pure astronomy, but some touching on photography and horelogy.

an american banyan tree.

[The points here given, with many others of equal mportance, were discussed in a very able address recently delivered by Hon. John S. Wise, at the fourteenth annual meeting of the New York State Bar Association, at Albany.]

The Relations of Men of science to the General

was the title of the address of T. C. Mendenhall, a retiring president of the American Association for the Advancement of Science, at its annual meeting in Indianapolis for the year 1890. The main points of his theme were

1. The particulars in which scientific men fail as ex ponents of science awong their fellows. Under thi head is named, with proper qualification, the fact that such men are sometimes unable, or unwilling, to pre sent the results of their labors in form intelligible to intelligent people.
2. Men of science are liable to fall into the error o assuming superior wisdom as regards subjects outside the lines of their specialties.
3. Men of science are not always reasonably fre from egotisiu in matters relating to their specialties, particularly in reference to authority and attainments in the same.
4. Another element of weakness in scientific wen is that they are often less "practical" in their work than they should be. Sometimes they even despise the use ul and practica n science, and their dignity is disturbed when an honest and in nocent layman asks what the use of this or that dis covery is. This we deem one of the most importan points of the ad dress, because the fault is so com monly noticed and spoken of by intelligent lay men. We hav ourselves been re cently ashamed o some of our pro minent scientific men for grievou errors in this way 5. The last point of the paper is the demand which the public may justly make upon the man of sc ence, that his in terest shall not b less in public af fairs than that o other men. The paper, as a whole is well calculated to call the atten tion of scientifi men generally to a line of useful ness and an op portunity forgood
o it, and that other devices are simply a juggle to get round Bell's patent. In electric lighting, millions of investment have hung on a "filament" and on the ex ct meaning that the courts might altach to the word Among the latest legal fights is one that probably the United States Supreme Court will have to settle namely, whether the telephone companies or the elec tric railway companies have the right to use the earth as a "return" circuit. The telephone people claim that the leakage from the railway throws their service out of gear and renders the instruments useless. The railway people reply that their telephonic friends have a remedy in metallic circuits and that no one electrical interest anyhow can "own the earth." Already this dispute has cropped up in nearly a score of States, and he increasing number and magnitude of the electric roads renders it more and more important. In the meantime, the telephone companies as far as possible are putting their metallic circuits in, with a marked mprovement in the service. New questions thus crop up every day. In the use, for example, of the alter ative currents now becoming so common, not a littl has depended on the patentability of the principle of ransforming the current, and on whether a "step up was equivalent to a "step down," in other word whether raising the voltage and decreasing the amper age was a simple and inevitable converse to decreasing around which legal controversy hasgathered is the fin one as to where "low" potential ends and "high" po tential begins.

Lubec Channel, Maine

The report of Lieut.-Col. J. A. Sinith, Corps of En gineers, upon the preliminary examination of Lube Channel, Maine, shows that this channel is worthy of mprovement, which is concurred in by the Chief of Engineers. The improvement proposed is the excava tion of a channel with a width of 500 feet at its narrow st place increased to a width of 650 feet to make roon in the bend, and 12 feet deep at mean low water, at an stimated cost of $\$ 231,000$
Lubec Channel lies between the township of Lubec on the extreme eastern boundary of the State of Maine and Campobello Island, of the prorince of New Bruns wick. At its narrowest place, which is between the village of Lubec and a point of the island, the distance s but 805 feet from high water on the end of Gun Rock to high water mark on the Campobello shore. Between the natural contours of mean high water on he respective shores the width is 960 . feet, and be ween contours of mean low water the distance is but 390 feet.
After passing Lubec, going southward, the channe leads into a small bay known as Quoddy Roads, which forms a good anchorage in northerly and northwester ly storms. When a storm changes from westerly to east erly directions, vessels which are at anchor in the road are seriously endangered, and must accept the alterna tive of trying' to ride out the storm or to escape throug the narrows into the protected waters above.

RECENTLY PATENTED INVENTIONS. Railway Appliances.
Signaling Apparatus. - George B. Williams, Portland, Oregon. This invention provide conductor's signaling valve in which the exhaus means of a trigger device, with other novel features forming a simple and durable apparatus designed to
transmit accurately and promptly signals from the con ductor to the engineer of a train by means of com pressed air, the apparatus being also adapted for em ployment in signaling work with stationary plant.
Railway Rail Fastening.-Thomas J. Bush, Lexington, Ky . By this invention, diagona intersecting holes are bored in the tie to receive interand through slotted plates on top of the tie, thus afford ing a uniform and level foundation for the rail, which is prevent

Die for Making Bolts. - The same inventor has also obtained a patent for a machine fo making interlocking bots, such as required in this rail mandrel to face oft and recess the end of the bolt to form a locking shoulder, the invention being an im patentee.
Elevated Railroad. - John N Valley, Jerpey City, N. J. Two patents have bee granted this inventor for structures adapted for pas-
senger or freight carrying purposes, and also for use in senger or freight carrying purposes, aud also for use in
timber lands for getting out loge, or in mines, etc., the mprovements relating mainly to the mode of suspend ing and bracing the track rail from a stringer sustaine by strats, and in a method of laying or fastening the track rail sections on the sleeper to mairtain its straight-
ness both ways, for promoting greater ease of travel o ness both ways, for promoting greater ease of trave o
a carriage or trolley and giving increased durability the entire structure.

Electrical.

Potential Regulator. - Alvirus L Ellis, Kansas City, Mo. A pair of electric motors connected with the potential controlling devices and with the main circuit, and a circuit controlling magnet the other of the motors, thus operating the to one o controlling device in accordance with the requirement of the circuit, the arrangement being applicable in a circuit carrying either a direct or an alternating cur rent.

Agricultural

Potato Planter.-Ferdinand Storck nera Vista, Col. In this frame a vertically adjustab standard carries a plow with which is connected a seed tube, while there are adjustable covering plows in the rear of the mann plow, with other novel features, b means of which potatoes may be planted in a
line and with the hills at equal distances apart.

Plow and Fertilizer Distributer -Silamon McLean, Mineral Springs, S. C. In this machine the fertilizer hopper is independent of the plow the distributing section in use normally sustains all the weight of the fertilizer, and the plows may be raise and lowered at the will of the operator, the machine
being adapted to distribute either damp or dry fertilizer, being adapted to distribute either damp or dry fertilizer. placing the material at the bottom of t.h
thoroughly incorporating it with the soil.
Cotton Stalk Puller. - Lewis L Womack, Zephyr, Texas. This machine has a pullin wheel journaled near the ground on the lower end of short vertical axle, and operated by gearing from the
main horizontal axle, the stalks heing received between teeth hond the rim of the wheel, and as received betwee vances, the stalks are 'pulled up and discharged at the rear of the machine.
Churn. - James McBride, Bavington Pa. This invention covers an improvement in what are may be easily operated," in which the cream may readily placed and removed, and which is designed to qückly and thoroughly do its work, the body of the
churn being given an end over end motion if desired, o churn being given an end over en
rotated in a horizontal position.
Cattle Stanchion.-The same inven tor has obtained a patent for a stanchion to which animal may be quickly and readily secured, while a me same time great freedom of movement is allowe means being proviled in connection therewith for pre
venting the animal from fouling the floor of the stall.
Hay Press. - John B. Foresman Foresman, Ind. In connection with the baling chambe a revolving feeding chamber, feeding rollers lying nto the baling chamber, the baling operation being continuous, and the bales of hay and straw being compacted and banded and automatically ejected from the machine.

Miscellaneous.

Brush Scraper for Paint Pails.David F. Brown, Omaha, Neb. This is an attachment pring wamp the edges of the bert erior clamping portion with spring bows which engag he rim of the pail or bucket.
Sample Case - Henry Noee, Chicago, Ill. This is a case for the display of carpet samples,
providing for the arrangement of a large number of providing for the arrangement of a large number of
various patterns within a small compass, the samples various patterns within a small compass, the samples
benge readily changed, and arranged for display by liability of scattering or soiling them.
Burtal Apparatus.-Nicholas Brickell, Poplar Grove, Ark. A knock-down frame and a carriage forming a bier running on the tracke to
receive the coffin, the carriage having pivoted handles,
to facilitate lowering a coffin or casket to the bottom of a vault or a grave.
Atomizer. - Edward T. Kassel, New York City. This is a device for spraying perfumery nd antiseptic or other liquids, for toilet, medicinal, or plications of antiseptic or other fluids by one hand of surgeon while leaving his other hand free to perform an peration
Fountain Inkstand. - J ames V Bergen, Austin, Texas. This invention provides an a tachment for inkstands designed to be simple and dur ble in construction, and by means of which the ink confined in air and dust proof reservoir which can b emove a cover to get at all the parts
Adjustable Book Rest.-Charles W Bccannon, New York City. This support has a foo siece attached thereto by hinges, the lower edge of the and the support being provided with triangular bails of different sizes hinged to its back or lower surface whereby it may be set at any desired angle, the devic
being also adapted for use as a writing desk or table.

Adding Machine.-Gideon B. Massey Mamaroneck, N. Y. deceased, Sarah R. Massey and Stanley A. Bryant, administrators). A series of num ber wheels are operated simultaneously by slides hav-
ing numbers corresponding to those on the wheel ing numbers corresponding to those on the wheel,
there being also a "carrying" mechanism, and a nove prere being also a "carrying" mechanism, and a novel
printing and paper feeding mechanism, for obtaining printing and paper feeding mechanism, for obtatinat addition is made.
Cash Register. - This is another pa tion of a check-printing machine which will print number, and cut off checks in succession, and at the same time produce a continuous record of the numbers of the checks, an indicator being provided for showing

Automatic Weigher and Packer John A. Ostenberg, Des Moines, lowa. This is a m chine for weighing starch, spices, and similar material ad discharging it into boxes, bags, or other packages, standard carrying a sleeve with a series of weighin cales, while a circular hopper discharges
haker spouts into the boxes of the scales, and mechanism is provided for shutting off the supply of material when the proper amount has been fed.
Transposing Key Board. - Anders Holmstrom, New York City. Combined with a movhe key board to be latched when adjusted to any desired position, preventing accidental movement and holding the keys in proper relation to the action stems
for playing the instrument, and allowing change of or playing the instrument, and allowing change of pitch of tone for obtaining different musical effects b
ingering the same keys.
Street Letter Box. - Ira G. Lane New York City. This is a box designed to be entirely of iron and having a neatly finished connection wit newspaper or package compartment, and a hinged drop lid provided with a swinging tray, while the discharge opening is partly in the front and partly in the bottom, he front and bottom doors being coupled together for toun
House Door Letter Box. - This is nother patent by the same inventor for a box to be
placed on the inside of a door or partition wall, an provided with an interior bar to prevent abstraction of mail from or at the drop lid or Inlet opening, and also facilitate the passage of mail into the box, while a whenever the drop lid is opened.
Meat Holder. - Robert W. Randle ortland, Ind. This is a device adapted to hold a ham or joint of meat while being carved, having a series ustable clamping arm, with a lever for closing the latter toward the fingers, and a catch to hold it when closed, there being a removable cover inclosing the hole, and a ventilating screen
Measuring Vessel.-Henry W. Laun Englewood, Ill. This is a transparent vessel protected he use of an additional measuring cup, there being a graduated scale on the side of the liquid receptacle, an Clothes Drier. - Mary L. W. Martinot, New York City. This device consists of square drying chamber, having a heat flue in the bo its inner walls, and clothes-holding trays formed slats, and other novel features, being especially adapted for use wth oil or gas stoves, etc., providing means whereby clothes may be qui
danger from too much heat.
Water Conductor for Turbines.John Graham, Minneapolis, Minn. This conductor has a siphon pipe inserted in the water reservoir, a nove
description of readily operated valve at the mouth o the pipe beneath the water level, a vent valve at the top of the siphon, a pipe from the trunk pipe below the suitable pump, and a gate valve at the lower end of the trunk, where water is supplied to the turbine
Force Pump.-Frederick F. Danaher rooklyn, N. Y. This is an improvement in that class for convenient and expeditious application to a sink, or or other nses of a similar nature, the invention covering a novel construction and combination of parts.
Treating Potassic Salts. - Bernhard Peitzsch, Stassfurt, Germany. This invention ound in a mineral state at Stassfurt, to manufacture therefrom potash, soda, hydrochloric acid, magnesia,
frysum, and sulphur or sulphuric acid, the process al. lowing of
products.
Disinfecting Paving Composition. John Fottrell, New York Ci ides for the use of carbolic acid in connection with body of Portland or any suitable cement, the acid bein horoughly mixed with the cement in proportions vary ing according to the locality where such pavement is

```
ater, in the nsual way.
```

Bicycle Crank. -- William Blakely, Bournemouth West, England. The crank arm is wood of a shell of stamped steel plates fluted and Autes filled with agate or other hard material, while the metal shell has an eye notched to correspond with the utes of the axle, the construction forming a light an very stiff shaft or axle, not likeey to spring or ben Check Hook - Karl
Check Hook. - Karl G. Bareis, Madi dapted to this invention consists of a hollow post darness, with an arm to be opened or closed on the ost to insert and retain the check rein in place, makin simple and efficient device, which is ornamental

Vehicle Pole Attachment.-Henr . Roberts, Duncan, Mich. $\boldsymbol{\Lambda}$ spring-pressed bolt fitted to slide in a post on the holdback, the base plate of which the bolt is adapted to engage, forming a aafety
attachment designed to conveniently and securely atachment designed to conveniently and securely pole or release it when desired
Dumping Cart. - Timothy Flanigan Chicago, IIl. This is a cart especially designed to carr arbage and half-liquid substances, as well as fo rdinary purposes, the closed dumping body on the
ame in the rear of the seat having a door, with a locking mechanism, and there being a connection leadin om the lock to the driver's seat
Nore.-Copies of any of the above patents will be furnished by Munn \& Co., for 25 cents each. Pleas end name of
of this paper.

SCIENTIFIC AMERICAN

BUILDING EDITION.

FEBRUARY NUMBER.-(NO. 64.)

TABLE OF CONTENTS.

Chestnut Hill, Mt. Vernon, New York, erected at a cost of $\$ 12,000$ complete. Two perspective
views, floor plans, etc. 2. Colored plate representing an attractive residenc at Auburn Park, Chicago. Cos
plans, perspective elevation, etc.
3. Plans and perspective view of a carriage honse erected at South Orange, N. J., at a cost of $\$ 2,70$
complete. H. H. Holly, Esq., architect, New York,
4. A residence at South Orange, N. J. Cost $\$ 11,000$ omplete. Perspective elevation, floor plans, et Architect, H. H. Holly, New York.
5. Bandsome residence of Gothic design at German town, Pa., erected for Mr. B. P. Wils
spective elevation and two floor plans.
tage in Sophia Avenue, Chicago, estimated c $\$ 2,800$. Floor plans and perspective elevation. erected cottage at Stratford, Conn. Cost $\$ 2,700$ complete.
8. A colonial residence erected at South Orange, N. J, Prom plans by Rositter \& Wright, architects, New York. Cost $\$ 17,000$ comp.
vation and two floor plans.
9. Cottage at Austin, Chicago. Estimated cost $\$ 3,700$ Floor plans, perspective view, etc.
10. Floor plans and perspective view of an elegan
cottage at Austin, Chicago. Cost about $\$ 5,000$. corner of a bondoir, designed by J. Armstrong rawing which appeared in the Royal rawing, which app
2. A picturesque cottage of moderate cost at Austin ion. Estimated cost $\$ 900$.
13. Miscellaneous contents: Jarrah wood.-Biographi cal sketch of Henry Schliemann,the archæologis -Bronze castings.-The Scientific American help to builders.--American stone fields.-How ite hard woods.-Floors.-Plaster.-Developments of construction.-Corrosion of zinc in contact with brick.-Etching upon glass.-Magnesia in cement. -Our last year's volume.-Improved woodworking machinery, illustrated.-A novel calenda made of tin. - Broughton self-closing basin cock Alustrated.-The Edson recording pressure gauge le handle, illustrated.--The Dunning hot water eater.-Improved conduits for electric wires, il uetrated. - A thoroughlly built parlor doo saving appliances for the carpenter and builder illustrated.
The Scientific American Architects and Builder Edition is issued monthly. 82.50 a year. Single copies, tents. Forty large quarto pages, equal to about cally, a large and splendid Magazine or ArchitrcTURE, richly adorned with elegant plates in colors and with ine engravings, illnstrating the most interesting
examples of Modern Architectural Construction and examples of M
allied subjects
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largerst Ciroulation of any Architec
all newadealer

MUNN \& CO.. PUBLIeHBR
901 Broadway

PBusiness and Personal. The charge for Insertion under thes head is One Dollar
a linefefor each insertion: about eight words to a line. Advertisements must be received at publicaton offic
as early as Thursday morning to appear innext issue.

For Sale-New and second hand iron-working ma Prompt delivery. W. P. For best hoisting engine. J.S. Mandy, Newark, N.J Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. For Sale Cheap-13 light dynamo. C. L., Box 773, N.Y. Barrel, Keg, and Hogshead Machinery. See adv. p. 30 Billings' Patent Adjustable Four and Six Inch Pocke Bet a Best Ice and Refrigerating Machines made by David
Boyle, Chicago, IIl. 155 machines in satisfactory use The Improved Hydraulic Jacks, Punches, and Tube Money provided for manufacturing patented articles "How to Keep Boilers Clean." Send your address Screw machines, milling machınes, and drill presse he Garvio Mach. Co., Iakh and Canals.., New York Bids wanted for the manufacture and introduction of
Vicholls' strap and buckle shield. Address Wiles

Split Pulleyy at low prices, and of eame strength and
appearance as Whole Pulleys. Yocom \& Son's Shafting ppearance as Whole Pulleys. Yocom \& Son's Shafting
Works, Drinker St. Philadelphia. Pa

For low prices on Iron Pipe, Valves, Gates, Fittings, ron and Brass Castings, and Plumbers' Supplies, write
A. \& W. S. Carr Co., 138 and 140 Centre St., New York. Wanted-An assistant manager in a large machine hop. A graduate of scientifc school preferred. Ad-
dress, giving particulars, ol L. R., box 7 tis, New York. The best book for electricians and beginners in elec tricity is " Experimental Science," by Geo. M. Hopkins.
By mail, $\$ 4$; Munn \& Co., publishers, 361 Broadway, N. Y
The Dwight Slate Machine Co., of Hartford, Conn., matic feed drills for light work, $1 / 2 \mathrm{in}$. holes and less. 1831
mat matic feed drill
catalogue free.
ETSend for new and complete catalogue of Scientific nd other Books for sale by Munn \& Co., 361 Broadway.

HINTS TO CORRESPONDENTS
Names and ad dress must accompany all letters,
or no attention will be paid thereto. This is for our or no attention will be paid thereto. This is for our
information and not for publication.
References to former articles or answers should References to former articles or answers should
give date of paper and page or number of question.
Inquiries not answered in reasonabole time hould
be repeated correspondents will ber in be repeated; correspondents will bear in mind that
some answerr require not a little reesearch, and,
though we endeavor to reply to all either by letter
or in this dendertment
 expected without remuneration.
Scientific American Suppents referred
to may be hat at the oftice. Priee 10 cents each.
Books referred to promptly suplied on receipt of price.
merals sent for examination should be distinctly
marked or labeled.
(2856) F. P. R. asks: What substance make gold leaves adhere permanently to paper, and what is the mode of its appliance? A. Glaire, which is
pure albumen, is sometimes used. It is made by shaking up the white of an egg with a few drops of
ammonia, and drawing off the clear liquid, which has subsided on standing. This is painted on the lines, and by slight heat, as of a hot iron, the leaf ad-
heres. Gold size is used on thick paper, or thick gum rabic water may be used. The illuminators of to-day cannot get as good results as did the old workers of
the middle ages. The old gilding is never equaled
(2857) D. B. P. asks : What preparation is suitable to be placed on boxwood, for the purpose of
photographing on, preparatory to engraving? A. See photographing on, preparatory to engraving? A. See 203 for formula and particulars.
(2858) H. G. L. asks: What is the law or the magnetic field ρA. The field developed by an electro-magnet varies directly as the current strength (2859) 1. S B asks for a formula
(2859) 1. S. B. asks for a formul
A. Salicylic acid 30 grains gr. xxx.
 Castor oil.............. 112 drachm
Collodion.. $1 / 2$ ounce
38
88 Mix and apply morning and evening for four days. Then soak the feet in warm water. If this be dove
faithfully, the corns are removed without any dificulty. aithfully, the corns areremode such as surgeons nse 2. How is sticking plaster made, such as surgeons use
for drawing together the edges of wounds ? A. Adhe-

sive plaster: Litharge.

Litharge.
Olive oil.
Water....
5 ounces
12 ounces

Put the water and litharge into a copper pan. Mix to-
gether with a spatula, add the oil, and boil, stantly. This process takes from 4 to 5 hours, but it can be hastened to 20 or 30 minutes by adding an ounce of colorless vinegar. To make resin or strapping plaster, ased in retaining the lips of recent cuts and wounds in contact : Mix by a moderate heat 1 ounce of resin to 5
ounces of litharge plaster (as given above) and spread ounces of litharge plaster (as given above) and spread
upon muslin. 3. How is court plaster made ? A. Bruise a sufficient quantity of isinglass, let it soak in a little a sufficient quantity of isinglass, let it soak in a little
warm water for 24 hours, espose it to heatover the fire
ill the greater part of the water is dissipated and sup
ly ts place by proof spirits of wine，which will com bine with the isinglass．Strain the whole through piece of open linen，taking care that the consistence of rembling jelly．Extend a piece of cool it will form red silk on a wooden frame，and fix it in that positio y means of tacks or twine．Apply the isinglass－afte has been rendered liquid by a gentle heat－to the silk with a brush of fine hair．As soon as this first coating dried，which will not be long，apply a second and even tree coating the whole is ary，cover in with two or Pharmacy will balsam of Peru．In Remington ing plaster．
（2860）J．E．S．asks ：1．What is the de angement that causes itching in chilblains？A．Th erangement is usually due to an inactive skin and poo efore the：fire when they are cold and damp． 2 Why othey reoccur in the same spot？A．They occur he extremities，where the circulation is poorest，and are ed swollen patches which are the seat of severe itching ad tingling．3．What is the best remedy for the same ．Increase the activity of the skin and general circu－ Rub on a goap liniment，or equal partse and frictio ub on soap hinen， night and morning．See next query
（2861）R．P．B．says：About two years go I saw in your paper a cure for chilblains which I now．I have a slight touch of them，and have forgotten he cure．A．a．Equal parts of tincture camphor com－ pound and tincture belladonna，to be rubbed in nigh and morning．b．A saturated solution of salt in warm water is also goo．．c．Local faradization of the parts also good．2．After a cold the glands of my neck swel the it 9 ．The causes of gland enlargent old．Hereditary predisposition and impairment of ealth are predisposing causes，but it is local irritatio or inflammatory disease in organs or tissues with which hesctglands have a connection that the source of enlarge ment may frequently be traced．Treatment is to bring up and iron in the form of pills or sirup（internally）and an ex
ternal application of tincture of iodine over the swollen much pain be present，a useful liniment i ne of equal parts of chloroform，belladonna linimen laudanum，and spirits of camphor．See preceding query
（2862）C．G．C．says：Would you kindly ρ salol and exulgine 9 A Salol（ $\left.\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH}) \mathrm{CO}, \mathrm{OC}_{6} \mathrm{H}_{4}\right)$ is a derivative of salicylic acid．One atom of hydrogen replaced by the phenyl group．In the small intestine 3 or pert phenol and 64 per cent salicylic acia．Salol atism and neuralgic affections，and as an internal an iseptic in the treatment of typhoid fever，etc．Dose to 2 grms．，or 15 to 30 grains，smaller doses being pre ferable．Esalgine is a derivative of the aromatic serie iscovered by Brigonnet．It is prepared bylthe action of ethyl iodide on sodium acetanilide．In its physiolog relief of resembles antipyrine．it is used more for It is also said to decrease the amount of sugar in dia
（283）W．auult 10 grain
（2863）W．J．R．asks ：1．What is chlor chorine and calcium．2．Is it liquid or solid solid，easily soluble．3．Where can it be obtained in large quantities，aud at what price \＆A．At any whole sale druggist＇s： 10 cents a pound upward，according to quality．4．Is it ever used toabsorb moisture，and with the best substance know for absorbing m．．What 1 Phosphoric auhydride the pentoxide of phosphorue
（2864）A．W．L．says：Will you please ell me what horse leek is？In reply to query No．12， une 14，1887，Scientific American，the name is used without obtaining satisfactory result．A．Horse wee we think is the term you mean．It is called also Am brosia trifia，horsecaws，bitterwea．It is an annual owers in August and September．It is found in low and Arkansas．An infusion made from this weed ha een recommended locally in mercurial salivation．Sem rvereum testorum，or house leek，is indigenous to th houses and is cultivated in North America．The leave have an acidulous taste and contunn malates．House leek jrefrigerant，antispasmodic，astringent．Its expressed jaice was once used in dysentery and hysterical disor chronic skin diseases and hemorrhoids．It is also used （2865）Oakland asks how to，solidify pure （spherical or spheroid）for filtering purposes and bnke at a red heat in a closed vessel．The bloc hould be embedded in charcoal dust．There must be ， must not be hermetical．Sand or ground pumice ma sity．
（2866）R．N．asks ：What acid or acids will dissolve pure gold into a soft，spongy mass？A with an oxidizing agen oration it may be thickened，but with danger of decom－ posing the soluble chloride of gola
（2867）A．J．W．asks：Will you please norm me of a cure for red pimples in the face？A Pay strict attention to diet and habits of hife，avoid rich， nghly seasoned，indigestible foods，take ordinary tonic， cation is a saturented solution most efficient local appla ashing the face but once a day in warm water．Dry with a soft towel and apply the solution．This（the boric acid solution）may be applied three or four times application
（2868）N．O．P．asks ：Can you tell me of ealth medicine that will reduce flesh without injury to aining all the time，till I am commencing to feel lumsy．A．Systematic exercise，strict attention to diet，avoiding starches，sweets，malt liquors，wines，etc． Drink freely of alkaline mineral waters，and take（if a
（2869）${ }^{\oplus}$ ．G．asks ：Can you tell me how to congeal gasoline so t will be thick like lard，and can be thickened by emulsion with aqueous extract slippery elm bark or with a strong solution of glue．We doubt if you will succeed with true gasoline．

NEW BOORS AND PUBLICATIONS．

 Financial Review．Annual． 1891. mercial and Financial Chroniale New York N Y Pp 156，Chronicle This work is an excelle This work is an excellently arranged and system the past year．It gives the finances of each road in detailed statement，with a tabular statement in brief at he top of the pages of the statistical part．It is pre ceded by treatises on the past year，business and specu－ lation，and general financial and commercial topics． the different railroads described．The statements highest and lowest prices of railroad bonds in New York（monthly for five years），and of stock and bond uotations in this city and other markets，Boston， Philadelphia，and Baltimore，is a particularly attractive eature．The Crystal Button，or Adventures of Paul Prognosis in the Forty－ NINTH CENTURY．By Chauncey Thomas．Edited by George Hough ton．Boston and New York：Hough－
ton，Mifflin \＆Co．1891．Price $\$ 1.25$ ． This work is offered as a companion piece to Ed ward Bellamy＇s＂Looking Backward．＂It very ingen－ ously depicts the supposed advances in science and art the people，which like all hisclass of writers，be de picts as very uncomfortably close．The less governed the best governed is a maxim foreign to all this school from the days of Sir Thomas More to the Bellamy epoch．It is very graphically written，and will be found interesting reading．
Preliminary Survey and Estimates． By Theodore Graham Gribble．Lon－ don ：Longmans，Green
Pp． $\mathbf{x x}, 420$ ．
Price $\$ 2.25$.
The subject of rapid survey of large regions of un－ civilized country，the preliminary work of reconnais ance and kindred subjects form the topics of this work． abject is treated，and the descriptinent pracical a of special methods to what may be called the roug ork of surveying and topography，give its value to the work will be acceptable to many civil and military en－ ineers．
A Year Book of Facts on Dry Aoods．－The Textile Publishing Company，New York City，have issued a year book for 1891，containing sta－
istical tables important to the dry goods trade．It contains a valuable compendium of the new tariff law and abstracts of the banking，interstate commerce， and recent dec

TO INVENTORS．

An experience of fort years，and the preparation of tore at home and abroad，enable us to understand the ams and practice on both continents，and to possess un－ ynopsis of the patent laws of the United States and all oreign countries may be had on application，and person abroad，are invited to write to this offlce for prices， which are low．in accordance with the times and our ex－ MUNN \＆CO．．offce ScIENTIFIC AMEBICAN， 361 Broad way．New York．

INDEX OF INVENTIONS

For which Letters Patent of the United States were Granted February 17， 1891. AND EACH BEARING THAT DATE．

ar mol oneratiox mechanism therereor，dumpinin

cose
cha
che
chur

Siditued：

46，5999

446.463
.466 .647
Keyboard mortises．pushing．A．Newe
Kitchen cabinet，
Kneling bench， \boldsymbol{c} ．Arnoldi 調
 446.050
466459
446,826
 446,449
46,669
446.477
46768
44684
46448
 446.455
44659

44654| | $\begin{array}{l}\text { Medi } \\ \text { Med }\end{array}$ |
| :--- | :--- |
| Medi | |

446.524
46777
46839
446,678
446,654
46,646

${ }^{*}$
$\mathrm{id}^{446,420}$
$\mathrm{~B}^{46,488}$
$.46,613$

designs.

TRADE MARKS.

路

 Shits. menis. S. Deentach

A prited coop of the spealicaton and daraming or

2fdoertisements.

 TEREOTYPING; THE PLASTER AND

CE-BOATS - THEIR CONSTRUCTION

 EVERY USER OF MACHINEBY
SHoom LeasN
How fo USS LOOSe Pulleys,
Useful information on this sub-
 AN DUZEN \& TIFT, Cincinnati, Ohio.
JMMESLEFFEL WATERWWHEES
 $\frac{110 \text { Liberty Street } \quad \text { New York City. }}{\text { POP 8AFETY VALVE }}$ $1 \mathrm{O}_{0}^{02}$ WATER RELIEF VALVE STEAM ENGINE INDIOATOR
Ingle Bell hime Whintle, and all instruments
used in connection with Steam, Alr and Water. , $0.524,5$ NEW YORE. VELOCITY OF ICE BOATS. A COLLEC.

 OINARETEPRB FANS.

Light Running, Adjusta

 GEO. P. CLARK, Manuf.

THE MODERN 1CE YACHT - BY

TO BUSINESS MEN

 ome other Paper for the SCIINTITIC AMrRICAN, When for Your Interest to advertise. This is frequenty done.
for the reason taat tne areent zets a iarger eommision
Fon the ScINTIFIC AMERIICAN.
For ress
MUN

IIST OF
 Books on Electricity.

 Electric Lighting. The Elements of Electric Light-
ing, including EElectric Generation. Measurement. Stor-

 This is a very complete work. and shouid be in the
ands or any whave to dith electric lighting appa-
atus of ank kind whatever.

 Electrical Engineering, By W. Slingo and A.
Brooker Al Practical Book or Elictric Lipht Artisans
. more Important Modern Applications of Electricity.

 member of Councili or the Society of Telegraph Engi-
neers and Electricians, memberot te AAmerican Insti-
tute of

 men. By W. Perren Maycock, A.M. Inst. E.E. S. Secena
edition, revised and enlarged. 286 pages, with ilustra
tions. 32 mos , roan

ditpany of the above books promptly sent postpaid, on receipt of the price, by MITIV IV ob

 MIUIVIN ©e OO., 361 Broadway, New York.sent free to fory our New addres. Complete Catalogue of Books

Important Improvements,
 The Smith Premier Typewriter Co., Syracuse, N. Y., U. S. A. OIL WELL SUPPLY CO. Ltd.
 ICE-H O USE AND REFRIGERATOR.

ARTESIAN

 ON GAS ENGINES. - A VALUABLE

OTTO GAS ENGINES

Engines and Pumps Combined. For COAL GAS SCHLEICHER, SCHIM Chicago, , SCHUMM \& CO. GATES ROCK \& ORE BREAKER
 Capaity up to 200 tons per hour.

 ICE-HODSE AND COLD ROOM-BYR R

THIN PANEL STOCK
In Whitewood, Walnut, etc
 xiven to this industry. The only "ysteme "irind poruced
nto Europe and America that produces a perfectly HENRY T. BARTLETT, BINET WOODS
and VENEERS, MAHOGANY
ZOU Lewis Street, New YILLS.

Stored Energy
ABCUMULATORS $\left.\begin{array}{l}\text { for Electric Light } \\ \text { THE ACCUMUIATOR Cur Propuls }\end{array}\right)$ company

SMMAL ELECTRIC MOTOR FOR AM-

CTHR CUTMINT
 CUT GEARS.
We are especially well equipped fors
this class of work and solicit Leland Fanconer \& Norton C DUSHMAN CHUCK
 IDEAL MOSICAL BOX

 THE DAIMLER MOTOR is prepared te furnigh 1, 2 , and 4 Hiorse Power
GAS or PETROLEUM MOTORS or all Industrial Purposes. Fuluy illustrated catalog Works, Steinway, Long isicion. Mond Mot City. ofice, 111 East 14th Street, New York City. The Sherburne Mfg. Co.
 Sash, Doorn, Blinde, and Novelties.

 C. A. FULuIER

THE EACLE THE EASIEST RUNNING BICYCLE N THE WORLD. AGENTS WANTED Lurge mustrated Catioguve sent free to any Address. THE EAGLE BICYCLE MFG. CO.,
CONN.

MKSSRS. MUNN \& CO, in connection with the publi-

 BEATTY PIANOSS (new) \$145. ORGANG855

Etoeman Tzelates, MARINE ENGINES AND BOILER Eteain Tneumaciaos,
PROPELLER WHEELS AND BOAT MACHINERY.

Builders under license of THE ROBERTS' Safety Water-Tube BOILER.
CHAS. P. WILLARD \& CO., Cor. Clybourn and Southport Avenues, CHICAGO, ILL.

The Literary Landmarks of Edinburgh. By Laurence Hutton With sixteen illustrations drawn by Josepf Pennell.
An interesting and important paper describing the homes and haunts, as they now
appear,of the literary celebrities of Scotland.
American Leads at Whist, and their History. By N. B. TrisT.
of especial interest as being the work of the originator of American leads at whis and one whose suggestious have een
adopted by "CCavendisht,"and accepted hy al
ady dvanced players in England and America.
Wessex Folk. A story. Part I. By Thomas Hardy. With illustrations by
Charles Green and alfred Parsons Charles Green and alfred Parsons. Comedy of Errors. With eight il Edwin A. Abbey. Comment by An drew Lang.
The fourth of this superb series of illus-
trations of Shakespeare's comedies.
The Argentine Capital. By Theo dore Child. With thirteen illustraNichols, and Edmund H. Garrett. Impressions of Buenos Ayres, the metro olis of South A merica, written in Mre Child,
nsual fearless and impartial manner, and of especial value to all who are interested in the commercial and industrial affairs of the
Argentine Repablic. Argentine Repablic.
The Chinese Leak. By Jolian Ralph. With four illustratio
drawn by Frideric Remington.

In the "Stranger People's" Country. A story. Part III. By Charles
EGBERT Craddock. Illustrated by W. T. Smedeet.

A story of absorbing interest, and one of the best yet written by the accomplishe
novelist of the Tennessee monntains. Moods. 1 Poem. By W. D. Howells March Days. A poem. By Rice árd E. Burton.
Nationality in Music. By Francis Korbat
A remarkably well-written article illus-
trating the national characteristics shown
in the folt ropean peoples, and especially of the Hun ropean
garians.
In the Vestibule Limited. A stor By Brandir Matthews.
Memories of the St. John's. A poem By Hezeriah Butterwort
Professional Beauties of the Past. Full - page illustration drawn by George de Matrier.

EDITORIAL DEPARTMENTS.
Editor's Easy Chair. By Grorg Editor's Study. By Williay Dran Elowrles.
Editor's Drawer. Conducted by
Cgarliss Dodley Warner.

EXCELLENT BLACK Copies, only equaled by Litho-
rraphy of anything written or drawn with any Pen by
 Ten Eyck \& Parker, 66 Pine Street, New York CHUCK AND MICROMETER STOP

VOLNEY W. MASON \& CU. FRICTION PULLEFS CLUTCHES and ELEVATORS PROVIDENCE. R. I.

M HAT Uncle Sum and Aunt Columbia think, etc., of

TYPEWRITERS. Largest like establishment in the world. First
class
Unecond-hand Instruments at half new prices. classsecond-handInstruments at half new prices.
Unprejudiced advice piven on all makes. Ma-
chines sold on monthly payments. An Instruchiness sold on monthly payments. Any Instru-
ment manufacturedshipped, privilegetexamine
EXCHANGINGA SPLCHALTY. Wholesale prices to dealers. Illustrated Catalogues Free.
TYPGWRITGR
70 Broadway Now York.
 ARTIFICIAL LIGHT OF THE FU Are.-By Pror. E. L. Nichols. An interesting paper
which are pointed out some of the lines of investipation

ICN and RMERTGARATNTG MAGETMES
The Pictet Artificial Ice Company (Limited), Room 6, Coal \& Iron Exchange, New York.
HARRISON CONVEYOR !
Fianding Grain, Coal, Sand, Clay, Tan Bark, Cinders, Ores, Seeds, \&C.

FIRE FELT.
THE NEW NON-CONDUCTING MATERIAL

PROPOSALS.

Proposals, for Building Dike.-ENGiNRER Or- at his oitice until for $^{\text {P. Murnishing materiais and constructing }}$ a pile and stone dise at Livingston Ponit. . Kentucky, at the mouth of the Tennesseo River. Bidders are invited to oe pres ent at opening ot the bids. The United States reserves the right to reject any and all proposals. The attention February 20, 1885, and February 23, 1887, vol. 23, page 332 and blank forms for proposals will be furnished on ap. plication at this onffice J.W. BA RLOW, Lieut.-Col. of Engineers.

Experimental Science

A BOON TO THE DEAF!

STEEL TYPE FOR TYPEWRITERS

 MILITARY SIGNALING.-THE EARLY history of Semaphoric e Telegraphy and the modern prac-
Hice of it in the American Army With in ilustrations.

 Barnes' Foot-Power Machinery

 BLUE PRINT Paper, superior Quality.
mpmen ncubator
EXCELSIOR Simple, Perfect and Self-Regulat-

PATENTED NOVELTIES of mertit sold

FOR SALE. NOMTHINGTONDTRAM

The S cientrific $A \underline{\underline{\underline{\text { marican }}}}$

PUBLICATIONS FOR 1891.

Thne pricen of the dianeren pullications In the United
The scientice A merican (weekly one year,$~ \$ 3.00$
The Scientiff A merican Supplement (wee 1y), one 5.00
year.
The Scientifc American, Spanish Edition (monthly)
one year,
3.00
The Sclentifte American, A Architects and Builders
Edition (monthly), one year.
Combined rates.
The Scientinc American and Supplement, $\quad . \quad{ }^{87,00}$
ers Edition,
Thecientinc American. ©supplement, and Arch1--
tects and Builders Edition.
5.00
Proportionate Rates for six wonths
This includes postage, wnch we pay, Remit by posta
ppress money order, or draft to order of
MUNN \& CO.. $\mathbf{3 6 1}$ Broadway, New York.

VIORKITIG MODELS \& LIGHT MACHINERY. INVENTIONS DEVELOPED. Sent for Model Circil

Drovertisements.
 The above are charyes per apate ine about eipht,

Victor Bicycles!

Fur the season of '9r we have ex tended our line to include Machines of many more styles and prices than heretofore. Having any interest in Wheels, you will surely want to see our Catalogue for '9r, which will be freely mailed on application. Ready in February.
OVERMAN WHEEL CO. Makers of VICTOR BICYCLLES,
Boston, WASBINGTON, DENvER, SAN FRANcisc
office and Factory, Chiconee Falls, Mass.
 THOMAS ALVA EDISON. - A BIO

GLUMBIAS"
 HIGHEST-GRADE OMLIT.

POPE MFG. CO., 77 Franklin Street, BOSTON.
 CONSTIPATION. - BY C. L. DODGE,

NEW KODAKS

 we do the rest."

Seven New
Styles and Sizes
AI.L toanded with Transparent THE EASTMAN COMPANY, Send for Catalogue. 2to 40 II. P. The Motor of 19th CentorT
 The Motor of 19th Centary

 Charter Gas Engine Co.

 THE AMERGCAN BELL TELEPHONE CD 95 MILK ST., BOSTON, MASS.

This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 1877. No. 186,787.

The transmission of Speech by all known forms of Electric Speaking Telephones in fringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use. and all the consequences thereof, and liable to suit therefor.

New York Belting and Packing Co
John h. Cheever, Treas. 15 PARK ROW, New York.
VULCANIZED RUBBER FABRICS
RUBBER BELTING, Packing, and Hose.

Rubber Pump Valves Bicycle Tires. Tubing, Teunin Soling.
VULCANITE EMERY WHEELS. Lubber Rings, Rubber Sheets. Strips, Saw Bands, Stopple

has set the copy for writing machines for 15 years. It is to-day the

Standard

and expects in the future, as it has in the past, to lead all others in adding improvements to what will always be

Typewriter.

Wyckoff, Seamans \& Benedict, 327 Broadway, New York
THE STEAM ENGINE: ITS PRINCI-

THE ERRD FOR SHECKLER CO. BUCYRUSS, 0. JENKINS STANDARD PACKING

After being on the Market Five Years The "ACME" sill Leass!
 ROCHESTER MACHINE TOOL WORSS, BTOWn's Race, ROCHESTER, N. Y.

STAMPED CORRUGATED SHEETS
$\underset{\substack{\text { Inture Perfect Joints in } \\ \text { Your Buildings. } \\ \text { And }}}{ }$ Your Buildings. And
when your joins are
perfect. your butilding
your bin are Fire. Wind, and
Water Proof.
the cincinnati corrugating co.

VATVFS

Handy has avea heer, and Handior but the more simp
com
hit
 The Lunkenheimer Brass Mfg. Co ${ }_{15-17}$ E. Xth St., Cincinnati, 0 .

Boiler Coverings, Millboard, Roofing
Building Felt,

WORKINB MODELS and ERPerimenta

ARTIFICIAL INCUBATION.-A DE-

ECUTEER DESK BEST.INTHE WORLD.

GRAVESELEVATORS.

 ES DRILL CHUCK

 CUSHION Tires and TANGENT Handsomest and Beet Dia MANUFACTURERS,
WM. READ \boldsymbol{E} SON

$\frac{107 \text { Washington St., Boston, Mass. }}{T I I \Xi}$

ฐcientific gamericau

The Most Popular Scientific Paper in the World
Only $\$ 3.00$ a Year, Including Postage. Weekly
-
This widely circulated and splendidly illustrated
paper is published weekly. Every number contains sixteen pages of useful information and a large number of orikinal engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures, New Inventions, Novelties in Mechanics, Manufactures
Chemistry, Electricity, Telegraphy, Photography, Architecture, Agriculture, Horticulture, Natural History etc. Complete list of patents each week.
Terms of Snbscription.-One copy of the ScIEN-
TIFIC AMERICAN will be sent for one year- 52 numberspostage prepaid, to any subscriber in the United States, postage prepaid, o any subscriber in the United States,
Canada, or Mexico, on receipt of three dollars by the publishers ; six months, 81.50 ; three months, 8.000
Clubs.-Special rates for sereral names, and to Clabs. - -pecial rates for severs. Write for particulars. The sufest way to remit is bs
Express Money Order. Money carefully placed inside of envelopes, securely sealed. and correctly addressed,
seldom goes astray, but is at the sender's risk. Address seldom goes astray, but is at the sender's risk. Addres
all letters and make all orders. drafts, etc., payable to letters and make all orders, drafts, etc., papable to
MUNN \& CO., $\mathbf{3 6 1}$ Broadway, New York. THE
§cientific gaturricau §upplement
This is a separate and distinct publication from The SCIENTIFIC AMERICAN, but is uniform therewith in size
every number containing sixteen large pages full of en gravings, many of which are taken from foreign papers,
and accompanied with translated descriptions. THE and accompanied with translated descriptions. ThE
ScIENTIFIC AMERICAN SUPPLEMENT is published week 1y, and includes a very wide range of contents. It prethe Arts, embracing Biology, Geology, Mineralogy, Natura History, Geography, Archæology, Astronomy, Chemistry and Railwas Engineering, Phatineering, Mining, Ship Building, Marine Industries, Sanitary Engineering, Agriculture, Horticulture, Domestic Economy, Biography, Medicine, etc. A
vast amount of fresh and valuable information obtain able in no other publication.
The most important Engineering Works, Mechanisms,
and Manufactures at home and abroad, are illustrated and described in the Supplement.
Price for the SUPPLement for the United States and Canad, 85.00 a year; or one copy of the SCIENTIFIC AMEL
ICAN and one copy of the SUPPLEMENT, both one year for 87.00 . Single copies, 10 cents. Address, and remit by postal order, express money order, or check,
MUNN \& CO., 361 Broadway, New York.

Publishers Scientific American.
Fhuilding Edition.
The Scientipic a merican architects'and bullders Edition is issued monthly. $\$ 2.50$ a year. Single about two hundred ordinary book pages; forming a
large and splendid Magazine of Architecture richls large and splendid Magazine of Architecture, richly
adorned with elegant plates in colors, and with other fine adorned with elegant plates in colors, and with other fine
engravings; illustrating the most interesting examples of modernarchitectural construction and allied subjects. A special feature is the presentation in each numbe of a variety of the latest and best plans for private resi-
dences, city and country, including those of very mod erate cost as well as the more expensive. Drawings in
perspective and in color are given, together with full Plans, Specifications, Sheets of Details, Estimates, etc.
The elegance and cheapness of this magnificent The elegance and cheapness of this magnificent wrik
havewon for it the Largest Circulation of any Architectural publication in the world. Sold by all newsdeal ers. $\$ 2.50 \mathrm{a}$ year. Remit to

PRINTMING INEE

