
a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

NEW YORK, FEBRUARY 14, 1891.

A PETROLEUM MOTOR TRICYCLE.

A motor suitable for propelling a light road vehicle, to carry a single passenger or two or more passengers, and which shall be light in weight, inexpensive to construct and operate, and not liable to get out of order in the hands of unskilled persons, has long been sought in the hands of unskilled persons, has
for. The inventors of this country, for. The inventors of this country, as well as those of France, Germa-
ny, England, and other nations, have brought forward many plans and combinations of devices designed to satisfy the above requirements, but in no case has a sufficient weasure of success been attained to lead to any general adoption of such means of locomotion. With the wore extended use of bicycles and tricycles, which have become so popular within the last twenty years, efforts have been specially directed to the adaptation of a motor to the propulsion of a vehicle of this description, the illustrations herewith representing the latest work of one English inventor in this direction, Mr. Edward Butler, of Greenwich, England.
In this machine one gallon of petroleum or benzolene is designed to furnish sufficient power to accomplish a run of forty miles, at a speed of from three to ten miles per hour. At each side is a motor cylinder whose pistons operate in the fourstroke cycle, that is, one stroke draws in the air and oil vapor, another stroke compresses the charge, which is exploded at the third stroke, and exhausted on the fourth. The pistons operate a crank shaft carried by the rear or driving wheel bearings, the hub of this wheel at one side inclosing a specially devised epicyclic gear by which the motion of the shaft is communicated to the driving wheel axle in the ratio of six to one. The shaft also carries a fly wheel, mounted to be as close as possible to the spokes of the driving wheel. The spokes of the driving wheel. The
motor cylinders are each controlled wotor cylinders are each controlled
by a balanced rotating valve, and both cylinders are supplied with explosive mixture by drawing air through an inspirator situated over an oil reservoir containing a supply of benzolene, or a similar petroleum product. A valve regulates the oil feed, and the wixture of air and oil spray formed air and oil spray ormed in the atomizer is volatilized before distribu-
tion to the cylinders. tion to the cylinders.
The compressed charges The compressed charges
are alteruately ignited are alteruately ignited
by an induced current of electricity passing across terminals fixed in the cylinder covers, the current being generated by a small singlefluid battery under the fluid battery under the
seat. S topping and starting is effected by raising and lowering the driving wheel from the ground by a foot lever, the weight of this portion of the machine being then thrown upon sinall caster wheels. In one of the views the one of the views the driving wheel is shown raised ready for starting, when the crank shaft is set in motion by a handle before the driver mounts to his

THE PETROLEUM MOTOR TRICYCLE IN OPERATION.

A PETROLEUM MOTOR TRICYCLE TO RUN FORTY MILES WITH ONE GALLON OF OIL.
handles actuating the front wheels, which move on separate pivots, and the brake is applied to both of these wheels by a foot lever.
The diameter of the wheels is 32 inches, and the whole of the framing and the engine rods are made of oval steel tubing. The weight of the machine is 280 pounds. The arrangement of the parts is such that the motor is very compact, and it is said to be readily and easily started, the electric ignition not introducing any difficulty.

The Great Siberian Rallway.

The great Siberian railway, which will more closely connect Europe with the teeming millions of China, Japan, and Eastern Asia, will be commenced this spring. The total length of the line will be 4,810 miles, and the cost about thirty-two millions sterling. In case permanent bridges are built over the immense rivers Obi, Yenesei, Lena, etc., the outlay will be still greater. The commercial and political importance of this undertaking is greater than most people suppose. greater than most people suppose.
It will not only help to open out the immense resources of Southern Siberia, but will enable Russia to compete more successfully for the Japanese and Chinese carrying and import trade. Goods that are now sent by sea to Europe will ten years hence be carried overland into Europe, and a good deal of the Chinese carrying trade will go into the hands of Russia. A large portion of the railway will run through millions of acres of the finest virgin soil, over immense rivers, in primeval forests which have never been cut, and through countries abounding in mineral and vegetable wealth. When the line is ready it will be possible to work the rich gold, silver, iron, copper, and plumbago mines of Eastern Siberia, which have hardly yet been touched in consequence of the scarcity of labor and the absence of machinery. The rich and fertile regions of the Amoor and Usuri, which boast of a climate as tine as that of France, will then be open to colonists, and also millions of acres of land which are at the present moment almost unpopulated. By means of this railway Russia will be able to convert Vladivostock into a great naval and military station like Semilitary station like se-
vastopol, and, if neces-sary, pour several hundred thousand troops on the Chinese frontier in less than three weeks' time. And last, and not least, among the benefits which will accrue to mankind through this undertaking, will be the possibility of visiting Chinaor Japan in about a fortuight from Central Europe, with all that cowfort that is attached to railway traveling in Russia.-From a Correspondent in Public Opinion.

IMPURE or secondgrade paper pulp mixed with fuller's earth makes an excellent lagging for steam pipes.

\%sientific ،

ESTABLISHED 1845

MUNN \& CO., Editors and Proprietors.

 poblished weekly atNo. 361 BROADWAY, NEW YORK.
D. MUNN.

TERMS POR THE SCIENTIEIC AMERICAN. One copy, one year. for the U. S., Canada or Mexico.
One cops, six months, for the U. S., Canada or Mexic One copy, one year, to any foreign country belong!ng to Postal Union, 150 Remit by postal or express money order, or by bank draft or check.
MUNN $\&$ co., 361 Broadway, corner of yranklin Street. New York.

Building Edition.

Spaninh Edition of the Scienuticic, 811.50 a year.

MUNN \& CO., Publishers, | 361 Broadway, New York |
| :---: |

NEW YORK, SATORDAY. FEBRUARY 14, 1891.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
NO. 789
For the Week Ending February 14, 1891. Price $\mathbf{1 0}$ cents. For sale by all newedealers.

1. BIOLOG Y.-The Migration of the Salmon.-The development of the young salmon and the migrations of the fish, with sugges
as to its preservation by proper game laws. -10 illustrations... II. CIVIL ENGINEERING.-Preservative Treatment of Timb By Octave Chanvte. An important lecture. giving the la
views of enginears upon the peservation views of engineers upon the preservation or railroad ties..... . .
I. NAVAL ENGINEERING.-The White Star Steamer Teutonic. I. NAVAL ENGINEERING.-The White Star Steamer Teutonic.
Continuation of the elaborate article on the great ocean race Illustrations of her engines. -6 illustrations.
IV. PHYSICS.-The Spectroscopic Properties of Dust. - An examina-
tion of the influence of dust on the spectrum, with curlousis ne tion of the influence of dust on the spectrum, with curlously ne of the electrical discharge shown. -1 illustration.....................
ELECTRICITY.-The Elect romagnet.-By Prof. SILVANUS P. THompson.-Conclusion of Prof. Thompso
VI. H YDRA ULICS.-The Power of Water or Hydraulice Simplificed. By G. D. Hiscox.-The flow from subsurface orifices, the miner's inch, the wet perimeter, and other points in hydraulics, with rules and formulx.- 8 illustrations..
II. MECHANICAL ENGINEERING. ting.- By Ambrose swasey.-A new step in the cutting of gears ting.- By AMBROSE SWASEY.-A new step in the cutting of Rears,
with the gear generating and cutting engine of the author described and illustrated.- 5 illustrations.
Improved Tree Cutting Machinery
Improved Tree Cutting Machinery.-Machines for forestry
work, including the cutting down of trees by sawing and the dividing of the felled trees into logs.-क illustrations.
The Requirements of a Perfert Valve.- A lecture by Trom Δ HAWLEY.-The theory of the steam valve discussed from the standpoint of the practical engineer.- Its work and requirements.
Vili. TECHNOLOGY.-. A luminin."-A new article for the preparation of paste colors for use by the paper manufacturer.-An ac-
count of the different grades... count of the different grades..
Manufacture of Manufacture of Sugar in Tabiets................................. proces of manufacturing
sugar in convenient shape, with advantages and detalis of the process.-4 illustrations
 spirits by the effects of compressed air.- 1 illustration.
The Bleaching of Wool and Silk.-The use of perox The Bleaching of Wool and Silk.-The use of peroxide of hy-
drogen to remove traces of sulphur or sulphurous orde after bleaching
The Cork Industry in Spain.- An interesting account of how
cork is collected for shipment.
The Slot Gas Meter.-Note on

LOOKING FOR EMPLOYMENT.

There are in the United. States, in this year 1891 fion hundred thousand seekers for work-a half mil ploymeople, of both sexes and all ages, looking for emplaces to in gainful occupations-and only 460,00 Carroll D. Wright, United States Commissioner of Labor, and formerly for many years superintendent of labor statistics for the State of Massachusetts, an authority than whom there is none higher in this branch of investigation. The figures are based upon actual returns, from the census and other sources, of the total number of persons employed at different periods, and the increase of the population, showing
an average percentage added yearly to the number of persons engaged in all occupations. That is, to keep up the integrity of the work of the country-to keep it up to its full average standard of progression, and fill up the places naturally made vacant- 460,000 new places will have to be filled, while the increase of the population shows that there will, in natural order, be 500,000 applicants for these places, without counting, in either case, " the great army of unemployed which through all ages has hung upon the outskirts of civilization." These figures are arrived at, not only by the ordinary process of division over a decade of years but by separate calculations based on the death rate and other elements.
What, then, is the duty of the boy or young man impelled by a praiseworthy ambition, or forced by necessity, to seek occupation whereby he may rise in the world, or at least make sure of a comfortable maintenance? It is evident from the bare statement of the case that the problem will be, as it ever has been, a most serious one for a large proportion of the seekers for work. But there are other elements to be taken into the calculation. The figures given include women and children engaged as well as men, and, according to the census of 1880 , the employed in all occupations were 85 per cent male and 15 per cent female. In the
different kinds of work, agriculture different kinds of work, agriculture employed $44 \cdot 10$ per cent of the laborers, professional and personal service required 23.43 per cent, trade and transportation 10.41 per cent, and manufacturing, mining, and mechanical industries 2206 per cent. It will be seen, therefore that there is not only a great diversity of employment offered to the upcoming seekers for work-a wide range
of industries, to which new additions are being daily made-but that the computation includes all probable candidates for work from the young of both sexes.
In a competition that is so general, among competi tors urged by motives of every degree of forcefulness, it can hardly be said that there is any inexorable law which decrees that only the most fit shall survive. It may well be, nevertheless, that the manner of survival, the degree of success obtained by each, will, as a rule be determined according as the competitors are mos fit for the places they are moving forward to fill. The world is full of people not lacking in a certain degree of willingness to work, or in general intelligence and ability, but who yet appear to find the greatest diff culty in obtaining permanent employment. The trouble with most of them is that they have no special fitness for any particular kind of work, and this is what employers of labor are every where seeking, with a degree of particularity never before so marked as a ing, expertness in the lines out of which these indus tries are developing is a vital necessity, or the pro posed new departure is almost certain to be a fore doomed failure; and in all the old industries the division of labor has been carried to the minutest detail to obtain the greatest perfection in the work and the utmost economy of production. General intelligence is an excellent qualification, a mind disciplined to per ceive things luminously and reason logically is of high abstract value, but in trying to obtain employment
the question will be, What can you do? It does not so wuch matter what line of business or avocatio one chooses, but the doing of more and better work therein than another matters everything. The hum bler the employment, entered into with the right spirit the more rapid as well as the more certain will be the advancement. The foundations are thus deeply laid which, with energy and right direction, will never fai to support a solid growth.

We are constantly in receipt of letters asking advice for young men wishing to start in life in some trade or profession, but who are unwilling to do that which lies before and all around them at their hands. In most such cases it is impossible to give anything but the most general opinion, as the personal equation forms so large a factor in the problem, but there is no place in this country where one cannot put his hands to some thing. Do what you can, whether it is to your fancy or not-anything in preference to remaining idle-and make it the etepping stone for something better. Training, skill, special knowledge, are only acquired by hard work, but the resolution which fails before humble task not to one's liking is hardly to be counted pon to meet the more exacting calls of a hig energ to do, and do earnestly, what is before them, would pro-
bably be found very illy fitted for the higher places they would like if the latter could be had simply for the asking.

Miscellaneous Notes.

Smokeless powder and the results of its use in the battles of the future are being much discussed by military men. An enemy not concealed behind worke will, there is reason to believe, be under considerable disadvantage with no smoke to cover him. Especially is this likely to be the case now that the quick-firing heavy gun has been perfected. During the tests re cently made at the Colt factory at Hartford the newly improved Driggs-Schroder rapid-fire gun sent a quick succession of eight-pound projectiles with unerring aim at a target four miles away. With the advance of cav alry not covered by the smoke of infantry fire till at least near to striking distance, the quick-fire gun is ikely to do some terrible work, if not to make such cavalry advances altogether impracticable. Troops operating in the smoke of their own guns can often see across a field to the enemy while he cannot see them, as we can often see out of an enveloping fog bank which those at a distance cannot penetrate. Thusitis a serious question whether the use of smokeless powder by an enemy would not incline to his disadvantage, his adversary meantime being protected by a film of mete

The modern warship has powerful engines, but she cannot make speed, that is to say, for any distance Compared with her engine possibilities, her coal-carry ing capacity is ludicrously small. The fact is notorion on the other side of the water, and we have had recently abundant proof of it. This vill account for the untiring efforts of the British Admiralty to secure a means of feeding petroleum or petroleum refuse to marine furnaces. This type of fuel, it has been found, though requiring quite as much room as the present oal bunkers, will drive the ship at least twice the dis tance, and it is hoped to make it yield three times as much engine-driving energy as its displacement of coal. Another highly important attribute of oil fuel is that it requires few stokers, and being to a large ex tent an automatic feeder, high temperatures could be maintained in furnace and boiler rooms, to the great advantage of steam making and yet without danger to adva
life.

Considerable success is said to be attending a series of tests now being made in the navy with a new elec trical code of night signals. Heretofore signals have been transmitted at night by passing a white light to the right and left over a fixed red light, the letter being formed by various combinations of the figures and 2 , the first being represented by the right hand and the second by the left hand movement. Unless the reader of such signals is at right angles to the line on which they are made, there is some confusion. In the present three incandescent lights are employed, red, white, and green, the same being each of 16 -candle ower and fitted in a vertical line on a jackstay. An ordinary telegraph key is used to show or shut them ff, following the Morse system. The green light means dash, the red a dot, the white for a space, and all three for the end of a word. For day signaling the ordinary wig wag system of two flags, a black to show against the sky and a white agaiust the land, will be retained.

Anti-Fouling Lacquer for Ships, Bottoms.
The United States Navy Department at Washington has recently received from a lacquer manu facturer of Tokio, Japan, two plates of iron and steel respectively, each four feet square and covered with hree coats of anti-corrosive and three coats of anti-fouling lacquers. These plates have been sub merged in tidewater at the New York navy yard where they will remain for three months. It is said that the Japanese navy has met with success in the use of lacquer as a protection to the hull of an iron ship, instead of paint, and an official recently returned reports very favorably on the subject. He is said to have seen a vessel on which it had been used, and whose bottom had not been cleaned in nine months, while "the lacquer was perfectly smooth and unbrok en, and had afforded complete protection to the metal.' The result of the tests of these plates will be awaited with much interest.

ONLY one year ago 90 per cent of the total trade of the Spanish Americas was controlled by European counries. They still have 80 per cent of it, but they are ast losing their hold and the United States is edging in. The best evidence of this is that half of the intelligent people of Mexico are studying English, while wany of our people are studying Spanish. Americans are starting stores and even factories in Mexico right along, and with wise legislation to help us we will soon have that trade under our control. The Spanish dition of the ScIentific American is an excellent medium through which merchants and manufacturers of every kind of goods can reach the best class of business people among the Spanish-speaking people of South America, Cuba, and Mexico.

The buildings of the Stanford University at Palo Alto, California, have attracted wide attention by reason of their novelty, being modeled after the low, adobe, tile roof, mission buildings of the SpanishAmerican period. They are of stone, massive and necessarily expensive, though of great durability.
A new and striking departure is to be made in the construction of the museum, which, next to the memorial chapel, will be the most important edifice on the grounds; this building, some 300 feet in length the grounds; this building, some 300 feet in length
and 50 in width, with two wings, will be three stories in height, and the entire structure from foundation up -walls, floors, and roof-is to be of concrete and twisted iron; the whole edifice to be moulded into a single monolithic structure, without seam, break, or joint.
'The floors and roof will not be as massive as might be supposed, though possessed of great supporting strength. The bars of twisted iron, embedded in the mass of concrete, are immovably held at every point by the enveloping material, and thus impart their own tensile strength to the concrete, which obviates the necessity for great thickness or heavy weight, especially since it is found that bars of iron subjected to cold twisting gain largely in tensile strength by the process.
As with most simple but ingenious devices, the natural inquiry is, Why was not this mode of construction thought of before, permitting, as it does, the use concrete where great tensile strength is required ?
In the Academy of Sciences, San Francisco, these floors have projections over the central area of three feet or more, sustaining a railing and passageway for visitors, with no support beyond that of the embedded twisted bars.
There would seem to be no good reason why this method should not be widely used for fireproof buildings. The cost is found to be less than that of brick with steel beams, while the security and durability of concrete structures-if properly built-admit of no doubt.

Grate Areas.

There is no doubt that at the present time we are passing through a transition stage in all that relates to the burning of coal in locomotives. This change was introduced with the adoption of the extended front end with its straight, open stack. The abolition of cones and nettings above the exhaust nozzles allowed the use of larger openings and a slower draught upon the fire. The use in many cases of the Belpaire style of box above the frames, with its large grate area, has further increased the proportion of grate area to cylinder volume, and decreased
ly the depth of fire which was carried.
y the depth of fire which was carried.
There are several points involved in the most economical and successful use of ordinary soft coals under these new conditions which are of ten not sufficiently considered. The first of these is the depth of fire that can be carried. Comparatively recent writers have commented upon the relative depth of fire that should be carried for hard and soft coal. It was formerly generally conceded that hard coal was best fired when frow 6 to 15 inches in depth, while a soft fire should be carried at a depth of from 15 to 24 inches. This relation might be, and probably was, proper in This relation might be, and probably was, proper in
the days of sharp exhausts, but with the softer blast the days of sharp exhausts, but with the softer blast
now used it would be impossible to get a sufficient amount of air through the fire, and a thinner fire is consequently necessary. It is also a question whether we have got as far in the direction of a soft exhaust as we shall soon. Experiments with the compound engines already built seem to show that a better average performance as regards evaporation can be got with the slower blast which comes from the low pressure cylinders than with the sharper blast of the ordinary engine.
Another feature, to which more attention should be paid, is the area of air passages through the grates. The fact is too of ten lost sight of that the grate is merely a vehicle for carrying the fuel, and not the essential feature in the actual combustion. The ohject should be to have as little of it as can be done without letting the fire drop through, which latter condition has the double disadvantage of making large openings for bodies of cold air to pass through, and by filling up the ash pan allowing the grates to burn out. Sualler and more numerous openings between the fingers of the grates would obviate this difficulty. By having as free an air current as possible, with the openings approaching the neighborhood of 50 per cent of the total grate area, we can work with the slowest possible draught and a light
fire. In fact, a light fire must accompany a slow draught to make any air pass through the coals. Another advantage from the slow draught is that with it the temperature immediately above the grates will not be as high, and there will be less danger of the formation of clinkers, which are so troublesome in sticking the grates. This lower temperature at the grates will make no difference in the temperature of the burning gases driven from the top of the coal. Another advantage from the slow draught is that the products of combustion passing through the tubes will give up
a greater portion of their heat, and a higher evaporation per pound of coal will be reached.
The ratio of grate surface to cylinder volume is one that will be larger under these new conditions. We have seen in the past, upon one road, and in engines of different classes built at the same time, grate areas varying from $41 / 2$ to $71 / 4$ feet to the cubic foot of cylinder capacity. The larger figure will be nearer that required in the future.
One direction in which we may have improvement in working our engines is in the character of coal used. Soft coal crushed into pieces of uniform size, well screened, gives much better results upon a fire than when broken by the fireman. It is of the right size to burn well, is free from either dust, large lumps, or impurities, and while allowing a thin fire, the air is divided into minute streams while passing through the burning fuel, so that the highest result is obtained. This crushing can be done at a small expense, and there is a good market for the increased proportion of slack or nut coal caused by such treatment.-Railway Mechanic.

Electricity a Factor in Capital.
"No enterprise in the world." said a well known electrician, "has increased within the last few years as rapidly as the business of electric lighting. The amount of money invested in electric light plants in
this country to-day is $\$ 120,000,000$, and it was only eleven years ago, you remember, that the light was first perfected. From the few lamps burned by Edison at Menlo Park, in 1879, there have grown into present use at least 125,000 are lights and $1,700,000$ incandescent lights."
One of the most noticeable results of this remarkable growth, says Electric Power, is the increase in the price of platinum. Here is an incandescent lamp. You see the short strip of wire attached to the copper conductor just at the top of the globe. Well, that is platinum. It connects the carbonized loop, and is one of the absolutely indispensable features of the lamp, because it expands at the same temperature and in the same proportion as the glass globe. There have been a good many experiments for the purpose of determining a substitute for platinum, but none has been found, the experiments resulting in each in stance in the unequal expansion of the metal and the glass, and the consequent breaking of the globe. Unfortunately, every lamp requires a strip of this metal. I say "unfortunately" because it has come to be extremely valuable, and the mines are not proMountains Moreover, they are situated in the Ura sult of this increasing demand and diminishing supply, the price of platinum bas advanced tremendously; it is the price of platinum has advanced remendorsy; now almost as valuable as gold. Five years ago the metal was seldom used in this country, being employed only in the evaporating stills for the concentration of sulphuric acid and in the manufacture of jewelry. It was then to be bought in the market for $\$ 3$ and $\$ 5$ an ounce. A year ago it advanced to $\$ 8$ an ounce, six
months ago it had increased to $\$ 14$ and I see by one months ago it had increased to $\$ 14$, and I see by one
of the trade journals that it is now gone up to $\$ 20$, which is only a few cents less than to-day's gold quotation.
Platinum gets its name from the Spaniards. early as the sixteenth century it appears to have been noticed that the gold ore in the Spanish mines of Darien included grains of a white metal endowed with the qualities of a noble metal, and yet distinctly different from silver. Its exportation to Europe was
prohibited, because the Spanish government found prohibited, because the Spanish government found
that it might easily be used in the adulteration of gold. For this reason it did not find its way to Europe until the middle of the last century, when it was known as "platina del Pinto"-the little silver from the River Pinto. Since its remarkable chemical properties were established in 1780, it has been discovered in New
Granada, San Domingo, California, Borneo, and in portions of Canada. But the richest deposits are those in the Ural Mountains, where the metal was discover ed in 1823, and where it has been successfully mined by the Russians since 1828.

A Large Export of Heavy Machinery

The Gates Iron Works, of 50 South Clinton Street Chicago, builders of rock and ore breaking machinery recently shipped to Australia eight large rock and ore breakers having a capacity equal to 9,000 tons output per day. Four of these breakers go to the Broken
Hill mine, one of the most extensive mines in the world. Upward of $\$ 5,000,000$ was paid by this mine in dividends last year, and it is claimed that upward of four million tons of ore are now in sight. The other four breakers go to the government of New South Wales, where they will be used in producing rock ballast, etc., along the lines of railroad, which are there owned and operated by the government. As illustrating how easily commercial transactions are carried on
with the Antipodes, it is suggestive that in less than with the Antipodes, it is suggestive that in less than
sixty days from the time this order was placed by
cable, the eight car loads of machinery were on dock in Sgdney.

Opals in Washington.
A discovery of opals has recently been made near Moscow, in the State of Washington, close to the Idaho line. A number of the gemshave been brought to this city and cut, showing a more brilliant play of colors than those obtained from Mexico. They are whiter and without the yellowish tinge of the Mexican gems. Some of them appear to be harlequin opals, on which the patches of color are made angular and variously tinted but evenly distributed. Others show deep green flashes of color, like those called lechosos by the Mexicans. One, a very large specimen, has been examined by a very skillful lapidary, and other competent parties, who are of opinion that it was the largest and most valuable precious opal in the rough that has been brought to this city.
The recent find was made in a wheat field where men were digging a well, and at a depth of four feet they came upon this deposit. Specimens have been shown to us by Melville Attwood of this city. Specimens of basalt wacke, the inclosing rock or matrix of the opal, came with the gems. Mr. Attwood has pre pared a section of the matrix for microscopic examination, by which he identified the substance.
No special work has been done on the clairn this winter, owing to the snow, so that the extent of the deposit is unknown. Some of the gems are quite large and pure ; and, in fact, all of them are of very good quality and quite handsome, excelling in beauty and luster those from Mexico.
Most of the opals come from Hungary, Honduras, Mexico, and Queensland. Those from Hungary are the finest and most valuable. The Honduras mines are little worked, and the opals seldom reach the market The opals of Mexico are well known throughout the world, although they do not rank in value or durability with those from Hungary.
It is not generally known that there are several places in the United States where opals have been found, most of them, however, small, colorless, and of little value as gems. Mr. G. F. Kunz, gem expert of Tiffany \& Co., New York, in his recently published work on "Gems and Precious Stones," speaks of opal showing a brilliant play of rainbow colors, either of the noble or fine opal variety, having been observed in the United States only, near John Day River, Crook County, Oregon. The specimen found there is transparent, grayish-white in color, with red, green, and yellow flames. The play of colors equals in beauty any Mexican material, and it is the first opal found in the United States that exhibits color.
Mr. Kunz says that this strikingly resembles and has the absorptive properties of tabasheer, the variety of opal which is formed in the joints of the bamboo and which is used in India for medicinal purposes. "Unwhich is used in India for medicinal purposes. "Un
doubtedly," he says, "better material of the same ind exists where this is found.'
A beautiful fire opal without any opalescence occurs in a small vein about one-fourth inch thick and two inches square from Washington Co., Ga. Common opal in small masses of greenish and yellowish white color, with vitreous luster, are found at Cornwall, Pa., also at Aguas Calientes, Gibson Gulch, Idaho Springs, Colorado, of a brownish color.
Professor William P. Blake, in his catalogue of California minerals (1866), wrote of a rich white variety of opal found at Mokelumne Hill, Calaveras Co., Cal., and on Stockton Hill, Chile gulch, opals were found in a thin stratum of red gravel at a depth of 345 feet. These stones were thought to have a market value,
but really had none. A milky white variety similar to but really had none. A milky white variety similar to
these and without fire is found 30 miles south of Mt. Diablo, Contra Costa Co., also in the foothills of the Sierra at the Four Creeks.
Nothing however with the opalescent luster and fire of these Washington opals has, as far as we are in ormed, been found before in the United States. As to the extent of the deposit, that is yet to be deterined.
Opal is a native amorphous hydrated silica, the same mineral as quartz with the addition of six or seven per
cent of water. It is never found in a crystallized form, occurring in masses having eund in a crystallized form, has a vitreous luster, sometimes inclining to resinous or pearly, and white, green, yellow-brown or gray color, according to the foreign substances present. Hardness, $5 \cdot 5-6 \cdot 5$; specific gravity, 1•9-2•3.
The varieties of opal are distinguished according to their color and other physical properties. Precious or noble opal, like the Washington, is generally white or colorless and exhibits a rich play of colors-green, red, blue and yellow, of various shades. When large and exhibiting its iridescence in perfection, it is a very
valuable gem. Fire opal is a transperent opal col valuable gem. Fire opal is a transperent opal colored hyacinth red to honey and wine yellow by feric oxide; occurs at Zimapan, in Mexico. The common formation of opals is due to the solubility of amorphous ilica in water, especially in hot water, containing carbonic acid, the silica being dissolved out by spring waters from decomposed silicates and deposited under favorable circumstances in a state more or less approaching to purity.-Min. and Sci. Press.

AN IMPROVED TELEPHONE

The illustration represents a telephone designed to transmit a great volume of sound over long distances and in which the transmitter is not liable to derange ment. It has been patented by Mr. Eloy Noriega, box 516, city of Mexico, Mexico. The transmitter, shown in Fig. 2, has a diaphragin inclosed in an elastic band annular carbon electrodes being placed upon screw passed through the diaphragin, one of these electrodes being movable upon the screws, while the other is fixed, and vibrates with the screws as they are moved back and forth by the diaphragm. A cylindrical carbon block is supported by a wetallic stud to project loosely within the annular electrodes toward the dia phragm, the rear end of the stud having a threaded en gagement with an insulating piece in the back of the diaphragm cell. One branch of a double conducting cord is connected with one of the screws through the diaphragw, and the other branch is connected with the stud. In the receiver, shown in Fig. 3, the mouth piece has a laminated diaphragm formed of a number of thin sheets of iron. The poles of a polarized magnet are inserted in the diaghragm cell to within a short distance of the diaphragu, and the bobbins attached to the poles of the magnet are connected in series and their terminals connected with the binding posts pro jecting frow the cell. Within the box, shown in Fig. 1, is a polarized vibrating bell of the usual description and a magneto-electric machine for operating the cal bells. In the cover of the box is an induction coil, the primary wire of which and the electrodes of the trans mitter are in the circuit of the battery, one terminal of the secondary wire connecting through the hinge of the box with the ground wire, and the other terminal be ing connected electrically with one of the binding posts on the top of the box. In one side of the box is pivoted an angled lever forming a support for the receiver, the

NORIEGA'S TELEPHONE
inner arm of the lever being connected with a spiral spring, electrically connected through a stud with one terminal of the induction coil, while in the path of the inner arm of the lever is a contact point, electrically conmected with the transmitter. One terminal of the magnet of the polarized bell is connected with the ground wire and the other terminal is connected elec trically with one terminal of the magneto machine, the remaining terminal of which is connected with the line wire. In using this telephone, sounds uttered in the mouthpiece of the transwitter, causing the diaphragm to vibrate, vary the contact of the annular carbon elec trodes and the cylindrical electrode, and correspond ingly vary the current in the circuit. The electrode are made of binoxide of manganese, graphite, tar, sulphur, and water, formed in moulds and subjected to a strong pressure, the mass then being heated to a high temperature, in a manner similar to that followed in vulcanizing rubber

The Famous Death Valley, Cal.
Several correspondents have called our attention to an error in the Scientific American of January 17, by which this desert region was located in Colorado instead of California. The name refers to one of several sections near each other, whose exact delimitations have not yet been marked upon the government maps, but which comprise some of the most unpromis ing lands to be found anywhere. What is known as Death Valley, and the Amargosa Desert and "sink" of the Aınargosa River, are in Iuyo and San Bernar dino Counties, southeastern California, these deser regions also extending into Nevada, in the neighbor hood of the Ralston, Mohave and Colorado deserts. For many hundreds of square wiles there are only isolated farming spots, the valleys being mostly sandy desert wastes, generally terminating in an alkaline flat According to the government survey of 1871, "the eastern slope of the Telescope Range makes an exceedingly abrupt descent of fully 10,000 feet into Death Valley, the area due east from Telescupe Peak being
below sea level." The information which will be af forded by a complete survey of this region, such as now on foot, will be looked for with muen interest.

The Greatest of Copper Mines.

President Agassiz, of the Calumet and Hecla Mining Company, has made the statement that, in his opinion the mine of which he is the chief officer can be con tinued in existence for a period of forty years at an annual production of about double its present output at the end of that time it may be assumed that th supply of ore upon which it depends will have been exhausted. Looked at from the present standpoint it may seem that an output of double the present volume would be a fair and ample average of the probable future production; but when one takes into ac count the enormous increase that has been made in the use of copper, and the probable extension of tha ncrease, due not only to the growth in population but the introduction of new electrical devices of al kinds, the estimate made by President Agassiz of what the future yield of his mine will be seems a low ne. We are inclined to believe that unless great changes occur, the Calumet and Hecla mine in th year 1900 will be found producing three or four time as much copper as in the year 1890. This will o course cut down the possible life of the mine, assuming the correctness of President Agassiz's estimates, and thus although large returns will be paid in the inter val, we should say that in twenty-five.years from this time there would be very little life left in this great mining property. The Calumet, and Hecla has paid $\$ 34,500,000$ in dividends. - Boston Herald

The Electrical Treatment of Wine.

For some time past a small 8 horse power experi mental plant, due to M. De Meritens, has been in ope ration at the Bercy works of MM. Pollet, where M. D Meritens' wethod of treating wine by electricity ha been exhaustively tested and pronounced satisfactor by competent authorities. The dynamo employed is a 25 volt alternator, having a frequency of 116. The win to be treated by electricity with a view of increasing it "keeping" qualities is passed through a sinall tube containing a series of silver disks connected to th poles of the alternator. The wine as it flows through the tube is thus traversed by a rapidly alternating current, which it is supposed destroys the ferments. The experimental plant is capable of treating 22 gallon of wine per hour. The process has been tried on wine of all kinds, and the results have been most marked with the light Algerian wines, whose bad "keeping qualities have hitherto prevented their exportation.

Locks Used on United States Mail Pouches.
It is a very risky thing nowadays for a mail agen to interfere with the lock on the mail pouches in hi care," said Assistant Postmaster Gayler to a World re porter, as he handied a burnished copper lock which lay upon his desk. "This lock makes it practically impossible for any interference to go undiscovered. Ex amine this lock, and you will see that each time you turn the key, the register moves up one number. lock it on the number 1,234 . Now you unlock it. See the number is now 1,235 . And you cannot get it back to the first number, do what you way. All our locks be gin at 1 and stop at 9,999 , giving them a life of service of thirty-three years. When the last number is reached the lock will not work any more unless it is sent back to the factory and 'upset.' This fact was unknown the route agent who ran between Altoona and Har risburg in 1881, when the lock was first adopted by the government. He had no difficulty in procuring a key to open the lock, and figured that he could manage to go through the contents of his pouch, and by the us f a turning lathe, which he took in the car with him he could soon send the numbers flying till he would get back to the number charged against him on leav ing the post office at Harrisburg. It was mail lock No 102, registered out on No. 23. After going through the contents of the pouch and getting a good swag h placed his lock in the lathe and commenced to turn. It didn't take very long to make 9,000 revolutions on th athe, but when the lock refused to go past 9,999 the ellow got frightened and, throwing his booty down on the floor of the car, he jumped off and took to the woods. This was a warning to others, and we scarcely ever hear of any attempts to tackle this lock. It is the best kind of a protection against so-called honest ellows who don't mind stealing a few hundred if they risk nothing-fellows who are in positions of trust it simply keeps watch, and if one of the men acts dishonestly, it just tells on him. That's all. But it tell every time and can't be bribed.'

A Huge Gold Nugget.

At a recent meeting of the Geological Society, Lon don, a model of the largest gold nugget yet found in Western Australia, known as the "Little Hero," weigh ing 330 oz. 8 dwt., found at Shaw's Fall, 200 mile from Roebourne and 80 from Nullagine, at a depth o eight inches, was exhibited by Mr. Harry Page Wood ward, F.G.S

AN INEXPENSIVE BROOM HOLDER

A simple form of broom holder, which may be readily noved from one place to another, and hung upon a ertical support where desired, is shown in the illustra tion, and has been patented by Mr. J. H. Allison, o New Vienna, Ohio. It is preferably formed of a single piece of galvanized wire, or wire coated with any suit able non-oxidizable material, bent to form supporting imbs wherein the head of the broom may be seated, he middle portion of the piece of wire resting upon th ace of a bracket board, while its end portions ar formed into return curve having each an eye for the reception of a screw. Th holder is thus readily se cured to the bracket board

ALLISON'S BROOM HOLDER

hole in which permits the board to be readily hung upon a screw or nail in the wall.
a spindle support and driving device.
According to the device shown in the illustration th pindles are supported to be couveniently operated by belt traveling across the frame of the machine means being provided for maintaining a uniform ten ion on the bolsters and spindles. It is a patented nvention of Mr. Joseph Duffy, No. 48 Wayne Ave nue, Paterson, N. J. Figure 2 is a partial plan view howing how the bolsters and spindles are mounted with reference to the belt, and Figure 1 is a bro ken vertical section, showing the construction of the bolster and the spindles mounted in it. The bolster has a horizontal body portion, with vertical arm at its outer ends in which are mounted the spindles, the extreme lower ends of the spindles being formed into pivots resting in sockets in the bolster arms. Fixed centrally to the under side of the bolster is a de pending trunnion, turning in suitable bearings in the rail of the spinning frame, a depending portion of the trunnion carrying a spiral spring pressing upward gainst the bearing to give the necessary tension to th bolster. Upon the upper side of the bolster is a boss, having a suitable cover, and with a vertical bore com nunicating through a horizontal bore with recesses in he vertical arms in which the spindles are mounted whereby oil may be supplied to lubricate the lowe bearings of the spindles. Fixed to the spindles are hol ow whirls fitting over the upper ends of the vertica

DUFFY'S SPINDLE SUPPORT AND DRIVER

arms of the bolster, the lower ends of the whirls havin lateral flanges adapted to support a belt, by which th whirls and spindles are rotated. The spindles are so ar ranged in the frame that the belt will press firmly agains the whirls, and motion will thence be transmitted to the spindles, the oscillating of the trunnion causing an even pressure to be brought upon both whirls of a bol ster, thereby imparting the same speed to each spindle and the same twist to the yarns. This device is also designed to double the capacity of each pulley, as, by means of the oscillating bolster, each pulley drives eight spindles, each of which bears with an even pres sure upon the belt, thereby imparting an even twist to all the yarns spun.

The "Potato Cure,"

Readers may remember the article which went the rounds of the various medical journals about a year ago, which highly extolled the virtues of potatoes as a remedy in cases where foreign bodies had been taken into the stowach. The explanation of this lay in the fact that the potato leaves a large residue in the intestine which passes on and increases the amount of fæces to a considerable extent ; the foreign body is enveloped in this, and any sharp corners or angles which it may possess are kept from injuring the delicate mucous membrane of the stomach and intestines. To accomplish this end large quantities of the vegetable must be eaten, and potatoes are given in every conceivable form, fluids being avoided as much as possible. The foreign body thus passes out without, injury to the alimentary canal. At the time this remedy was brought to general notice several cases of recovery by its use were also noted. As the idea appears to be a very sensible one, we take occasion to abstract from the report of a case, remarkable in some respects, which was recently published in the Medical Record
The case is reported by Dr. Edward Pisko, of New York, and is that of a child not quite one year old, who had swallowed a screw one inch in length. The screw passed on into the stomach, and did not seem to be giving much trouble when the patient was first seen. To avoid both a laparotomy and the danger of intestinal perforation, the aid of the potato was invoked, in spite of the tender age of the patient and the fact that it bad just been weaned from the breast. Potatoes were given in every form, and white bread dipped in milk, but no fluids. The child continued well, and on the fifth day, after the administration of a slight laxa tive, the screw was passed enveloped in fæces. There was no apparent injury to the stomach, and no intesti nal catarrh, and the child's general health remained unaffected. The interesting features of the case are the brilliant success of a most unassuming remedy and the fact that the patient was so young, and scarcely weaned.
Pisko also relates the following case, which he saw in Albert's surgical clinic at Vienna :
A boy æt. 6 years, who, two years previously, had swallowed a nail, which at that time was removed by gastrotomy, was brought there again with a nail (6 centimeters long) in his stomach. This time the " potato cure," which had been introduced in the meautime was used, with the result that on the ninth day the nail made its appearance per vias naturales
It would seem that we are not yet acquainted with all the possibilities of the luscious tuber, since it even bears off the palm from laparotomy.-Weekly Medical Review.

Death Rates of the World's Largest Cities.
Following are the vital statistics for a number of the principal cities of the world, compiled to December, 1890 :

Estimated Population for 1900.

The estimate of the population of the United States for the year 1900, by Hon. Carroll D. Wright, superin tendent of the Department of Labor, gives as the approximate figures $76,639,854$. This is the result of a careful consideration of the estimates made by several other reliable individuals, the known rates of increase, and the various circumstances that bear upon the growth of population.

PORTABLE PARLOR FOUNTAIN AND FLOWER STAND.
The annexed engraving, taken from the Vienns Gewerbe Zeitung, illustrates a fountain consisting prin cipally of two equal sized basins, each containing a spraying nozzle and an outlet pipe, the spraying noz zles being connected by two rubber pipes with the out let pipes, as plainly shown in the sectional view.

PORTABLE PARLOR FOUNTAIN AND FLOWER STAND.
The basins are supported on suitable holders con nected with each other by parallel levers fulcrumed on the flower stand. A weight is adapted to be hung on the lower end of the holder containing the empty basin to counterbalance and to hold the filled basin in an uppermost position. The water flows from the filled upper basin through the outlet pipe to the spraying nozzle of the lower basin, and is projected quite a distance up into the air, to fall back and gradually fill the lower basin. When this is accomplished, the upper basin has run empty and the counterbalancing weigh is now hung on the holder of the empty upper basin so as to change the position of the levers, and conse quently the basins; that is, the filled basin assumes an uppermost position, while the empty one swings downward. The water now flows from the upper basin to

A CURIOUS TOMBSTONE.
the spraying nozzle of the lower empty basin, and is sprayed to accumulate in this basin.
It takes about one hour's time to empty a basin containing about one-half gallon of water, the opening of the spraying nozzle being one-half millimeter in size. In case the water gets dirty, the basins can be readily
emoved from their holders and emptied, cleaned, and replaced, and one again filled with fresh water.
T. G. H
subterranean Fires.
Some idea of the terror of volcanoes may be gathered from an account of an eruption in one of the Hawaiian islands, as graphically described in the London Budget, when the crater was filled from five hundred to six hundred feet deep with molten lava, the immense weight of which broke through a subterranean pas sage of twenty-seven miles and reached the sea, fort miles distant, in two days, flowing for three weeks and miles distant, in two days, flowing for ther
heating the water twenty miles distant.
Rocks welted like wax in its path; forests crackled and blazed before its fervent heat; the works of man were to it but as a scroll in the flames.
Imagine Niagara's stream, above the brink of the falls, with its dashing, whirling, madly raging waters hurrying on to their plunge, instantaneously converted into fire-a gory-hued river of fused minerals; volumes of hissing steam arising; smoke curling upward from ten thousand vents, which give utterance to many deep-toned mutterings and sullen, confined clamorings gases detonating and shrieking as they burst from their hot prison house; the heavens lurid with flames the atmosphere dark and oppressive; the horizon murky with vapors and gleaming with the reflected contest.
Such was the scene as the fiery cataract, leaping a precipice of fifty feet, poured its flood upon the ocean The old line of coast, a mass of compact, indurated lava, whitened, cracked and fell. The waters recoiled and sent forth a tempest of spray; they foamed and lashed around and over the melted rock, they boiled with white heat, and the roar of the conflicting agen cies grew fiercer and louder. The reports of the ex ploding gases were distinctly heard twenty-five mile distant, and were likened to a whole broadside of heavy artillery. Streaks of the intensest light glanced like lightning in all directions; the outskirts of the burning lava as it fell, cooled by the shock, wer shivered into millions of fragments and scattered by the strong wind in sparkling showers far into the country. Six weeks later at, the base of the hills the water continued scalding hot and sent forth clouds of water continued scalding he waves
steam at every wash of the water

A New Industry for Sunderland, England.
The negotiations which have been taking place for some time past between the River Wear commissioners and the Anglo-American Oil Company have at length been brought to a satisfactory conclusion, and, before long, a new and very extensive industry will be estab ished in Sunderland. The Anglo-American Oil Com pany is one of the largest concerns in this country or America. It owns large oil wells in Pennsylvania besides a fleet of specially constructed steamers for the conveyance of oil across the Atlantic. The company intends to erect works at Hendon, near Sunderland covering about two acres of ground, which will com prise three or four tanks resembling gasometers in appearance, for the reception of the oil. The liquid will be pumped from their own ships, as they arrive in the docks, to the tanks referred to, and thence dis patched to all parts of the kingdom. This is an entirely new industry in the port of Sunderland, and capable of new industry in the port of Sunderland, and
assuming large proportions.-London Times

A CURIOUS TOMBSTONE.

The inhabitants of the sleepy village of Wilmette Ill., were astonished not very long ago to find an enor mous elm tree standing in the middle of their principa street. It had been moved along the highroad, and was being conveyed to Graceland Cemetery, where it was to be planted over the grave of Mr. J. H. Lathrop of Chicago. A rather romantic story is told about the reason for the transportation of so large a tree. It was said that while Mr. Lathrop and a friend were out shooting about two years ago, they stopped to take lunch under the spreading limbs of an enormous elm They stood admiring the tree, and finally entered into a compact that upon the death of either, the tree was to be transplanted to the grave of the deceased at the expense of the survivor. Unfortunately, there is no reason to believe that there is any truth in the story, as Mr. Lathrop was not a sportsman. He knew the tree, took a fancy to it, and made up his mind that he would be buried under its branches. To that end he provided a fund of $\$ 10,000$ in his will for the removal of the tree from the forest where it stood to the ceme tery, a distance of twelve wiles. At the time when the photograph which we publish was taken, the tree had been moved five miles without accident, save the sad fate which met one of the laborers, who was crushed to death beneath it. A force of thirteen men is emoloved, and the expense of removal so far has been $\$ 2,000$.
A hole has been chiseled through the tree about ten feet from the ground, and through this has been passed a steel bar, which projects far enough on either side to bear upon the heavy timber braces which support the tree in an upright position. Wire guy ropes are attached to staples driven in the limbs which serve as a further support. The roots are carefully wrapped up to protect them from freezing. The tree is about 75 feet high and 7 feet in circumference.

Pasteur's Treatment for Rables.

Considerable discussion has been had among medical men, at home and abroad, as to Pasteur's preventive method for hydrophobia, it being alleged as highly probable that in many instances patients have undergone treatment when the dog which had inflicted the bite was quite healthy, or, at least, not suffering from rabies. But Dr. Tomkins, medical officer of health, Leicester, England, relates in the Lancet the following record of three cases treated at the Pasteur Institute last year, which places beyond all doubt that the animal, at the time of inflicting the injuries, was suffering from rabies :
On January 8, 1890, a stray dog came into the borough of Leicester from the adjoining suburbs, and on its way bit two school children, a boy and a girl, on the face and hands, the wounds upon each of the children's faces being of a very extensive, lacerated character. This occurred outside the borough boundaries, and almost at the same time it bit also a small terrier dog. Continuing its course into the town, it bit a young man severely on the hand, and shortly after this it was killed. The patients were seen by medical men and the wounds cauterized, but not until after the lapse of some little time. In one case nearly an hour elapsed. I saw all the patients on the following day, and, with the assistance of Mr. Fraser, the veterinary inspector to the corporation, made a post mortem examination of the dog. The pathological appearances to the naked eye were practically nil, but the stomach contained some pieces of straw and other debris. The cord and medulla were removed.
On Saturday, the 11th, I took the three patients to Paris (taking with me the cord removed from the dog), and on Sunday morning they were seen by M. Pasteur, and treatment commenced in the usual manner. From the cord several rabbits were inoculated, and before the end of a week these succumbed to what M. Pasteur declared to be rabies. The man was kept under treatruent fourteen days, but the two children, owing to the severity of the wounds, were kept for twenty-five days before being sent home. The small terrier bitten by the dog waskept by me under close observation shut up, away from all other animals, and on the fifteenth day from being bitten it began to show signs of indisposition (having in the interval been apparently in good health), which soon declared itself as undoubtedly rabies, and the animal succumbed on the third day from the first onset of the symptoms. Being kept secluded and alone, it showed but few signs of excitement, but crawled about, refusing to eat or respond when called to, paralysis of the lower jaw and hind limbs soon supervening. It should be noted that the wound on its hind leg was but a small one, not larger than a threepenny piece, and at the "time of its death was healed.
Here, then, we have indisputable evidence that the animal which bit these three patients was suffering from rabies, and the probabilities are, seeing how easily the second dog was infected, that at least one or other of the three would have developed symptoms of hydro phobia if the treatment for prevention had not been adopted. As more than twelve months have now elapsed since the occurrence, and all of them remain in good health, we may conclude they have now quite es caped from any untoward consequeuces.

New Signals for Our Cruisers.

The new French system of signaling at night at sea was put on the cruiser Chicago before she sailed, for experiment during her cruise this winter. Ten lamps hang vertically from a backstay ; a keyboard having sixty-two different characters, letters, and signals governs the lamps, and in this way the combinations are inade. This system of signaling is at present used in the French and German navies. Various other systems are being experimented with by American officers to find one which is best. The present system on American vessels, according to the New York Tribune, consists of three 16 candle power electric lights-one red, one green, and one white-which hang vertically on a jackstay, several feet apart. The Morse code of signals is used, and an ordinary telegraph key does the work of flashing or shutting off the light. The green light indicates a dash, the red light a dot, and by flashing the !lights in this way signals may be sent over a distance, depending upon the clearness of the night, but not usually over three miles. Experiments are also being made with the electric search light. The plan is to throw the light overhead, making dashes and dots against the sky, so that

Bombay Water Works.

A huge dam has been designed to inclose the watershed of the valley which drains into the sea south of Bombay. It is two miles long, 118 feet in height and 103 feet wide at the base. The road way on the top is to be twenty-four feet in width, and the stonework will
cost half a million sterling. The lake of water which cost half a million sterling. The lake of water which area. Twelve thousand Hindoos trained to this spe cial work are employed on the dam.

At a recent meeting of the New York Academy o Sciences, Dr. H.C. Bolton spoke briefly on the renarkable addition to chemical knowledge recently made by Prof. Th. Curtius, of Kiel, viz., a new strong acid salled in German "stickstoffwasserstoffsäure"-in English hydrazoic acid-having the formula

$$
\mathrm{HN}_{3} ; \text { or, } \mathrm{H}-\mathrm{N}<\frac{\mathrm{N}}{\mathrm{~N}}
$$

Curtius obtained it in several ways, the most conve nient method being by converting hippurylhydrazin into nitrosohippurylhydrazin, and decomposing the latter with alkali.

The new acid is a gas, having a frightful suffocating odor, irritating the mucous membrane and producing headache. It is very soluble in water, yielding a strong acid solution, like hydrochloric acid. This solu tion dissolves iron, zinc, copper, aluminum, and mag nesium, with liberation of hydrogen and formation of nitrides of the metals. With salts of silver and mer cury white precipitates are formed resembling chlorides of these metals, but the silver compound is not black ened by light; the mercurous, copper, and ferrous salts are explosive.
Advantage is taken of the insoluble silver salt to pre pare the acid in a pure state; boiled with dilute sulphuric acid it yields hydrazoic acid. An aqueous solution containing 27 per cent of the gas is much heavier than water, and sinks to the bottom of the vessel into which it is poured. The solution yields white clouds with ammonia, just like hydrochloric acid. Prof. Cur tius plans to build up an entire new series of nitrogen compounds of greatest interest to the chemical world.
Dr. Bolton spoke of the great importance of the dis covery of the new strong acid from industrial, analyti cal, and physiological points of view.

Poisoned by Hothouse Flowers.

The poisoning of several greenhouse workmen by contact with some greenhouse plant was noticed in our columns the other day. The name of the plant was not mentioned, but we suppose it must have been the Chinese primrose, that is technically known as Primula obconica. This primrose is one of the most
beantiful of the genus, and it is now in full bloom in our conservatories and offered for sale in the florists' shops. Its poisonous character is well known to experienced florists. After handling it they are apt to be affected with an inflammation of the skin of the hands and arms, and often of the face, of an eczematous type.
This lovely little plant is a native of central China, here it was first discovered by Mr. Maries, a botani ual collector, who sent seeds of it to England. Plants raised from these seeds bloomed for the first time in Europe in September, 1880. In the following year it was figured and described in the Botanical Magazine, and three years later a colored plate of it appeared in the Garden newspaper. It created a sensation in European gardening circles, and on account of its easy growth, neat habit, and winter blooming nature, and the great profusion and beauty of its blossoms, it has found much favor with English and Continental florists.
As it seeded and multiplied very freely, it soon found its way to this country, where, till two years ago, i was a reigning favorite both in private and commer cial gardens. When its poisonous nature, however, cided check ; but it is!such a beautiful little plant that even now cultivators dislike to give it up altogether.
The whole plant, leaves, petioles, and flower stems, is covered more or less thickly with jointed hairs, and it s supposed that these hairs cause the poisonous irrita But by breaking off and entering the skin of the hand But all who touch the plant are not poisoned by it
We know of workmen who can handle it with abso We know of workmen who can handle it with abso
ute impunity at any time, while others are always sus ceptible to its evil influence. The back of the hands, between the fingers, and the bare arms are the part affected; the hard palm of the hand escapes uninjured. The face and eyes of some workmen are also poisoned by it, although these parts never touch the plants One person whom we know of can handle the leave without any smarting pain, such as the stinging of nettle, and no pricking as if a cactus hair had pene
trated the skin; but after an hour or two the itching begins, and lasts more or less for several days. In fact the effect upon the skin presents a good deal the appearance of parsnip poisoning, but it is never so viruent or so lasting as that caused by poison ivy.
The explanation that was given that "the only way Paris green and some other powders that are used
the hothouses to kill vermin must have adhered to the flowers after they were cut," is quite unsatisfactory Paris green is not used, we believe, as an insecticide in greenhouses. Tobacco, either in the form of powder or vapor, or smoke, is employed to destroy aphides and thrips, but tobacco is harmless to the skin. Sulphur is used against red spider and mildew, but it is harmless o the hands.
Pyrethrum powder, known also as Dalmatian insect powder or buhach powder, is employed more or less, but it is not injurious to touch or taste; only in breathing when it is suspended in the atmosphere is it hurtful. Other insecticides than these are seldom employed by the busy florists who supply the cut flowers for the New York market. $-N$. Y. Sun.

The Earth's Interior

One of the most interesting questions relating to the earth considered as a planet is that of its interior con stitution. Observations made in deep mines and bor ings indicate that the temperature increases as we go downward at the average rate of one degree Fahren heit for every fifty-five feet of descent, so that if this rate of increase continued, the temperature at the depth of a mile would be more than one hundred de grees higher than at the surface, and, at the depth o forty miles, would be so high that everything, includ ing the metals, would be in a fluid condition. This view of the condition of the earth's interior has been adopted by many, who hold that the crust of the earth on which we dwell is like a shell surrounding the molten interior. But calculations based upon the tidal effects that the attraction of the sun and moon would have upon a globe with a liquid interior have led Si William Thomson and others to assert that such a condition is impossible, and that the interior of the earth must be solid and exceedingly rigid to its very center. To the objections that the phenomena of volanoes contradict the assumption of a solid interior it is replied that unquestionably the heat is very great deep beneath the surface, and that reservoirs of molten rock exist under volcanic districts, but that taking the earth's interior as a whole the pressure is so great that the tendency to liquefaction caused by the heat is overbalanced thereby. The whole question, however is yet an open one. According to the nebular hypothesis, which assumes that the bodies of the solar system once existed in a nebulous form and by gradual con densation and loss of heat have attained their present condition, it is probable that the earth is still slowly cooling off, and that, as we see it, it represents an intermediate stage between the hot vaporous globe of a planet like Jupiter and the cold and barren moon. If we accept this theory-and it is yearly gaining strength then the habitable period in the earth's career ap pears to be but one chapter in its varied history When it was yet molten and vaporous it could not support life, but it shed light like a star. Now it pos sesses a cool and s:olid crust on which innumerable tribes and species of animal and vegetable life swarm and flourish. Anon it will become cold and inert, its waters and its atmosphere retreating into its interior and with them the life that depends upon their presence will disappear. This possible cause of the cessation of the life-supporting energies of the earth, it wil be observed, is independent of the withdrawal of the ight and heat of the sun, an ultimate catastrophe to which we have heretofore referred.-Prof. Garvet P. Serviss, in the Chautauquan for February.

Electrical Street Car Propulsion

We are informed by Mr. D. H. Bates, vice-president and general manager of the Accumulator Company, hat a contract has been made for the equipment of the new G Street branch of railroad, Washington, D. C. with six storage battery cars. This railway company was one of the first street car roads in the United States to adopt electricity as a means of propelling its cars, and the Thomson-Houston system of trolley wires was installed there several years ago. Congress, however, will not permit the railway company to erect any more trolley poles, particularly in the heart of the city, and this storage battery system has been adopted.
The Edco system is the invention of Mr. W. W. Gris com, the president of the Electro Dynamic Company of Philadelphia, the initials of which title serve to form the word "Edco." The cars are being manufactured by the J. G. Brill Company, of Philadelphia, and will be lighted by electricity, equipped with the Edco system of motors and gearing, the gearing running in oil, with dust-tight covers for motors, and with a number of " 23 M " type accumulators, designed to give an average speed of 8 wiles an hour and a maximum speed, when desired, of 15 miles an hour.

Riches of Oregon.

There is a tract of forest trees in Southern Oregon, embracing about 16,000 square miles, which, if cut and sold at $\$ 10$ per 1,000 feet, would pay our national debt chantable timber standing amounts to $400,000,000,000$ feet.-Oregonian.

Sorrespondence.

smokeless Powder Formula-a Correction.

To the Editor of the Scientific American:
In the Scientific American of January 10 I read this chemical formula for the composition of the smokeless powder: $10 \mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{ONO}_{2}\right)+9 \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{OH}\left(\mathrm{ONO}_{2}\right)_{2}$, forming the products, $58 \mathrm{CO}+26 \mathrm{CO}_{3}+61 \mathrm{H}_{2} \mathrm{O}+48 \mathrm{~N}$. Mol. W. $=4538$. Now, I suppose there is some mistake in that.
1st. $26 \mathrm{CO}_{3}$ should be $26 \mathrm{CO}_{2}$, and then the Mol. W. will be 4538 . No gas CO_{3} exists I believe, but CO_{2} is common.
2d. $\mathrm{C}_{3} \mathrm{H}_{6}\left(\mathrm{ONO}_{2}\right)$ is meant, I suppose, for nitro-glyce rine, which is $\mathrm{C}_{3} \mathrm{H}_{6}\left(\mathrm{ONO}_{2}\right)_{3}$, or $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{NO}_{3}\right)_{3}$.
The other compound, $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{OH}\left(\mathrm{ONO}_{2}\right)_{2}$, may be the binitro cellulose, or a mixture of the three, thus : $3 \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{2}\left(\mathrm{NO}_{3}\right)_{3}$, trinitro cellulose; $3 \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{2} . \mathrm{OH}\left(\mathrm{NO}_{3}\right)_{2}$, binitro cellulose ; $3 \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{2}(\mathrm{OH})_{2}\left(\mathrm{NO}_{3}\right)$, mononitro cellu lose ; could be resumed in $9 \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{2} . \mathrm{OH}\left(\mathrm{NO}_{3}\right)_{2}$. Therefore it seems to me that the formula should be written thus: $10 \mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{ONO}_{2}\right)_{3}+9 \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{2} . \mathrm{OH}\left(\mathrm{ONO}_{2}\right)_{2}$, with a Mol. W. of 4538. The decomposition products are 58 CO $+26 \mathrm{CO}_{2}+61 \mathrm{H}_{2} \mathrm{O}+48 \mathrm{~N}$.

Prof. C. H. Jourdan.
Seton Hall College, South Orange, N. J.

Indexing Notes and Queries.

To the Editor of the Scientific American:
In the issue for January 10, under query No. 2689, a subscriber asks how he may be able to index the "Notes and Queries." As I, too, regard them as highly valuable, it has been for some time my custom to in dex them. For a number of years I have been in the habit of indexing all my periodicals as well as the books which I have read, from the principle that it seems a waste of time to read, in general, what is not of permanent value and may not be wanted again for future reference.
As the method which 1 have employed has proved satisfactory, and is simple and cheap as well, I give it for the benefit of other readers. It is somewhat more detailed than the one suggested in the reply to the query,

Procure three-quire blank books of convenient size, with record ruling. Cut the margins for the letters of the alphabet, as in an index to a ledger. Allow six pages to each letter, with the exceptions of J and Z, for which four will be sufficient, and there will remain two each for Q and Z. Index successively these six pages with the vowels in order. This will leave one blank page for miscellaneous additions.
To use it, select the leading word in the article and find its initial letter in the margin, and the first vowel following the initial will indicate the page for entering the reference. W. M. Stine,

Prof. Physics and Chemistry, Ohio University Athens, Ohio.

What is the Temperature of Ice?

Authorities differ widely upon this question. A care ful investigator recently made some experiments looking to a solution of this and has sent us the following

January 23. Atmospheric temperature $+40^{\circ} \mathrm{F}$.
(1) In a block of inferior ice, full of bubbles and fissures, an auger hole was bored 6 inches deep. In the cavity thus formed a chemical thermometer was dropped, the borings being used to pack the orifice around the instrument. When fifteen minutes had elapsed, the temperature within the ice was found by aid of a lens to be $+30 \cdot 5^{\circ}$.
(2) Equal parts of ice and salt being mixed in a wooden pail, they formed a solution at the bottom, in which the thermometer read -10°. In the center of the pail a quart tin cup was placed, nearly full of filtered water. The cup was supported above the bottom of the pail, and in it was suspended a second chemical thermometer, while the water was allowed to freeze into a solid mass around it.
In thirty ininutes the water in the cup was converted into ice. At the end of an hour and a half the relative temperatures indicated by the two thermometers have not varied, and now read, respectively: That in the freezing mixture, -50°; that in the ice in cup, 0°. These readings we
ture was 74°
Both thermometers were carefully compared with a valuable standard instrument and with each other, before and after the experiments, and their readings were corrected for variation at different points.

Progress of the World's Fair.

Plans for the government buildings have been completed in Washington. The buildings, which will be nearly square, will cover nearly 150,000 square feet, and have a main entrance and ornamented arcade resembling the Are de Triomphe at Paris. In the middle a handsome, pagoda-like tower will rise, beneath which will be a great rotunda. The building will cost $\$ 400$,000 , and $\$ 1,000,000$ will be spent on the exhibition and in its annexes. The government buildings at the Centennial cost only $\$ 80,000$.

How Newspaper Pictures are Made.

The illustration of newspapers is a new branch o art. Ever since its beginning its apprentices have been trying to find out the simplest and most effective methods for the reproductions of drawings, in order that they might be made with the greatest possible quickness, engraved on metal with the utmost attainable celerity and printed clearly and well at the rate of twenty thousand copies per hour. To such perfection have the processes for this purpose been brought, that the turning out of pictures all ready for the lightning presses is nowadays hardly more than a matter of a ew minutes' time.
Most interesting of the procesises employed in news paper illustration, from the point of view of simplicity, is what may be termed the "chalk method." Take a thin bed of smooth chalk laid upon a metal surface, and draw upon it with a fine steel point any picture you may desire. The steel point will cut the lines of the picture out of the chalk to the metal, and thus you will have it in the shape of an intaglio. Make a stereo type from this intaglio, and you have your metal plate to print the picture from. Could anything be more simple?

DRAWING ON A BED OF CHALK
Such is the idea of the chalk process. In applying it, instead of pure chalk various mixtures are used such as plaster of Paris, which is merely chalk in another shape, with a certain proportion of a white Carolina clay. The stuff, pulverized and stirred up with water, is spread over a rectangular sheet of polished steel, as you would spread a slice of bread with butter, to an even thickness of about one thirty-second of an inch. Now you are ready to begin operations as soon as you have baked the steel plate in an oven for a while, until the chalk layer has been rendered per fectly, hard.
It will hardly do for you to attempt to draw your picture directly upon the chalk, lest you make mis takes. The best way is to make your sketch on a piece of paper, and then laying it down upon the chalk surface, go over the lines with a pencil point, which will indent the paper, and leave marks beneath upon the chalk. Lift the drawing, and you find under it, in the chalk, its reproduction. Now you apply your steel point directly to the chalk, cutting all the lines of the drawing down through the chalk to the surface of the steel plate. When you finish this operation the dark steel of the plate shows through the chalk in all the lines of the sketch. And these lines are perfectly clean and sharp, thanks to the keenness of the knife-like steel point employed. All you have to do for the rest is to pour molten lead over the chalk surface in a mould and let it get cold. The lines ihat are cut out of chalk will be reproduced in relief upon the lead, and thus you will have your metal engraving to print the newspaper picture from, mounting it for the purpose on an iron block, thick enough to make it level with the type.
zINC ETCHING.
Though so advantageous for its simplicity, the chalk method is not so good for fine work in the way of sketches and portraits as the "zinc process," so called. The former,'however, by reason of its cheapness, is most useful to provincial newspapers, which cannot afford comparatively expensive photographic plant required by the latter. In the zinc process, to begin with, an ordinary photograph reduced to the required size is taken with a camera of the pen and ink sketch drawn on cardboard by the artist. Next a smooth plate o zinc is "flowed over" with an albumen solution that forms a sensitized skin on the surface. Theglass nega tive of the picture is laid upon this zine plate and the two are put together in the sunlight. What are to be the black lines of the printed drawings are, of course white and transparent in the negative. The sunlight goes through wherever the negative is transparent, and has the effect of hardening the sensitized skin beneath o that it clings tightly to the zinc. It requires only one minute to perform this operation. Now the zinc plate is taken and given a coating over the sensitized skin of lithographer's ink, rubbed on with a roller, after which the plate is washed. In all places wher the sunlight has not struck the zinc, owing to the opacity of the glass negative, the sensitized skin readily washes off, together with the ink that covers it; else where it clings. Thus, after the washing, the perfect drawing in ink remains upon the zinc plate. To mak the ink lines harder the plate is brushed with powdered dragon's blood. Then it is plunged into a bath of acid which eats away the zine wherever it is not protected by the ink, so that when it is taken out the lines of the drawing are found all raised above the rest of the sur face of the plate, like a map for the blind, and when mounted "type high" on a metal base, you have your cut" ready to print from.
Such is the zinc process. "Processes" have infinitely multiplied within the last few years-so much so, in fact, that the student of engraving is aghast at contemplating their variety. At present, however, the zinc method seems to be the most a available for journals of the period. At all events, it is employed by a wa jority of the big newspapers of the country.

A THIRD PROCESS

considerably used for newspaper illustration is that of photo-engraving, which somewhat resembles the zinc method. A glass plate, however, is used instead of a metal one. This glass plate is covered with a thin layer of sensitized gelatine, which is permitted to dry. Then the photographic glass negative of the drawing, made with the camera, just as in the other case, is laid over the gelatine, and the glass plate and negative, over the gelatine, and the glass plate and negative,
with the gelatine layer between them, are put in the with the gelatine layer between them, are put in the
sun for half an hour. The light hardens the gelatine, sun for half an hour. The light hardens the gelatine, and makes it cling to the glass plate wherever it strikes
through the negative, so that when the glass plate is subsequently put into water, all the rest of the gelatine comes off, leaving the drawing on the glass in gelatine lines. Moist plaster of Paris is spread over the plat next and permitted to harden. When it is taken off it is a mould of the drawing. From this mould a plaster "relief" is made, and a reproduction of metal in this elief by stereotyping is the plate to print with.
These are the three methods by which newspaper produce the pictures which go so far to brighten up and help out the interest of the coluinns of the daily press.-Washington Star.

The Strength and weight of Aluminum.
The following interesting data concerning the trength and weight of aluminum are abstracted from paper by E. Hunt, J. C. Langley and C. M. Hall, read before a meeting of the American Institute of Mining Engineers, and copied into Fire and Water.

Bar 1 in . square, 24 in . between supports loaded, at center with

Taking tensile strength of aluminum in relation to ts weight, it is as strong as steel at 80,000 pounds ultimate strength.

Metal.			
Cast iron.	444	16.500	533 feet.
Ordinary bronze............	525	36,000	9,893 **
Wrought iron ${ }_{\text {Hard struck }}$ steel..............	4980		${ }_{23,040}^{15.000}$
Aluminum....	168	26,000	23,040 "

Aluminum 97 to 99 per cent silicon (graphitic) $0 \cdot 10$ to one per cent silicon combined $1 \cdot 90$ to $2 \cdot 80$, and iron rom 0.40 to 0.20 per cent. The averages are as follows

Elastic limit per square inch in tension.	(Castings)	6.500
Elastic limit tension.	Sheet	12,000
Elastic limit tension.	Wire	= 16,000
Elastic limit tension.	Bars	= 14,000
Ultimate strength per square inch in tenion.	(Castings) $=$	15,000
Ultimate strength tension.................	Sheet $=$	- 24,000
Ultimate strength tension.	Wire	30,000
Ultimate strength tension.	Bar	26.000
Percentage of reduction of area, in tension..	Castings	15 p.c.
	Sheet =	$35 \mathrm{p} . \mathrm{c}$.
	Wire	$=60 \mathrm{p} . \mathrm{c}$.
	Bar	$=40 \mathrm{p} . \mathrm{c}$.

Tho Trenicide Properties of the Cocoanut.
Professor Parisi, of Athens, some time since called attention to the tænicide properties of the cocoanut when freely ingested. His attention was drawn to the subject from an accidental experience in his own case. It was while he was traveling in Abyssinia that one day he took a considerable quantity of the nut, sufficient to produce an attack of diarrhea. After a while, much to his surprise, with one of these diarrheal motions there came away a complete tænia, head and all, and quite dead. After his return home to Athens he nade some observations in this line of treatment and reported an almost invariable success. In only one instance did he fail to secure the head. His method was to order the milk and pulp of one cocoanut to be taken in the morning, fasting, no purgation or cessation from business being required. In this country Dr. Allison has reported, in the Medical Age, a case where the use of Filix mas, oil of turpentine, and chloroform had successively failed to effect a complete removal of the parasite, but in which the patient by chance partook of a cocoanut and soon after was relieved of a dead tapeworm with its head. Since then he has had occasion to prescribe cocoanut ir this trouble, and has found it the pleasantest of all the ænicides, and one that does not require the administration of a cathartic. $-N \epsilon w$ York Medical Journal.

Black Polish on Brass.

To make a dead-black polish on brass, for microscopes, etc., mix 1 ounce of nitrate of silver in a dish with 20 ounces of distilled water. In another dish mix 1 ounce of nitrate of copper with 20 ounces of distilled water. Mix the two solutions together, dip the brass in the liquid, remove the brass, and heat in an oven until the desired degree of black is obtained.

CONCURRENT ELECTRIC REPORTS OF RACES.

The illustration and diagram on this page show the method of working of an electrical system by means of which new electro-mechanical results are obtained which are novel and interesting from the electrician's standpoint. This system has been worked out by Mr. S. D. Mott, of Passaic, N. J., whose system of bulletin ing baseball games was described in the Scientific American of January 24, 1891.
The dial of this instrument may represent anything in the nature of a race. In this case a horse race is shown. Referring to Fig. 2, the transmitting part of the apparatus is shown at A, which consists of a positive and negative key, the operator's index and a battery. In the line at the receiver is the neutral relay, n, and the polarized relay, n^{\prime}, one giving a uniform step by step motion to hand cylinders or disks controlled by ratchets, r^{\prime}, actuated by magnets, $m m^{\prime}$, etc. The other relay selects the magnet in the instrument to show, in this case that of a horse race, the number o the races, as at a, to start horses and at the same time tap a bell, as at b, to show the winners in colors marked on bristol board disks, as at c, or acting to accelerate by magnets, $d d$, etc., or to retard, by means of a neutralizing coil on $\boldsymbol{m m}$, etc., any contestant selected by the operator at A, through the medium of the selector, C, and polar magnet, n^{\prime}. This diagram for convenience magnets, but it will be readily understood that more may be added in the full line circuit, e, and that they may be placed in series as shown, or in parallel. The resistance, t, will equal the sum of the resistance of all the actuating magnets less one. This equalizes the magnetizing and demagnetizing current from the battery, neutralizing its effect on m for instance when the current is split at s. There is no need of synchronism as ordinarily understood; the fact that the contestants all come together and stop on the scratch after each event in sures indentity of action in all instruments for al practical purposes.
Fig. 1 is an ornamental dial showing the relative positions of the horses in a race from start to finish. A bulletin is supplied with A bulc's entries, so supplied will play any so supplied will play any race when connected elec-
trically with the track or
The horses' names are generally printed in colors to correspond with dummies on dial; upon the entry card may also appear any information, such as any information, such as opening in the dial above the figure 6, which is the number of the race being run, are disks indicating the winners When the race The starts, a bell is tapped or a music box may be set playing to attractattention. The horses all come in in the proper order, ready for the next race. The dial is now exhibiting a race taking place at Morris Park, Thursday, June 5, 1890. The winner of the first race was Linda, 2d Chaos, 3d Atlas, 4th Castaway, 5th Fairplay; the sixth is just ending with Vin ending with Vindex the winner and Eclipse 2d. It will be apparent that the dummy horses may be replaced by colored arrow heads or even letters or figures for
shows only two contestants, with their respective

the purses, the ages, best records, names of jockeys, |other races, such as yacht, boat or foot races. The ad etc. The d, | etc. The dummies are also colored so that in each race | vantages of this system from an economic standpoint, | gers will be transferred directly from the platform of |
| :--- | :--- | :--- |
| the identification of the dummy is complete. At the | and quite apart from its popular and attractive aspect, | the depot to the upper deck of the ferryboat, while |

Fig. 1.-THE DIAL.
are that no receiving operator is necessary; the dials name and publish the event at one and the same ope ration, one operator taking the place of 100 operators when a game or race is being reported frow the ground to 100 different localities. In comparison with the stock ticker, it is much cheaper to make, simpler in mechanism, and by no means as liable to derangement or error in working. It can be operated over single line circuits to greater distance than any ticker, needing no attention, such as supplying with tape, winding, etc., only an occasional inspection by those hav Ing them in charge. An important point in connec tion with this invention is its capacity of being relayed or operated over long lines, operated from New York to Chicago for instance. Instruments used at Cleveland could be actuated by relays interpolated in the line. The same is true for other intermediate points Signals are wholly unintelligible if the line is tapped.

NEW DEPOT OF THE PENNSYLVANIA RAILROAD.
Very few people appreciate the great work of reconstruction that has been begun at the eastern terminu of the Pennsylvania Railroad system at New York and Jersey City. The present accommodation for train and for passengers has been found to be inadequate and active operations have been begun for remedying the evils of the old system. Among these evils are the delay and dangers attendant upon the running trains through the streets of Jersey City on the road level This is to be altered, and the tracks all through the city are being elevated upon the most substantial sort of substructure, one that can carry the heaviest ex press trains at full speed. The saving in time will be considerable, besides relieving the railroad company from many suits for loss of life and limb. The necessity for this is apparent. Jersey City has become too im portant a municipality to endure any more the cease less passage of $t r a i n$ through her streets and across her thoroughfares The Pennsylvania Rail road is the largest road en tering the city limits, and the city will be greatly benefited by this disposa of its trains. The Pennsyl vania Railroad will reap the benefit of an exclusive track free of all crossings, upon which trains can free ly run at high speed di rectly into the terminal station.
This elevated viaduct will operate in perfect har mony with the double deck ferryboat system which is soon to be put into ac tive operation on the line tive Hudsor River, the ferryboat, while
theal traffic
 will be confined to the lower deck of the boat. Thi relieves the ferry boats from the great overcrowd ing which former ly took place dur ing the busy por tions of the day A ferry hous with a doubl landing will also be provided at th New York shore, and the passen gers on the two decks will disem bark on separate platforms of the ferry house. The upper platforn on the New York side connects with a bridge extend ing across West Street, which enables passengers to reach the foot of Cortland Street without having to wade through the mud which is almost always to be found in these overcrowded tho roughfares. The
bridge is now in course of erection, and will be found of great convenience to passengers.
The terminus of the railroad proper is in Jersey City, N. J. The company are there engaged in the construction of an immense passenger depot, which when completed, it is claimed, will be the largest structure of the kind in the country. Up to the present time but a very small portion has been erected. A high level area for the floor has been established by filling in, the sides the floor has been established by flaid up with old sleepers in crib-work. Brick being laid up with old sleepers in crib-work. Brick
foundations for the great frames are completed, and foundations for the great frames are complet
the bases of many of the frames are in place.
The generdl plan of the depot involves the roofing of a clear area of 256 by 600 feet with metal and glass, carried by twenty-two arched trusses. These are arranged in pairs, the members of each pair being 14 feet 6 inches apart, and 43 feet 6 inches intervening between each pair. This gives a total of 58 feet from the center line of one pair of trusses to the center line of the next pair. These trusses, with a clear span of over 250 feet, will rise 90 feet from the ground level, and the structure rise 90 feet from the ground level, and the structure
they support wift be surmounted by a ventilating lan-
platform. Small cranes are set up on the hips and ridge to raise the pieces of the trusses. The hoisting is done by portable hoisting engines standing on the ground. The scaffold is 234 feet wide, 60 feet deep, and 84 feet high. Thus it is deep enough to include three trusses. When these have been set up, the hoisting cranes are taken down and the scaffold is shifted a distance of 58 feet, bringing it into position for the erection of three more trusses. It is moved by the hoisting engines. It is found that it moves very quietly, without oscillation, and without much strain. In one case, when the wheels were unskidded, the great structure moved a couple of feet under the influence of the wind alone.

The timbers are generally 12 by 14 inches and 12 by 12 inches, of Oregon pine. Some of them are 80 feet long. There is only one spliced timber in the whole structure. There are about 120,000 feet of timber in it, costing $\$ 40$ per thousand. The whole cost is put a $\$ 8,000$. The total weight is in the neighborhood of 400,000 pounds. The work is being executed by the Pennsylvania Railroad. It is under the superintend ence of Mr. A. Brann.
re normal, he does nothing. Directly a false soundwhich is very distinct from the normal sound-is heard, he instantly signals for the spot to be marked. By this means he is able not only to detect a flaw, but to localize it."
Mortality from Snakes and Wild Beasts in India.
The latest official statistics on the subject show that in 1882, 22,970 persons were killed in India by snakes and wild beasts, as well as 76,271 cattle. Of the former number, 20,571 deaths were due to snake bites, 975 to tigers, 184 to leopards, 139 to wolves, 110 to bears, 57 to elephants, and the remainder to other animals (scorpions, dogs, foxes, crocodiles, lizards, wild boars, etc.) The curious feature of the figures is that, in spite of all the efforts made to destroy snakes and other ani mals, and the sums paid as rewards for this purpose, the mortality both of persons and cattle is increasing. It is suggested that the most effective method will be to destroy the cover for snakes near the villages, and district officers are accordingly ordered to see that this is done, while the local governments are left to decide

ERECTING THE GREAT TRUSSES FOR THE DEPOT OF THE PENNSYLVANIA RAILROAD, AT JERSEY CITY.
tern or clear story 26 feet high. The bases of the trusses rest on eight steel rollers at each end, and these bases are connected by a tie rod or extension member made of 12 inch I-beams, spliced end to end. These extend clear across the depot, under the level of the tracks.
The depot will provide eight outbound and four inbound tracks, with wide passenger platforms between.
For erecting the arched trusses a traveling scaffold has been constructed, which is illustrated in the cuts. It is carried by twelve railroad car trucks, running upon six tracks. A 12 by 14 inch beam, 60 feet long, is carried by each pair of trucks, running on the same track. An iron plate resting on the truck bolster receives the end of the beam, which is prevented from shifting, if it had such a disposition, by dowels. Into the end of each of these stringpieces a vertical member, 12 by 14 inches, and a diagonal member of similar size are mortised. There are no intermediate supports. Upon the twelve upright and twelve diagonal members thus provided the arched or hip roof top of the scaffold rests. The general construction is shown clearly in the cuts. The timbers are bolted together and braced diagonally, with an entire absence of tie rods. Ladders are fixed for ascending to the first hip of the roof. At a number of places going up the slopes of the roof, cross slats are nailed to act as ladders. Two inch planking is distributed over the roof, so as to provide a good working

As a standard of comparison, the great train room of the Grand Central Depot in New York may be taken.
This is 652 feet long by 199 feet 2 inches wide, and 94 feet high, and is similar to the Pennsylvania Railroad depot, being covered by a roof carried on arched trusses.

The schiseophone.

London Iron, noting that the importance, both in mechanical and civil engineering construction, of having inetal free from internal flaws has always been recognized, and the difficulty of detecting them as well, records an approach to a solution of this difficulty by means of the schiseophone, which is the invention of Captain De Place, of Paris. "This apparatus consists of a small pneumatic tapper worked by the hand, and with which the piece of steel or iron to be tested is tapped all over. Connected with the tapper is a telephone with a microphone interposed in the circuit. Two operators are required, one to apply the tapper and the other to listen through the telephone to the sounds produced. These operators, who are in elec trical communication, are in separate apartments, so that the direct sounds of the taps may not disturb the
listener, whose province it is to detect flaws. In applying the system one operator places the telephone to his ear, and so long as the sounds produced by the taps
for themselves whether the reward system is to be continued or not. The provinces most seriously affected are Bengal, Oudh, and the Northwestern Provinces.

The Distances of the Stars.

It is quite a familiar illustration to represent the distance of the stars in terms of the light-year, but it has not been noticed that the same figures which express in years the time light occupies in reaching the earth from a star will also express in miles the distance of the star upon a scale of the radius vector of the terres trial orbit to the inch. The illustration appears useful, as it gives, perhaps, a more distinct idea of the isolation of the solar system in space than can be other wise obtained, and does not introduce the question of time into the measurement of distance. Thus if the annual parallax of 61 Cygni is assumed to be $0^{\prime \prime} .434$, which is probably very nearly correct, it will take $71 / 2$ ($7 \cdot 464$) years for its light to reach the earth, and $71 / 2$ $(7 \cdot 499)$ miles will represent the distance of this star on a scale that gives one inch to the distance of the sun from the earth.-John I. Plummer, Nature.

The United States has a mile of railway for each 400 of population and each 22 miles of area, while the balance of the world has a wile for each 7,500 of population and 227 wiles of area.

The Great Fire in Rome, A. D. 64.
It has for centuries been commonly understood that Rome was set on fire and burned by the Emperor Nero, in the year 64, either through brutal malice or drunken incapacity and indifference. Another account of the matter has lately been given, as the result of the recent investigations of Lanciani, an Italian author, as follows: Nero desired to make many changes in the streets of Rome by increasing their width and making many of them more direct, and also to introduce many improve ments by reconstructing public buildings. His efforts in this direction were met by an opposition from property owners, and were also embarrassed by the fact that the city abounded in temples, altars and shrines which were inviolate.
'The emperor directed two architects, Severus and Celar, to prepare plans for the rearrangement of streets straight lines and right angles as the hilly configura tion would render feasible. Numerous public squares were laid out, and a system of sewers planned. Regulations for buildings were prepared, in which it was provided that the height of houses should not exceed double the width of the street, that each house should be completely cut off from the adjoining buildings, that each house should have a portico in front, and that wood ceilings should be excluded from the first stories of buildings. Tents and booths were secretly prepared, and vessels were sent to various Medi terranean ports after grain; with orders to rendezvous at the delta of the Tiber on a certain date. In accordance with his plan the city was fired in numerous places, and of the fourteen wards, three were entirely
destroyed and seven burned in great part. The destroyed and seven burned in great part. The
crowds driven out of their homes found the booths in the outskirts of the city ready for them. The grainladen vessels appeared in time, and the townspeople were fed and housed during the rebuilding; the whole plan having been carried into effect without exposure, famine, or loss of life, although the population of the city at the time was very large.

Something about Thermometers.

The aperture in the tube of a thermometer is smaller than the finest hair. And though it appears to be round, it is not, for if it were, the mercury could not be easily seen. It is, therefore, made flat, and then the glass magnifies it so that it seems to be quite large. To bring it out still more distinctly, a maker of Boston re cently conceived the idea of backing the tube with a thin film of white sizing. This device is now generally adopted by the foreign makers.
Mercury is generally used in thermometers because it is more regular in its contraction and expansion. It is indeed impossible to make a spirit thermometer that will be as trustworthy as one in which mercury is used. In a mercurial thermometer the degree marks are al the same distance apart, because the expansion unde all conditions is uniform. But in a spirit thermometer the degrees are wider apart at the top, because the ex pansion increases at a greater ratio after a certain temperature is reached. Though not so trustworthy, spirit thermometers are necessary, as mercury freeze at 40 degrees below zero. Spirits of wine is generally used, and is colored red, so that it will be more visibls to the eye.

In a correct thermometer, the scale is graduated to the requirements of the tube to which it is fitted, so that every correct thermometer must have a special scale of its own. That is to say, it wouldn't do to put the tube of one thermometer in the frame of another. Of course, in the very cheap grades of thermometers such accurate adjustments are not made, and therefore their records are only approximately correct. The best thermometer tube made will cost about $\$ 5$; but a thermometer may be made to cost almost any price, according to the way in which it is mounted.

As every one knows, the Fahrenheit scale is that most commonly used in this country. Fahrenheit arbitrarily assumed a limit of cold which he termed zero. This makes the freezing point 32 degrees
above zero and the boiling point 212 degrees above zero. As a matter of fact, however, in northern latitudes the temperature in winter frequently falls below the zero point, so that there is no scientific reason why the zero point in the Fahrenheit scale should be where it is. A much more scientific scale is that known as the centigrade, which marks the point at which water freezes as zero, and divides the space between that and the point at which water boils into one hundred degrees. In the Reaumur scale zero marks the freezing point, and eighty above zero the boiling point. Many self-registering thermometers are now used. These instruments mark the highest or lowest temperature reached, as the case may be, so that one may return at night feeling assured that the weather can play no pranks without his learning of them.

In the stables of the Adams Express Company, Bos ton, a five horse electric motor operates two machines for grooming horses. With the new machines two men can groom a horse in five minutes.

The Science of old Age.

Old age has its special dangers and its special safety with regard to disease. For instance, whereas in a child the temperature goes up on the slightest provocation, in old age it can hardly be moved at all. The aged body is not, as a rule, prone to any acute disease. If a person passes eighty, it is rare for him to be seized with any special malady. In injuries such as fractures, though from the lightness and brittleness of the bones they are easily met with, they are repaired solidly and quickly, even in centenarians. Slight shocks cause severe depression, but greater injuries are surmounted, and surprising recoveries made from severe maladies. Wounds and ulcers often heal quicker than in the young; the aged recover from attacks of congestion paralysis, apoplexy, pneumonia, erysipelas, and other
affections in a surprising way. Diseases, as we have affections in a surprising way. Diseases, as we have said, often pass them by. A man may live to one hun dred in a house in which he had typhoid fever himself and in which many of his children and grandchildren have since died from it. It is probable these favorable results are due to the long time the organs have worked
unitedly and helped each other, like old soldiers who pull well together and bear reverses under which younger troops would succumb. There is, on the other hand, a tendency in old age for slight diseases to become chronic. Now, as to the care of old age, the chief points are moderate and digestible food, sufficient warmth, and even, quiet life. The chief of the three is the food, or fuel for the lamp of life. While all fixed dieting is bad, where it can possibly be avoided, a few hints can be given that may prove of value. The older a person is after fifty, the less food he requires. Luigi Cornaro, who lived to one hundred, though of a eeble constitution, took 12 ounces of solid food and 14 ounces of fluid daily during the latter part of his life ; and his most severe illness was caused by his inreasing his allowance, through the continual entrea ties of his friends. Very little proteid or animal food is required, and though in many respects false teeth are a great boon to the aged, they may lead to too great a consumption of animal food. It is not the amount of coals we put in a grate that warms the room, but the amount that can be burnt; and the great point is to avoid choking the digestive and excretory organs with xcess of food. The food of the nursery is the best in old age. Bread and milk and honey is a capital diet. Milk grees with nearly all. Hot milk with a little Mellin's ood forms an admirable drink at night, and can be Fruit is whol a hot water jug covered with a cozy as cream or fresh butter. Warm food is very suitable. Soup enriched with cream or marrow is light and nourishing. All meals should be regular, and all excesses avoided. Of 800 persons over eighty, 60 per cent were moderate eaters, 30 per cent small, and only 10 per cent large. If weight is being gained, the diet should be decreased. In addition to the after-dinner nap as years creep on, a doze after breakfast and before dinner is often helpful. As to clothing, it should be both warm and light. Fur is an admirable material The underclothing should be of wool. A sealskin waistcoat is useful, and the feet and hands should be well and warmly clothed. And eider down quilt on the bed, which should be warmed in winter, is a good cover ing. No aged person should be suffered to get cold in bed. Two A. M. is the hour when most deaths take place, when the temperature of the body is lowest and
its powers feeblest. All habits of old people should be espected, and not lightly altered. Whatever excites exhaustion should be forbidden. Early rising is thereore bad. Drinking hard water is not good, as it ends to hasten the calcareous changes in the body. Certain common errors in the care of the aged may be here pointed out; some we have already touched on. 1. That the aged require rich and very nourishing diet.
2. That early rising is good for them.
3. That cold baths invigorate them; whereas they are fraught with imminent danger, and are often atal.
4. That continual medicines and dinner pills are needed to digest the food ; whereas, instead, less should e eaten.
5. That the rooms should be hot; whereas they should be cool, but not cold- 65 degrees to 70 degrees 6. That a fixed diet should be rigidly adhered to whereas variety is often essential.
Old age is of two sorts: that which is natural, and that which is prematurely acquired in youth; and it need hardly be observed that it is only of the former variety we now speak. Self-denial often requires to be practiced by the aged in many ways, though not arbitrarily. All known weak points in the constitution should be jealously watched. No care as a rule urrounds the aged such as guards the young, because they are not in many ways the same objects of interest But this is not as it should be, nor is it consistent with the Christian profession. In animals, death when it comes is, as a rule, swift. There is, with the vast ma-
jority, no old age and debility suffered among them. No long wasting or disease or slow tumors embitter their lives; they are killed by their fellows when their
powers fail, and are thus delivered from all these slow tortures by one sharp stroke. This apparent cruelty of nature is thus a merciful provision for those beings who know not the meaning of sympathy. In early ages and in savage life it was the same with man. The skulls found in the gravel beds are all full of teeth, as of those who died early. Now, in advanced civilization, love and care prolong life to a great age. This is not an unmixed good. Almost the very existence of low decay and long disease has been brought about by the love and care that distinguish humanity. Hence t is a peculiarly noble and Christian work to lessen the sufferings that in a sense our own care has made possible ; and, as far as we are able, to make old age a period of serene sunshine and an unmixed blessing.Leisure Hour.

Preparing for the World's Fair at Chicago.
A ground plan for the World's Fair buildings has been adopted provisionally, according to which the main structures, twelve in number, will cover 74 acres. The numerous annexes will, it is thought, occupy about 37 acres more. The distribution of space is as follows :

Department.			
Agriculture...........	93/2	10	19\%
Horticulture..	$81 / 2$		$81 / 2$
${ }^{\text {Fisheries. }}$	${ }_{6}^{3}$..	${ }_{6}$
Machinery............................	$111 / 2$	7	1815
Transportation....	7	1034	1734
Manufactures............................ Liberal arts......	221/8	9	31122
Ethnology.......................). ${ }_{\text {I }}$	6		
Electricity			
Totals................	74	3634	11034

The live stock exhibit is to be placed at the south nd of the park, where 94 acres are reserved for it. In addition to this, twenty acres are devoted to the government. At the north end of the park 90 to 100 cres more are avaiable for State headquarters and numerous purposes not yet defined.

Progress of the American Tin Plate Industry
We have received from Messrs. Norton \& Bros. a specimen of their tin cans made of American tin plates, the manufacture of which they have lately commenced. These cans are made and soldered by machinery. The ornamental labels are printed in colors directly upon the tin and baked upon the same This firm alone paid over one million of dollars in 1890 or English tin plates. They expect soon to discon tinue the importation of the foreign article, as they have nearly finished a complete Siemens steel furnace and rolling mill at Maywood, and will soon make their own teel plates entirely from domestic material and with American labor. The addition of a furnace and rolling mill to the industries of Maywood will greatly benefit the place. There has been an advance in England of the price of tin plates, and the cost here is now $\$ 5.50$ per box, whereas in July last the English prices were 4.50 per box. Messrs. Norton, however, believe these prices cannot long be maintained in the face of the active progress that is being made in this country to establish tin industries. In fact, they are now offering in cans at $\$ 2$ per hundred which last summer wer selling at $\$ 3$ per hundred in Baltimore.

The Home of Influenza

Professor Tessier, of the medical faculty of Lyons, has returned from Russia, whither he was sent last March to take evidence upon the course of influenza here, and the various conditions of its evolution. He ound, according to the Medical Record, that influenza s a growth of Russian soil, and, when not a raging malady, is a smouldering one. The way the people ive in winter, locked up in heated houses; the flatness of the soil, its consequent bad drainage, and univer sally sodden condition when the April thaw begins the filthiness of the farm yards, the village streets, and the rivers, which become suddenly swollen, and on falling leave a putrid mud behind-all conduce to make influenza endemic. Its microbe is, in fact, to be found in this mud. Dr. Tessier calls it a strepto bacilus. What is peculiar in this disease is the alliance with this bacillus of pneumococcus, which also lives in Russian marshes, river mud, and village pools.

Bering, not Behring

When the czar Peter the Great determined to send out an exploring expedition to ascertain whether Asia and America were united by land, he selected to lead this expedition Captain Commander Ivan Ivanovich Bering. Bering was the son of Jonas Svendsen by his second wife, Anne Pedersdatter Bering, and was born t Horsens, in Jutland, in the summer of 1681. All the Russian and Danish records agree as to the spelling o the family name; both in Danish and in Russian it i Bering. His autograph is always written Bering.

New British War Ship

The Pique, recently launched, is one of the protected second-class twin-screw cruisers provided for by the Naval Defense Act of last year, and is the first of three of the same class that Palmer \& Co. are at present bnilding for her Majesty's government. Her dimensions are as follows: Length between perpendiculars, 300 feet; breadth extreme, 43 feet 8 inches; depth moulded, 22 feet 9 inches; displacement, 3,600 tons on a mean draught of 17 feet 6 inches ; I. H. P., 9,000 ; speed, 20 knots. The vessel has two funnels and two pole wasts, with a light fore and aft rig. The hull throughout is built of steel, and the bottom of the ship is out is built of steel, and the bottom of the ship is
sheathed with teak $31 / 2$ inches in thickness to 2 feet above the water line. The stem, steru post, rudder, and shaft brackets are of phosphor bronze. There is a steel protective deck, which extends the whole length of the vessel. The transverse section of this deck is in the form of a flat arch, the crown of which rises 1 foot above the water line at center of vessel, and slopes down toward the sides to a point 4 feet below t'ze load line. The thickness on the sloping part is 2 inches, and 1 inch on the crown, where are placed under the protective deck the engines and boilers, magazines, steering gear, and other vital parts of the ship. Vertical engines are adopted in the Pique, and, in order to insure protection to the cylinders which project above the projective deck, a belt of armor of solid steel 5 inches in thickness, with 7 inches of teak backing, is fitted round the engine hatchways, between the protective and upper decks. The vessel is divided into a large number of water-tight compartments, and has a double bottom the full extent of engine and boiler space, the continuity of which is carried forward and space, the continuity of which is carried forward and aft by the water-tight fla
shell rooms, and store rooms of the ship. The bunkers are placed along side the engines and boilers, and extend to the up per deck. There are two per deck. There are two separate engine and boiler ooms
The armament consist of two 6 inch breech-loading guns, one mounted on the poop and the other on the forecastle, both placed on the middle line; six $4{ }^{17}$ iach quick-firing $\mathrm{g} \mathrm{un}_{\mathrm{s}}$, three on each broadside ight six-pounder quick eight six-pounder quick firing guns, one three pounder gun, and four five barrel Nordenfelt guns mounted on suitable stations along the sides of the vessel. A nine-pounder gun for boat and field purposes is also secured on deck. In addition to this, four torpodo tubes are fit ted-one forward, one aft ed-one forward, one aft, and one on each broadside. For controlling the ship in action a conning tower of steel 3 inches thick is fitted on the aft end of the forecastle, inside of which the various telegraph instruments, steering wheel, voice pipes, etc., are placed.
A complete installation of electric light is fitted, including three powerful search lights. The crew numbers 250 hands all told. The propelling machinery consists of two sets of vertical triple expansion engines, having cylinders $331 / 2$ inch, 49 inch, 74 inch, and 39 inch stroke. The boilers are five in number. The close stoke hole system of forced draught is introduced, each stoke hole being fitted with two powerful fans worked by separate engines for the supply of air. The coal supply on 17 feet 6 inches draught is 400 tons.
The solid old ironclad Thunderer, which has just been fitted by Messrs. Maudslay, Sons \& Field, of Lambeth, with new triple expansion engines of 7,000 horse power, and is now on the eve of undergoing her trials, has received the first four specimens of a gun from which great things are expected.
The new guns, two of which are mounted in each turret-and the turrets are clothed with 14 inch armor plates, which, though only of old fashioned wrought iron, would stand a great deal of hammering-are of 10 inches caliber and 29 tons weight. The total length is 26 feet 10 inches, the projectile weighs 500 pounds, and the full charge of powder is, as is now usual, just half that weight. At a range of 1,000 yards it is calculated to pierce 21 inches of wrought iron plate, while the 12 inch 45 ton gun is only credited with power to perforate a plate thinner by four-tenths of an inch. Besides the Thunderer, the Devastation and the two new second-class battleships, Barfleur and Centhe two new second-class battleships, Barfieur and Cen-
turion, are all to be armed with a quartet each of these weapons. They are the heaviest guns yet constructed to be worked by hand power, and it is probable that in their case the extreme limit of size and weight has been reached in this direction. They are mounted on ordinary Vavasseur slides with hydraulic buffers for
taking the recoil. The trunnions are accurately balanced on knife edge bearings, but an arrangement is fitted whereby the shock of the gun on the trunnions -should it be fired with sufficient elevation to cause a downward thrust on the excessively delicate knife edge bearings-is transferred to the broad main bearings themselves. This plan facilitates elevating or depressing the gun. The training is done by causing the turrets to revolve, a double set of racks or toothed wheels being fitted round the base of each turret, into which a vertical shaft with pinion is geared. This shaft is worked by a steam engine well down below out of the reach of shot. The turret is also capable of being revolved by hand gear in the event of the turret-turning engine being disabled, but the operation would naturally be slow.

INVENTION IN 1889 A. D. VS. INVENTION B. C. At the railway stations, ferry houses, and even upon the street corners, there may be found in almost every city and village in the United States automatic vending machines, which, for a zickel, or more or less, will deliver the various goods which they are adapted to sell. The purchaser may procure a newspaper and a cigar to smoke, or, if averse to the use of the weed, he may secure a tablet of chewing gum or a package of sweets. If entertainment is desired, it may be found in the "nickel in the slot" phonograph.
In Europe and America, machines of this class are provided for dealing out potable liquors; bouquets are also furnished in a similar way; and if you desire to know how much you have increased in weight since yesterday, all that need be done is to mount the platform of the nickel in the slot scales, and drop in your
thousand years ago, when a worshiper was about to enter the temple, he sprinkled himself with lustral water, taken from a vase near the entrance. The priests made the distribution of holy water a source of revenue by the employment of the automatic vending machine which is illustrated in Fig. 1. This apparatus would not release a single drop of the purifying liquid until coin to the amount required had been deposited in the vase.
A comparison of the ancient lustral water vase and the modern perfumery vending machine will show that they are substantially alike. The ancient machine has a lever, \mathbf{O}, fulcrumed in the standard, \mathbf{N}, and connected with the valve in the reservoir, H. The lever is furnished with the pan, R, for receiving the coins. dropped through the slot, A, at the top of the vase. An enlarged view of the valve belonging to the vase is shown at the left of the engraving.
The mechanisun is almost identical with that shown in the modern device, illustrated in Fig. 2 ; in fact, this ancient vase described by Heron, more than two thousand years ago, is the prototype of all modern automatic vending machines, and simply serves as another proof of the truth of the saying "There is nothing new under the sun."
It is a curious fact that this ancient invention escaped the notice of the Patent Office until long after patents were granted for the earlier automatic vending machines. It was only a comparatively short time ago that the Patent Office began to cite the vase of Heron as a reference. It was discovered in an ancient work on natural philosophy, and it is a matter of considerable interest to us now to know that this device was well known to the Patent Office during the middle of this century. The vase of Heron is illustrated and described in a work on hydraulics and mechanics published in 1850, by Thomas Ewbank, who was at that time Commissioner of Patents.

dentity by the Thumb.

At a recent meeting of the Anthropological Institute, Mr. Francis Galton F.R.S., exhibited a large number of impressions of the bulbs of the thumb and fingers of human hands, showing the curves of the capillary ridges on the skin. These impressions are an unfailing mark of the identity of a person, since they do not vary from youth to age, and are dif ferent in different individuals. There is a statement that the Chinese-who seem to be credited with every new discovery-had used thumb impressions as used thumb impressions as
wents in this line is the automatic photographic apparatus, which takes your picture for a nickel, while you wait.
The craze has even gone so far as to apply the principle to the distribution of perfumery. In the railway stations and ferry houses may be found machines which, for a penny, will dole out a drop or two of liquid which passes for perfumery, and which, in many cases, serves as a thin mask for bodily uncleanliness.
These various devices, and many others which we might mention, are regarded as very clever inventions, and have certainly proved successful in many cases in pecuniary sense.
The last automatic vending machine alluded to is shown in Fig. 2. The perfume reservoir is located in the upper portion of the vase; the tube communicating with the lower part of the reservoir extends through the side of the vase, and is closed at its upper end by a valve attached to one end of the lever, 0 . The other end of the lever, 0 , is connected by a rod with the lever, E, the longer arm of this lever being provided with a pan, R, for receiving coin, while the shorter arm of the lever is furnished with a weight for counterbalancing the pan and closing the valve. A curved piece of metal is arranged concentric with the path of the pan, R, and serves to retain the coin dropped into it through the slot in the top of the vase until the pan, R, is carried down beyond the end of the curved plate, when the coin is discharged into the lower part of the vase ; the counterweight on the short arm of the lever then returns the lever to the point of starting, and closes the valve, thus stopping the flow of the perfume.

This very clever device was patented by Mr. Lewis C. Noble, of Boston, Mass., on November 19, 1889 Our illustration is prepared directly from the patent drawings. This and other machines for analogous purposes are regarded as the peculiar product of our inventive age, but in turning back the pages of history
proofs of identity for a long time, but Mr. Galton pro nounced it to be an egregious error. Impressions
of the thumb formed, indeed, a kind of oath or signature among the Chinese, but nothing more. Sir W. J. Herschell, however, when in the Civil Service of India, introduced the practice of imprinting finger marks as a check on personation. Mr. Galton's impressions were taken from over 2,000 persons by spreading a thin film of printers' ink on a plate of glass, then pressing the thumb or finger carefully on the plate to ink the papillary ridges, and afterward printing the latter on a sheet of white paper. Typical forms can be discerned and traced, of which the individual forms are mere varieties. Wide departures from the typical form are very rare.

Our Navy to Aid the Exposition.

Several army and navy officers who have been detailed as special commissioners to carry invitations from the government of the United States to the other American republics and the West Indian colonies have left for their destinations. It will be part of their duties, Bradstreet's says, to explain the plan and scope of the exhibition, to secure the appointment of commissioners by the several governments, to give infor mation regarding the regulations for foreign exhibitors and for the admission of goods through the custom house, and to secure characteristic exhibits. The commissioners are particularly instructed to secure exhibits for a commercial section of the Latin-American Department, for the information and instruction of the merchants and manufacturers of the United States, showing the various classes of merchandise consumed and desired by the people of the countries to which they are assigned; the patterns and designs most preferred ; the best methods of preparing and packing thew; practical illustrations of the obstacles in the way of extending trade, and the advantages that are secured and enjoyed by European merchants in competition with those of the United States.

How Sugar is Made in Cuba

The Soledad, Cuba, sugar plantation has the reputation of being the best managed sugar plantation in Cuba. It produced in 1890, 12,000,000 pounds of sugar, and this year it will probably send to market 14,000 , 000 pounds. Other plantations largely exceed it in cultivated area and mechanical resources, the Consuelo having a product of $40,000,000$ pounds, but Soledad is conducted on scientific principles and with American thoroughness, system and organization, so that there is the greatest saving in the cost of production and the largest margin for profit on the investment. All the improved machinery is here; every time-saving and labor-dispensing device is employed, and the maximum amount of sugar is obtained from the cane at the lowest possible cost. Soledad is largely owned by Mr. Atkins, of Boston, but Mr. Murray, the manager, holds a large interest in it. H. J. Abbott, who wasfor many years a United States government expert and chemist, tions here and in Santo Domingo, and in supplying new and improved machinery for them, pronounces Soledad incomparably the best conducted sugar estate in the West Indies.
At Soledad the cane is carried to the works by long trains running on narrow gauge railways through the estatc. It is unloaded from the cars by negroes and thrown upon a broad carrier traveling up a long incline to the rollers of the first mill. As many as fifteen men When it reaches the first mill, it is ground by rollers When it reaches the first mill, it is ground by rollers
weighing fifteen tons and set close together. The cane weighing fifteen tons and set close together. The cane
is broken up and about 60 per cent of the liquor which it contains is drawn off underneath the mill. Under the old process there was only one grinding, and much of the liquor was wasted. Now the cane is ground twice and an additional 15 per cent of the juice is obtained. Streams of liquor from the vats of the two mills unite and pass through a strainer, one workman being employed in raking off floating refuse and preventing obstructions, The liquor is then ready to be pumped into the boiling works.
The refuse of the cane after the two grindings is the only fuel used in the works. It is carried by moving conductors to the furnaces and dumped automatically, being dried by the intense heat and consumed as rapidly as it is fed. Wood was used as fuel when the steam engine was introduced in sugar works, and subsequently bagasse, or refuse cane, was put with it. Boilers have been invented to facilitate the einploy-
ment of bagasse as fuel. Those used here are the Por-
cupine boilers of the Stillwater pattern. The cane, when fed to the conductors, serves to keep all the com plex machinery of the works in operation; the broken and crushed fragments of bagasse are carried to the furnaces and furnish the power by which not only the grinding but also the pumping and boiling are done; all that is not juice, but sheer waste, goes into the pro duction of force by which the mills are kept grinding and the liquor clarified, boiled and crystallized into sugar.
From the grinding mill the cane juice is pumped into defecators, or large tanks, in the upper story of the boil ing works. In these tanks it is treated with lime, which neutralizes the acid. The albumen coagulates when the cells are brokeu by steam and brought to the boiling point. From the defecators the liquid is pumped into the first of three great boilers, or vacuum pans. In order that boiling may take place at low temperatures the air in the pans is exhausted by steam pumps. In the first boiler the temperature is 200 degrees, in the second 180 degrees, and in the third 150 degrees, with corresponding vacuums in each, the heat from the boiling liquor being an agency in the process. This is known as the triple effect of boiling. The liquor is boiled to a sirup containing 50 per cent of water and 50 per cent of sugar. The sugar crystallizes in two large strike pans, where the most delicate work of the fac tory is done. The most expert operatives are in charge of the strike pans, from which the contents are con stantly sampled and tested in the laboratory, conduct ed here by a most intelligent American, J. G. Lumelius The sugar is rapidly cooled and carried into a series of centrifugals. In these the sugar is separated from the molasses by the centrifugal process. As the content revolve about the center, the sugar gradually begins to whiten and the molasses is expelled through holes in the sides. When the process is completed, 85 per cent is sugar and 15 per cent molasses as the result of two boilings. The sugar is collected by machinery, carried to the bagging and weighing rooms, and transported by railroad and steam lighter to the wharves of Cien fuegos for shipment to New York.
The works are in operation at Soiedad day and night from December to May, and are then closed until the next grinding season. This is the period when the cane is ripe, and when the juice must be expressed with the least possible delay. Cane that is left too long in the field deteriorates in quality and yields less juices. The cane bears one crop a year, and stands for twelve years. When it is ready for harvest it is cut
ramway cars. The next season the cornlike stalk grows to its full height, and is ready to be cut again and to have its juice expressed. The grinding season a short one, and there is great danger lest the can be spoiled by heat or rain. The most intelligent su pervision is required in the fields, and the most rapid transportation of the cane to the mills. Both of these conditions are supplied at Soledad. The cane is cut when it is ripe and carried by train to the mills, wher it is converted into sugar in a single day. $-N$. \quad. it is con
Tribune.

The Electric Current

There are but few people who ever stop to think o he great benefits which they enjoy in this world, say Modern Light and Heat. We are all too apt to think our own particular case is a hard one, without realiz ing that no matter how badly off we are, we have a great many things for which we ought to be thankful. And there are few who realize that the electric current plays the important role that it does in our every-day ife. Our streets are lighted by electric lamps, which re discouragers of crime and wantonness and pro tectors of life and property ; we have our police signa and our fire alarm systems, to the latter of which we we a great deal more than is ordinarily realized. We all know to what great risks our property is always exposed from fire, and how great the need is that every precaution should be taken to secure its immediate ex tinguishment. For this purpose electricity has fur ished the most satisfactory solution of the problem Our cities are covered with a vast network of wires, ignal boxes are located at frequent intervals, from which, when need arises, the warning, and the ap proximate location of the fire is instantaneously trans witted to the places where the fire apparatus is located In this field the electric current, with human skill and inteligence, and the assistance of trained animals, ffords a protection which no other agent could do.

What Horses Die of

A New York horse life insurance company, insuring only sound and generally young animals, worth be tween $\$ 100$ and $\$ 400$ each, reports that, of 704 horse dying within the past five years. 183 died of colic, 77 of nflammation of the bowels, 74 of kidney trouble, 51 of pneumonia, 52 of sunstroke, 30 of pinkeye, 37 of lockjaw, 23 of broken legs, 12 of epizootic, 10 of heart disease, 4 of blind staggers, 9 killed by runaways, 4 were drowned, 2 were killed by lightning, 128 died of unknown diseases, and only 8 were burned.

RECENTLY PATENTED INVENTIONS.

Engineering.

Boiler.-Charles E. Marston, Dover, . H. This is a boiler designed to take up but little room, while presenting large heating surface and adapted to generate steam very rapidly, being composed of a series of tubes, each connected with the water supeach tube and opening into it near the top and bottom.
Alarm for Bollers. - Frank M Ashley, Brooklyn, N. Y. Connected at the top and
bottom with the boiler is a casing in which is a hori ontal cock communicating through a pipe with a alarm, there being an inclosed float attached to a rod
having at the top a valve working in a ecat in the in losed horizontal body of the cock, the constructio eing designed to obviate any sticking or failure of the

Electric Motor.-Williain M. Dresskell, Brainerd, Minn. Combined with the armature
coils :s an msulating disk carrying series of contact oints connected with the armature coils, two three med switch arms being placed on the armature shaft adapted to change the counections of the armature from eries to parallel or the reverse for currents of
different strength the motor being adapted for direct different strength, the motor being adapted for direct r alternating currents.

Railway Appliances.

Car Coupling.-Theodore M. Fisher and Alexander Slye, Mecca Mills, Ind. Pivoted in ngular head is a lever by ming from ent be raieed from either side of the car when the link is about to enter the drawhead, springs being arranged to
draw the lever downward and cause the pin to engage the link, the device being simple, stroug and inespen sive.
Cable Railway. - George W. Bowman, Denver, Col. By this invention two T-rails are
arranged alongside each other to form a cable channel, a swinging drawbar carrying a pilot wheel having a central position fitting between the rails and reduced
end portions resting on the rails, in combination with drums and a cable, the pilot wheel serving to steady the car and prevent the cable from being drawn out of the

Mechanical.

Saw Swage. - John Hanchett. Big Rapids, Mich. This is a device of simple and durable
construction, in which both ends of the anvil die may construction, in which both ends of the anvil die may
be used in swaging, and the die can be readily adjusted be used in swaging, and the die can be readily adjusted toward or from the swage die, whereby all wear on
the swage end can be readily taken up, and the die can be taken out at any time for dressing up, the device being well adapted for band saws, circular saws, etc.

SÁwing MACHine.-Benjamin E. and Anderson F. Harreld, Hallowell, Kansas. By this inmechanism and receive and hold the material, while a hinged supplemental frame carries the saws, and is
adapted to be elevated to allow the wood to be fed to the machine, which is especially a
wood into pieces of uniform length
Bevel.-Alfred M. Brown, Worcester, Mass. This is a tool for carpenters and stair builders, for obtaining a single or double bevel, and also to gauge
the length and breadth of the work or as a square, the various adjustments being conveniently and expedittously made.
Friction Clutch.-Clarence M. Car hub flange is, N. J. Combined with a pulley havin adapted for contact with the flange, there being a fixed sleeve which is engaged by a cam lever pivoted to the collar, and a shifting mechanism connected with the cam lever, whereby a pulley may be expeditiously and shaft.
Ticket Printing Machine -Gideon B. Massey, Mamaroneck, N. Y. (deceased, Sarah R. Massey and Stanley A. Bryant, administrators). This
is a machine specially designed to print railway tickets, is a machine specially designed to print railway tickets, plates, provides for the consecutive numbering of plates, provides for the consecutive numbering of
tickets sold, for the keeping of a record thereof and the printing of a corresponding report, giving the tickets sold to each line station, the machine being quickly and easily adjusted, and positive in its action.
Can Capping Machine. - Fernand Saunier, Nantes, France. This is a compact and simple machine, of low cost and economically operated, for use of solder or its equivalent, a perfectly air-tight connection being effected, the invention c.
construction and combination of parts.

Agricultural.

Pruning Implement. - John Siebel, Oskaloosa, Iowa. A suitable pole is provided with a removable stock carrying a sliding knife, the stock
having a toothed spur through which a shear-cutting blade may elide, with other novel features, designed to form a simple, compact implement, which may be of fectively operated with ease and rapidity to remove branches or small limbs without injury to the tree.
Fruit Picker's Ladder - Whiting Arnold, New York City. The ladder is pivoted upon a truck having a windlass, guide pulleys and cables,
whereby the ladder may be readily conveyed from tree whereby the ladder may be readily conveyed from tree
to tree and conveniently raised and held at any desired to tree and conveniently raised and held at any desired
inclination without resting aganst the boughs, the ladder being detachable, so that a longer or shorter
ladder may be used, and the pickes best advantage.

Insect Powder Distributer.-Andy M. Waddill M. Waddill, Jr. Thomastown. Ls. This invention
consists of a handed frame, with a powder box extend ing through and supported in the frame by springs, the device being specially designed to facilitate the dusting
of cotton or other plants to prevent ravages hy insects. of cotton or other plants to prevent ravages hy insects.

Shears.-Emil Krusius, Solingen, Ger many. By this invention a spring plate is inserted between the members of the shears, the pivot screw passng through an aperture in the plate, to maintain the
cutting edges of the blades in proper relation to each other, even when the blades become lcose on the Ice Cream Freezer. - J a mes M. O'Neall, Dallas, Texas. This freezer has a conical outer casing with a conical ice receptacie adapted to be conveniently revolved, the cream being taken up and frozen by contact with the revolving cone, from which it is readily removed by a spiral screw conveyer
Metal Clasps.-Gardner A. Watkins, Gardner, Mass. This invention relates to a device for assembling metal clasps and holding them in position for use in the process of coupling or splicing splints, cane, etc., in the manufacture of furniture and
other articles, and the invention provides means by other articles, and the invention provides means by
which the clasps may be automatically fed from the which the clasps may be autol.
receptacle in which they are held.
Hydraulic Beer Pump. - Joseph L. Shiring, Allegheny, Pa. This invention provides double.acid, the pump acting automatically to keep the air up to the standard pressure, means being provided whereby the action of the oppositely moving pistons shall be rendered positive, and they will always operate, irrespective of the muddy condition of the water.
Jewel Case. - Hinrich Grohbrugge, New York City. This case is open at one end, and has a spring at the bottom and a latch in one side wall, while a drawer is adapted to engage the spring and
latch, the locking mechanism being invisible, and a key latch, the locking mechanism being invisible, and a key Gate. - James W. Fisher, Palouse, Washington. This invention provides a novel construction and combination of parts whereby the gate may be conveniently and expeditiously raised when oc
casion may demand to swing inward and outward over any obstruction, such as drifted snow, etc, while it also any obstruction, such as effective spring latch.
Horseshoe.-Henry S. Briscoe, Morrisonville, Ill. This is a shoe to be attached to the
hoof without the use of nails, a curved clamping bar extending from the sides of the shoe over the hoof, with which is connected an adjustable locking bar extending upward from a lug on the toe of the shoe.
Calendar. - Nathan A. Wheeler
stationary numbers, and upon its face are horizontal o perpendicular slides, grooves, or ridges, to support a
slip indicating a day, month, or year, the face also having perforations or other provision for holding an indicator thereon, a particular form of frame being pro-
vided to encircle a date and prominently display it. vided to encircle a date and prominently display it.
Pencil Holder. - John S. Sha Durango, Col. This is a device to be applied to a slat frame, which is made with a longitudinal recess in which is pivoted a spring-actuated receptacle, forming a convenient pocket in which the pencil may be held
permitting its convenient insertion or removal.
Letter Box. - Francis Catudal and Elzear Drolet, Clyde, Kansas. This box has a drop lid
opening outwardly, an interior tray opening downwardly links connecting the lid and opay, a cam lever acting on the lid to open it, and a detent for the lever adapted to hold the lid open temporarily, the box being designed for use by merchants, etc., to receive mail or other matter and hold it safely until removed.
Cash Drawer and Recorder. - Wil liam Λ sshetor, Baltimore, Md. This is an improvement in that class of devices in which astrip of paper is caused to move under a partially glazed opening, and
the amount of the eale being first written upon the the amount of the sale being first written upon the
paper, the paper is fed forward under the glass as the paper, the paper is fed forward under the glass as the
drawer is opened to deposit the money, so that the record of the amount cannot be tampered with.
Lock.-Benjamin Edwards, New York City. This is a lock to which a key cannot be fitted unless the mechanism is exposed, thus preventing th lock from being skeletoned or picked, the lock beng
also constructed for a variety of keys, so that the key also constructed for a variety of keys, so that the key
of one lock will not fit another lock differing therefrom of one lock will not fit another lock differing therefrom in the slightest degree in any of its operative parts.
Sheathing Vessels. - Franklin Ewing, Jr., Atlantic Highlands, N. J. This invention Ewing, Jr., Atlantic Highlands, N. J. This invention
covers an apparatus for applying sheathing to hulls, comprising clamping plates or jaws to secure the apparatus to the beam, a lifting screw, and an arm carry ing a pressure screw at right angles to the lifting screw. the arm and pressure screw being adjustable to different positions. The invention is also applicable for joining the timbers of the hull, and otherwise faciltat
Ore WASHER. - Samuel C. McLana-
han and William F. Kirk, Hollidaysburg, Penn. This han and William F. Kırk, Hollidaysburg, Penn. This
nvention consists in the peculiar construction and arinvention consists in the peculiar construction and ar
rangement of the journals, journal bearings, and end plates of the washer box. whereby the renewal of the bearing surface, when worn, may be more easily effected, and also in the special construction of a flanged
iournal, a sleeve for the end of the ehaft, and stirring journal, a sleeve for the end
blades attached to the sleeve.
OIl Cup. - Charles H. Baker, New York City. This is a device designed more purticularly for wagon hubs, the exterior being screw-threaded to screw into the hub, while in the inner cap is a screw the feed aperture, and thus control the expply of oil to the axle.

Leak Detector for Pipes.-Andrew H. Brown, New York City. This invention relates to same inventor, by which the accumulating water actuates a valve so that an annunciator is sounced, the improvement providing for the continuoussounding of th alarm until the leak is repaired.
Heating and Ventilating Build 1NGs.-Donald Andrews, Lockport, N. Y. Air passages are, by this invention, arranged in the walls of the
building and connected at their lower ends with a fresh air passage led over coils of incased heating pipes, foul air discharge pipes being also arranged in the walls, and both passages being broken up by numerous smal
registers, to constantly remove vitiated air and supply registers, to co
pure heated air.

Ball Lock. -- William Boyrer, New York City. This is a device designed for use on pots
kettles, etc., to hold the handle off the hot body part and consists of a clamp adapted to clamp on one of the ears and a swinging arm pivoted on the clamp and adapted to engage the bail or handle.
Buckle Connection. - Anthony Biesen, Merrill, Iowa. For connecting a buckle and ends adapted to be bent parallel and clinched together, there beirig formed integral with the plate a loop or keeper for the free end of the strap, making a strong and cheap way for connecting a buckle and strap with
out doubling the strap and sewing or riveting it.
Horseshoe.-Thomas L. Tipton, Jeru salem, Ohio. This invention relates to what are styled "rolling horseshoes," used on the front feet of fast horses, and is made to turn both down and up at the
heel, with a slight bevel outward on top from the heel nails hack to the point or ends of the heel, to provid for the widening of the hoof's heel ends.
Nore.-Copies of any of the above patents will be send name of the patentee, title of invention, and date of this paper.

SCIENTIFIC AMERICAN

BUILDINGEDITION
FEBRUARY NUMBER. -(No. 64.)
TABLE OF CONTENTS.

1. Handsome plate in colors of an elegant residence on a cost of $\$ 12,000$ complete. Two perspective views, floor pians, etc.
2. Colored plate representing an attractive residence at Auburn Park, Chicago. Cost
plans, perspective elevation, etc.
3. Plans and perspective view of a carriage house
erected at South Orange, N. J., at a cost of $\$ 2.700$ complete. H. H. Holly, Esq., architect, New York.
4. A residence at South Orange, N. J. Cost $\$ 11,000$ complete. Perspective elevation, floor plans, etc Architect, H. H. Holly, New York
5. Hantiome residence of Gothic design at Germantown, Pa., erected for Mr. B. P. Wil
spective elevation and two floor plans.
6. Cottage in Sophia Avenue, Chicago, estimated cost 2,800. Floor plans and perspective elevation.
7. Perspective elevation and floor plans of a recently
erected cottage at Stratford, Conn. Cost $\$ 2,700$ erected cot
complete.
8. A colonial residence erected at South Orange, N. J. Yom plans by Rositter \& Wright, architects, Ne vation and two floor plans.
9. Cottage at Austin, Chicago. Estimated cost $\$ 3,700$. Floor plans, perspective view, etc.
10. Floor plans and perspective view of an elegan

A corner of a boudoir, designed by Stenhouse. Half page illustration from a colored drawing, which appe
exhibition last year.
12. A picturesque cottage of moderate cost at Austin Chicago. Two floor plans and perspective elev tion. Estimated cost $\$ 900$
13. Miscellaneous contents: Jarrah wood.-Biographical sketch of Henry Schliemann,the archæologist. belp to builders.- American stone fields.- How can iron pulleys be papered?-England's favor ite hard woods.-Floors.-Plaster.-Developments of construction.-Corrosion of zinc in contact with brick.-Etching upon glass.-Magnesia in cement. -Our last year's volume.-Improved woodworking machinery, illcatrated.-A novel calendar illustrated.-The Edson recording pressure couge -A new gasoline engine, illuttrated.-Univers file handle, illustrated.--The Dunning hot wate heater.-Improved conduits for electric wires, il lustrated. - A thoroughtly built parlor doo hanger, illustrated. - California fruit.-Labor aving appiances for the carpenter and builde illustrated.
The Scientific American Architects and Builders Edition is issued monthly. $\$ 2.50$ a year. Single copies,
25 cents. Forty large quarto pages, equal to about 25 cents. Forty large quarto pages, equal to about
two hundred ordinary book pages ; forming, practically, a large and splendid Magazine of architecTURE, richly adorned with elegant plates in colors and with fine engravinge, illustrating the most interesting examples of Modern Architectural Construction and allied subjects
The Fullness, Richness, Cheapness, and Convenience of this work have won for it the Largest Circulation
of any Architectural publication in the world. Sold by all newsdealers.

MUNN \& CO. Publiserre,
381 Broadway, New York

Business and Personal.
The charge for Insertion under thrs head is one Dollar a line ior each insertion: about eight words to a line
Advertisements must be received at molication adver earis us Thursday inoming to appearin in ext ispe.

For Sale-New and second hand iron-working mahinery. Prompt deliveryo W. P. Davis, Rochester, N.Y Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J For best hoisting engine. J.S. Mundy, Newark, N. J Best driere for grain, sand, clay, fertilizers, wet feed -
Best Ice and Refrigerating Machines made by Davi
Boyle, Chicago, ill. 155 machines in satisfactory use The Improve Hydraulic Jacks, Pus and Tube xpanders. R. Dudgeon, 24 Columbia St., New York. Power presses and dies. Also contractors for specia Screw machines, milling machines, and drill presses Garvin Mach. Co., Laight and Ca Send for 50 page free catalogue of best horse powerr
wood. circular and drag saws, and threshing machines to ood, circular and drag saws, and threshing machines
A. W. Gray's Sons, Middletown Springs, Vt., box 5 . "How to Keep Boilers Clean." Send your addre Billings' Double-acting Ratchet Drills. Drop Forginge bronze Forgings. Billings \& Spencer Co., Hartfora Bids wanted for the manufacture and introduction icholls' strap and buckle shield. Address Wiley

Emery Wheel Patent for Sale-Inventor having other
business. Tests have proven its superiority. Address Grit, P. O. box 733. New York.
Split Pulleys at low prices, and of same strength and Works. Drinker St.. Philladelphia. Pa. \& Son's Shafting For low prices on Iron Pipe, Valves, Gates, Fittings, Iron and Brass Castings, and Plumbers' Supplies, writ
A. \& W. S. Carr Co., 138 and 140 Centre St.. New York. The best book for electricians and beginners in elecBy mail, 84 ; Munn \& Co., publishers, 361 Broadway, N. Y. Barrel, Keg, and Hogshead Machinery. See adv. p. 30 For Sale or Lease-The right for U. S. and Cacada of urner in existence. It has been tested by experts. Ad Nevospaper Work and Adverti,ing for 1891. Ever hing a Manufacturer ought to do in this department a nd Press Agency. Benj. R. Western, proprietor, 111 Liberty Street. New York, In a systematic. business-like
manner. Our mutual benefitcombination rates, in which Il clients participate, are lower than any individual ad PT and other Books for sale by Munn \& Co.. 361 Broadwa New York. Free on application.

HINTS TO CORRESPONDENTS
Names and A ddress must accompany all letters,
or no attention will be paid thereto. This is for our
onf References to former articles or or answers should
give date of paper and page or number of question. Refrentes give date of paper and page or number of question.
In quiries not answere in resonable time ehould
quires some answers require not not will pear in mind that research, and,
though we endeavor to reply though we endeavor to reply to all either by. lette
or in this department. each must take his turn. or in this department. each must take his turn.
special Whrithentiformation on matters of
personal rather than general interest cannot be personal rather than general interest cannot be
expected without remunertion expected without remuneration.
scientific American supplements referred
to may be had at the office. Price 10 cents each to may be had at the office. Price 10 cents each.
Booss referred to promptly supplied on receipt of Minerals sent for examination should be distinctly
marked or.labeled.
(2827) Amateur asks : 1. What tools or instruments are needed in the finding or searching for minerals of any kind ? A. The daimond drill is used or prospecting on the large scale. A mineralogist for ield work needs a hammer and chisel. See our Supple-
MENT, Nos. 200 and 453.
2. Where is the nearest place Mont, look for minerals, in this vicinity ? That is for specimens for a collection. A. Bergen Hill: where any blasting is in progress is a good place. You will find most minerals in the metamorphic and primitive rocks. On Staten Island in the serpentine localities, good specimens are often found. See Supplement, Nos. 344, 349, and 363 . 3. What are the names and properties of fur inclosed minerals? A. No. 1 is slag from some
furnace or crucible. No. 2 is gypsum. No. 3 is agate. The U. S. Geological Survey may be addressed on the subject of mineral localities. Good works on mineralogy always give localities. Dana's " Mineralogy" 18 the sine qua non for American collectors. We can supply it for \$10. Dana's " Manual " and "Text Book" are 22 and $\$ 3.50$ respectively.
(2828) W. A. M. asks : At what height nust I cut a tree off, the height of which is 58 feet, so the hypotenuse of a righe perpendicular the base of which is 30 feet ? A. Let $x=$ altitude and $y=$ hypotenuse of triangle. Then by the conditions of the problem we have : $x+y=58$ (1) $y^{2}-x^{2}=30^{2}(2) \therefore x=58-y$.
Substituting this value of x in equation (2) we have $y^{2}-(58-y)^{2}=900$.

Reducing, $116 y=4284$
$y=36 \cdot 76$ feet
$x=2124$
the grouna.
(2829) J. G. asks: 1. Please say how
cables our Supplement, No. 747 . 2. How long is it
supposed to take after you telegraph the first word of a message before it is received, from the nearest point of this side of the Atlantic to the other 9 A. About three seconds is gi
tric impulse.
(2830) J. F. F. asks how horn comb manufacturers flatten or straighten cow horns, 80 that born in the way of bending is done by heat and presare. When bent or straightened hot and kept in shape antil cool, dampuess will have little or no effect on it. (2831) J. E. R. asks for the manufactur of what is known as celluloid collars and cuffs. A.
Cellulord collars and cuff are rolled, stamped or Cellulold collars and cuffs are rolled, stamped or the process are not published. A muslin backing may
he used to give grain. The rolls, etc., are kept hot by team, gas flane, or otherwise. The main portion is a sheet of celluloid charged with zinc oxide

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted

February 3, 1891.
AND EACH BEARING THAT DATE [See note at end of list about copies of these patents.]

Accumula
Acid phosphate. making, A.
A ricultur
Air brake, F. Lansberg
Alarm. See Fire alarm.
${ }_{\text {A nimal }}$
Apron. C. A. Fi
A tomizer, var
A wning brace, King \& Carr
Axles, machinery for shaping iron
Bag. See Striking bag. Tobacco bag.
Band cutter and feeder. F. B.
Bar.
Rasket. O. Jennings.
Battery. See Secondary battery.
Bearing, roll
Bearing. roller
Beili, pneu matio, G. F. Kiñ caid
Bicycle stand, E. N. Bowen...
ards. miniature, Co
ast furnaces. ${ }^{\text {ell }}$ and hod
Bobbin winding machine, J. w. Eise
Boiler. See Steam boill
ler pu
Book holder, B

Curtse Leter box. Musicail box. Signail box.

 Brace. Shoe A wnink brace.Srack.t. See curtain pole bracket.
Brake. See Air rake crake.
Branding apparatus, electric. W. Cannell.

Churn, N. Evinker.

Technology of Animal, Vegetable, and Mineral

Farsum Oilsulu Luancurns

SOAP AND CANDLES.

 HENRY CAREY BAIRD \& CO. INDUSTRIALPUBLISHERY,BOOSKRLLERS \& IMPORTERG
81O Walnut St., Philadelphia, Pa., U .S. A. the literature of
The Textile Industries just ready.

 HENRYCAREY BAIRD \& CO.,

$\underset{\sim}{410}$

 The Remington has set the copy for writin machines for 15 years. It is to-day the
Standard

NEw YORK BELTING AND PACKING CO. John H. Cheever, Treas. 15 PARK ROW, New York. OLDEST and LARGEST Manufacturers in the United States VULCANIEED RUBBER FABRICS
RUBBER BELTINC, Packing, and Hose.
Rubber Rubber Mats, Matting, and Stair Treads.
Rubber Pump Valves Bicycle Tires. Tu bing, Ten nis Soling.
UULCANITE EMKRY WHBELS. Rubber Sheets, Stripa, Saw Baids, stopple

THE SMITH PREMIER TYPEWRITER
INOTIC®.

TYPEWRITERS.

 Targest like estahisibment in the world Frist chines sold on monthly payments. Any Instru-
ment manufactured shipped, privilegetoexamine EXCHANGING ASPECALTY. Whotesexamine
to dealers. Ilustrated Catalo ues Free.

HE PENNA. DIAMOND DRILL \& MFG. CO BIRDSBORD, PA., Builders of High Cla Steam Engines. Diamond Drilling and Genera
Machinery. Flour Mill Rolls Ground and Grooved.

IDE AUTOMATIC ENGINES. TRACTION AND PORTABLE ENGINES

4After being on the Market Five Years The 4 A CME E Still Leads!
 Roceester machine tool woris, brown's Race, rochester, n. f.
and expects in the future as it has in the past, in adding improvement in adding improvements the true model of a
Typewriter.
Wyckoff, Seamans \& Benedict, 327 Broadway, New York.

PATENTED NOVELTIES

THE FREV, SHECKLER CO. BUCYORUS, 0 .
 Hewion ICUBATOR

 PARTES DESIRINQ MACHINERY A. A. sMITH, Leominster, Mass.

HARRISON CONVEYOR!

ICE and REFRIGERATING MACHINES

Experimental Science

OIL WELL SUPPLY CO. Ltd.

ICE-HOUSE AND REFRIGERATOR.

ELECTRO MOTOR. SIM PLE. HOW TO

A XMAS HEALTH GIFT

Is Bestor of Als. Circular $\mathrm{F}_{\text {Reg }}$.
Is Best or All. Circular
Books:
For

STEEL TYPE FOR TYPEWRITERS

 ON GAS ENGINES- - A VALUABLE

 PUBILCATIONS FOR 1891.
The prices of the diferent publications in the United
states, Canada, and Mexico are as follows. The Scientifc American (weekly one year
The scientict American supplement (weekly), one
 The Scientitc America, A rchitects and Builders
Edition (monthly), one year. . COMBINED RATES.
The Scientifc A merican and Supplement, . . 87.00 The Scientific A merican and Architects and Build-
ers Edition. The Scientifict American, Supplement, and Archi- 9.00
tects and Builerrat EEtition. Thas includes postage, wnich we pay. Remit express mones order, or draft to order of
MONN \& CO.. $\mathbf{3 6 1}$ Eroadway, New York.

 0 0 0

みฝDertisements．
IInside Paze，each insertion：：－：75 cents a line

Victor Bicycles！

Fur the season of＇9i we have ex－ tended our line to include Machine of many more styles and prices than heretofore．Having any interest in Wheels，you will surely want to see our Catalogue for＇91，which will be freely mailed on application．Ready in February．

OVERMAN WHEEL CO． Makers of VICTOR BICYCLEES，
BOSTON，WASHINGTON，DENVER，SAN FRANCISc
Ofice

THE COPYING PAD．－HOW TO MAKE

NEW KODAKS

we do the button Styles and Sizes all loaded with Transparent
Films． THE EASTMAN COMPANY，

LEFFEL
 TURBINE WATER

Machine－Molded Gearing． Shafting，Pulleys，and Hangers． Mixers and GeneralOutfit for Fertilizer Works
\qquad Robt．Poole \＆Son Co．，Baltimore，Md． MALEEABLE

The Motor of 19 tht Century
 r．For circulars．etc．，address Charter Gas Engine Co．
JAMES LEFFEL WATER WHEELS ENGINES，and BOILERS． 1尸S エコF尸エ \＆CO 110n Liberty Sireet New York City．

95 MILK ST．，BOSTON，MASS．
This Cowpany owns the Letters Patent granted to Alexander Graham Bell，March 7th，1876，No．174，465，and January 30th， 1877，No．186，787．
The transmission of Speech by all known forms of Electric Speaking Telephones in－ fringes the right secured to this Company by the above patents，and renders each individual user of telephones not furnish－ ed by it or its licensees responsible for such unlawful use，and all the consequences thereof，and liable to suit therefor．

RUBBTR BTGTINE
Sole Manufacturers of the Celebrated MONARCH brands of RUBBER BELTING．
THE GUTTA PERCHA AND RUBBER MFG．CO． Para Building， 35 Warren St．，New York．
THE DAIMLER MOTOR THE DAIMLEER MOTOR CO．
G to furish
1， 2 and 4 Horse for all Industrial Purposes．Fully illustrated catalogue
and price list on applitation．Motors in operation at
Works，Stein wav，Lone 1siand City Office， 111 East 14 Eh Sireet．Now York City． MIGHEST－GRADE．

SMALL ELECTRIC MOTOR FOR AM

 JENKINS STANDARD PACKINQ！

POPE MFC．CO．， 77 Franklin Stroet，BOSTOM．

Scientific Book Catalogue RECENTLY PUBIISHED． Our new catalogue containing over 100 pages，Includ－
Ing works on more than tift difrerent subjects．Will be
mailed tree to any address on application． MUN WE CO．，Publishers Scientitic American，
 STEAM PACKING
Boilior Coverings，Milliboard，Roofing．
 oprciptive rrice Liss AND samples sent rrge
H．W．JoHIS MfG．CO．， 87 Madden Lana N．Y．

THE NEW NON－CONDUCTING MATERIAL

THE MIDGLET WIRE ROPE

ESTA BLISHED HALF A CENTURY．

HAVE MANY PATENED
NOT FOUND IN OTHER MAKES THAT WILL WELL REPAY AN
INVESTIGATION BY THOSE WHO TO TO SECURE THE BEST SAFE MARVIN SAFE CO． NEW YORK，PHILADELPHIA， LONDON．ENGLAND
WORKING MODELS And Rypermantal

STEREOTYPING：－A VALUABLE

NATIONAL FILTER

BRIGHT SPARKLING WATER GUARANTEED
NATIONAL WATER PURIFYING CO．，

SYRAUUSE NALLEABIE ROWWWORTS

SCIENTIFIC A MERICAN SUPPLE－
 Ois Electic Blepator 1 H4 Manufacturers of the Standard ，4atal
Hydraulic Passenger and ELEVATORS， Otis Brothers \＆Co．，

GRAVESELEVATORS．
THE MODERN 1 CE YACHT，-BY

ฐrientific gmericau

The Most Popular Saientific Paper in the World
Only $\boldsymbol{\$ 3 . 0 0}$ a Year，Including Postage．Weekly
This widely circulated and splendidly illustrated paper is published weekly．Every number contains six－
teen pages of useful information and a large rumber of orikinal engravings of new inventions and discoveries． representing Engineering works，Steam Machinery，
New Inventions，Novelties in Mechanics，Manufactures， Chemistry，Electricity，TTelegraphy，Photography，Archi－ tecture，Agriculture，Horticulture，Natural History， Terms of Snbscription．－One copy of the ScIEN－ postage prepaid，to any subscriber in the United States， Canada，or Mexico，on receipt of three dollars by the publishers ；six months， 81.50 ；three months，81．00． Clubs．－Special rates for several names，and to Pos The areit Express Money Order．Money carefully placed inside of envelopes，securely sealed．and correctly addressed seldom goes astray，but is at the sender＇s risk．Address
all letters and make all orders，drafts etc．，parable to MUNN \＆CO．， 361 Broadway，New York．

This is a separate and distinct publication from THE SCIENTIFIC AMERICAN，but is unif orm therewith in size，
every number containing sixteen large pages full of en－ gravings，many of which are taken from foreign papers， and accompanied with translated descriptions．THE
SCIENTIFIC AMERICAN SUPPLEMENT is published week 1 y ，apd includes a very wide range of contents．It pre sents the most recent papers by eminent writers in all the principal departments of Science and the Usefu Arts，embracing Biology，Geology，Mineralogy，Natural
History，Geography，Archæology，Astronomy，Chemistry Electricity，Light，Heat．Mechanical Engineering，Steam and Railwas Engineering，Mining，Ship Building，Marine Engineering，Photography，Technology，Manufacturing culture，Domestic Economy，Biography，Medicine，etc．A vast amount of fresh and valuable information obtain able in no other publication．
The most important Engineering Works，Mechanisms，
and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT． Price for the SUPPLEment for the United States and Canada， 85.00 a year；or one copy of the SCIENTIFTC AMER－
IOAN and one copy of the SUPPLEMENT，both mailed for ICAN and one copy of the SUPPLEMENT，both mailed
one year for $\$ 7.00$ ．Single copies， 10 cents．Address，and Memit by postal order，express money order，or check，
MUNN \＆O．． $\mathbf{3 6 1}$ Broadway，New York．

361 Broadway，New York．
Publishers Scientipic American
Building CEdition．
The Scientific american Archiects＇and bulld copies， 25 cents．Forty large quarto pages，equal to about two hundred ordinary book pages：forming a large and splendid Magazine of Architecture，richly
dorned with elegant plates in colors，and with other flo dorned with elegant plates $1 n$ colors，and with other fine
engravings；illustrating the most interesting examples of modernarchitectural construction and allied subjects． A special feature is the presentation in each number dences，city and country，including those of very red erate cost as well as the more expensive．Drawings in
perspective and in color are given，together with full Plans，Speciffcations，Sheets of Details，Estimates，etc． have won forit the chargest Circulation of thent wor tectural publication in the world．Sold by all newsdeal ers．$\$ 2.50 \mathrm{a}$ year．Remit to

MUNN \＆CO．，Publishers，
361 Broadway，New York
PRINTING INEE

